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Multi-Commodity Network Flow
for Tracking Multiple People

Horesh Ben Shitrit, Jérdme Berclaz, Francois Fleuret, and Pascal Fua, Fellow, IEEE

Abstract—In this paper, we show that tracking multiple people whose paths may intersect can be formulated as a multi-commodity
network flow problem. Our proposed framework is designed to exploit image appearance cues to prevent identity switches. Our method
is effective even when such cues are only available at distant time intervals. This is unlike many current approaches that depend on
appearance being exploitable from frame to frame. Furthermore, our algorithm lends itself to a real-time implementation.

We validate our approach on three publicly available datasets that contain long and complex sequences, the APIDIS basketball dataset,
the ISSIA soccer dataset and the PETS’09 pedestrian dataset. We also demonstrate its performance on a newer basketball dataset that
features complete world championship basketball matches. In all cases, our approach preserves identity better than state-of-the-art

tracking algorithms.

Index Terms—Multi-object tracking, Multi-Commodity Network Flow, MCNF, Tracklet association, Linear Programming

1 INTRODUCTION

N this paper, we address the problem of tracking multiple
Ipeople whose paths may intersect repeatedly over long
periods of time while retaining their individual identities. We
assume that a time-independent people detector is available
and provides probabilities of presence at various possible
spatial locations. The problem is therefore reduced to linking
these detections into consistent trajectories, which is a sub-
domain of tracking known as tracking-by-detection [1].

A standard approach to doing this is to recursively track
from frame to frame, which may easily lead to irrecoverable
errors if a person is undetected in a frame or if two detec-
tions made at different times are inappropriately linked. To
overcome this weakness, the recursive tracking approach can
be replaced by global trajectory optimization over batches of
frames. Dynamic Programming [2], [3] or Linear Program-
ming [4], [5] have been successfully applied to solve such
global optimization frameworks. While both methods operate
on directed graphs whose nodes represent places where people
have been detected, the latter tends to be more robust than the
former but scales poorly for large problems and long batches.
This limitation can be alleviated by linking detections over
a few frames into trajectory fragments, or tracklets, which
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become the graph nodes to be linked [6], [7], [8]. This reduces
the computational complexity and increases robustness but still
relies on heuristics such as introducing occlusion nodes and the
proper setting of many parameters, such as those controlling
arc-costs in the graph. In a recent paper [9], we showed that
this problem could be addressed by formulating the multi-
object tracking as minimum-cost maximum-flow problem.
This is a global optimization problem whose objective function
is convex and depends on very few parameters. Furthermore, it
can be efficiently solved using the K-Shortest Paths algorithm
(KSP) [10].

However, in our earlier approach [9], we completely ignored
appearance, which can result in unwarranted identity switches
in complex scenes. In this paper, we therefore extend it to
allow the exploitation of sparse appearance information to
keep track of people’s identity, even when their paths come
close to each other or intersect. By sparse we mean that the
appearance needs only be discriminative in a very limited
number of frames. For example, in the basketball sequence of
Fig. 1, all teammates wear the same uniform and the numbers
on the back of their shirts can only be read once in a long
while. Furthermore, the appearance models are most needed
when the players are bunched together. However, it is precisely
then, that they are the least reliable [11]. Our algorithm, which
we first introduced in a conference paper [12], can disam-
biguate such situations using the information from temporally
distant frames. This is in contrast with many state-of-the-
art approaches that depend on associating appearance models
across successive frames [5], [3], [13], [14].

We formulate multi-object tracking with appearance con-
straints as a multi-commodity minimum-cost maximum-flow
problem. This involves working with a layered graph such as
the one of Fig. 2(b), which contains several grid cells at each
possible spatial location, one for each possible identity group.
It is much larger than the one of our original approach [9] that
contains a single layer and is depicted by Fig. 2(a). However,
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Fig. 1. Representative tracking results from the four tested datasets Basketball-APIDIS, Basketball-FIBA, Pedestrians-
PETS’09 and Soccer-ISSIA

by first running the KSP method [9] on this smaller graph, we
can eliminate all nodes that are consistently empty and run
our algorithm on a much reduced layered graph, thus making
the problem tractable. The computation can be further sped
up by grouping unambiguously connected graph nodes into
tracklets, which results in the further reduced graph of Fig. 5
and allows for real-time performance.

The contribution of this paper is therefore both a reformula-
tion of the identity-preserving multiple target tracking problem
as one of maximizing a convex objective function and a real-
time algorithm for doing so. We validate our new method on
multiple datasets featuring basketball players, soccer players,
and pedestrians and demonstrate a significant improvement
over earlier approaches.

2 RELATED WORK

In this section, we first review generic approaches to multiple
target tracking and then briefly discuss those that are specifi-
cally designed to track multiple players in team sports.

2.1 Multiple Target Tracking

Multiple target tracking has a long tradition, going back many
years for applications such as radar tracking [15]. These
early approaches to data association usually relied on gating
and Kalman filtering, which have later made their way into
our community [16], [17], [18], [19], [20]. Because of their
recursive nature, when used to track people in crowded scenes,
they are prone to identity switches that are difficult to recover
from. Particle-based approaches such as [21], [22], [23], [24],
[25], [26], [!], among many others, partially address this issue
by simultaneously exploring multiple hypotheses. However,
they can handle only relatively small batches of temporal
frames without their state space becoming unmanageably large
and often require careful parameters setting to converge.

Another approach is to perform many simple operations
on trajectory fragments or tracklets, such as adding new
detections, splitting, or merging. Those that minimize a global
energy function are retained, as in Multi Hypothesis Track-
ing [27], Markov Chain Monte Carlo Data Association [28],
[29], [30], [31], or Discrete-Continuous Optimization [32] .
These algorithms may take advantage of large frame batches
but are quite difficult to implement and involve many param-
eters, which need to be learned and tuned.

Another recent approach in multi object tracking is to first
construct reliable short tracklets, and then concatenate them

into long trajectories. The tracklet association problem can
be formulated as one of optimally connecting a bipartite
graph [33], [34], [35], [36], [37] using the Hungarian algo-
rithm. The main differences between these algorithms reside
in the way the tracklets are constructed and the similarity
measure between them. They include appearance, motion, and
even social and activity terms. These methods, however, tend
to depend on appearance information being available for all
tracklets, which ours does not.

Alternatively, a “belief matrix” that represents tracklet as-
sociation probabilities can be maintained [38]. Unlike the
algorithms described above, this one decouples tracking from
identification and its online implementation only propagates
appearance-based probabilities forward as the information
becomes available. This work was extended to include infor-
mation of the relationship between tracks [39], [40]. However,
the authors only used simulated data and manually provided
relationships between people. It is not clear how these could
be estimated automatically.

One important feature of our approach is that we solve the
tracklet association problem by minimizing a global objec-
tive function. and other recent approaches also do this. For
example, in [41], tracks corresponding to pairs of people are
split and merged. Although effective for tracking pedestrians
and preventing collisions, this does not apply to tracking
multiple people who tightly interact. In [42], [43], Conditional
Random Field (CRF) are used to model occlusions and motion
dependencies between tracklets and in [44] Belief Propagation
is used of this purpose. However, in situations where people
move unpredictably as in team sports, it is not clear how to
model the motion and the occlusions terms and further re-
search would be needed to use this approach in such scenarios.

Dynamic and Linear Programming approaches have
emerged as powerful alternatives. They operate on graphs
whose nodes can either be all the spatial locations of potential
people presence [2], [3], only those where a detector has
fired [4], [5], or short temporal sequences of consecutive detec-
tions that are very likely to correspond to the same person [0],
[7], [8]. On average, they are much more robust than the
earlier methods but typically require the careful setting of edge
costs in the graph, the introduction of special purpose nodes to
handle occlusions, and an assumption that the appearance of
people remains both unchanged and discriminative from frame
to frame. This last assumption is damaging in cases where
the lighting changes quickly or where the appearance is only



ACCEPTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, SEPTEMBER 2013 3

distinctive at long intervals, such as when tracking ballplayers
who all wear the same uniform and whose number can only
be read occasionally.

In our recent work [9], we overcame this limitation by di-
rectly working on the graph of all potential locations over time
and solving the data association problem using the K-Shortest
Paths (KSP) algorithm [10]. Our algorithm completely ig-
nores appearance, does not require any heuristics regarding
occlusion nodes, and has a comparatively low computation
complexity in the order of O(k(m + nlogn)), where n, m,
and k are the number of graph nodes, edges, and trajectories.
And, yet, it has been shown to outperform many state-of-the-
art methods on the PETS’09 data set [45]. Its main limitation is
that, because it does not exploit appearance, it cannot prevent
identity switches when people come close to each other. This
is the problem we address in this paper.

Recent approaches attempted coupling the detection and
tracking steps [40], [47], instead of dissociating them as we do.
In [47], 2D detections from each camera are used as input and
coupled for 3D localization and tracking purposes. In [460],
the inputs are background-foreground binary masks and the
pedestrian detection and tracking are performed directly in 3D.
These methods are shown to improve performance slightly in
terms of miss detections and false detections over KSP [9]
in some cases. However, like KSP , they do not incorporate
appearance information and, therefore, cannot recover from
identity mismatches. We could thus have used one of those
algorithms instead of KSP to perform the first step of our
approach as described below.

2.2 Tracking Multiple Players

Reliable tracking of players engaged in team sports involves
challenges that do not exist when tracking pedestrians because
the players tend to constantly change their motion pattern
and, sometimes, to tackle their opponent. This makes their
trajectories much more erratic and less predictable.

In [48], a framework for tracking multiple basketball player
similar to ours is presented. Player detection is achieved using
multiple cameras, while occasional reading of the numbers
printed on their shirts is used for identification purposes. The
algorithm relies on simple tracking to propagate the players’
identities over time. The authors themselves write that this part
should be improved and only present detection results without
tracking ones.

More recently [49], Conditional Random Fields (CRF) have
been used to track multiple basketball players from the same
team in sequences acquired with a single moving camera.
However, CRF require modeling and learning an objective
function, which is then optimized. Therefore, extensive train-
ing is required and it is not clear how much new training is
required from one match to the next.

3 ALGORITHM

In this section, we assume that the ground plane is represented
by a discrete grid and that, at each time step over a potentially
long period of time, we are given as input a Probabilistic Oc-
cupancy Map [3] (POM) containing probabilities of presence

of people in each grid cell, which can be generated by any
people detector. While informative, the resulting probability
maps may contain both miss-detections and false positives,
especially when the scene becomes crowded.

To infer identity-preserving trajectories from these poten-
tially noisy POMs, we first extend the formalism introduced
in [9] to account for individual identities, which the original
formulation did not do. In practice, we compute flows on
Direct Acyclic Graphs (DAGs) such as those of Fig. 2. This
results in our multi-target tracking problem being reformulated
as an Integer Program, which can be relaxed into a Linear
Program and solved using standard optimization packages. It
has been shown that multi-commodity network flow (MCNF)
problems on DAGs can be solved in a polynomial time [50]. In
general, for multi-commodity network flow (MCNF) problems
with more than two commodities—groups of people in our
case—the solution of the Linear Program is not necessarily
that of the corresponding Integer Program because its con-
straint matrix is not totally unimodular [51]. However, in
practice it almost always is [52].

Solving a full graph with Linear Programming might be
very slow for long sequences, as the graphs tend to be large.
To address this, we implemented a two-step process: First,
we run the K-Shortest Paths (KSP) algorithm [9], which can
be seen as a single commodity network flow. This produces
trajectories that may include identity switches but tell us which
are the grid cells in which we can expect to find people at any
given time. We then eliminate most of the other grid cells
and run our Linear Program on a significantly smaller graph,
which saves both time and memory. Pruning the graph results
does not guarantee that the solution we find is optimal but
allows the batch processing of substantial numbers of frames
relatively quickly. Furthermore, in practice, we have not seen
any significant degradation in tracking performance.

For a further speed up, necessary for real-time applications,
we retain the two-step process but, in addition to pruning the
graph, we group nodes that are unambiguously connected into
tracklets. We treat these tracklets as the nodes of a reduced
graph, which is now small enough for the Linear Program to
be solved in real-time.

In the remainder of this section, we first formulate our
data association problem as a multi-commodity network flow
problem on a DAG. We then show that doing so requires
solving an Integer Program, which we relax to a Linear
Program. Finally, we discuss the above-mentioned approaches
for reducing the computational cost of finding the optimal
solution.

3.1 Formulation

As in [9], we model people’s trajectories as continuous flows
going through an area of interest. Preserving the identities
of the tracked people means that the flows should not be
allowed to mix. In addition, available soft biometrics or
appearance cues should be used to assign flows to people.
These two elements are missing from the original formulation.
By formulating the tracking problem as a multi-commodity
network flow problem we manage to include these elements in
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Fig. 2. Our tracking algorithm involves computing flows on a Directed Acyclic Graph (DAG). (a) In [9], the DAG includes
source and sink nodes that allow people to enter and exit at selected locations, such as the boundaries of the playing
field. This can be interpreted as a single-commodity network flow. (b) To take image-appearance into account, we
formulate the tracking problem as a multi-commodity network flow problem which can be illustrated as a duplication of
the graph for each appearance-group. The obtained problem has a much larger graph, which makes it intractable. In
this work, we present two methods for reducing this complexity, and solving the problem in real-time.

our tracking algorithm. In our formulation, we use the notation
summarized in Table 1.

TABLE 1
Notation

T number of time steps.
I =(1',...,17) captured images.

K number of locations on the ground plane.
L number of labeled groups of people

N; maximum number of people in group I.

C {1,..., K} neighborhood of location k, all locations which
can be reached within ¢ time instants.

G = (V,€) full graph with |V| =K x T x L.
G'" = (V',&’) a pruned graph, subset of G.

vﬁ(t) node in the graph, represents group ! in location ¢ at time ¢.

mi(t) number of people from group ! in location ¢ at time ¢.

el j(t) directed edge in the graph.

fil j(t) number of people moving from location ¢ to location j at time
t in group .

Qi(t) rv. standing for the true identity group of a person in location
%, at time t.

X;(t) rv. standing for the true occupancy of location ¢ at time ¢.

estimated probability of a location ¢ to be occupied by a person
from group [, according to the appearance model.

estimated probability of location ¢ to be occupied by an uniden-
tified person according to the pedestrian detector.

6 maximum distance between locations, used to define a neigh-
borhood of a location or a trajectory.

§ set of occupancy maps physically possible.

T set of trajectories obtained by the KSP algorithm.

7¢ C T a trajectory obtained by the KSP algorithm.

74 C Tq a tracklet, a fragment of trajectory 4.

Gg* = (V*,&*) the graph of tracklets.

v*! node in the graph of tracklets, represents a tracklet of group I
with index 3.

ef’lj directed edge in the graph of tracklets.

To this end, we represent the ground plane as a discrete grid
containing K cells and compute POMs at T' consecutive time
instants. We partition the total number of tracked people into L

groups and assign a separate appearance model to each group.
In a constrained scene, such as a ball game, we can restrict
each group [ to include at most N; people, but in general cases,
Nj is left unbounded. The groups can be made of individual
people, in which case N; = 1. They can also be composed
of several people that share a common appearance, such as
members of the same team or referees, in sports games.

We introduce a Directed Acyclic Graph (DAG) G = (V,€)
with number of vertices |V| = K x T' x L such as the one of
Fig. 2(b), in which every node v!(t) represents a location i at a
given time instant ¢ and for a particular identity group [. Each
edge represents admissible motion between two locations, in
two consecutive time instants. Since groups cannot exchange
their identity, there are no edges linking groups, and therefore
no vertical edge in Fig. 2(b). The resulting graph is made of
disconnected layers, one per each identity group. This is in
contrast to the approach of [9], which relied on a single-layer
graph such as the one of Fig. 2(a).

Let N5(k) C {1,..., K} be the neighborhood of location k,
that is, the set of all physical locations that can be reached from
k in § time instants. In practice, for the graph construction we
set § = 1, which is already longer than the distance a person
can travel in 1/25%" of a second, the typical frame duration
in our experiments.

There is an edge e} ;(t) from location i to location j if and
only if j € N (i). We associate to every node of the graph
a variable m.(t) standing for the number of people of group
[ present on location ¢ at time ¢. Similarly, a variable fi{ ()
corresponds to every edge eﬁ’ j(t), and encodes the number of
people of group ! moving from node ¢ to j at time ¢.

We now define a set of constraints to ensure that every flow
through the graph is physically possible. First, we enforce flow
continuity by making sure that the sum of flows arriving at
one node at time (¢ — 1) is equal to the sum of flows leaving
the same location at time ¢

Vilio Y fit=1)=mi)= > fl;0). D
k:ieN (k) JEN(3)
N——

Leaving from 7

Arriving at %
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Second, our grid cells are sufficiently small for one not to
be occupied by more than one person at a time, hence

L
Vi, Yo > flit) <1, 2)

JEN (@) I=1

Third, the flows have to be positive and we have

Vit 1i,j f(t) > 0. 3)

In case we have a precise knowledge about the number of
people we track, we can use an optional constraint to ensure
that no more than the allowed number of people is present in
each group

K
VELY mi(t) < N . 4)

Our model as described so far can only handle a fixed
number of people. In practice, however, the number of people
in the scene, may vary over time. We therefore introduce a
source and a sink nodes, Usource and vgnk. The source node
is connected to every node from the first frame and the sink
to every node from the last frame, as shown in Fig. 2(b).
Additionally, both nodes are connected to all locations in the
set N(k) C {1,..., K} of locations susceptible to act as entry
or exit points throughout the whole sequence. This last part
is not illustrated in Fig. 2 to avoid overloading it. The source
and sink nodes are also subject to a constraint that enforces
all the flows starting in vsoyrce t0 end in vgipk

V> i = S fhe G

JEN (Vsource) k:vsink EN (k)

3.2 Linear Program

Let us now assume that we have access to a person detector
that estimates the probability of presence of someone at every
position ¢ R

pi(t) = P(X;(t) =1[1) , (6)

where X, (t) is a random variable standing for the true occu-
pancy of location ¢ at time ¢, and I represents the input images.
Let us further assume that we can compute an appearance
model and that we use it to estimate

eh(t) = P(Qi(t) = 1L, X;(t) = 1), (7

the probability that the identity of a person occupying location
1 at time ¢ is [, given that the location is indeed occupied. Here,
Q;(t) is a random variable standing for the true identity group
of a person in location ¢ at time t. Let there be L identity
groups, hence Q;(t) € {1,..., L}. The appearance model can
rely on various cues, such as color similarity or shirt numbers
of sports players. In Section 4.3, we describe in details the
ones we use for different datasets.

Since we are seeking a set of physically possible trajectories
that best explain the observed image evidence, we look for

=x,Q=q|I), ®)

m = arg max P(X
g max (

where m is a set of occupancy maps and § is the space of
occupancy maps satisfying constraints from Eqs. 1 to 5.

As shown in the appendix supplied as supplementary ma-
terial, this can be expressed as a function of p;(¢) and ¢L(t)

as
T L
(t)wﬁ(t)L)
= E E — . 9
argma)@(t papa 1m < 1= pi(0) 9)

Note that when no appearance information is available, we
set VI,¢l(t) = 1 and the appearance term cancels the L
coefficient in the objective function. In this case, this simplifies
to the original one of [9]. This property makes it possible to
process sparse appearance information, such as shirt numbers
that can be read only once in a while. The spatial extent
of trajectories is mostly based on the occupancy information,
while the sparse appearance places a trajectory in the correct
identity group and avoids switches at intersections.

Maximizing Eq. 9 under the constraints of Egs. 1 to 5 can
be formulated as an Integer Program, which is optimized with
respect to the flows f} ;(t)

msimize 3°5° 3 log ( )

K

=

IR0

t=1i=1 I=1 JEN (1)
subject to Vt, 1, 1, Z fll](t) — Z fk,i t—-1)<0
jeN(‘) k:ieN (k)
i > Zfl,y <
geN( (10)

Vtvl717]a f?lj(t) Z 0

K
Vel > Y <N

i=1 jeN(4)
l
Vl, Z stourceﬁj - Z fk} yUsink —
JEN (Vsource) k:vsink €N (k)

In practice, since Integer Programming is NP-complete, we
relax the problem of Eq. 10 into a Linear Program (LP) of
polynomial complexity by making the variables real numbers
between zero and one.

As the constraints matrix of a multi-commodity network
flow problem is not totally unimodular [51], the LP results are
not guaranteed to be integral and real values that are far from
either zero or one may occur. In practice this only happens
very rarely, and typically when two or more targets are moving
so close to each other that appearance information is unable to
disambiguate their respective identities, as depicted by Fig. 3.
These non-integer results can be interpreted as an uncertainty
about identity assignment by our algorithm. This represents
valuable information that could be dealt with accordingly if
necessary. However, as this happens rarely, we simply round
off non-integer results in our experiments.

3.3 Optimization

Even though turning the Integer Program of Eq. 10 into a
Linear Program substantially reduces its computational com-
plexity, the large number of variables and constraints involved
still results in too large a problem to be directly handled by
regular solvers for real-life cases such as those presented in
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Fig. 3. The LP solver might produce non-integer values
when two or more people intersect. In this example, our
tracking algorithm assigns non-integer values for the iden-
tities of the two soccer players at two adjacent locations.
After the intersection, the algorithm recovers and assigns
again integer value to each identity.

Section 4. It is thus necessary to further simplify the problem.
In the remainder of this section, we present two different ways
to achieve this.

3.3.1 Pruning the Graph

The simplest way to reduce the computational complexity is
to remove unnecessary nodes from the graph of Fig. 2(b). To
this end, we first run our earlier algorithm [9] on a graph with
only one commodity (L = 1), such as the one in Fig. 2(a). The
algorithm tracks all the people in the scene very efficiently but
ignores appearance and is therefore prone to identity switches.
We obtain a set of trajectories 7, each trajectory 7, € 7 is a
subset of vertices on this graph

Tq = {vi(tq)’vj(tq_'—1)?""Uh(Tq)} (11)

where the vertices belong to consecutive time instants starting
at time t, and ending at time instant 7,. We take Ns(7,) C V
to be the neighborhood of trajectory 7,, which is the set of
all vertices that can be reached within ¢ time instances from
a node v;(t) € 7,. Formally, we write

Ni(rg) = |J Ns(ui(t)),

v; (t)ETq

12)

where § can be larger than one, unlike for graph construction,
as explained in section 3.1. We take the set of shared vertices
S to be those who are included in the neighborhood of more
than one trajectory. We write

S ={v;(t) €V, st. Z

TET

t)eN(rg) > 1} (13)

The vertices V' in our pruned graph G’ = (V', £’) are taken
to be

=TUS, (14)

the union of the vertices in all trajectories and the shared
vertices.

In other words, we eliminate most of the nodes in which
nobody was found. However, we retain the shared vertices
S because KSP produces trajectories with very good spatial
accuracy, except where people meet and separate. There, it
may erroneously link bits of trajectories belonging to different
individuals and ignore the vertices through which the true
trajectories pass. By adding the shared nodes, we give our

algorithm the degrees of freedom it requires to avoid such
mistakes by using appearance information. After pruning, we
set L to be the true number of identity groups, and keep
only the set of constraints from equations Eq. 1 to Eq. 5,
which involves vertices and edges of the pruned graph. In our
experiments, the pruning reduces the number of variables and
constraints by two to three orders of magnitude.

In the remainder of this paper, we will refer to this approach
as Multi-Commodity Network Flow (MCNF).

3.3.2 Grouping Nodes into Tracklets

A more radical approach to reducing the computational com-
plexity is to not only remove obviously empty nodes from the
graph but, in addition, to group obviously connected ones into
tracklets. The Linear Program of Eq. 10 can then be solved on
a reduced graph such as the one of Fig. 2(c) whose nodes are
the tracklets instead of individual locations. In the remainder
of this paper, we will refer to this approach as Tracklet-based
Multi-Commodity Network Flow (T-MCNF).

Tracklets have been extensively used for people track-
ing [34], [36] and they are usually created on the basis
of appearance being preserved over consecutive frames. In
this work, we assume that appearance information may be
unavailable over long periods of time and we therefore create
our tracklets without reference to it.

To this end and as before, we start with the output of the
KSP algorithm [9] and obtain a set of trajectories 7 and a
set of shared vertices S as in section 3.3.1. In practice, these
shared vertices are the only points where an identity switch
could occur and we therefore take the trajectory fragments
connecting them to be our tracklets, as depicted by Fig. 4.

Formally, each trajectory 7, is split into tracklets Tg ] =
1,..., jgq, which are connected fragments of the trajectory. We

therefore have _
Vg 1 = U Ta.
J

We split a trajectory into tracklets by ensuring that, except
for the end points, none of their vertices is in the neighborhood
of a shared vertex. Let Tg be the last time instant of tracklet
Tg, then,

15)

Vg, i, j,t =T] N(v(t)er])NS #0. (16)

We now construct a graph G* = (V*,£*) whose nodes

={rl,q=1,..,T|,j=1,..4q} (17)
are the tracklets. In addition, we introduce an edge between
each pair of tracklets such that the first vertex of one tracklet
is included in the neighborhood of the last one of the other.
We write

e ={(rd,73)) 3ui(T3) € 78 vy (t),) € 72,
]
q’

st (=TI +1) A (vp(t) e N(wi(TI)) ). (18)

Here, t;, is the starting time instant of tracklet Tg,l and Tg
is the last time instant of tracklet 7.

The resulting graph of tracklet G* is a DAG. We formulate
a set of linear constraints on this graph similar to those of Eq.
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(a) (b)

(c) (d)

Fig. 4. Splitting trajectories into tracklets. (a) For simplicity, we represent the trajectories as being one-dimensional
and assume that we have three of them. (b) Each trajectory is a set of vertices from successive time instants. We
assigned a different color to each. (c) The neighborhoods N of the trajectories with a distance § = 1 are shown in
a color similar to that of the trajectory but less saturated. The shared vertices S are those that are included in more
than one neighborhood appear in yellow. They are used as splitting points. (d) The resulting tracklets. Note that two
trajectories do not necessarily have to cross to be split; it is enough that they come close to each other.

1 to 5 in section 3.1. An illustration of the resulting graph
is shown in Fig. 5. The only difference is that in the MCNF
version, each node represents one physical location at one time
instant, whereas in the T-MCNF version, each node represents
a tracklet, which is a set of successive locations in a batch of
time frames.

AR
"“Ir

ol \ /A /

=l

2’

Tlme

Fig. 5. The tracklet-based multi-commodity network flow
algorithm can be interpreted as finding paths from the
source node to the sink node, on a multiple layer graph
whose nodes are the tracklets. This graph has the same
properties as in Fig. 2 (b), however the number of vertices
and edges is significantly smaller.

We therefore modify the meaning of variable mjl to stand
for the number of people of group [ present in tracklet j
Similarly, the variable f;; *L now corresponds to the edge e}’ 3
and encodes the number of people of group ! moving from
tracklet ¢ to tracklet j.

To maximize the flow on this graph, for each tracklet 77/,
we define a score S (Tg 1) as the sum of the appearance scores
of the vertices of the full graph G that form the tracklet.

Formally, we write

Vig, L S(m)) = Y log(w(t)L).

v}c(t)ETg’l

19)

Note that this score is similar to the sum of the scores
of all the positions that compose the tracklet in the original

objective function of the full layered grid (Eq. 10). However,
in the tracklet case we do not take detection probabilities
into account, as they have already been used to construct the
tracklets.

Our Tracklet-based Multi-Commodity Network Flow (T-
MCNF) problem then becomes

L
maximize Z Z S(Z)fé

I1=1 i:5€N (4)
subject to VI, 7, Z f:é - Z f}j,lz <0
JEN (i ) kieN (k)
*
iy Zf e (20)
jEN(Z =1
Vi i j £ >0
velo > > k<

i: time t€4 jEN (3)

(DD

J EN(Uaource)

Z ‘f'L yUsink —

1:Vsink EN (%)

To obtain a feasible solution, we relax the IP problem of
Eq. 20 to a LP problem, by allowing each flow to be assigned
a value between O to 1 instead of a boolean value.

The T-MCNF graph is between one to two orders of
magnitude smaller than the MCNF one. This results in a
reduction of both computing time and memory consumption,
while providing similar tracking results, as shown in Sec. 5.

4 EXPERIMENTS

We use multi-camera sequences acquired during soccer and
basketball matches to validate our approach and compare it
against both the approach we extend [9], which completely
ignores image appearance, and a modified version of it that
takes frame-to-frame appearance into account, using simple
features patterned after those used in [14].

To highlight the impact of the Linear Programming formu-
lation, we implemented a Dynamic Programming approach to
linking tracklets, inspired by those of [3], [8].
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Numbers |Camera |Frame |People |Groups |[Locations|Entry/Exit
Name points
APIDIS 7 1500 12 3 9216 17
FIBA(MS) 1,6,8 4000 14 3 9216 0
FIBA(CB) 6,8 5500 15 3 9216 65
ISSTA 6 3000 25 5 33480 0
PETS’09 6 795 10 2 10400 55

TABLE 2

Names and characteristics of the sequences used in our
experiments

To compare our approach against other state-of-the-art ones,
we tested it on the PETS’09 benchmark dataset, which features
pedestrians. We also ran our algorithm on single-camera
sequences and compare our results to those of the recent
Successive Shortest Path algorithm [8].

In the remainder of this section, we first describe these video
sequences. We then discuss how we obtain image evidence and
present our results'.

41

Team-sports players are hard to track reliably because they
tend to converge towards the ball, often change their direction
of travel abruptly, and wear the same uniforms when they
belong to the same team. The only reliable way to identify
them is to read the numbers on their shirts but, given the
resolution of the images, this can only be done in relatively few
frames. Furthermore, even though the color of the uniforms
can be used to tell the teams apart, this information is hard to
exploit at the most critical times, that is, when several players
are bunched together.

Therefore, team sports sequences are among the most chal-
lenging in people tracking and we tested our approach on
both basketball and soccer sequences, along with a standard
pedestrian benchmarking dataset. The datasets are described
in more detail below, and their parameters are summarized in
Table 2

Datasets

4.1.1 Basketball - APIDIS

This publicly available 1500-frame sequence - was acquired
using 7 cameras—>5 ground cameras and two “fish-eye™ cam-
eras looking from above as shown in Fig. 6—all synchronized
at 25 fps. There are 12 people on the court, 2 referees and two
5-player teams. This dataset is very challenging because the
lighting conditions are difficult and there are many reflections
and shadows. In our experiments we use the jersey colors
to provide the appearance information and use three identity
groups, which consist of the two teams and the referees.

2

4.1.2 Basketball - FIBA MS and CB

We acquired several sequences at the 2010 FIBA World
Championship for Women, using 8 cameras—4 wide-angle
ones, 2 looking from above, and 2 providing close-ups—
filming at 25 fps. In a typical basketball match there are two

1. For the supplementary material and videos, please visit:
http://cvlabwww.epfl.ch/%7ebenshitr/supplementary/
2. APIDIS http://www.apidis.org/Dataset/

Fig. 6. Tracking basketball players; T-MCNF results on the
publicly available APIDIS dataset. The dataset is filmed
by seven cameras, two “fish-eye“ camera and five side-
view camera. Note that the lighting conditions are quite
challenging.

teams of 5 players, 3 referees, and 2 coaches. However, as
players and referees may enter and exit the field of view of
the cameras, there might be fewer people in each group at any
given time. In general, the closer to the final there are, the
more challenging the matches become from a tracking point
of view.

We performed our experiments on long sequences from the
Mali vs. Senegal match and the semi-final Czech Republic vs.
Belarus match. In the remainder of this paper, we denote the
first as MS and the second as CB for short. In each case,
we operated in two different manners: First, we used color as
the sole source of appearance information and the 3 identity
groups then consisted of the two teams and referees. Second,
we also attempted to read the numbers on the players’ shirts
whenever possible, which allows us to handle 11 groups, one
per player plus one for the referees and coaches.

4.1.3 Soccer - ISSIA

We use the publicly available ISSIA dataset [53]. It is made
of 3,000 frames acquired by six cameras at a soccer match.
There are 25 people, 3 referees, and two teams of 11 players,
including the goal keepers whose uniform is different from
that of their teammates. Due to the dataset resolution, the shirt
numbers are unreadable. Hence, the appearance is based on
shirt colors only. Similarly to [54], we use 5 identity groups
that we denote as referees, team 1, team 2, goal keeper I and
goal keeper 2. A sample of the dataset is presented in Fig. 7.

Fig. 7. Tracking results on the soccer ISSIA dataset [53].
Note that there is little overlap between cameras on the
same side of the field.
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4.1.4 Pedestrians - PETS’ 09

We use the publicly available PETS’09° dataset, for which
the performance of other algorithms has been published [45].
More specifically, we tested our method on the 800-frame
sequence S2 /L1, which is filmed by 7 cameras at 7 fps, and
features 10 people. In this sequence, the density of people is
lower than in the sport datasets but most of the pedestrians
wear similar dark clothes, which makes appearance-based
identification very challenging. We therefore used only two
appearance groups, one for people wearing dark clothes and
the other for those wearing reddish ones.

4.2 Appearance Information

We exploit two distinct sources of image information, the color
of the uniforms and the numbers on the players shirts. This is
done as follows.

4.2.1 Color Similarity

In order to estimate the correct number of groups and to have
prototypes for each identity groups, we clustered the pedestrian
detector results into groups. For each camera, based on the
background subtraction, we extracted the foreground pixel in
the bounding boxes corresponding to the detector results. We
convert the foreground pixels within each box to the CIE-
LAB color space, and use them to populate a 20 x 20 x 20
color histogram. We repeat this process independently for each
camera because they are not color calibrated.

Extracting color information from closely spaced people is
unreliable because it is often difficult to correctly segment
individuals. Thus, for each camera and at each time frame, we
first compute an occlusion map based on the raw probability
occupancy map: If a specific location is occluded with high
probability in a given camera view, we do not use it in the
clustering process. Similarly, at run time, we do not evaluate
the color similarity of occluded persons.

We define the similarity between two color histograms using
the Kullback-Leibler divergence

s(a,b) = exp(— KL(H,, Hp)) . 21

Based on this similarity, we cluster the histograms into
groups and obtain prototypes for each group (Templates).
Finally, the similarity between this observed color histogram
Ocolors and the templates Tiq10rs is computed as the average
over the maximum matching scores from the non-occluded
views v. We normalize this term in order to get a probability
between 0 and 1

— KL Tco ors» Oco ors
90:’1 N >, exp( |( | 1 lors)) .
v

(22)

If no appearance cue is available, due to occlusions for

example, @f’l is set to %

3. PETS 2009: http://www.cvg.rdg.ac.uk/PETS2009

(b) (d)

Fig. 8. Color projections. (a) Color image. (b) Gray—scale
image. (c) Color projection using the two colors of the
green team. (d) Color projection using the two colors of
the white team.

4.2.2 Reading the Numbers

The numbers on the back of sports players are unique iden-
tifiers, and can be used to unambiguously recognize them.
Within a team, the printed numbers usually share a unique
color, which is well separated from the shirt color. Here we
use this observation to develop a specific image binarization
that improves number recognition. For every team, the shirt
color ¢, and number color ¢, are obtained by clustering a
shirt color patch into two clusters. Then, for each pixel we
measure the distance between its color ¢, and these two colors:
ds = ||lcs—cpl], dn = ||cn—cp||. The converted gray-level pixel
is defined as 255 dj:dn’ which produces a white number on a
black shirt, as illustrated by Fig. 8.

As for group classification, we manually extract a template
for every player beforehand. At run time, applying number
recognition at every position of an image would be much
too expensive. Instead, we rely on people detection to select
candidate positions for number reading. For each candidate
position, we trim the upper 1/5 part and the lower 1/5 part of
the bounding box, which roughly correspond to the head of the
player and his legs respectively. We then search for number
candidates inside the reduced bounding box, by using XOR
operation between the templates and observation patches with
the same size.

We select the observation patch that gives us the maximum
normalized sum of pixel-wise XOR between the template and
the observation and write

Tnumbers 2 Onumbers

it o (23)

|Tnumbcrs|
Since numbers cannot be read often, we favor highly confident
detections. Therefore, we only keep scores that are higher than
a threshold, 0.8 in our case. In other cases, we set goﬁ’l to a
neutral value of +.

4.3

Our system is implemented in C++ using standard libraries.
To produce the Probability Occupancy Maps (POMs) we
need as input, we use the publicly available POM software
package [3]. It implements an algorithm that estimates ground
plane occupancy from the binary output of a background

Implementation Details
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subtraction algorithm in multiple images acquired simultane-
ously using calibrated cameras [3]. The LP problems were
formulated and optimized using the MOSEK solver [55]. We
used a 3GHz PC and utilized a single core, the running time
and memory consumption are summarized in Table 3 in the
results section. Using our T-MCNF algorithm it is practical to
process whole batches at once, on a regular PC.

4.4 Baselines

We use four algorithms as baselines, three for multi-camera
case and one for the single-camera case.

KSP tracker [9]. The publicly available KSP algorithm
completely ignores appearance. Nevertheless, it has been
shown to outperform many state-of-the-art methods on the
PETS’09 dataset [45]. Note that for some of our datasets, we
could not fit the full KSP grid in memory and had to prune it
to reduce the number of grid cells. Given the POM detection
results, we only kept locations with a probability of presence
greater than 0.75 and locations within 4 grid cells in time or
space from those.

C-KSP tracker. This modified version of KSP incorporates
frame-to-frame appearance information by modifying the edge
costs of Eq. 9. We take them to be

loe (m(t)Q,j(t)L> nstead of _ log (pi(t)@é(t)L> |

1 —pi(t) 1—pi(t)
where (; j(t) is an appearance term similar to the one used
in [14]. It measures the probability that two locations in
successive frames correspond to the same person based on
the corresponding color histograms.

DP tracker. We use a Dynamic Program (DP) algorithm
that iteratively finds and removes the shortest path from our
graph of tracklets until no more path can be found from
source to sink. This algorithm is similar to the Dynamic
Programming of [3], [8]. The main conceptual difference with
our approach is that this algorithm is greedy and, unlike ours,
cannot backtrack if it makes a mistake.

SSP tracker [8]. The Successive Shortest Path (SSP)
algorithm is a publicly available algorithm for tracking in
single videos. It links detections into tracklets, uses them to
form a graph, and finds a near-optimal set of trajectories using
Dynamic Programming. The key difference with our approach
is that, even though we also end-up connecting tracklets,
the objective function we optimize is expressed in terms of
occupancy probabilities in the ground plane.

4.5 Evaluation Metrics

A standard metric for evaluating object trackers is the Mul-
tiple Object Tracking Accuracy [56] (MOTA), whose exact
definition is

You(ep(fpe) + em(fre) + cs(mmey))
Zt gt

where g, is the number of ground truth detections, fp; the false
positive count, fn,; the false negative count (notated as m; -
the number of miss detections in the original paper) and mme,
the number of instantaneous identity switches. According

MOTA =1 —

, (24)

t 4+l 1+2 t+3 t+4 tvS t+6 t+7 t+8 t+9 t t4l t+2 t43 t+4 145 t+6 t+7 t+8 t+9

(a) mme on Algorithm A

® @@@ @ @@@

(b) gmme on Algorithm A

0 HHUU lo
LJ

t 4+l 1+2 t+3 t+4 HS t+6 t+7 t+8 t+9

jl_
jJ

t t+l 42 t43 t+4 145 t+6 t+7 L+s t+9

(c) mme on Algorithm B (d) gmme on Algorithm B

Fig. 9. lllustration of the difference between identity
mismatch score mme and global identity mismatch score
gmme. We apply the two scores on two fictional tracking
results A and B. The mismatches are circled in red. As
can be seen, algorithm B manages to recover from its
tracking mistakes. However, its mme score is worse than
the one of Algorithm A. Our proposed gmme score favors
algorithms that preserve identities.

to [57], the weighting functions are set to ¢,, = ¢y = 1, and
¢s = log,,. While providing a reliable performance measure
for generic tracking systems, this metric is not appropriate to
evaluate applications for which identity preserving is crucial.
Its mme term penalizes only instantaneous identity switches,
that is the frame at which two trajectories are switched, but
does not account for the proportion of a trajectory that is
correctly labeled over a whole sequence.

Therefore, we introduce a new term gmme for measuring
the proportion of identity switches in a global manner. For
every detection at every frame, the gmme term is incremented
if the detection label does not correspond to the ground truth
identity. Thus, a trajectory with an identity switch in the
middle will be counted wrong for half of its length, instead of
just once for the mme, as explained on Fig. 9. We generate
a new metric GMOTA standing for Global Multiple Object
Tracking Accuracy, by replacing mme by gmme in MOTA,
which yields

Yoiler(foe) + em(fne) + cs(gmmey))
Zt gt
(25)

For the sake of clarity, we will show results using both
metrics and on each of their components fp, fn, mme and
gmme, in the results section.

In addition, the evaluation protocol [56] we rely on is
usually used in image-space. As we use multi-camera setups,
we evaluate the accuracy of the tracking in the ground plane,
instead of the camera planes. To generate the plots presented
in the next section, we set our distance threshold for a True

GMOTA =1 —
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Positive to be the distance between three grid cells, which is
0.75m in the pedestrian and basketball cases and 1m in the
soccer case. As shown in the supplementary material, using
different distance thresholds yields the same trends.

5 RESULTS

We ran the two versions of our algorithm, MCNF of Sec-
tion 3.3.1 and T-MCNF of Section 3.3.2, along with the KSP,
C-KSP, and DP baselines on our five sets of sequences. Fig. 11
depicts the results evaluated using both the standard MOTA
metric of Eq. 24 and our modified GMOTA metric of Eq. 25.
The acronyms below the graphs refer to those given to each
sequence as they appear in table 2.

5.1 Multi-Camera Results

Using either metric, both MCNF and T-MCNF always do
as well or better than KSP, which has itself been shown
to outperform state-of-the-art methods on the PETS’09 se-
quence [45]. However, the difference is much more obvious
on the GMOTA score, which is explicitly designed to penalize
identity switches. Fig. 14 gives a more detailed picture of
the algorithms’ performance by individually ploting the com-
ponents of MOTA and GMOTA fp, fn, mme, and gmme.
The first three are very similar for all four methods but the
latter, which is the global identity mismatch score introduced
in Section 4.5, is much lower for MCNF and T-MCNF than
for the others.

C-KSP behaves more erratically. It improves over KSP on
the basketball data set, but performs slightly worse on the other
ones. This suggests that frame-to-frame appearance cannot be
depended upon to preserve identities over long periods of time.
DP performs significantly worse than the other baselines and
our algorithm. It tends to assign detections to a few long
trajectories and cannot recover from erroneous assignments.

In short, even though the mme term is low for all methods,
which explains the similarity of the MOTA results, the more
accurate gmme metric clearly indicates that our approach
preserves identity much better than the two baselines. Note,
however, that the improvement is more significant on the sport
sequences than in the pedestrian ones. This is because, in the
latter people all wear clothes of relatively uniform color and
without distinguishing marks, which makes appearance infor-
mation less discriminative and failures such as those of Fig. 10
more likely. In the extreme case, if no appearance information
were available, the result produced by our algorithm would be
the same one as that of KSP.

Fig. 10. Failure case: Despite the global appearance
model, individuals 5 and 8 are switched because of simi-
larly colored clothes.

At the other end of the spectrum, Fig. 15 depicts what
happens when using not only the color of the uniforms but
also when being able to read the numbers on the players’
shirts once in a while. In our experiments, the numbers can
only be read once in every few hundreds of frames, in bursts
of approximately 15 frames. In addition, based on the role
of the players, some numbers are facing the zoomed camera
much more than the others. Unsurprisingly, even though the
number recognition information is only sparsely obtained, the
already high GMOTA scores of Fig. 11(b) rise even further.

5.2 Single-Camera Results

Our approach can be also applied to single videos and we
compare its performance to that of SSP [8] and KSP. For a
fair comparison, we first ran the POM people detector and used
its results as input to all three approaches. Since SSP expects
detections and not probabilities of occupancy, we thresholded
the POMs as explained at the beginning of Section 4.4. We
checked that this yields better results than using the output
of state-of-the-art people detectors on these sequences, in part
because they feature uniform backgrounds and in part because
the players are performing much more complicated motions
than those of typical pedestrians.

As can be seen in Fig. 12, SSP yields a lower false positive
rate at the cost of a higher false negative rate than KSP and
T-MCNEF. In the end, our algorithm preserves identities better
than the baselines even though the results are logically less
good than those obtained using multiple cameras.

5.3 Computational Cost

As shown in Figs. 14 and 15. there is almost no difference
between the tracking accuracy of the MCNF and the T-MCNF
algorithms, However, T-MCNF is much faster and consumes
far less memory, as can be seen in Table 3. The variations in
computational costs are mainly due to differences in the graph
sizes and the number of entry and exit points.

Sequence MCNF T-MCNF
Speed(fps) | Memory(MB) | Speed(fps) | Memory(MB)
PETS 09 255 2642 1370 7.5
APIDIS 44.2 677 1153 30
FIBA MS 3.1 4320 1277 104
FIBA CB 22.5 6332 863 1534
ISSIA 3.95 5285 187.5 117
TABLE 3

Comparison between running time and memory
consumption of MCNF and T-MCNF algorithms on the
examined datasets. The T-MCNF algorithm is faster and
consumes significantly less memory

All the results presented so far have been obtained by
optimizing on whole sequences, which precludes real-time op-
erations. If near real-time performance is required, for example
so that results can be presented to spectators during a break in
the action, the algorithm can be run on shorter but overlapping
batches of frames. We experimented this approach on batches
of 50,100,200,500 and 1000 frames, which implies a constant
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Fig. 11. Comparative performance of our methods (MCNF and T-MCNF) against the baselines (KSP, C-KSP and DP)
using the standard MOTA metric (a) and the new GMOTA metric (b). (a) The MOTA scores are almost the same for all
methods. This is because MOTA only considers instantaneous identity switches, and weights them by log;,. (b) The
GMOTA metric penalizes identity switches more than the MOTA metric. The results clearly indicates that our methods
(MCNF and T-MCNF) preserve the identities much better than the other baseline methods (KSP, C-KSP and DP). Note

that higher values are better and the maximum is 1.
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Fig. 12. Single-camera results. Comparing our approach against SSP and KSP when using only one of the video
sequences from the Mali vs. Senegal FIBA basketball match.

delay of 2,4,8,20 and 40 seconds respectively. We stitched
the resulting trajectories using the Hungarian algorithm [58].
As shown in Fig. 13, this results in a slight degradation with
respect to the scores of Fig. 11. However, having batches with
more than 200 frames does not improve the results much.
This suggests that applying our approach to short overlapping
batches is sufficient for obtaining excellent results, at the cost
of few seconds delay.

6 CONCLUSION

In this paper, we introduced a global optimization framework
for multi-persons tracking that takes image-appearance cues
into account, even if they are only available at distant time
intervals. We have shown that by formalizing people’s dis-
placements as flows along the edges of a graph of spatio-
temporal locations and appearance groups, we can reduce this
difficult estimation problem to a standard Linear Programming
one.

As a result, it does better at preserving identity over very
long sequences than previous approaches, while properly han-
dling entrances into the scene and exits from it. Furthermore,
by grouping spatio-temporal locations intro tracklets, we can
substantially reduce the size of the Linear Program. This

1
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Batch size

Fig. 13. Tracking performances of varying batches sizes.
All methods present better tracking results using longer
batches. However, short batches allows us to meet con-
straints on the time delay.

yields processing times on an ordinary computer that are short
enough for practical applications, such as producing statistics
of team-sport players’ performance during actual matches.
In future work, we will focus on using these statistics for
behavioral analysis and automated understanding of tactics.
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Fig. 14. Comparative performance of our methods (MCNF and T-MCNF) against the baseline (KSP, C-KSP and
DP) using color as the sole source of appearance information. We plot separately each component of MOTA: the
false positive and false negative rates fp and fn, the rate of instantaneous identity switches mme, and the rate of
global identity mismatch gmme. While MOTA components (fp, fn, mme) are similar among all the four algorithms,
our methods are much better at preserving identities, as reflected by the low gmme rates. In addition, the difference
between the two suggested method is not significant. Note that, for these scores, lower is better.
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Fig. 15. Using different appearance models. MCNF and T-MCNF performance numbers when using both color
similarity and number recognition against MCNF and T-MCNF numbers with color similarity only and those of the
KSP and C-KSP baselines. We plot separately each component of MOTA: the false positive and false negative rates
fp and fn, the rate of instantaneous identity switches mme, and the rate of global identity mismatch gmme. Clearly,
adding distinguishing identifiers, even sparsely, improves the preserving of the identities, as reflected by the low gmme
rates. Note that, for these scores, lower is better.
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