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We study the mixed formulation of the stochastic Hodge–Laplace problem defined on an n-dimensional
domain D (n � 1), with random forcing term. In particular, we focus on the magnetostatic problem and
on the Darcy problem in the three-dimensional case. We derive and analyse the moment equations, that
is, the deterministic equations solved by the mth moment (m � 1) of the unique stochastic solution of the
stochastic problem. We find stable tensor product finite element discretizations, both full and sparse, and
provide optimal order-of-convergence estimates. In particular, we prove the inf–sup condition for sparse
tensor product finite element spaces.
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1. Introduction

Many engineering applications are affected by uncertainty. This uncertainty may be due to incomplete
knowledge of the input data or some intrinsic variability of them. For example, if we model single or
multi-phase flow in a porous medium, randomness arises in the permeability tensor, due to the impos-
sibility of a full characterization of conductivity properties of subsurface media, but also in the source
term, typically pressure gradients or impervious boundaries. See for example Tartakovsky & Neuman
(1998), Guadagnini & Neuman (1999a,b), Zhang (2002), Riva et al. (2006), Babuška et al. (2007) and
Franssen et al. (2009). Similar situations appear in many other applications, such as combustion flows,
earthquake engineering, biomedical engineering and finance. Probability theory provides an effective
tool to include uncertainty in the model: the uncertain parameters are modelled as random variables or
random fields with known probability laws.

c© The authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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MOMENT EQUATIONS FOR THE STOCHASTIC HODGE LAPLACIAN 1329

In this work, we focus on the linear Hodge–Laplace problem in a mixed formulation with stochastic
forcing term described as an Lm-integrable process and homogeneous boundary conditions. This prob-
lem includes the magnetostatic and electrostatic equations as well as the Darcy problem for monophase
flows in saturated media. The exterior calculus is a theoretical approach that, using tools from differ-
ential geometry, allows one to simultaneously treat many different problems. In particular, the Hodge
Laplacian dδ + δd, where δ is the formal adjoint of the exterior derivative d, maps differential k-forms
to differential k-forms and unifies some important second-order differential operators, such as the Lapla-
cian and curl–curl problems arising in electromagnetics. For more details, see Arnold et al. (2006, 2010)
and Christiansen et al. (2011).

The solution of the mixed formulation of the stochastic Hodge–Laplace problem is a couple (u, p)
of random fields taking values in a suitable space of differential forms. The description of these random
fields requires knowledge of their moments. A possible approach is to compute the moments by the
Monte Carlo method in which, after sampling the probability space, the deterministic partial differential
equation (PDE) is solved for each sample and the results are combined to obtain statistical information
about the random field. This is a widely used technique, but it features a very slow convergence rate.

In recent years some improvements have been proposed. We mention the multilevel Monte Carlo
method (see e.g. Heinrich, 2001; Giles, 2008a,b; Barth et al., 2011; Cliffe et al., 2011; Teckentrup et al.,
2013) for applications to stochastic PDEs) and the quasi Monte Carlo method (see e.g. Niederreiter,
1992; Caflisch, 1998; Graham et al., 2011; Kuo et al., 2012 for applications to stochastic PDEs).

An alternative strategy is to directly calculate the moments of interest of the stochastic solution
without doing any sampling. Indeed, the aim of the present work is to derive the moment equations, that
is, the deterministic equations solved by the m-points correlation functions of the stochastic solution,
show their well-posedness and propose a stable sparse finite element approximation.

The stochastic problem has the form

T

[
u

p

]
=
[

f1
f2

]
a.e. in D,

where T is a deterministic second-order linear differential operator (the Hodge–Laplace operator), D
is a domain in Rn and the forcing terms f1(ω, x), f2(ω, x) are random fields, with x ∈ D, ω ∈Ω and Ω
indicating the set of possible outcomes. The mth moment equation involves the tensor product operator
T⊗m := T ⊗ · · · ⊗ T︸ ︷︷ ︸

m times

and the forcing term is given by the m-points correlation function of the couple

[
f1
f2

]
.

We start by proving the well-posedness of the mth moment equation. Although this comes easily
from a tensorial argument, we also present a direct proof of the inf–sup condition for the tensor operator
T⊗m. This proof will be a key tool to show the stability of a sparse finite element approximation.

Concerning the numerical approximation of the mth moment equation, a tensorized finite element
(FE) approach for the numerical approximation of the moment equations is viable only for small m,
as the number of degrees of freedom increases exponentially in m. For large m one should consider
instead sparse approximations (see e.g. Schwab & Todor, 2003; Bungartz & Griebel, 2004; Schwab &
Gittelson, 2011 and the references therein). We consider both full tensor product (FTP) and sparse tensor
product finite element (STP-FE) approximations, and prove their stability using the tools from the finite
element exterior calculus. In particular, the stability of an FTP approximation is a simple consequence
of a tensor product argument. On the contrary, a tensor product argument does not apply if sparse tensor
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1330 F. BONIZZONI ET AL.

product approximations are considered and a direct proof of the inf–sup condition is needed, and will
be proved in Section 6. We also provide optimal order-of-convergence estimates both for the full and
the sparse approximations.

The originality of this work consists in the characterization of the inf–sup operator P for the deter-
ministic Hodge–Laplace operator T such that P⊗m is an inf–sup operator for the tensorized operator
T⊗m. Using this result, we are able to prove the stability of sparse approximations of tensorized mixed
problems, using advanced techniques such as a tensorial version of the GAP property (see Buffa, 2005).
Only after finishing and submitting the work did we became aware of the work by Hiptmair et al. (2012),
which treats the Maxwell cavity source problem using similar techniques.

The analysis on well-posedness and stable discretization for the m-points correlation problem devel-
oped in this work will be necessary to analyse more complex situations with randomness appearing in
the operator itself instead of simply in the right-hand side. This case can be treated for small random-
ness by a perturbation approach (Taylor or Neumann expansions, see e.g. Tartakovsky & Neuman,
1998; Guadagnini & Neuman, 1999a,b; Riva et al., 2006 from the hydrology literature, and Babuška
& Chatzipantelidis, 2002; Cohen et al., 2011; Bonizzoni & Nobile, 2013; Bonizzoni, 2013) and is cur-
rently under investigation. The outline of the paper is the following: in Section 2, we recall the Sobolev
spaces of differential forms and the main results on the mixed formulation of the Hodge–Laplace prob-
lem in the deterministic setting, stating the well-posedness of the problem and translating it into the
language of PDEs using proxy fields. In Section 3, we consider the stochastic counterpart of the mixed
Hodge-Laplace problem and we prove the well-posedness of its weak formulation. Section 4 is dedi-
cated to the analysis of the moment equations where we provide, in particular, the constructive proof
of the inf–sup condition for the tensor product operator T⊗m. In Section 5, we focus on two problems
of particular interest from the point of view of applications: the stochastic magnetostatic equations and
the stochastic Darcy problem. In Section 6 we provide both full and sparse finite element discretizations
for the deterministic mth moment problem; we prove their stability and optimal order-of-convergence
estimates. Conclusions are given in Section 7.

2. Sobolev spaces of differential forms and the deterministic Hodge–Laplace problem

In this section, we first recall the main concepts and definitions concerning finite element exterior cal-
culus and Sobolev spaces of differential forms, which generalize the classical Sobolev spaces, inspired
by Arnold et al. (2006, Section 2). We prove the inf–sup condition for the mixed formulation of the
Hodge–Laplace problem, providing a choice of test functions different from the classical one proposed
in Arnold et al. (2006). This will be needed later on to prove the equivalent inf–sup condition for the
m-points correlation problem. Finally, in the three dimensional case, we interpret the Hodge-Laplace
problem in term of proxy fields, and we translate it into the language of PDEs, with the aim of showing
that this general setting includes some important problems of practical interest.

2.1 Sobolev spaces of differential forms

The natural setting is a sufficiently smooth finite-dimensional manifold D with or without boundary.
For our purposes, we can restrict ourselves to the particular case of an n-dimensional bounded domain
D ⊂ Rn with boundary denoted by ∂D ⊂ Rn−1. In this way, at each point x ∈ D the tangent space is
naturally identified with Rn and we make this assumption throughout the paper. We denote by AltkRn,
1 � k � n the space of alternating k-linear maps on Rn. Clearly, Alt0Rn = R and AltnRn = R, and the
unique element in AltnRn is a volume form voln. We recall the wedge product ∧ : AltkRn × AltlRn →
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MOMENT EQUATIONS FOR THE STOCHASTIC HODGE LAPLACIAN 1331

Altk+lRn and the inner product (·, ·)AltkRn : AltkRn × AltkRn → R for k + l � n. Starting from this inner
product, the Hodge star operator � : AltkRn → Altn−kRn is defined: u ∧ �w = (u, w)AltkRn voln.

A differential k-form on D is a map u which associates to each x ∈ D an element ux ∈ AltkRn. We
denote by Λk(D) the space of all smooth differential k-forms on D. The wedge product of alternating
k-forms may be applied pointwise to define the wedge product of differential forms: (u ∧ w)x = ux ∧ wx.
The exterior derivative dk maps Λk(D) into Λk+1(D) for each k � 0 and it is defined as

dkux(v1, . . . , vk+1)=
k+1∑
j=1

(−1)j+1∂vj ux(v1, . . . , v̂j, . . . , vk+1), u ∈Λk(D),

v1, . . . , vk+1 ∈ Rn, where the hat is used to indicate a suppressed argument. The exterior derivative sat-
isfies the key property dk+1 ◦ dk = 0 for all k. The coderivative operator δk :Λk(D)→Λk−1(D) is the
formal adjoint of the exterior derivative and it is defined by

� δku = (−1)k dn−k � u, u ∈Λk(D). (2.1)

To lighten the notation, in the following we omit the superscript k and denote dk and δk simply by d
and δ, respectively, when no ambiguity arises. The trace operator Tr :Λk(D)→Λk(∂D) is defined as
the pullback of the inclusion ∂D ↪→ D. We denote by vol the unique volume form in Λn(D) such that,
at each x ∈ D, voln is the unique form associated with AltnRn. Given two differential k-forms on D, it is
possible to define their L2 inner product as the integral of their pointwise inner product in AltkRn:

(u, w) :=
∫

D
(ux, wx)AltkRn vol =

∫
D

u ∧ �w, u, w ∈Λk(D). (2.2)

In the following, we will denote by ‖ · ‖ the norm induced by the L2 inner product (·, ·). The following
integration by parts formula holds:

(du, v)= (u, δv)+
∫
∂D

Tr(u) ∧ Tr(�v), u ∈Λk(D), v ∈Λk+1(D). (2.3)

The completion of Λk(D) in the norm induced by the scalar product (2.2) defines the Hilbert space
L2Λk(D). The Sobolev space of square-integrable k-forms whose exterior derivative is also square
integrable is given by

HΛk(D)= {u ∈ L2Λk(D) | du ∈ L2Λk+1(D)}. (2.4)

It is a Hilbert space equipped with the inner product

(u, w)HΛk := (u, w)+ (du, dw).

In analogy with HΛk(D), it is possible to define the Hilbert space

H∗Λk(D) := {u ∈ L2Λk(D) | δu ∈ L2Λk−1(D)}. (2.5)
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1332 F. BONIZZONI ET AL.

Let ∂D = Γ̄D ∪ Γ̄N, ΓD ∩ ΓN = ∅. As is standard (Arnold et al., 2006), the spaces (2.4) and (2.5) can be
endowed with boundary conditions:

HΓD
Λk(D) := {u ∈ HΛk(D)| Tr(u)|ΓD = 0},

H∗
ΓN
Λk(D) := {u ∈ H∗Λk(D)| Tr(�u)|ΓN = 0}.

(2.6)

With the spaces defined in (2.6) and the exterior derivative operator, we can construct the L2 de Rham
complex:

0 → HΓD
Λ0(D)

d−→ · · · d−→ HΓD
Λn(D)−→ 0. (2.7)

Since d ◦ d = 0, we have

Bk ⊆ Zk , (2.8)

where Bk is the image of d in HΓD
Λk(D) while Zk is the kernel of d in HΓD

Λk(D).
The following orthogonal decomposition of L2Λk(D), known as Hodge decomposition, holds:

L2Λk(D)= Bk ⊕ B⊥
k , (2.9)

where B⊥
k is the L2 complement of Bk .

We define two projection operators π⊥ and π◦ as follows:

π⊥ : Bk ⊕ B⊥
k → B⊥

k , v = dv◦ + v⊥ �→ v⊥, (2.10)

π◦ : Bk ⊕ B⊥
k → B⊥

k−1, v = dv◦ + v⊥ �→ v◦. (2.11)

Hence, given v ∈ L2Λk(D), it can be uniquely expressed as v = dπ◦ v + π⊥v. We recall a classical result
in the theory of Sobolev spaces.

Lemma 2.1 (Poincaré inequality) There exists a positive constant CP that depends only on the domain
D such that

‖v‖ � CP‖dv‖ ∀v ∈ Z⊥
k , (2.12)

where Z⊥
k is the orthogonal complement of Zk in HΓD

Λk(D).

For the sake of simplicity, we consider only the case of geometries which are trivial from the topo-
logical point of view. More precisely, from now on, we make the following assumption.

Assumption 2.2 The domain D ⊂ Rn is bounded, Liptschitz and contractible. Its boundary ∂D is given
by the disjoint union of two open sets ΓD and ΓN, with ΓD,ΓN |= ∅, ΓD contractible as well and with
boundary sufficiently regular (at least piecewise C1).

Under Assumption 2.2, B⊥
k = B∗

k , where B∗
k is the image of δ in H∗

ΓN
Λk(D). This relation is proved

in the three-dimensional case in Fernandes & Gilardi (1997) and generalizes to the n-dimensional case
(see e.g. Massey, 1991).

From now on we make the following regularity assumption on the domain D, which will be needed
to prove the stability of the numerical schemes we propose in this paper.
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Assumption 2.3 For every 0 � k � n, there exists 0< s � 1 such that

HΓD
Λk(D) ∩ H∗

ΓN
Λk(D)⊆ HsΛk(D), (2.13)

where HsΛk(D) is the space of differential k-forms with square-integrable partial derivatives of order
at most s.

Inclusion (2.13) is verified for an s-regular domain such that ΓD = ∂D and ΓN = ∅. In particular, if
∂D is smooth, then D is 1-regular, and if ∂D is Lipschitz, then D is 1

2 -regular. See Arnold et al. (2006)
and the references therein. We assume the second inclusion to be verified in our more general setting
where ΓN |= ∅ and ΓD � ∂D.

Remark 2.4 The case of nontrivial topology can likely be treated following Arnold et al. (2010), but it
would make the exposition of our results much more difficult.

Remark 2.5 We assume ΓD,ΓN |= ∅, but the two limit cases treated in Arnold et al. (2006) can be
considered with suitable modifications of our argument.

We end the section by introducing the following notation for two Hilbert spaces we will use later
on:

Wk :=
[

L2Λk(D)

L2Λk−1(D)

]
, Vk :=

[
HΓD

Λk(D)

HΓD
Λk−1(D)

]
, (2.14)

endowed with the inner products (·, ·)Wk , (·, ·)Vk and the norms ‖ · ‖Wk , ‖ · ‖Vk , respectively.

2.2 Mixed formulation of the Hodge–Laplace problem

The Hodge Laplacian is the differential operator δd + dδ mapping k-forms into k-forms and the Hodge–
Laplace problem is the boundary value problem for the Hodge Laplacian. We consider the mixed formu-
lation of the Hodge–Laplace problem with variable coefficients, described in Arnold et al. (2006, 2010)
and Christiansen et al. (2011), which allows one to include the Darcy problem (see Section 2.2.1). Given

a non-negative coefficient α ∈ R+ and source terms
[

f1
f2

]
∈ Wk , find

[ u
p
]

such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
δ du + dp = f1 in D,

δu − αp = f2 in D,{
Tr(u)= 0 on ΓD,

Tr(p)= 0 on ΓD,

{
Tr(�u)= 0 on ΓN,

Tr(�du)= 0 on ΓN.

(2.15)

We introduce T : Vk → V ′
k , the linear operator of order 2 represented by the matrix

T :=
[
δd d

δ −α Id

]
=
[

A B∗

B −α Id

]
, (2.16)

where

V ′
k =
[
(HΓD

Λk(D))′

(HΓD
Λk−1(D))′

]
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1334 F. BONIZZONI ET AL.

is the dual space of Vk defined in (2.14), the operators A and B are defined as

A : HΓD
Λk(D)→ (HΓD

Λk(D))′, 〈Av, w〉 := (dv, dw), (2.17)

B : HΓD
Λk(D)→ (HΓD

Λk−1(D))′, 〈Bv, q〉 := (v, dq) (2.18)

and B∗ is the adjoint of B. Moreover, we introduce the linear operators F1 ∈ (HΓD
Λk(D))′ and F2 ∈

(HΓD
Λk−1(D))′ defined as

F1 : HΓD
Λk(D)→ R, F1(v) := (f1, v), (2.19)

F2 : HΓD
Λk−1(D)→ R, F2(q) := (f2, q). (2.20)

The mixed formulation of the deterministic Hodge Laplacian with homogeneous essential boundary
conditions on ΓD and homogeneous natural boundary conditions on ΓN is as follows.

Deterministic Problem

Given

[
F1

F2

]
∈ V ′

k, find

[
u

p

]
∈ Vk such that

T

[
u

p

]
=
[

F1

F2

]
in V ′

k .

(2.21)

Theorem 2.6 For every α > 0, problem (2.21) is well posed, so that there exists a unique solution that
depends continuously on the data. In particular, for every

[ u
p
] ∈ Vk , take

[ v
q
]= P

[ u
p
] ∈ Vk , with

P =
[
π⊥ dπ⊥

γπ◦ −dπ◦

]
, (2.22)

π⊥, π◦ being defined in (2.10) and (2.11), respectively, and γ a positive parameter. Then, there exist
positive constants C1, C′

1 that depend only on the Poincaré constant CP and on the parameter α, such
that 〈

T

[
u

p

]
,

[
v

q

]〉
V ′

k ,Vk

� C1

∥∥∥∥∥
[

u

p

]∥∥∥∥∥
2

Vk

= C1(‖u‖2
HΛk + ‖p‖2

HΛk−1), (2.23)

∥∥∥∥∥
[

v

q

]∥∥∥∥∥
Vk

� C′
1

∥∥∥∥∥
[

u

p

]∥∥∥∥∥
Vk

. (2.24)

The same result holds with α= 0 provided that F2 corresponds to f2 ∈ δHΓD
Λk(D).

The well-posedness of problem (2.21) is proved in Arnold et al. (2006) by showing that the bounded
bilinear and symmetric form 〈T ·, ·〉 : Vk × Vk → R satisfies the inf-sup condition (2.23), (2.24) (see
Babuška & Aziz, 1972; Brezzi & Fortin, 1991). However, we report it entirely (with a slightly different
choice of test functions) as a preparatory step for the proofs we will propose later on.
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Proof. We need to show (2.23) and (2.24). Let us start by considering α > 0. For a given
[ u

p
]

we use
the Hodge decomposition (2.9): [

u

p

]
=
[

du◦ + u⊥

dp◦ + p⊥

]
,

with du◦ ∈ Bk , dp◦ ∈ Bk−1, u⊥ ∈ B⊥
k and p⊥ ∈ B⊥

k−1. As test functions, we choose[
v

q

]
= P

[
du◦ + u⊥

dp◦ + p⊥

]
=
[

u⊥ + dp⊥

γ u◦ − dp◦

]
, (2.25)

where γ is a positive parameter to be set later. Substituting (2.25) into (2.23), using the property d ◦ d =
0, the Hodge decomposition (2.9) and the Poincaré inequality (2.12), we find〈

T

[
u

p

]
,

[
v

q

]〉
V ′

k ,Vk

= (du, dv)+ (v, dp)+ (u, dq)− α(p, q)

= ‖du⊥‖2 + ‖dp⊥‖2 + γ ‖du◦‖2 + α‖dp◦‖2 − αγ (p⊥, u◦)

� ‖du⊥‖2 + ‖dp⊥‖2 + γ ‖du◦‖2 + α‖dp◦‖2

− αγ 1/2

2
(C2

P‖dp⊥‖2 + γC2
P‖du◦‖2)

� ‖du⊥‖2 +
(

1 − α

2
γ 1/2C2

P

)
‖dp⊥‖2

+ γ

(
1 − αγ 1/2C2

P

2

)
‖du◦‖2 + α‖dp◦‖2.

It is possible to choose γ in order to make (2.23) true with C1 = C1(CP,α). The inequality (2.24) with
C1 = C′

1(CP,α) follows from the Hodge decomposition (2.9) and Poincaré inequality (2.12).
The proof in the case α = 0 is very similar. Suppose f2 ∈ δHΓD

Λk(D). In order to have a unique
solution, we need to look for p ∈ B⊥

k−1. With fixed u = du◦ + u⊥ ∈ HΓD
Λk(D) we again choose the

test functions as in (2.25): v = dp + u⊥ ∈ HΓD
Λk(D) and q = u◦ ∈ B⊥

k−1. Using the Poincaré inequality
(2.12) and the orthogonal decomposition (2.9) we are able to prove the relations (2.23) and (2.24). �

A simple consequence of Theorem 2.6 (see Brezzi & Fortin, 1991) is that there exists a positive
constant K = K(CP,α) such that ∥∥∥∥∥

[
u

p

]∥∥∥∥∥
Vk

� K

∥∥∥∥∥
[

F1

F2

]∥∥∥∥∥
V ′

k

. (2.26)

2.2.1 Translation to the language of PDEs Let us consider the case D ⊂ R3, naturally identifying
the tangent space at each point x ∈ D with R3. Owing to the identification of Alt0R3 and Alt3R3 with R,
and of Alt1R3 and Alt2R3 with R3, we can establish correspondences between the spaces of differential
forms and scalar or vector fields. These fields are called proxy fields. In particular, we can identify each
0-form and 3-form with a scalar-valued function, and each 1-form and 2-form with a vector-valued
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1336 F. BONIZZONI ET AL.

Table 1 Correspondences in terms of proxy fields between the
space of differential forms HΛk(D) and the classical spaces of
functions and vector fields, in the case n = 3

HΓD
Λk(D) d Tr|ΓD u

k = 0 H1
ΓD
(D) ∇ u|ΓD

k = 1 HΓD(curl, D) curl u × n|ΓD

k = 2 HΓD(div, D) div u · n|ΓD

k = 3 L2(D) 0 0

function. Table 1 summarizes the correspondences in terms of proxy fields for the spaces of differential
forms HΓD

Λk(D), the exterior derivative operators and the trace operators. Based on the identifications
in Table 1 we can reinterpret the de Rham complex (2.7) as follows:

0 −→ H1
ΓD
(D)

∇−→ HΓD(curl, D)
curl−→ HΓD(div, D)

div−→ L2(D)−→ 0, (2.27)

where H1
ΓD
(D), HΓD(curl, D), HΓD(div, D) denote the classical Sobolev spaces of functions in H1(D),

H(curl, D), H(div, D), respectively, with trace vanishing on ΓD. In this section, we will use the symbol
(·, ·) to denote the inner product in L2(D) that corresponds by proxy identifications to the inner product
in L2Λk(D).

• Let us start with k = 0. In this case HΓD
Λ−1(D)= 0, so p = 0. Then, u ∈ H1

ΓD
(D) satisfies

(∇u, ∇v)= (f1, v) ∀v ∈ H1
ΓD
(D). (2.28)

We obtain the usual weak formulation of the Poisson equation equipped with homogeneous Dirichlet
boundary conditions on ΓD and homogeneous Neumann boundary conditions on ΓN.

• For k = 1 and α= 0, the linear operator T of order 2 defined in (2.16) is represented by the matrix

T =
[

curl2 ∇
−div 0

]
. (2.29)

Problem (2.21) is the weak formulation of the magnetostatic/electrostatic equations (see e.g.

Bossavit, 1998; Hiptmair, 2002; Monk, 2003). Indeed, V1 =
[

HΓD (curl,D)

H1
ΓD
(D)

]
and

[ u
p
] ∈ V1 satisfies

{
(curl u, curl v)+ (∇p, v)= (f1, v),

(u, ∇q)= (f2, q),
∀
[

v

q

]
∈ V1. (2.30)

• When k = 2,

T =
[−∇ div curl

curl −α Id

]
.
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Problem (2.21) is the mixed formulation of the vectorial Poisson equation: find
[ u

p
] ∈ V2 =[

HΓD (div,D)
HΓD (curl,D)

]
such that

{
(div u, div v)+ (curl p, v)= (f1, v),

(u, curl q)− α(p, q)= (f2, q),
∀
[

v

q

]
∈ V2. (2.31)

• Finally, for k = 3, problem (2.21) models flow in porous media. We can reinterpret T , the linear
tensor operator of order 2, as

T =
[

0 div
−∇ −α Id

]
, (2.32)

where α > 0 is linked to the inverse of the permeability. Hence, problem (2.21) is the Darcy equa-

tions: find
[ u

p
] ∈ V3 =

[
L2(D)

HΓD (div,D)

]
such that

{
(div p, v)= (f1, v),

(u, div q)− α(p, q)= 0,
∀
[

v

q

]
∈ V3. (2.33)

3. Stochastic Sobolev spaces of differential forms and the stochastic Hodge Laplacian

Let (Ω ,A, P) be a complete probability space and V be a separable Hilbert space. We define the stochas-
tic counterpart of V as the Hilbert space given by the tensor product V ⊗ L2(Ω , dP), where Lm(Ω , dP) is
the standard Lebesgue space of functions whose mth power is integrable with respect to the probability
measure.

Let L2(Ω; V) be the Bochner space composed of functions u such that ω �→ ‖u(ω)‖2
V is measurable

and integrable, so that ‖u‖L2(Ω;V) := (
∫
Ω

‖u(ω)‖2
V dP(ω))1/2 is finite. We observe that there is a unique

isomorphism from V ⊗ L2(Ω , dP) to L2(Ω; V) which maps ψ ⊗ μ ∈ V ⊗ L2(Ω , dP) onto the function
ω �→μ(ω)ψ ∈ V . The definition of the Hilbert space L2(Ω; V) easily generalizes to the space Lm (Ω; V)
with m � 1. We say that a random field u :Ω → V is in the Bochner space Lm (Ω; V) if ω �→ ‖u(ω)‖m

V
is measurable and integrable, so that ‖u‖Lm(Ω;V) := (

∫
Ω

‖u(ω)‖m
V dP(ω))1/m is finite.

Let
[ F1

F2

] ∈ Lm
(
Ω; V ′

k

)
, with m � 1, defined as the stochastic version of (2.19) and (2.20), be given:

F1(ω) : HΓD
Λk(D)→ R, F1(ω)(v) := (f1(ω), v),

F2(ω) : HΓD
Λk−1(D)→ R, F2(ω)(q) := (f2(ω), q),

where
[

f1
f2

]
∈ Lm (Ω; Wk) is also given. The stochastic counterpart of problem (2.21) is as follows.

Stochastic Problem

Given m � 1 and

[
F1

F2

]
∈ Lm

(
Ω; V ′

k

)
, find

[
u

p

]
∈ Lm (Ω; Vk) such that

T

[
u(ω)

p(ω)

]
=
[

F1(ω)

F2(ω)

]
in V ′

k , a.e. in Ω .

(3.1)
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Theorem 3.1 (Well-posedness of the stochastic Hodge Laplacian) For every α > 0 problem (3.1) is
well posed, so that there exists a unique solution that depends continuously on the data. The same result
holds with α= 0, provided that F2 corresponds to f2 ∈ Lm

(
Ω; δHΓD

Λk(D)
)
.

Proof. The result follows by the well-posedness of the deterministic Hodge Laplacian for a.e. ω ∈Ω
(Theorem 2.6), and using the fact that

[ F1
F2

] ∈ Lm
(
Ω; V ′

k

)
and (2.26). Observe that the constant K in

(2.26) does not depend on ω. �

4. Deterministic problems for the statistics of u and p

We are interested in the statistical moments of the unique stochastic solution
[ u

p
]

of the stochastic

problem (3.1). We exploit the linearity of the system T
[

u(ω)
p(ω)

]
=
[

F1(ω)
F2(ω)

]
to derive the moment equations,

that is, the deterministic equations solved by the statistical moments of the unique stochastic solution[ u
p
]
. The main achievement is the constructive proof of the inf–sup condition for the tensor product

operator T⊗m stated in Theorem 4.6, equivalent to the well-posedness of the mth moment problem.
Indeed, this proof extends to the case of sparse tensor product approximations (see Section 6.3).

4.1 Tensor product of operators on Hilbert spaces

Given T1 : V1 → V ′
1, T2 : V2 → V ′

2, continuous operators on the Hilbert spaces V1 and V2, respectively,
then the tensor product operator T1 ⊗ T2 : V1 ⊗ V2 → V ′

1 ⊗ V ′
2 is defined on functions of the type φ ⊗ ψ ,

with φ ∈ V1, ψ ∈ V2 as
(T1 ⊗ T2)(φ ⊗ ψ)= T1φ ⊗ T2ψ ∈ V ′

1 ⊗ V ′
2,

and then extended by linearity and density (see Reed & Simon, 1980 and the references therein). The
tensor product of two bounded operators on Hilbert space is still a bounded operator, as stated by the
following proposition.

Proposition 4.1 Let T1 : V1 → V ′
1, T2 : V2 → V ′

2 be bounded operators on Hilbert spaces V1 and V2,
respectively. Then

‖T1 ⊗ T2‖L(V1⊗V2,V ′
1⊗V ′

2)
= ‖T1‖L(V1,V ′

1)
‖T2‖L(V2,V ′

2)
.

Proof. For the proof, see Reed & Simon (1980). �

The definition of the tensor product of two operators on Hilbert spaces and Proposition 4.1 general-
ize to a tensor product of any finite number of operators defined on Hilbert spaces.

We detail now the vector case, since it will be useful in the next section. Let V1 = V2 = Vk , where
Vk is defined in (2.14), and T1 = T2 = T , where T = (T)i,j=1,2 : Vk → V ′

k is the linear operator of order 2
defined in (2.16). The tensor product operator T⊗m := T ⊗ · · · ⊗ T︸ ︷︷ ︸

m

, (m � 1 integer), is the operator of

order 2m that maps tensors in V⊗m
k to tensors is (V ′

k)
⊗m defined as

(T⊗m)i1...i2m = Ti1i2 ⊗ · · · ⊗ Ti2m−1i2m . (4.1)

Given X ∈ V⊗m
k , T⊗mX is a tensor of order m in (V ′

k)
⊗m given by

(T⊗mX )i1...im =
2∑

j1,...,jm=1

(Ti1j1 ⊗ · · · ⊗ Timjm)Xj1...jm , i1, . . . , im = 1, 2. (4.2)
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Definition 4.2 Let T and Vk be as before and let X ∈ V⊗m
k and Y ∈ V⊗m

k . We define

〈T⊗mX , Y 〉 =
2∑

i1,...,im=1

2∑
j1,...,jm=1

〈Ti1,j1 · · · Tim,jm Xj1,...,jm , Yi1,...,im〉. (4.3)

4.2 Equations for the mth moment

Let v ∈ Lm (Ω; V), m � 1 integer, where V is a Hilbert space and Lm (Ω; V) is defined as in Section 3.
Then v⊗m := v ⊗ · · · ⊗ v︸ ︷︷ ︸

m times

∈ L1(Ω , V⊗m), where from now on V⊗m denotes the tensor product space

V ⊗ · · · ⊗ V︸ ︷︷ ︸
m times

. The mth moment of v is defined as

Mm [v] := E [v ⊗ · · · ⊗ v] =
∫
Ω

v(ω)⊗ · · · ⊗ v(ω) dP(ω) ∈ V⊗m. (4.4)

It clearly holds that ‖Mm [v] ‖V⊗m � ‖v‖m
Lm(Ω;V). The definition (4.4) with m = 1 gives the expected value

of v, E [v]. Moreover, definition (4.4) easily generalizes to the vector case.
Following von Petersdorff & Schwab (2006), we analyse the mth moment equation for m � 1. Sup-

pose
[ F1

F2

] ∈ Lm
(
Ω; V ′

k

)
, so that

[ u
p
] ∈ Lm (Ω; Vk). To derive the deterministic mth moment problem we

tensorize the stochastic problem (3.1) with itself m times:

T ⊗ · · · ⊗ T︸ ︷︷ ︸
m times

[
u(ω)

p(ω)

]⊗m

=
[

F1(ω)

F2(ω)

]⊗m

in (V ′
k)

⊗m, for a.e. ω ∈Ω .

We take the expectation on both sides and we exploit the commutativity between the operators T and E.
By definition, E

[ u
p
]⊗m =Mm

[ u
p
]
. Thus, Mm

[ u
p
]

is a solution of the following.

m-Points Correlation Problem

Given m � 1 integer and

[
F1

F2

]
∈ Lm

(
Ω; V ′

k

)
, find M ⊗m

s ∈ V⊗m
k such that

T⊗mM ⊗m
s =Mm

[
F1

F2

]
in (V ′

k)
⊗m.

(4.5)

Here, Mm
[ F1

F2

] ∈ (V ′
k)

⊗m is defined as

Mm

[
F1

F2

]([
v

q

])
:=
(
Mm

[
f1
f2

]
,

[
v

q

])
W⊗m

k

∀
[

v

q

]
∈ V⊗m

k .

We note that in the right-hand side of (4.5) we have the m-points correlation of the loading terms of
problem (3.1).
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Remark 4.3 Note that the first moment problem is a saddle-point problem and (4.5) is composed of
m ‘nested’ saddle-point problems. Indeed, if for example m = 2, then T ⊗ T can be represented by the
matrix

T ⊗ T =

⎡
⎢⎢⎣
δd ⊗ δd δd ⊗ d d ⊗ δd d ⊗ d
δd ⊗ δ δd ⊗ −α Id d ⊗ δ d ⊗ −α Id
δ ⊗ δd δ ⊗ d −α Id ⊗ δd −α Id ⊗ d
δ ⊗ δ δ ⊗ −α Id −α Id ⊗ δ −α Id ⊗ −α Id

⎤
⎥⎥⎦ . (4.6)

Theorem 4.4 (Well-posedness of the mth problem) For every α > 0, problem (4.5) is well posed, so
that there exists a unique solution that depends continuously on the data. The same result holds with
α = 0, provided that F2 corresponds to f2 ∈ Lm

(
Ω; δHΓD

Λk(D)
)
.

Proof. In the case m = 1, the theorem follows directly from the well-posedness of the deterministic
Hodge Laplacian. Suppose m � 2. Theorem 4.4 can be proved by a simple tensor product argument, as
follows. Since problem (2.21) is well posed, the inverse operator T−1 exists and is linear and bounded.
Now, we consider the tensor operator (T−1)⊗m = T−1 ⊗ · · · ⊗ T−1︸ ︷︷ ︸

m times

. It is the inverse operator of T⊗m.

Moreover, it is linear and bounded (Proposition 4.1). Hence, we can immediately conclude the well-
posedness of problem (4.5). �

Remark 4.5 The approach presented in the proof is not completely satisfactory in view of a finite-
dimensional approximation. Indeed, when considering a finite-dimensional version of the operator,
Th := T |Vk,h : Vk,h → V ′

k,h, where Vk,h is a finite-dimensional subspace of Vk , and aiming at proving the
well-posedness of the tensor operator (Th)

⊗m = Th ⊗ · · · ⊗ Th︸ ︷︷ ︸
m times

, this tensor product argument applies only

if the finite-dimensional subspace is a tensor product space V⊗m
k,h . It will not apply straightforwardly if

sparse tensor product spaces are considered instead.

4.3 Constructive proof of the inf–sup condition for the tensorized problem

Here, we propose an alternative proof of Theorem 4.4 that consists in showing the inf–sup condition for
T⊗m, m � 2 integer. This proof will be used later on to prove the stability of an STP-FE discretization,
which is of practical interest for moderately large m as it reduces considerably the curse of dimension-
ality with respect to an FTP approximation.

A result equivalent to Theorem 4.4 is the following theorem.

Theorem 4.6 (Tensorial inf–sup condition) For every M ⊗m
s ∈ V⊗m

k , take M ⊗m
t = P⊗mM ⊗m

s ∈ V⊗m
k ,

where P is defined in (2.22). Then, there exist positive constants

Cm = Cm(α, CP,1, ‖T‖L(Vk ,V ′
k)

, ‖P‖L(Vk ,Vk)), C′
m = C′

m(α, CP,1, ‖T‖L(Vk ,V ′
k)

, ‖P‖L(Vk ,Vk))

such that

〈T⊗mM ⊗m
s , M ⊗m

t 〉(V ′
k)

⊗m,V⊗m
k

� Cm‖M ⊗m
s ‖2

V⊗m
k

, (4.7)

‖M ⊗m
t ‖V⊗m

k
� C′

m‖M ⊗m
s ‖V⊗m

k
, (4.8)

where CP,1 is the tensorial Poincaré constant (see Lemma 4.7).
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Before presenting the proof we state the tensorized versions of the Hodge decomposition and the
Poincaré inequality, which are two key ingredients in the proof of the inf–sup condition for the deter-
ministic problem (2.21).

Let us write the space V⊗m
k as

V⊗m
k = Vk ⊗ V⊗(m−1)

k =
[

HΓD
Λk(D)

HΓD
Λk−1(D)

]
⊗ V⊗(m−1)

k =
[

Um
k

Um
k−1

]
, (4.9)

where we define

Um
k := HΓD

Λk(D)⊗ V⊗(m−1)
k , (4.10)

Um
k−1 := HΓD

Λk−1(D)⊗ V⊗(m−1)
k . (4.11)

We obtain the tensorial Hodge decomposition following the idea of the one-dimensional Hodge decom-
position (2.9). Indeed, for every integer m � 2, we split Um

k (Um
k−1 is analogous) as follows.

Tensorial Hodge Decomposition:

Um
k = Bm

k ⊕ Bm,⊥
k , (4.12)

where

Bm
k := d ⊗ Id⊗(m−1) Um

k−1 = Bk ⊗ V⊗(m−1)
k ,

Bm,⊥
k := B⊥

k ⊗ V⊗(m−1)
k

and Bk , B⊥
k are defined as in Section 2. The tensor operators π⊥ ⊗ Id⊗(m−1) and π◦ ⊗ Id⊗(m−1), where

π⊥ and π◦ are defined in (2.10) and (2.11), respectively, act on Um
k (Um

k−1 is analogous) as follows:

π⊥ ⊗ Id⊗(m−1) : Um
k = Bm

k ⊕ Bm,⊥
k → Bm,⊥

k ,

v = d ⊗ Id⊗(m−1)v◦ + v⊥ �→ v⊥,
(4.13)

π◦ ⊗ Id⊗(m−1) : Um
k = Bm

k ⊕ Bm,⊥
k → Bm,⊥

k−1,

v = d ⊗ Id⊗(m−1)v◦ + v⊥ �→ v◦.
(4.14)

The tensorial Poincaré inequality is proved in the following lemma.

Lemma 4.7 (Tensorial Poincaré inequality) For every integer m � 2, there exists a positive constant
CP,1 such that

‖v‖(L2Λk)⊗m � CP,1‖Id ⊗ · · · ⊗ d︸︷︷︸
i

⊗ · · · ⊗ Id v‖
L2Λk⊗···⊗L2Λk︸ ︷︷ ︸

i

⊗···⊗L2Λk
(4.15)

for all v ∈ L2Λk(D)⊗ · · · ⊗ (Z⊥
k )︸︷︷︸
i

⊗ · · · ⊗ L2Λk(D), where Z⊥
k is defined in Section 2.1.
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Proof. We know that HΛk(D) is a Hilbert space with the inner product (u, v)HΛk and (u, u)HΛk =
‖u‖2

HΛk . Besides, we know that Z⊥
k is a Hilbert space with the equivalent inner product (du, dv) and

norm ‖du‖ = (du, du). A consequence of the open mapping theorem states that, given m Hilbert spaces
H1, . . . , Hm, the topology of H1 ⊗ · · · ⊗ Hm depends only on the topology and not on the choice of the
inner products of H1, . . . , Hm. If we apply this statement with Hi = Z⊥

k and Hj = HΛk(D), i |= j, we can
conclude the inequality (4.15). �

A simple consequence of the previous lemma is

‖v‖(L2Λk)⊗m � CP,m‖d⊗mv‖(L2Λk+1)⊗m ∀v ∈ (Z⊥
k )

⊗m, (4.16)

where CP,m > 0 depends only on the domain D and on m.

Proof of Theorem 4.6. As shown before, Mm
[ u

p
]

is a solution of (4.5). Uniqueness of the solution of
problem (4.5) is related to the global inf–sup condition (4.7), (4.8) (see Babuška & Aziz, 1972; Brezzi
& Fortin, 1991). Suppose α > 0 (the case α = 0 is analogous). To lighten the notation, in the proof we
use the brackets 〈·, ·〉 without specifying the spaces we consider, when no ambiguity arises. We use
the tensorial Hodge decomposition (4.12) and the tensorial Poincaré inequality (Lemma 4.7). We prove
(4.7) by induction. In Theorem 2.6, we have already proved the inf–sup condition with m = 1. Now,

suppose m = 2. We fix M ⊗2
s =

[
(M ⊗2

s )1:

(M ⊗2
s )2:

]
where (M ⊗2

s )1: (respectively, (M ⊗2
s )2:) means that in the tensor

of order 2, M ⊗2
s = (M ⊗2

s )ij=1,2, we fix i = 1 (respectively, i = 2) and let j vary. Using (4.9) and (4.12)
with m = 2 we decompose

M ⊗2
s =

[
d ⊗ Id(M ◦

s )1: + (M ⊥
s )1:

d ⊗ Id(M ◦
s )2: + (M ⊥

s )2:

]
∈
[

U2
k

U2
k−1

]
,

where

(M ⊥
s )1: = π⊥ ⊗ Id(M ⊗2

s )1: ∈ B2,⊥
k ,

(M ⊥
s )2: = π⊥ ⊗ Id(M ⊗2

s )2: ∈ B2,⊥
k−1,

(M ◦
s )1: = π◦ ⊗ Id(M ⊗2

s )1: ∈ B2,⊥
k−1,

(M ◦
s )2: = π◦ ⊗ Id(M ⊗2

s )2: ∈ B2,⊥
k−2.

We choose M ⊗2
t = P ⊗ PM ⊗2

s , where P is defined in (2.22), so that

〈T ⊗ TM ⊗2
s , M ⊗2

t 〉 = 〈T ⊗ TM ⊗2
s , P ⊗ PM ⊗2

s 〉

=
2∑

i,j=1

〈Tij ⊗ T(M ⊗2
s )j:, (P ⊗ PM ⊗2

s )i:〉. (4.17)

Let 〈Tij ⊗ T(M ⊗2
s )j:, (P ⊗ PM ⊗2

s )i:〉 = Iij. We will bound each term Iij for i, j = 1, 2.
Using (4.2) we make explicit the term (P ⊗ PM ⊗2

s )i::

(P ⊗ PM ⊗2
s )i: = Pi1 ⊗ P(M ⊗2

s )1: + Pi2 ⊗ P(M ⊗2
s )2:.
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Let us start from the case i = j = 1:

I11 = 〈A ⊗ T(M ⊗2
s )1:, (π

⊥ ⊗ P(M ⊗2
s )1: + dπ⊥ ⊗ P(M ⊗2

s )2:)〉.

Since d ◦ d = 0, then 〈A ⊗ T(M ⊗2
s )1:, dπ⊥ ⊗ P(M ⊗2

s )2:)〉 = 0 and A ⊗ T(d ⊗ IdM ◦
s )1: ≡ 0. Hence,

I11 = 〈A ⊗ T(M ⊥
s )1:, Id ⊗ P(M ⊥

s )1:〉
= 〈d ⊗ T(M ⊥

s )1:, d ⊗ P(M ⊥
s )1:〉

� C1‖d ⊗ Id(M ⊥
s )1:‖2

L2Λk+1⊗Vk
.

The last step follows from Theorem 2.6. If i = 1 and j = 2, we find

I12 = 〈B∗ ⊗ T(M ⊗2
s )2:,π

⊥ ⊗ P(M ⊗2
s )1: + dπ⊥ ⊗ P(M ⊗2

s )2:〉.

Since π⊥ ⊗ P(M ⊗2
s )1: ∈ B2,⊥

k , then 〈B∗ ⊗ T(M ⊗2
s )2:,π⊥ ⊗ P(M ⊗2

s )1:〉 = 0. Hence,

I12 = 〈B∗ ⊗ T(M ⊥
s )2:, d ⊗ P(M ⊥

s )2:〉
= 〈d ⊗ T(M ⊥

s )2:, d ⊗ P(M ⊥
s )2:〉

� C1‖d ⊗ Id(M ⊥
s )2:‖2

L2Λk⊗Vk
.

If i = 2 and j = 1, we find

I21 = 〈B ⊗ T(M ⊗2
s )1:, γπ

◦ ⊗ P(M ⊗2
s )1: − dπ◦ ⊗ P(M ⊗2

s )2:〉.

Since 〈B ⊗ T(M ⊗2
s )1:, dπ◦ ⊗ P(M ⊗2

s )2:〉 = 0 and 〈B ⊗ T(M ⊥
s )1:, Id ⊗ P(M ◦

s )1:〉 = 0, we have

I21 = γ 〈B ⊗ T(d ⊗ Id(M ◦
s )1:), Id ⊗ P(M ◦

s )1:〉
= γ 〈d ⊗ T(M ◦

s )1:, d ⊗ P(M ◦
s )1:〉

� γC1‖d ⊗ Id(M ◦
s )1:‖2

L2Λk−1⊗Vk
.

If i = j = 2, then

I22 = −α〈Id ⊗ T(M ⊗2
s )2:, γπ

◦ ⊗ P(M ⊗2
s )1: − dπ◦ ⊗ P(M ⊗2

s )2:〉
= α〈Id ⊗ T(M ⊗2

s )2:, dπ◦ ⊗ P(M ⊗2
s )2:〉 (4.18)

− α〈Id ⊗ T(M ⊗2
s )2:, γπ

◦ ⊗ P(M ⊗2
s )1:〉. (4.19)

Since 〈Id ⊗ T(M ⊥
s )2:, dπ◦ ⊗ P(M ⊗2

s )2:〉 = 0, we find

(4.18) = α〈d ⊗ T(M ◦
s )2:, d ⊗ P(M ◦

s )2:〉
� αC1‖d ⊗ Id(M ◦

s )2:‖2
L2Λk−1⊗Vk

.
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Moreover, since 〈Id ⊗ T(dπ◦ ⊗ Id(M ⊗2
s )2:),π◦ ⊗ P(M ⊗2

s )1:〉 = 0, we find

(4.19) = −αγ 〈Id ⊗ T(M ⊥
s )2:, Id ⊗ P(M ◦

s )1:〉
� −α

2
γ 1/2(‖Id ⊗ T(M ⊥

s )2:‖2
L2Λk−1⊗V ′

k
+ γ ‖Id ⊗ P(M ◦

s )1:‖2
L2Λk⊗Vk

)

� −α
2
γ 1/2(C2

P,1‖T‖2
L(Vk ,V ′

k)
‖d ⊗ Id(M ⊥

s )2:‖2
L2Λk⊗Vk

+ γC2
P,1‖P‖2

L(Vk ,Vk)
‖d ⊗ Id(M ◦

s )1:‖2
L2Λk⊗Vk

),

where we used Proposition 4.1 and Lemma 4.7. Using the lower bounds on I11, I12, I21 and I22, we
can now conclude that

(4.17) � C1‖d ⊗ Id(M ⊥
s )1:‖2

L2Λk+1⊗Vk

+
(

C1 − α

2
γ 1/2C2

P,1‖T‖2
L(Vk ,V ′

k)

)
‖d ⊗ Id(M ⊥

s )2:‖2
L2Λk⊗Vk

+ γ
(

C1 − α

2
γ 1/2C2

P,1‖P‖2
L(Vk ,Vk)

)
‖d ⊗ Id(M ◦

s )1:‖2
L2Λk⊗Vk

+ αC1‖d ⊗ Id(M ◦
s )2:‖2

L2Λk−1⊗Vk
.

Hence, if we choose γ sufficiently small, condition (4.7) is satisfied for m = 2. Now suppose that the
problem for the (m − 1)th moment is well posed and in particular that the inf–sup condition is verified
with the test function M ⊗(m−1)

t = P⊗(m−1)M ⊗(m−1)
s :

〈T⊗(m−1)M ⊗(m−1)
s , P⊗(m−1)M ⊗(m−1)

s 〉 � Cm−1‖M ⊗(m−1)
s ‖2

V⊗(m−1)
k

, (4.20)

where Cm−1 = Cm−1(CP,1,α, ‖T‖, ‖P‖) > 0. We want to prove (4.7). As before, we fix M ⊗m
s =

[
(M ⊗m

s )1:

(M ⊗m
s )2:

]
where (M ⊗m

s )1: (respectively, (M ⊗m
s )2:) means that in the tensor of order m, M ⊗m

s = (M ⊗m
s )i1...im=1,2, we

fix i1 = 1 (respectively, i1 = 2) and let i2, . . . , im vary. Using (4.9) and (4.12) we decompose

M ⊗m
s =

[
(M ⊥

s )1: + d ⊗ Id⊗(m−1)(M ◦
s )1:

(M ⊥
s )2: + d ⊗ Id⊗(m−1)(M ◦

s )2:

]
∈
[

Um
k

Um
k−1

]
,

where now

Q24(M ⊥
s )1: = π⊥ ⊗ Id⊗(m−1)(M ⊗m

s )1: ∈ Bm,⊥
k ,

(M ⊥
s )2: = π⊥ ⊗ Id⊗(m−1)(M ⊗m

s )2: ∈ Bm,⊥
k−1,

(M ◦
s )1: = π◦ ⊗ Id⊗(m−1)(M ⊗m

s )1: ∈ Bm,⊥
k−1,

(M ◦
s )2: = π◦ ⊗ Id⊗(m−1)(M ⊗m

s )2: ∈ Bm,⊥
k−2.
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We choose M ⊗m
t = P⊗mM ⊗m

s , so that

〈T⊗mM ⊗m
s , M ⊗m

t 〉 = 〈T⊗mM ⊗m
s , P⊗mM ⊗m

s 〉

=
2∑

i,j=1

〈Ti,j ⊗ T⊗(m−1)(M ⊗m
s )j:, (P

⊗mM ⊗m
s )i:〉. (4.21)

Let Jij = 〈Ti,j ⊗ Tm−1(M ⊗m
s )j:, (P⊗mM ⊗m

s )i:〉. We follow the same reasoning as before, and we apply
(4.20). If i = j = 1, then

J11 = 〈A ⊗ T⊗(m−1)(M ⊗m
s )1:, (P ⊗ P⊗(m−1)M ⊗m

s )1:〉
� Cm−1‖d ⊗ Id⊗(m−1)(M ⊥

s )1:‖2
L2Λk+1⊗V⊗(m−1)

k
.

If i = 1 and j = 2, then

J12 = 〈B∗ ⊗ T⊗(m−1)(M ⊗m
s )2:, (P ⊗ P⊗(m−1)M ⊗m

s )1:〉
� Cm−1‖d ⊗ Id⊗(m−1)(M ⊥

s )2:‖2
L2Λk⊗V⊗(m−1)

k
.

If i = 2 and j = 1, then

J21 = 〈B ⊗ T⊗(m−1)(M ⊗m
s )1:, (P ⊗ P⊗(m−1)M ⊗m

s )2:〉
� γCm−1‖d ⊗ Id⊗(m−1)(M ◦

s )1:‖2
L2Λk⊗V⊗(m−1)

k
.

If i = j = 2, then

J22 = −α〈Id ⊗ T⊗(m−1)(M ⊗m
s )2:, (P ⊗ P⊗(m−1)M ⊗m

s )2:〉
� αCm−1‖d ⊗ Id⊗(m−1)(M ◦

s )2:‖2
L2Λk−1⊗V⊗(m−1)

k

− α

2
γ 1/2(C2

P,1‖T‖2(m−1)
L(Vk ,V ′

k)
‖d ⊗ Id⊗(m−1)(M ⊥

s )2:‖2
L2Λk⊗V⊗(m−1)

k

+ γC2
P,1‖P‖2(m−1)

L(Vk ,Vk)
‖d ⊗ Id⊗(m−1)(M ◦

s )1:‖2
L2Λk⊗V⊗(m−1)

k
).

Hence, if we choose γ sufficiently small, condition (4.7) is satisfied. Relation (4.8) follows from the
orthogonal decomposition (4.12) and the tensorial Poincaré inequality in Lemma 4.7. �

Remark 4.8 We underline that the operator P is not the classical one presented in Arnold et al. (2006)
to prove the well-posedness of the deterministic Hodge–Laplace problem. Indeed it is such that the
inf–sup condition for 〈T⊗m·, ·〉 : V⊗m

k × V⊗m
k → R (for every finite m � 1) is satisfied. With the classical

operator, the inf–sup condition for m � 2 is not automatically satisfied.

5. Some three-dimensional problems important in applications

In Section 2.2.1, we reinterpreted the deterministic Hodge–Laplace problem in n = 3 dimensions in
terms of PDEs. Here, we translate in terms of PDEs the stochastic Hodge–Laplace problem. In particu-
lar, we focus on the two problems obtained for k = 1 and k = 3: the stochastic magnetostatic/electrostatic
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1346 F. BONIZZONI ET AL.

equations and the stochastic Darcy equations, and we explicitly write the systems solved by the mean
and the 2-points correlation of the unique stochastic solution of the stochastic problem.

5.1 The stochastic magnetostatic/electrostatic equations

Take k = 1 and α= 0. Let f1 ∈ Lm
(
Ω; L2Λ1(D)

)
, f2 ∈ Lm

(
Ω; L2Λ0(D)

)
be stochastic functions with

m � 1 integer, representing an uncertain current and an uncertain charge, respectively. The stochas-
tic magnetostatic/electrostatic problem is the stochastic counterpart of problem (2.30). Owing to
Theorem 3.1, the stochastic magnetostatic/electrostatic problem admits a unique stochastic solution
that depends continuously on the data. If m � 1, the first statistical moment M1

[ u
p
]= E

[ u
p
]

is well

defined, and is the unique solution of the following problem: find Es =
[

Es,1
Es,2

]
∈ V1 such that

{
(curl Es,1, curl v)+ (∇Es,2, v)= (E [f1] , v),

(Es,1, ∇q)= (E [f2] , q),
∀
[

v

q

]
∈ V1, (5.1)

where the parentheses in (5.1) mean the L2 inner product. In the case m � 2, the second statistical
moment M2

[ u
p
]

is well defined and is the unique solution of the following (see (4.5) with m = 2): find

M ⊗2
s ∈ V1 ⊗ V1 =

[
HΓD(curl, D)⊗ HΓD(curl, D) HΓD(curl, D)⊗ H1

ΓD
(D)

H1
ΓD
(D)⊗ HΓD(curl, D) H1

ΓD
(D)⊗ H1

ΓD
(D)

]

such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(curl ⊗ curl(M ⊗2
s )11, curl ⊗ curl(M ⊗2

t )11)+ (curl ⊗ ∇(M ⊗2
s )12, curl ⊗ Id(M ⊗2

t )11)

+(∇ ⊗ curl(M ⊗2
s )21, Id ⊗ curl(M ⊗2

t )11)+ (∇ ⊗ ∇(M ⊗2
s )22, (M ⊗2

t )11)

= (M2 [f1] , (M ⊗2
t )11),

−(curl ⊗ Id(M ⊗2
s )11, curl ⊗ ∇(M ⊗2

t )12)− (∇ ⊗ Id(M ⊗2
s )12, Id ⊗ ∇(M ⊗2

t )12)

= (E [f1f2] , (M ⊗2
t )12),

−(Id ⊗ curl(M ⊗2
s )12, ∇ ⊗ curl(M ⊗2

t )21)− (Id ⊗ ∇(M ⊗2
s )21, ∇ ⊗ Id(M ⊗2

t )21)

= (E [f2f1] , (M ⊗2
t )21),

((M ⊗2
s )11, ∇ ⊗ ∇(M ⊗2

t )22)= (M2 [f2] , (M ⊗2
t )22),

(5.2)

for all M ⊗2
t ∈ V1 ⊗ V1, where the parentheses in (5.2) denote the L2-inner product either between scalar

or vector functions.

5.2 The stochastic Darcy problem

Let k = 3, f2 ≡ 0 and let f1 ∈ Lm
(
Ω; L2Λ3(D)

)
, with m � 1 integer, represent an uncertain source in

porous media flow. The stochastic Darcy problem is the stochastic counterpart of problem (2.33).
Thanks to Theorem 3.1, the stochastic Darcy problem admits a unique stochastic solution that depends
continuously on the data. If m � 1, the first statistical moment M1

[ u
p
]= E

[ u
p
]

is well defined and is
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the unique solution of the following: find Es =
[

Es,1
Es,2

]
∈ V3 such that

{
(div Es,2, v)= (E [f1] , v),

(Es,1, div q)− α(Es,2, q)= 0,
∀
[

v

q

]
∈ V3, (5.3)

where the parentheses in (5.3) mean the L2 inner product. In the case m � 2, the second statistical
moment M2

[ u
p
]

is well defined and is the unique solution of the following (see (4.5) with m = 2): find

M ⊗2
s ∈ V3 ⊗ V3 =

[
L2(D)⊗ L2(D) L2(D)⊗ HΓD(div, D)

HΓD(div, D)⊗ L2(D) HΓD(div; D)⊗ HΓD(div; D)

]

such that ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(div ⊗ div(M ⊗2
s )22, (Mt)11)= (M2 [f1] , (Mt)11),

(div ⊗ Id(M ⊗2
s )21, Id ⊗ div(M ⊗2

t )12)− α(div ⊗ Id(M ⊗2
s )22, (M ⊗2

t )12)= 0,

(Id ⊗ div(M ⊗2
s )12, div ⊗ Id(M ⊗2

t )21)− α(Id ⊗ div(M ⊗2
s )22, (M ⊗2

t )21)= 0,

((M ⊗2
s )11, div ⊗ div(M ⊗2

t )22)− α((M ⊗2
s )12, div ⊗ Id(M ⊗2

t )22)

−α((M ⊗2
s )21, Id ⊗ div(M ⊗2

t )22)+ α2((M ⊗2
s )22, (M ⊗2

t )22)= 0,

(5.4)

for all M ⊗2
t ∈ V3 ⊗ V3, where the parentheses in (5.4) denote the L2-inner product either between scalar

or vector functions.

6. Finite element discretization of the moment equations

In this section, we aim to derive a stable discretization for the moment equations, that is, the determin-
istic problems solved by the statistics of the unique stochastic solution

[ u
p
]
. First, we recall the main

concepts concerning the finite element differential forms and the existence of a stable finite element
discretization for the mean problem. Then, we construct both a full and a sparse tensor product finite
element discretization for the mth problem, with m � 2 integer, we prove their stability and provide
optimal order-of-convergence estimates.

6.1 Finite element differential forms and the discrete mean problem

Following Arnold et al. (2006), throughout this section we assume that the domain D ⊂ Rn is a polyhe-
dral domain in Rn which is partitioned into a finite set of n-simplices. These simplices are such that their
union is the closure of D and the intersection of any two of them, if nonempty, is a common subsim-
plex. We denote the partition with Th and the discretization parameter with h. To discretize the moment
equations we use the finite element differential forms

P−
r Λ

k(Th)= {v ∈ HΛk(D)|v|T ∈P−
r Λ

k(T) ∀T ∈ Th}, (6.1)

where the space P−
r Λ

k(T) and the de Rham subcomplex

0 −→P−
r Λ

0(Th)
d−→ · · · d−→P−

r Λ
n(Th)−→ 0
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Table 2 Proxy-field correspondences between finite element differential forms P−
r Λ

k(Th)

and the classical finite element spaces for n = 3

k = 0 P−
r Λ

0(Th) Lagrangian elements of degree � r
k = 1 P−

r Λ
1(Th) Nédélec first kind H(curl) elements of order r − 1

k = 2 P−
r Λ

2(Th) Nédélec first kind H(div) elements of order r − 1
k = 3 P−

r Λ
3(Th) Discontinuous elements of degree � r − 1

are treated in Hiptmair (2002) and Arnold et al. (2006). Since we are particularly interested in the n = 3
case, we recall in Table 2 the correspondences between the finite element differential forms (6.1) and
the classical finite element spaces of scalar and vector functions. The spaces P−

r Λ
k(Th) are not the only

choice. Indeed, in Hiptmair (2002), Arnold et al. (2006, 2010) and Christiansen et al. (2011), the authors
present other finite element differential forms to discretize the deterministic Hodge Laplacian.

In Arnold et al. (2010), the authors propose the construction of a projector

Πk,h : HΛk(D)→P−
r Λ

k(Th),

which is a cochain map, that is, it commutes with the exterior derivative, and such that the following
approximation property holds:

‖v −Πk,hv‖L2Λk � Chs‖v‖HsΛk ∀v ∈ HsΛk(D), 0 � s � r, (6.2)

where C is independent of h. Note that the inequality (6.2) for s = 0 implies the stability of the projector
in L2. Moreover, from (6.2) it follows the boundedness of the projectorΠk,h in the HΛk(D) norm. Since
we are dealing with Dirichlet boundary conditions on ΓD, we need the existence of cochain projectors
which also respect the boundary conditions. To this aim, we make the following assumption.

Assumption 6.1 There exists a bounded cochain projector, that, by abuse of notation, we denote still
by Πk,h (and, when no ambiguity arises, by Πh),

Πk,h : HΓD
Λk(D)→P−

r,ΓD
Λk(Th) :=P−

r Λ
k(Th) ∩ HΓD

Λk(D), (6.3)

such that (6.2) is satisfied for every v ∈ HsΛk(D) ∩ HΓD
Λk(D), 0 � s � r.

Assumption 6.1 is satisfied in the two- and three-dimensional cases; see Schöberl (2008). The
n-dimensional case is still a topic of current research, whereas if natural boundary conditions are
imposed on ∂D, the existence of such an operator is proved in Arnold et al. (2006), and if essential
boundary conditions are imposed on ∂D, the existence of such an operator is proved in Christiansen &
Winther (2008).

The problem solved by the mean of the unique stochastic solution of the stochastic Hodge Laplacian
turns out to be the deterministic Hodge Laplacian. In Arnold et al. (2006), the authors study the finite
element formulation of the deterministic Hodge Laplacian with natural boundary conditions on ∂D
(ΓD = ∅). In Arnold et al. (2010), all the results obtained in Arnold et al. (2006) for ΓD = ∅ are extended
to include the case of essential boundary conditions on ∂D (ΓN = ∅). Under Assumption 6.1, all the
results in Arnold et al. (2006, 2010) apply to the general case ΓD, ΓN |= ∅. In particular, the finite
element formulation of the mean problem is well posed. Moreover, using a quasi-optimal error estimate
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and the interpolation property (6.2), we get the following order-of-convergence estimate:∥∥∥∥∥E
[

u

p

]
− Es,h

∥∥∥∥∥
Vk

=O(hr), (6.4)

E
[ u

p
]

and Es,h being the unique solutions of the continuous and discrete mean problems, respectively.

6.2 Discrete mth moment problem: FTP approximation

The FTP finite element (FTP-FE) formulation of problem (4.5) is as follows.

m-Points Correlation Problem (FTP-FE)

Given m � 2 integer and

[
F1

F2

]
∈ Lm

(
Ω; V ′

k

)
, find M ⊗m

s,h ∈ V⊗m
k,h such that

T⊗mM ⊗m
s,h =Mm

[
F1

F2

]
in (V ′

k,h)
⊗m.

(6.5)

Theorem 4.4 applies to problem (6.5) as a consequence of tensor product structure (see Remark 4.5).
Therefore we conclude the stability of the FTP-FE discretization V⊗m

k,h .
Let M ⊗m

s =Mm
[ u

p
]

be the unique solution of problem (4.5) and M ⊗m
s,h be the unique solution of

problem (6.5). Exploiting Galerkin orthogonality and the stability of the discretization, we can obtain
the following quasi-optimal convergence estimate:∥∥∥∥∥Mm

[
u

p

]
− M ⊗m

s,h

∥∥∥∥∥
V⊗m

k

� C inf
M ⊗m

h ∈V⊗m
k,h

∥∥∥∥∥Mm

[
u

p

]
− M ⊗m

h

∥∥∥∥∥
V⊗m

k

. (6.6)

To study the approximation properties of the space V⊗m
k,h we construct the tensorial projection oper-

ator Π⊗m
k,h , k = (k1, . . . , km), as follows.

Definition 6.2 Let Πk,h : HΓD
Λk(D)→P−

r,ΓD
Λk(Th) be a bounded cochain projector satisfying

Assumption 6.1. Given m � 2 integer, we define the tensor product operator mapping HΓD
Λk1(D)⊗

· · · ⊗ HΓD
Λkm(D) onto P−

r,ΓD
Λk1(Th)⊗ · · · ⊗ P−

r,ΓD
Λkm(Th) as

Π⊗m
k,h :=Πk1,h ⊗ · · · ⊗Πkm,h, k = (k1, . . . , km). (6.7)

Note thatΠ⊗m
k,h = (Πk,h)

⊗m =Π⊗m
k,h if k = (k, . . . , k). In the following we denoteΠ⊗m

k,h asΠ⊗m
h when

no ambiguity arises.
Since Πh is bounded in the HΛk norm by a constant which we denote by Cπ , then Π⊗m

h is bounded
in the (HΛk1 ⊗ · · · ⊗ HΛkm) norm by (Cπ )m (Proposition 4.1). Moreover, since it is the tensor product
of cochain projectors, it is itself a cochain projector.

We state the approximation properties of Π⊗m
h in the following proposition.
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1350 F. BONIZZONI ET AL.

Proposition 6.3 The projector Π⊗m
h introduced in Definition 6.2 is such that

‖v −Π⊗m
h v‖(L2Λk)⊗m � Chs‖v‖(HsΛk)⊗m (6.8)

for all v ∈ (HsΛk(D) ∩ HΓD
Λk(D))⊗m, 0 � s � r, where C is independent of h.

Proof. We already know the result for m = 1 (see (6.2)). Let m = 2. By the triangle inequality,

‖v −Π⊗2
h v‖L2Λk⊗L2Λk � ‖v −Πh ⊗ Id v‖L2Λk⊗L2Λk + ‖Πh ⊗ (Id −Πh)v‖L2Λk⊗L2Λk

� Chs‖v‖HsΛk⊗L2Λk + Cπ‖v − Id ⊗Πhv‖L2Λk⊗L2Λk

� Chs‖v‖HsΛk⊗L2Λk + C Cπhs‖v‖L2Λk⊗HsΛk

� Chs(1 + Cπ )‖v‖HsΛk⊗HsΛk ,

where we used (6.2). By induction on m, we conclude (6.8). �

From the approximation properties of the projector Π⊗m
h in (6.8), we obtain the following theorem.

Theorem 6.4 (Order of convergence of the FTP-FE discretization.). We have∥∥∥∥∥Mm

[
u

p

]
− M ⊗m

s,h

∥∥∥∥∥
V⊗m

k

=O(hr), (6.9)

provided that [
u

p

]
∈ Lm

(
Ω;

[
HrΛk(D) ∩ HΓD

Λk(D)

HrΛk−1(D) ∩ HΓD
Λk−1(D)

])
,

[
du

dp

]
∈ Lm

(
Ω;

[
HrΛk+1(D) ∩ HΛk+1(D)

HrΛk(D) ∩ HΛk(D)

])
.

6.3 Discrete mth moment problem: sparse tensor product approximation

In Section 6.2, we proved the stability of the FTP-FE discretization V⊗m
k,h = Vk,h ⊗ · · · ⊗ Vk,h︸ ︷︷ ︸

m times

. The

main problem of this approach is that it is strongly affected by the curse of dimensionality. Indeed,
if dim(Vk,h)= Nh, the space V⊗m

k,h has dimension (Nh)
m which is impractical for m moderately large.

A reduction in the dimensionality of the problem is possible if we consider an STP-FE approximation
instead (see e.g. Schwab & Todor, 2003; Bungartz & Griebel, 2004; von Petersdorff & Schwab, 2006;
Harbrecht et al., 2008b; Schwab & Gittelson, 2011 and the references therein).

Let T0 be a regular mesh of the physical domain D ⊂ Rn, and {Tl}∞l=0 be a sequence of partitions
obtained by uniform mesh refinement, that is, hl = hl−1/2, where hl is the discretization parameter of
Tl. We have a sequence {P−

r Λ
k(Tl)}∞l=0 of finite-dimensional subspaces of the space Vk , which are

nested and dense in Vk . Let us define the orthogonal complement of P−
r Λ

k(Tl−1) in P−
r Λ

k(Tl): Sk,l =
P−

r Λ
k(Tl) \ P−

r Λ
k(Tl−1) and set Zk,l =

[
Sk,l

Sk−1,l

]
. For every integer m � 2, we define the STP-FE space
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of level L> 0, V (m)
k,L , as follows:

V (m)
k,L :=

⊕
|l|�L

(Zk1,l1 ⊗ · · · ⊗ Zkm,lm), k = (k1, . . . , km), (6.10)

where l is a multiindex in Nm
0 and |l| is its length l1 + · · · + lm. If k = (k, . . . , k), we denote the space

(6.10) as V (m)
k,L .

At the numerical level it may not be necessary to explicitly build a basis for Zk,l. In Harbrecht et al.
(2008a), the authors propose to use a redundant basis for the space (6.10) and an algorithm to solve the
mth moment problem in the sparse tensor product framework.

The STP-FE approximation of problem (4.5) is as follows.

m-Points Correlation Problem (STP-FE)

Given m � 2 integer and

[
F1

F2

]
∈ Lm

(
Ω; V ′

k

)
, find M (m)

s,L ∈ V (m)
k,L such that

T⊗mM (m)
s,L =Mm

[
F1

F2

]
in
(

V (m)
k,L

)′
.

(6.11)

To prove the stability of (6.11) we cannot use a tensor product argument as we did to prove the
stability of the FTP-FE discretization. We need to explicitly prove the inf–sup condition for the tensor
product operator T⊗m restricted to the STP-FE space V (m)

k,L . The proof of this sparse inf–sup condition
rests on two key ingredients. On the one hand, we make use of the continuous inf–sup operator P⊗m

introduced in Theorem 4.6. On the other hand, we use a reasoning similar to the one proposed in Buffa
(2005) which defines and uses the so-called GAP property: we seek its analogue in the case of STP-FE
space, which will be called the STP-GAP property in what follows. The main ingredient of the STP-GAP
property is the sparse tensorial projection operator.

Definition 6.5 Let Πk,h : HΓD
Λk(D)→P−

r,ΓD
Λk(Th) be a bounded cochain projector satisfying

Assumption 6.1. Given m � 2 integer, we define the operator mapping HΓD
Λk1(D)⊗ · · · ⊗ HΓD

Λkm(D)
onto

⊕
|l|�L(Sk,l1 ⊗ · · · ⊗ Sk,lm) as

Π
(m)
k,L :=

∑
|l|�L

⊗Δkj,lj , k = (k1, . . . , km), (6.12)

where Δk,l :=Πk,hl −Πk,hl−1 .

With a little abuse of notation, in what follows we omit the subscript k and denote the operator
(6.12) by Π(m)

L , and Δk,l by Δl.
The operator Π(m)

L is a linear combination of the tensor product operators Δl1 ⊗ · · · ⊗Δlm . Since
eachΔl is bounded, thenΔl1 ⊗ · · · ⊗Δlm is bounded owing to Proposition 4.1, so thatΠ(m)

L is bounded.
Moreover, since each Δl is a cochain operator (it commutes with the exterior derivative d), then Δl1 ⊗
· · · ⊗Δlm is a cochain operator in the sense that it commutes with d in each direction j = 1, . . . , m, so
that Π(m)

L is a cochain operator. Finally, the following general result states that Π(m)
L is a projector. We

refer the reader to Delvos (1982), Novak & Ritter (1996) and Bäck et al. (2011, Proposition 1(b)).
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Proposition 6.6 For each direction d = 1, . . . , m, let Wd be a separable Hilbert space and

Wd,0 ⊂ Wd,1 ⊂ · · · ⊂ Wd,l ⊂ · · · ⊂ Wd

a sequence of nested finite-dimensional subspaces of Wd . Moreover, let Pd,l : Wd → Wd,l be a sequence
of operators that are projectors on Wd,l for all l = 0, 1, . . . , and Pd,−1 = 0. Then, for all positive integers
L and m, the operator

P(m)L :=
∑

|(l1,...,lm)|�L

ΔP1,l1 ⊗ · · · ⊗ΔPm,lm

is a projector on the space

W (m)
L :=

∑
|(l1,...,lm)|�L

W1,l1 ⊗ · · · ⊗ Wm,lm ,

where ΔPd,l := Pd,l − Pd,l−1, d = 1, . . . , m.

Proof. Since the operator P(m)L is linear, we only need to prove the result for an element of W (m)
L of the

form w =ψj1 ⊗ · · · ⊗ ψjm ∈ W1,j1 ⊗ · · · ⊗ Wm,jm , where |(j1, . . . , jm)| � L. We have

P(m)L (w)=
∑

|(l1,...,lm)|�L

ΔP1,l1 ⊗ · · · ⊗ΔPm,lm(w)

=
∑

|(l1,...,lm)|�L

ΔP1,l1 ⊗ · · · ⊗ΔPm,lm(ψj1 ⊗ · · · ⊗ ψjm)

=
∑

|(l1,...,lm)|�L

ΔP1,l1(ψj1)⊗ · · · ⊗ΔPm,lm(ψjm). (6.13)

Since Pd,l(ψj)=ψj whenever l � j, then ΔPd,l(ψj)= 0 for l � j + 1, d = 1, . . . , m. Hence,

(6.13) =
∑

(l1,...,lm)�(j1,...,jm)

ΔP1,l1(ψj1)⊗ · · · ⊗ΔPm,lm(ψjm)

=
(

j1∑
l1=0

(P1,l1 − P1,l1−1)(ψj1)

)
⊗ · · · ⊗

(
jm∑

lm=0

(Pm,lm − Pm,lm−1)(ψjm)

)

= P1,j1(ψj1)⊗ · · · ⊗ Pm,jm(ψjm)

=ψj1 ⊗ · · · ⊗ ψjm = w,

where we used that Pd,l is a projector on Vd,l, d = 1, . . . , m. �

We state the STP-GAP property for m = 2, but its generalization to m � 2 is straightforward.

Lemma 6.7 (STP-GAP property) For every vh ∈Π(2)
L (HΓD

Λk(D)⊗ HΓD
Λk(D)) there exist 0< s � 1

and positive constants C(1), C(2), C(3), C(4) independent of h0 such that

‖dπ◦ ⊗ dπ◦vh −Π
(2)
L (dπ◦ ⊗ dπ◦vh)‖HΛk⊗HΛk � C(1)hs

0 ‖vh‖HΛk⊗HΛk , (6.14)
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‖dπ◦ ⊗ π⊥vh −Π
(2)
L (dπ◦ ⊗ π⊥vh)‖HΛk⊗HΛk � C(2)hs

0 ‖vh‖HΛk⊗HΛk , (6.15)

‖π⊥ ⊗ dπ◦vh −Π
(2)
L (π⊥ ⊗ dπ◦vht)‖HΛk⊗HΛk � C(3)hs

0 ‖vh‖HΛk⊗HΛk , (6.16)

‖π⊥ ⊗ π⊥vh −Π
(2)
L (π⊥ ⊗ π⊥vh)‖HΛk⊗HΛk � C(4)hs

0 ‖vh‖HΛk⊗HΛk , (6.17)

where π⊥ and π◦ are defined in (2.10) and (2.11), respectively. Note that vh is uniquely expressed
as vh = dπ◦ ⊗ dπ◦vh + dπ◦ ⊗ π⊥vh + π⊥ ⊗ dπ◦vh + π⊥ ⊗ π⊥vh owing to the continuous Hodge
decomposition (4.12).

Proof. Let vh ∈Π(2)
L (HΓD

Λk(D)⊗ HΓD
Λk(D)), so that Π(2)

L vh = vh. Since Π(2)
L is a cochain map, it

holds that

d ⊗ dvh = d ⊗ dΠ(2)
L vh =Π

(2)
L d ⊗ dvh, (6.18)

d ⊗ Id vh = d ⊗ IdΠ(2)
L vh =Π

(2)
L d ⊗ Id vh, (6.19)

Id ⊗ dvh = Id ⊗ dΠ(2)
L vh =Π

(2)
L Id ⊗ dvh. (6.20)

By definition of B⊥
k and Assumption 2.2, B⊥

k ⊂ HΓD
Λk ∩ H∗

ΓN
Λk , so that, owing to Assumption 2.3,

‖Δlw‖L2Λk � Chs
l−1‖w‖HsΛk � C̃hs

l−1‖w‖HΛk ∀w ∈ B⊥
k . (6.21)

• Let us start by proving inequality (6.17). To this end, we need to bound four quantities:

‖π⊥ ⊗ π⊥vh −Π
(2)
L (π⊥ ⊗ π⊥vh)‖L2Λk⊗L2Λk , (6.22)

‖dπ⊥ ⊗ π⊥vh −Π
(2)
L (dπ⊥ ⊗ π⊥vh)‖L2Λk+1⊗L2Λk , (6.23)

‖π⊥ ⊗ dπ⊥vh −Π
(2)
L (π⊥ ⊗ dπ⊥vh)‖L2Λk⊗L2Λk+1 , (6.24)

‖dπ⊥ ⊗ dπ⊥vh −Π
(2)
L (dπ⊥ ⊗ dπ⊥vh)‖L2Λk+1⊗L2Λk+1 . (6.25)

Using the fact that π⊥ ⊗ π⊥vh =∑+∞
L=0

∑
|l|=LΔl1 ⊗Δl2 vh, the triangle inequality and (6.21),

(6.22) �
∑
|l|>L

‖(Δl1 ⊗Δl2)(π
⊥ ⊗ π⊥)vh‖L2Λk⊗L2Λk

=
∑
|l|>L

‖(Δl1π
⊥ ⊗ Id)(Id ⊗Δl2π

⊥)vh‖L2Λk⊗L2Λk

�
∑
|l|>L

Chs
l1−1‖(Id ⊗Δl2π

⊥)vh‖HΛk⊗L2Λk

�
∑
|l|>L

Chs
l1−1hs

l2−1 ‖vh‖HΛk⊗HΛk , (6.26)

where C> 0 is independent of hl for all l. Observing that

(d ⊗ Id)(π⊥ ⊗ π⊥vh)= d ⊗ π⊥vh ∈ΠL(HΓD
Λk(D))⊗ B⊥

k ,
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so that (Δl1 ⊗ Id)(d ⊗ π⊥vh)= 0 if l1 > L, we can bound (6.23):

(6.23) = ‖d ⊗ π⊥vh −Π
(2)
L (d ⊗ π⊥vh)‖L2Λk+1⊗L2Λk

�
L∑

l1=0

+∞∑
l2=L−l1+1

‖(Δl1 ⊗Δl2)(d ⊗ π⊥)vh‖L2Λk+1⊗L2Λk

�
L∑

l1=0

+∞∑
l2=L−l1+1

‖Δl1‖L(L2Λk+1,L2Λk+1)‖(Id ⊗Δl2)(d ⊗ π⊥)vh‖L2Λk+1⊗L2Λk

� C
L∑

l1=0

+∞∑
l2=L−l1+1

hs
l2−1‖d ⊗ Id vh‖L2Λk+1⊗HΛk

� C(L + 1)
+∞∑
l2=1

hs
l2−1‖vh‖HΛk⊗HΛk

� Chs
0‖vh‖HΛk⊗HΛk , (6.27)

where we have used that ‖Δl1‖L(L2Λk+1,L2Λk+1) is bounded by a constant independent of hl1 . By sym-
metry, we can obtain that

(6.24) � Chs
0‖vh‖HΛk⊗HΛk . (6.28)

Finally, using (6.18), we have

(d ⊗ d)(π⊥ ⊗ π⊥)vh = d ⊗ dvh = d ⊗ dΠ(2)
L vh =Π

(2)
L (d ⊗ d)(π⊥ ⊗ π⊥)vh,

so that the quantity in (6.25) vanishes. Thus, putting together (6.26–6.28), we conclude (6.17).

• Let us prove inequality (6.16). We need to bound two quantities:

‖π⊥ ⊗ dπ◦vh −Π
(2)
L (π⊥ ⊗ dπ◦vh)‖L2Λk⊗L2Λk , (6.29)

‖dπ⊥ ⊗ dπ◦vh −Π
(2)
L (dπ⊥ ⊗ dπ◦vh)‖L2Λk+1⊗L2Λk . (6.30)

Since π⊥ ⊗ dπ◦vh = π⊥ ⊗ Id vh − π⊥ ⊗ π⊥vh and π⊥ ⊗ Id vh ∈ B⊥
k ⊗ΠL(HΓD

Λk(D)), and using
(6.17), then

(6.29) � ‖π⊥ ⊗ Id vh −Π
(2)
L π⊥ ⊗ Id vh‖L2Λk⊗L2Λk

+ ‖π⊥ ⊗ π⊥ vh −Π
(2)
L π⊥ ⊗ π⊥vh‖L2Λk⊗L2Λk

�
L∑

l2=0

+∞∑
l1=L+1−l2

∥∥(Δl1 ⊗Δl2)(π
⊥ ⊗ Id)vh

∥∥
L2Λk⊗L2Λk + Chs

0‖vh‖HΛk⊗HΛk

�
L∑

l2=0

+∞∑
l1=L+1−l2

‖Δl2‖L(L2Λk ,L2Λk) hs
l1−1 ‖vh‖HΛk⊗HΛk + Chs

0 ‖vh‖HΛk⊗HΛk

� Chs
0‖vh‖HΛk⊗HΛk . (6.31)
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Moreover, using (6.17),

(6.30) � ‖dπ⊥ ⊗ Id vh −Π
(2)
L dπ⊥ ⊗ Id vh‖L2Λk+1⊗L2Λk

+ ‖dπ⊥ ⊗ π⊥vh −Π
(2)
L dπ⊥ ⊗ π⊥vh‖L2Λk+1⊗L2Λk

� Chs
0‖vh‖HΛk⊗HΛk . (6.32)

In the last inequality we exploited (6.19), which implies that dπ⊥ ⊗ Id vh = d ⊗ Id vh = d ⊗
IdΠ(2)

L vh =Π
(2)
L dπ⊥ ⊗ Id vh, so that

‖dπ⊥ ⊗ Id vh −Π
(2)
L dπ⊥ ⊗ Id vh‖L2Λk+1⊗L2Λk = 0.

Using (6.31) and (6.32) we conclude (6.16).

• To show (6.15), we write vh as vh = Id ⊗ dπ◦vh + Id ⊗ π⊥vh and proceed as in the proof of (6.16).

• To show (6.14) we observe that

‖dπ◦ ⊗ dπ◦vh −Π
(2)
L (dπ◦ ⊗ dπ◦vh)‖HΛk⊗HΛk

= ‖(Id ⊗ Id −Π
(2)
L )(Id ⊗ Id − dπ◦ ⊗ π⊥ − π⊥ ⊗ dπ◦ − π⊥ ⊗ π⊥)vh‖HΛk⊗HΛk

� ‖vh −Π
(2)
L vh‖HΛk⊗HΛk + ‖dπ◦ ⊗ π⊥vh −Π

(2)
L dπ◦ ⊗ π⊥vh‖HΛk⊗HΛk

+ ‖π⊥ ⊗ dπ◦vh −Π
(2)
L π⊥ ⊗ dπ◦vh‖HΛk⊗HΛk

+ ‖π⊥ ⊗ π⊥vh −Π
(2)
L π⊥ ⊗ π⊥vh‖HΛk⊗HΛk

and we conclude (6.14) using the fact that vh =Π
(2)
L vh and (6.15–6.17). �

We are now ready to prove the main result of this section. It deals with vector quantities in Vk . In
this context, Π(m)

L denotes the projector from V⊗m
k onto V (m)

k,L .

Theorem 6.8 (Stability of the STP-FE discretization) For every α � 0 there exists h̄0 > 0 such that, for
all h0 � h̄0, problem (6.11) is a stable discretization for the mth moment problem (4.5). In particular, for
every M (m)

s,L ∈ V (m)
k,L , there exist a test function M (m)

t,L ∈ V (m)
k,L and positive constants Cm,disc = Cm,disc(Cm)

(Cm is introduced in (4.7)), C′
m,disc = C′

m,disc(α, ‖P‖L(Vk ,Vk), ‖Π(m)
L ‖L(V⊗m

k ,V (m)
k,L )
) such that

〈T⊗mM (m)
s,L , M (m)

t,L 〉
(V (m)

k,L )
′,V (m)

k,L
� Cm,disc‖M (m)

s,L ‖2
V⊗m

k
, (6.33)

‖M (m)
t,L ‖V⊗m

k
� C′

m,disc‖M (m)
s,L ‖V⊗m

k
. (6.34)

Proof. Suppose α > 0 (the case α = 0 is analogous). We fix M (m)
s,L ∈ V (m)

k,L and look for a sparse test

function M (m)
t,L ∈ V (m)

k,L such that (6.33) and (6.34) are satisfied. We choose M (m)
t,L =Π

(m)
L P⊗mM (m)

s,L . Owing

to Proposition 4.1 and the boundness of the operators P and Π(m)
L , we immediately conclude (6.34). In

the proof of (6.33), we use brackets 〈·, ·〉 without specifying the spaces taken into account, when no
ambiguity arises.
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We have

〈T⊗mM (m)
s,L , M (m)

t,L 〉 = 〈T⊗mM (m)
s,L ,Π(m)

L P⊗mM (m)
s,L 〉

= 〈T⊗mM (m)
s,L , P⊗mM (m)

s,L 〉 − 〈T⊗mM (m)
s,L , (Id⊗m −Π

(m)
L )P⊗m M (m)

s,L 〉.

We observe that, owing to the continuous inf–sup condition (4.7),

〈T⊗mM (m)
s,L , P⊗mM (m)

s,L 〉 � Cm‖M (m)
s,L ‖2

V⊗m
k

, (6.35)

and, from Lemma 6.7,

〈T⊗mM (m)
s,L , (Id⊗m −Π

(m)
L )P⊗mM (m)

s,L 〉
� ‖T‖m

L(Vk ,V ′
k)
‖M (m)

s,L ‖V⊗m
k

‖(Id⊗m −Π
(m)
L )P⊗mM (m)

s,L ‖V⊗m
k

� Chs
0‖T‖m

L(Vk ,V ′
k)
‖M (m)

s,L ‖2
V⊗m

k
.

Therefore, for h0 sufficiently small, (6.33) follows. �

Remark 6.9 Note that the choice of the set of multiindexes I = {l ∈ Nm : |l| � L} is not the only pos-
sibility in (6.10). Indeed, with the same techniques used in the proof of Theorem 6.8 it is possible to
prove the stability of the sparse approximation in any

V (m)
k,L :=

⊕
l∈Λ(L)

Zk1,l1 ⊗ · · · ⊗ Zkm,lm , k = (k1, . . . , km),

where Λ(L)⊂ Nm is an arbitrary index set satisfying the monotonicity property

l ∈Λ(L)→ k ∈Λ(L) ∀ k � l.

Let Mm
[ u

p
]

be the unique solution of problem (4.5) and M (m)
s,L be the unique solution of problem

(6.11). Exploiting Galerkin orthogonality and the stability of the discretization, we can obtain the fol-
lowing quasi-optimal convergence estimate:∥∥∥∥∥Mm

[
u

p

]
− M (m)

s,L

∥∥∥∥∥
V⊗m

k

� C inf
M (m)

t,L ∈V (m)
k,L

∥∥∥∥∥Mm

[
u

p

]
− M (m)

t,L

∥∥∥∥∥
V⊗m

k

. (6.36)

To state the approximation properties of the sparse projector Π(m)
L and, as a consequence, of the

sparse space V (m)
k,L we need the following technical lemma.

Lemma 6.10 It holds that

∑
|l|>L

2−γ |l| =
m−1∑
i=0

(
1

2γ − 1

)m−i
(

L + m

i

)
2−γL �

(
1

1 − 2−λγ

)m

2−Lγ (1−λ) (6.37)

for every real γ > 0 and integer L> 0, with 0<λ< 1.
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Proof. The equality in (6.37) is proved in Bungartz & Griebel (2004, Lemma 3.7). An alternative
inequality to (6.37) is obtained in Bungartz & Griebel (2004, Lemma 3.7), which, however, holds only
for γ ∈ N. Let us show the inequality in (6.37) with γ > 0. Let 0<λ< 1; then

m−1∑
i=0

(
1

2γ − 1

)m−i
(

L + m

i

)
2−γL �

m−1∑
i=0

(
1

2λγ − 1

)m−i
(

L + m

i

)
2−γL

= 2−γL

(2λγ − 1)m

m−1∑
i=0

(2λγ − 1)i
(

L + m

i

)

� 2−γL

(2λγ − 1)m
(2λγ )L+m

=
(

1

1 − 2−λγ

)m

2−Lγ (1−λ). �

Remark 6.11 By a minimization strategy in (6.37), we derive the value of the optimal λ, λ� =
(1/γ ) log2(m/L + 1), so that

∑
|l|>L 2−γ |l| � (1 + L/m)mem2−Lγ . The condition λ� < 1 is satisfied if

and only if L>m/(2γ − 1).

Proposition 6.12 The projector Π(m)
L introduced in Definition 6.5 is such that

‖v −Π
(m)
L v‖(L2Λk)⊗m � Chs(1−λ)

L ‖v‖(HsΛk)⊗m , (6.38)

0<λ< 1, for all v ∈ (Hs
ΓD
Λk(D))⊗m, 0< s � r, where C = C(m, λ, s) is independent of hL.

Proof. Following Bungartz & Griebel (2004), we proceed in three steps. We start by considering the
approximation properties of Δl. Using the triangle inequality and (6.2) we have

‖Δl ⊗ Id⊗(m−1)v‖(L2Λk)⊗m � Chs
l−1‖v‖HsΛk⊗(L2Λk)⊗(m−1)

for every 0< s � r. Now we consider the tensor product
⊗m

j=1Δlj . By recursion,

∥∥∥∥∥∥
m⊗

j=1

Δlj v

∥∥∥∥∥∥
(L2Λk)⊗m

� Chs
l−1‖v‖(HsΛk)⊗m ,

where hs
l−1 = hs

l1−1 · · · hs
lm−1. Finally, using (6.10),

‖v −Π
(m)
L v‖(L2Λk)⊗m =

∥∥∥∥∥∥
∑
|l|>L

m⊗
j=1

Δlj v

∥∥∥∥∥∥
(L2Λk)⊗m

�
∑
|l|>L

∥∥∥∥∥∥
m⊗

j=1

Δlj v

∥∥∥∥∥∥
(L2Λk)⊗m

�
∑
|l|>L

Chs
l−1 ‖v‖(HsΛk)⊗m
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= C‖v‖(HsΛk)⊗m hsm
0

∑
|l|>L

2−s|l−1| = C‖v‖(HsΛk)⊗m hsm
0 2sm

∑
|l|>L

2−s|l|

� C‖v‖(HsΛk)⊗m hsm
0 2sm2−Ls(1−λ)

(
1

1 − 2−sλ

)m

= C‖v‖(HsΛk)⊗m

(
2shs

0

1 − 2−sλ

)m

2−Ls(1−λ)

for every 0< s � r. �

We obtain the following theorem.

Theorem 6.13 (Order of convergence of the STP-FE discretization.). We have∥∥∥∥∥Mm

[
u

p

]
− M (m)

s,L

∥∥∥∥∥
V⊗m

k

=O(hr(1−λ)
L ), (6.39)

0<λ< 1, provided that [
u

p

]
∈ Lm

(
Ω;

[
HrΛk(D) ∩ HΓD

Λk(D)

HrΛk−1(D) ∩ HΓD
Λk−1(D)

])
,

[
du

dp

]
∈ Lm

(
Ω;

[
HrΛk+1(D) ∩ HΛk+1(D)

HrΛk(D) ∩ HΛk(D)

])
.

The previous theorem states that the STP-FE approximation has almost the same rate of convergence
as the FTP-FE. On the other hand, the great advantage of the sparse approximation with respect to the
full one is represented by a drastic reduction of the dimensionality of the sparse finite element space.

7. Conclusions

The present work addresses the mixed formulation of the Hodge Laplacian defined on an n-dimensional
domain D ⊆ Rn (n � 1), with stochastic forcing terms. The well-posedness of this problem is equivalent
to the inf–sup condition of a suitable bounded bilinear and symmetric form 〈T ·, ·〉 coming from the weak
formulation of the mixed Hodge Laplacian.

We have studied the moment equations, that is, the deterministic equations solved by the statisti-
cal moments of the unique stochastic solution. In particular, if T is the (deterministic) operator that
defines the starting problem, we show that the mth moment equation involves the tensor product opera-
tor T⊗m := T ⊗ · · · ⊗ T︸ ︷︷ ︸

m times

. The main achievement of the paper has been to characterize an operator P and

its tensorial version P⊗m that allows us to construct suitable test functions to prove the inf–sup condition
for the tensor problem 〈T⊗m·, ·〉 both at the continuous level and at the discrete level with full or sparse
FE discretizations. By this tool we have been able to show that known stable FE approximations for the
deterministic problem are also stable and optimally convergent for the tensorial problem both in the full
and sparse versions.
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