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Abstract

Amplitude and frequency are the two primary features of one-dimensional signals, and thus
both are widely utilized to analysis data in numerous fields. While amplitude can be examined di-
rectly, frequency requires more elaborate approaches, except in the simplest cases. Consequently,
a large number of techniques have been proposed over the years to retrieve information about fre-
quency. The most famous method is probably power spectral density estimation. However, this
approach is limited to stationary signals since the temporal information is lost. Time-frequency
approaches were developed to tackle the problem of frequency estimation in non-stationary data.
Although they can estimate the power of a signal in a given time interval and in a given fre-
quency band, these tools have two drawbacks that make them less valuable in certain situations.
First, due to their interdependent time and frequency resolutions, improving the accuracy in one
domain means decreasing it in the other one. Second, it is difficult to use this kind of approach to
estimate the instantaneous frequency of a specific oscillatory component. A solution to these two
limitations is provided by adaptive frequency tracking algorithms. Typically, these algorithms
use a time-varying filter (a band-pass or notch filter in most cases) to extract an oscillation, and
an adaptive mechanism to estimate its instantaneous frequency.

The main objective of the first part of the present thesis is to develop such a scheme for
adaptive frequency tracking, the single frequency tracker. This algorithm compares favorably
with existing methods for frequency tracking in terms of bias, variance and convergence speed.
The most distinguishing feature of this adaptive algorithm is that it maximizes the oscillatory
behavior at its output. Furthermore, due to its specific time-varying band-pass filter, it does not
introduce any distortion in the extracted component. This scheme is also extended to tackle cer-
tain situations, namely the presence of several oscillations in a single signal, the related issue
of harmonic components, and the availability of more than one signal with the oscillation of
interest. The first extension is aimed at tracking several components simultaneously. The basic
idea is to use one tracker to estimate the instantaneous frequency of each oscillation. The second
extension uses the additional information contained in several signals to achieve better overall
performance. Specifically, it computes separately instantaneous frequency estimates for all avai-
lable signals which are then combined with weights minimizing the estimation variance. The
third extension, which is based on an idea similar to the first one and uses the same weighting
procedure as the second one, takes into account the harmonic structure of a signal to improve the
estimation performance. A non-causal iterative method for offline processing is also developed
in order to enhance an initial frequency trajectory by using future information in addition to past
information. Like the single frequency tracker, this method aims at maximizing the oscillatory
behavior at the output. Any approach can be used to obtain the initial trajectory.

In the second part of this dissertation, the schemes for adaptive frequency tracking develo-
ped in the first part are applied to electroencephalographic and electrcardiographic data. In a
first study, the single frequency tracker is used to analyze interactions between neuronal oscilla-
tions in different frequency bands, known as cross-frequency couplings, during a visual evoked
potential experiment with illusory contour stimuli. With this adaptive approach ensuring that
meaningful phase information is extracted, the differences in coupling strength between stimuli
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with and without illusory contours are more clearly highlighted than with traditional methods
based on predefined filter-banks. In addition, the adaptive scheme leads to the detection of dif-
ferences in instantaneous frequency. In a second study, two organization measures are derived
from the harmonic extension. They are based on the power repartition in the frequency domain
for the first one and on the phase relation between harmonic components for the second one.
These measures, computed from the surface electrocardiogram, are shown to help predicting the
outcome of catheter ablation of persistent atrial fibrillation. The proposed adaptive frequency
tracking schemes are also applied to signals recorded in the field of sport sciences in order to
illustrate their potential uses.

To summarize, the present thesis introduces several algorithms for adaptive frequency tra-
cking. These algorithms are presented in full detail and they are then applied to practical situa-
tions. In particular, they are shown to improve the detection of coupling mechanisms in brain
activity and to provide relevant organization measures for atrial fibrillation.

Keywords : instantaneous frequency, adaptive frequency tracking, adaptive filters, electroence-
phalography, cross-frequency couplings, electrocardiography, atrial fibrillation.
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Résumé

L’amplitude et la fréquence sont les deux principaux attributs des signaux unidimensionnels,
et ils sont donc tous deux utilisés pour l’analyse de données dans de nombreux domaines. Alors
que l’amplitude peut être examinée directement, analyser la fréquence requiert des approches
plus élaborées, excepté dans les cas les plus simples. Par conséquent, un grand nombre de tech-
niques ont été proposées au fil des années pour extraire l’information fréquentielle. La méthode
la plus connue est probablement l’estimation de la densité spectrale de puissance. Toutefois,
cette approche est limitée aux signaux stationnaires puisque l’information temporelle est perdue.
L’analyse temps-fréquence a été développée dans le but de résoudre le problème de l’estimation
de fréquence pour des données non-stationnaires. Bien qu’elle permette d’estimer la puissance
d’un signal dans un intervalle de temps donné et dans une gamme de fréquence données, ce type
d’analyse a deux inconvénients qui diminuent son utilité dans certaines situations. Premièrement,
à cause de l’interdépendance entre les résolutions temporelle et fréquentielle, améliorer la pré-
cision dans un domaine revient à la réduire dans l’autre. Deuxièmement, il est difficile d’utiliser
ce type d’approche pour estimer la fréquence instantanée d’une composante oscillatoire spéci-
fique. Une solution à ces deux limitations est apportée par les algorithmes adaptatifs de poursuite
de fréquence. Ces algorithmes utilisent habituellement un filtre variant dans le temps (un filtre
passe-bande ou un filtre coupe-bande) pour extraire une oscillation et un mécanisme adaptatif
pour estimer sa fréquence instantanée.

La première partie de ce travail de thèse a pour objectif principal le développement d’un
tel algorithme adaptatif de suivi de fréquence, le traqueur de fréquence. Les performances en
termes de biais, de variance et de vitesse de convergence de ce dernier peuvent être compa-
rées favorablement avec celles de méthodes existantes. La caractéristique la plus distinctive de
cet algorithme adaptatif est qu’il tend à maximiser le comportement oscillatoire à sa sortie. En
outre, grâce à un filtre spécifique, il n’introduit aucune distorsion dans la composante extraite.
Des extensions pour cette méthode ont aussi été développées dans le but de prendre en compte
certaines situations : la présence de plusieurs oscillations dans un signal, la question des compo-
santes harmoniques, et la disponibilité de plus d’un signal avec la même oscillation. La première
extension vise à suivre plusieurs composantes fréquentielles simultanément. L’idée de base est
d’utiliser un traqueur pour estimer la fréquence de chaque oscillation. La deuxième extension
utilise l’information contenue dans plusieurs signaux pour améliorer ses performances. Plus par-
ticulièrement, elle calcule séparément une estimée de la fréquence pour chaque signal disponible.
Par la suite, ces estimées sont combinées avec des poids adaptatifs qui minimisent la variance. La
troisième et dernière extension prend en compte une éventuelle structure harmonique dans un si-
gnal pour augmenter les performances de suivi. Cette extension est basée sur une idée similaire à
la première et sur les mêmes poids que la deuxième. Une méthode itérative non-causale est aussi
développée dans le but d’améliorer une trajectoire initiale de fréquence en utilisant l’informa-
tion présente dans les échantillons futurs en plus de celle présente dans les échantillons passées.
Comme le traqueur de fréquence, cette méthode cherche à maximiser le comportement oscilla-
toire à sa sortie. En revanche, elle est par définition uniquement applicable lorsque le traitement
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des données est effectué en différé.
Dans la seconde partie de cette dissertation, les algorithmes de poursuite de fréquence déve-

loppés dans la première partie sont appliqués à des données d’électroencéphalogramme et d’élec-
trocardiogramme. Dans la première étude, le traqueur de fréquence est utilisée pour analyser les
interactions ou couplages entre oscillations neuronales dans différentes gammes de fréquence.
Plus précisément, l’évolution temporelle de ces couplages est examinée lors d’une expérience
visuelle de potentiels évoqués avec des stimuli contenant des contours illusoires. Grâce à une
approche adaptative qui garantit une information de phase correcte, les différences en termes de
force de couplage entre stimuli avec et sans contours illusoires sont mises en évidence plus clai-
rement qu’avec des méthodes traditionnelles basées sur des bancs de filtres prédéfinis. De plus,
l’algorithme adaptatif permet de détecter des différences de fréquence dans certaines bandes.
Dans une seconde étude, deux mesures d’organisation sont dérivées de l’extension pour com-
posantes harmoniques. La première est basée sur la répartition de la puissance dans le domaine
fréquentiel et la seconde sur la relation de phase entre harmoniques. Ces mesures, qui sont cal-
culées à partir de l’électrocardiogramme de surface, aident à prédire le résultat d’une procédure
d’ablation de la fibrillation auriculaire persistante. Les méthodes de suivi de fréquence proposées
sont aussi appliquées à des signaux enregistrés dans le domaine du sport dans le but d’illustrer
des utilisations potentielles.

Pour résumer, ce travail de thèse propose plusieurs techniques pour le suivi adaptatif de com-
posantes fréquentielles. Ces technique sont d’abord présentées en détail, puis elles sont appli-
quées à des cas pratiques. En particulier, il est démontré qu’elles améliorent la détection des
mécanismes de couplage dans l’activité du cerveau et qu’elles permettent de définir des mesures
d’organisation pertinentes pour la fibrillation auriculaire.

Mot clés : fréquence instantanée, poursuite adaptative de fréquence, filtres adaptatifs, électroen-
céphalographie, couplages entre bandes de fréquence, électrocardiographie, fibrillation auricu-
laire.
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Introduction 1
1.1 Motivation and Problem Statement

In many applications, most of the information carried in signals is contained in their ampli-
tude and their frequency content. Typically, these characteristics are examined from two com-
plementary viewpoints: the time and frequency domains. These two domains are alternative
perspectives on the power of a signal. The former is particularly suited for investigating its tem-
poral evolution, whereas the latter is mostly relevant when inspecting its repartition among the
frequencies. As both temporal and frequency power distributions are key elements in numer-
ous fields, a large number of techniques have been developed over the years to estimate these
features. The amplitude information can be straightforwardly observed from the considered sig-
nal, and the temporal distribution of power can be easily investigated with simple tools, such
as local estimates of the variance. Naturally, more complex methods have been proposed with
desired properties, such as noise resilience or estimation robustness. On the other hand, except
in very simple cases, the information about frequency is not directly available. Usually, the sig-
nal of interest is first transformed in the frequency domain before carrying out the observation.
The most widely used technique to analyze the frequency content of a signal is power spectral
density (PSD) estimation [1]. Many different approaches have been developed for this purpose
and they can be classified in two categories: non-parametric and parametric methods. The non-
parametric ones do not make any assumption about the considered signal and are applicable to
any data without restrictions. The best known techniques in this category are the periodogram,
the averaged periodogram and the modified periodogram [2, 3]. On the other hand, the paramet-
ric approaches assume that the signal under study has a certain stochastic structure which can
be used to improve the accuracy and robustness of the estimation with respect to non-parametric
methods. It is clear that better estimation performance is only achieved when the assumptions
are verified to a certain extent. Otherwise, parametric approaches may perform worse than the
non-parametric ones. Well-known parametric methods assume, for instance, that the considered
signal can be closely approximated with autoregressive or autoregressive moving average models
[4], or has a line spectrum [5–7].

A very important requirement of all approaches for PSD estimation is that the signal under
study has to be stationary. Even non-parametric techniques are based on this assumption. Indeed,
as the temporal information is lost in a PSD estimate, the statistical properties of the considered
signal should not change over time. Strict stationarity is not necessarily required in most cases.
Indeed, a weaker concept, known as wide-sense stationarity [8], is typically used instead. The
first and second moments of a wide-sense stationary stochastic process do not vary with respect
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2 Introduction

to time. As long as this assumption holds, PSD estimation techniques provide accurate and
reliable assessment of the frequency content of a signal. It is worth mentioning that, for some
methods, the stationary assumption needs only to be valid up to a certain extent. However, for
non-stationary data, the PSD approaches are not sufficient as temporal information is lost. In fact,
different non-stationary signals can have the same PSD. This issue is illustrated in Figure 1.1
for two sinusoids whose instantaneous frequencies vary linearly over time, respectively from
0.2π to 0.4π and 0.4π to 0.2π. Although they are different, their PSDs are identical. This is
confirmed by their PSD estimates, computed with Welch’s method [2], that overlap perfectly.
Furthermore, these estimates give the false idea that there is power in the range from 0.2π to
0.4π for the whole duration of the signals, while there is only a single periodic component with
time-varying frequency. In order to cope with non-stationary data, many different time-frequency
analyses were developed [9–12]. With these techniques, the power at given time and frequency
can be evaluated. The two main approaches to obtain time-frequency representations are local
Fourier transforms and wavelet analyses. The most famous method is probably the short-time
Fourier transform (STFT), wherein the discrete Fourier transform (DFT) of the signal of interest
is computed over sliding windows. Figure 1.2 shows the STFTs of the two sinusoids used to
emphasize the issue with PSD estimation of non-stationary data. Owing to the time-frequency
representations, the temporal evolution of the frequency content of both signals is clearly visible.

Despite solving the temporal information loss problem of PSD estimation, time-frequency
approaches are not the ultimate panacea. They have several drawbacks that can become too
penalizing in certain situations. First, with the exception of the simplest cases such as the one
presented in Figures 1.1 and 1.2, it is difficult to retrieve the instantaneous frequency of an oscil-
latory component from a time-frequency representation. Indeed, such techniques do not provide
this kind of information directly and therefore further processing is required. In the presence of
random noise and interfering oscillations, estimating the instantaneous frequency can be a very
difficult task. Furthermore, if the component corresponding to the estimated frequency is needed,
an additional processing step is required, as no extraction is performed by default. Another limi-
tation is that time-frequency representations are computed block by block. This has an impact on
the temporal accuracy of the estimation, especially during transition periods. A closely related
issue is the question of time and frequency resolutions which is inherent to this kind of analysis.
Indeed, increasing the time resolution decreases the frequency resolution and vice versa. There-
fore, there is a tradeoff between the two resolutions. In addition, although computational power
is not really an issue anymore due to advances in computer technology, the computational load
of time-frequency analyses may become prohibitive in certain applications, such as in embedded
devices or during very large-scale investigations. Collectively, the limitations of PSD estimation
and time-frequency techniques call for efficient schemes to estimate the instantaneous frequency
and extract the underlying oscillatory component.

1.2 Objectives

The present dissertation is aimed at the development of an algorithm for tracking a single
oscillatory component and estimating its instantaneous frequency with several desirable proper-
ties, namely accuracy, reliability, robustness to disturbances, applicability to various fields, and
low complexity. Related objectives are to extend this adaptive scheme to three specific cases
of practical interest: multiple frequency tracking, multivariate frequency tracking and harmonic
frequency tracking. The first extension is capable to handle signals that contain more than one
oscillatory components. The two other extensions improve the overall tracking performance by
taking advantage of additional information provided by several signals or by taking into account
an harmonic structure. Another goal is to develop a non-causal method for enhancing frequency
trajectories. As data analysis is often carried out offline, the frequency estimation performance
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Figure 1.1: Two different non-stationary signals with the same power spectral density (PSD).
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can be improved by using future information in addition to past information. The last two ob-
jectives are to show the relevance of the algorithms developed during this thesis for processing
electroencephalographic (EEG) and electrocardiographic (ECG) data. Specifically, adaptive fre-
quency tracking is applied to highlight cross-frequency coupling mechanisms in EEG signals
recorded during a visual evoked potential experiment and to extract organization measures from
ECG data in order to predict the outcome of stepwise catheter ablation of atrial fibrillation. To
summarize, the main objectives of this dissertation are:
• to develop an efficient scheme for adaptive frequency tracking,
• to extend this scheme in order to track several oscillations simultaneously,
• to improve the overall tracking performance by taking advantage of multivariate data, or

by taking into account the presence of an harmonic structure,
• to enhance frequency trajectories with non-causal processing,
• to apply the developed algorithms to EEG data in order to highlight cross-frequency cou-

pling mechanisms taking place in the brain during visual perception,
• to extract organization measures with adaptive frequency tracking from ECG data for pre-

dicting the outcome of atrial fibrillation ablation.
This work has been realized in the framework of a collaboration between the Applied Signal

Processing Group 1 of the Swiss Federal Institute of Technology and the Departments of Clinical
Neurosciences and Radiology of the Centre Hospitalier Universitaire Vaudois. 2 The ultimate
goal of this thesis is to provide efficient schemes for adaptive frequency tracking that are relevant
for, but restricted to, biomedical data, such as EEG and ECG.

1.3 Organization
This dissertation is divided into two parts. The first part introduces techniques for estimat-

ing the instantaneous frequency, with a particular emphasis on adaptive frequency tracking. In
the second part, applications of these methods to real data, such as EEG and ECG signals, are
presented.

I Frequency estimation. After introducing the concept of instantaneous frequency, a selec-
tion of techniques for its estimation are presented in Chapter 2. In Chapter 3, the single
frequency tracker, an adaptive frequency tracking scheme developed during this thesis, is
detailed and its performance is analyzed thoroughly. This technique is extended to take
into account multiple oscillatory components, multiple signals and harmonic frequencies
in Chapter 4. To conclude this part, an iterative algorithm for non-causal enhancement of
frequency trajectories is developed in Chapter 5.

II Frequency tracking applications. Chapter 6 presents a study in which adaptive frequency
tracking was applied to EEG signals with the purpose of identifying interactions or cou-
plings between neuronal oscillatory components in different frequency bands. In Chap-
ter 7, the harmonic extension of the single frequency tracker is shown to help predicting
the outcome of catheter ablation of atrial fibrillation. At this end of this part, three exam-
ples of applications for the presented frequency tracking schemes are given in Chapter 8.

Finally, Chapter 9 concludes this dissertation by providing a summary of the results achieved
during this thesis as well as possible future research directions. It is also worth to mention that
the notation used throughout this dissertation is given in Appendix A alongside a few relevant
definitions.

1. http://aspg.epfl.ch/
2. http://www.chuv.ch/

http://aspg.epfl.ch/
http://www.chuv.ch/
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1.4 Original Contributions

The main contributions 3 of this work are:

• Development of efficient adaptive schemes for instantaneous frequency estimation.

– The single frequency tracker, an algorithm for tracking a single oscillatory component.

– Extensions of this algorithm for three specific cases:
· Multiple frequency tracking.
· Multivariate frequency tracking.
· Harmonic frequency tracking.

– A non-causal iterative technique for enhancing frequency trajectories.

• Applications to biomedical data.

– The use of the single frequency tracker to highlight cross-frequency couplings between
brain oscillations during a visual evoked potential experiment.

– The use of harmonic frequency tracking to develop organization measures for predicting
the success of catheter ablation in patients with persistent atrial fibrillation.

3. See also the list of publications at the end of the text (p. 187).
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Frequency Estimation





Instantaneous Frequency
Estimation 2

Frequency information is a key aspect in a wide range of fields. The instantaneous frequency,
which is typically defined as the frequency at each time, can shed light on a large number of non-
stationary phenomena. It is therefore useful in many applications such as communications [13,
14], speech processing [15–17] and biomedical signal processing [18, 19]. However, accurately
estimating the instantaneous frequency is not straightforward except in very simple situations,
and thus many different methods have been proposed over the years for this purpose.

The concept of instantaneous frequency is reviewed in Section 2.1. Then, Section 2.2 presents
a selection of methods for instantaneous frequency estimation. An evaluation of their perfor-
mance is provided in Section 2.3. Finally, the strengths and weaknesses of the presented methods
are summarized in Section 2.4.

2.1 The Concept of Instantaneous Frequency
Frequency is defined as the number of oscillations observed during one unit of time. By anal-

ogy with this definition, the instantaneous frequency is the frequency at a given time. However, it
is not applicable to all types of signals. In addition, its interpretation is controversial. A general
introduction to the concept of instantaneous frequency and its interpretation is provided here. For
a more thorough presentation see [20].

Carson and Fry [21] first introduced the concept of instantaneous frequency with complex
frequency-modulated (FM) signals. They defined it as the rate of change of phase angle at a
given time. It is therefore a generalization of the definition of constant frequency. Later, van der
Pol [22] also investigated this concept. He tackled this issue by considering amplitude- and
frequency-modulated sinusoids with the following form:

x(t) = a(t) cos(φ(t)), (2.1)

where a(t) and φ(t) are the time-varying amplitude and phase respectively. Based on this har-
monic expression, he defined the instantaneous frequency as the derivative of the phase with
respect to time:

ωi(t) =
dφ(t)

dt
. (2.2)

2.1.1 Analytic Signal
Further study of instantaneous frequency required a method for extracting the phase from all

types of signals and not only sinusoids. Gabor [23] made it possible by proposing a method for

9



10 Instantaneous Frequency Estimation

uniquely generating a complex signal, known as the analytic signal, from a real one.
The procedure for computing this analytic representation is to first take the Fourier transform

(FT) of the real signal. Then, the amplitudes of negative frequencies are set to zero while the
amplitudes of positive frequencies are multiplied by two. Finally, the modified spectrum is trans-
formed back to the time domain in order to obtain the analytic signal. This whole procedure in
the frequency domain is equivalent to the following time domain approach,

xa(t) = x(t) + jH{x(t)} = x(t) + jxh(t) = a(t)e jφ(t). (2.3)

In this expression xa(t) is the analytic signal, x(t) is the real signal, H{·} denotes the Hilbert
transform (HT). Thus, xh(t) is the Hilbert transformed original signal. Moreover, a(t) and φ(t)
are the instantaneous amplitude and phase. The HT is defined as

xh(t) = H{x(t)} =
1
π

p.v.
∫ ∞

−∞

x(τ)
t − τ

dτ, (2.4)

where p.v. denotes the Cauchy principal value of the integral. Due to the integration interval,
knowledge of x(t) over the whole time domain is required for computing the HT. It is thus non-
local. Nonetheless, the main contribution of the integral (2.4) is made in the neighborhood of
time t.

The HT can also be seen as the convolution of x(t) with the function 1
πt . Therefore, in the

Fourier domain, the HT is expressed as

Xh( f ) = F

{
1
πt

}
· X( f ). (2.5)

Using the following FT pair [24],

1
t

F
←→ − jπ sgn( f ), (2.6)

Xh( f ) can be expressed as

Xh( f ) =


jX( f ) for f < 0,
0 for f = 0,
− jX( f ) for f > 0.

(2.7)

Therefore, the imaginary part of the analytic signal can be seen as the original signal delayed
by a phase of − π2 . Based on this result, the analytic signal of an harmonic oscillation x(t) =

A0 cos(ω0t) is xa(t) = A0 cos(ω0t) + jA0 sin(ω0t). So the HT performs a phase shift of − π2
(respectively π

2 ) for every spectral components with positive (respectively negative) frequencies.

2.1.2 Instantaneous Frequency Definition

Based on the work of Carson and Fry [21], van der Pol [22] and Gabor [23], Ville [25] defined
the instantaneous frequency as the derivative of the instantaneous phase φ(t) of the analytic signal
xa(t) with respect to time:

ωi(t) =
d
dt

arg{xa(t)}. (2.8)

This is the most frequently used definition.
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2.1.3 Interpretation of the Instantaneous Frequency
Despite the extended usage of the concept of instantaneous frequency, its definition as well

as its interpretation are still subject to controversy. For example, the definition (2.8) is not a
unique function of time for Shekel [26]. Indeed, any complex amplitude-modulated (AM) wave
can be written either as a(t)e jω0t or as a0e jφ(t). This means that there exist many different com-
plex representations of a real signal. Moreover, although a unique complex representation of
any real signal can be obtained with the HT (2.4), there is no certainty that the instantaneous
frequency (2.8) corresponds to a physical reality. In fact, the instantaneous amplitude a(t) and
instantaneous phase φ(t) have a clear physical meaning for narrow-band signals only [27]. Fur-
thermore, Mandel [28] argued that there is no one-to-one relationship between the instantaneous
frequency and frequencies obtained with Fourier decomposition, and therefore challenged any
physical interpretation. He used the following signal to illustrate his viewpoint:

x(t) = a1e j(ω0−
1
2ω∆)t + a2e j(ω0+ 1

2ω∆)t = a(t)e jφ(t) (2.9)

with

a(t) =

√
a2

1 + a2
2 + 2a1a2 cos(ω∆t),

φ(t) = ω0t + arctan
 (−a1 + a2) sin( 1

2ω∆t)

(a1 + a2) cos( 1
2ω∆t)

 .
The instantaneous frequency of x(t) is given by

ωi(t) = ω0 +
ω∆

2
−a2

1 + a2
2

a2
1 + a2

2 + 2a1a2 cos(ω∆t)
. (2.10)

An interpretation problem arises in (2.10) if a1 is not equal to a2. In this case there is no sym-
metry in the fluctuations of instantaneous frequency around ω0. Moreover, ωi(t) is always below
ω0 when a1 > a2 and always above when a1 < a2. This problem is illustrated in Figure 2.1. This
missing relationship between the instantaneous frequency and the average frequency computed
from the instantaneous spectrum as well as the resulting lack of physical interpretation have been
highlighted by many authors [29]. In fact, the instantaneous frequency corresponds to the aver-
age frequency at each time only when there is symmetry in the instantaneous spectrum [30]. It
is also important to mention that some authors consider signals with such problematic physi-
cal interpretation as multi-component ones and thus outside of the definition of instantaneous
frequency [20].

2.2 Methods for Instantaneous Frequency Estimation
A large number of methods for estimating the instantaneous frequency have been proposed

over the years. Indeed, various starting points have been considered in order to tackle this esti-
mation problem. In this section, a small selection of methods are presented. First, two instan-
taneous techniques are described: the classical method based on the discrete Hilbert transform
and an algorithm relying on an energy operator. Then, four adaptive schemes using time-varying
band-pass (or notch) filters are introduced. Finally, a technique based on linear prediction is
presented.

2.2.1 Discrete Hilbert Transform
The instantaneous frequency of a signal can be obtained through its analytic representation

as presented in Section 2.1 in the continuous-time case. This approach is also applicable to
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Figure 2.1: Example of problematic physical interpretation of the instantaneous frequency for
signal (2.9) with ω0 = 0.4π and ω∆ = 0.1π for the three cases a1 = a2 (blue), a1 > a2 (red) and
a1 < a2 (green). The two Fourier components of the signal are denoted by the dashed black lines.

discrete-time signals. In this case, the analytic signal is defined as

xa[n] = x[n] + jxh[n] = a[n]e jφ[n], (2.11)

where xh[n] is the discrete Hilbert transform (DHT) of x[n]. As for the continuous case, the DHT
is computed by convolving a signal with the Hilbert filter [31]: xh[h] = h[n] ∗ x[n]. However, the
discrete-time filter is defined slightly different from its continuous-time counterpart (2.4). This
infinite impulse response (IIR) filter is given by

h[n] =

0 for n even,
2
πn for n odd.

(2.12)

The DHT is square summable for square summable signals [32]. In practical situations, the
Hilbert filter (2.12) is approximated with a finite impulse response (FIR). The DHT can also be
computed in the frequency domain [33]. In this case, the convolution becomes a multiplication:

Xh(e jω) = DTFT {xh[n]} = DTFT {h[n] ∗ x[n]} = H(e jω) · X(e jω), (2.13)

where the discrete-time Fourier transform (DTFT) of the Hilbert filter (2.12) is defined as

H(e jω) =


j for −π < ω < 0,
0 for ω = 0,
− j for 0 < ω < π.

(2.14)

Therefore, the DHT is obtained simply by shifting the phases of positive frequency components
by − π2 and the ones of negative frequency components by π

2 .
Since the DTFT is not applicable in practice, the discrete Fourier transform (DFT) is used
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instead. In this case, the frequency response of the Hilbert filter of length N is given by

H[k] =


0 for k = 0,
− j for 1 ≤ k ≤ N

2 − 1,
0 for k = N

2 ,
j for N

2 + 1 ≤ k ≤ N − 1,

when N is even, (2.15a)

and

H[k] =


0 for k = 0,
− j for 1 ≤ k ≤ N−1

2 ,
j for N+1

2 ≤ k ≤ N − 1,
when N is odd. (2.15b)

The problem is that the sampling in the frequency domain introduced by the transition from
the DTFT to the DFT leads to some distorion. Indeed, the DFT only gives an approximation of
the true impulse response of the Hilbert filter (2.12). The agreement between the true filter and
its DFT approximation depends on the signal length as illustrated in Figure 2.2. Nevertheless,
the amount of distorsion is negligible when a sufficient number of samples are available, and
difficulties should occur only for signals with very short lengths. It is also important to note that
typical implementations for computing the analytic signal from the DFT skip the DHT. Instead,
Xa[k] is computed directly from the DFT of a real signal of length N [34]:

Xa[k] =


X[0] for k = 0,
2X[k] for 1 ≤ k ≤ N

2 − 1,
X[N/2] for k = N

2 ,
0 for N

2 + 1 ≤ k ≤ N − 1,

when N is even, (2.16a)

and

Xa[k] =


X[0] for k = 0,
2X[k] for 1 ≤ k ≤ N−1

2 ,
0 for N+1

2 ≤ k ≤ N − 1,
when N is odd. (2.16b)

Once the analytic signal has been computed, the instantaneous phase is easily extracted by
taking its argument,

φ[n] = arg{xa[n]}. (2.17)

Then, the instantaneous frequency is obtained by differentiating the phase. The finite differences
methods are a very simple yet efficient approach for performing the discrete-time differentiation.
In particular, forward, backward and central finite differences can be used for computing the
instantaneous frequency:

ω f [n] = φ[n + 1] − φ[n], (2.18a)
ωb[n] = φ[n] − φ[n − 1], (2.18b)

ωc[n] =
φ[n + 1] − φ[n − 1]

2
. (2.18c)

More complex methods with desirable properties (e.g. noise resilience) are also available to per-
form the differentiation operation [35]. It is also worth to mention that, in addition to the in-
stantaneous phase, the HT also provides the envelope of the original signal as its instantaneous
amplitude.
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Figure 2.2: Distorsion between the impulse response of the Hilbert filter (2.12) and its DFT
approximation for various lengths. Only the positive odd samples are shown because the even
samples are equal to zero and the impulse response is antisymmetric.

2.2.2 Energy Operators
In his work on nonlinear speech modeling, Teager [36–38] developed a simple yet effective

operator Ψ for tracking the energy present in a speech signal. It is based on the observation
that speech signals should be analyzed from the point of view of the energy required to generate
them. This energy operator is defined as

Ψc{x(t)} = ẋ2(t) − x(t)ẍ(t) (2.19)

with ẋ(t) = dx(t)/dt and ẍ(t) = d2x(t)/dt2 for continuous-time data, and as

Ψd{x[n]} = x2[n] − x[n + 1]x[n − 1] (2.20)

for discrete-time data. Kaiser [39], who introduced both continuous- and discrete-time forms
systematically, showed that this operator can track the energy of a linear oscillator.

Furthermore, under certain conditions, the energy operator Ψ can be used to extract the in-
stantaneous amplitude and frequency from amplitude- and frequency-modulated (AM-FM) sig-
nals [40]. In continuous time, an AM-FM signal is defined as

x(t) = A(t) cos(φ(t)) = A(t) cos
(
ωct + ωm

∫ t

0
q(τ) dτ + θ

)
, (2.21)

where A(t) is the amplitude, ωc is the carrier frequency, ωm is the maximum deviation from ωc,
q(t) is the modulating (or information) signal, and θ = φ(0) is an arbitrary phase offset. These
variables are subject to the following constraints:

− 1 ≤ q(t) ≤ 1, ∀ t and 0 < ωm < ωc. (2.22)

The instantaneous frequency is computed as follows,

ωi(t) =
dφ(t)

dt
= ωc + ωmq(t). (2.23)
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Applying the continuous form of the operator to x(t) (2.21) yields the squared product of the
instantaneous amplitude and frequency:

Ψc{x(t)} ≈ (A(t)ωi(t))2 . (2.24)

Similarly, an AM-FM signal in discrete time is given by

x[n] = A[n] cos(φ[n]) = A[n] cos
(
ωcn + ωm

∫ k

0
q[k] dk + θ

)
, (2.25)

and its intantaneous frequency is

ωi[n] =
dφ[n]

dn
= ωc + ωmq[n]. (2.26)

All parameters are defined in the same way as for the continuous case. Also, in the two previous
equations, both the integration

∫
dk and differentiation d/dn treat the discrete-time indices k and

n symbolically as continuous variables. Applying the discrete form of the operator as before
yields a slighlty different result for a discrete-time AM-FM signal:

Ψd{x[n]} ≈ A2[n] sin2(ωi[n]). (2.27)

Therefore, based on the results in continuous and discrete time, the energy operator Ψ can
only extract the amplitude and frequency as a product, but it cannot separate them. A solution
to this problem was proposed by Maragos et al. [41]. In continuous time, the idea is to use, in
addition to the signal, its time derivative. Thus, the instantaneous frequency and amplitude are
obtained as

ωi(t) ≈

√
Ψc{ẋ(t)}
Ψc{x(t)}

(2.28)

and

|A(t)| ≈
Ψc{x(t)}
√

Ψc{ẋ(t)}
. (2.29)

This method is called the continuous energy separation algorithm. In discrete time, this approach
translates into using the difference signal, which is defined as

y[n] = x[n] − x[n − 1]. (2.30)

The instantaneous frequency and amplitude are then extracted as follows,

ωi[n] ≈ arccos
(
1 −

Ψd{y[n]} + Ψd{y[n + 1]}
4Ψd{x[n]}

)
(2.31)

and

|A(n)| ≈

√√
Ψd{x[n]}

1 −
(
1 − Ψd{y[n]}+Ψd{y[n+1]}

4Ψd{x[n]}

)2 . (2.32)

This technique is known as the discrete energy separation algorithm.
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2.2.3 Adaptive Line Enhancer
The majority of adaptive frequency tracking filters, also known as adaptive line enhancers,

have a similar structure composed of two main parts: a time-varying band-pass filter and an
adaptive mechanism. This structure is illustrated in Figure 2.3. The purpose of the filter, which
is replaced by a time-varying notch filter in some algorithms, is to extract or enhance (hence
the term ‘adaptive line enhancer’) the periodic component in the input signal. On the other
hand, the adaptive mechanism estimates the instantaneous frequency on the basis of the output
signal and, in turn, updates the filter through an adaptive parameter. This parameter typically
reflects the current frequency estimate through some mathematical operations. As numerous
applications require reliable estimates of the instantaneous frequency, many different adaptive
frequency tracking filters (or adaptive line enhancers) have been proposed over the years [42–
48]. In these algorithms, the periodic component is typically extracted with either FIR [43, 44] or
IIR [45–48] filters. The well-known FIR filters are inherently stable and easy to adapt. However,
they can be very long as many coefficients are required to reach a sufficiently narrow bandwidth.
By contrast, narrow IIR filters can have an order as small as two (or even one for complex-valued
signals). Also, some of these filters can be adapted efficiently through only one parameter, as
long as the poles are constrained inside the unit circle in order to ensure stability. The adaptive
mechanism that updates the current frequency estimate is usually designed to minimize the mean
squared error between input and output signals.

To illustrate this class of algorithms for instantaneous frequency estimation, the adaptive line
enhancer proposed by Hush et al. [49] is presented in more detail. The input signal is defined as

x[n] = s[n] + v[n] = A0 sin(ω0n + φ0) + v[n], (2.33)

where A0, ω0 and φ0 are respectively the amplitude, frequency and phase of the sinusoid, and
v[n] is an additive white noise. In practice, the amplitude and frequency can change over time.
Nonetheless, as the presented algorithm is adaptive, it is capable to adjust to these changes. The
periodic component is extracted with a time-varying band-pass filter whose transfer function is
given by

H(z; n) =

1−r2

1+r2α[n]z−1 − (1 − r2)z−2

1 − α[n]z−1 + r2z−1 , (2.34)

where r (0 � r < 1) determines the radius of the poles and thus the bandwidth, and α[n]
(−2r < α[n] < 2r) is the adaptive parameter at time n. It is linked to the current frequency
estimate ω[n], which is also the central frequency of the filter (2.34), through the following
relation:

ω[n] = arccos
(
α[n]

1 + r2

)
. (2.35)

adaptive
mechanism

adaptive parameter
α[n]

time-varying
band-pass filter

input signal
x[n]

output signal
y[n]

Figure 2.3: Classical structure of adaptive frequency tracking filters. In some techniques, the
time-varying band-pass filter is replaced by a notch filter.



2.2 Methods for Instantaneous Frequency Estimation 17

0

0.5

1

m
ag

n
it

u
d

e 
re

sp
o

n
se

 

 

0 0.1 0.2 0.3 0.4 0.5

−2

0

2

frequency x 2π

p
h

as
e 

re
sp

o
n

se

r = 0.9

r = 0.95

r = 0.98

Figure 2.4: Frequency response of the band-pass filter (2.34) of the adaptive line enhancer for
three values of r with the central frequency set to ω[n] = 0.4π. The vertical lines denote the
corresponding minimum and maximum possible central frequencies ωmin and ωmax (2.36).

This filter has unit gain and zero phase at ω[n] and therefore the extracted component is not
distorted. And, due to the constraints on α[n], the minimum and maximum possible central
frequencies are

ωmin = arccos
(

2r
1 + r2

)
and ωmax = arccos

(
−2r

1 + r2

)
. (2.36)

The magnitude and phase responses of the band-pass filter (2.34) are plotted in Figure 2.4 for
three values of r.

Based on the filter transfer function, the output signal is

y[n] = α[n]y[n − 1] − r2y[n − 2] +
1 − r2

1 + r2α[n]x[n − 1] − (1 − r2)x[n − 2]. (2.37)

And the error between input and output signals is defined as

e[n] = x[n] − y[n]. (2.38)

As y[n] is obtained by band-pass filtering x[n], the squared error is small when the filter is cen-
tered on the oscillatory component in x[n]. Therefore, the goal is to minimize this quantity
to estimate the instantaneous frequency. Minimizing e2[n] with a normalized gradient descent
method [50] leads to the following update for the adaptive parameter:

α[n + 1] = α[n] + µ
e[n]ψ[n]

Ψ[n]
, (2.39)

with µ (µ > 0) the step-size,

ψ[n] =
∂y[n]
∂α[n]

(2.40)

and
Ψ[n] = νΨ[n − 1] + (1 − ν)ψ2[n]. (2.41)
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The parameter ν (0 � ν < 1) is a forgetting factor used for computing Ψ[n], an estimate of the
variance of ψ[n]. This normalization ensures that the update is scale-independent, and thus that
the adapive mechanism is robust with respect to changes in the input power. The derivative of
the output signal with respect to the adaptive parameter is given by

ψ[n] = α[n]ψ[n − 1] − r2ψ[n − 2] +
1 − r2

1 + r2 x[n − 1] + y[n − 1]. (2.42)

However, the performance of the algorithm is enhanced by suppressing the recursive part in the
previous equation. Therefore, the expression for ψ[n] becomes

ψ[n] =
1 − r2

1 + r2 x[n − 1] + y[n − 1], (2.43)

which leads to a modified gradient that has a higher probability of pointing in the correct direction
than the original one.

2.2.4 Oscillator-based Adaptive Band-pass Filter
The frequency tracking scheme presented in this section is also based on an adaptive band-

pass filter. It was proposed by Liao [51], based on an earlier adaptive lattice notch filter [52]. The
cost function of this algorithm is its main specificity. Indeed, it is designed to track the frequency
by maximizing the oscillatory behavior of the signal under study instead of optimizing the power
at the ouput or the difference between input and output, as done in most algorithms. Similarly
to the previous technique, this scheme is composed of two parts: a time-varying band-pass filter
for extracting the periodic component and an adaptive mechanism for controlling the filter. The
structure is shown in Figure 2.3.

The input signal of the algorithm is defined in (2.33). The ouput signal, y[n], is obtained by
filtering the input signal with a time-varying band-pass filter whose transfer function is given by

H(z; n) =
1 − β

2
1 − z−2

1 − α[n](1 + β)z−1 + βz−2 , (2.44)

where β (0 � β < 1) determines the bandwidth and α[n] is the adaptive parameter that controls
the central frequency. This parameter is linked to the filter central frequency ω[n], which is also
the frequency estimate at time n, through α[n] = cos(ω[n]). The filter has zero phase and unit
gain at ω[n]. The influence of β on the frequency response is shown in Figure 2.5 for a central
frequency set to ω[n] = 0.4π.

The mechanism updates the filter by minimizing a cost function derived from the real discrete
oscillator equation,

s[n] = 2 cos(ω0)s[n − 1] − s[n − 2]
= 2α0s[n − 1] − s[n − 2]. (2.45)

This equation is verified for any sinusoid of the form s[n] = A0 sin(ω0n + φ0). From (2.45), the
frequency of a pure sinusoid can be recovered with as few as three samples:

ω0 = arccos(α0), α0 =
s[n] + s[n − 2]

s[n − 1]
. (2.46)

The cost function of the algorithm follows from this observation except that it takes into account
interfering noise. It is defined using the filtered output signal y[n]:

J = E
{(

y[n] − 2α[n + 1]y[n − 1] + y[n − 2]
)2
}
. (2.47)
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Figure 2.5: Frequency response of the oscillator-based adaptive band-pass filter (2.44) for three
values of β with the central frequency set to ω[n] = 0.4π.

Setting the derivative of this cost function with respect to α[n + 1] to zero, the optimal value of
the adaptive parameter is given by

α[n + 1] =
E

{
y[n − 1]

(
y[n] + y[n − 2]

)}
2 E

{
y2[n − 1]

} . (2.48)

However, this expression is not computable in practice and therefore the expectations are re-
placed by exponentially weighted averages. The adaptive parameter α[n + 1] is updated as fol-
lows,

α[n + 1] =
Q[n]
2P[n]

(2.49)

with

Q[n] = δQ[n − 1] + (1 − δ)y[n − 1](y[n] + y[n − 2]), (2.50a)

P[n] = δP[n − 1] + (1 − δ)y2[n − 1], (2.50b)

where δ (0 � δ < 1) is a forgetting factor that controls the convergence rate. Finally, the estimate
of the instantaneous frequency is computed as

ω[n + 1] = arccos(α[n + 1]). (2.51)

2.2.5 Generalized Adaptive Notch Filter
The generalized adaptive notch filter is an algorithm designed to track quasi-periodically

varying complex-valued systems [53, 54]. Such systems are, in some sense, a generalization
of the problem of tracking the instantaneous frequency of a single oscillation. Consequently,
this technique can also be applied to the estimation of the frequency of a cisoid. In this case, it
becomes an ‘ordinary’ adaptive notch filter. And, although this scheme was developped in the
complex signal framework, it can still be applied to the analytic representation of a real signal
obtained with the DHT, or even directly to the real signal in question.
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The input signal for this method is defined as

x[n] = A[n]e j
∑n

m=1 ϕ[m] + v[n], n = 1, 2, . . . , (2.52)

where the complex amplitude A[n] and frequency ϕ[n] are assumed to vary slowly with time, and
v[n] is a complex circular noise with variance σ2, i.e.,

E{Re{v[n]}2} = E{Im{v[n]}2} = σ2/2 and E{Re{v[n]} Im{v[m]}} = 0 ∀ n,m. (2.53)

The instantaneous frequency estimate ω[n] and the filtered output signal y[n] are computed with
the following adaptive procedure:

ε[n] = x[n] − e jω[n]y[n − 1], (2.54a)

y[n] = e jω[n]y[n − 1] + (1 − λ)ε[n], (2.54b)

g[n] = Im
{
ε̄[n]e jω[n]y[n − 1]

}
, (2.54c)

ω[n + 1] = ω[n] − ηg[n], (2.54d)

where λ is a forgetting factor (0 � λ < 1), η is a step-size coefficient (η > 0) set close to zero
in practice, and the upper bar denotes complex conjugation. It is worth mentioning that inserting
(2.54a) into (2.54b) leads to

y[n] = λe jω[n]y[n − 1] + (1 − λ)x[n].

Therefore, the output signal y[n] is obtained by filtering the input signal x[n] with a time-varying
band-pass filter whose transfer function is given by

H(z; n) =
1 − λ

1 − λe jω[n]z−1 . (2.55)

Consequently, this algorithm can be considered as an adaptive line enhancer with the structure
shown in Figure 2.3. Also, this adaptive notch filter achieves the posterior Cramér-Rao bound
[55] for a single noisy cisoid with frequency varying according to the random walk model under
specific assumptions, namely the amplitude is constant (A[n] = A0), v[n] is a zero-mean complex
circular Gaussian white noise, and frequency increments (w[n] = ϕ[n] − ϕ[n − 1]) follow a
zero-mean Gaussian distribution and are independent from v[n]. In this case, this technique is a
statistically efficient procedure for tracking the instantaneous frequency.

This adaptive scheme is in fact a special case of the algorithm presented in [53] which can
track K periodic components simultaneously. For multi-frequency signals, the updating proce-
dure takes the following form:

ε[n] = x[n] − 1T
KΩ[n]y[n], (2.56a)

P[n] =
1
λ

Ω̄[n]
P[n − 1] −

P[n − 1]Ω[n]1K1T
KΩ̄[n]P[n − 1]

λ + 1T
KΩ̄[n]P[n − 1]Ω[n]1K

 Ω[n], (2.56b)

y[n] = Ω[n]y[n − 1] + ε[n]P̄[n]1K , (2.56c)

gk[n] = Im
{
ε̄[n]e jωk[n]yk[n − 1]

}
, k = 1, . . . ,K, (2.56d)

ωk[n + 1] = ωk[n] − ηgk[n], k = 1, . . . ,K, (2.56e)

with 1K =
[
1, . . . , 1︸  ︷︷  ︸

K

]T, Ω[n] = diag
{
e jω1[n], . . . , e jωK [n]}, and y[n] =

[
y1[n], . . . , yK[n]

]T. The

number of components K must be known.
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2.2.6 Complex Adaptive Notch Filter
Another method for frequency tracking based on adaptive filters was proposed by Regalia

[56]. This algorithm is based on a complex notch filter, and thus is meant to estimate the in-
stantaneous frequency of noisy cisoids. However, as for the previous adaptive scheme, it is still
applicable to a real signal or to its analytic representation. Similarly to the adaptive line enhancer,
the structure of this method is composed of two parts (Figure 2.3): a time-varying filter and an
adaptive mechanism.

The input signal is considered to be a cisoid embedded in noise:

x[n] = A0e jω0n + v[n], (2.57)

where A0 and ω0 are the complex amplitude and frequency of the cisoid, and v[n] is a complex
circular Gaussian noise process with variance

σ2 = E
{
|v[n]|2

}
= E

{
Re{v[n]}2

}
+ E

{
Im{v[n]}2

}
. (2.58)

The adaptive method is based on a first-order all-pass filter with the following transfer function,

C(z) =
e jθz−1 − β

1 − βe jθz−1 , (2.59)

where β (0 � β < 1) is the pole radius and θ is the pole angle. From this transfer function, two
filters are derived, a notch filter and a band-pass filter:

G(z) =
1
2

(1 −C(z)) =
1 + β

2
·

1 − e jθz−1

1 − βe jθz−1 , (2.60a)

H(z) =
1
2

(1 + C(z)) =
1 − β

2
·

1 + e jθz−1

1 − βe jθz−1 . (2.60b)

In these transfer functions, θ determines the central frequency. The magnitude and phase re-
sponses of both notch and band-pass filters (2.60) are shown in Figure 2.6 for β = 0.95 and
θ = 0.4π. Moreover, the filters satisfy the two relations,

G(e jω) + H(e jω) = 1 and |G(e jω)|2 + |H(e jω)|2 = 1, (2.61)

for all ω [57].
In order to track the instantaneous frequency in the input signal x[n], the central frequency

of the filters θ is given by the frequency estimate ω[n] at time n. Therefore, using a state-space
description, the output of the notch y[n] is obtained as follows,

u[n + 1] = βe jω[n]u[n] +

√
1 − β2e jω[n]x[n], (2.62)

y[n] = −

√
1 − β2

2
u[n] +

1 + β

2
x[n]. (2.63)

The corresponding oscillatory component can be extracted with the band-pass filter H(z) (2.60b).
The current estimate of the instantaneous frequency is updated with the following adaptation
procedure,

ω[n + 1] = ω[n] + µ Im {y[n]ū[n]} , (2.64)

where µ is the adaptation step-size. A conservative bound for µ that ensures monotonic conver-
gence in the mean is defined as follows,

0 < µ <
1
|A0|

2

(
1 − β
1 + β

)3/2

. (2.65)
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Figure 2.6: Frequency responses of the notch and band-pass filters (2.60) with pole radius and
central frequency set to β = 0.95 and θ = 0.4π respectively.

2.2.7 Robust Modified Newton Algorithm

Unlike the four adaptive schemes presented previously, the algorithm presented in this sec-
tion is not based on a time-varying filter. Instead, it relies on linear prediction for estimating the
instantaneous frequency of several periodic components simultaneously. The interest of linear
prediction for frequency estimation was already exploited by the classical Pisarenko’s method
[5] as well as the MUSIC [6] and ESPRIT [7] algorithms. However, as these techniques are
based on eigenvalue decomposition, their computational load is heavy and they become ineffi-
cient in non-stationary environments. A recursive version of Pisarenko’s method was proposed
[58] but, despite its computational efficiency, it cannot handle multi-frequency estimation. On the
other hand, highly accurate linear prediction algorithms for multiple frequency components were
developped [59]. Yet, they are difficult to apply to non-stationary data due to their high compu-
tational complexity. By contrast, the robust modified Newton algorithm for adaptive frequency
estimation [60] still achieves good estimation performance while offering reduced computational
complexity.

The input signal for this algorithm is composed of K sinusoids embedded in white noise:

x[n] = s[n] + v[n] =

K∑
k=1

Ak sin(ωkn + φk) + v[n], (2.66)

where Ak, ωk and φk are the amplitude, frequency and phase of the kth sinusoid, and v[n] is
an additive white noise. Assuming that K is known, the goal is to estimate the frequencies ωk

from y[n]. For this purpose, one can use the fact that s[n] can be perfectly predicted with an
autoregressive (AR) model of order 2K [61]:

s[n] = −

2K∑
k=1

ak s[n − k], (2.67)

where ak are the linear prediction coefficients. The frequencies are then equal to the phases of
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the roots of the 2K-order polynomial

f (z) =

2K∑
k=0

akzk (2.68)

with a0 = 1 and ak = a2K−k. Or, in other words,

2K∑
k=0

akzk = 0 (2.69)

for z = exp(± jωk), k = 1, 2, . . . ,K. Based on the AR model (2.67), an error signal is defined as

e[n] =

K−1∑
k=0

bk(x[n − k] + x[n − 2K + k]) + bK x[n − K], (2.70)

where bk are the estimates of the coefficients ak. Unbiased estimates can be computed by mini-
mizing the following cost function [59]:

J1 =
bTRb
bTΣb

, (2.71)

with Σ = diag
{
2, . . . , 2, 1

}
, b =

[
b0, . . . , bK

]T, x[n] =
[
x[n] + x[n − 2K], x[n − 1] + x[n − 2K +

1], . . . , x[n − K + 1] + x[n − K − 1], x[n − K]
]T, and R = E

{
x[n]xT[n]

}
. The optimal coefficient

vector is given by the eigenvector corresponding to the smallest eigenvalue in the corresponding
generalized eigenvalue problem:

Rb = λΣb. (2.72)

As it is difficult to use directly the cost function (2.71), an alternative cost function, defined as

J2 =
1
2

(
bTRb − log

(
bTΣb

))
, (2.73)

is considered instead. In fact, it can be proven that it is equivalent to minimize either of the two
cost functions (2.71) and (2.73) [60].

Now, a modified Newton algorithm is derived to update the coefficient vector b[k] using the
gradient g(b) and Hessian matrix H(b) of J2:

b[k] = b[k − 1] − H−1(b)g(b)
∣∣∣
b=b[k−1] (2.74)

with

g(b) = Rb −
(
bTΣb

)−1
Σb, (2.75)

H(b) = R −
Σ

bTΣb
−

2ΣbbTΣ

(bTΣb)2
. (2.76)

In order to simplify the computation, the second term of the expression for the Hessian matrix is
dropped, and H(b) is approximated as

H(b) ≈ R −
2ΣbbTΣ

(bTΣb)2
. (2.77)

Applying the matrix inversion lemma [62] to this approximation yields

H−1(b) = R−1 −
2R−1ΣbbTΣR−1

(bTΣb)2 + 2bTΣR−1Σb
. (2.78)
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A modified Newton algorithm is obtained by inserting the previous expression for the inverse of
the Hessian matrix into the update for the coefficient vector (2.74):

b[k] =
3R−1Σb(bTΣb)

(bTΣb)2 + 2bTΣR−1Σb

∣∣∣∣∣∣
b=b[k−1]

. (2.79)

It can be shown that, although an approximate expression for the Hessian matrix (2.77) was used,
this update still converges to the true coefficients [60]. However, it is not applicable in practice
due to the expectation in the expression for R. Thus, R is replaced by an exponentially weighted
sample correlation matrix defined by

R[n] = µR[n − 1] + x[n]xT[n], (2.80)

where µ (0 � µ < 1) is a forgetting factor. Furthermore, as the inverse of R[n] is used in the
update, it makes more sense to compute directly R−1[n]. Therefore, letting Q[n] = R−1[n], the
robust modified Newton algorithm for frequency estimation is

Q[n] =
1
µ

(
Q[n − 1] −

Q[n − 1]x[n]xT[n]Q[n − 1]
µ + xT[n]Q[n − 1]x[n]

)
, (2.81)

h[n − 1] =
Σb[n − 1]

bT[n − 1]Σb[n − 1]
, (2.82)

b[n] =
3Q[n]h[n − 1]

1 + 2hT[n − 1]Q[n]h[n − 1]
. (2.83)

The simplest initialization for this algorithm is to set b[0] =
[
1, 0, . . . , 0

]
and Q[n] = ξI, with I

the identity matrix and ξ > 0. As this technique does not band-pass filter the input signal, it can
be suscpetible to noise in low SNR scenarios. It can also be mentioned that the robust modified
Newton algorithm is closely related to the classical recursive least squares technique [8].

2.3 Performance Comparison
The techniques presented in the previous sections are compared in terms of frequency estima-

tion performance. However, due to their differences, it is difficult to analyze all these algorithms
on a fair basis. Indeed, depending on the considered test signal, the method achieving the best
performance might change when different parameters are selected. Furthermore, the very concept
of performance is rather vague as it can refer to estimation bias, estimation variance or conver-
gence speed. For instance, in a given application the bias could be extremely important, whereas
in another one the convergence speed would be the main strength of the selected algorithm.
With these considerations in mind, the frequency estimation techniques were separated into two
groups, the instantaneous ones and the adaptive ones, in order to compare them as fairly as possi-
ble. The first group contained the discrete Hilbert transform with phase central finite differences
(DHT, Section 2.2.1) and the discrete energy separation algorithm (DESA, Section 2.2.2). On the
other hand, the second group was composed of the adaptive line enhancer (ALE, Section 2.2.3),
the oscillator-based adaptive band-pass filter (OSC, Section 2.2.4), the generalized adaptive notch
filter (GANF, Section 2.2.5), the complex adaptive notch filter (CANF, Section 2.2.6) and the ro-
bust modified Newton algorithm for frequency estimation (RMNA, Section 2.2.7). Both groups
were analyzed with Monte Carlo simulations and simple input signals.

For the first group, the input signal was a sinusoid at constant frequency 0.4π with a phase
offset uniformly distributed between 0 and 2π embedded in white Gaussian noise. The DHT
and DESA were applied in order to estimate the instantaneous frequency. The bias and variance
of the estimates provided by the two methods were computed for SNR values ranging from 10
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Figure 2.7: Frequency estimation bias (a) and variance (b) of the DHT and DESA for a sinusoid
at 0.4π embedded in white Gaussian noise.

to 30 dB in 1 dB steps. Lower SNR values were not considered as both the DHT and DESA
performed extremely poorly below 10 dB; they even failed to converge in some cases. The bias
and variance were computed over the central 1000 samples of 2000 iterations in order to avoid
any border effect. The two statistics averaged over 10,000 runs are plotted in Figure 2.7. The
numerical simulations show that the DHT provided an unbiased frequency estimate, while the
DESA estimate was clearly biased. Nevertheless, with the exception of SNR values below 15 dB,
this bias remained limited. By contrast, the DESA achieved lower estimation variance than the
DHT for all SNRs. To summarize, both techniques have advantages and disadvantages, and
ultimately the choice should depend on the features of the signal under study.

The input signal considered for the second group was slightly different from the one for the
first group. Indeed, it was also a sinusoid with a uniformly distributed phase embedded in white
Gaussian noise, except that its instantaneous frequency changed abruptly from 0.2π to 0.4π. The
SNR was set to 10 dB. The parameters of the ALE, OSC, GANF, CANF and RMNA were care-
fully selected in order to compare them as fairly as possible. First, the pole radius was set to 0.95
for the four adaptive schemes based on time-varying band-pass filters (ALE, OSC, GANF and
CANF). Figure 2.8 shows that the filters have indeed very similar frequency responses, partic-
ularly around the central frequency 0.4π, once their bandwidth parameters are set accordingly.
Then, the various parameters controlling the convergence rate were selected such that, once the
five adaptive algorithms converged after the frequency shift, their frequency estimation variances
were approximately equal. The complete set of parameters for all the adaptive techniques is
summarized in Table 2.1. It is important to note that the GANF and CANF were applied to
the analytic representation of the input signal obtained through the DHT. The two instantaneous
methods, the DHT and DESA, were also applied in order to relate the two groups. However, the
algorithms from the first group did not achieve estimation variances similar to the ones from the
second group. In fact, their variances were much higher. Finally, the instantaneous frequency es-
timates provided by all the considered algorithms were averaged over 10,000 runs. The resulting
frequency trajectories are plotted in Figure 2.9. The corresponding biases, variances and mean
squared errors (MSEs) were computed over 1000 samples, 2500 iterations after the change in
frequency. These statistics, averaged over 10,000 runs, are reported in Table 2.2. The results of
the Monte Carlo simulations for assessing the convergence speed clearly show that both the DHT
and DESA estimated very precisely the abrupt change from 0.2π to 0.4π. However, their estima-
tion variances were much higher than for the other techniques. Furthermore, the DESA estimate
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Figure 2.8: Frequency responses of time-varying filters from ALE, OSC, GANF and CANF with
pole radius and central frequency set to 0.95 and 0.4π respectively.

Algorithm Parameters

ALE r = 0.95, µ = 0.006268, ν = 0.95
OSC β = 0.9025, δ = 0.9328
GANF λ = 0.95, η = 0.003335
CANF β = 0.95, µ = 0.00053
RMNA K = 1, µ = 0.995

Table 2.1: Selected parameters for the performance comparison of the adaptive algorithms for
instantaneous frequency estimation.

was clearly biased. In particular, the bias was very important before the frequency change. By
contrast, all adaptive algorithms required some time to adjust. As expected, they achieved almost
the same level of frequency estimation variance, and their absolute biases remained very small,
nearly negligible. However, the differences in terms of convergence speed were rather important.
As a rough measure of convergence speed, an algorithm was declared to have converged when
its averaged frequency trajectory remained in the interval 0.4π± 0.001. The ALE and OSC were
the first to converge after 190 and 232 samples respectively. Then came the GANF with 1243
samples, the RMNA with 1306 samples, and the CANF with 1316 samples. It should be noted
that the RMNA approached the true frequency much more quickly than the GANF and CANF.
In fact, with the interval 0.4π ± 0.005, the following number of samples were required for con-
vergence: 135 for the ALE, 168 for the OSC, 988 for the RMNA, 1229 for the GANF and 1271
for the CANF.

To compare convergence speeds, the GANF and CANF were applied to the analytic repre-
sentation of the input signal. However, as mentioned in their repective description, they can also
be applied directly to real data. It is not clear when these adaptive algorithms perform better in
terms of convergence speed: when applied to the original real signal or to its analytic represen-
tation? The same procedure as before was used to answer this question, except that the GANF
and CANF were applied to both the real input signal and its analytic representation computed
with the DHT. Likewise, the pole radius of the time-varying filters was set to 0.95 (λ = 0.95
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Algorithm Bias Variance MSE

DHT −2.83 · 10−6 2.65 · 10−2 2.65 · 10−2

DESA 1.24 · 10−2 1.81 · 10−2 1.83 · 10−2

ALE 5.53 · 10−5 1.13 · 10−5 1.13 · 10−5

OSC 7.10 · 10−5 1.13 · 10−5 1.13 · 10−5

GANF 2.55 · 10−5 1.13 · 10−5 1.13 · 10−5

CANF 2.54 · 10−5 1.13 · 10−5 1.13 · 10−5

RMNA −1.94 · 10−5 1.13 · 10−5 1.13 · 10−5

Table 2.2: Biases, variances and mean squared errors (MSEs) of the algorithms for instantaneous
frequency estimation.

for GANF and β = 0.95 for CANF), and the parameters controlling the convergence rate were
set such that the two algorithms had approximately equal estimation variances. Therefore, the
parameters were set as follows: η = 0.005 (GANF) and µ = 0.0007815 (CANF) for the analytic
representation, and η = 0.01853 (GANF) and µ = 0.002921 (CANF) for the real signal. The
frequency trajectories averaged over 10,000 Monte Carlo simulations are shown in Figure 2.10.
Both adaptive algorithms converged approximately 250 samples faster when applied to the ana-
lytic representation than when applied to the real signal. Furthermore, the frequency estimation
bias was about 16 times larger in absolute value for the real signal. In conclusion, the GANF and
CANF should be applied to the analytic representation of a real signal, whenever possible.

2.4 Summary
The strengths and weaknesses of the algorithms presented in Section 2.2 are now quickly

discussed. General aspects are tackled first, and then more specific features are highlighted. It
should be mentioned first that none of the presented methods requires a priori knowlegde of the
considered signal. The adaptive schemes can benefit from a well-chosen initial frequency esti-
mate, but they will eventually converge from any starting point. The instantaneous techniques,
the DHT and DESA, have several features in common. Obviously, they react instantaneously to
any changes in frequency, and thus they are well-suited for signals with abrupt frequency shifts.
However, this reactivity comes at the cost of a very low robustness to noise. Indeed, even for
relatively high SNRs the frequency estimation variance is quite important for these two methods,
as illustrated with Monte Carlo simulations in Section 2.3. The bias of the DESA can also be-
come a problem in some situations. Furthermore, when the input signal contains more than one
periodic component, the DHT and DESA both fail completely and yield an irrelevant instanta-
neous frequency estimate (see Figure 2.1). Also, the DHT and DESA do not extract the perodic
component corresponding to the estimated frequency, but instead they provide an estimate of the
instantaneous amplitude (or envelope).

Similarly to the instantaneous methods, the adaptive algorithms share several features. First,
they all require some time to adjust to changes in frequency, but they are not identical in terms of
convergence speed. The ALE and OSC converge quickly, while the GANF, CANF and RMNA
are slower. Nevertheless, they should all provide reliable estimates when applied to signals with
slow frequency variations. By contrast, the two fastest schemes have slightly higher estima-
tion biases. However, the bias for the five adaptive algorithms can be considered negligible in
most cases, as it has almost no effect on the MSE (see Table 2.2). An important aspect of the
techniques based on time-varying filters is that the periodic component corresponding to the fre-
quency estimate is directly extracted, and thus it is readily available for further processing. On
the other hand, the RMNA is based on linear prediction, not on adaptive filters, and does not
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provide such a band-pass filtered output signal. This lack of filtering is the main cause of its sus-
ceptibility to broad-band noise compared to the other adaptive algorithms. Indeed, in the ALE,
OSC, GANF and CANF, the adaptation is performed based on the signal at the output of the
time-varying band-pass (or notch) filter. Consequently, a large part of the noise is discarded if
the filter is sufficiently narrow. Input signals containing multiple periodic components should not
be a problem for the adaptive algorithms. Indeed, the GANF can be generalized in order to take
into account multiple periodic components, and the RMNA can estimate several instantaneous
frequencies at the same time, as long as the number of oscillations is known. The ALE, OSC and
CANF should fail gracefully; in the presence of several components, they will just track one of
them (typically the most powerful one).

A final point to discuss is whether the presented techniques are applicable in real time. In fact,
all the presented techniques, except the DHT, can provide an online estimate of the instantaneous
frequency under certain conditions. First of all, as the DHT is typically computed with the DFT,
it cannot yield a real-time frequency estimate. Nevertheless, the DHT can also be approximated
with an FIR filter, and thus provide an estimate with a slight delay. This delay depends on the
length of the filter, which in turn determines the accuracy of the DHT approximation. Regarding
the DESA, it is not real-time per se as the frequency estimate at time n depends on the signal at
time n + 2. However, in most situations, this 2-sample delay should not cause any problem. It is
also important to note that, although the GANF and CANF perform better when applied to the
analytic representation of a real signal, they can still provide a slightly degraded frequency esti-
mate in real time. The main features of all the presented algorithms are summarized in Table 2.3.
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Single Frequency Tracker 3
This chapter presents the single frequency tracker (SFT), an adaptive frequency tracking al-

gorithm that was developed during this thesis. A short introduction is first given in Section 3.1.
Then, the algorithm is described in detail in Section 3.2. Its performance is thoroughly ana-
lyzed in Section 3.3, and its tracking capabilities are illustrated with examples in Section 3.4.
The SFT is also compared to other existing methods for instantaneous frequency estimation in
Section 3.5. Finally, its strengths and weaknesses are discussed in Section 3.6. This frequency
tracking technique was the subject of two publications [63, 64].

3.1 Introduction
The adaptive frequency tracking algorithm presented in this chapter is a generalization to the

complex-valued signal framework of a real-valued scheme proposed by Liao [51]. The original
scheme is described in Section 2.2.4. The basic idea of maximizing the oscillatory behavior at the
output instead of the power is preserved but adapted to the complex discrete oscillator equation.
Moreover, switching to complex-valued signals simplifies several aspects of the computations.
For instance, filters are shorter with this approach. It is clear that in practice most signals are real-
valued. But, with the discrete Hilbert transform (DHT), one obtains the analytic representation
[34], whose real part is the original signal itself. Therefore, reverting back to real-valued signals
is always possible.

3.2 Algorithm
Similarly to the original scheme, the SFT is composed of two complementary parts: a time-

varying band-pass filter for extracting the oscillatory component, and an adaptive mechanism
that controls the filter. The complete structure is summarized in Figure 3.1.

The input signal is defined as follows,

x[n] = c[n] + v[n] = A0e jω0n + v[n], (3.1)

where A0 and ω0 are the complex amplitude and frequency of the cisoid, and v[n] is an additive
centered complex noise. The output signal, y[n], is obtained by filtering the input signal with a
time-varying band-pass filter with the following transfer function:

G(z; n) =
1 − β

1 − βe jω[n]z−1 , (3.2)

31
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Figure 3.1: Structure of the SFT.
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Figure 3.2: Response of the band-pass filter (3.2) for three values of β with the central frequency
set to ω[n] = 0.4π.

where β and ω[n] are the modulus and argument of the pole. In other words, β (0 � β < 1)
determines the bandwidth and ω[n], which is the estimate of the instantaneous frequency at time
n, controls the central frequency. The frequency response of the filter is shown in Figure 3.2 for
three values of β when the central frequency is set to ω[n] = 0.4π. This filter has zero phase
and unit gain at ω[n] ensuring that the extracted oscillatory component is not distorted. Its 3-dB
bandwidth is given by the following expression,

∆ω3 dB = 2 arccos
(

1 + β2

2β

(
1 − 103/10

)
+ 103/10

)
. (3.3)

The adaptive mechanism is based on a cost function derived from the complex discrete oscil-
lator equation which is defined as

c[n] = e jω0 c[n − 1]. (3.4)

This equation is verified by any cisoid of the form c[n] = A0e jω0n. Moreover, the frequency of
such a noiseless cisoid can be estimated with only two samples using the following relation,

ω0 = arg
{
c[n]c̄[n − 1]

}
, (3.5)
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where the upper bar denotes the complex conjugate. In a noisy environment, this simple approach
is not directly applicable. Therefore, a cost function derived from (3.4) is used instead. It is
defined for the output of the band-pass filter (3.2),

J = E
{∣∣∣y[n] − e jω[n+1]y[n − 1]

∣∣∣2} . (3.6)

In order to minimize this cost function, it is differentiated with respect to ω[n + 1],

∂J
∂ω[n + 1]

= E
{
je− jω[n+1]y[n]ȳ[n − 1] − je jω[n+1]ȳ[n]y[n − 1]

}
= je− jω[n+1] E {y[n]ȳ[n − 1]} − je jω[n+1] E {ȳ[n]y[n − 1]}

= 2 Re
{
je− jω[n+1] E {y[n]ȳ[n − 1]}

}
= −2 Im

{
e− jω[n+1] E {y[n]ȳ[n − 1]}

}
.

(3.7)

Setting this derivative to zero yields the optimal value for ω[n + 1]:

ω[n + 1] = arg
{

E
{
y[n]ȳ[n − 1]

}}
. (3.8)

However, this expression is not applicable in practice. Thus, the expectation is replaced by an
exponentially weighted average [65], and the adaptive mechanism becomes

Q[n] = δQ[n − 1] + (1 − δ)y[n]ȳ[n − 1], (3.9)
ω[n + 1] = arg{Q[n]}, (3.10)

where Q[n] is an internal variable and δ (0 � δ < 1) is a forgetting factor that determines the
convergence rate.

3.3 Performance Analysis
Three aspects of the performance of the SFT are analyzed now. First of all, the behavior of the

cost function (3.6) is studied in detail in Section 3.3.1. Then, the frequency estimation bias and
variance of the adaptive scheme are investigated in depth in Sections 3.3.2 and 3.3.3. Whenever
possible, theoretical results are compared to numerical simulations. It should be noted that only
the final results are presented here. Nonetheless, the performance of the SFT is analyized in
detail in Appendix B where all derivations can be found.

All the performance analyses are carried out for a generic cisoid embedded in noise since the
SFT is based on this specific input signal. This generic noisy cisoid is defined as

y[n] = A0e jω0n + v[n], (3.11)

where A0 is the complex amplitude, ω0 is the frequency, and v[n] is an additive wide-sense
stationary zero-mean noise process [8]. The other statistical properties of the noise, such as its
autocorrelation Rvv[k] = E{v[n]v̄[n − k]}, are not defined yet in order to remain as general as
possible. Indeed, the cost function, the bias and the variance are studied first for the generic
noisy cisoid, and then the results are refined with the features of four specific input signals. The
first of the considered signals is a simple cisoid with additive white noise. The band-pass filter
(3.2) is not applied in this case in order to investigate the behavior of the adaptive mechanism
only. Then, the second considered signal is the analytic representation, computed with the DHT,
of a real noisy sinusoid. Indeed, real data are much more common in practical situations. In
addition, like for the first signal, no filtering is performed. The last two input signals are the
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same as the first two except that they are band-pass filtered before the instantaneous frequency
is estimated. Also, since in some part of the analyses the central frequency is fixed, the transfer
function of the band-pass filter is rewritten here in a slightly modified form:

G(e jω) =
1 − β

1 − βe jωc e− jω , (3.12)

where ωc is the central frequency. To summarize, the four considered input signals and their
respective noise autocorrelation are defined as follows.
Noisy cisoid A cisoid embedded in additive zero-mean complex white noise:

y1[n] = A0e jω0n + v1[n], (3.13)

where the noise variance is σ2. Furthermore, the real and imaginary parts of the noise are
assumed to be independent and to have equal variances. The noise autocorrelation is

Rv1v1 [k] = σ2δ[k], (3.14)

with σ2 the variance and δ[k] the Kronecker delta (A.5).
Noisy sinusoid The analytic representation of a sinusoid embedded in additive zero-mean real

white noise:
y2[n] = A0e jω0n + v2[n], (3.15)

where v2[n] is the analytic representation of a real white noise process with variance σ2.
The autocorrelation of this representation is given by

Rv2v2 [k] = 2σ2(δ[k] + jh[k]
)
, (3.16)

with h[k] the Hilbert filter (2.12).
Filtered noisy cisoid A cisoid embedded in additive zero-mean complex white noise filtered

with the band-pass filter (3.12):

y3[n] =
1 − β

1 − βe− j(ω0−ωc) A0e jω0n + v3[n], (3.17)

with v3[n] = g[n] ∗ v1[n] and g[n] the impulse response of (3.12). The notation ∗ in the
previous expression denotes the convolution. In this case, the autocorrelation of the noise
is defined as

Rv3v3 [k] = σ2 1 − β
1 + β

β|k|e jωck. (3.18)

Filtered noisy sinusoid The analytic representation of a sinusoid embedded in additive zero-
mean real white noise filtered with the band-pass filter (3.12):

y4[n] =
1 − β

1 − βe− j(ω0−ωc) A0e jω0n + v4[n], (3.19)

with v4[n] = g[n] ∗ v2[n]. The autocorrelation of the filtered analytic representation of the
real white noise is

Rv4v4 [k] = 2σ2 1 − β
1 + β

e jωck
(
β|k| −

j
π

(
βk ln

(
1 + βe jωc

1 − βe jωc

)
− β−k ln

(
1 + βe− jωc

1 − βe− jωc

))
+

2 j
π

b[k]
)
,

(3.20)
with

b[k] =


0 for k = −1, 0, 1,

βk ∑bk/2c−1
l=0

(β−1e− jωc )2l+1

2l+1 − β−k ∑bk/2c−1
l=0

(βe− jωc )2l+1

2l+1 for k > 1,
b̄[−k] for k < −1.



3.3 Performance Analysis 35

Parameter Default Range

SNR 10 dB from 0 to 20 dB in 1 dB steps
ω0 0.4π from 0.04π to 0.96π in 0.04π steps
ωc ω[n] from 0.04π to 0.96π in 0.04π steps
β 0.95 from 0.5 to 0.95 in 0.05 steps
δ 0.95 from 0.5 to 0.95 in 0.05 steps

Table 3.1: Default values and ranges for the parameters used in the performance analysis of the
SFT.

Therefore, the four considered input signals are indeed special cases of the generic noisy cisoid
(3.11). Furthermore, the additive noise is white only for the first signal. In the other ones, the
DHT and the band-pass filter (3.12) introduce long-term correlations in the noise processes.

As both the bias and variance were investigated with Monte Carlo simulations, the analysis
procedure is briefly presented. Two different versions of the SFT were applied: a simplified
scheme without the adaptive band-pass filter for the first two signals, and the complete algorithm
for the last two. Furthermore, two distinct types of input signals were generated. For the noisy
cisoid and filtered noisy cisoid cases, the inputs were cisoids with a uniformly distributed random
phase offset embedded in complex circular Gaussian white noise [66]. On the other hand, for
the noisy sinusoid and filtered noisy sinusoid cases, sinusoids with uniformly distributed phase
and additive real Gaussian white noise were used. The bias and variance were computed over
the last 1000 samples of 2000 iterations and averaged over 10,000 runs. These two quantities
were analyzed with respect to several parameters: the SNR, the cisoid or sinusoid frequency
ω0, the central frequency ωc of the filter (3.12), the bandwidth parameter β, and the forgetting
factor δ. The numerical simulations were performed by varying one of the parameters in a given
range while the other ones were fixed to their default value. These default values and ranges are
summarized in Table 3.1. The central frequency ωc can be considered as a special case since its
default value is the current frequency estimate ω[n]. This means that the central frequency of the
band-pass was adjusted to the current estimate at all time, as described in the adaptive algorithm.
By contrast, when ωc was varied across the possible frequencies, the frequency estimation was
performed with a slightly modified SFT wherein the adaptation of the filter was blocked. Thus,
although the estimate was still updated, the central frequency was kept fixed. It should also be
mentioned that the amplitude A0 of the cisoids and sinusoids was set to one in all cases.

3.3.1 Cost Function Analysis
A detailed analysis of the cost function (3.6) of the SFT is required in order to properly

understand the behavior of the algorithm in different situations. In particular, it is important to
detect if it is biased under certain conditions. The oscillator-based cost function, repeated here
for convenience, is defined as

J(ω) = E
{∣∣∣y[n] − e jωy[n − 1]

∣∣∣2} . (3.21)

This expression is first derived for the generic cisoid by inserting (3.11) into (3.21), which be-
comes

J(ω) = 4|A0|
2 sin2

(
ω − ω0

2

)
+ 2

(
Rvv[0] − Re

{
e− jωRvv[1]

})
. (3.22)

where Rvv[k] = E{v[n]v̄[n − k]} is the noise autocorrelation, as defined previously. The bias only
depends on the second term, and therefore on the noise, as the first term is minimized for ω = ω0.
It is now easy to analyze the cost function for the four considered input signals since it suffices
to insert the corresponding noise autocorrelation into (3.22).
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Noisy cisoid

With Rv1v1 [k] (3.14), the cost function (3.22) becomes

J(ω) = 4|A0|
2 sin2

(
ω − ω0

2

)
+ 2σ2. (3.23)

Therefore, minimizing this expression yields an unbiased frequency estimate, as illustrated in
Figure 3.3 for different noise variances.

Noisy sinusoid

Plugging the autocorrelation Rv2v2 [k] (3.16) into (3.22) leads to

J(ω) = 4|A0|
2 sin2

(
ω − ω0

2

)
+ 4σ2

(
1 −

2
π

sin(ω)
)
. (3.24)

For this input signal, the cost function is biased towardsω = 0.5π as the second term is minimized
for this frequency. Figure 3.4 shows the bias in this case for different noise levels. In fact,
the DHT, which introduces long-term correlations in the analytic representation of the noise, is
causing the bias.

Filtered noisy cisoid

Inserting Rv3v3 [k] in (3.22) yields the following cost function:

J(ω) =
(1 − β)2

1 − 2β cos(ω0 − ωc) + β2 · 4|A0|
2 sin2

(
ω − ω0

2

)
+ 2σ2 1 − β

1 + β

(
1 − β cos(ω − ωc)

)
. (3.25)

As such, minimizing this expression with respect to ω leads to an estimate biased towards the
central frequency ωc of the band-pass filter for this input signal. Nevertheless, when the central
and cisoid frequencies coincide (ωc = ω0), the cost function reduces to

J(ω) = 4|A0|
2 sin2

(
ω − ω0

2

)
+ 2σ2 1 − β

1 + β

(
1 − β cos(ω − ω0)

)
, (3.26)

and the resulting frequency estimate is unbiased. The effects of the noise variance and central
frequency are shown in Figure 3.5. Accordingly, when the cisoid and central frequency are in
close agreement, the bias is very limited. It even vanishes when they match. It should also be
noted that this case corresponds to the complete SFT with band-pass filtering compared to the
two previous input signals. Consequently, as long as the frequency estimate provided by the SFT
is close to the true cisoid frequency, the bias should remain negligible.

Filtered noisy sinusoid

Similar to the first three input signals, replacing Rvv[k] in (3.22) by Rv4v4 [k] (3.20) leads to

J(ω) =
(1 − β)2

1 − 2β cos(ω0 − ωc) + β2 · 4|A0|
2 sin2

(
ω − ω0

2

)
+ 4σ2 1 − β

1 + β
·

(
1 − β cos(ω − ωc) +

j
π

ln
(

1 − β2 − 2 jβ sin(ωc)
1 − β2 + 2 jβ sin(ωc)

)
+ Im

{
e− j(ω−ωc)

πβ

(
ln

(
1 + βe− jωc

1 − βe− jωc

)
− β2 ln

(
1 + βe jωc

1 − βe jωc

))} )
.

(3.27)
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Figure 3.3: Oscillator-based cost function for a noisy cisoid. The cost function is plotted for four
different noise variances. The amplitude and frequency are set to A0 = 1 and ω0 = 0.2π. The
vertical dashed line denotes the true frequency of the cisoid.

Figure 3.4: Oscillator-based cost function for the analytic representation of a noisy sinusoid. The
cost function is plotted for four different noise variances. The amplitude and frequency are set to
A0 = 1 and ω0 = 0.2π. The vertical dashed line denotes the true frequency of the sinusoid.
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A biased frequency estimate is obtained when minimizing this cost function. Indeed, the bias is
caused by two separate factors in this case: the DHT and the band-pass filter (3.12). Nonethe-
less, the part of the bias due to the filtering operation is eliminated when the cisoid and central
frequencies are identical, and the expression for the cost function simplifies into

J(ω) = 4|A0|
2 sin2

(
ω − ω0

2

)
+ 4σ2 1 − β

1 + β
·

(
1 − β cos(ω − ω0) +

j
π

ln
(

1 − β2 − 2 jβ sin(ω0)
1 − β2 + 2 jβ sin(ω0)

)
+ Im

{
e− j(ω−ω0)

πβ

(
ln

(
1 + βe− jω0

1 − βe− jω0

)
− β2 ln

(
1 + βe jω0

1 − βe jω0

))} )
.

(3.28)

The general cost function for the input signal (3.27) is plotted for different combinations of noise
variances and central frequencies in Figure 3.6. To summarize, when the central frequency of
the filter matches the cisoid frequency and the bandwidth is sufficiently narrow, the bias caused
by the DHT becomes negligible.

3.3.2 Bias Analysis
As discussed in the analysis of the cost function (3.22), the SFT is biased under certain

conditions. In particular, the estimation bias is not equal to zero whenever the DHT is used to
compute the analytic representation of a real signal or the band-pass filter (3.12) is misaligned
with respect to the frequency of the periodic component under study. However, the relations
between the bias magnitude, the signal features and the parameters of the SFT still need to be
investigated in more detail. Therefore, a theoretical value is derived for the bias, which is then
refined for the four considered input signals. In fact, only an approximation is calculated since the
adaptive mechanism of the SFT computes the instantaneous frequency by taking the argument of
the autocorrelation of the signal y[n] at lag one, Ryy[1], estimated with an exponentially weighted
average Q[n] (3.9),

ω[n + 1] = arg{Q[n]}. (3.10)

Thus, the first step to derive the approximate bias is to compute the expected value of Q[n],
Q̃ = E{Q[n]}, for the generic noisy cisoid (3.11):

Q̃ = |A0|
2e jω0 + Rvv[1]. (3.29)

Based on this expression, the approximate expected value of ω[n] is defined as

ω̃ = arg{Q̃} = arg
{
|A0|

2e jω0 + Rvv[1]
}
, (3.30)

and the approximate bias is given by

Bias{ω̃} = arg
{
|A0|

2e jω0 + Rvv[1]
}
− ω0, (3.31)

where ω0 is the true frequency. Therefore, if Rvv[1] is zero or its phase is equal to ω0, the
frequency estimate provided by the SFT is unbiased. This theoretical expression is compared to
Monte Carlo simulations for the four input signals. In these simulations, the parameters of the
signals and the SFT are varied according to Table 3.1.

Noisy cisoid

Analogously to the cost function analysis, the noise autocorrelation Rv1v1 [1] (3.14) for this
input signal is inserted into the generic expression of the bias (3.31):

Bias{ω̃} = arg
{
|A0|

2e jω0
}
− ω0 = 0. (3.32)
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Figure 3.5: Oscillator-based cost function for a filtered noisy cisoid. The cost function is plotted
for four combinations of noise variances and central frequencies. The amplitude and frequency
are set to A0 = 1 and ω0 = 0.2π, and the bandwidth parameter of the filter (3.12) is set to
β = 0.95. The vertical dashed line denotes the true frequency of the cisoid.

Figure 3.6: Oscillator-based cost function for the filtered analytic representation of a noisy sinu-
soid. The cost function is plotted for four combinations of noise variances and central frequen-
cies. The amplitude and frequency are set to A0 = 1 and ω0 = 0.2π, and the bandwidth parameter
of the filter (3.12) is set to β = 0.95. The vertical dashed line denotes the true frequency of the
sinusoid.
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Thus, the frequency estimate of the simplified SFT is unbiased, which is confirmed with numer-
ical simulations for various SNRs in Figure 3.7.

Noisy sinusoid

With Rv2v2 [1] = j4σ2/π, the expression for the bias (3.31) becomes

Bias{ω̃} = arg
{
|A0|

2e jω0 + j
4σ2

π

}
− ω0. (3.33)

This theoretical value is in close agreement with the outcomes of the Monte Carlo simulations.
Figure 3.8 shows this comparison for multiple SNR values and sinusoids frequencies. In par-
ticular, the frequency estimate is biased towards 0.5π (Figure 3.8b) as pointed out by the cost
function analysis for this input signal. The DHT is responsible for the non-zero bias since the
analytic representation of a real white noise is no longer white. Globally, the bias absolute value
depended on both the SNR and the sinusoid frequency.

Filtered noisy cisoid

The autocorrelation Rv3v3 [k] is plugged into (3.31). This results in the following expression
for the bias:

Bias{ω̃} = arg
{

(1 − β)2

1 − 2β cos(ω0 − ωc) + β2 · |A0|
2e jω0 + σ2 1 − β

1 + β
βe jωc

}
− ω0. (3.34)

Therefore, the SFT yields an unbiased estimate when the central frequency of the band-pass filter
(3.12) is equal to the cisoid frequency: ωc = ω0. The behavior of the bias is investigated with
respect to the SNR and to the central frequency in Figure 3.9 for this input signal. The theoretical
value matches closely the Monte Carlo simulations results in both graphs. The key point of this
analysis is that, whenever the central frequency is close to the cisoid frequency, the bias of the
SFT becomes negligible.

Filtered noisy sinusoid

Similarly to the previous cases, the autocorrelation Rvv[k] in the bias expression (3.31) is
replaced with Rv4v4 [k] (3.20). Thus, the expected value of Q[n] becomes

Q̃ =
(1 − β)2

1 − 2β cos(ω0 − ωc) + β2 · |A0|
2e jω0

+ 2σ2 1 − β
1 + β

(
βe jωc +

je jωc

πβ

(
ln

(
1 + βe− jωc

1 − βe− jωc

)
− β2 ln

(
1 + βe jωc

1 − βe jωc

)))
,

(3.35)

and the estimation bias for this input signal is given by

Bias{ω̃} = arg{Q̃} − ω0. (3.36)

This theoretical value is compared to the bias obtained with numerical simulations as before.
More precisely, the influences of the SNR, the sinusoid frequency, the central frequency and the
bandwidth parameter are investigated on both theoretical and practical biases. All results are
illustrated in Figure 3.10 and, with the exception of the special case ω0 = ωc = 0.5π, the SFT is
biased. The bias is caused by mismatches between central and sinusoid frequencies and by the
fact that the analytic representation of a real white noise is not white. Nevertheless, as long as the
band-pass filter is sufficiently narrow and centered on the sinusoid frequency, the bias of the SFT
for this input signal remains limited and can even be considered negligible in most situations.
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Figure 3.7: Bias of the SFT for a noisy cisoid with respect to the SNR (A0 = 1, ω0 = 0.4π,
δ = 0.95).
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Figure 3.8: Bias of the SFT for the analytic representation of a noisy sinusoid (A0 = 1, ω0 = 0.4π,
SNR = 10 dB, δ = 0.95) with respect (a) to the SNR, and (b) to the sinusoid frequency ω0.
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Figure 3.9: Bias of the SFT for a filtered noisy cisoid (A0 = 1, ω0 = 0.4π, SNR = 10 dB,
β = 0.95, δ = 0.95) with respect (a) to the SNR, and (b) to the central frequency ωc.
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Figure 3.10: Bias of the SFT for the filtered analytic representation of a noisy sinusoid (A0 = 1,
ω0 = 0.4π, SNR = 10 dB, β = 0.95, δ = 0.95) with respect (a) to the SNR, (b) to the sinusoid
frequency ω0, (c) to the central frequency ωc, and (d) to the bandwidth parameter β.
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3.3.3 Variance Analysis

In the same way as in the bias analysis, the effects of the signal features and SFT parameters
on the frequency estimation variance are examined for the four considered inputs. However, the
theoretical calculations quickly become intractable because of the argument in the update for
the frequency estimate ω[n] (3.10). Notwithstanding these difficulties, it is still possible to use
Monte Carlo simulations in order to analyze the variance of the SFT. The following sections
present the outcomes of these simulations for the values of the parameters given in Table 3.1. It
should be noted that a theoretical expression for the variance of Q[n] is still derived for the noisy
cisoid, noisy sinusoid and filtered noisy cisoid cases in Section B.4.

Noisy cisoid

The results of the numerical simulations for the noisy cisoid case are shown in Figure 3.11
for various SNRs and forgetting factor δ. As expected, high SNR values lead to low frequency
estimation variance. The variance is also reduced for forgetting factors close to one.

Noisy sinusoid

Like for the previous input signal, the estimation variance is investigated with respect to the
SNR and to the forgetting factor. In addition to these parameters, the sinusoid frequency is also
considered as it influences the bias. Figure 3.12 illustrates the outcomes of the Monte Carlo
procedure. First, the same remarks about the SNR and δ as for the noisy cisoid apply. Indeed,
low noise variances and forgetting factors close to one reduce the estimation variance. On the
other hand, the effect of the sinusoid frequency is very limited, but a small decrease in variance
around the frequency 0.5π is reminiscent of the results obtained for the bias with the same input
signal.

Filtered noisy cisoid

For this input signal, the variance of ω[n] is analyzed by varying the SNR, the forgetting
factor, and the central frequency and bandwidth parameter of the band-pass filter (3.12). All
the results of the numerical simulations are shown in Figure 3.13. The SNR and δ have the
same effects as for the two previous cases. The central frequency plays also an important role
as the estimation variance increases with its distance from the cisoid frequency. Still, as long as
the filter is approximately aligned with the tracked periodic component, the variance increase is
almost unnoticeable. At last, the bandwidth parameter β has an influence very similar to that of
the forgetting factor. Indeed, values close to one decrease the variance. This is intuitive as the
closer β is to one, the narrower the band-pass filter is, thus a greater part of the noise is discarded.

Filtered noisy sinusoid

The estimation variance for the filtered noisy sinusoid is examined with respect to the same
parameters as for the previous case. However, the effect of the sinusoid frequency ω0 is also
investigated with Monte Carlo simulations. All results are shown in Figure 3.14. Overall, the
same comments as for the noisy sinusoid and filtered noisy cisoid can be reiterated in this case.
Namely, high SNRs, forgetting factors close to one and narrow bandwidths lead to a low esti-
mation variance. Furthermore, it also decreases when the central frequency of the filter (3.12) is
in close agreement with the sinusoid frequency. In contrast with the noisy sinusoid case, ω0 has
almost no effect on the variance.
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Figure 3.11: Variance of the SFT for a noisy cisoid (A0 = 1, ω0 = 0.4π, SNR = 10 dB, δ = 0.95)
with respect (a) to the SNR, and (b) to the forgetting factor δ.
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Figure 3.12: Variance of the SFT for the analytic representation of a noisy sinusoid (A0 = 1,
ω0 = 0.4π, SNR = 10 dB, δ = 0.95) with respect (a) to the SNR, (b) to the forgetting factor δ,
and (c) to the sinusoid frequency ω0.
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Figure 3.13: Variance of the SFT for a filtered noisy cisoid (A0 = 1, ω0 = 0.4π, SNR = 10 dB,
β = 0.95, δ = 0.95) with respect (a) to the SNR, (b) to the forgetting factor δ, (c) to the central
frequency ωc, and (d) to the bandwidth parameter β.
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Figure 3.14: Variance of the SFT for the filtered analytic representation of a noisy sinusoid
(A0 = 1, ω0 = 0.4π, SNR = 10 dB, β = 0.95, δ = 0.95) with respect (a) to the SNR, (b) to the
forgetting factor δ, (c) to the sinusoid frequency ω0, (d) to the central frequency ωc, and (e) to
the bandwidth parameter β.
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3.4 Frequency Tracking Examples

The behavior of the SFT is now illustrated with three examples. In the first one, the input
signal is a cisoid embedded in complex circular Gaussian white noise (SNR = 5 dB). The cisoid
frequency changes abruptly from 0.2π to 0.4π after 200 samples. The bandwidth parameter of the
SFT is set to β = 0.95. Figure 3.15 shows the instantaneous frequency estimate provided by the
SFT for three values of the forgetting factor (δ = 0.9, 0.95, 0.97). In addition, the real part of the
input signal is plotted in Figure 3.16 alongside the real parts of the oscillations extracted by the
SFT for these three forgetting factors. The influence of δ is clearly visible with this example. A
low value of this parameter leads to fast tracking, but at the cost of increased estimation variance.
On the contrary, when it is close to one the tracking is slower and the estimation is more accurate.

The second example illustrates the tracking performance of the SFT for a linear chirp. The
input signal is thus a cisoid whose frequency changes linearly from 0.2π to 0.6π in 500 samples
with additive complex circular Gaussian white noise. The following parameters are selected for
this example: SNR = 5 dB, β = 0.95, δ = 0.95. The instantaneous frequency estimated by the
SFT is shown in Figure 3.17 with the true value.

In the last example, the differences in tracking capabilities of the SFT are tested when it is
applied to a complex signal and to the analytic representation of a real signal. This aspect of the
SFT is investigated with a frequency-modulated (FM) oscillation embedded in noise. Thus, the
input signal is a cisoid whose frequency oscillated between 0.3π and 0.5π with additive complex
circular Gaussian white noise for the complex case, and it was the analytic representation of a
noisy FM sinusoid for the real case. The following parameters are selected for both cases, SNR
= 5 dB, β = 0.95, δ = 0.95. The instantaneous frequencies estimated by the SFT are plotted in
Figure 3.18 for the two cases, and they are almost indistinguishable. However, the tracking seems
to be a little bit slower for the analytic representation of a real signal, but it is barely noticeable.

3.5 Comparisons with Existing Tracking Algorithms

As the performance of the SFT was discussed at length in Section 3.3, it is now compared
to other existing frequency tracking algorithms with Monte Carlo simulations. More precisely,
the SFT is confronted in terms of convergence speed to a selection of the techniques presented in
Section 2.2: the adaptive line enhancer (ALE, Section 2.2.3), the oscillator-based adaptive band-
pass filter (OSC, Section 2.2.4), the generalized adaptive notch filter (GANF, Section 2.2.5),
and the complex adaptive notch filter (CANF, Section 2.2.6). Although the frequency estimates
computed with the DHT (Section 2.2.1) and the discrete energy separation algorithm (DESA,
Section 2.2.3) react instantaneously to frequency changes, their extreme susceptibility to noise
requires too many constraints to obtain fair comparisons. Furthermore, the robust modified New-
ton algorithm for frequency estimation (RMNA, Section 2.2.7) is also left outside of these com-
parisons since it lacks a filtering operation for reducing the noise. And overall, it makes more
sense to compare the SFT to similar techniques based on adaptive filters. Nevertheless, it is still
possible to relate the DHT, DESA, RMNA and SFT by paralleling the following results with the
ones presented in Section 2.3. The various frequency tracking algorithms were compared with
two sets of signals: periodic components with an abrupt frequency change and oscillations whose
instantaneous frequency evolves according to a random walk model. Both sets were investigated
within the real- and complex-valued frameworks as three of the considered methods (SFT, GANF
and CANF) are designed to process complex-valued data while the other two (ALE and OSC)
require real-valued inputs. Therefore, when working with real-valued data, the SFT, GANF and
CANF were applied to the analytic representations of the input signals. On the other hand, the
ALE and OSC used the real parts of complex-valued signals.

The signals in the first set were defined as sinusoids or cisoids with an abrupt frequency
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Figure 3.15: Instantaneous frequency estimated by the SFT for a noisy cisoid with an abrupt
frequency shift (SNR = 5 dB, β = 0.95). The estimate is shown for three values of the forgetting
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Figure 3.17: Instantaneous frequency estimated by the SFT for a linear chirp from 0.2π to 0.3π
embedded in complex Gaussian white noise (SNR = 5 dB, β = 0.95, δ = 0.95). The gray line
denotes the true frequency.
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Algorithm Parameters for real-valued signals Parameters for complex-valued signals

SFT β = 0.95, δ = 0.95 β = 0.95, δ = 0.95
ALE r = 0.95, µ = 0.004685, ν = 0.95 r = 0.95, µ = 0.003323, ν = 0.95
OSC β = 0.9025, δ = 0.9495 β = 0.9025, δ = 0.9641
GANF λ = 0.95, η = 0.00249 λ = 0.95, η = 0.002495
CANF β = 0.95, µ = 0.000399 β = 0.95, µ = 0.0004

Table 3.2: Selected parameters for the convergence speed comparisons of the adaptive frequency
tracking algorithms.

Statistics for real-valued signals Statistics for complex-valued signals

Algorithm Bias Variance MSE Bias Variance MSE

SFT 8.33 · 10−5 2.00 · 10−5 2.00 · 10−5 −1.63 · 10−7 1.02 · 10−5 1.02 · 10−5

ALE 1.61 · 10−4 2.00 · 10−5 2.01 · 10−5 1.48 · 10−4 1.02 · 10−5 1.02 · 10−5

OSC 2.37 · 10−4 2.00 · 10−5 2.01 · 10−5 2.44 · 10−4 1.02 · 10−5 1.02 · 10−5

GANF 8.57 · 10−5 2.00 · 10−5 2.00 · 10−5 −3.68 · 10−7 1.02 · 10−5 1.02 · 10−5

CANF 8.56 · 10−5 2.00 · 10−5 2.01 · 10−5 −3.52 · 10−7 1.02 · 10−5 1.02 · 10−5

Table 3.3: Biases, variances and mean squared errors (MSEs) of the frequency tracking algo-
rithms for the convergence speed comparisons with real- and complex-valued signals.

change from 0.2π to 0.4π and a random phase offset uniformly distributed between 0 and 2π
embedded in additive white noise. In the real-valued case, the noise followed a Gaussian dis-
tribution, whereas, in the complex-valued case, it was a complex circular Gaussian white noise.
The SNR was set to 5 dB in both cases. In order to obtain fair comparisons of the frequency
tracking algorithms, their parameters were carefully selected. First, the pole radius of the time-
varying filter of each adaptive scheme was set to 0.95. Then, the forgetting factors and step-sizes
controlling the convergence rate were set such that all algorithms achieved approximately the
same level of estimation variance after convergence. Table 3.2 documents the selected param-
eters for each technique and each case. The frequency trajectories averaged over 10,000 runs
are plotted in Figure 3.19 for real- and complex-valued input signals. The biases, variances and
mean squared errors (MSEs) for all algorithms, which were computed over 1000 samples after
convergence and averaged over 10,000 runs as well, are reported in Table 3.3. There is not much
difference between the outcomes of the numerical simulations for real- and complex-valued sig-
nals. Indeed, in both cases, the SFT, ALE and OSC converged quickly after the frequency change
while the GANF and CANF were slower. The difference in terms of convergence speed between
fast and slow algorithms is roughly 1500 samples, which can be important in some applications.
It can also be noted that, as the SFT is designed to operate on complex-valued data, it was the
first to converge for complex-valued signals while it came third for real-valued signals. The SFT
achieved the smallest absolute bias in both cases, but the GANF and CANF were close. On the
other hand, the bias for the two real schemes was more important.

The signals in the second set were also sinusoids for the real case or cisoids for the complex
case with uniformly distributed phase embedded in additive white noise. Furthermore, the noise
was defined as for the first set. On the other hand, the instantaneous frequency ω[n] of the
sinusoids and cisoids fluctuated according to a random walk model:

ω[n] = ω[n − 1] + w[n], (3.37)

where the frequency increments w[n] were zero-mean Gaussian distributed random variables
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Figure 3.19: Convergence speeds of the frequency tracking algorithms for (a) real- and (b)
complex-valued signals. The gray lines denote the true frequency.
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with standard deviation σw = 0.005. The initial frequency was set to 0.5π. For this set of signals,
the performance was evaluated by computing the MSE between the true frequency and the esti-
mate of each adaptive scheme over the last 1000 samples of 2000 iterations for SNR values taken
from 0 to 20 dB in 5 dB steps. These MSEs were averaged over 10,000 simulations. As before,
the aim was to compare the five frequency tracking algorithms as fairly as possible, and thus the
various parameters were scrupulously selected. Like for the signals with an abrupt frequency
change, the pole radius of all adaptive filters was set to 0.95. The parameters controlling the con-
vergence rate were chosen such that the SFT, ALE, OSC, GANF and CANF had approximately
equal estimation variances when tracking the frequency of an oscillation at 0.5π embedded in
noise. These parameters are given in Table 3.4 for all considered techniques and SNRs. It was
confirmed with Monte Carlo simulations that the variances of all algorithms measured over the
last 1000 samples of 2000 iterations and averaged over 10,000 runs were indeed approximately
the same for oscillations at 0.5π. Figure 3.20 shows the MSE of each adaptive scheme when
tracking a noisy sinusoid or cisoid with random walk frequency fluctuations. In these numerical
simulations, the SFT performed the best for both real- and complex-valued signals. Yet, all the
considered algorithms were close in terms of MSE, particularly in the real case. It can also be
noted that, in the real case as well, the ALE and OSC, which are designed to process real-valued
signals, performed better than the GANF and CANF. And, as expected, it was the opposite in the
complex case.

3.6 Discussion

The SFT, presented in this chapter, is an adaptive algorithm for extracting a periodic com-
ponent buried in noise and its instantaneous frequency. Its main specificity, compared to similar
schemes based on adaptive filters, is its cost function based on the complex discrete oscillator
equation (3.4). By means of this cost function, the SFT is designed to maximize the oscillatory
behavior at the output, instead of, for instance, maximizing the output power or minimizing the
error between input and output signals. Due to this feature and its update mechanism, the algo-
rithm is scale-independent. And thus, it can even extract an oscillation with low amplitude com-
pared to the noise level. Another relevant aspect of the SFT is its time-varying band-pass filter
(3.2). Indeed, since it has unit gain and zero phase at the central frequency, the filtered periodic
component is not distorted. Depending on the type of information that needs to be extracted, this
can be of the utmost importance. For example, when quantifying the synchronization between
two oscillations, it is crucial that the component extraction does not introduce any phase lag. The
influence of each parameter on the performance of the presented technique was also thoroughly
analyzed with both theoretical calculations and Monte Carlo simulations. The key findings are
that the SFT is unbiased for a cisoid embedded in white noise and mostly unbiased for a noisy
sinusoid. As the tracking algorithm is applied to the analytic representation of a real signal, the
DHT introduces long-term correlations in the noise process which in turn causes a limited bias.
However, as long as the filter is well-adjusted and its bandwidth is sufficiently narrow, the bias
can be considered negligible in most situations. And, when compared to other existing frequency
tracking algorithms based on adaptive filters, the SFT achieved excellent performance. Indeed,
during the investigation of the reactivity to sharp frequency changes, the presented algorithm
was the fastest for complex-valued signals and the third, but extremely close to the best one, for
real-valued signals. Furthermore, when the instantaneous frequency of the components evolved
according to a random walk model, the SFT yielded the lowest MSE for each tested SNR in both
real and complex cases.

Some limitations of the presented approach are also worth mentioning. First, as illustrated
in the abrupt frequency change example (Figure 3.15), the update of the SFT is not immediate.
The algorithm needs some time to adapt its current frequency estimate and to adjust the position
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Figure 3.20: Mean squared errors (MSEs) of the frequency tracking algorithms for random walk
frequency fluctuations for (a) real- and (b) complex-valued signals.
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of the band-pass filter. This can be a problem for a periodic component whose instantaneous
frequency varies very rapidly. Indeed, whenever the estimate is not close enough to the true
frequency, the underlying oscillation may be only extracted partially or even, in the worst case,
not extracted at all. However, this corresponds to extreme cases as the convergence rate of the
SFT is amply sufficient in most situations. Furthermore, when processing real data, the presented
adaptive scheme is applied to the analytic representation of the input signal. Consequently, it is
not applicable in real-time because of the block processing of the DHT. It is true that the DHT
can also be approximated with a finite impulse response (FIR) filter, but this introduces a delay
which is not always acceptable. A possible coarse solution to this problem is to apply the SFT
directly to the real signal at the cost of slightly degraded performance. Another limitation of
this technique is that it can only track one component at a time. Nevertheless, it should fail
gracefully when applied to a signal with multiple oscillations by extracting one of the frequency
components. In addition, it should be noted that one of the extensions for the SFT presented in
Chapter 4 is designed to take into account such cases.
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Extensions for the Single
Frequency Tracker 4

In this chapter, three extensions to the single frequency tracker (SFT), presented in Chapter 3,
are introduced. The motivations for extending the original adaptive algorithm are briefly summa-
rized in Section 4.1. Then, the extensions for multiple frequencies, multiple signals and harmonic
components are described in Sections 4.2, 4.3 and 4.4. Finally, their properties are discussed in
Section 4.5. These extensions were presented in several publications [63, 64, 67–69].

4.1 Introduction

The SFT was presented in the previous chapter for an input signal composed of a complex
cisoid with additive zero-mean noise. Although this setting is very simple, this adaptive al-
gorithm is still able to extract an oscillation and its instantaneous frequency in more complex
scenarios, such as in the presence of spurious periodic components. However, in many practical
situations, the basic assumption of a single cisoid embedded in noise is too restrictive. Indeed,
several important oscillatory components might be active simultaneously in the same signal.
For instance, this is the case in electroencephalographic (EEG) data [70] where oscillations are
present in different frequency bands. In such circumstances, the SFT is only able to track one of
these components, and thus relevant information might be lost. Classic approaches, such as filter-
banks and wavelet analysis, have already been applied in order to extract multiple oscillations at
the same time. However, these methods implicitly assume that the instantaneous frequencies of
the periodic components under study do not change over time. This can lead to the erroneous ex-
traction of two successively-occurring components in adjoining bands where there is in fact only
one oscillation with time-varying frequency. This problem raises the need for techniques capable
of extracting multiple oscillatory components with time-varying instantaneous frequencies at the
same time. One solution is to extend the SFT to the multiple frequency tracker (MFT) in order
to take into account signals with several oscillations.

The single cisoid assumption of the SFT might also be overly optimistic in the closely-related
problem of harmonic frequency components. For instance, harmonic components have been used
to detect problems in induction motors [71, 72]. In such cases, at best, the estimation variance
of the SFT will increase, but, at worst, the adaptive scheme will not track the fundamental fre-
quency. A more clever approach for this type of signals would use the additional information
provided by the harmonic components in order to achieve increased tracking performance and
robustness. Indeed, the frequencies of harmonic components are integer multiples of the funda-
mental frequency. The harmonic frequency tracker (HFT), an extension to the SFT, is capable
of tracking the instantaneous fundamental frequency as well as extracting the corresponding har-

57
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monic components.
In several practical situations, the information of interest is observed with multiple sensors.

In particular, this is the case for EEG and electrocardiographic (ECG) data. The resulting signals
are often highly correlated. Therefore, instead of tracking the instantaneous frequency separately
in each signal, jointly processing the available data will improve the tracking performance, the
convergence speed and the robustness of the adaptive algorithm [73, 74]. The multivariate fre-
quency tracker (MVFT) extends the SFT to multiple signals in order to take advantages of these
considerations.

Similarly to the SFT, the three extensions are presented within the complex signal framework.
Nonetheless, they are still applicable to the analytic representations of real signals thanks to the
discrete Hilbert transform (DHT). And reverting back to real-valued data is as easy as taking
the real part of the extracted oscillations. The additional bias and variance in the estimation
caused by the DHT should remain negligible with sufficiently narrow band-pass filters. The
MFT and MVFT are presented in Sections 4.2 and 4.3 respectively. Then, the HFT is described
in Section 4.4. The MVFT is introduced before the HFT because the latter is based on the
multivariate extension.

4.2 Multiple Frequency Tracker
The SFT is extended to track several periodic components simultaneously. Therefore, it is

now assumed that the input signal is composed of K cisoids embedded in complex noise:

x[n] =

K∑
k=1

ck[n] + v[n] =

K∑
k=1

Ake jωkn + v[n], (4.1)

where Ak and ωk are the complex amplitudes and frequencies of the cisoids, and v[n] is the
additive complex noise. The basic idea behind the extension is to use one SFT to track each
periodic component. However, because the band-pass filters (3.2) are not ideal ones (in fact, with
an ideal filter no tracking would be possible), each of them will “see” the other components. This
can lead to errors, especially for oscillations close in the frequency domain. For instance, several
band-pass filters might collapse on the same oscillation. A solution to this problem is to use
all-zero filters to cancel interference from other components as proposed by Rao and Kumaresan
[16] in the context of speech processing. Therefore, the outputs of the MFT are the oscillations
extracted by the cascade of all-zero filters and band-pass filters, yk[n] (k = 1, 2, . . . ,K), and
their estimated instantaneous frequencies. The structure of the extended tracking algorithm is
summarized in Figure 4.1.

The number of oscillations K is assumed to be known. Each periodic component is tracked
with two adaptive filters: an all-zero filter and a band-pass filter. The band-pass filter is the same
as for the single frequency case (3.2), and thus the transfer function of the kth filter is given by

Gk(z; n) =
1 − β

1 − βe jωk[n]z−1 , (4.2)

where ωk[n] is the instantaneous frequency estimate for the kth oscillation. The all-zero filter is
composed of the K−1 complex zeros whose locations are defined by the frequencies of the other
components. However, since the true frequencies are unknown, they are replaced by the current
estimates given by the SFTs. Consequently, the transfer function of the kth all-zero filter is

Nk(z; n) = Ck[n]
K∏

l=1
l,k

(
1 − γe jωl[n]z−1

)
, (4.3)
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Figure 4.1: Structure of the MFT. Each periodic component is extracted with two stages, an
all-zero filter (AZF) and a single frequency tracker (SFT).

where γ (0 � γ ≤ 1) is the modulus of the zeros and Ck[n] is a normalization coefficient to
ensure unit gain and zero phase at frequency ωk[n]. The modulus parameter can be smaller than
one, but it is typically set to one in order to suppress most of the other oscillations.

Although the additional all-zero filters cancel the interfering periodic components, they also
introduce perturbations in the global response, which might not be purely band-pass anymore,
resulting in unwanted frequencies leaking to the output. Moreover, longer filters reduce the con-
vergence rate of the algorithm. An alternative is to select only one zero for the kth all-zero
filter. This zero is placed at the tracked frequency closest to the kth frequency. This solution
offers a good tradeoff between interference suppression, tracking speed and the band-pass char-
acteristic of the overall filter. Furthermore, in situations where the tracking speed is not critical,
another possibility is to use longer notch filters that result in better overall frequency response.
For instance, this could be the case when extracting periodic components with slowly changing
frequencies. Using a cascade of the notch filters described in Section 2.2.6 [56], the canceling
filter for the kth component is defined as

Nk(z; n) = Ck[n]
K∏

l=1
l,k

1 − e jωl[n]z−1

1 − λe jωl[n]z−1 , (4.4)

where λ (0 � λ < 1) is the pole modulus that control the notch width and Ck[n] ensures unit gain
and zero phase at ωk[n] as before. An example of the global magnitude responses of the MFT is
shown in Figure 4.2 for the three types of all-zero filters with the following parameters: K = 3,
ω1 = 0.2π, ω2 = 0.4π, ω3 = 0.8π, β = 0.95, γ = 1 and λ = 0.95.

4.2.1 Multiple Frequency Tracking Example

The tracking capabilities of the MFT were tested on a synthetic signal of 2000 samples. This
signal was composed of three cisoids with time-varying instantaneous frequencies embedded in
additive complex circular Gaussian white noise. The first periodic component was a cisoid with a
shift in frequency from 0.2π to 0.4π after 200 samples. The instantaneous frequencies of the last
two cisoids changed linearly with time from 0.6π to 0.8π and from 0.9π to 0.1π. It is clear from
the definition of the three components that their instantaneous frequencies intersected on several
occasions. The noise level was set to 20 dB with respect to each cisoid. The MFT was applied
with an all-zero filter for each interfering component. In other words, when tracking one of the
cisoids the two others were canceled. Furthermore, the following parameters were selected for
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Figure 4.2: Global magnitude responses of the MFT when extracting three periodic components
(K = 3) at ω1 = 0.2π (blue), ω2 = 0.4π (red) and ω3 = 0.8π (green). The three types of canceling
filters are shown, (top) each interfering component is suppressed with a zero (4.3), (middle)
only the closest interfering frequency is canceled, (bottom) all the interfering oscillations are
suppressed with a notch filter (4.4). The parameters of the filters are set as follows: β = 0.95,
γ = 1, λ = 0.95.

the MFT: β = 0.95, δ = 0.95 and γ = 0.95. And finally, the initial frequencies were set to 0.2π,
0.6π and 0.9π.

The instantaneous frequencies estimated by the MFT are shown in Figure 4.3 alongside the
true values. Excluding the frequency shift where the algorithm needed some time to adapt, the
frequencies of the cisoids were accurately estimated. Furthermore, this example illustrates that,
with appropriate parameters, the MFT can even track components with time-varying frequencies
that cross each other. The real parts of the input signal and the three complex oscillations ex-
tracted by the MFT are plotted in Figure 4.4. The cisoids were correctly filtered except when
their instantaneous frequencies intersected and after the frequency shift.

4.3 Multivariate Frequency Tracker
The extension of the SFT to multiple signals is based on a generic approach [73, 74] appli-

cable to a wide range of frequency tracking methods. Indeed, this approach was designed to
easily extend adaptive algorithms for jointly tracking the instantaneous frequency of a periodic
component present in several signals. Thus, the MVFT tracks the instantaneous frequency in L
signals. These input signals are defined as

xl[n] = cl[n] + vl[n] = Ale jω0n + vl[n], l = 1, . . . , L, (4.5)

where Al are the complex amplitudes, ω0 is the frequency of the cisoids, and vl[n] are the mutu-
ally independent additive complex centered noises.

The approach for extending the SFT is to use the same band-pass filter (3.2) for the L signals.
Then, the frequency of each cisoid, ωl[n], is estimated in the same way as in the basic adaptive
algorithm. Finally, the L frequency estimates are weighted in order to obtain a global estimate,
ω[n]. The structure of the MVFT is shown in Figure 4.5. The weights are chosen in order to
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Figure 4.5: Structure of the MVFT. All input signals are filtered with the same time-varying band-
pass filter. The instantaneous frequency of each extracted component is estimated independently
and then the global estimate is obtained with a linear combination.

maximize a suitable measure of the tracking quality. For this purpose, the frequency estimates
for the L signals at time n are rewritten as

ωl[n] = ω0 + ∆l[n], l = 1, . . . , L, (4.6)

where ∆l[n] are the deviations from the true frequency caused by random perturbations. They are
assumed to be zero-mean and uncorrelated. Therefore, the global frequency estimate is obtained
as a linear combination of the estimates for all signals:

ω[n] =

L∑
l=1

Wl[n]ωl[n] = ω0 +

L∑
l=1

Wl[n]∆l[n], (4.7)

with

0 ≤ Wl[n] ≤ 1, l = 1, . . . , L, and
L∑

l=1

Wl[n] = 1.

Now, the goal is to find the set of weights that minimize the variance of this linear combination,
or more precisely the variance of

∑L
l=1 Wl[n]∆l[n]. This problem appears in financial portfolio

optimization [75], and its exact solution, since the ∆l[n] are assumed uncorrelated, is

Wl[n] =
1/σ2

∆l
[n]∑L

i=1 1/σ2
∆i

[n]
, l = 1, . . . , L, (4.8)

where σ2
∆l

[n] is the variance of ∆l[n]. When σ2
∆1

[n] = σ2
∆2

[n] = · · · = σ2
∆L

[n], all the weights are
equal to 1/L. Otherwise, small variances lead to large weights. Thereby, the frequency estimates
with low variance are favored.

The various steps of the MVFT are briefly summarized. First, all the input signals xl[n] are
filtered with the same adaptive band-pass filter (3.2) in order to extract the L periodic components
of interest yl[n]:

yl[n] = βe jω[n]yl[n − 1] + (1 − β)xl[n], l = 1, . . . , L. (4.9)
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Then, the instantaneous frequency of each extracted oscillation is estimated with the same mech-
anism as in the SFT (see Section 3.2):

Ql[n] = δQl[n − 1] + (1 − δ)yl[n]ȳl[n − 1], l = 1, . . . , L, (4.10)
ωl[n + 1] = arg{Ql[n]}, l = 1, . . . , L, (4.11)

where the overline denotes the complex conjugate.
From this point, a global estimate of the instantaneous frequency is computed by weighting

the estimates obtained for each input signal according to (4.7). However, the variances of the
deviations from the true frequency, σ2

∆l
[n], are not available in practice. And thus, the calculation

(4.8) for obtaining the optimal values for the weights Wl[n] is not applicable. Nonetheless, it is
reasonable to suppose that the deviation variances are proportional to measures of the tracking
quality, such as the cost function (3.6) of the algorithm which is based on the complex discrete
oscillator equation. Consequently, it is assumed that, near convergence, the variances in (4.8) are
proportional to the following ratios:

σ2
∆l
∝

Jl

S l
, l = 1, . . . , L, (4.12)

with
Jl = E

{
|yl[n] − e jω[n]yl[n − 1]|2

}
, l = 1, . . . , L, (4.13)

and
S l = E

{
|yl[n]|2

}
, l = 1, . . . , L. (4.14)

The output variances are used to yield a scale-independent scheme. In practice, similarly to
the adaptive mechanism of the SFT, these quantities are estimated with exponentially weighted
averages [65]:

Jl[n] = µJl[n − 1] + (1 − µ)|yl[n] − e jω[n]yl[n − 1]|2, l = 1, . . . , L, (4.15)

S l[n] = µS l[n − 1] + (1 − µ)|yl[n]|2, l = 1, . . . , L, (4.16)

where µ (0 � µ < 1) is a forgetting factor. In most cases, µ is set equal to δ, the forgetting
factor for frequency estimation. Monte Carlo simulations were used to confirm the validity of
the proportionality assumption (4.12). The input signals were cisoids at frequency 0.4π with
uniformly distributed random phase embedded in complex circular Gaussian white noise. The
SNR values ranged from 0 to 20 dB in 1 dB steps. A modified SFT with a band-pass filter whose
central frequency was fixed to 0.4π was then applied for frequency estimation. The deviation
variance σ2

∆l
and the ratio Jl/S l were computed over the last 1000 samples of 2000 iterations

and averaged over 10,000 runs. The parameters of the adaptive scheme were set to β = 0.95
and δ = µ = 0.95. The ratio is plotted versus the deviation variance for all tested SNR levels
in Figure 4.6 alongside a linear least squares fit. The Pearson coefficient of correlation [76] was
significantly different from zero (p < 10−5). Based on the results of the Monte Carlo simulations,
it is clear that the proportionality assumption is indeed valid. Consequently, the weights used in
practice are

Wl[n + 1] =
S l[n]/Jl[n]∑L

i=1 S i[n]/Ji[n]
, l = 1, . . . , L. (4.17)

And the global estimate of the instantaneous frequency is

ω[n + 1] =

L∑
l=1

Wl[n + 1]ωl[n + 1]. (4.18)
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Figure 4.6: Validation of the proportionality assumption for the MVFT. The ratio Jl/S l is plotted
versus the deviation variance σ2

∆l
alongside a linear least squares fit. The cisoid frequency and

the filter central frequency were set to 0.4π, and the algorithm parameters were set to β = 0.95
and δ = µ = 0.95.

4.3.1 Performance Analysis
A complete theoretical performance analysis of the MVFT is arduous due to the complexity

introduced by the weighting procedure. In particular, closed-form expressions for the bias and
variance of the estimated instantaneous frequency are very difficult to calculate. Nonetheless, in
stationary conditions and near convergence, the instantaneous frequency estimate of the MVFT
should be unbiased as it is a weighted sum of unbiased estimates (see Section 3.3.2). More-
over, when all input signals (4.5) have equal cisoid amplitudes and equal noise variances, the
weights should be all equal to 1/L. Consequently, the estimation variance of the MVFT should
be decreased by a factor 1/L compared to the one of the SFT.

Monte Carlo simulations were used in order to validate these conjectures. Each input signal
was composed of a cisoid at 0.4π with unit amplitude and uniformly distributed random phase
embedded in complex circular Gaussian white noise. The SFT and MVFT were applied to es-
timate the instantaneous frequency for SNR values ranging from 0 to 20 dB in 1 dB steps. The
multivariate extension was tested for two, three and four input signals. The same parameters
were used for both tracking schemes, namely the bandwidth parameter was set to β = 0.95 and
the forgetting factors were set to δ = µ = 0.95. The estimation bias and variance were computed
over the last 1000 samples of 2000 iterations and averaged over 10,000 runs. Numerical simula-
tions confirmed that the MVFT is indeed unbiased as shown in Figure 4.7. Also, the estimation
variance of the MVFT is reduced with each additional input signal compared to the SFT as plot-
ted in Figure 4.8. In fact, the gain factor in variance for the extended algorithm with respect to
the basic scheme is approximately equal to the number of signals, as expected.

The convergence speeds of the SFT and MVFT were also compared with Monte Carlo sim-
ulations. As for the bias and variance, the input signals were cisoids with additive complex cir-
cular Gaussian white noise (SNR = 5 dB), with the exception that their instantaneous frequency
changed abruptly from 0.2π to 0.4π. The SFT and MVFT for two and three signals were applied
in order to estimate the instantaneous frequency. The bandwidth parameter was set to β = 0.95
for the three tracking schemes. However, different forgetting factors were used. Indeed, with
the same parameters, the extended algorithm reduced the estimation variance. But, it is possible
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Figure 4.7: Bias of the SFT and MVFT for various SNR values (Al = 1, ω0 = 0.4π, β = 0.95,
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Figure 4.8: Variance of the SFT and MVFT for various SNR values (Al = 1, ω0 = 0.4π, β = 0.95,
δ = µ = 0.95).
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to choose the update parameters (or forgetting factors) so as to yield the same variance while
increasing the convergence speed of the MVFT. To this end, these factors were set to δ = 0.95
for the SFT, δ = µ = 0.9286 for the two-signal extension and δ = µ = 0.9122 for the three-signal
extension. The values resulted in approximately the same estimation variance. The instantaneous
frequency estimates averaged over 10,000 runs are shown in Figure 4.10 for the three adaptive
algorithms. It is clear that using more signals resulted in increased convergence speed. Indeed,
the MVFT for two signals was nearly 40 samples faster than the SFT, and the MVFT for three
signals was about 60 samples faster.

4.3.2 Multivariate Multiple Frequency Tracker

The extensions to multiple frequencies and multiple signals can be straightforwardly com-
bined in order to track several periodic components present in several signals. This combination
is called the multivariate multiple frequency tracker (MVMFT). The input signals for this adap-
tive scheme are defined as

xl[n] =

K∑
k=1

cl,k[n] + vl[n] =

K∑
k=1

Al,ke jωkn + vl[n], l = 1, . . . , L, (4.19)

where L is the number of signals, K is the known number of cisoids, Al,k and ωk are the com-
plex amplitudes and frequencies of the cisoids, and vl[n] are the mutually independent additive
complex noises. The kth periodic component is extracted from the L input signals with the same
cascade of an all-zero filter (4.3) and a band-pass filter (4.2) as in the MFT. This yields one output
signal, yl,k[n], for each component and each input signal. Then, the SFT recursion is applied in
order to compute an estimate of the instantaneous frequency of all extracted cisoids:

Ql,k[n] = δQl,k[n − 1] + (1 − δ)yl,k[n]ȳl,k[n − 1], l = 1, . . . , L and k = 1, . . . ,K, (4.20)
ωl,k[n + 1] = arg{Ql,k[n]}, l = 1, . . . , L and k = 1, . . . ,K. (4.21)
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Finally, the global instantaneous frequency estimate of each oscillatory component is obtained
as follows,

ωk[n + 1] =

L∑
l=1

Wl,k[n + 1]ωl,k[n + 1], l = 1, . . . , L, (4.22)

where the weights are given by

Wl,k[n + 1] =
S l,k[n]/Jl,k[n]∑L

i=1 S i,k[n]/Ji,k[n]
, l = 1, . . . , L and k = 1, . . . ,K. (4.23)

As for the MVFT, the cost function and output variance estimates of all extracted components
are computed with exponentially weighted averages,

Jl,k[n] = µJl,k[n − 1] + (1 − µ)|yl,k[n] − e jωk[n]yl,k[n − 1]|2, l = 1, . . . , L and k = 1, . . . ,K,

S l,k[n] = µS l,k[n − 1] + (1 − µ)|yl,k[n]|2, l = 1, . . . , L and k = 1, . . . ,K.

4.3.3 Multivariate Frequency Tracking Examples
Two main features of the MVFT and its extension to multiple frequencies, the MVMFT, are

illustrated in this section with synthetic signals. First, their ability to deal with changes in the
noise power is demonstrated. Second, they are shown to extract correctly periodic components
common to several signals despite interfering oscillations.

In the first example, the MVFT was applied to two input signals of 1000 samples composed of
a cisoid at 0.2π embedded in complex circular Gaussian white noise. In the first signal, the SNR
was set to -5 dB for the first 500 samples and to 10 dB for the second half. It was the opposite
for the second signal. The instantaneous frequency estimated by the MVFT was compared to the
ones estimated by the SFT applied to each signal separately. The same parameters were selected
for both tracking schemes: the bandwidth parameter was set to β = 0.95 and the forgetting
factors were set to δ = µ = 0.95. The frequency estimates are shown in Figure 4.11 alongside the
weights used by the MVFT. The frequency estimates obtained with the SFT are clearly inaccurate
in the low SNR regions. By contrast, the frequency estimated by the MVFT is accurate for the
whole duration of the signals. Looking at the adaptive weights reveals that during the first 500
samples the second signal was heavily favored because of its higher SNR. Following the SNR
change, this situation was reversed. Indeed, due to the time-varying weights, the MVFT favors
the signal with the best tracking performance at each time.

In the second example, two cisoids whose frequencies changed linearly from 0.7π to 0.5π
and from 0.1π to 0.3π were common to the two input signals of 1000 samples. Interfering
periodic components were added to each signal separately: a cisoid at 0.2π for the first signal
and a cisoid at 0.6π for the second one. All cisoids (common and interfering ones) had the
same amplitude. The MVMFT was applied in order to extract the two common oscillations
simultaneously in both signals (β = 0.95, δ = µ = 0.95, γ = 1). For comparison purpose, the
MFT was applied to each signal separately (β = 0.95, δ = 0.95, γ = 1). Figure 4.12 shows the
instantaneous frequencies estimated by both tracking schemes. The MVMFT correctly estimated
the frequencies of the two common cisoids, despite the interfering components. However, it was
not the case with the MFT. For the first signal, only the cisoid with frequency changing from
0.7π to 0.5π was tracked properly. The other cisoid was not extracted as soon as its frequency
intersected with one of the interfering component. The second signal led to the opposite result.
Therefore, the joint tracking of periodic components common to both input signals led to accurate
frequency estimation. Furthermore, interfering components present in only one of the signals
were discarded. This was not the case with separate tracking.
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Figure 4.11: Instantaneous frequency and weights estimated by the MVFT (β = 0.95, δ = µ =

0.95). The estimates obtained when the SFT was applied to each signal separately are shown for
comparison.
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4.4 Harmonic Frequency Tracker
The extension of the SFT to harmonic components, the HFT, is based on the two exten-

sions presented previously. The idea of using one adaptive filter for extracting each harmonic
component is derived from the MFT. Also, the same weighting procedure as in the MVFT is ap-
plied in order to compute an estimate of the fundamental frequency from the estimated harmonic
frequencies. Therefore, each harmonic component is extracted with the same time-varying band-
pass filter as in the SFT. Then, an estimate of the fundamental frequency is computed for each
extracted oscillation with an adaptive mechanism. Finally, a linear combination is applied to
obtain a global estimate. The structure of the HFT is depicted in Figure 4.13. By convention,
the first harmonic component is considered to be the fundamental component throughout the
description of this extended algorithm.

The input signal of the HFT is defined as

x[n] =

K∑
k=1

ck[n] + v[n] =

K∑
k=1

Ake jkω0n + v[n], (4.24)

where K is the known number of harmonic components, Ak are the complex amplitudes, ω0 is
the fundamental frequency, and v[n] is the additive complex noise. The kth harmonic component
is extracted with the same adaptive filter as in the SFT (3.2), except that the central frequency is
k times the current estimate of the fundamental frequency, ω[n]. The filtered outputs are given
by

yk[n] = βe jkω[n]yk[n − 1] + (1 − β)x[n], k = 1, . . . ,K. (4.25)

From each of these extracted harmonic components, an instantaneous estimate of the fundamen-
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tal frequency is computed using the oscillator-based recursion:

Qk[n] = δQk[n − 1] + (1 − δ)yk[n]ȳk[n − 1], k = 1, . . . ,K, (4.26)

ωk[n + 1] =
arg{Qk[n]}

k
, k = 1, . . . ,K. (4.27)

As in the MVFT, a weighting procedure is applied to obtain a global estimate. For this purpose,
instantaneous estimates of the cost function and output variance are computed with exponentially
weighted averages for each extracted components:

Jk[n] = δJk[n − 1] + (1 − δ)|yk[n] − e jkω[n]yk[n − 1]|2, (4.28)

S k[n] = δS k[n − 1] + (1 − δ)|yk[n]|2, (4.29)

for k = 1, . . . ,K. Using these two expressions, the weights are defined as follows,

Wk[n + 1] =
S k[n]/Jk[n]∑K
i=1 S i[n]/Ji[n]

, k = 1, . . . ,K. (4.30)

Finally, the estimate of the instantaneous fundamental frequency is

ω[n + 1] =

K∑
k=1

Wk[n + 1]ωk[n + 1]. (4.31)

It should be noted that the ωk[n + 1] are estimates of the fundamental frequency since the har-
monic frequencies are divided by k in (4.27).

The HFT has also two other interesting properties. First, it can track only a subset of the
harmonic components. For instance, when the signal under study contains the first and third
harmonic components, but no second component, the algorithm can be applied for only these
components. Second, the weighting procedure can be easily extended for tracking the funda-
mental frequency in several signals with harmonic content as in the MVFT. Furthermore, when
the harmonic frequencies are close, all-zero filters similar to the ones used in the MFT can be
included in the HFT.

4.4.1 Performance Analysis
The same considerations regarding the complexity of a theoretical performance analysis of

the HFT apply as for the MVFT. However, two remarks regarding the general behavior of this
extension can be pointed out. First, the HFT is biased as the band-pass filters do not cancel the
other harmonic components, resulting in leaked interfering frequencies. Nevertheless, the bias
should remain negligible for sufficiently narrow filters. Second, the HFT should have reduced
estimation variance compared to the SFT when tracking a signal with harmonic components as
it uses more information.

These aspects of the extension to harmonic components were assessed by measuring the
estimation bias and variance with Monte Carlo simulations. For this purpose, the input signals
were defined as

x[n] =

K∑
k=1

1
k

e j(k2π0.1n+φk) + v[n], (4.32)

where the phase offsets φk were uniformly distributed between 0 and 2π, and v[n] was a complex
circular Gaussian white noise. The noise variance was computed with respect to the sum of
the variances of all harmonic components. The SFT and HFT were compared for K = 2 and
K = 3 with SNR values ranging from 0 to 20 dB in 1 dB steps. The adaptive parameters were
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Figure 4.14: Bias of the SFT and HFT with respect to various SNR values (Ak = 1/k, ω0 = 0.2π,
β = 0.95, δ = 0.95), (a) for two harmonic components (K = 2), and (b) for three harmonic
components (K = 3).

identical for the basic algorithm and its extension: β = 0.95 and δ = 0.95. The estimation bias
and variance were measured over the last 1000 samples of 2000 iterations and averaged over
10,000 runs. The results are shown in Figures 4.14 and 4.15. Both the SFT and HFT are biased
when tracking a signal with harmonic components. This was expected for the basic adaptive
scheme as the second and third harmonic components interfered with the estimation mechanism.
The extended algorithm was also biased due to the fact that the other harmonic components
were not canceled in the time-varying filters. Nonetheless, it should be noted that, in terms of
absolute value, the bias of the harmonic extension is smaller for the two tested cases (K = 2 and
K = 3). In any case, the bias of both methods can be considered negligible for the majority of
applications. Concerning the estimation variance, the HFT yielded a more accurate estimate of
the instantaneous fundamental frequency for all SNR values (with identical parameters). This
decrease in variance was achieved using the additional information contained in all harmonic
components.

Monte Carlo simulations were also run to compare the convergence speed of the SFT and
HFT. The same input signal as before (4.32) was used with two harmonic components (K = 2),
except that the fundamental frequency was abruptly shifted. Two cases where investigated: the
fundamental frequency was changed from 0.2π to 0.3π and from 0.3π to 0.2π. The SNR was
computed as before and was set to 5 dB. In addition, the bandwidth parameter was set to β = 0.95
for both the basic algorithm and its harmonic extension. For the same reasons as in the analysis of
the convergence speed of the MVFT, different forgetting factors were selected in order to obtain
approximately equal estimation variance for the SFT and HFT. Therefore, the SFT forgetting
factor was set to δ = 0.95 for the two cases, while it was set to δ = 0.9431 when the fundamental
frequency was shifted from 0.2π to 0.3π and to δ = 0.942 when the frequency changed from
0.3π to 0.2π for the HFT. The estimates of the instantaneous fundamental frequency of the basic
algorithm and its extension averaged over 10,000 runs are shown in Figure 4.16. When the
frequency changed from 0.2π to 0.3π, the SFT converged faster than the HFT, albeit the latter
has a smaller forgetting factor. Indeed, when the fundamental frequency was abruptly shifted,
there were two periodic components with higher instantaneous frequencies that attracted the
SFT. Whereas in the HFT, the adaptive mechanism responsible for estimating the frequency of
the second harmonic component was closer to one of the first harmonic component directly after
the shift. This slowed down the adaptation process of the harmonic extension compared to the
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Figure 4.15: Variance of the SFT and HFT with respect to various SNR values (Ak = 1/k,
ω0 = 0.2π, β = 0.95, δ = 0.95), (a) for two harmonic components (K = 2), and (b) for three
harmonic components (K = 3).

original method. By contrast, following the shift in fundamental frequency from 0.3π to 0.2π,
the SFT faced the same problem and converged more slowly than the HFT. It is also worth
mentioning that the number of samples required for convergence for the basic algorithm changed
depending on the direction of the frequency shift (more samples were needed to converge after
a decrease in frequency), while it remained roughly the same for the extension. In conclusion,
despite being a little slower than the SFT in some situations, the HFT is attractive for signals
with harmonic content as this extension can extract simultaneously every harmonic component
of interest as well as estimate the instantaneous fundamental frequency with less pronounced
bias than the original method.

4.4.2 Harmonic Frequency Tracking Example
The tracking capabilities of the HFT are illustrated with an example. The extended algorithm

was applied to a signal composed of two frequency-modulated (FM) harmonic components em-
bedded in noise. The input signal was defined as follows,

x[n] = exp
{
j2π0.1n + j10 cos(2π0.002n)

}
+ 0.5 exp

{
j2π0.2n + j20 cos(2π0.002n) + jπ/4

}
+ v[n],

(4.33)

where v[n] was a complex circular Gaussian white noise. The SNR value was set to 10 dB, and
the extension parameters were set to β = 0.95 and δ = 0.95. The frequency estimated by the
HFT is shown on top of the true instantaneous fundamental frequency in Figure 4.17. One can
observe that the estimate and the reference are in close agreement. Furthermore, as this tracking
algorithm also extract the harmonic components, the latter are plotted in Figure 4.18. These
components are readily available, without any additional filtering, when applying the HFT. And
thus, they can be used directly in any further processing stages.

4.5 Discussion
In this chapter, three extensions for the SFT were presented and their advantages with respect

to the original algorithm were discussed. Such extensions were developed because in many prac-
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Figure 4.16: Convergence speed of the SFT and HFT (Ak = 1/k, SNR = 5 dB, β = 0.95, δ = 0.95
for SFT), (a) frequency shift from 0.2π to 0.3π (δ = 0.9431 for HFT), (b) frequency shift from
0.3π to 0.2π (δ = 0.942 for HFT). The gray line denotes the true fundamental frequency.

tical situations the assumption of a signal composed of a single periodic component embedded
in noise is far too restrictive. In particular, the case where a signal contains several simultaneous
oscillations was investigated. A solution was proposed based on the basic idea of using one SFT
to track each component. Filters were added in order to cancel interference between the adaptive
mechanisms. This led to the MFT, an adaptive scheme capable of extracting separately periodic
components and estimating their instantaneous frequencies. The performance of the SFT may
also be insufficient when the signal under study contains harmonic components. This case is
very similar to the previous one, except that there exists a structure in the oscillations. Indeed,
the frequency of each harmonic component is an integer multiple of the fundamental frequency.
Using this structure, the HFT was developed. This algorithm achieves lower estimation variance
than the SFT while improving the robustness, as confirmed by Monte Carlo simulations. It also
extracts the harmonic components which may be used directly in further processing.

Another case that was investigated is when the periodic component of interest is present in
several signals. Indeed, nowadays many sensors are commonly used in an increasing number of
applications. And while the SFT can be applied to one of the signals, this approach discards a lot
of possibly relevant information. The original algorithm was thus extended in order to track the
oscillation under study in several signals simultaneously. Monte Carlo simulations showed that
the resulting adaptive scheme has better overall performance. Indeed, the MVFT achieved lower
estimation variance and faster convergence speed, thanks to an adaptive weighting procedure.
Moreover, this weighting procedure can also be included in the MFT and HFT so that they both
benefit from the same advantages as the MVFT whenever more than one signal describing the
phenomenon under study is available.
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Figure 4.17: Instantaneous fundamental frequency of two FM harmonic components estimated
by the HFT (SNR = 10 dB, β = 0.95, δ = 0.95). The estimated and true frequency are denoted
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Figure 4.18: Real parts of the input signal and the two FM harmonic components extracted by
the HFT (SNR = 10 dB, β = 0.95, δ = 0.95).



Non-causal Instantaneous
Frequency Enhancement 5

This chapter presents the non-causal frequency estimator (NFE), an algorithm for improving
an initial frequency trajectory that can be obtained with any method. The grounds for developing
the NFE are given in Section 5.1. Then, the algorithm is presented in detail in Section 5.2.
Afterwards, the NFE performance is analyzed and compared to existing frequency estimation
techniques in Section 5.3. A few examples of applications on synthetic and real data are given
in Section 5.4. Finally, the merits and drawbacks of the presented method are discussed in
Section 5.5.

5.1 Introduction

Frequency information is an important aspect in a wide range of fields such as biomedical
engineering, speech processing and communications. In particular, instantaneous frequency es-
timation can shed light on a phenomenon evolving over time and can be used to extract precisely
the underlying periodic component. Over the years, a large number of methods have been pro-
posed for tracking the instantaneous frequency (e.g. [20, 35, 48, 51, 56, 77, 78]). The vast
majority of these methods are causal, meaning that only past information is used for frequency
estimation. While being a requirement for real-time applications, causality is not enforced for
offline processing. Indeed, it seems intuitive that improved performance can be achieved using
future information in addition to past information when estimating the instantaneous frequency.
As a matter of fact, some methods, such as weighted finite differences of the phase [79], can be
applied to sliding windows centered in time. Also, a few non-causal algorithms for frequency
estimation have been proposed recently [80–83].

While using only past information, causal methods for frequency estimation can nonetheless
achieve good tracking performance. But they introduce a delay in the estimation that can be quite
severe after a sharp instantaneous frequency change. Therefore, given that causal methods yield
rather satisfactory results in many situations, the NFE, a non-causal post-processing algorithm,
was developed to update an initial estimate of the instantaneous frequency. Any method can be
used for the initialization; it is not limited to a particular scheme. Furthermore, the proposed
algorithm is specifically designed to estimate a frequency for which the oscillatory behavior in
the input signal is maximal. Indeed, it uses a cost function derived from the complex discrete
oscillator equation, like the single frequency tracker (SFT) [64] introduced in Chapter 3. As
such, the NFE is presented within the complex-valued signal framework, but it is not restricted
to complex signals. Using the discrete Hilbert transform (DHT) [34], it can be applied to the
analytic representation of a real signal.

75



76 Non-causal Instantaneous Frequency Enhancement

5.2 Algorithm
The input signal of the NFE is assumed to be a noisy cisoid,

x[n] = c[n] + v[n] = A0e jω0n + v[n], (5.1)

where A0 and ω0 are the complex amplitude and frequency of the cisoid, and v[n] is an additive
centered complex white noise. Moreover, it is supposed that N samples of the input signal are
available (n = 0, . . . ,N − 1).

The algorithm is based on a cost function derived from the complex discrete oscillator equa-
tion. This equation is defined as

c[n] = e jω0 c[n − 1]. (5.2)

It is verified for any cisoid at frequency ω0. Therefore, the frequency of a noiseless cisoid can
be estimated with only two samples: ω0 = arg{c[n]/c[n − 1]}. When additive noise is present,
frequency estimation must be performed more carefully. Therefore, the following local cost
function was derived from the complex discrete oscillator equation,

J[n] =
∣∣∣x[n] − e jω[n]x[n − 1]

∣∣∣2 , n = 1, . . . ,N − 1, (5.3)

where ω[n] is the frequency estimate at time n. This estimate depends on time in order to take
into account cisoids with time-varying instantaneous frequencies. Minimizing this cost function
with respect toω[n] yields the frequency trajectory for which the oscillatory behavior of the input
signal is maximized.

The minimization of (5.3) is performed with a gradient descent algorithm. The update for
the frequency estimate at each iteration and each time is defined as follows,

ωi+1[n] = ωi[n] − µ
∂J[n]
∂ω[n]

∣∣∣∣∣∣
ω[n]=ωi[n]

n = 1, . . . ,N − 1, (5.4)

where i is the iteration number, µ is the step-size, and ωi[n] is the frequency estimate at time n
and iteration i. This update is performed for all samples of the signal. The derivative of (5.3)
with respect to ω[n] is given by

∂J[n]
∂ω[n]

= −2 Im
{
x[n]x̄[n − 1]e− jω[n]

}
, n = 1, . . . ,N − 1, (5.5)

where the upper bar denotes complex conjugation. It should be mentioned that complex num-
bers involved in this calculation do not lead to any difficulty since both J[n] and ω[n] are real.
Using a cost function derived from the discrete oscillator equation is advantageous compared to
a classical approach in which the output power of a band-pass filter is used as the criterion for
frequency estimation. Indeed, (5.5) yields a direction for the update whereas, in a power-based
approach, both directions must be tested before updating the frequency estimate.

In practice, there are two main problems with the derivative in (5.4). First, the updates
are very noisy since no averaging is performed. Secondly, there is no link between adjacent
time instants, meaning that ωi[n] could be completely different from ωi[n + 1]. A simple yet
effective solution is to smooth the derivative (5.5) over a window centered on time n. Therefore,
a smoothed derivative is computed as follows,

di[n] =

K∑
k=−K

w[k] · Im
{
x[n + k]x̄[n + k − 1]e− jωi[n+k]

}
, n = 1, . . . ,N − 1, (5.6)

with w[k] a smoothing window of length 2K + 1. The −2 factor in (5.5) is now included in the
step-size µ. The window length must have odd length so it can be centered on a specific time
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instant. Typically, a normalized Hamming window is a good choice for computing the smoothed
derivative, but any meaningful window can be used. The samples at the borders (n < K + 1 and
n > N − K − 1) are computed by mirroring the input signal. An important aspect of (5.6) is that
the smoothing window is centered in time, meaning that both past and future data samples are
considered. Therefore, the smoothing operation does not introduce any delay in the estimation
of the derivative.

Finally, using (5.6), the update of the frequency estimate at each iteration is given by

ωi+1[n] = ωi[n] + µdi[n], n = 1, . . . ,N − 1. (5.7)

This iterative procedure is repeated until a stopping criterion si becomes smaller than a predefined
threshold T . This criterion was selected to be the reduction in the normalized mean cost function
after each iteration: si+1 = ei−1 − ei with ei defined as follows,

ei =

∑N−1
n=1 |x[n] − e jωi[n]x[n − 1]|2∑N−1

n=1 |x[n]|2
. (5.8)

This stopping criterion is scale-independent due to the normalization, and thus the threshold T
does not depend the input signal power.

The input signal x[n] is used directly for computing (5.6), but with a high level of noise, the
update might become too noisy to be relied on. A solution is to band-pass filter the input signal
in order to reduce the noise. However, the cisoid frequency can change over time. Therefore,
a time-varying filter should be applied. More precisely, the central frequency of the band-pass
filter should correspond to the true instantaneous frequency of the input signal at each time. But,
since the true instantaneous frequency is unknown, it is replaced by its current estimate, ωi[n].
The band-pass filter is a Hamming window multiplied by a complex exponential. This filter was
selected because of its simplicity, its finite impulse response, and because the Hamming window
is the raised cosine window optimized to have a frequency response with minimal nearest side
lobe [84]. The output of the filter at time n is thus given by

yi[n] =

L∑
l=−L

hi,n[l] · x[n − l], n = 0, . . . ,N − 1, (5.9)

where 2L + 1 is the odd filter length and hi,n[l] is the time-varying band-pass filter. It depends on
time and on iteration number as indicated by the subscripts. Furthermore, as for the computation
of the smoothed derivative (5.6), the filtering operation does not introduce any delay in the output
because it is centered in time and thus uses both past and future samples. The samples at the
borders are computed by mirroring the input signal as for the smoothed derivative (5.6). The
time-varying band-pass filter is defined as

hi,n[l] = u[l] · e jωi[n]l, l = −L, . . . , L, (5.10)

with u[l] a normalized Hamming window of length 2L + 1. The bandwidth of this filter depends
directly on its length. It is also important to mention that it has zero phase and unit gain at the
central frequency. Finally, once the filtered output yi[n] is computed, it is used instead of x[n] in
(5.6) and (5.8).

The implementation of the algorithm is straightforward, but a few aspects should be handled
carefully. First, the power of the input signal could change over time. And the cost function
and its derivative depend not only on the distance between the true frequency and its current
estimate but also on the local power level. Therefore, estimation performance is influenced by
the local power of the input signal. For example, a given step-size could yield a good update for
the frequency estimate on some part of the signal while being too small or too large on another
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Algorithm 5.1 Non-causal frequency estimator (NFE)

i = 0, s0 = ∞

set step-size µ
set threshold T for stopping the algorithm
initialize ω0[n] for n = 1, . . . ,N − 1
while si ≥ T or si < 0 do

for n = 0 to N − 1 do
yi[n] =

∑
l hi,n[l] · x[n − l]

end for
for n = 1 to N − 1 do

pi[n] =
∑

k w[k] · |yi[n + k]|2

di[n] =
∑

k w[k] · Im
{
yi[n + k]ȳi[n + k − 1]e− jωi[n+k]

}
ωi+1[n] = ωi[n] + µ(di[n]/pi[n])

end for
ei =

(∑
n |yi[n] − e jωi[n]yi[n − 1]|2

)
/
(∑

n |yi[n]|2
)

si+1 = ei−1 − ei

i = i + 1
end while

part. Normalizing the smoothed derivative with a local estimate of the power leads to a scale-
independent scheme. The local power estimate is computed with mirroring like the smoothed
derivative (5.6),

pi[n] =

K∑
k=−K

w[k] · |yi[n + k]|2 , n = 1, . . . ,N − 1. (5.11)

Finally, using the local power estimate pi[n], the update for the frequency estimate becomes

ωi+1[n] = ωi[n] + µ
di[n]
pi[n]

, n = 1, . . . ,N − 1. (5.12)

The length 2L+1 of the time-varying band-pass filter (5.10) is an important parameter regard-
ing the convergence of the algorithm since it controls the bandwidth. The noise will contaminate
the frequency estimate if the filter is too wide. On the other hand, if it is too narrow, the algorithm
will converge slowly or even not converge at all. An approach combining some advantages of
both wide and narrow filters is to use a relatively wide filter (depending on signal properties)
for estimating the instantaneous frequency and then use a narrow filter once the estimation has
converged for precisely extracting the corresponding oscillatory component.

Another important aspect is the initialization of the algorithm. The initial frequency estimate
can be obtained with any method. Even an estimate with non-negligible delay with respect to
the true frequency can be used as a starting point. The step-size must be chosen carefully since
it controls the performance of the algorithm. But due to the normalization by (5.11), it does
not need to be adapted depending on the local power of the input signal. Usually, µ is chosen
between 0.01 and 0.5. Similarly to the step-size, the threshold T for stopping the procedure
is independent from the signal power because of the normalization. Typical values for T are
between 10−9 and 10−6, depending on the signal dynamics. The complete iterative procedure is
summarized in Algorithm 5.1. It is also worth mentioning that the NFE can be straightforwardly
extended in order to estimate the instantaneous frequency of a periodic component present in
several signals by using a weighting scheme similar to the one presented in Section 4.3. Indeed, a
weighted update approach [73] can easily be used to favor the signals with the most advantageous
properties.
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5.3 Performance Analysis
The performance of the NFE was analyzed with Monte Carlo simulations, because a theoret-

ical analysis quickly becomes intractable. The NFE was compared to three existing non-causal
techniques for frequency estimation: the short-time Fourier transform (STFT) [10], weighted fi-
nite differences of the phase (WFD) [79], and the adaptive notch smoother (ANS) [83]. Further-
more, the gain in estimation performance of the NFE with respect to a causal tracking scheme,
namely the SFT presented in Chapter 3, was also investigated.

The input signal for the performance analysis of the four techniques was defined as

x[n] = e jφ[n] + v[n], n = 0, . . . ,N − 1, (5.13)

where φ[n] is the instantaneous phase and v[n] is a complex circular Gaussian white noise. Two
different cases were considered for the phase: constant frequency and linear chirps. Thus, the
four methods were compared in stationary and non-stationary conditions. In the first case, the
instantaneous phase was set to

φ[n] = ω0n + θ, n = 0, . . . ,N − 1, (5.14)

where ω0 is the frequency, and θ is an uniformly distributed phase term. In the second case, it
was set to

φ[n] =

ω1n + ω2−ω1
N n2 + θ for n = 0, . . . ,N/2 − 1,

(2ω2 − ω1)n + ω1−ω2
N n2 + (ω1 − ω2) N

2 + θ for n = N/2, . . . ,N − 1,
(5.15)

where ω1 and ω2 are the frequency extrema, and θ is defined as before. These two instantaneous
phases correspond to the following instantaneous frequencies:

ω[n] = ω0, n = 0, . . . ,N − 1, (5.16)

and

ω[n] =

ω1 + 2ω2−ω1
N n for n = 0, . . . ,N/2 − 1,

2ω2 − ω1 + 2ω1−ω2
N n for n = N/2, . . . ,N − 1.

(5.17)

The parameters for the Monte Carlo simulations were selected as follows: N = 600, ω0 = 0.2π,
ω1 = 0.2π, ω2 = 0.6π. The instantaneous frequencies for these parameters are illustrated in
Figure 5.1 for the two cases.

As the goal of this analysis was to compare as fairly as possible the STFT, WFD, ANS and
NFE, the various parameters of these methods were chosen very carefully. The parameters of the
NFE were selected first, and then appropriate values for the parameters of the other techniques
were chosen. The smoothing window and filter lengths of the NFE were set to 91 (K = 45) and
21 (L = 10) respectively. The step-size was set to µ = 0.05 and the threshold for the stopping
criterion to T = 10−7. In addition, a maximal number of iterations of 1000 was used, and
thus the algorithm was stopped when the iteration counter i reached this value, even in the case
it had not converged. Finally, the NFE was initialized to a constant instantaneous frequency:
0.2π in the first case and 0.4π in the second case. The STFT was computed on segments of
91 samples centered in time, and the shift between successive segments was set to one sample.
Each segment was windowed with a Hamming window. All the discrete Fourier transforms
(DFTs) were computed for 500 frequency points. The instantaneous frequency was estimated by
searching, in each segment, the frequency bin with the largest magnitude. For the WFD method,
the phase finite differences were calculated as

∆φ[n] = arg {x[n]x̄[n − 1]} , n = 1, . . . ,N − 1. (5.18)
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Figure 5.1: Instantaneous frequencies in the two considered cases for analyzing the NFE perfor-
mance (N = 600, ω0 = 0.2π, ω1 = 0.2π, ω2 = 0.6π).

Then, these differences were divided into 91-samples overlapping segments shifted by one sam-
ple. Similarly to the STFT, these segments were centered in time. Finally, the instantaneous
frequency estimate was obtained by smoothing the phase differences in each segment with Kay’s
weights [79]:

w[m] =
3
2

M
M2 − 1

1 − (
m − M/2 + 1

M/2

)2 , m = 0, . . . ,M − 1, (5.19)

with M = 91. It is important to note that the same smoothing window/segment length was
used for the NFE, STFT and WFD. The ANS is basically an adaptive notch filter that tracks
an oscillatory component and its instantaneous frequency followed by a cascade of non-causal
filters to compensate for the estimation delay. It requires three adaptation gains: 0 < λ < 1 for
amplitude rate adaptation which also determines the bandwidth of the filter used for extracting
the periodic component, 0 < γω < 1 for frequency adaptation, and 0 < γα < 1 for frequency rate
adaptation, with γα � γω � λ. According to [83], the gains for frequency and frequency rate
adaptation can be defined on the basis of λ, and thus they were set to γω = λ2/2 and γα = λγω/4.
Two different values for the bandwidth parameter λ were chosen: λ = 0.1 which led to good
estimation performance in high-noise scenarios, and λ = 0.181672 so that the band-pass filters
used in the ANS and NFE had approximately equivalent 3-dB bandwidths. The initial frequency
of the ANS was set to 0.2π in both cases.

The performance of each method was assessed by computing the mean squared error (MSE)
between the estimated instantaneous frequency and the reference instantaneous frequency, (5.16)
or (5.17). In order to avoid any border and initialization effects, the first and last 100 samples
were discarded. The MSEs of the four techniques were averaged over 10,000 runs for SNR
values ranging from -5 to 10 dB in 5 dB steps. They are shown in Figure 5.2 for the constant
frequency case and Figure 5.3 for the linear chirps case. As there are large differences in scale
across the different methods and SNR values, the MSEs are also reported in Table 5.1.

Looking at the outcomes of the Monte Carlo simulations, the first obvious result is that the
WFD is the worst overall method for estimating the instantaneous frequency. Its performance
quickly decreases for SNR values below 10 dB. Indeed, as it relies on the phase of the input
signal for estimating the frequency, the WFD is very susceptible to broad-band noise [27]. For
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Figure 5.2: Mean squared errors of instantaneous frequency estimates for the constant frequency
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Algorithm -5 dB 0 dB 5 dB 10 dB

STFT 6.52 · 10−5 2.66 · 10−5 0 0
WFD 1.30 · 10−1 5.19 · 10−2 2.35 · 10−3 9.00 · 10−7

ANS (λ = 0.1) 3.13 · 10−5 6.48 · 10−6 1.06 · 10−6 5.62 · 10−7

ANS (λ = 0.181672) 4.18 3.94 · 10−5 9.27 · 10−6 2.59 · 10−6

NFE 1.52 · 10−1 2.63 · 10−4 1.58 · 10−4 3.59 · 10−5

(a) Constant frequency case.

Algorithm -5 dB 0 dB 5 dB 10 dB

STFT 6.73 · 10−2 1.76 · 10−4 1.31 · 10−4 9.11 · 10−5

WFD 1.37 3.16 · 10−1 1.42 · 10−2 1.90 · 10−4

ANS (λ = 0.1) 1.51 · 10−4 1.74 · 10−4 1.70 · 10−4 1.55 · 10−4

ANS (λ = 0.181672) 2.86 · 10−1 4.18 · 10−5 3.73 · 10−5 2.99 · 10−5

NFE 2.92 · 10−4 6.12 · 10−5 3.92 · 10−5 3.84 · 10−5

(b) Linear chirps case.

Table 5.1: Mean squared errors of instantaneous frequency estimates.

the constant frequency case, the NFE remained behind the STFT and the ANS in terms of MSE
performance, with the exception of the ANS with λ = 0.181672 for an SNR value of -5 dB
which exhibited poor frequency estimation capabilities. The estimate provided by the STFT was
particularly precise as the frequency of the input signal was set to an harmonic frequency of the
DFT. However, for the linear chirps case, the NFE was the second best algorithm for all SNR
values. And the ANS achieved the lowest MSEs for all noise levels only because two different
values for the parameter λ were selected. Indeed, the ANS with λ = 0.1 was better than the NFE
only when the SNR was set to -5 dB, while the latter led to lower MSEs for the other SNRs.
Furthermore, although the ANS with λ = 0.181672 performed better than the NFE for SNR
values greater than or equal to 0 dB, both methods were very close in terms of MSE. The STFT
always lagged behind the NFE and ANS when the instantaneous frequency of the input signal
varied linearly.

In addition to comparing the NFE to other non-causal techniques for frequency estimation,
numerical simulations were also used to illustrate how this iterative method can achieve higher
performance than causal algorithms such as the SFT. Clearly, this increased performance is not
restricted to the NFE because, in general, the accuracy of frequency estimation can be improved
by taking into account future information in addition to past information. The performance gain
was assessed with a cisoid embedded in complex circular Gaussian white noise whose instanta-
neous frequency changed abruptly from 0.4π to 0.5π. Its phase followed a uniform distribution
between 0 and 2π. The noise variance was set such that the SNR was equal to 5 dB. The various
parameters of the SFT and NFE were carefully selected in order to compare both schemes as
fairly as possible. Thus, the bandwidth parameter of the SFT and the half filter length of the
NFE were set to β = 0.818328 and L = 10 respectively so that the time-varying filters of both
algorithms had approximately equivalent 3-dB bandwidths. Moreover, the forgetting factor of
the SFT was set to δ = 0.92 while the half smoothing-window length and the step-size of the
NFE were set to K = 45 and µ = 0.05 respectively. This ensured that both techniques attained
approximately equal levels of estimation variance after convergence. The initial frequency of
the SFT was set to 0.4π. Whereas the NFE was initialized with the estimate given by the SFT.
The instantaneous frequencies estimated by both methods were averaged over 10,000 runs. Fig-
ure 5.4 shows that the NFE provided a more accurate estimate of the frequency change than the
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Figure 5.4: Convergence speed of the SFT and NFE. The instantaneous frequency estimates of
both methods were averaged over 10,000 runs. The gray line denotes the true instantaneous
frequency.

SFT. Clearly, this comparison is biased since the two methods did not use an equal amount of
information. Nonetheless, it illustrates how frequency estimation performance can be improved
by taking into account future information in addition to past information.

5.4 Examples

Four different signals were considered to illustrate the frequency estimation capabilities of
the NFE. More precisely, two synthetic signals and two real signals were used. The first two
highlighted how the NFE can handle oscillatory components with important changes in instan-
taneous frequency and enhance coarse initial frequency estimates. The third signal is an elec-
troencephalographic (EEG) signal recorded during a visual evoked potential experiment, while
the fourth one is an R-R interval signal. The R-R interval (or R wave to R wave interval) is the
inverse of the heart rate, which is the number of heart beats per unit of time. Both the EEG and
R-R interval signals exemplified the resilience of the NFE to interfering oscillations commonly
observed in real data.

In the first example, the input signal was a cisoid whose frequency was modulated between
0.2π and 0.6π, with additive complex circular Gaussian white noise. The SNR was set to 0 dB
and the frequency of the modulation was set to 0.004π. The initial frequency estimate was com-
puted with the SFT (β = 0.95 and δ = 0.95). The parameters selected for the NFE were the
same as for the performance analysis (K = 45, L = 10 and µ = 0.05). However, the cisoid
was extracted with a narrower band-pass filter (L = 40) once the algorithm had converged. The
instantaneous frequency estimates and the real part of the input and filtered output signals are
shown in Figure 5.5. The frequency estimate given by the SFT is not really accurate. The algo-
rithm is too slow to adapt to the fast-varying frequency. On the contrary, the estimate obtained
after 286 iterations with the NFE is in close agreement with the true frequency. Also, the cisoid
was precisely extracted with the time-varying band-pass filter. It is important to note that the SFT
parameters were not optimized for this example. Indeed, it should be considered as an illustration
of the estimation performance achieved by the NFE from an unsatisfactory starting point.
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Figure 5.5: Frequency estimation for a frequency modulated cisoid embedded in white noise
(SNR = 0 dB), (a) true frequency, SFT and NFE estimates, (b) real part of input and filtered
output signals. The gray line denotes the true frequency.

The second example consisted of a linear chirp, whose frequency varied from 0.2π to 0.6π
and back every 500 samples, embedded in additive complex circular Gaussian white noise. As in
the previous example, the SNR was set to 0 dB. However, the NFE was initialized to a constant
frequency of 0.4π for the whole signal duration. The purpose was to illustrate that the iterative
algorithm can still converge when starting from a very coarse initial frequency estimate, such as
the one obtained from a power spectral density estimate for instance. The same set of parameters
as before was used. The instantaneous frequency estimate obtained after 310 iterations is plotted
in Figure 5.6 alongside the real part of the input signal and the extracted periodic component.
Clearly, the NFE correctly estimated the time-varying frequency despite the crude initialization
to a constant frequency. As in the first example, the output signal was obtained with a narrower
filter (L = 40) once the frequency estimate had converged.

The signal for the third example is an EEG signal recorded from electrode PO4 (parieto-
occipital) during a visual evoked potential experiment with illusory contour stimuli [85]. This
signal was chosen as it contained several interfering components in addition to the oscillation
of interest. Before estimating the instantaneous frequency, the EEG signal was resampled at
250 Hz and band-pass filtered between 30 Hz and 60 Hz in order to discard the high-power
content in the low frequencies. The initial frequency estimate was given by the SFT (β = 0.975
and δ = 0.95), and the following parameters were used for the NFE: K = 100, L = 30 and
µ = 0.05. The parameters were set differently from the synthetic examples in order to follow as
closely as possible the frequency changes and to take into account the simultaneous presence of
several oscillations. The STFT and ANS presented in Section 5.3 were also applied in order to
compare them to the NFE for processing a real EEG signal. However, the WFD was excluded
as it exhibited the poorest performance with synthetic signals and due to its susceptibility to
interfering oscillations. The STFT was computed on sliding windows of 101 samples centered in
time so as to match the smoothing window of the NFE. The bandwidth parameter of the ANS was
set to λ = 0.1 in order to estimate as precisely as possible the frequency of the main component.
With higher values for this parameter, the ANS was attracted by spurious local oscillations and
lost the main oscillatory component. The instantaneous frequency estimates computed by all
these techniques are plotted on top of the STFT of the EEG signal in Figure 5.7. Clearly, the
simultaneous presence of several oscillations showed the limits of the STFT, and the SFT needed
some time to adapt to frequency changes as it used only past information. However, both the ANS
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Figure 5.6: Frequency estimation for a complex linear chirp embedded in white noise (SNR =

0 dB), (a) true frequency, initial and final estimates, (b) real part of input and filtered output
signals. The gray line denotes the true frequency.

and NFE yielded reliable estimates of the instantaneous frequency of the component between
30 Hz and 40 Hz. In particular, the ANS estimate was very smooth while the NFE estimate
followed closely the slight frequency variations. It should be noted that, in this case, the ANS
could not be made more reactive since as soon as the adaptation parameter λ was increased the
estimate was disrupted by the spurious components with higher frequencies.

The R-R interval signal considered in the fourth example was recorded during the EuroBaVar
study [86] aimed at comparing various techniques for measuring the baroreflex sensitivity. The
R-R interval signals are typically used as measures of the heart rate variability, which is primar-
ily caused by respiration and baroreflex in healthy subjects. These two causes are reflected as
periodic components in R-R interval signals: a component around 0.1 Hz for the baroreflex and
a component at the respiration frequency (around 0.25 Hz at rest) [87]. Since the signals from
the EuroBaVar database were sampled beat by beat, the selected R-R interval signal was evenly
resampled at 1 Hz. It was also high-pass filtered above 0.05 Hz in order to remove the very low
frequency content with high power. Then, the SFT, ANS and NFE were applied in order to esti-
mate the instantaneous frequency of the baroreflex. The STFT was not used in this case because
it cannot handle signals with more than one oscillation. The parameters of the three techniques
were selected in order to follow as closely as possible the component of interest while avoiding
interference from the respiration oscillation. Therefore, the SFT was applied with β = 0.95 and
δ = 0.975, the ANS with λ = 0.06, and the NFE with the same parameters as for the EEG signal
(K = 50, L = 30 and µ = 0.05). The SFT and ANS were initialized to 0.1 Hz, while the initial
estimate of the NFE was given by the SFT. The instantaneous frequency estimate obtained with
these algorithms are plotted on top of the STFT of the considered R-R interval signal in Fig-
ure 5.8. Similarly to the previous example, the causal SFT yielded a delayed estimate that was
not accurate constantly, particularly after sharp shifts in frequency. Again, the ANS provided a
smooth estimate, but it failed to follow closely the main periodic component. Indeed, the selected
value for λwas too small, but larger values resulted in the extraction of the respiration component
around 0.3 Hz. By contrast, the NFE was able to estimate accurately the frequency variations of
the baroreflex. Clearly, it can be argued that, for this example, the respiration component could
have been filtered out in order to improve the estimation performance of all the techniques. But,
in some practical situations, it is impossible to keep only the oscillation of interest. For instance,
the frequency of the interfering component might be different for each signal of a database. This
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would make difficult to choose an appropriate cut-off frequency.

5.5 Discussion
This chapter presented a non-causal algorithm for estimating the instantaneous frequency

providing faster adaptation to sharp transitions than causal methods. This is made possible by
using future information in addition to past information. While not suitable for real-time appli-
cations, the NFE can be used in every situation in which data processing is performed offline.
Moreover, it is specifically designed to estimate the frequency of quasi-periodic components as
its cost function is derived from the discrete oscillator equation. The NFE can also be initialized
with an estimate obtained with any technique. One limitation however is that the bandwidth of
the time-varying filter should ideally depend on the properties of the input signal. Also, since
the NFE is an iterative algorithm, it is rather computationally intensive and might not always be
adequate for processing large amounts of data. Nonetheless, it compared favorably with existing
non-causal techniques for instantaneous frequency estimation on both synthetic and real data. In
particular, the NFE proved to be resilient to interfering oscillations. And, as mentioned previ-
ously, it can be extended to estimate the instantaneous frequency of an oscillatory component
present in several signals simultaneously in order to increase estimation robustness.
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Figure 5.7: Estimation of the instantaneous frequency in an EEG signal with the SFT, STFT,
ANS and NFE. The estimates are plotted on top of the STFT of the signal.
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Part II

Frequency Tracking Applications





Adaptive Filters for the
Identification of Couplings
in Human EEG 6

An application of the single frequency tracker (SFT), introduced in Chapter 3, to electroen-
cephalographic (EEG) data is presented in this chapter. The EEG is a recording of the brain
electrical activity recorded from electrodes placed on the human scalp. It has been described as
a “window on the brain” by Berger [88], the founding father of electroencephalography, since
the features of EEG signals change depending on mental states. Furthermore, the scalp EEG
provides large-scale measures of the brain activity, as a single electrode typically records the
electrical action of tissue masses containing between 100 million and 1 billion neurons [89]. The
EEG is used in both clinical and research contexts. In the former case, it is an important tool
for following and treating certain illnesses, such as epilepsy, head trauma and coma [90]. In the
latter case, it can help to highlight and understand cognitive processes such as motor process
or short-term memory. An important aspect of EEG is its oscillatory behavior [70]. Indeed,
neuronal oscillations occur in numerous situations, and traditionally they have been studied in
different frequency bands [91]:

Delta band (0–4 Hz) Neuronal oscillations in this band have been observed in human sleep
EEG [92]. They have also been found during continuous attention tasks [93].

Theta band (4–8 Hz) Activity in this band has been related to spatial processing [94]. It has
also been shown to contribute to working [95] and long-term [96] memory processes.

Alpha band (8–12 Hz) Several roles have been proposed for alpha activity. Some studies sug-
gested that it reflects top-down, inhibitory processes indirectly modulating cognitive pro-
cesses [97], while others proposed that alpha oscillations have a direct function in neuronal
processes such as memory, attention or awareness [98].

Beta band (12–30 Hz) Activity in this band has been observed in sensorimotor cortex in relation
to motor behavior in humans [99]. It has also been shown that beta oscillations are involved
in the maintenance of visual perceptions [100] and working memory [101].

Gamma band (30–70 Hz) Gamma oscillations have been observed in many brain regions, in-
cluding the visual [102], auditory [103] and motor cortex [104]. A large body of research
has implicated gamma activity in both bottom-up and top-down information processing
(e.g. [105]).

Very high frequency band (>70 Hz) Although not part of the classical neuronal bands, many
investigations suggest that very high frequency oscillations could have a significant role in
cognitive processes. For instance, they have been reported in motor [106], somatosensory
[107] and auditory [108] experiments.

91
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These boundaries are very arbitrary and are defined slightly differently from one study to the
other. Also, as most frequency bands are involved in a multitude of cognitive processes, only
a few examples of such processes were given for each of these bands. Furthermore, more and
more studies indicate that interactions or couplings between oscillations in different frequency
bands play a key role in various cognitive processes [109].

This chapter illutrates how the SFT can help to identify these coupling mechanisms as well
as to measure them more accurately. For this purpose, this adaptive frequency tracking algorithm
was applied to scalp EEG data recorded during a visual evoked potential experiment. An intro-
duction to brain oscillatory activity and couplings across different frequency bands is provided in
Section 6.1. Then, the subject population, the acquisition protocol, the signal processing methods
and the statistical analyses are described in Section 6.2. The results are presented in Section 6.3.
Finally, the outcomes of this study are discussed in Section 6.4. An article [110] presents this
study in detail.

6.1 Introduction

Oscillatory activity is a key component of brain dynamics and has been the focus of an in-
creasing neuroscientific investigation. Neuronal oscillations have been considered a possible
mechanism through which internal states exercise top-down influences on stimulus processing to
impact perception [111, 112]. In particular, the phase synchronization of oscillatory components
seems to be relevant for many cognitive processes [113]. Different models have been proposed
for explaining the role of neural synchronization. For instance, the “communication through
coherence” model [114] suggests that phase synchronization is a binding mechanism through
which communication between different cortical areas is established. Another model proposes
that phase synchronization facilitates neuronal plasticity [115]. Other studies [116, 117] con-
sider that large-scale integration of perception into a unified representation is supported by neural
synchronization. Therefore, synchronization of neuronal oscillations is considered a key mech-
anism for solving the problem of binding multiple and/or distributed representations. Moreover,
this mechanism not only encompasses interactions between different cortical areas but also inter-
actions between classical neuronal frequency bands; so-called cross-frequency couplings [109].
These cross-frequency couplings have been proposed as a framework for unifying the neuronal
oscillations at different temporal and spatial scales [118]. The importance of these coupling
processes have been demonstrated in recent studies of motor, sensory and cognitive tasks (e.g.
[119–126]).

The reliability of methods for identifying these interactions across frequency bands can be ex-
amined using the well-known illusory contour (IC) stimuli [127]. Investigators have considered
this paradigm as exemplary of the binding problem because physically absent borders of an object
must be “filled-in” (at least perceptually if not also neurophysiologically) between inducers. One
consistent observation is increased gamma power for IC vs. control stimuli (e.g. [128–130]). An-
other highly replicable finding is stronger global field power in the event-related potential (ERP)
to the presence vs. absence of ICs (e.g. [85, 131–134]). The case of IC processing thus exempli-
fies a situation where the relationship between effects observed using analyses of event-related
potentials (ERPs; which are heavily influenced by lower-frequency oscillations below ∼25 Hz)
and those obtained using time-frequency analyses (which typically focus on higher-frequency
oscillations above ∼25 Hz) remains to be detailed and ultimately conjoined (e.g. [135]). More-
over and despite being the subject of neuroscientific investigation spanning several decades in
both humans and animal models, controversy persists regarding whether ICs are the result of
bottom-up vs. top-down mechanisms (e.g. [134]). These kinds of results highlight the need for
signal processing methods that can detail relationships between extracted features in a statisti-
cally sound manner.
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Neural synchronization underlying cross-frequency couplings has been studied with a large
number of different tools [136]. In particular, methods based on phase information, such as
phase locking value [137, 138], have been applied to EEG data. Moreover, it has been shown
recently that phase can encode more information than power [139], and thus such methods are
well-suited to analyze cross-frequency interactions. The phase information is typically extracted
with the widely-used Hilbert transform [23], but it should be considered with caution. The ex-
tracted phase is guaranteed to be physically meaningful only for narrow-band signals [27], and
thus phase interpretation is problematic for broad-band signals. It should be noted that this in-
terpretation problem arises with any technique for phase extraction. Consequently, the phase
locking value is sensitive to broad-band interference [140]. A straightforward solution to this
problem consists of adding a pre-processing step that separates EEG data into various narrow
frequency bands with band-pass filters or wavelet analysis. Although this filter-bank approach
can lead to more reliable analyses of cross-frequency couplings [119], it has a major disadvan-
tage. The specifications of the filters (e.g. cut-off frequencies, attenuation, etc.) are predefined
without taking into account the dynamics of the EEG signal under investigation. Therefore,
an oscillatory component whose instantaneous frequency crosses the limit between two bands
would be considered as two different oscillations occurring successively. In such cases it would
be preferable to apply adaptive methods that can track a periodic component with a time-varying
instantaneous frequency in a continuous manner. The SFT [63, 64], presented in Chapter 3, is
such a technique in which a time-varying band-pass filter is adapted over time in order to extract
an oscillation and its instantaneous frequency.

In this study, such adaptive filters are used to analyze the evolution of phase-amplitude and
phase-phase couplings in response to the presence vs. absence of ICs. Although the separation of
the signals into various frequency bands still relied on predefined band-pass filters, wider filters
than the ones typically used in practice for processing EEG data were chosen. The following
step was to retrieve the main oscillatory component and its instantaneous frequency in each band
with the SFT. Thus, narrow-band signals were obtained from which the phase information could
be precisely extracted, which, in turn, was used for measuring phase-amplitude and phase-phase
coupling strength over time. The complete procedure is summarized in Figure 6.1. In more
detail, three aspects of cross-frequency couplings during IC perception were tested. First, it was
checked that stimuli with and without IC elicited a change in terms of coupling strength by using
surrogate stationary signals generated from the original EEG data. This analysis assessed if the
two types of stimuli caused a response before conducting further tests. Second, the responses
to stimuli with IC were contrasted to the ones without such contours. One of the goal of this
study was to determine if ICs elicited specific changes in terms of coupling strength. Last,
the results obtained with and without adaptive frequency tracking were compared in order to
highlight the value of the SFT for precisely extracting the phase information and measuring
cross-frequency couplings. Synthetic signals were also used to show the advantages of frequency
tracking. Overall, this study constituted a thorough analysis at a group-level as well as dynamic
analysis of instantaneous frequency and cross-frequency couplings following IC presentation.

6.2 Materials and Methods

6.2.1 Experimental Setup

This study is a new analysis of a subset of data appearing in a previously published study
that focused on broad-band ERPs in response to IC stimuli [85]. Full details regarding the ex-
perimental setup can be obtained from the original study. Here, only the essentials are provided.
The participants included nine healthy adults (seven men and two women), aged 22–47 years
(mean ± standard deviation = 34 ± 10 years). Seven of the participants were right-handed and



94 Adaptive Filters for the Identification of Couplings in Human EEG
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Filtered EEG signals

Adaptive frequency
tracking
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and frequencies

Feature extraction
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EEG features without
adaptive tracking
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Figure 6.1: Processing steps used for analyzing the EEG data from the IC experiment. The same
features were extracted before and after frequency tracking in order to assess the usefulness of
the SFT.

Figure 6.2: Experimental conditions, (left) IC condition, (right) NC condition.

two left-handed according to the Edinburgh handedness inventory [141].
Participants viewed arrays of “pac-men” inducers presented in either of two orientations. In

the illusory contour (IC) condition, the inducers were turned in order to produce the illusory
perception of a simple geometric shape. On the contrary, in the no contour (NC) condition, the
inducers were rotated 180◦ outwards; this prevented any illusory perception with the same lu-
minance and contrast. Examples of the two conditions are shown in Figure 6.2. Each stimulus
appeared for 500 ms, followed for 1000 ms by a blank screen. A Yes/No response prompt ap-
peared then and remained visible until a decision was made, allowing subjects to control stimulus
presentation. The response was followed by a blank screen for 1000 ms. The response prompt
was used to clearly separate the sensory response from the motor response.

6.2.2 Data Acquisition and Pre-processing
Continuous EEG was recorded through a Neuroscan Synamp from 64 scalp electrodes (im-

pedances ≤5 kΩ), referenced to the nose, band-pass filtered from 0.05 Hz to 100 Hz, and sampled
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at 500 Hz. Trials for each subject and condition were visually selected with the Cartool software
by Denis Brunet [142] (http://brainmapping.unige.ch/cartool). A threshold of ±80 µV
for artifact rejection was used. Each trial represented 2000 ms of EEG data, with stimulus onset
after 500 ms. There were an average (± standard deviation) of 300 (± 57) EEG trials from the
IC condition and 295 (± 43) trials from the NC condition included in the analyses. These values
did not significantly differ (t(8) = 1.06, p = 0.32). Once the trials were extracted, all further
processing was performed in MATLAB R©.

First, the EEG signals recorded from a cluster of five electrodes (P2, P4, P6, PO4 and PO6)
were selected. This selection was based on the right-lateralized posterior scalp distribution of the
ERP difference between IC and NC conditions (cf. Figure 3 in [85]). Then, signals from these
electrodes were resampled from 500 Hz to 250 Hz and the power line interference at 60 Hz was
canceled with a narrow notch filter. (The original recordings were performed at the Nathan Kline
Institute for Psychiatric Research in Orangeburg, New York, USA.) The spatial mean of the five
electrodes was computed in order to obtain a slightly more global view. The signals obtained
after spatial averaging were then filtered in the following frequency bands: 1–4 Hz, 4–8 Hz,
8–12 Hz, 15–25 Hz, 35–45 Hz, 45–55 Hz, 55–65 Hz and 65–75 Hz. It is important to mention
that the signals were filtered in both forward and reverse directions in order to achieve zero phase
distortion [31]. Consequently, the samples at the beginning and at the end should be considered
with caution as they were susceptible to transients and border effects. Once the band-pass signals
were obtained, the SFT [63, 64] was applied in order to extract the main oscillation in each band
as well as its estimated instantaneous frequency.

As the SFT is thoroughly presented in Chapter 3, only its main features are repeated here. It
has been developed in the complex-valued signal framework, and thus it must be applied to the
analytic representation of the input signal. This representation can be obtained with the discrete
Hilbert transform (DHT) [34]. A real output signal can always be recovered by keeping only the
real part. It is composed of two parts (Figure 3.1): a time-varying band-pass filter for extract-
ing the oscillation and an adaptive mechanism for updating the current instantaneous frequency
estimate. The filter (3.2) has unit gain and zero phase at its central frequency, which is of the
utmost importance for measuring couplings based on phase information. The adaptive mecha-
nism is based on the complex discrete oscillator equation (3.4), and thus the SFT maximizes the
oscillator behavior at the output.

To summarize the pre-processing, the spatial average of a cluster of five electrodes was com-
puted, then the signals were separated into various frequency bands with fixed band-pass filters,
and finally the SFT was applied in order to extract the main oscillation and its instantaneous
frequency in each band with a narrow time-varying band-pass filter. The following values were
selected for the parameters of the tracking scheme: β = 0.975 (this corresponds approximately
to a 3-dB bandwidth of 2 Hz), δ = 0.95, and the initial frequency was set to the center of the
considered frequency band. For proper initialization of the internal variable, the SFT was ap-
plied to longer signals obtained by adding the mirrored first 500 ms at the beginning. The input
and outputs of the SFT are illustrated in Figure 6.3 with an EEG signal filtered in the 35–45 Hz
band. It is possible to see that the tracking is not immediate, because the adaptation introduces a
slight delay. Finally, one oscillatory component and its estimated instantaneous frequency were
obtained for each frequency band.

In order to assess the presence or absence of phenomena, surrogate EEG signals were gen-
erated from the original data [143, 144]. This was done as follows: (1) an EEG signal was
transformed into the frequency domain with the discrete Fourier transform (DFT), (2) then the
amplitudes were kept but the phases were randomized (random variables drawn from a uniform
distribution between 0 and 2π), (3) finally the modified signal was transformed back into the
time domain. The phase randomization destroys the structure in the input signal and yields a
more stationary output. However, the surrogate signal shares some properties with the original
one, such as probability density function and autocorrelation. Thus, they have also the same

http://brainmapping.unige.ch/cartool
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Figure 6.3: Pre-processing steps, (top) EEG signal filtered in the 35–45 Hz band, (middle) oscil-
lation extracted with the SFT, and (bottom) its estimated instantaneous frequency. The estimated
frequency is plotted on top of the short-time Fourier transform of the EEG signal. The vertical
dashed lines denote stimulus onset.

power spectral density. This surrogate approach can help to highlight non-stationary effects, like
stimulus-locked responses. This operation was repeated in order to obtain one surrogate signal
for each EEG signal. Then, the same pre-processing was applied to the surrogate signals (fixed
band-pass filtering and adaptive frequency tracking). This resulted in two datasets: a real dataset
(corresponding to the real EEG signals) and a surrogate dataset. An example of surrogate signal
is shown in Figure 6.4. One can observe that although the real and surrogate signals are different,
they have the same amplitude spectrum.

6.2.3 Features
Once the pre-processing was applied to all EEG signals (real and surrogate ones), three dif-

ferent features were investigated. They were used for highlighting differences between real and
surrogate datasets as well as between the two conditions used in the experiment (IC and NC).
They also permitted to assess the usefulness of the SFT, as the same features were computed
before and after frequency tracking. The features were computed on sliding windows of length
300 ms which offered a good tradeoff between temporal resolution and estimation accuracy. The
time shift between successive windows was set to 10 ms. Sliding windows were used in order
to visualize the evolution of the features over time. The complete procedure for extracting the
features from the spatial-averaged EEG signals is depicted in Figure 6.1.

Then, statistical tests were performed in order to display significant differences between real
and surrogate datasets or IC and NC conditions. However, before applying the tests, the features
were transformed into approximately Gaussian variables whenever necessary. Finally, analysis
of variance (ANOVA) [145] was performed with “subject” as a random effect and “dataset”
or “condition” as a fixed effect for the 101 windows whose centers were located in the interval
0–1000 ms following stimulus presentation. Only the p-value for the fixed effect was considered.
As many tests were performed for each feature which could lead to several type I errors [146],
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Figure 6.4: Original and surrogate EEG signals, (top left) real EEG signal, (bottom left) surrogate
signal, (top right) amplitude spectrum of the real signal, (bottom right) amplitude spectrum of
the surrogate signal. Vertical dashed lines denote stimulus onset.

an effect was declared significant only when the ANOVA yielded a p-value below 5% for some
number of successive windows. Furthermore, permutation tests [147] were used to compute a
lower bound for this number of successive significant windows in order to achieve a final p-value
below 5%. These tests were performed by repeating 1000 times the ANOVA with randomly
permuted dataset or condition memberships. In other words, the features computed on sliding
windows were randomly reassigned to either of the datasets or conditions while keeping the
true subjects’ assignments and the natural temporal order of the windows so as to preserve the
correlation structure. The p-values for all windows were then computed with the ANOVA, and
the maximum number of successive significant windows (p < 0.05) was evaluated for the 1000
repetitions. Thus, the distribution of the maximum number of successive significant windows
under the hypothesis of no difference between the datasets or conditions could be estimated. This
led to an estimate of the probability of observing a number of successive significant windows
equal to or greater than the one obtained with the true assignment of datasets or conditions when
assuming no difference between these datasets or conditions. This probability estimate is in fact
the p-value for the number of successive significant windows for the feature under investigation.
In practice, a difference was declared significant only when this p-value was below 5% and the
ANOVA rejected the null hypothesis for at least 4 successive windows. The latter condition
ensured that the observed difference was not only anecdotal. This statistical analysis was applied
to three features: the mean instantaneous frequency estimated by the SFT, the phase-amplitude
and phase-phase couplings. All details regarding the computation of these features are provided
in the following sections.

Mean frequency

The first feature considered in this study was the mean estimated instantaneous frequency,
based on the estimate provided by the SFT. For this feature no transformation was needed for
having approximately Gaussian-distributed variables due to the central limit effect [148]. Al-
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though this study focused mostly on cross-frequency couplings, the mean frequency was also
investigated as it was readily available thanks to the SFT. Also, this kind of feature was rarely
analyzed in this context. It is important to notice that this feature could not be computed without
adaptive frequency tracking.

Phase-amplitude couplings

Phase-amplitude couplings were measured with the phase locking value (PLV) [138]. The
PLV is computed using the phase of the low frequency component φlf[n] and the phase of the
amplitude of the high frequency component φahf [n]:

PPA =
∣∣∣∣E {

e j(φlf [n]−φahf [n])}∣∣∣∣ , (6.1)

The phases and amplitudes were extracted with the DHT. The PLV takes a value of one for
perfectly synchronized signals and zero when there is no synchronization. In practice, the expec-
tation was replaced by the sample mean. The PLV values were transformed into approximately
Gaussian random variables with an arcsine transform (ZPA = arcsin(2PPA−1)) before performing
the statistical tests [149].

Phase-phase couplings

Phase-phase couplings were also measured with the PLV. However, this measure was slightly
modified in order to take into account oscillatory components with different frequencies [137].
It is defined as follows for measuring phase-phase couplings:

PPP =
∣∣∣∣E {

e j(aφlf [n]−bφhf [n])
}∣∣∣∣ , (6.2)

where a and b are coupling coefficients. The following values for a:b were considered: 4:3, 3:2,
2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1 and 9:1. Only the PLVs for which the frequency bands and cou-
pling coefficients made sense were computed (i.e. bands that overlapped once multiplied by the
corresponding coupling coefficients). For instance, when measuring the phase-phase couplings
between 1–4 Hz and 35–45 Hz components, the coupling coefficients 2:1 were discarded. In-
deed, multiplying the limits of each band with the corresponding coefficient yields 2–8 Hz and
35–45 Hz which do not overlap. As for the phase-amplitude couplings, the expectation was re-
placed by the sample mean, and the same arcsine transform was applied before performing the
statistical analyses (ZPP = arcsin(2PPP − 1)).

6.2.4 Synthetic Signals
The usefulness of the SFT for measuring cross-frequency couplings was also evaluated with

synthetic signals and Monte Carlo simulations. Two cases were considered: a basic case with
sinusoids embedded in additive noise and a more complex case in which synthetic signals were
generated in order to mimic a real EEG signal. In the first case, the goal was to measure the phase-
phase couplings with the PLV between two simple signals. The input signals were defined as two
sinusoids at normalized frequencies 0.05 and 0.35 with uniformly distributed phases embedded
in independent white Gaussian noises:

x1[n] = sin(2π0.05n + θ1) + v1[n], n = 0, 1, . . . , 1074, (6.3a)

x2[n] =
1
3

sin(2π0.35n + θ2) + v2[n], n = 0, 1, . . . , 1074, (6.3b)

where θ1 and θ2 were random phase offsets, and v1[n] and v2[n] were the additive noise processes.
The 1/3 factor was used to take into account the power decrease in higher frequencies in EEG
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data. Then, the SFT was applied for extracting the oscillatory component in each signal. The
parameters of the adaptive algorithm were set to β = 0.975 and δ = 0.95. The phases of input
and output signals were extracted with the DHT. The first and last 500 samples were then dis-
carded in order to avoid any border effect. This yielded 75-samples phase signals whose length
corresponded to the one of the 300-ms windows used in the EEG analysis. Finally, the PLV was
computed with coupling coefficients set to 7:1 for the phase signals obtained with and without
frequency tracking. The PLV mean and standard deviation were estimated with 10,000 Monte
Carlo simulations for the two approaches. Furthermore, this procedure was repeated for SNR
values ranging from 0 to 20 dB in 1 dB steps. It is important to note that without noise the PLV
for these signals should be equal to one.

In the second case, we generated two 500-samples signals mimicking the outputs of the
band-pass filters used when analyzing the real EEG data. The sampling frequency for these two
synthetic signals was set to 250 Hz which corresponded to a duration of 2000 ms. The first signal
was defined as

x1[n] = 5A[n] sin
(
2π

5.5
250

n + θ1

)
+ v1[n], n = 0, 1, . . . , 499, (6.4a)

and the second one as

x2[n] = 2A[n] sin
(
2π

44
250

n + θ2

)
+ u[n] + v2[n], n = 0, 1, . . . , 499, (6.4b)

where θ1 and θ2 were random phase terms, v1[n] and v2[n] were additive white Gaussian noises
with variances 25 and 4 respectively, A[n] was the time-varying amplitude of the sinusoids and
u[n] was a transient periodic interference at 36 Hz. They were set to

A[n] =



0.2 for 0 ≤ n < 125,
0.2 + 0.8(n − 125)/25 for 125 ≤ n < 150,
1 for 150 ≤ n < 350,
1 − 0.8(n − 350)/25 for 350 ≤ n < 375,
0.2 for 375 ≤ n < 500,

(6.5)

and

u[n] =


0 for 0 ≤ n < 125,
3g[n − 125] sin(2π(36/250)n + θ3) for 125 ≤ n < 375,
0 for 375 ≤ n < 500,

(6.6)

where g[n] is a 250-samples Hann window [31] and θ3 is a random phase offset. The signals
x1[n], x2[n], A[n] and u[n] are illustrated in Figure 6.5 for one realization of the random phases
and noises. The first signal was then filtered in the 4–8 Hz band and the second one in the
35–45 Hz band with the same fixed band-pass filters used before. All the parameters were cho-
sen in order to generate synthetic signals inspired by a real EEG signal with stable oscillatory
components at 5.5 Hz and 44 Hz and a short periodic interference at 36 Hz. The SFT was ap-
plied to both signals for extracting the main periodic components with the same parameters and
mirroring procedure as for the real EEG data. The phase-phase couplings were then measured by
computing the PLV with coupling coefficients 8:1 over sliding windows of length 300 ms shifted
by 10 ms. The results obtained with and without tracking were averaged over 10,000 realiza-
tions of the random phases and noises. In this synthetic example, there should be an increase in
coupling strength when n is between 150 and 350 samples (600–1400 ms).
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Figure 6.5: Examples of the synthetic signals used for assessing the usefulness of the SFT, from
top to bottom: x1[n] (6.4a), x2[n] (6.4b), A[n] (6.5) and u[n] (6.6).

6.3 Results

6.3.1 Synthetic Signals

Before presenting the results obtained with the signals recorded during the IC experiment,
the outcomes of the Monte Carlo simulations with synthetic signals are presented. The mean
PLVs with error bars obtained with the first set of signals (6.3) are shown in Figure 6.6 for all
tested SNR values. Without noise the PLV should be equal to one in this scenario as the two os-
cillatory components were perfectly synchronized with 7:1 coefficients. This was indeed the case
for very low noise levels. However, without adaptive tracking, the mean PLV quickly decreased
as the noise variance increased. This decrease was quite severe even for moderate noise levels.
By contrast, the SFT led to PLV values that were much more resilient to noise, at the cost of
increased estimation variance however. Nevertheless, the SFT increased the overall performance
of the PLV for measuring phase-phase couplings with these synthetic signals. Indeed, although
the PLV variance was higher with tracking, the mean PLV obtained without tracking reached
its minimal value for SNR values below 5 dB. In the second case, where synthetic signals were
generated so as to imitate real EEG data (6.4), the SFT also proved to be helpful for measuring
phase-phase couplings. These signals contained two perfectly synchronized sinusoids with 8:1
coefficients embedded in noise. An interfering periodic component active during a short duration
was also present in the high-frequency signal. The two sinusoids had time-varying amplitudes
that reached their maximal values in the interval 600–1400 ms. And thus, the PLV computed
over 300-ms sliding windows shifted by 10 ms should increase in this interval. The results av-
eraged over 10,000 Monte Carlo simulations are shown in Figure 6.7 with and without adaptive
frequency tracking. Without the SFT, the PLV increased in the beginning of the interval as ex-
pected, but it was then completely disrupted by the interfering oscillation. In the end of the
interval, it increased again as the amplitude of the interference dropped. On the contrary, the
PLV values obtained with the SFT were higher during the whole duration of the interval, except
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for an adaptation delay (∼150 ms). Therefore, with these synthetic signals, meaningful phase
information could be extracted by means of the SFT, which led to robust PLV values. In particu-
lar, the first example showed its tolerance to broad-band noise, while the second one showed its
resilience to interfering oscillations. This concludes the analysis of synthetic signals, and thus
the following sections focus on real EEG data.

6.3.2 Mean Frequency

The comparisons between the real and surrogate datasets yielded significant differences in
terms of mean frequency for the 1–4 Hz component in the interval 180–380 ms (21 successive
windows, permutation test: p < 0.001) and the 4–8 Hz component in the interval 200–380 ms
(19 successive windows, permutation test: p < 0.001). In both cases, the estimated instantaneous
frequency was higher for the real data than for the surrogate ones. This is illustrated in Figure 6.8.
It seems that the mean frequency of the main oscillatory component in the band 1–4 Hz increased
smoothly following stimulus presentation for the two datasets. However, this frequency increase
was more important in the real data. The phenomenon was slightly different for the 4–8 Hz band.
Indeed, in this case, the main frequency remained almost constant for the surrogate dataset. By
contrast, an increase in mean frequency after stimulus presentation for the real dataset caused the
significant difference. There was no other significant difference between the two datasets for this
feature.

As significant differences in mean frequency were observed between the real and surrogate
datasets, the IC and NC conditions were also compared with respect to this feature. There were
significant differences between the two conditions for the instantaneous frequency of the com-
ponents in the 4–8 Hz and 45–55 Hz bands. These two comparisons are shown in Figure 6.9.
The frequency was significantly higher for IC than for NC for the 4–8 Hz component in the
interval 230–610 ms (39 successive windows, permutation test: p < 0.001). The frequency in-
crease following stimulus presentation was more pronounced and lasted longer for IC than for
NC. By contrast, IC yielded a lower mean frequency than NC for the 45–55 Hz component. This
difference was significant in the interval 680–920 ms (25 successive windows, permutation test:
p < 0.05). In this case, the frequency decreased more than 500 ms after stimulus for IC while it
increased for NC. No other significant difference between the conditions was observed in terms
of frequency.

6.3.3 Phase-amplitude Couplings

Several combinations of components yielded significant differences after stimulus onset in
phase-amplitude couplings when comparing real and surrogate datasets. Most of the signifi-
cant results were obtained when the 4–8 Hz component was involved. A significant decrease in
coupling strength was observed after stimulus presentation for the real dataset compared to the
surrogate one when the 4–8 Hz component was considered as the low frequency component. By
contrast, an increase was obtained with the components from the 1–4 Hz and 4–8 Hz bands. All
these results involving the 4–8 Hz component are summarized in Figure 6.14. Furthermore, two
examples of comparisons between the real and surrogate datasets in terms of phase-amplitude
couplings are shown in Figure 6.10 for the combinations 1–4 Hz and 4–8 Hz as well as 4–8 Hz
and 35–45 Hz. Other significant results were obtained with the following pairs of components:
1–4 Hz and 8–12 Hz in the interval 170–320 ms (real > surrogate, 16 successive windows, per-
mutation test: p < 0.001), 1–4 Hz and 15–25 Hz in the interval 190–420 ms (real > surrogate,
24 successive windows, permutation test: p < 0.001), 1–4 Hz and 55–65 Hz in the interval
220–340 ms (real > surrogate, 13 successive windows, permutation test: p < 0.01), 8–12 Hz
and 15–25 Hz in the interval 90–280 ms (real < surrogate, 20 successive windows, permutation
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Figure 6.6: Mean PLV values with corresponding error bars obtained with and without adaptive
frequency tracking for SNR values ranging from 0 to 20 dB in 1 dB steps.

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

time [ms]

p
h

as
e 

lo
ck

in
g

 v
al

u
e

 

 

without frequency tracking

with frequency tracking

Figure 6.7: Mean PLV values measuring the phase-phase couplings over 300-ms sliding windows
for a synthetic EEG example.
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ones denote the 5% significance level.
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the 5% significance level.
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test: p < 0.001), and 8–12 Hz and 35–45 Hz in the interval 210–240 ms (real < surrogate, 4
successive windows, permutation test: p < 0.05).

The strength of phase-amplitude couplings for the IC and NC conditions was also compared.
All significant differences were found when the 4–8 Hz component was involved. In fact, when
the 4–8 Hz component was considered as the low frequency component, the coupling strength
was smaller for IC than for NC. It was the inverse when the 4–8 Hz component was considered as
the high frequency component (this was only the case for the combination 1–4 Hz and 4–8 Hz).
An example of this phenomenon is illustrated in Figure 6.11. It can be seen that the stimulus
caused a change in phase-amplitude coupling strength (either an increase of a decrease) and that
this change was always more pronounced for the IC than for the NC condition. All the results
of the differences between the two conditions for the phase-amplitude couplings involving the
4–8 Hz component are illustrated in Figure 6.15.

6.3.4 Phase-phase Couplings
The pattern of results was more complex for the phase-phase couplings. Different results

were obtained for different coupling coefficients. However, similarly to the phase-amplitude
couplings, most of the significant differences were observed when the 4–8 Hz component was
considered either as the low- or high-frequency component. When comparing real and surrogate
datasets, the dataset yielding higher coupling strength varied depending on the ratio of coupling
coefficients. The phase-phase coupling between the 1–4 Hz and 4–8 Hz components were lower
for the real dataset than for the surrogate one when a low coefficient ratio was used (4:3 and 3:2).
On the contrary, when this ratio increased (from 4:1), the coupling strength was higher for the
real signals. For coefficients 2:1, the coupling strength was higher for the real data while it was
lower for coefficients 3:1. When the 4–8 Hz component was considered as the low frequency
component, the coupling strength was higher for low ratios of coefficients. But, as before, the
opposite result was observed for higher ratios. An example of this inversion phenomenon is
shown in Figure 6.12 for the 4–8 Hz and 35–45 Hz components with coefficient pairs set to 6:1
and 9:1. One can observe that these significant differences were caused by sharp changes (either
increase or decrease) in the PLV. All the results of the comparisons between real and surrogate
datasets for phase-phase couplings for the 4–8 Hz component are summarized in Figure 6.14.
The permutation tests also identified significant differences between the two datasets for several
other combinations of bands. The combinations of bands for which the coupling strength was
significantly higher for the real data were the 1–4 Hz and 8–12 Hz bands with coefficients 3:1,
7:1, 8:1 and 9:1, the 1–4 Hz and 15–25 Hz bands with coefficients 6:1, the 1–4 Hz and 35–45 Hz
bands with coefficients 9:1, the 8–12 Hz and 15–25 Hz bands with coefficients 2:1 and 3:1, the
8–12 Hz and 35–45 Hz bands with coefficients 4:1, the 8–12 Hz and 45–55 Hz bands with coef-
ficients 6:1, the 8–12 Hz and 55–65 Hz bands with coefficients 8:1, the 8–12 Hz and 65–75 Hz
bands with coefficients 9:1, the 15–25 Hz and 35–45 Hz bands with coefficients 2:1. On the
other hand, the combinations of bands showing significantly higher coupling strength for the
surrogate datasets were the 1–4 Hz and 8–12 Hz band with coefficients 4:1 and 5:1, the 8–12 Hz
and 35–45 Hz bands with coefficients 3:1, the 8–12 Hz and 45–55 Hz bands with coefficients
4:1 and 5:1, the 8–12 Hz and 55–65 Hz bands with coefficients 6:1, the 8–12 Hz and 65–75 Hz
bands with coefficients 6:1 and 7:1. Consequently, the inversion phenomenon was also observed
for other combinations of bands, in particular the ones involving the 8–12 Hz band.

A very similar inversion phenomenon depending on coupling coefficients occurred when
comparing the IC and NC conditions for the phase-phase couplings. When measuring phase-
phase couplings between the 1–4 Hz and 4–8 Hz components, higher coupling strength was ob-
served for NC with low ratios of coefficients (4:3 and 3:2). While, for the coefficient 3:1, IC
yielded higher coupling strength. For larger ratios, no clear differences were found for these two
bands. When the 4–8 Hz component was considered as the low frequency component, the IC
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Figure 6.10: Comparisons between real (R) and surrogate (S) datasets for the phase-amplitude
(PA) couplings measured using the PLV. Mean PLVs for (top left) the 1–4 Hz and 4–8 Hz com-
ponents and (top right) the 4–8 Hz and 35–45 Hz components, and ANOVA p-values for the
comparison between the two datasets for (bottom left) the 1–4 Hz and 4–8 Hz components and
(top right) the 4–8 Hz and 35–45 Hz components. Vertical dashed lines denote stimulus onset
and horizontal ones denote the 5% significance level.
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Figure 6.11: Comparisons between IC and NC conditions for the phase-amplitude (PA) cou-
plings measured using the PLV. Mean PLVs for (top left) the 1–4 Hz and 4–8 Hz components
and (top right) the 4–8 Hz and 35–45 Hz components, and ANOVA p-values for the compari-
son between the two conditions for (bottom left) the 1–4 Hz and 4–8 Hz components and (top
right) the 4–8 Hz and 35–45 Hz components. Vertical dashed lines denote stimulus onset and
horizontal ones denote the 5% significance level.
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condition led to higher coupling strength compared to the NC condition for low ratios of coeffi-
cient pairs. However, as the ratio increased, the condition yielding the higher coupling strength
changed to NC. Figure 6.13 shows an example of this change for the 4–8 Hz and 8–12 Hz com-
ponents with coefficients set to 3:2 and 2:1. This phenomenon was observed for various com-
binations of frequency bands and coefficient pairs. All the results obtained with the 4–8 Hz
component are reported in Figure 6.15.

6.3.5 Advantages of Adaptive Frequency Tracking
For assessing the usefulness of the SFT for real EEG data, the two conditions IC and NC

were compared when the features were computed without adaptive frequency tracking. In other
words, the features were also computed using the output signals of the predefined band-pass
filters as shown in Figure 6.1. Obviously, the mean frequency could not be estimated without
frequency tracking as it is specifically an output of the SFT. Nevertheless, the phase-amplitude
and phase-phase couplings were measured and the IC and NC conditions were compared with
the same test procedure as before. The focus was put on cross-frequency couplings involving
the 4–8 Hz component as they yielded all the significant differences when the SFT was applied.
Similarly to Figure 6.15, the results obtained in this case are shown in Figure 6.16. Comparing
the two figures, one can notice that the results obtained with and without adaptive frequency
tracking are very similar and that there is no conflict. However, a more detailed investigation
revealed that the differences between IC and NC in terms of coupling strength were, in most
cases, more clearly highlighted when using the SFT. In fact, when investigating the differences
in cross-frequency couplings involving the 4–8 Hz component, a greater number of successive
significant windows was obtained for only seven cases without tracking, including two cases
where no significant difference was observed after applying the SFT. For all other cases, the
proposed adaptive scheme performed as well as or (more frequently) better than the traditional
approach, in terms of number of successive significant windows. It also led to the detection of
significant differences between IC and NC which remained unnoticed without tracking in five
cases. The usefulness of the SFT is particularly apparent for phase-amplitude couplings. How-
ever, it is worth mentioning that the adaptation process in this algorithm introduces a delay. This
caused the intervals of significant differences to be shifted in time compared the ones obtained
without tracking. A coarse method for comparing the results obtained with and without the SFT
is to count the number of successive significant windows in Figures 6.15 and 6.16 for phase-
amplitude and phase-phase couplings. Thus, for the phase-amplitude couplings, this led to 102
and 29 windows with and without frequency tracking. These values were 272 and 208 for phase-
phase couplings. As mentioned previously, when Figures 6.15 and 6.16 are put side-by-side,
the significant intervals obtained with the SFT were delayed compared to those obtained without
tracking as the adaptation process of the proposed algorithm is not instantaneous. This delay
could be quite large depending on the dynamics of the signals under study. Nevertheless, in most
cases, it remained reasonable and the intervals overlapped. However, there were a few cases
where the delay was quite important (> 200 ms). For instance, the significant interval obtained
when comparing the phase-phase couplings with 4:3 coefficients between the 1–4 Hz and 4–8 Hz
components occurred 300 ms later with frequency tracking. These long delays, while unusual,
could be explained by large non-stationary dynamics in the input signals of the SFT.

For the sake of completeness, the extents and significance levels of the intervals shown in
Figures 6.14, 6.15 and 6.16 are also reported in numeric format at the end of this chapter in
Tables 6.1, 6.2 and 6.3.
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Figure 6.12: Comparisons between real (R) and surrogate (S) datasets for the phase-phase (PP)
couplings measured using the PLV between the 4–8 Hz and 35–45 Hz components. Mean PLVs
with coupling coefficients set to (top left) 6:1 and (top right) 9:1, and ANOVA p-values for the
comparison between the two datasets with coefficients set to (bottom left) 6:1 and (bottom right)
9:1. Vertical dashed lines denote stimulus onset and horizontal ones denote the 5% significance
level.
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Figure 6.13: Comparisons between IC and NC conditions for the phase-phase (PP) couplings
measured using the PLV between the 4–8 Hz and 8–12 Hz components. Mean PLVs with cou-
pling coefficients set to (top left) 3:2 and (top right) 2:1, and ANOVA p-values for the comparison
between the two conditions with coefficients set to (bottom left) 3:2 and (bottom right) 2:1. Ver-
tical dashed lines denote stimulus onset and horizontal ones denote the 5% significance level.
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Figure 6.14: Comparisons between real (R) and surrogate (S) datasets for phase-amplitude (top
rows) and phase-phase (bottom rows) couplings measured with the SFT. Significant intervals
are shown in blue (respectively in red) when the coupling strength was higher for the real (re-
spectively surrogate) dataset. Color intensity denotes the significance level of the corresponding
permutation test.
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Figure 6.15: Comparisons between IC and NC conditions for phase-amplitude (top rows) and
phase-phase (bottom rows) couplings measured with the SFT. Significant intervals are shown in
blue (respectively in red) when the coupling strength was higher for the IC (respectively NC)
condition. Color intensity denotes the significance level of the corresponding permutation test.
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Figure 6.16: Comparisons between IC and NC conditions for phase-amplitude (top rows) and
phase-phase (bottom rows) couplings measured without the SFT. Significant intervals are shown
in blue (respectively in red) when the coupling strength was higher for the IC (respectively NC)
condition. Color intensity denotes the significance level of the corresponding permutation test.
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6.4 Discussion
Advances in analysis methods have revealed the importance of neuronal oscillations in brain

activity and function. Recent studies have highlighted that the top-down control of perception
and brain responses is supported to a large extent by oscillatory activity [70]. Consequently,
these oscillatory components are now considered as highly efficient information-rich signals in
the field of neuroscience. Furthermore, the coupling mechanisms occurring across frequency
bands have been the focus of several recent studies [119, 150–152]. Collectively, these findings
prompted the development of an adaptive frequency tracking scheme, the SFT, for analyzing
EEG data in more detail. Specifically, this algorithm was designed to maximize the oscillatory
behavior at the output, which is very important for extracting proper phase information, which,
in turn, can be used to measure cross-frequency couplings.

The advantages of the SFT for measuring cross-frequency couplings were evaluated with syn-
thetic signals and real EEG data recorded during an IC experiment. First, the synthetic signals
in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed
algorithm. In the first case, it was shown to be resilient to broad-band noise as the PLV decrease
remained limited in high noise levels (Figure 6.6). In the second case, synthetic signals imitating
real EEG recordings were generated in order to check that the SFT could cope well with inter-
fering oscillatory components (Figure 6.7). Therefore, these numerical simulations illustrated
two advantages of the adaptive scheme (resilience to broad-band noise and oscillatory interfer-
ence) compared to classical filter-bank approaches. These advantages were confirmed when the
SFT was applied to real EEG signals for extracting the temporal evolution of differences be-
tween the IC and NC conditions in terms of phase-amplitude and phase-phase couplings. The
number of successive significant windows was larger with tracking than without for almost all
combinations of bands. The advantages of the adaptive algorithm were particularly apparent for
phase-amplitude couplings. Furthermore, although two significant differences of phase-phase
couplings were only detected without the SFT, it led to the detection of five such differences
that remained unnoticed with traditional band-pass filtering. And the lengths of the significant
intervals were longer with adaptive frequency tracking in most cases. Thus, adaptive frequency
tracking could improve the measurements of cross-frequency couplings through precise extrac-
tion of neuronal oscillations. Moreover, as the SFT also provides an estimate of the instantaneous
frequency of the extracted component, significant changes in frequency could be observed for a
few of the bands under study, both when comparing the real and surrogate datasets and the two
conditions.

When considering more closely the outcomes of the comparisons between datasets and condi-
tions (Figures 6.14 and 6.15), a complex pattern of results was highlighted by the SFT. Nonethe-
less, a few important observations can be pointed out. First, the dataset or condition yielding
the highest coupling strength depended on the combination of bands. And, for phase-phase cou-
plings, it also depended on the coupling coefficients, or more specifically on the coefficient ratio.
Second, when comparing real and surrogate datasets, the significant differences were in most
cases due to changes in coupling strength, either decreases or increases, for the real signals while
it remained more or less constant for the surrogate ones. Since the surrogate data were generated
so as to be stationary, it was expected. A similar phenomenon was observed when comparing
IC and NC conditions. However, usually both conditions elicited a change in coupling strength
in the same direction. Nevertheless, this change was typically more pronounced for IC. This
seems to indicate that the processing of such contours requires more changes in terms of cross-
frequency couplings, but clearly more investigations are needed to confirm this observation. Re-
garding the outcomes of the comparisons between the two conditions, it is important to mention
that the increase of the instantaneous frequency observed of the 4–8 Hz component observed
during IC processing (Figure 6.9) was too weak to account for the inversion of the differences
in phase-phase couplings depending on the coefficient ratio. Clearly, more investigations are re-
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quired to perfectly understand the role of cross-frequency couplings. Nonetheless, the coupling
mechanisms reported in this chapter may link the responses to visual stimuli observed in the
lower frequencies [85, 131–133, 153, 154] to the ones observed in the higher frequencies [155],
alongside the results of numerous studies about cross-frequency couplings [119, 135, 156, 157].

Some limitations concerning this study and the proposed algorithm are worth discussing.
First, the adaptation process in the SFT is not instantaneous, and consequently the estimated
frequency suffers some delay. Thus, the time-varying band-pass filter used for extraction needs
some time to center on the tracked periodic component. This delay not only depends on the
SFT parameters, but also on the dynamics of the signal of interest. Indeed, the adaptation is
slower in highly non-stationary environments. The delay introduced by the algorithm is clearly
visible when comparing the significant intervals for cross-frequency couplings measured with
and without adaptive frequency tracking (Figures 6.15 and 6.16). Future developments of the
SFT will address this issue. In particular, an appoach for compensating the delay [80] may
prove useful in the framework of EEG processing. This study also focused on only a small
cluster of surface electrodes chosen on the basis of the results of a previous investigation [85],
and therefore only local information regarding the cross-frequency couplings were obtained.
Ideally, the same analysis procedure should be repeated for all available electrodes in future
studies. Furthermore, adaptive frequency tracking could also be applied to intracranial EEG
signals or to signals computed through inverse solution (e.g. [158]). In particular, the second
type of signals can also be used to measure couplings not only across frequency bands but also
across different brain areas (e.g. [159–161]). However, as the number of signals to analyze
increases the processing time may become prohibitive. The computation load comes mainly
from the statistical analysis based on permutation tests as the other operations such as filtering
and tracking are fairly time-efficient. The coupling analysis performed in this study also raises
another important question concerning the direction of the cross-frequency interactions: are the
low-frequency oscillations controlling the high-frequency ones or is it the inverse [162]? This
issue can be investigated with causality measures, however they still have some drawbacks that
may render them inefficient in this case.
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1–4 Hz 4–8 Hz 4–8 Hz 4–8 Hz 4–8 Hz 4–8 Hz 4–8 Hz
4–8 Hz 8–12 Hz 15–25 Hz 35–45 Hz 45–55 Hz 55–65 Hz 65–75 Hz

R > S R < S R < S R < S R < S R < S R < S
PA 34: 70–400 29: 120–400 31: 110–410 32: 100–410 28: 130–400 30: 130–420 32: 110–420

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

R < S R > S
PP 4:3 26: 150–400 28: 150–420

p < 0.001 p < 0.001

R < S R > S
PP 3:2 13: 190–310 34: 90–420

p < 0.001 p < 0.001

R > S R = S R = S
PP 2:1 30: 150–440

p < 0.001

R < S R > S
PP 3:1 10: 200–290 26: 150–400

p < 0.001 p < 0.001

R > S R < S
PP 4:1 5: 30–70 13: 190–310

p < 0.005 p < 0.001

R > S R < S R > S
PP 5:1 8: 0–70 26: 130–380 9: 190–270

p < 0.001 p < 0.001 p < 0.001

R > S R < S R > S R > S
PP 6:1 10: 0–90 29: 130–410 28: 140–410 5: 180–220

p < 0.001 p < 0.001 p < 0.001 p < 0.001

R > S R > S R > S R > S
PP 7:1 9: 0–80 29: 90–370 19: 160–340 7: 130–190

p < 0.001 p < 0.001 p < 0.001 p < 0.005

R < S R > S R > S
PP 8:1 16: 190–340 34: 90–420 19: 160–340

p < 0.001 p < 0.001 p < 0.001

R < S R > S R > S R > S
PP 9:1 29: 120–400 23: 90–310 30: 130–420 11: 160–260

p < 0.001 p < 0.001 p < 0.001 p < 0.001

Table 6.1: Results for the comparisons between real (R) and surrogate (S) datasets for the phase-
amplitude (PA) and phase-phase (PP) couplings measured with the SFT. Each cell indicates the
dataset yielding the highest coupling strength, the number of successive significant windows,
the corresponding time interval in ms with respect to the stimulus onset, and the p-value of
the corresponding permutation test. Coupling coefficients are shown in the left column for the
phase-phase couplings. Blank cells correspond to irrelevant combinations of bands and coupling
coefficients.
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1–4 Hz 4–8 Hz 4–8 Hz 4–8 Hz 4–8 Hz 4–8 Hz 4–8 Hz
4–8 Hz 8–12 Hz 15–25 Hz 35–45 Hz 45–55 Hz 55–65 Hz 65–75 Hz

IC > NC IC < NC IC < NC IC < NC IC < NC IC < NC IC < NC
PA 4: 370–400 18: 310–480 8: 310–380 16: 250–400 14: 330–460 20: 290–480 22: 190–400

p < 0.05 p < 0.001 p < 0.005 p < 0.001 p < 0.005 p < 0.001 p < 0.001

IC < NC IC > NC
PP 4:3 14: 350–480 29: 200–480

p < 0.001 p < 0.001

IC < NC IC > NC
PP 3:2 4: 350–380 28: 190–460

p < 0.01 p < 0.001

IC = NC IC < NC IC = NC
PP 2:1 35: 130–470

p < 0.001

IC > NC IC = NC
PP 3:1 4: 510–540

p < 0.001

IC = NC IC < NC
PP 4:1 5: 350–390

p < 0.001

IC = NC IC < NC IC > NC
PP 5:1 9: 320–400 9: 300–380

p < 0.001 p < 0.001

IC = NC IC = NC IC > NC IC > NC
PP 6:1 21: 240–440 5: 480–520

p < 0.001 p < 0.001

IC = NC IC = NC IC > NC IC > NC
PP 7:1 9: 180–260 17: 340–500

p < 0.001 p < 0.001

IC = NC IC > NC IC > NC
PP 8:1 5: 330–370 18: 150–320

p < 0.005 p < 0.001

IC < NC IC = NC IC > NC IC > NC
PP 9:1 18: 230–400 37: 160–520 5: 360–400

p < 0.001 p < 0.001 p < 0.001

Table 6.2: Results for the comparisons between IC and NC conditions for the phase-amplitude
(PA) and phase-phase (PP) couplings measured with the SFT. Each cell indicates the condition
yielding the highest coupling strength, the number of successive significant windows, the cor-
responding time interval in ms with respect to the stimulus onset, and the p-value of the corre-
sponding permutation test. Coupling coefficients are shown in the left column for the phase-phase
couplings. Blank cells correspond to irrelevant combinations of bands and coupling coefficients.
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1–4 Hz 4–8 Hz 4–8 Hz 4–8 Hz 4–8 Hz 4–8 Hz 4–8 Hz
4–8 Hz 8–12 Hz 15–25 Hz 35–45 Hz 45–55 Hz 55–65 Hz 65–75 Hz

IC > NC IC < NC IC = NC IC < NC IC = NC IC = NC IC = NC
PA 5: 310–350 9: 150–230 15: 230–370

p < 0.05 p < 0.001 p < 0.005

IC < NC IC > NC
PP 4:3 14: 50–180 14: 50–180

p < 0.001 p < 0.001

IC < NC IC > NC
PP 3:2 4: 150–180 24: 100–330

p < 0.005 p < 0.001

IC = NC IC < NC IC > NC
PP 2:1 29: 50–330 4: 450–480

p < 0.001 p < 0.001

IC > NC IC = NC
PP 3:1 4: 490–520

p < 0.001

IC = NC IC = NC
PP 4:1

IC = NC IC < NC IC > NC
PP 5:1 6: 210–260 5: 170–210

p < 0.001 p < 0.001

IC = NC IC = NC IC > NC IC > NC
PP 6:1 13: 120–240 6: 190–240

p < 0.001 p < 0.001

IC = NC IC = NC IC > NC IC > NC
PP 7:1 20: 50–240 8: 190–260

p < 0.001 p < 0.001

IC < NC IC > NC IC > NC
PP 8:1 11: 150–250 9: 200–280 7: 170–230

p < 0.001 p < 0.001 p < 0.001

IC < NC IC = NC IC > NC IC > NC
PP 9:1 11: 160–260 13: 120–240 6: 100–150

p < 0.001 p < 0.001 p < 0.005

Table 6.3: Results for the comparisons between IC and NC conditions for the phase-amplitude
(PA) and phase-phase (PP) couplings measured without the SFT. Each cell indicates the con-
dition yielding the highest coupling strength, the number of successive significant windows, the
corresponding time interval in ms with respect to the stimulus onset, and the p-value of the corre-
sponding permutation test. Coupling coefficients are shown in the left column for the phase-phase
couplings. Blank cells correspond to irrelevant combinations of bands and coupling coefficients.
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Identification of the
Outcome of Atrial
Fibrillation Ablation 7

This chapter presents an application of the harmonic frequency tracker (HFT), the extension
of the single frequency tracker (SFT) for harmonic components introduced in Chapter 4. More
precisely, the HFT was applied to electrocardiographic (ECG) signals in the context of a study
about the outcomes of catheter ablation for atrial fibrillation. In the following sections, atrial
fibrillation and catheter ablation are briefly introduced [163], and then all aspects of this study
are detailed. This study was presented in two publications [68, 69].

7.1 Introduction

Atrial fibrillation (AF) [164] is the most common cardiac rhythm disorder (arrhythmia). In
AF, the upper chambers of the heart, the atria, activate irregularly and do not beat at the normal
pace, the so-called sinus rhythm. Clinical guidelines classify AF in three categories depending
on its duration [165–167]: paroxysmal, persistent and permanent AFs. The arrhythmia is called
paroxysmal when it terminates spontaneously and lasts less than seven days. When sustained
for longer than seven days, AF is designated persistent. Frequently, it is not self-terminating and
thus may require a clinical intervention (called cardioversion) to restore the sinus rhythm. Long-
standing persistent AF, a subcategory of persistent AF, lasts for more than one year and usually
leads to permanent AF. In this case, cardioversion has failed to terminate the arrhythmia, or has
even not been attempted. AF results in impaired atrial mechanical activity, irregular ventricular
activation, fast heart rate, and decreased cardiac ouput [165, 167]. These dysfunctions can cause
several symptoms such as severe palpitations, angina, dyspnea, decreased exercise tolerance, and
more generally decreased quality of life [168, 169]. Although not directly life-threatening, AF
was associated with substantial morbidity and mortality [170]. Indeed, this tachyarrhythmia has
a potential tendency to precipitate and complicate heart failures. Furthermore, due to the impair-
ment of the atrial mechanical activity, AF promotes the formation of blood clots, which in turn
increases the risks for stroke and thromboembolic events. As stated previously, AF is the most
common arrhythmia in clinical practice. It has been estimated that this condition affects 4.5 mil-
lion people in the European Union and 2.2 million in the United States [167]. In addition, it has
been projected that 15.9 million will be affected in America by 2050, due to various factors such
as the AF prevalence increasing with age and the aging of the population [171]. Consequently,
as the health expenditures related to this arrhythmia are already important, the financial costs of
AF management will become a critical matter in the future [172].

Several guidelines have been proposed to manage this tachyarrhythmia [165–167, 173].
Namely, they provide a framework for treating AF in clinical settings. Possible treatments in-
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clude pharmacological and electrical cardioversions, low-energy pacing protocols by means of
implanted atrial pacemakers, and surgical and catheter-based ablations. In particular, stepwise
radiofrequency catheter ablation (step-CA) has become the treatment of choice for the restora-
tion of sinus rhythm in patients with persistent AF [167]. Due to the evolutive nature of atrial
fibrillation [174], electrical and structural remodeling of the atria usually takes place with AF
sustainance, providing diffuse pathological substrate for further AF perpetuation. Sites with ab-
normal high frequency discharges, described as complex fractionated electrograms, and regions
showing structural discontinuities in the left atrium (LA) are currently believed to be involved in
AF maintenance. Therefore, additional strategies to improve ablation success rate are required.
One of them is the creation of additional linear lesions. However, as the amount of ablation
needed to obtain long term sinus rhythm is unknown, the success rate of step-CA appears lim-
ited. Furthermore, to achieve high success rate, the ablation procedure typically lasts several
hours, which increases the risk of complications. In addition, the large electrical scars that are
created during the step-CA can play a major role as a substrate for subsequent arrhythmias and
probably increase the need for supplemental procedures. There is therefore a strong interest in
predicting the outcome of step-CA to decrease both procedural time and ablation extent. To
achieve this goal, a better understanding of AF dynamics and organization is clearly needed.

Several invasive and non-invasive techniques have been proposed to characterize the AF dy-
namics, quantify AF organization and predict the outcome of catheter ablation. It is clear that,
ultimately, non-invasive methods present the most benefit as they are easier to implement and less
restrictive for the patient. Such methods are typically based on the standard 12-lead surface ECG
after ventricular activity cancellation [175]. A simple example is the AF cycle length (AFCL)
which is computed by analyzing the main frequency of the ECG fibrillatory waves (F-waves)
[176]. It was shown that patients with longer baseline ECG AFCL have more successful out-
comes for single LA catheter ablation [177]. In the case of persistent AF, some patients require
bi-atrial ablation. For instance, in a recent study [178], whenever the intracardiac AFCL (mea-
sured invasively in this case) was shorter in the right atrial appendage (RAA) than in the left atrial
appendage (LAA) following LA ablation, right atrium (RA) ablation was performed. This study
established that baseline intracardiac AFCL was the best predictor of a successful procedure,
but without distinguishing between patients terminating after LA ablation only or after bi-atrial
ablation. In two other investigations [179, 180], the F-wave amplitude was shown to predict the
procedure outcome. It should be noted that, in the first of these studies, the analysis was per-
formed manually on individual leads. By contrast, in the second one, the proposed method was
automatic and took into account the inter-lead variability to increase prediction accuracy. In both
investigations, only LA ablation was conducted. Techniques based on AF spectral contents have
also been developed to assess AF complexity. Everett et al. [181] introduced the first organiza-
tion index based on power spectral density estimation to quantify AF organization. In practice,
this index is computed as the ratio of the area below the fundamental and harmonic peaks to
the total area of the magnitude spectrum. It was used to enhance the success rate of electrical
cardioversion by delivering shocks during periods of high organization. In addition, this index
was coupled to multivariate frequency analysis to distinguish persistent AF from long-lasting AF
successfully [182, 183]. Another approach characterized AF organization based on the phase
relations between fundamental and harmonic components [184]. In persistent AF, the fibrillatory
waveforms may fluctuate widely over time, and these techniques may not always be capable to
track sharp variations [184, 185]. Indeed, to a certain extent, all these methods implicitly as-
sume that the fundamental frequency of AF activity remains constant. Also, at the present time,
no study was able to distinguish patients that can be successfully treated by LA ablation only
from patients that require bi-atrial ablation. Therefore, new measures of organization based on
adaptive frequency tracking are proposed to tackle these issues and provide a global assessment
of AF dynamics. Furthermore, these measures can help to predict the outcome of the ablation
procedure like the intracardiac AFCL [178], but on the basis of surface ECG recordings only.
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This chapter is organized as follows. The materials and methods are described in Section 7.2.
The results are presented in Section 7.3, followed by a discussion in Section 7.4. Last, it should
be noted that, thereafter, the first harmonic component is considered to be the fundamental com-
ponent.

7.2 Materials and Methods

7.2.1 Ablation Protocol
The step-CA protocol, illustrated in Figure 7.1, consisted in pulmonary veins isolation (PVI),

defragmentation of complex fractionated atrial electrograms (CFAEs), LA linear ablations (roof
and mitral isthmus), ablation of RA CFAEs and linear ablation of the cavotricuspid isthmus.
The protocol was ended when AF was terminated into sinus rhythm or atrial tachycardia. Non
terminated AFs were cardioverted electrically. After restoration of sinus rhythm, verification
of conduction block (PVI and lines) was performed, and additional ablations were delivered to
achieve a complete block when needed.

7.2.2 Patient Population and Electrophysiological Measurements
The study group consisted of 17 consecutive male patients with persistent AF. Persistent AF

was defined as continuous AF lasting longer than four months, resistant to either pharmacological
or electrical cardioversion. The patients, depending on the outcome of their respective ablation
procedure, were classified into three groups:

Left terminated (LT) Patients that terminated into sinus rhythm or atrial tachycardia during
CFAEs or linear ablation in the LA (N = 11).

Right terminated (RT) Patients that terminated into sinus rhythm or atrial tachycardia during
ablation of the RA (N = 2).

Not terminated (NT) Patients that remained in AF and were cardioverted electrically (N = 4).

The characteristics of the patient population are reported in Table 7.1.
All patients had effective anticoagulation therapy for more than one month. All antiarrhyth-

mic drugs, with the exception of amiodarone and beta-blockers, were discontinued five half-
lives before the ablation procedure, which was performed in general anesthesia. The following
catheters were introduced via the right femoral vein: a 3.5-mm cooled-tip ablation catheter for
mapping and ablation, a steerable decapolar catheter within the coronary sinus, a circumferen-
tial duodecapolar Lasso catheter within the left atrium after transseptal access, and a quadripolar
catheter into the RAA for continuous monitoring. The heart electrical activity was also recorded
with standard 12-lead surface ECG, except that chest lead V6 was placed in the back (V6b) to
improve the recording of the antero-posterior activity of the atria. Surface ECG and endocardial
electrograms (EGMs) were continuously monitored and recorded for offline analysis at 2-kHz
sampling rate (Axiom Sensis XP, Siemens). For each patient, ECGs and EGMs were separated
in 10-s epochs arranged in chronological order. These epochs were not necessarily consecutive
as signals recorded during ablation were discarded. On average, 11 ± 3 minutes were recorded
at baseline for each patient.

7.2.3 Signal Processing
In order to analyze the arial activity, ventricular activity was canceled from the 12-lead sur-

face ECG recordings with the single-beat method [175]. This method treats QRS complexes and
T-waves separately: the T-wave cancellation is based on a dominant T-wave approach, and the
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Figure 7.1: Stepwise radiofrequency catheter ablation protocol.
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Left terminated Right terminated Not terminated
Characteristic N = 11 N = 2 N = 4

Age (years) 59 ± 6 58 ± 0.7 62 ± 5
Duration of AF (years) 8 ± 6 7 ± 0 4 ± 2
Duration of substained AF (months) 17 ± 8 11 ± 2 39 ± 11
Body mass index (kg/m2) 32 ± 6 28 ± 4 27 ± 7
Left atrial volume (ml) 179 ± 26 178 ± 87 164 ± 33
Left ventricular ejection fraction (%) 44 ± 10 58 ± 4 54 ± 13

Sites of AF termination
Left atrium

Roof 2
Left atrial appendage 1
Coronary sinus 2
Mitral isthmus 6

Right atrium
Cavotricuspid isthmus 1
Right atrial appendage 1

Table 7.1: Patient characteristics. Means ± standard deviations are indicated when relevant.

QRS complexes are suppressed by estimating the atrial activity with a weighted sum of sinusoids.
The single-beat method has two main advantages. First, the length of the ECG recordings is not
an issue. Second, it does not introduce any discontinuity and the QRS residues are reduced in
the canceled signals. This method was thoroughly tested on both synthetic and real ECG signals
and compared favorably to other widely-used techniques. The ECG recordings with canceled
ventricular activity were then downsampled at 50 Hz since this investigation focused on the first
two harmonic components and previous studies have shown that it is very uncommon for the
instantaneous fundamental frequency of the atrial activity to rise above 10 Hz [186].

In order to assess AF organization, the harmonic components of the atrial activity were ex-
tracted from the ECG recordings. The approach introduced previously [184] for characterizing
F-wave complexity using phase information performs this extraction in two steps. First, the fun-
damental frequency is determined by locating the largest peak in the interval from 3 to 12 Hz
in a power spectral density estimate. Then, the harmonic components are extracted using linear
time-invariant band-pass filters centered on the identified spectral peaks. In the study present-
ing this method, the phases of these components were estimated over non-overlapping adjacent
blocks, and the pairwise phase differences were used to characterize AF waveforms. This tech-
nique is based on the observation that, for perfectly regular oscillations, the harmonic frequencies
are integer multiples of the fundamental one, whereas it is not the case for irregular oscillations.
Therefore, the phase differences between fundamental and harmonic components should be close
to zero (modulo 2π) for regular (or organized) oscillations. On the contrary, the absolute values
of these phase differences should increase for more complex oscillations. The AF organization
can thus be quantified with these phase differences. As mentioned previously, one limitation of
this approach is that, in practice, the fundamental frequency is not constant. Therefore, there is a
tradeoff for setting the bandwidths of the band-pass filters. Indeed, with too narrow bandwidths,
the harmonic frequencies may wander outside of the passbands, while too wide bandwidths may
let too much noise through and thus disrupt the phase extraction. In the present study, to alleviate
this problem caused by the fixed band-pass filters, the HFT was used to estimate the instanta-
neous fundamental frequency and extract the harmonic components. As this adaptive scheme
is presented in Section 4.4 in detail, only its key aspects are repeated here. First, the HFT is
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composed of two parts, time-varying band-pass filters and adaptive mechanisms, as illustrated in
Figure 4.13. Each filter extracts one of the harmonic component, and the corresponding adaptive
mechanism provides an estimate of the fundamental frequency based on this filtered component.
At last, a global frequency estimate is computed by combining all estimates with a weighting
procedure. Furthermore, this algorithm attempts to maximize the oscillatory behavior at its out-
puts since it is derived from the SFT, an adaptive scheme based on the complex discrete oscillator
equation. The band-pass filters have also two very important properties, namely unit gain and
zero phase at the central frequency. Consequently, the extracted harmonic components are not
distorted, which is of the utmost importance when investigating their phase relations. One last
point is that the HFT is designed to process complex-valued signals. Thus, it was applied to the
analytic representations of the ECG recordings, which were computed with the discrete Hilbert
transform (DHT) [34]. In this study, the HFT was always set to track the first (or fundamen-
tal) and second harmonic components. In addition, the bandwidth and update parameters of this
adaptive tracking scheme were set to β = 0.95 and δ = 0.95.

7.2.4 Organization Measures
The first organization measure considered in this study is the intracardiac AFCL. Local ac-

tivation times were extracted from the bipolar recordings by detecting their maximum positive
peaks using sliding windows of 150 ms. False detections were removed using temporal and
amplitude thresholding. The intracardiac AFCL was measured in the LAA, RAA and coronary
sinus (CS). The AFCL was also computed for each precordial lead (V1-V6b) as the inverse of
the dominant frequency. The dominant frequency was estimated as the frequency of the largest
peak between 3 and 15 Hz in the power spectral density estimate of each lead. This estimate was
computed with Welch’s method [1, 2]. Longer AFCLs typically reflect more organized AF.

The second measure is the organization index (OI) [181]. In this study, it was obtained with
the following steps. First, the input signal was band-pass filtered between 1 Hz and 10 Hz.
Then, the power spectrum of the resulting filtered signal was computed with the discrete Fourier
transform (DFT), and the largest peak was located. Last, the OI was computed as the ratio of the
power in a 1-Hz band centered on this peak to the total power in the spectrum.

Similar to the OI, an adaptive OI (AOI) was defined as the ratio of the power of the first
two harmonic components extracted with the HFT to the total power of the signal. The local
estimates of these powers were computed by low-pass filtering the squared input and outputs
with a Hamming window of length 101 [31]. This yielded an organization measure localized in
time. Whenever a gobal value was needed, the local AOI was averaged over the whole signal
duration.

The filtered outputs of the adaptive scheme were also used to define another organization
measure derived from the phase difference between harmonic components. This measure is
closely-related to one proposed in [184] which is based on the observation that the difference
of the phases of two oscillations is an indicator of their synchronization. A typical method for
extracting the phase information is the Hilbert transform and its associated analytic represen-
tation [23]. However, interpreting phase information extracted from broad-band signals can be
problematic. Indeed, it has been shown that proper estimation of phase parameters can only be
performed on narrow-band signals [27, 30]. Applying the HFT ensures that the phase informa-
tion of the extracted harmonic components is meaningful. Thus, a suitable evaluation of the
complexity of the AF under study can be performed. This organization measure was computed
according to the following steps. The first and second harmonic components were extracted with
the tracking algorithm, and their phases were computed with the DHT. The phase of the second
component was divided by two to ensure that both quantities were comparable. Once the phase
difference was computed, its slope was locally estimated by fitting a polynomial of degree one
to centered sliding windows of odd length L, which was set to L = 101 in this study. The closer
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the slope is to one, the more organized is the signal of interest. Then, the phase difference slope
variance (PDSV) was computed as the variance of this local estimated slope. Small values of this
measure indicate data with low complexity, and thus more organized oscillations.

The AOI and PDSV are illustrated with two examples: one with a synthetic signal and one
with real surface ECG data. In the first example, the various steps of the analysis procedure
(harmonic frequency tracking and extraction of the organization measures) are also described.
The synthetic input signal is composed of two frequency-modulated (FM) harmonic components
embedded in additive white noise:

x[n] = A1 sin
(
2π f0n +

fd
fm

cos(2π fmn)
)
+A2 sin

(
2π2 f0n +

2 fd
fm

cos(2π fmn) −
4π
500

n
)
+v[n], (7.1)

where A1 = 1 and A2 = 0.5 are the amplitudes, f0 = 0.1 is the fundamental frequency, fd = 0.02
is the frequency deviation, fm = 0.002 is the modulation frequency, and v[n] is an additive white
Gaussian noise with a SNR of 10 dB. The second component also includes a linear phase drift.
Figure 7.2 shows the input signal, the extracted harmonic components, the estimated fundamen-
tal frequency, and the corresponding organization measures. Owing to the HFT, the fundamental
frequency and the components are precisely extracted which, in turn, leads to reliable organi-
zation measures. In the second example, a short excerpt of a real signal of atrial activity after
ventricular cancellation recorded from lead V1 was used. It is illustrated in Figure 7.3 along-
side the corresponding AOI and phase difference slope. In the beginning, the signal is poorly
organized as indicated by the low AOI and high PDS. However, around the 5-s mark, it becomes
more organized as the AOI rises and the PDS decreases.

All the considered organization measures (AFCL, OI, AOI and PDSV) were computed on all
available 10-s epochs recorded at baseline for all leads. Then, they were averaged over the epochs
of each subject. This resulted in one value for each measure, subject and lead. The intracardiac
AFCLs recorded with electrodes located in the LAA, RAA and CS were computed in the same
manner. It is also important to mention that the first two patients in LT group were discarded
when analyzing lead V6b. Indeed, this lead was recorded at the standard position (V6) for these
two patients.

7.2.5 Statistical Analysis
Two different analyses were performed. First, the relations between surface and intracardiac

baseline AFCLs were investigated with Pearson’s correlation coefficient [76]. For this purpose,
the correlation coefficient was computed for each combination of leads (V1-V6b) and intracar-
diac electrodes (LAA, RAA and CS). Second, the organization measures (AFCL, OI, AOI and
PDSV) were compared across the three groups (LT, RT and NT) for all leads within the analysis
of variance (ANOVA) framework [187]. In each case where the ANOVA declared a signifi-
cant effect, follow-up pairwise t-tests were performed in order to distinguish which groups were
different [188].

7.3 Results
The results of the comparison between mean AFCLs of chest leads V1 to V6b and intrac-

ardiac LAA, RAA and CS AFCLs at baseline are shown in Figure 7.4. The correlation be-
tween RAA and chest leads was maximal for V1 (r = 0.96) and progressively dropped until V5
(r = 0.26), with a moderate rise for V6b (r = 0.62). LAA AFCL showed the opposite pattern
with the highest correlation in V6b (r = 0.95) and the lowest one in V2 (r = 0.26). The corre-
lation between CS and surface AFCLs was similar to the LAA one, with two maxima at V1 and
V6b.
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Figure 7.2: Harmonic frequency tracking example. From top to bottom are plotted the input
signal, the extracted first and second harmonic components, the estimated fundamental frequency
on top of a short-time Fourier transform of the input signal, the AOI and the phase difference
slope (PDS). The first and last 50 samples of the PDS were not computed as they required the
knowledge of the phase difference for n < 0 and n > 500.
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lead V1 after ventricular cancellation, the corresponding AOI and the phase difference slope
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Boxplots showing the considered organization measures (AFCL, OI, AOI and PDSV) for the
LT, RT and NT groups at baseline are plotted in Figure 7.5 for all leads. Overall, the measures
indicated that the AFs that terminated during LA ablation were more organized. However, there
were a few exceptions: AFCL for lead V5, OI for leads V2 to V6b, and PDSV for lead V5. Sim-
ilarly, in all significant ANOVAs, except the one for the OI at lead V4, the AFs terminating after
LA ablation were less complex. The means and standard deviations of all organization measures
are shown in Figure 7.6 for all leads, alongside follow-up pairwise t-tests when relevant. The t-
tests highlighted two very interesting combinations, namely the AOI and PDSV measured at lead
V1 and V3 respectively. In these two cases, the patients in LT group were significantly different
from the patients in the two other groups. Therefore, these two measures might prove helpful for
predicting the outcome of step-CA a priori. Furthermore, in terms of PDSV, the RT group was
significantly different from both the LT and NT groups at leads V4 and V5. A counter-intuitive
case involved the OI and lead V4 where LT group was significantly less organized than the other
two. This result might be due to the limited number of patients included in this study. In all the
other cases where the ANOVA revealed significant differences, the t-tests could only distinguish
between two groups. In practical situations, this is less useful for predicting ablation outcome.

7.4 Discussion

The correlation of the ECG AFCLs and the multi-site intracardiac AFCLs has shown that
both atria dynamics are reflected in the surface ECG, as reported in previous studies. Holm
et al. [186] have shown that the ECG devoid of ventricular activity reflects the dynamics of the
intracardiac AFCL. More specifically, their results suggest that RA is the major contribution to
the F-waves in lead V1. Matsuo et al. [177] obtained similar results. By contrast, few studies have
investigated how the LA fibrillatory dynamics are reflected in the surface ECG. Platonov et al.
[189] have recorded simultaneously a standard 12-lead ECG with electrograms from the RAA
and LAA and have concluded that the LA dynamics is also present in the surface ECG, including
V1. The study from Petrutiu et al. [190] was extended by using posterior leads. Their results
confirmed that lead V1 reflects mostly the RA dynamics, and established a strong correlation
between the posterior leads and LA activity. In this study, the CS was also included in addition
to LAA and RAA. The analysis of Pearson’s correlation coefficients confirmed that the RAA
activity is mostly reflected by lead V1 and that the contribution of the LAA can be observed by
adding a dorsal electrode. The results for the CS were similar to the ones for the LAA.

Surface and intracardiac AFCL have been used to predict AF termination by step-CA. Haïs-
saguerre et al. [191] have shown that, during catheter ablation, the prolongation of intracardiac
AFCL predicted the conversion of AF into organized tachycardia. Rostock et al. [178] estab-
lished that baseline intracardiac AFCL was the strongest predictor of ablation success. Interest-
ingly, AFCL before AF termination was predictive on its own, but did not add predictive infor-
mation once baseline AFCL was selected. Whereas, Matsuo et al. [177] have shown that baseline
ECG AFCL was the only predictors of AF termination: patients with longer ECG AFCLs had
more successful catheter ablation.

As mentioned previously, current measures of organization (such as OI [181] or the method
based on phase relations between harmonics [184]) assume, to a certain extent, that the dominant
(or fundamental) frequency of fibrillatory activity remains constant. In persistent AF, the F-waves
can fluctuate widely over a short duration, which may affect the reliability of these measures. A
solution to this problem is to use the adaptive filters that can take into account such frequency
changes. Therefore, the HFT was applied to extract harmonic components. These components
were used to compute two organization measures, the AOI and the PDSV. The former is an
extension of the classic OI to use the outputs of the HFT, and the latter quantifies organization
with the phase difference between harmonic components. These two measures highlighted that,
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at baseline, patients in LT group were significantly more organized than the ones in RT and
NT groups. Since both approachs are based on the surface ECG, they may pave the way to
new techniques for predicting the success rate of step-CA. Such techniques would facilitate the
choice of the appropriate treatment for both the physician and the patient. Hence, avoiding
ablation procedures with low probability of success would increase the patient quality of life as
well as reduce the associated financial costs. Also, the patients in the RT group had significantly
different PDSV with respect to patients in the two other groups. This might prove helpful for
choosing the most suitable treatment option. Despite these promising results, this study suffers
from two main limitations. First, the number of patients is too limited. Second, they are very
badly distributed among the three groups. These two limitations might have given rise to the
specious results of the OI at lead V4, where patients in group LT had significantly more complex
AF than the ones in the other groups. Hopefully, by including more patients in this study, this
problem will be solved, without loosing the predictive value of the AOI and PDSV. Furthermore,
with additional patients and possibly a more balanced distribution among the three groups, the
two organization measures based on the HFT may be helpful in the development of a robust
classifier for deciding if a patient should undergo a cather ablation procedure or not. At last, it
should also be noted that, although the tracking performance of the HFT are trustworthy, it may
need some time to adjust to very abrupt changes in AF dynamics.
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Potential Applications of
Adaptive Frequency
Tracking 8

This chapter briefly presents three potential applications of the single frequency tracker (SFT)
and its extensions, the multiple frequency tracker (MFT), the multivariate frequency tracker
(MVFT) and the harmonic frequency tracker (HFT), introduced in Chapters 3 and 4. In the
first example of application described in Section 8.1, the SFT and HFT were used to estimate the
heart rate from a photoplethysmographic signal with poor SNR. In the two other examples, the
tracking schemes were applied to retrieve indirectly the instantaneous frequency of components
present in related signals. More specifically, the MVFT could recover the pedaling frequency
during sprint interval training from a sensor monitoring the concentration of different types of
hemoglobin in muscles as shown in Section 8.2, whereas, in Section 8.3, the SFT was used to
estimate the respiration frequency from R-R intervals throughout an incremental exercise test for
assessing the maximum oxygen uptake. At last, the potential applications of adaptive frequency
tracking algorithms are concisely summarized in Section 8.4.

8.1 Heart Rate Estimation from Photoplethysmogram

Photoplethysmography (PPG) is an optical technique to obtain the volumetric measurement
of an organ. Its main application is to determine indirectly the heart rate (number of heart beats
per unit of time) of a patient by monitoring the oxygen concentration in the blood. This is
achieved by measuring the light absorption characteristic of a tissue. Typically, PPG sensors for
measuring the heart rate are placed at the finger tip or on the forehead.

A collaboration between the Applied Signal Processing Group (http://aspg.epfl.ch/)
and Tabrasco Ltd. (http://www.tabrasco.com/) aimed at developing an algorithm for esti-
mating the heart rate of archers from such a PPG sensor. This device was designed with two
main purposes in mind. First, it could prove useful during training sessions for improving the
performance of archers. Second, it could help to make archery competitions more attractive for
the audience. Spectators may be more interested when watching television broadcasts of archery
contests if they could evaluate the calmness or the stress of an archer with a real-time indication
of his (or her) heart rate. There is one important restriction concerning the placement of the PPG
sensor: it cannot be located on the upper part of the body. Indeed, it has to be placed below the
waist in order to limit as much as possible the inconvenience for the archers. The best location
to record the heart rate with a PPG device from the legs is on the posterolateral part of the knee.
However, the quality of signals recorded from this location is much lower than from the typical
ones (finger tip and forehead). This required more elaborate signal processing techniques than
the ones usually implemented for such data. Another restriction was that the complete process-
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ing algorithm has to be applicable in real-time, with a delay as small as possible. Therefore,
the SFT and HFT were tested to retrieve the heart rate because they are based on order-one fil-
ters. In addition, they were shown to perform well in noisy environments (see Chapters 3 and
4). The harmonic extension was considered as a small harmonic component was observed in
time-frequency representations.

Here, an example of the signals recorded during the testing phase is presented. In this phase,
PPG data were recorded from the knee of healthy subjects who were not practicing archery. In-
stead, they were instructed to sit on a chair for 60 s, stand for 60 s, walk for 90 s and finally stand
for 30 s. This protocol was used in order to assess the performance of the complete procedure
for heart rate estimation in different situations. One signal was recorded from each subject and
sampled at 30 Hz. In parallel, a Polar c© sensor was used to provide a reference measure of the
heart rate directly from the chest. The SFT and HFT were not applied immediately to the raw
PPG signal as it contained a large drift and several artifacts which needed to be suppressed or re-
duced first. Therefore, some pre-processing was performed. Due to the real-time constraint, the
delay introduced by the pre-processing steps was required to be as limited as possible. The first
step was to eliminate the drift with a least mean squares (LMS) adaptive filter [192]. Then, the
resulting signal was band-pass filtered from 0.75 Hz to 2.5 Hz with an order-30 FIR filter. After
the filtering operation, the signal was downsampled at 7.5 Hz in order to recenter the frequency
of interest with respect to the frequency range for the adaptive tracking schemes. The band-pass
filter ensured that no aliasing was introduced. Figure 8.1 shows a PPG signal before and after
applying the pre-processing. Then, the SFT and and its harmonic extension were applied with
the same set of parameters: β = 0.97 and δ = 0.95. In addition, the HFT was set to track the
first (or fundamental) and second harmonic components. Typically, both adaptive schemes are
applied to the analytic representations of real-valued signals. However, it was not possible in
this case since the procedure needed to be applicable in real-time. Indeed, the discrete Hilbert
transform (DHT), through which the analytic representation is obtained, is computed either via
the frequency domain (2.15) (this requires complete knowledge of the signal of interest) or via
the Hilbert filter (2.12) which is an IIR filter (truncation of the impulse response would introduce
too much delay for acceptable accuracy). Consequently, the SFT and HFT were applied directly
to the real signal, and thus the extracted oscillatory components were complex-valued. Never-
theless, real-valued oscillations could be easily obtained by taking the real part. The heart rate
estimates provided by the two tracking algorithms from the signal illustrated in Figure 8.1 are
shown in beats per minute in Figure 8.2 alongside the estimate from the chest sensor. The three
estimated heart rates were in close agreement, except in two occasions. Just after the subject
stood up, the SFT and HFT needed more than 30 s compared to the chest estimate to adapt to
the heart rate increase. The extremely small signal amplitude following the stance shift ham-
pered the adaption process of both algorithms. A modification of the contact surface between the
PPG sensor and the skin is likely to have caused this delay. During the walking phase, the chest
sensor provided an erratic and very unreliable heart rate estimate. Indeed, it is highly dubious
that such a short walk would increase as much the cardiac activity. The chest sensor seemed to
fail completely in this case. Similar outputs were also observed for other subjects. By contrast,
the SFT and HFT estimates were much more plausible during the same time interval as they
both provided overall trustworthy heart rate estimates. Also, it is worth mentioning that the SFT
seemed to react slightly faster to frequency changes than its harmonic extension. This was likely
caused by the low power of the second harmonic component.

8.2 Frequency Tracking and Near-infrared Spectroscopy

Near-infrared spectroscopy (NIRS) is a technique for measuring the absorption characteris-
tics of various materials, such as gases, liquids or even biological tissues with respect to the near-
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Figure 8.1: PPG signal recorded from the knee. The top graph shows the original signal and the
bottom one shows the outcome of the pre-processing (drift cancellation, band-pass filtering and
downsampling). Vertical dashed lines indicate the transition between stances. The low-power
oscillation corresponding to the heart rate is illustrated in the two insets.
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Figure 8.3: Excerpt of an O2Hb signal during sprint interval training in arbitrary units. The large
increases and decreases correspond to sprint and recovery intervals respectively.

infrared region of the electromagnetic spectrum. In substance, it can detect specific chemical
components. NIRS has been applied to a wide range of fields, such as astronomy, agriculture and
medicine. In this section, an application of NIRS to sports science is presented. In more detail,
this technique was used to monitor the concentration changes of different types of hemoglobin
in muscles during sprint interval training [193, 194].

In the considered study [195], the sprint interval training was performed on a cycle ergome-
ter. After warming up, healthy subjects were asked to alternate between 10-s sprint and 20-s
recovery intervals until exhaustion. During the procedure, four different signals were recorded
with the NIRS apparatus and sampled at 50 Hz: changes in oxyhemoglobin (O2Hb), deoxyhe-
moglobin (HHb) and total hemoglobin (tHb), as well as the difference between O2Hb and HHb
(dHb). However, it was not possible to record the pedaling frequency directly from the ergome-
ter with the setup used for the acquisition. Nonetheless, the NIRS signals contained, in addition
to the strong low-frequency components corresponding to the repetitions of sprint and recovery
intervals, the pedaling oscillations in the higher frequencies. Thus, the goal was to perform adap-
tive frequency tracking in order to retrieve the pedaling frequency. Furthermore, as four signals
were available, the MVFT was applied to achieve higher estimation robustness. A short 10-s
excerpt of an O2Hb signal recorded during sprint interval training is shown in Figure 8.3. One
can observe the slow variations with large amplitude caused by the alternation between sprint
and recovery intervals as well as the fast oscillations due to pedaling.

The pedaling frequency could not be estimated straightforwardly as there was too much
power in the very low frequency range, and thus it was impractical to apply the adaptive scheme
directly. In addition, the starting points of the sprint and recovery intervals needed to be identi-
fied. Therefore, some processing was required before estimating the frequency of interest. First,
O2Hb, HHb, tHb and dHb signals were low-pass filtered with a cut-off at 0.25 Hz in both forward
and reverse directions in order to achieve zero phase distortion [31]. Then, these filtered signals
were resampled at 10 Hz and used to detect the edges of the intervals. Afterwards, the very low
frequency content was discarded by subtracting the low-pass filtered signals to the original ones.
These difference signals were then resampled at 10 Hz as well. Finally, the pedaling frequency
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was estimated by applying the MVFT to the resampled differences with the bandwidth and up-
date parameters set to β = 0.9 and δ = µ = 0.85. To summarize, the following processing steps
were applied to the NIRS data:

1. Low-pass filtering with cut-off at 0.25 Hz.
2. Resampling of the filtered signals at 10 Hz.
3. Detection of sprint and recovery periods on the resampled filtered signals.
4. Differences between original and filtered signals.
5. Resampling of the difference signals at 10 Hz.
6. Adaptive frequency tracking with the MVFT on the resampled differences.
All these processing steps are illustrated in Figure 8.4 for each considered signals (O2Hb,

HHb, tHb and dHb). On all graphs, the starting points of sprint and recovery intervals are indi-
cated by green triangles and red squares respectively. There is one more triangle as the subjects
were instructed to repeat the sprint-recovery sequence until exhaustion. In the first column, the
original signals recorded by the NIRS apparatus are plotted alongside the low-pass filtered ones.
The corresponding difference signals obtained by subtracting the low-pass filtered ones to the
original ones are plotted in the second column. The third column shows the instantaneous pedal-
ing frequency estimated by the MVFT on top of short-time Fourier transforms of the difference
signals. The same frequency trajectory is plotted in the four graphs as the purpose of the MVFT
is to estimate the instantaneous frequency of a single oscillatory component present in several
signals. In the last column, the adaptive coefficients used by the MVFT to weight the the con-
tribution of each signal are shown. It should be noted that all signals were resampled at 10 Hz
for illustrative purpose. The multivariate adaptive algorithm highlighted a few interesting points.
First, the pedaling began to decrease before the end of the sprint intervals as the subject grew
tired. Second, also due to the tiredness, the maximum achieved pedaling frequency decreased
with each repetition. Third, the adaptive weights show that, in the beginning, the HHb was the
most important signals in terms of frequency estimation, while they were more balanced later.
And last but not least, the pedaling frequency, which was not recorded directly, could be recov-
ered.

8.3 Indirect Estimation of the Respiration Frequency
In several practical situations, the frequency of a process that may provide relevant infor-

mation is not available directly. For instance, it may be too costly, difficult, or even impossible
to measure this frequency. Nevertheless, related signals may contain the underlying oscillation,
from which the frequency estimation could be indirectly estimated. For example, in the applica-
tion of adaptive tracking presented in Section 8.2, the pedaling frequency could not be recorded
with the acquisition setup. However, it could be retrieved from NIRS signals. Here, the aim
was to estimate the respiration frequency during an incremental exercise test for assessing the
maximum oxygen uptake (VO2 max) [196, 197] from an R-R interval signal. As mentioned in
Section 5.4, R-R intervals are typically used to monitor the heart rate variability, which has two
primary causes: the baroreflex and the respiration. Their influences take the form of oscillatory
components around 0.1 Hz for the baroreflex and 0.25 Hz for the respiration at rest. During
incremental exercise tests however, the respiration rate increases progressively and R-R interval
signals are non-stationary. Therefore, classical techniques, such as power spectral density esti-
mation, which require stationarity, perform poorly. This issue can be tackled with time-varying
models [198, 199]. But, here, the aim was to estimate the instantaneous frequency of the respi-
ration with the SFT.

The incremental exercise test was performed on a cycle ergometer with the following pro-
tocol: 3 min of unloaded pedaling (0 W) at 85 rpm, followed by a load increase of 30 W/min
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(1 W increase every 2 s) until exhaustion. Both the R-R intervals and the respiration rate were
recorded. Clearly, frequency tracking was not necessary in this case as the respiration frequency
was directly recorded. However, it should be considered as a feasibility test since the estimate
provided by the SFT could be compared to a reference. Before applying the adaptive tracking, a
few pre-processing steps were needed. First, the R-R intervals were regularly resampled at 3 Hz.
Then, the drift was suppressed and the resulting signal was high-pass filtered with a cut-off at
0.3 Hz in order to extract the frequency range corresponding to the respiration component. The
signal after pre-processing is shown in the top plot of Figure 8.5. Then, the SFT was applied
to estimate the respiration frequency with bandwidth and update parameters set to β = 0.95 and
δ = 0.9. The frequency estimate is plotted in Figure 8.6 alongside the reference. The corre-
sponding extracted component is plotted in the bottom graph of Figure 8.5. The SFT estimate
and reference match closely, except in the beginning where the initialization of the adaptive al-
gorithm took place and at the largest peak in the end of the recording where the increase was
too sharp for the adaptive update. Nevertheless, owing to the SFT, it was still possible to recover
indirectly a good estimate of the respiration frequency.

8.4 Summary
Although the three practical applications of adaptive frequency tracking presented in this

chapter were taken from the field of sport sciences, the SFT and its extensions are not restricted
to this specific field or, more generally, to biomedical signals. Indeed, these examples should be
considered as illustrations of the benefits provided by adaptive tracking tracking schemes and of
their potential uses. The SFT can be applied whenever an accurate estimate of the instantaneous
frequency of an oscillatory component is needed. There is no restriction on the type and source of
the considered data. And, since its convergence speed compared favorably with other frequency
tracking methods (Section 3.5), this adaptive algorithm is a relevant choice for frequency esti-
mation. Furthermore, it was extended to track simultaneously several oscillations (MFT), and to
improve estimation performance either by using the information present in more than one signal
(MVFT) or by taking into account the harmonic structure if any (HFT). One of the key reasons to
develop the SFT was to tackle the frequency estimation problem in non-stationary data as clas-
sical approaches are typically based on a stationarity assumption. This aspect was highlighted
in the three presented applications. In particular, the multivariate extension could follow closely
the pedaling component in NIRS signals whose instantaneous frequency varied widely.
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Conclusion 9
Frequency is a key aspect in signal processing as its knowledge is of crucial importance in a

large number of fields. Consequently, numerous techniques have been proposed over the years
in order to retrieve the frequency information from all kinds of signals. A considerable fraction
of these approaches focus on oscillatory components whose instantaneous frequency varies over
time. Indeed, the temporal evolution of the frequency of an oscillation can provide relevant
information about the underlying process. Since instantaneous frequency is such a key concept
in signal processing and related fields, the aim of this thesis was to develop efficient schemes for
adaptive frequency tracking.

In the first part of the present dissertation, several methods designed to estimate the instan-
taneous frequency were reviewed. The four methods of this selection based on adaptive filters
extracted, in addition to the estimated frequency, the corresponding oscillatory component. This
characteristic can be decisive in certain cases. Indeed, the extracted oscillation can provide valu-
able information or be used in further processing. For instance, this can lead to a proper estima-
tion of the phase, which is only physically meaningful for narrow-band signals. These considera-
tions about the importance of instantaneous frequency estimation and oscillation extraction were
the cause of the development of the single frequency tracker (SFT). This adaptive algorithm was
designed to track an oscillation buried in noise and estimate its instantaneous frequency. The
most distinctive feature of the SFT is that it attempts to maximize the oscillatory behavior at the
output. Furthermore, the adaptive band-pass filter used for component extraction has two key
properties: unit gain and zero phase at the central frequency. Thus, no distortion was introduced,
which is of the utmost importance in some applications, such as phase information estimation.
Numerical simulations have shown that the SFT compares favorably to existing techniques for
frequency tracking in terms of estimation bias and variance as well as convergence speed.

In many cases of practical interest, the assumption that the signal under study contains a sin-
gle oscillation embedded in noise is overly optimistic or too restrictive. As a matter of fact, it
is common to find several frequency components in a signal. The SFT can only track a single
frequency and thus is marginally applicable to such data. An extension of the basic scheme, the
multiple frequency tracker (MFT), was developed to handle this issue. It is based on the simple
idea of tracking each oscillation with one SFT. However, to ensure that the same component is
not followed several times, adaptive all-zero filters were added in order to suppress the crosstalk
between trackers. This led to a scheme capable of extracting several oscillations and estimating
their instantaneous frequency simultaneously. A related point is raised when the considered sig-
nal contains multiple components with harmonic frequencies. The underlying structure can be
used to increase robustness and estimation performance since all the frequencies are integer mul-
tiples of the fundamental frequency. An extension of the SFT, the harmonic frequency tracker
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(HFT), was developed as well in order to take into account this aspect. Numerical simulations
confirmed that this extension achieved lower bias and variance than the original algorithm in the
presence of harmonic components. Another extension for the SFT was developed based on the
observation that in certain fields a phenomenon is frequently investigated with more than one
sensor, such as in electroencephalography (EEG) or electrocardiography (ECG). And thus, the
oscillation of interest is present in several signals. The multivariate frequency tracker (MVFT)
was designed to take into account the additional information provided by all available signals in
order to improve the tracking robustness and the overall estimation performance. Multivariate
tracking is implemented by estimating the instantaneous frequency for each signal and then by
combining all the estimates into a global frequency estimate with a weighting procedure. Owing
to the MVFT, it is possible to track an oscillatory component with low amplitude common to
several signals, even in cases where single frequency tracking would fail. The gain in estima-
tion variance of the multivariate extension with respect to the SFT was clearly highlighted with
numerical simulations.

The SFT and its extensions are causal methods. They only used the knowledge of past sam-
ples to estimate the instantaneous frequency. In situations where the data analysis take place
offline, the future information can be used in addition to past information in order to achieve bet-
ter estimation performance. The non-causal frequency estimator (NFE), developed in the course
of this thesis, builds upon this observation to enhance an initial frequency trajectory. There is
no restriction on the approach used to obtain this initial estimate. For instance, an adaptive fre-
quency tracking scheme or a classical method for power spectral density (PSD) estimation can be
used. In fact, the initial estimate can even result from an informed guess. The initial frequency
trajectory is refined through an iterative procedure aimed at minimizing a local cost function de-
rived from the complex discrete oscillator equation, similar to the SFT. And the closer the initial
estimate is to the true frequency, the faster the algorithm converges. Nevertheless, it should be
mentioned that the initialization has to make sense, otherwise the NFE may provide an erroneous
estimate. At the cost of real-time application, this method yields an estimated instantaneous fre-
quency without any delay. Furthermore, it also extracts the corresponding component with a
non-causal time-varying band-pass filter which does not introduce any delay. These desirable
properties however comes at the cost of increased computational complexity and, in large-scale
investigations, this load can become prohibitive.

The approaches for instantaneous frequency estimation presented in this dissertation are not
ultimate replacements for classical techniques such as methods for PSD estimation or time-
frequency analyses. Indeed, these classical approaches are widely spread and used for a reason:
they provide relevant information about the frequency content of a signal in numerous situations.
Instead, the SFT, its extensions and the NFE should be applied in cases where classical tech-
niques exhibit poor performance or to investigate a problem from a slightly different perspective.
In fact, all approaches for instantaneous frequency estimation can be considered as complemen-
tary. In certain practical cases, several methods are needed to be applied in conjunction, as the
knowledge provided by a single one may not be sufficient.

In the second part of this work, the adaptive frequency tracking schemes developed during
this thesis were applied to different types of biomedical data. First, the SFT was used to ex-
tract neuronal oscillations and their instantaneous frequency from EEG signals recorded during
a visual potential experiment with illusory contour stimuli. The main goal of this study was
to investigate the temporal evolution of cross-frequency couplings during visual perception. In
particular, the SFT yielded narrow-band oscillations from which proper phase information could
be extracted. This information was then used to measure the strengths of phase-amplitude and
phase-phase couplings between several frequency bands. The two key outcomes were that the
instantaneous frequency in certain bands changed depending on the stimulus type and that the
cross-frequency couplings exhibited a complex pattern of increases and decreases depending
on the considered band. Furthermore, it should be noted that the SFT revealed the frequency
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changes and highlighted the coupling mechanisms more clearly than a traditional filter-bank ap-
proach. In another study with ECG data, the HFT was used to develop two organization measures
to help predicting the outcome of stepwise catheter ablation of atrial fibrillation (AF). Promis-
ing results were obtained. However, the size of the patient population was limited, and thus
these results need to be confirmed for additional patients. The practical usefulness of the SFT
and its extensions were also illustrated with three examples of signals recorded in the context of
sport sciences. Taken together, all these applications highlighted the key role played by the pre-
processing steps before frequency tracking. When working with real-world data, one is barely
able to apply this kind of approaches directly on the raw signals. Another important point to con-
sider is that, although all the applications presented in this dissertation were based on biomedical
signals, the adaptive frequency tracking schemes introduced in Part I are not restricted to this
specific class of data. Indeed, frequency is a key concept in a multitude of fields and the de-
veloped algorithms only assume that the signals of interest contain oscillatory components. The
focus on biomedical signals of this thesis originated primarily from the strong orientation of the
Applied Signal Processing Group towards this class of signals.

9.1 Summary of Achievements

The major achievements of this thesis are summarized below.

An Efficient Scheme for Adaptive Frequency Tracking

An adaptive frequency tracking algorithm, the SFT, was developed during this thesis. It can
extract an oscillatory component buried in noise and estimate its instantaneous frequency. The
most distinguishing feature of the SFT is that it is designed to minimize a cost function derived
from the complex discrete oscillator equation, and therefore the oscillatory behavior at the output
is maximized. Another relevant aspect of this scheme is its adaptive band-pass filter that has unit
gain and zero phase at the central frequency. Thus, no distortion is introduced in the extracted
oscillation. Its performance in terms of cost function, bias and variance was thoroughly analyzed
with Monte Carlo simulations and, when possible, with theoretical calculations. Furthermore,
numerical simulations also showed that the SFT compares favorably to existing methods for
instantaneous frequency estimation.

Multiple Frequency, Multivariate and Harmonic Extensions

Three extensions of the SFT were developed in order to tackle three cases of practical inter-
est. First, the MFT was designed to handle signals with more than one oscillatory component.
It is capable of tracking several frequencies simultaneously and extracting the corresponding os-
cillations. Adaptive all-zero filters were added in this extension in order to reduce the crosstalk
between the time-varying band-pass filters. Second, sometimes several recordings of the same
phenomenon are available. The MVFT was developed in order to achieve better overall perfor-
mance by taking advantage of this additional information. This extension estimates the frequency
of the common component for each signal and then combines all these values into a global esti-
mate through a weighting procedure. The weights are computed so as to minimize the estimation
variance. The gain in variance of the MVFT with respect to the SFT increases with the number
of available signals, as shown by Monte Carlo simulations. Third, when the signal under study
contains harmonic oscillations, it makes sense to take into account the underlying structure. The
HFT is based on this observation. It estimates the instantaneous fundamental frequency and ex-
tract the harmonic components with a weighting procedure similar to the one used in the MVFT.
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A Non-Causal Method for Enhancing Frequency Trajectories
When a signal is processed offline, which is not uncommon, all its samples are available

at once. In such cases, there is no need to enforce causality in methods for frequency estima-
tion. The NFE takes advantage of this kind of situations in order to achieve better estimation
performance by using future information in addition to past information. More specifically, this
non-causal iterative procedure refines an initial frequency trajectory by minimizing a cost func-
tion derived from the complex discrete oscillator equation. Therefore, once it has converged, the
oscillatory behavior of the extracted component is maximized. However, due to its iterative na-
ture, the NFE is much more computationally intensive than the SFT. This may become a problem
depending on the considered application.

A Study of Cross-Frequency Coupling Mechanisms in EEG Data
The temporal evolution of phase-amplitude and phase-phase couplings between different fre-

quency bands were analyzed in EEG data recorded during a visual evoked potential experiment
with illusory contour stimuli. This study had two primary outcomes. First, the usefulness of the
SFT for measuring such cross-frequency interactions was confirmed. Indeed, the adaptive fre-
quency tracking scheme detected more clearly the differences in terms of both phase-amplitude
and phase-phase couplings between stimuli with and without illusory contours than a traditional
filter-bank approach. This was achieved at the cost of a slight delay. Furthermore, the SFT also
highlighted frequency differences in certain bands. Second, the differences in coupling strength
followed a complex pattern which depended on the considered frequency bands.

Organization Measures to Predict the Outcome of AF Ablation
The HFT was used to define two organization measures based on adaptive frequency tracking

from ECG data. The first one quantifies the power repartition in the frequency domain of AF
signals, whereas the second is based on the phase difference between harmonic components.
These two measures were developed to assess the AF dynamics and help predicting the outcome
of stepwise catheter ablation of long-standing persistent AF. In particular, they indicated that
patients who cardioverted during ablation of the left atrium had significantly more organized AF
activity.

9.2 Perspectives
Several properties of the adaptive frequency tracking schemes developed in the present thesis

are attractive for a wide range of applications. However, they also suffer from some limitations
that can become problematic in certain situations. Thus, further developments should focus on
these issues. Besides, the outcomes of the EEG and ECG studies presented in this dissertation
raise several questions which call for additional investigations. Therefore, a selection of future
research directions which would build upon this thesis is given here.

Estimation Delay Compensation
The SFT and its extensions introduce a delay in the estimation of the instantaneous frequency.

While limited or even negligible in most cases, this delay can become an issue depending on the
dynamics of the signal under study. In particular, after abrupt frequency changes, the algorithms
presented above need some time to adapt. Likewise, in high-noise environments, selecting the
update parameters so has to achieve sufficient estimation accuracy may result in slow conver-
gence. Therefore, further developments should focus on compensating for the estimation delay.
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Detection of Arising and Vanishing Components
The assumption that a frequency component is present for the entire duration of a signal is

inaccurate in some cases. Indeed, the instantaneous frequency should be estimated only when
an oscillation is active. Furthermore, the corresponding arising and vanishing instants could
provide pertinent information about the underlying process. Detecting these instants would be
particularly valuable for the extension of the SFT to multiple frequencies, the MFT, for which
the number of component present in a signal has to be known a priori.

Extensions for Non-causal Frequency Estimation
The NFE can enhance the frequency trajectory of a single oscillation. However, similarly

to the SFT, it would be beneficial to extend this iterative method to specific cases, such as the
presence of more than one component. While extending the NFE so as to estimate the instan-
taneous frequency of an oscillation present in several signals is rather straightforward owing to
the weighting procedure used in the MVFT, the development of other extensions could lead to
difficulties. Furthermore, to remain attractive in practice, these extensions should not increase
the computational load beyond reasonable limits.

Investigation of Cross-frequency Couplings in Pathological Cases
The analysis of cross-frequency couplings between neuronal oscillations in different fre-

quency bands during a visual evoked potential experiment showed interesting results. Illusory
contour perception elicited a complex pattern of increases and decreases of coupling strength.
However, only healthy subjects were included in this investigation. Therefore, future studies
should also include patients suffering from different conditions, such as schizophrenia. Contrast-
ing the patterns of couplings obtained with healthy subjects and patients could lead to a better
understanding of the pathological mechanisms. It might even help to indicate potential therapeu-
tic solutions.

Classifier for Predicting the Outcome of AF Ablation
Two organization measures derived from the HFT showed significant differences between

patients with different AF ablation outcomes. The main limitation of this study was the low
number of patients and their poor repartition among the three groups. When enough patients
are available, the goal is to develop a classifier to predict reliably AF ablation outcome. Indeed,
knowing a priori the result of the procedure could help to improve the quality of life of the
patients and decrease the management costs of this arrhythmia. Furthermore, the HFT can be
used to define additional organization measures. Collectively, these novel measures could also
help to determine the outcome of other treatments for AF.
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Notation and Definitions A
To avoid any confusion or ambiguity, the notation used throughout this dissertation as well

as a few essential definitions are provided in this appendix.

A.1 Notation

In order to distinguish continuous- and discrete-time data the following notation is adopted.
The temporal variable is indicated with round parentheses (i.e. x(·)) for continuous-time signals
and with square brackets (i.e. x[·]) for discrete-time signals. Moreover, in most cases, the tem-
poral variable is t and n for continuous- and discrete-time data respectively. When working with
complex numbers, the imaginary unit is denoted by j. The real and imaginary parts of a complex
number are indicated with Re{·} and Im{·}. In addition, complex conjugation is denoted with an
upper bar.

A.2 Definitions

The definitions of the Fourier transform (FT), the discrete-time Fourier transform (DTFT)
and the discrete Fourier transform (DFT) used in this work are given here. The FT, denoted as
F {·}, and its inverse are expressed as follows,

X( f ) = F {x(t)} =

∫ ∞

−∞

x(t)e− j2π f t dt, (A.1a)

x(t) = F −1{X( f )} =

∫ ∞

−∞

X( f )e j2π f t d f . (A.1b)

The DTFT is denoted as DTFT{·}. It is defined, together with its inverse, as

X(e jω) = DTFT{x[n]} =

∞∑
n=−∞

x[n]e− jωn, (A.2a)

x[n] = DTFT−1{X(e jω)} =
1

2π

∫ π

−π

X(e jω)e jωn dω. (A.2b)
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Finally, the DFT, denoted as DFT{·}, and its inverse are given by

X[k] = DFT{x[n]} =

N−1∑
n=0

x[n]e− j 2π
N kn, k = 0, 1, . . . ,N − 1, (A.3a)

x[n] = DFT−1{X[k]} =
1
N

N−1∑
k=0

X[k]e j 2π
N kn, n = 0, 1, . . . ,N − 1, (A.3b)

where N is the length of x[n] and X[k]. At last, two specific functions are introduced: the sign
function, defined as

sgn(x) =


−1 for x < 0,
0 for x = 0,
1 for x > 0,

(A.4)

and the Kronecker delta [8] which is given by

δ[n] =

1 for n = 0,
0 otherwise.

(A.5)



Performance Analysis of
the Single Frequency
Tracker B

This appendix presents the performance analysis of the single frequency tracker (SFT) [64]
introduced in Chapter 3. The results given in Section 3.3 are repeated here in more detail, and
all calculations are provided. The four different input signals considered for this analysis are
described in Section B.1. Then, in Section B.2, the cost function of the adaptive scheme is
investigated in detail for these signals. Finally, its frequency estimation performance is quantified
in terms of bias and variance in Sections B.3 and B.4, and theoretical values are compared to the
outcomes of numerical simulations.

B.1 Input Signals
The four input signals considered for the analysis of the performance of the SFT can be

expressed in the form of a generic cisoid embedded in zero-mean noise,

y[n] = A0e jω0n + v[n], (B.1)

where A0 is the complex amplitude, ω0 is the frequency, and v[n] is an additive zero-mean noise
process. It is also assumed that the noise is wide-sense stationary [8]. Its other statistical proper-
ties, such as the autocorrelation Rvv[k] = E{v[n]v̄[n − k]}, are left undefined to remain as general
as possible. They will be specified in the description of each input signal.

First, a cisoid embedded in zero-mean complex white noise is considered since the SFT is
based on this specific input. However, the band-pass filter (3.2) is not applied in order to analyze
the behavior of the adaptive mechanism solely. The second type is a sinusoid with additive
zero-mean real white noise, as it is much more common to work with real data in practice.
However, the frequency is estimated from the analytic representation of the input signal, which
is computed using the discrete Hilbert transform (DHT). For the same reasons as for the first
signal, no filtering is used. The third and fourth input signals are the same as the two first ones,
except that the band-pass filter (3.2) is applied before performing the estimation. The transfer
function of the filter is repeated here in a slightly modified form:

G(e jω) =
1 − β

1 − βe jωc e− jω , (B.2)

where ωc is the central frequency and β (0 � β < 1) controls the bandwidth, as in the description
of the SFT. The four input signals are summarized as follows:

Noisy cisoid A cisoid embedded in additive zero-mean complex white noise.

147



148 Performance Analysis of the Single Frequency Tracker

Noisy sinusoid The analytic representation of a sinusoid embedded in additive zero-mean real
white noise.

Filtered noisy cisoid A cisoid embedded in additive zero-mean complex white noise filtered
with the band-pass filter (B.2).

Filtered noisy sinusoid The analytic representation of a sinusoid embedded in additive zero-
mean real white noise filtered with the band-pass filter (B.2).

By means of these four different input signals, the effects of real data and band-pass filtering can
be investigated separately. Also, it should be mentioned that the first two signals correspond to a
simplified SFT without band-pass filtering. The following sections present these signals in detail
alongside the autocorrelation of their respective noise process.

B.1.1 Noisy Cisoid

The cisoid embedded in additive zero-mean complex white noise is defined as

y1[n] = A0e jω0n + v1[n], (B.3)

where A0 and ω0 are respectively the complex amplitude and frequency, and v1[n] is the complex
noise process. As the noise is white, its autocorrelation is

Rv1v1 [k] = σ2δ[k], (B.4)

with σ2 the variance and δ[k] the Kronecker delta (A.5). In addition, the real and imaginary parts
of the noise are assumed to be independent and to have equal variances (i.e. Var{Re{v1[n]}} =

Var{Im{v1[n]}} = σ2/2).

B.1.2 Noisy Sinusoid

The sinusoid with additive zero-mean real white noise is given by

x2[n] = B0 sin(ω0n + φ0) + w2[n], (B.5)

where B0, ω0 and φ0 are respectively the amplitude, frequency and phase, and w2[n] is the real
noise process with autocorrelation Rw2w2 [k] = σ2δ[k]. Using the fact that the analytic represen-
tation of a sinusoid is a cisoid, the input signal is

y2[n] = x2[n] + jh[n] ∗ x2[n]

= B0e jφ0 e jω0n + w2[n] + jw2,h[n]

= A0e jω0n + v2[n],

(B.6)

where h[n] is the Hilbert filter (2.12), A0 = B0e jφ0 collects the amplitude and phase, w2,h[n] =

h[n] ∗w2[n], and v2[n] = w2[n] + jw2,h[n]. In the previous expressions, the notation ∗ denotes the
convolution operation. The autocorrelation of the analytic representation of the noise is obtained
as follows:

Rv2v2 [k] = E
{(

w2[n] + jw2,h[n]
)(

w2[n − k] − jw2,h[n − k]
)}

= Rw2w2 [k] − jRw2w2,h [k] + jRw2,hw2 [k] + Rw2,hw2,h [k].
(B.7)
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Since w2[n] is wide-sense stationary and h[n] is a linear shift-invariant filter, Rw2,hw2,h [k], Rw2w2,h [k]
and Rw2,hw2 [k] can be computed via the power spectral densities [3, 200]:

S w2,hw2,h (e jω) = |H(e jω)|2 · S w2w2 (e jω) = σ2|H(e jω)|2
DTFT−1

=⇒ Rw2,hw2,h [k] = σ2δ[k], (B.8a)

S w2w2,h (e jω) = H̄(e jω) · S w2w2 (e jω) = σ2H̄(e jω)
DTFT−1

=⇒ Rw2w2,h [k] = −σ2h[k], (B.8b)

S w2,hw2 (e jω) = H(e jω) · S w2w2 (e jω) = σ2H(e jω)
DTFT−1

=⇒ Rw2,hw2 [k] = σ2h[k], (B.8c)

where H(e jω) is the discrete-time Fourier transform (DTFT) of the Hilbert filter (2.14). Taken
together, these results yield the autocorrelation of the analytic representation of the input noise:

Rv2v2 [k] = 2σ2(δ[k] + jh[k]
)
. (B.9)

Therefore, although w2[n] is white, its analytic representation is not.

B.1.3 Filtered Noisy Cisoid
Similarly to the first input signal, the noisy cisoid before the filtering operation is defined as

x3[n] = A0e jω0n + w3[n], (B.10)

where A0 and ω0 are respectively the complex amplitude and frequency, and v3[n] is a zero-mean
complex white noise with autocorrelation Rw3w3 [k] = σ2δ[k]. Similar to the noisy cisoid case,
the variances of the real and imaginary parts of the noise are assumed to be independent and
identical. The filtered input signal is obtained as follows:

y3[n] = g[n] ∗
(
A0e jω0n + w3[n]

)
=

1 − β
1 − βe− j(ω0−ωc) A0e jω0n + g[n] ∗ w3[n]

=
1 − β

1 − βe− j(ω0−ωc) A0e jω0n + v3[n],

(B.11)

where g[n] is the impulse response of (B.2) and v3[n] = g[n]∗w3[n]. So, depending on the central
frequency, the filter changes the amplitude as well as the phase offset of the cisoid. However,
when ωc coincides with ω0, the cisoid is not altered. On the other hand, the filtered noise is no
more white. Its autocorrelation is computed through the power spectral density by transforming
Rw3w3 [k] to the frequency domain:

S v3v3 (e jω) = |G(e jω)|2 · S w3w3 (e jω) =
(1 − β)2

1 − 2β cos(ω − ωc) + β2 · σ
2. (B.12)

Reverting back to the time domain yields the autocorrelation of the filtered noise,

Rv3v3 [k] = σ2 1 − β
1 + β

β|k|e jωck. (B.13)

B.1.4 Filtered Noisy Sinusoid
Before computing its analytic representation and applying the band-pass filter, the fourth

input signal is
x4[n] = B0 sin(ω0n + φ0) + w4[n], (B.14)
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where B0, ω0 and φ0 are respectively the amplitude, frequency and phase, and w4[n] is a zero-
mean real white noise with autocorrelation Rw4w4 [k] = σ2δ[k]. The filtered analytic representa-
tion of the previous expression is computed as

y4[n] = g[n] ∗
(
x4[n] + jh[n] ∗ x4[n]

)
= g[n] ∗

(
B0e jφ0 e jω0n + w4[n] + jw4,h[n]

)
= g[n] ∗ A0e jω0n + g[n] ∗

(
w4[n] + jw4,h[n]

)
=

1 − β
1 − βe− j(ω0−ωc) A0e jω0n + v4[n],

(B.15)

where g[n] is the impulse response of (B.2), h[n] is the Hilbert filter (2.12), A0 = B0e jφ0 collects
the amplitude and phase, w4,h[n] = h[n] ∗ w4[n], and v4[n] = g[n] ∗ (w4[n] + jw4,h[n]). Using the
result for the autocorrelation of v2[n] (B.9), the power spectral density of the noise v4[n] is given
by the following expression:

S v4v4 (e jω) = |G(e jω)|2 ·
(
S w4w4 (e jω) − jS w4w4,h (e jω) + jS w4,hw4 (e jω) + S w4,hw4,h (e jω)

)
= |G(e jω)|2 · σ2

(
2 + jH(e jω) − jH̄(e jω)

)
.

(B.16)

Transforming back to the time domain, the autocorrelation of v4[n] is

Rv4v4 [k] =

(
1 − β
1 + β

β|k|e jωck
)
∗
(
2σ2(δ[k] + jh[k]

))
= 2σ2 1 − β

1 + β

((
δ[k] + jh[k]

)
∗ β|k|e jωck

)
= 2σ2 1 − β

1 + β
a[k],

(B.17)

with

a[k] =
(
δ[k] + jh[k]

)
∗ β|k|e jωck

=

+∞∑
l=−∞

(
δ[l] + jh[l]

)
· β|k−l|e jωc(k−l)

= β|k|e jωck + j
+∞∑
l=1

h[l]β|k−l|e jωc(k−l) − j
+∞∑
l=1

h[l]β|k+l|e jωc(k+l)

= β|k|e jωck +
2 j
π

e jωck
+∞∑
l=0

β|k−2l−1|

2l + 1
e− jωc(2l+1) −

2 j
π

e jωck
+∞∑
l=0

β|k+2l+1|

2l + 1
e jωc(2l+1).

(B.18)

Using the Taylor series of ln((1 + r)/(1 − r)) around r = 0 [201],

ln
(

1 + r
1 − r

)
= 2

+∞∑
l=0

r2l+1

2l + 1
, |r| < 1, (B.19)

a[k] can be rewritten as follows:

a[k] = β|k|e jωck −
j
π

e jωck
(
βk ln

(
1 + βe jωc

1 − βe jωc

)
− β−k ln

(
1 + βe− jωc

1 − βe− jωc

))
+

2 j
π

e jωckb[k], (B.20)

where b[k] is defined as

b[k] =


0 for k = −1, 0, 1,

βk ∑bk/2c−1
l=0

(β−1e− jωc )2l+1

2l+1 − β−k ∑bk/2c−1
l=0

(βe− jωc )2l+1

2l+1 for k > 1,
b̄[−k] for k < −1.

(B.21)
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In the previous expression, the notation b·c denotes the integer part (or floor function). Therefore,
using (B.17), (B.20) and (B.21), the noise autocorrelation Rv4v4 [k] is now given by

Rv4v4 [k] = 2σ2 1 − β
1 + β

e jωck
(
β|k| −

j
π

(
βk ln

(
1 + βe jωc

1 − βe jωc

)
− β−k ln

(
1 + βe− jωc

1 − βe− jωc

))
+

2 j
π

b[k]
)
. (B.22)

B.2 Cost Function Analysis

The cost function (3.6) of the SFT, which is based on the complex discrete oscillator equation,
is defined as

J(ω) = E
{∣∣∣y[n] − e jωy[n − 1]

∣∣∣2} . (B.23)

In order to analyze this cost function, the first step is to derive its expression for the generic noisy
cisoid y[n] (B.1). Thus, inserting (B.1) into (B.23) yields

J(ω) = E
{∣∣∣A0e jω0n + v[n] − A0e j(ω0(n−1)+ω) − e jωv[n − 1]

∣∣∣2}
= 2|A0|

2
(
1 − cos(ω − ω0)

)
+ 2

(
Rvv[0] − Re

{
e− jωRvv[1]

})
.

(B.24)

Finally, using trigonometric identities [202], the cost function reduces to

J(ω) = 4|A0|
2 sin2

(
ω − ω0

2

)
+ 2

(
Rvv[0] − Re

{
e− jωRvv[1]

})
. (B.25)

The first term is minimized for ω = ω0. Hence, as long as the second term does not depend
on ω, minimizing this cost function leads to an unbiased estimate. The cost function for each
considered input signal is easily computed by replacing Rvv[k] with the corresponding noise
autocorrelation.

B.2.1 Noisy Cisoid
Using the expression for Rv1v1 [k] (B.4), the cost function (B.25) becomes

J(ω) = 4|A0|
2 sin2

(
ω − ω0

2

)
+ 2σ2. (B.26)

Consequently, the frequency estimate obtained with this cost function is unbiased as shown in
Figure B.1 for different noise variances. This situation corresponds to a simplified version of the
SFT since the filtering operation is missing.

B.2.2 Noisy Sinusoid
Inserting the autocorrelation Rv2v2 [k] (B.9) into the cost function (B.25) leads to

J(ω) = 4|A0|
2 sin2

(
ω − ω0

2

)
+ 4σ2

(
1 −

2
π

sin(ω)
)
. (B.27)

In this case, minimizing the cost function results in a biased estimate. More precisely, it is
biased towards the frequency ω = 0.5π since the second term is minimized for this frequency.
Figure B.2 illustrates the bias for different noise variances. As for the noisy cisoid, the band-pass
filter (B.2) is missing. Ultimately, the bias is caused by the DHT which introduces long-term
correlations in the analytic representation of the noise.



152 Performance Analysis of the Single Frequency Tracker

Figure B.1: Oscillator-based cost function for a noisy cisoid. The cost function is plotted for four
different noise variances. The amplitude and frequency are set to A0 = 1 and ω0 = 0.2π. The
vertical dashed line denotes the true frequency of the cisoid.

Figure B.2: Oscillator-based cost function for the analytic representation of a noisy sinusoid.
The cost function is plotted for four different noise variances. The amplitude and frequency are
set to A0 = 1 and ω0 = 0.2π. The vertical dashed line denotes the true frequency of the sinusoid.
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B.2.3 Filtered Noisy Cisoid

Replacing Rvv[k] in (B.25) by Rv3v3 [k] (B.13) yields the following cost function:

J(ω) =
(1 − β)2

1 − 2β cos(ω0 − ωc) + β2 · 4|A0|
2 sin2

(
ω − ω0

2

)
+ 2σ2 1 − β

1 + β

(
1− β cos(ω−ωc)

)
. (B.28)

Therefore, the tracking algorithm is biased towards the central frequency ωc of the band-pass
filter for this input signal. However, when the central frequency matches the frequency of the
cisoid (ωc = ω0), the cost function simplifies into

J(ω) = 4|A0|
2 sin2

(
ω − ω0

2

)
+ 2σ2 1 − β

1 + β

(
1 − β cos(ω − ω0)

)
, (B.29)

and the frequency estimate is unbiased. The cost function for this type of input signal is plotted
in Figure B.3 for different noise variances and central frequencies. This case corresponds to the
true SFT compared to the two previous signals since the input signal is band-pass filtered. The
important result is that, when the true frequency and the central frequency are in close agreement,
the bias is very small. It even vanishes when they coincide. The bandwidth of the filter (B.2) also
plays a significant role. Indeed, narrow bandwidths tend to increase the bias. However, as long
as the frequency estimate provided by the SFT is close to the true frequency and the bandwidth
is not exaggeratedly narrow, the bias should remain negligible.

B.2.4 Filtered Noisy Sinusoid

Using Rv4v4 [0] and Rv4v4 [1] (B.22), the cost function (B.25) for a filtered noisy sinusoid be-
comes

J(ω) =
(1 − β)2

1 − 2β cos(ω0 − ωc) + β2 · 4|A0|
2 sin2

(
ω − ω0

2

)
+ 4σ2 1 − β

1 + β
·
(
a[0] − Re

{
e− jωa[1]

})
=

(1 − β)2

1 − 2β cos(ω0 − ωc) + β2 · 4|A0|
2 sin2

(
ω − ω0

2

)
+ 4σ2 1 − β

1 + β
·

(
1 +

j
π

ln
(

1 − β2 − 2 jβ sin(ωc)
1 − β2 + 2 jβ sin(ωc)

)
− Re

{
βe− j(ω−ωc) +

je− j(ω−ωc)

πβ

(
ln

(
1 + βe− jωc

1 − βe− jωc

)
− β2 ln

(
1 + βe jωc

1 − βe jωc

))} )
=

(1 − β)2

1 − 2β cos(ω0 − ωc) + β2 · 4|A0|
2 sin2

(
ω − ω0

2

)
+ 4σ2 1 − β

1 + β
·

(
1 − β cos(ω − ωc) +

j
π

ln
(

1 − β2 − 2 jβ sin(ωc)
1 − β2 + 2 jβ sin(ωc)

)
+ Im

{
e− j(ω−ωc)

πβ

(
ln

(
1 + βe− jωc

1 − βe− jωc

)
− β2 ln

(
1 + βe jωc

1 − βe jωc

))} )
.

(B.30)

Minimizing this expression yields a biased estimate of the frequency. Two different factors are
responsible for the bias: the DHT and the band-pass filter (B.2). Nevertheless, when the central
frequency of the filter is aligned with the true frequency of the cisoid (ωc = ω0), the bias due to
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the filtering operation disappears and the cost function reduces to

J(ω) = 4|A0|
2 sin2

(
ω − ω0

2

)
+ 4σ2 1 − β

1 + β
·

(
1 − β cos(ω − ω0) +

j
π

ln
(

1 − β2 − 2 jβ sin(ω0)
1 − β2 + 2 jβ sin(ω0)

)
+ Im

{
e− j(ω−ω0)

πβ

(
ln

(
1 + βe− jω0

1 − βe− jω0

)
− β2 ln

(
1 + βe jω0

1 − βe jω0

))} )
.

(B.31)

Figure B.4 shows this cost function for different combinations of noise variances and central
frequencies. The important point is that, for a sufficiently narrow bandwidth and when the cen-
tral frequency of the filter coincides with the frequency of the cisoid, the bias due to the DHT
becomes negligible.

B.3 Bias Analysis

Minimizing the cost function (B.25) can result in a biased frequency estimate under certain
circumstances, as discussed in the previous section. The dependence of the bias on the various
parameters of the input signal and of the SFT remains unclear. Therefore, it is now analyzed for
the four considered input signals. In fact, for the sake of clarity, an approximation of the bias
is analyzed. Indeed, the SFT is designed to estimate the autocorrelation at lag one of the signal
y[n], Ryy[1], with an exponentially weighted average (3.9). The instantaneous frequency estimate
at each time is then obtained by taking the argument of this average: ω[n + 1] = arg{Q[n]}.
Consequently, an approximation of the expected value of the frequency estimate is given by

ω̃ = arg{E{Q[n]}}, (B.32)

and the approximated bias is defined as follows:

Bias{ω̃} = ω̃ − ω0 = arg{E{Q[n]}} − ω0, (B.33)

where ω0 is the true frequency.
In order to evaluate this approximation, the first step is to compute the expected value of Q[n],

Q̃ = E{Q[n]}. Taking the expectation of the recursion (3.9) yields the following expression,

Q̃ = E {Q[n]} = δE {Q[n − 1]} + (1 − δ) E {y[n]ȳ[n − 1]} = δQ̃ + (1 − δ)Ryy[1], (B.34)

which in turn leads to Q̃ = Ryy[1]. Therefore, when the input signal is the generic cisoid embed-
ded in additive zero-mean noise (B.1), y[n] = A0e jω0n + v[n], the expected value of Q[n] is given
by

Q̃ = |A0|
2e jω0 + Rvv[1]. (B.35)

It follows that the approximation of the expected value of the frequency estimate for the generic
noisy cisoid is

ω̃ = arg{Q̃} = arg
{
|A0|

2e jω0 + Rvv[1]
}
, (B.36)

and the approximated bias is

Bias{ω̃} = arg
{
|A0|

2e jω0 + Rvv[1]
}
− ω0. (B.37)

Thus, as long as Rvv[1] is zero or its argument equals ω0, the SFT provides an unbiased estimate
of the frequency.
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Figure B.3: Oscillator-based cost function for a filtered noisy cisoid. The cost function is plotted
for four combinations of noise variances and central frequencies. The amplitude and frequency
are set to A0 = 1 and ω0 = 0.2π, and the bandwidth parameter of the filter (B.2) is set to β = 0.95.
The vertical dashed line denotes the true frequency of the cisoid.

Figure B.4: Oscillator-based cost function for the filtered analytic representation of a noisy sinu-
soid. The cost function is plotted for four combinations of noise variances and central frequen-
cies. The amplitude and frequency are set to A0 = 1 and ω0 = 0.2π, and the bandwidth parameter
of the filter (B.2) is set to β = 0.95. The vertical dashed line denotes the true frequency of the
sinusoid.
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In addition to theoretical analyses, the bias was also investigated with Monte Carlo simula-
tions for the four input signals described previously: noisy cisoid, noisy sinusoid, filtered noisy
cisoid and filtered noisy sinusoid. For the first two cases, a simplified SFT without the adaptive
filtering operation was applied, while for the last two cases, the complete algorithm was used.
The input signals were cisoids with uniformly distributed random phase embedded in complex
circular Gaussian white noise for the noisy cisoid and filtered noisy cisoid cases. Whereas, for the
two sinusoids cases, the input signals were sinusoids with uniformly distributed random phase
with additive real Gaussian white noise. The bias was computed over the last 1000 samples of
2000 iterations and averaged over 10,000 runs. This simulated bias was then compared to the
theoretical one. It should be noted that, when not specified differently, the following parameter
values were selected: the amplitude and frequency of the cisoids and sinusoids were set to A0 = 1
and ω0 = 0.4π, the SNR was set to 10 dB, the forgetting factor of the SFT was set to δ = 0.95,
the bandwidth parameter of the adaptive band-pass filter (B.2) was set to β = 0.95 and its central
frequency was given by the current frequency estimate of the SFT (3.10). The parameters of the
adaptive band-pass filter are only relevant for the last two cases where the complete SFT was
applied.

B.3.1 Noisy Cisoid
Similar to the cost function analysis, Rv1v1 [1] (B.4) is plugged into the general expression for

the bias (B.37). This gives an unbiased estimate of the instantaneous frequency:

Bias{ω̃} = arg
{
|A0|

2e jω0
}
− ω0 = 0. (B.38)

This result was confirmed with Monte Carlo simulations for SNR values taken from 0 to 20 dB
in 1 dB steps. Figure B.5 shows that the simplified SFT is indeed unbiased for a cisoid embedded
in white noise.

B.3.2 Noisy Sinusoid

Inserting Rv2v2 [1] = j4σ2/π into (B.37) yields the following expression for the bias.

Bias{ω̃} = arg
{
|A0|

2e jω0 + j
4σ2

π

}
− ω0. (B.39)

The bias estimate obtained with the Monte Carlo procedure matched closely the theoretical value
as shown in Figure B.6 for SNR values between 0 and 20 dB (Figure B.6a) as well as for sinusoid
frequencies ranging from 0.04π to 0.96π in 0.04π steps (Figure B.6b). As indicated by the cost
function analysis, for this input signal, the tracking algorithm is biased towards 0.5π since the
analytic representation of a real white noise is no longer white. Besides, the bias absolute value
depended on both the noise level and the distance between the sinusoid frequency and 0.5π.

B.3.3 Filtered Noisy Cisoid
In this case, by replacing Rvv[k] with (B.13) in (B.37), the bias of the frequency estimate

becomes

Bias{ω̃} = arg
{

(1 − β)2

1 − 2β cos(ω0 − ωc) + β2 · |A0|
2e jω0 + σ2 1 − β

1 + β
βe jωc

}
− ω0. (B.40)

Based on this expression, the SFT is unbiased when the central frequency of the band-pass filter
is equal to the frequency of the cisoid, ωc = ω0. This is illustrated in Figure B.7a for SNR values
taken from 0 to 20 dB in 1 dB steps. However, when the filter is not centered on the cisoid
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Figure B.5: Bias of the SFT for a noisy cisoid with respect to the SNR (A0 = 1, ω0 = 0.4π,
δ = 0.95).
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Figure B.6: Bias of the SFT for the analytic representation of a noisy sinusoid (A0 = 1, ω0 =

0.4π, SNR = 10 dB, δ = 0.95) with respect (a) to the SNR, and (b) to the sinusoid frequency ω0.
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frequency, the tracking algorithm is biased. Monte Carlo simulations were performed in order
to evaluate the deviation from the true frequency. For this purpose, fixed central frequencies
were taken uniformly between 0.04π and 0.96π in 0.04π steps for the filter (B.2). It is important
to clarify that in this particular case the central frequency of the filter was not adapted. The
outcomes of the numerical simulations are shown in Figure B.7b alongside theoretical values.
From these results, it is clear that the bias is almost negligible when the central frequency is
close to the cisoid frequency.

B.3.4 Filtered Noisy Sinusoid
As before, the noise autocorrelation Rvv[k] of the generic cisoid is substituted with the one

for this input signal (B.22). Thus, the expected value of Q[n] turns into

Q̃ =
(1 − β)2

1 − 2β cos(ω0 − ωc) + β2 · |A0|
2e jω0 + 2σ2 1 − β

1 + β
a[1]

=
(1 − β)2

1 − 2β cos(ω0 − ωc) + β2 · |A0|
2e jω0

+ 2σ2 1 − β
1 + β

(
βe jωc +

je jωc

πβ

(
ln

(
1 + βe− jωc

1 − βe− jωc

)
− β2 ln

(
1 + βe jωc

1 − βe jωc

)))
,

(B.41)

and the estimation bias is
Bias{ω̃} = arg{Q̃} − ω0. (B.42)

Like for the previous cases, this theoretical value was compared to the bias computed with Monte
Carlo simulations. In particular, the influences of the noise level, the sinusoid frequency ω0, the
central frequency ωc and the bandwidth parameter β were analyzed in detail. Figures B.8a and
B.8b show the bias of the SFT for SNR values taken from 0 to 20 dB in 1 dB steps and for
sinusoid frequencies ω0 ranging from 0.04π to 0.96π respectively. The effect of the central
frequency ωc on the bias is illustrated in Figure B.8c for fixed values between 0.04π and 0.96π,
while the influence of the bandwidth parameter β is shown in Figure B.8d for values taken from
0.5 to 0.95 in 0.05 steps. For all these situations, theoretical and practical bias were in close
agreement. Also, since the analytic representation of a white noise is no longer white, the SFT
is biased (with the exception of the special case ω0 = ωc = 0.5π). Nevertheless, the bias is
very limited or even negligible when the band-pass filter is narrow and centered on the sinusoid
frequency.

B.4 Variance Analysis
As it was done for the bias in Section B.3, the influence of the SFT parameters on the variance

of the instantaneous frequency estimate ω[n] is analyzed for the four different input signals.
However, theoretical values, even approximate ones, are extremely difficult to obtain. In fact, the
calculations quickly become intractable due to the argument in the update of the instantaneous
frequency estimate (3.10). Nonetheless, it is still possible to derive an expression for the variance
of the internal variable Q[n], Var{Q[n]}. The computation is based on the update (3.9) which can
be rewritten as follows,

Q[n] = δQ[n − 1] + (1 − δ)y[n]ȳ[n − 1], (B.43)

Q[n] − Q̃ = δ
(
Q[n − 1] − Q̃

)
+ (1 − δ)

(
y[n]ȳ[n − 1] − Q̃

)
, (B.44)

Qc[n] = δQc[n] + (1 − δ)
(
y[n]ȳ[n − 1] − Ryy[1]

)
, (B.45)
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Figure B.7: Bias of the SFT for a filtered noisy cisoid (A0 = 1, ω0 = 0.4π, SNR = 10 dB,
β = 0.95, δ = 0.95) with respect (a) to the SNR, and (b) to the central frequency ωc.
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Figure B.8: Bias of the SFT for the filtered analytic representation of a noisy sinusoid (A0 = 1,
ω0 = 0.4π, SNR = 10 dB, β = 0.95, δ = 0.95) with respect (a) to the SNR, (b) to the sinusoid
frequency ω0, (c) to the central frequency ωc, and (d) to the bandwidth parameter β.
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with Qc[n] = Q[n]− Q̃. Taking the squared modulus and then the expectation on both side of the
last equation yields

E
{∣∣∣Qc[n]

∣∣∣2} = δ2 E
{∣∣∣Qc[n − 1]

∣∣∣2} + (1 − δ)2 E
{∣∣∣y[n]ȳ[n − 1] − Ryy[1]

∣∣∣2}
+ 2δ(1 − δ) Re

{
E

{
Qc[n − 1]

(
ȳ[n]y[n − 1] − R̄yy[1]

)}}
.

(B.46)

Therefore, the variance of Q[n] is given by

Var{Q[n]} = RQcQc [0] =
1 − δ
1 + δ

E
{∣∣∣y[n]ȳ[n − 1] − Ryy[1]

∣∣∣2}
+

2δ
1 + δ

Re
{
E

{
Qc[n − 1]

(
ȳ[n]y[n − 1] − R̄yy[1]

)}}
.

(B.47)

When the input signal is the generic cisoid with additive zero-mean white noise (B.1), y[n] =

A0e jω0n + v[n], the two expectations in the right-hand side of the previous equation can be rewrit-
ten as

E
{∣∣∣y[n]ȳ[n − 1] − Ryy[1]

∣∣∣2} = E
{
|y[n]|2|y[n − 1]|2

}
−

∣∣∣Ryy[1]
∣∣∣2

= 2|A0|
2Rvv[0] + E

{
|v[n]|2|v[n − 1]|2

}
−

∣∣∣Rvv[1]
∣∣∣2

+ 2 Re
{
Ā2

0e− jω0(2n−1) E {v[n]v[n − 1]}
}

+ 2 Re
{
Ā0e− jω0(n−1) E

{
|v[n]|2v[n − 1]

}}
+ 2 Re

{
Ā0e− jω0n E

{
v[n]|v[n − 1]|2

}}
(B.48)

and

E
{
Qc[n − 1]

(
ȳ[n]y[n − 1] − R̄yy[1]

)}
= E {Q[n − 1]ȳ[n]y[n − 1]} −

∣∣∣Ryy[1]
∣∣∣2

= (1 − δ)
+∞∑
k=0

δk E {y[n − 1 − k]ȳ[n − 2 − k]ȳ[n]y[n − 1]} −
∣∣∣Ryy[1]

∣∣∣2
= (1 − δ)

+∞∑
k=0

δk E {v̄[n]v[n − 1]v[n − 1 − k]v̄[n − 2 − k]}

+ (1 − δ)
+∞∑
k=0

δk2|A0|
2 Re

{
e− jω0(k+1)Rvv[k + 1]

}
−

∣∣∣Rvv[1]
∣∣∣2

+ (1 − δ)
+∞∑
k=0

δkĀ2
0e− jω0(2n−2−k) E{v[n − 1]v[n − 1 − k]}

+ (1 − δ)
+∞∑
k=0

δkA2
0e jω0(2n−2−k) E{v̄[n]v̄[n − 2 − k]}

+ (1 − δ)
+∞∑
k=0

δkA0e jω0(n−1) E{v̄[n]v[n − 1 − k]v̄[n − 2 − k]}

+ (1 − δ)
+∞∑
k=0

δkĀ0e− jω0(n−2−k) E{v̄[n]v[n − 1]v[n − 1 − k]}

+ (1 − δ)
+∞∑
k=0

δkA0e jω0(n−1−k) E{v̄[n]v[n − 1]v̄[n − 2 − k]}

+ (1 − δ)
+∞∑
k=0

δkĀ0e− jω0n E{v[n − 1]v[n − 1 − k]v̄[n − 2 − k]},

(B.49)
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where Q[n] was expressed in terms of the infinite series Q[n] =
∑+∞

k=0 δ
ky[n − k]ȳ[n − 1 − k].

From this point, two additional assumptions on the zero-mean white noise v[n] are required
to simplify the expression for the variance of Q[n]. First, v[n] is supposed to follow a Gaussian
distribution. In this case, all central moments of odd order are equal to zero [203]. Second,
v[n] is assumed to be a circular (or proper) complex random process [66]. Indeed, for circular
processes, the pseudocorrelation, which is defined as

E{v[n]v[n − k]} = RvRvR [k] − RvI vI [k] + jRvRvI [k] + jRvI vR [k], (B.50)

with vR[n] = Re{v[n]} and vI[n] = Im{v[n]}, is equal to zero. It is easy to show that the additive
noises for the four considered input signals have indeed zero pseudocorrelations:

Noisy cisoid In this case, the noise v1[n] is a zero-mean complex circular Gaussian white pro-
cess with variance σ2. Its pseudocorrelation is zero as the real and imaginary parts are
independent and their variances are equal.

Noisy sinusoid For this input signal, the noise v2[n] is the analytic representation of a zero-mean
real Gaussian white process w2[n],

v2[n] = w2[n] + jw2,h[n] = w2[n] + j(h[n] ∗ w2[n]),

where w2,h[n] is the DHT of w2[n], which follows a Gaussian distribution as well. Inserting
(B.8) and (B.9) in (B.50), it is clear that v2[n] is a circular complex random process as its
pseudocorrelation vanishes.

Filtered noisy cisoid Here, the noise v[n] is obtained by filtering the circular Gaussian noise
from the first case. Consequently, since the filter (B.2) is linear, the resulting process is
also circular and Gaussian-distributed [66].

Filtered noisy sinusoid The same remarks as for the previous case apply to the filtered analytic
representation of a zero-mean real Gaussian white noise.

Furthermore, since the noise v[n] is assumed to follow a Gaussian distribution, its fourth order
central moments can be computed using Isserlis’ theorem [204]:

Theorem B.1 (Isserlis’ theorem) If ξ1, ξ2, . . . , ξ2N+1 (N = 1, 2, . . . ) are centered jointly Gaus-
sian random variables (i.e. E{ξn} = 0 for every n), then

E
{
ξ1ξ2 · · · ξ2N

}
=

∑∏
E

{
ξnξm

}
(B.51a)

and
E

{
ξ1ξ2 · · · ξ2N+1

}
= 0, (B.51b)

where the notation
∑∏

means summing over all distinct ways of partitioning ξ1, ξ2, . . . , ξ2N into
pairs.

This theorem, which is also known as Wick’s theorem [205], was first derived by Isserlis [206].
With this result which also holds for complex Gaussian random variables [207], the fourth order
moment in (B.48) becomes

E
{
|v[n]|2|v[n − 1]|2

}
= R2

vv[0] + |Rvv[1]|2. (B.52)

and the one in (B.49) is now given by

E
{
v̄[n]v[n − 1]v[n − 1 − k]v̄[n − 2 − k]

}
= |Rvv[1]|2 + |Rvv[k + 1]|2. (B.53)
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Finally, taking into account all the assumptions, the variance of Q[n] is obtained as follows,

Var{Q[n]} =
1 − δ
1 + δ

Rvv[0]
(
2|A0|

2 + Rvv[0]
)

+ 2δ
1 − δ
1 + δ

( +∞∑
k=0

δk |Rvv[k + 1]|2 + 2|A0|
2

+∞∑
k=0

δk Re
{
e− jω0(k+1)Rvv[k + 1]

} )
.

(B.54)

The variances of Q[n] and ω[n] were also investigated thoroughly with Monte Carlo simula-
tions for the four considered input signals (noisy cisoid, noisy sinusoid, filtered noisy cisoid and
filtered noisy sinusoid). This is particularly important for the instantaneous frequency estimate
as no theoretical value could be calculated. The procedure for the simulations is identical to the
one used for the bias (see Section B.3), and therefore only the most relevant details are repeated
here. A simplified SFT without the adaptive filter (B.2) was applied to the first two input signals,
while the complete algorithm was applied in the two other cases. The default parameters were
chosen as follows: A0 = 1, ω0 = 0.4π, SNR = 10 dB, δ = 0.95, β = 0.95.

B.4.1 Noisy Cisoid
Inserting the autocorrelation of the noise v1[n] (B.4) into the expression for the variance of

Q[n] yields

Var{Q[n]} =
1 − δ
1 + δ

σ2
(
2|A0|

2 + σ2
)
. (B.55)

This theoretical value was compared to the one obtained with Monte Carlo simulations. In ad-
dition, the variance of the instantaneous frequency estimate was also measured with numerical
simulations. The influences of the SNR and the forgetting factor δ on the variances of Q[n] and
ω[n] were investigated as illustrated in Figure B.9. SNR values were taken from 0 to 20 dB in
1 dB steps (Figure B.9a). The Monte Carlo procedure confirmed that low noise variance leads
to low estimation variance. The effect of the forgetting factor δ was analyzed by taking values
between 0.5 and 0.95 in 0.05 steps (Figure B.9b). As expected, values of δ close to one also
led to lower estimation variance. Furthermore, the theoretical and simulated variances of Q[n]
matched almost perfectly.

B.4.2 Noisy Sinusoid
Similarly to the previous case, the variance of Q[n] for this input signal is obtained by com-

bining the general expression (B.54) and the specific noise autocorrelation (B.9). The resulting
variance is given by

Var{Q[n]} =
1 − δ
1 + δ

4σ2
(
|A0|

2 + σ2
)

+
1 − δ
1 + δ

8σ2

π

(
2σ2

π

(
Li2(δ) − Li2(−δ)

)
− |A0|

2 arg
{

1 + δe− jω0

1 − δe− jω0

})
=

1 − δ
1 + δ

4σ2
(
|A0|

2 + σ2
)

+
1 − δ
1 + δ

8σ2

π

(
4σ2

π
χ2(δ) − |A0|

2 arg
{

1 + δe− jω0

1 − δe− jω0

})
,

(B.56)

where Lis(r) is the polylogarithm (also known as Jonquière’s function [208]) and χs(r) is Legen-
dre chi function. These two functions are defined as [209]

Lis(r) =

+∞∑
k=1

rk

ks (B.57)
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and

χs(r) =

+∞∑
k=0

r2k+1

(2k + 1)s . (B.58)

This theoretical variance was then compared to the one measured with Monte Carlo simulations.
The variance of ω[n] was estimated with the same procedure. Figure B.10 presents the outcomes
of the simulations for various values of the parameters. The same remarks as for the first case
regarding the influence of the noise level and the forgetting factor on the estimation variance
apply (Figures B.10a and B.10b). Furthermore, as the sinusoid frequency is involved in (B.56),
its effect on the variances of Q[n] and ω[n] was also analyzed by varying ω0 from 0.04π to 0.96π
in 0.04π steps (Figure B.10c). One can observe that the frequency estimation variance is slightly
smaller around 0.5π. It is reminiscent of the bias analysis where the bias magnitude was also
smaller around this frequency (Figure B.6b). At last, theory and numerical simulations were in
close agreement for this input signal as well.

B.4.3 Filtered Noisy Cisoid
In order to compute the variance of Q[n] for this input signal, the autocorrelation of the noise

(B.13) is inserted into (B.54):

Var{Q[n]} =
1 − δ
1 + δ

σ2 1 − β
1 + β

(
(1 − β)2

1 − 2β cos(ω0 − ωc) + β2 · 2|A0|
2 + σ2 1 − β

1 + β

)
+ 2δ

1 − δ
1 + δ

σ2β
1 − β
1 + β

(
σ2β

1 − δβ2

1 − β
1 + β

−
(1 − β)2

1 − 2β cos(ω0 − ωc) + β2 · 2|A0|
2 cos(ω0 − ωc) − δβ

1 − 2δβ cos(ω0 − ωc) + δ2β2

)
.

(B.59)

This variance and Var{ω[n]} were also computed with Monte Carlo simulations. They were
measured with respect to the SNR, the forgetting factor, the central frequency and the bandwidth
of the band-pass filter (B.2) as shown in Figure B.11. The noise level and δ had effects similar
to the ones observed for the two input signals presented previously (Figures B.11a and B.11b).
Like for the bias, the influence of the filter central frequency ωc was investigated with a slightly
modified SFT. Indeed, the central frequency was not adapted to the current frequency estimate,
but instead it was set to fixed values taken from 0.04π to 0.96π in 0.04π steps. Clearly, the
frequency estimation variance increased as the distance between the cisoid frequency and the
central frequency increased (Figure B.11c). Thus, whenever the adaptive band-pass filter is not
close enough to the cisoid frequency, the SFT provides an estimate with high bias and variance
(Figure B.7b). Different values of the bandwidth parameter β also modified both Var{Q[n]} and
Var{ω[n]}. This was assessed by varying β from 0.5 to 0.95 in 0.05 steps (Figure B.11d). As
expected, values close to one led to narrower bandwidths and thus to lower estimation variances
as more noise was filtered out. Overall, the theoretical and practical variances of Q[n] matched
closely in all these cases.

B.4.4 Filtered Noisy Sinusoid
Unlike the first three cases, the calculations for obtaining a closed form expression of the

variance of Q[n] for a filtered noisy sinusoid quickly become intractable due to the infinite series
in (B.22) and (B.54). Nevertheless, a Monte Carlo procedure was applied for investigating the
behavior of Var{Q[n]} and Var{ω[n]} with respect to the different parameters. The results of the
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Figure B.9: Variance of the SFT for a noisy cisoid (A0 = 1, ω0 = 0.4π, SNR = 10 dB, δ = 0.95)
with respect (a) to the SNR, and (b) to the forgetting factor δ.
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Figure B.10: Variance of the SFT for the analytic representation of a noisy sinusoid (A0 = 1,
ω0 = 0.4π, SNR = 10 dB, δ = 0.95) with respect (a) to the SNR, (b) to the forgetting factor δ,
and (c) to the sinusoid frequency ω0.
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Figure B.11: Variance of the SFT for a filtered noisy cisoid (A0 = 1, ω0 = 0.4π, SNR = 10 dB,
β = 0.95, δ = 0.95) with respect (a) to the SNR, (b) to the forgetting factor δ, (c) to the central
frequency ωc, and (d) to the bandwidth parameter β.
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simulations are shown in Figure B.12 for varying SNRs, forgetting factors δ, sinusoid frequen-
cies ω0, central frequencies ωc and bandwidth parameters β of the band-pass filter. As for the
other input signals, low noise variance led to low estimation variance (Figure B.12a). The for-
getting factor and bandwidth parameter had the same effect as for the filtered noisy cisoid case:
smaller variances were obtained for values close to one (Figures B.12b and B.12e). Furthermore,
sinusoid frequencies close to 0 and π resulted in a slightly smaller variance for ω[n], but this
effect was very limited (Figure B.12c). Finally, like for the previous input signal, the frequency
estimation variance was minimized when the adaptive band-pass filter was centered on the true
sinusoid frequency (Figure B.12d).
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Figure B.12: Variance of the SFT for the filtered analytic representation of a noisy sinusoid
(A0 = 1, ω0 = 0.4π, SNR = 10 dB, β = 0.95, δ = 0.95) with respect (a) to the SNR, (b) to the
forgetting factor δ, (c) to the sinusoid frequency ω0, (d) to the central frequency ωc, and (e) to
the bandwidth parameter β.
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