Low Complexity Spectral Analysis of Heart-Rate-Variability through a Wavelet Based FFT

In this paper, a low complexity system for spectral analysis of heart rate variability (HRV) is presented. The main idea of the proposed approach is the implementation of the Fast-Lomb periodogram that is a ubiquitous tool in spectral analysis, using a wavelet based Fast Fourier transform. Interestingly we show that the proposed approach enables the classification of processed data into more and less significant based on their contribution to output quality. Based on such a classification a percentage of less-significant data is being pruned leading to a significant reduction of algorithmic complexity with minimal quality degradation. Indeed, our results indicate that the proposed system can achieve up-to 43% reduction in number of computations with only 4.9% average error in the output quality compared to a conventional FFT based HRV system.

Presented at:
IEEE Computing in Cardiology (CinC), September, 2012

 Record created 2012-10-03, last modified 2018-03-17

Rate this document:

Rate this document:
(Not yet reviewed)