Proton and Phosphorus Magnetic Resonance Spectroscopy of a Mouse Model of Alzheimer’s Disease

Vladimír Mlynáríka,∗, Matthias Cacquevelb, Lili Sun-Reimera, Sharon Janssensa, Cristina Cudalbua, Hongxia Leia, Bernard L. Schneiderb, Patrick Aebsicherb and Rolf Gruettera

aEcole Polytechnique Fédérale de Lausanne, Laboratory of Functional and Metabolic Imaging (LIFMET), Lausanne, Switzerland
bEcole Polytechnique Fédérale de Lausanne, Brain Mind Institute, Lausanne, Switzerland

Accepted 29 February 2012

Abstract The development of new diagnostic criteria for Alzheimer’s disease (AD) requires new in vivo markers reflecting early pathological changes in the brain of patients. Magnetic resonance (MR) spectroscopy has been shown to provide useful information about the biochemical changes occurring in AD brain in vivo. The development of numerous transgenic mouse models of AD has facilitated the evaluation of early biomarkers, allowing researchers to perform longitudinal studies starting before the onset of the pathology. In addition, the recent development of high-field animal scanners enables the measurement of brain metabolites that cannot be reliably quantified at lower magnetic fields. In this report, we studied a new transgenic mouse model of AD, the 5xFAD model, by in vivo proton and phosphorus MR spectroscopy. This model, which is characterized by an early-onset and a robust amyloid pathology, developed changes in the neurochemical profile, which are typical in the human disease, i.e., an increase in myo-inositol and a decrease in N-acetylaspartate concentrations, as early as in the 40th week of age. In addition, a significant decrease in the γ-aminobutyrate concentration was observed in transgenic mice at this age compared to controls. The pseudo-first-order rate constant of the creatine kinase reaction as well as relative concentrations of phosphorus-containing metabolites were not changed significantly in the 36 and 72-week old transgenic mice. Overall, these results suggest that mitochondrial activity in the 5xFAD mice is not substantially affected but that the model is relevant for studying early biomarkers of AD.

Keywords: 5xFAD, Alzheimer’s disease, in vivo NMR spectroscopy, metabolic profile, transgenic mice

INTRODUCTION

Transgenic mouse models of Alzheimer’s disease (AD) are useful for studying disease mechanisms and for therapy testing. The design of such models has been based on the early discovery of dominant mutations in rare familial AD cases (FAD) [1–3] and in familial fronto-temporal dementia cases linked to chromosome 17 (FTDP-17) [4]. Most of transgenic mouse models of AD are based on the overexpression of mutated forms of human amyloid-β protein precursor (AβPP) alone or in combination with mutated human prese-nilin 1 (PS1) or 2 (PS2) genes (see [5] for an extensive review of transgenic mouse models of AD). These models are characterized by a progressive accumulation of amyloid-β (Aβ) in the brain, which leads to the age-dependent formation of extracellular amyloid deposits, one of the neuropathological hallmark of AD.
Although these transgenic mice reproduce well subsets of histopathological features typical for AD, most of them do not show the complete phenotype of AD including neurofibrillary tangles and massive neuronal loss. To overcome these limitations, double or triple transgenic mouse models overexpressing the human tau gene carrying FTDP-17 mutations together with mutated ApoE and/or PS1/2 have been generated with various neuropathological outcomes [6, 7]. However, despite these efforts, none of these models recapitulates the full spectrum of the disease. Therefore, each mouse model has to be critically evaluated and compared to the human disease in order to assess its relevance to AD [8, 9].

Neurochemical profile in AD patients

In vivo magnetic resonance spectroscopy (MRS) is a non-invasive method, which provides information on the neurochemical profile in various neurodegenerative diseases. This method enables studying various brain metabolites in a defined volume of interest (VOI) that can cover brain regions as small as 1 milliliter in human brain and several microliters in rodents [10]. It can be used in human neurological patients as well as in animals modeling various brain pathologies.

Proton (1H) MR spectroscopy is capable of providing relative or absolute concentrations of about 15 to 19 metabolites in the brain. Some of them are considered markers of myelination and cell proliferation such as phosphorylcholine, glycerophosphocholine, and phosphoethanolamine because they are precursors of essential structural components of the plasma membrane (phospholipids) and the myelin sheath (sphingolipids). Others, such as creatine (Cr), phosphocreatine (PCr), glucose, lactate, and alanine, are related to energy metabolism. Taurine and myo-inositol (mIns) are osmoregulators; they are notably involved in calcium signaling. Glutamate (Glu), glutamine (Gln), -aminobutyrate (GABA), aspartate, and glycine are neurotransmitters involved in neurotransmitter metabolism; glutathione and ascorbate are antioxidants. N-acetylaspartate (NAA) has various biological functions (osmoregulation, energy metabolism, myelination) and is mainly produced by the mitochondria of neurons in the brain.

Phosphorus (31P) MR spectroscopy has lower sensitivity than 1H MR spectroscopy and requires larger VOIs to be measured [11]. The most important cerebral metabolites that can be measured by 31P spectroscopy are nucleotide triphosphates, mainly adenosine triphosphate (ATP), which is the principal energy source for cell metabolism, and PCr, which serves as an ATP replenisher via the creatine kinase reaction. Other peaks seen in the 31P brain spectra can be assigned to phosphomonoesters (PME) consisting of poorly resolved signals of phosphoethanolamine and phosphorylcholine, to inorganic phosphate (Pi), to phosphodiester (PDE) consisting of peaks of glycerophosphorylcholine and glycerophosphorylethanolamine, and to nicotinamide adenine dinucleotide and its phosphate (NAD+ and NADP). PME and PDE are precursors and breakdown products, respectively, of membrane phospholipids; Pi is a product of ATP hydrolysis; and NAD and NADP are involved in redox reactions. It should be noted that the role of many metabolites detected by 1H or 31P spectroscopy is not completely clear and some of them have multiple roles.

Changes in concentrations of several brain metabolites were reported in AD patients. In particular, a decrease in the concentration of NAA and an increase in mIns were consistently found not only in patients with clinical symptoms of AD but also in people with the syndrome of mild cognitive impairment, which present a higher risk to develop AD [12]. NAA is considered a marker of neuronal functionality and integrity and its concentration is decreased in both grey and white matter of the AD patients [13–17]. Moreover, the decrease in NAA demonstrating gradual neuronal loss was found to correlate with severity of neuropathological findings [18, 19]. In contrast, mIns is believed to be a marker of glial cell numbers because it is highly concentrated in astrocytes. The concentration of this metabolite is elevated in grey matter even in the earliest stages of AD [20], probably due to gliosis.

There are other metabolites easily detectable in MR spectra of human brain. The peak of total choline corresponds mainly to phosphorylcholine and glycerophosphorylcholine. The changes in the total choline concentration are probably associated with increased membrane turnover due to neurodegeneration. The reports on the choline concentration in AD are contradictory. Various authors found increased [21, 22] or decreased [23, 24] total choline levels in some brain regions, whereas most studies reported no change in its concentration [25–27].

The methyl peak of total creatine (tCr) is composed of PCr and Cr. The PCr/Cr system acts as a source of energy reserve for neurons and glial cells. An unchanged concentration of tCr was assumed in most human and animal MR studies and concentrations of other metabolites were generally expressed as relative ones, i.e., as ratios to tCr. However, a decrease [24, 28], as well as an increase [20], in tCr has also been reported in AD.
Glu is a key excitatory neurotransmitter. It can be quantified in human brain at higher static magnetic fields separately from Gln. At lower magnetic fields, a sum of Glu and Gln concentrations (Glx) is usually obtained. In AD patients, a decrease of Glx or Glu was reported in the occipital cortex [16], the frontal lobe [29], the posterior cingulate [30], and in the hippocampus [27], respectively.

Lactate is a product of anaerobic glycolysis. The peak of lactate can be seen in spectra of human brain in disorders connected with hypoxia.

Neurochemical profile in AD transgenic mouse models

Several types of AD mouse models were studied by MRS (see [31] for an excellent review). Tg2576, a single-transgenic mouse model overexpressing the mutated human PS1 (M146V) [38, 39] was reported in the occipital cortex [16], the frontal lobe [29], the posterior cingulate [30], and in the hippocampus [27], respectively.

Tg2576 mice was not seen.

The Tg2576 model was crossed with a transgenic mouse overexpressing the Swedish mutation (K670N, M671L) develops amyloid plaques predominantly in the neocortex and the hippocampus by 10–16 months of age [32]. In this model, a decrease of NAA, Glu, and glutathione concentrations and an increase in taurine was found in the cerebral cortex at 19 months of age [33]. A decreased level of NAA is consistent with decreased neuronal viability. The authors proposed that the role of taurine in rodent brain might be similar to that of mlns in human brain, and that an increased level of taurine could reflect increased glial volume.

The Tg2576 model was crossed with a transgenic mouse overexpressing mutated human PS1 (M146L) and double transgenic animals (AβPP/PS1) showed accelerated amyloid deposition [34]. Öberg and colleagues [35] measured MR spectra in hippocampus of these mice at 2.5, 6.5, and 9 months of age. The first plaques were seen at 6.5 months and statistically significant lower relative concentrations of NAA, Glu, and a macromolecule component at 1.2 ppm were observed [35].

In the first, triple-transgenic model (3xTg-AD) harboring PS1 (M146V), AβPP (K670N, M671L) and human PS2 (N141I) genes [45], at 3, 5, and 8 months of age. Surprisingly and contrary to previous observations on other AβPP/PS1 mice, they found a very early increase in mlns/tCr in both the hippocampus and the cortex at the age of 3 months and a decrease in NAA/tCr at the age of 5 months. Changes in relative concentrations of both metabolites progressed with age.

Brain metabolites changes were also studied in another double transgenic mouse model of AD, the so-called PS2AβPP line, which overexpresses the mutant AβPP (K670N, M671L) and human PS2 (N141I) genes [45]. In frontal cortex of 24-month old animals a significant decrease in NAA/tCr and Glu/tCr was observed compared to wild-type mice while no significant change in mlns/tCr was observed at this time point [46]. These spectroscopic changes correlated with the amount of plaques in the frontal cortex. A summary of metabolic changes in mouse models of amyloid pathology measured by in vivo proton MR spectroscopy is given in Table 1.

Recently, two other transgenic models were studied.

In the first, triple-transgenic model (3xTg-AD) harboring PS1 (M146V), AβPP (K670N, M671L), and tau (P301L) transgenes [6], a decrease in NAA and taurine and an increase in lactate concentrations were observed in hippocampus at 3 and 15 months of age [47]. In an earlier study of this model, a decline in NAA was observed in hippocampus at 6 months of age [48].

They measured proton spectra in cortex and hippocampal regions at 6 and 16–18 months of age. At 6 months of age, a small plaque accumulation was observed with no significant changes in the neurochemical profile compared to wild-type controls. At 16–18 months, a large plaque burden was accompanied by a decrease in NAA and Glu and by an increase of Glu and mlns concentrations (in vitro, as g/ml wet weight) in cortex. However, only a decrease in NAA was seen in vivo at 17–20 months of age in the hippocampus. In the same study, the effect of anti-inflammatory drugs on MR spectroscopic changes in AβPP/PS1 mice was also assessed. Ibuprofen treatment reverted the decrease in NAA and Glu, and celecoxib reverted the decrease in NAA.

Chen and co-workers [40] studied another AβPP/PS1 mouse model, with human PS1 carrying the ΔE9 mutation [41–44], at 3, 5, and 8 months of age. Surprisingly and contrary to previous observations on other AβPP/PS1 mice, they found a very early increase in mlns/tCr in both the hippocampus and the cortex at the age of 3 months and a decrease in NAA/tCr at the age of 5 months. Changes in relative concentrations of both metabolites progressed with age.
Table 1

<table>
<thead>
<tr>
<th>Strain</th>
<th>Transgene</th>
<th>Promoter</th>
<th>Kinetics of amyloid depositiona (months)</th>
<th>Age of MRS analysis (months)</th>
<th>Neuropathology in the VOIb</th>
<th>Main metabolite changesc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tg2576 [32, 66, 67]</td>
<td>Human AβPP695c with Swedish mutation (K670N/M671L)</td>
<td>Hamster</td>
<td>6–7, 12, ≥19</td>
<td>19 [33]</td>
<td>Sparse amyloid deposition with large amyloid plaques and plaque associated gliosis</td>
<td>NAA, GSH, Glu</td>
</tr>
<tr>
<td>AβPPPS1 [52, 576, 53, 59, 68]</td>
<td>Human AβPP695c with Swedish mutation (K670N/M671L) × Human PS1 with M146L mutation</td>
<td>Hamster</td>
<td>4, 6, ≥9</td>
<td>2.5, 6, 5, 9 [35]</td>
<td>No pathology at 2.5 months. Presence of few amyloid deposits at 6.5 with a small increase at 9 months</td>
<td>NAA, tCr (6.5–9 months)</td>
</tr>
<tr>
<td>AβPPPS145 [38, 39]</td>
<td>Human AβPP695c with Swedish mutation (K670N/M671L) × Human PS1 with M146V mutation</td>
<td>Hamster</td>
<td>4, 6, ≥9</td>
<td>6, 16–20 [39]</td>
<td>Significant plaque number at 6 months, large burden at 16–18 months in the frontal cortex</td>
<td>NAA, Glu with age, tCr (16–18 months)</td>
</tr>
<tr>
<td>AβPPPS1 line 85 [41–44]</td>
<td>Chimeric mouse/human AβPP695c with Swedish mutation (K670N/M671L) & Human PS1 with aA9 mutation</td>
<td>Mouse Pp for both transgenes</td>
<td>4–6, 9, ≥12</td>
<td>3, 5, 8 [40]</td>
<td>No amyloid plaques at 3 months. Sparse amyloid deposition at 5 months</td>
<td>NAA, tCr (5–8 months, with age)</td>
</tr>
<tr>
<td>PS2AβPP [45]</td>
<td>Human AβPP695c with Swedish mutation (K670N/M671L) × Human PS2 with N141I mutation</td>
<td>Thy1.2 for both transgenes</td>
<td>5–6, 9, ≥13</td>
<td>4–24 [46]</td>
<td>High content of amyloid pathology at 25 months. Correlation between plaque load and metabolites changes</td>
<td>[NAA, tCr (20–24 months)</td>
</tr>
<tr>
<td>5xFAD® [56, 579]</td>
<td>Human AβPP695c with Swedish mutation (K670N/M671L). Florida (T16 V), London (V717T) mutations & Human PS1 with M146L and L286V mutations</td>
<td>Thy1 promoter for both transgenes</td>
<td>1.5–2, 2–3, ≥1</td>
<td>9, 10, 11 this work</td>
<td>Dorsal hippocampus 1.2 × 1.0 × 0.9 mm³</td>
<td>[NAA, Glu (9 months)</td>
</tr>
</tbody>
</table>

*aNumbers denote the age (in months) of three stages of amyloid deposition, onset, mild and severe amyloid deposition, respectively.
*bNeuropathology in the VOI as described in the MR study.
*cSignificant differences between wild-type and transgenic animals at a particular age (trends in age are also indicated).
*dIn vivo data, differences in the values in vivo were not significant.
*eTwo different strains were bred to generate this mouse model.
*fM1.2 denotes a signal of macromolecules at 1.2 ppm.
*gBoth transgenes were integrated at the same locus.
the same model, Yang and collaborators [51] observed an increase in mluc/Cr in transgenic mice compared to wild-type controls at 5 and 8 months of age, however, no significant change in NAA/Cr was observed at these time points.

Besides the decrease in NAA, the other typical change of the neurochemical profile in the human AD brain, i.e., the increase in mluc, was observed only in elderly AjPP/PS1 mice. In attempt to find a transgenic model showing the neurochemical profile closer to the human one in younger animals, a 5xFAD transgenic mouse model was used in the present study. Localized 1H spectra in brain of these transgenic mice were measured at 36–44 weeks of age and their metabolic profiles were compared to those of wild-type animals. Furthermore, 31P MR spectra providing additional information on cell energy metabolism were measured from brains of the transgenic and wild-type mice. Relative concentrations of phosphorus-containing metabolites in the brain were evaluated, and the pseudo-first order forward rate constants of the creatine kinase reaction (PCr ↔ ATP) were obtained by localized phosphorus saturation transfer experiment. Spectroscopic results were compared with histology.

MATERIALS AND METHODS

Animal model

The 5xFAD mouse line was generated in the laboratory of Dr. Robert Vassar at Northwestern University, Chicago [52] and was transferred to our institute in Jackson Laboratories, US (Stock number: 006554). This transgenic line overexpresses both the AjPP and the PS1 genes, carrying familial AD (FAD) mutations: AjPP K670M/N671L (Swedish), I716V (Florida), and V717I (London); PS1 M146L, and L286V. Both transgenes are driven by the Thy1 promoter. Animals were maintained on a mixed genetic background (C57/B6SJL) and wild-type littermates were used as controls mice. All procedures were approved by the Committee on Animal Experimentation for the canton of Vaud, Switzerland, in accordance with Swiss Federal Laws on Animal Welfare and the European Community Council directive (86/609/EEC) for the care and use of laboratory animals.

MR spectroscopy

Seven AD and seven wild-type mice anesthetized with 1–2% isoflurane were measured at the age of 36 weeks (31P and 1H spectra), 40 and 44 weeks (1H only), and 72 weeks (31P only). Measurements were conducted on a 14.1 T/26 cm horizontal-bore Varian VNMR scanner (Varian, Palo Alto, CA, USA). The magnet was equipped with 12-cm inner diameter actively shielded gradient sets (Magnex Scientific, Oxford, UK) allowing a maximum gradient of 400 mT/m in 120 μs. For 1H spectroscopy, a two-loop quadrature radiofrequency coil with dimensions of 21 mm × 14 mm was used as a transceiver. The static field homogeneity was adjusted using first- and second-order shims using an EPI version of FASTMAP [53].

Localizer images were obtained in the coronal plane using a multislice turbo-spin-echo protocol (TR/TEeff = 5000/2.8 ms) with an echo train length = 8, field of view = 24 mm × 24 mm, slice thickness = 0.6 mm, 6 averages, 1282 image matrix. The MRI scan was followed by short echo-time (TR/TE = 4000/2.8 ms) spin echo, full intensity acquired localized (SPECTRUM) [54] proton MR spectroscopy from volumes of interest of 1.2 × 1.9 × 1.9 mm3 centered in dorsal hippocampus and of 1.7 × 1.7 × 1.7 mm3 centered in its temporal pole. Outer volume suppression was used, which was interleaved with water signal suppression by variable-power RF pulses with optimized relaxation delays (VAPOR) [55]. Each scan of 4096 complex data points was acquired with a spectral width of 7 kHz. Proton spectra were quantified by LMModel [56] using a database of simulated spectra of metabolites together with an experimental spectrum of macromolecules measured in a healthy mouse brain [57]. Absolute concentrations of metabolites in mmol/g of tissue were calculated using an unsuppressed water peak, assuming 80% of water in the tissue.

31P spectra and saturation transfer data were measured using a dual surface radiofrequency coil consisting of a proton quadrature coil and a linearly polarized 10 mm diameter phosphorus coil, both used as transceivers. The localization pulse sequence consisted of outer volume saturation (OV5) using 2.5 ms hyperbolic secant pulses. Afterwards, one-dimensional ISIS [58] localization was used in the horizontal direction. It consisted of a 2.5 ms hyperbolic secant pulse inverting the magnetization in the selected region of brain in alternate scans, which was followed by a 1 ms broadband nonselective adiabatic half passage pulse and a signal acquisition with alternated phase. The repetition time was 4 seconds.

In the saturation transfer experiment, the γ-ATP signal was saturated by a BISTRO pulse train [59] interleaved with OVS. The BISTRO pulse sequence consisted of a series of 40 ms hyperbolic secant pulses
with variable amplitudes and having a total length t_{sat} from 0.324 s to 3.24 s. Sixty to eighty scans were collected for each of 6 different saturation times and for a control scan with irradiation offset in the mirror position relative to the PCr peak. A relaxation delay of 4 s between the last excitation pulse and beginning subsequent saturation period was kept constant. The peak intensities were obtained by fitting to a Lorentzian function using AMARES [60] from the jMRUI software (http://www.mrui.uab.es/mrui). The forward creatine kinase rate constant k_{for} and the apparent T_1 relaxation time of PCr during the γ-ATP saturation (T_{1sat}) were obtained from a nonlinear regression of relative PCr signal intensities $M(t_{sat})/M(0)$ as a function of t_{sat} according to the equation:

$$M(t_{sat})/M(0) = (1 - k_{for}T_{1sat}) + k_{for}T_{1sat} \exp(-t_{sat}/T_{1sat}).$$

The intracellular pH was calculated from the difference in chemical shifts of peaks of Pi and PCr using the equation [61]:

$$pHi = 6.77 + \log(\delta_{Pi} - 3.29)/(5.68 - \delta_{Pi}),$$

where δ_{Pi} is the chemical shift of the Pi resonance relative to PCr.

Fig. 1. Overview of the neuropathology in 39-week old 5xFAD mice at the level of the dorsal hippocampus. Amyloid pathology was revealed by Thioflavin S staining in wild-type (A) and transgenic (B) brain (Thioflavin S in green, ethidium bromide in red). The amyloid accumulation is associated with strong astrogliosis revealed by GFAP immunostaining in wild-type (C) and 5xFAD (D) GFAP staining in green, DAPI in blue. (E, F) Co-localization of reactive astrocytes and activated microglia with amyloid deposits in the neocortex as revealed by an immunostaining against amyloid-\beta peptide (in red) and either GFAP (E) or Iba1 (F) (in green). Scale bar = 100 µm. Localization of the volume of interest for proton MR spectroscopy is shown in (G).
Unpaired two-tailed Student’s *t*-test was used to compare metabolite concentrations in the transgenic and wild-type mice. The error bars represent standard deviations.

Brain processing and histology

Animals were anaesthetized by intraperitoneal injection of pentobarbital (150 mg/kg) and transcardially perfused with cold phosphate buffered saline (PBS). Brains were extracted and fixed in paraformaldehyde 4% in PBS overnight at 4 °C. Then brains were cryo-protected in a solution of PBS sucrose 25%(w/v), embedded in OCT compound, snap-froze and stored at −80 °C until further processing. Coronal sections were performed using a cryostat (Leica CM3050S). Histology and immunohistochemistry were performed on 40-μm-thick free-floating sections. Thioflavin S staining was performed according to the following procedure: sections were washed twice in PBS (2 × 5 min), then incubated under agitation in a solution of Thioflavin S 0.01% (w/v) in ethanol 50% (v/v) during 8 min, followed by two baths in ethanol 50% (2 × 5 min) and PBS (2 × 10 min). Immunohistochemistry was performed with the following antibodies according to standard procedures: anti-amyloid-β (6E10, SIG-39320, Covance, 1/500), anti-GFAP (Z0334, Dako, 1/500), anti-Iba1 (019-19741, Wako, 1/100). Secondary antibodies: anti-mouse Cye3 (715-165-151, Jackson ImmunoResearch Laboratories, 1/1000) and anti-rabbit Alexa 488 (A21026, Invitrogen, 1/600). Sections were finally mounted in glycerol 80% and imaged with an epifluorescent microscope (LEICA DM5500).

RESULTS

As described by Oakley et al. [52], the 5xFAD model shows a very early onset of amyloid deposition (starting at 2 months in the subiculum and in the frontal cortex), a concomitant early inflammation and gliosis, and a synaptic loss as soon as 4 months of age. In this regard, this model presents a neuropathology similar to AD with the exception of the tau pathology, although the latter has not been fully investigated in this model [52, 62]. To determine if this model recapitulates the MR spectroscopic features of AD, a cohort of 5xFAD mice and wild-type littermates were studied at an advanced age between 8 and 10 months in a VOI covering the vast majority of the dorsal hippocampus (Fig. 1G). As shown in Fig. 1, numerous amyloid deposits were observed in transgenic animals at this age in the selected VOI (Fig. 1A, B). A strong astrogliosis was clearly observed in the same region (Fig. 1C, D) as well as a mild microglial response associated with amyloid deposits (Fig. 1E, F).

Figure 2 shows typical proton spectra measured in the hippocampal region of 5xFAD and wild-type mice. The high quality of spectra exhibiting excellent resolution and signal-to-noise enabled quantification of 18 metabolites. Comparison of the neurochemical profiles in dorsal hippocampus of the 5xFAD and wild-type mice is shown in Fig. 3, absolute metabolite concentrations and concentration ratios for most important metabolites are summarized in Table 2. At the age of 36 weeks, a statistically significant decrease in NAA, Glu, and glucose and a significant increase in the lactate concentration was found. At 40 and 44 weeks of age, changes typical for the human form of the disease, i.e., a decrease in NAA (p < 0.004) and an increase in myo-inositol (p < 0.007) were observed (Fig. 3, Table 2). In addition, the GABA concentration
Fig. 3. Comparison of the neurochemical profile in dorsal hippocampus of the wild-type (WT) and 5xFAD mice at 36 (A), 40 (B), and 44 (C) weeks of age. Mac = macromolecules, Ala = alanine, Asp = aspartate, GSH = glutathione, Gly = glycine, Lac = lactate, Tau = taurine, Asc = ascorbate, Glc = glucose, NAAG = N-acetylaspartylglutamate, PE = phosphoethanolamine, tCho = total choline. Significantly different values are denoted by * ($p < 0.05$) and ** ($p < 0.01$).

was also significantly decreased ($p < 0.015$) in the AD mice. The differences observed in the temporal part of hippocampus were similar, with higher p-values due to lower signal-to-noise ratio (data not shown).

In vivo 31P spectra (Fig. 4) were also measured at 36 weeks of age from the volume of interest shown in Fig. 5. We observed a trend for an increase in the $\text{PCr}/\gamma\text{-ATP}$ peak intensity ratio which however did not
Table 2
Concentrations of selected metabolites obtained from 1H spectra, concentration ratios obtained from 31P spectra and forward rate constants of the creatine kinase reaction in brain of wild-type (WT) and 5xFAD mice

<table>
<thead>
<tr>
<th>Metabolite or metabolic ratio</th>
<th>1H spectroscopy, c ($/\text{H}_2\text{O}$)</th>
<th>36 weeks</th>
<th>40 weeks</th>
<th>44 weeks</th>
<th>36 weeks</th>
<th>40 weeks</th>
<th>44 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT</td>
<td>5xFAD</td>
<td>WT</td>
<td>5xFAD</td>
<td>WT</td>
<td>5xFAD</td>
<td>WT</td>
</tr>
<tr>
<td>Creatine</td>
<td>5.0 ± 0.2</td>
<td>4.8 ± 0.3</td>
<td>4.8 ± 0.4</td>
<td>5.0 ± 0.3</td>
<td>4.5 ± 0.5</td>
<td>4.3 ± 0.4</td>
<td>4.5 ± 0.6</td>
</tr>
<tr>
<td>Phosphocreatine</td>
<td>3.8 ± 0.6</td>
<td>3.6 ± 0.3</td>
<td>3.8 ± 0.3</td>
<td>3.9 ± 0.6</td>
<td>3.8 ± 0.5</td>
<td>4.2 ± 0.6</td>
<td>3.9 ± 0.6</td>
</tr>
<tr>
<td>Glutamate</td>
<td>2.6 ± 0.3</td>
<td>2.8 ± 0.4</td>
<td>2.8 ± 0.2</td>
<td>3.4 ± 0.6</td>
<td>2.8 ± 0.3</td>
<td>3.1 ± 0.7</td>
<td>2.7 ± 0.3</td>
</tr>
<tr>
<td>Glutamine</td>
<td>8.8 ± 0.6**</td>
<td>7.7 ± 0.6**</td>
<td>8.2 ± 0.5</td>
<td>8.0 ± 0.4</td>
<td>8.4 ± 0.6</td>
<td>8.2 ± 0.4</td>
<td>8.0 ± 0.4</td>
</tr>
<tr>
<td>myo-inositol</td>
<td>6.6 ± 0.6</td>
<td>6.6 ± 0.2</td>
<td>6.2 ± 0.6**</td>
<td>7.2 ± 0.3**</td>
<td>6.2 ± 0.3**</td>
<td>7.0 ± 0.5**</td>
<td>6.2 ± 0.3**</td>
</tr>
<tr>
<td>N-acetylasparginate</td>
<td>8.2 ± 0.5**</td>
<td>7.4 ± 0.4**</td>
<td>8.1 ± 0.3</td>
<td>7.4 ± 0.7**</td>
<td>8.5 ± 0.4**</td>
<td>7.4 ± 0.5**</td>
<td>8.5 ± 0.4**</td>
</tr>
<tr>
<td>Tauone</td>
<td>10.6 ± 0.6</td>
<td>10.2 ± 0.3</td>
<td>10.2 ± 0.9</td>
<td>10.7 ± 0.8</td>
<td>10.0 ± 0.6</td>
<td>10.5 ± 0.7</td>
<td>10.0 ± 0.6</td>
</tr>
<tr>
<td>Phosphothreonamine</td>
<td>1.2 ± 0.4</td>
<td>1.1 ± 0.4</td>
<td>1.1 ± 0.1</td>
<td>0.9 ± 0.5</td>
<td>0.7 ± 0.3</td>
<td>0.9 ± 0.2</td>
<td>1.1 ± 0.2</td>
</tr>
<tr>
<td>Total choline</td>
<td>0.9 ± 0.2</td>
<td>0.8 ± 0.2</td>
<td>0.9 ± 0.2</td>
<td>0.9 ± 0.2</td>
<td>1.1 ± 0.2</td>
<td>0.9 ± 0.2</td>
<td>1.1 ± 0.2</td>
</tr>
<tr>
<td>31P spectroscopy</td>
<td>36 weeks</td>
<td>72 weeks</td>
<td>WT</td>
<td>5xFAD</td>
<td>72 weeks</td>
<td>5xFAD</td>
<td></td>
</tr>
<tr>
<td>$k_{\text{PCR} \rightarrow \text{ATP}}$ (s$^{-1}$)</td>
<td>0.45 ± 0.08</td>
<td>0.49 ± 0.06</td>
<td>0.49 ± 0.06</td>
<td>0.49 ± 0.06</td>
<td>1.4 ± 0.1</td>
<td>1.5 ± 0.2</td>
<td></td>
</tr>
<tr>
<td>Phosphocreatine/γ-ATP</td>
<td>1.4 ± 0.3</td>
<td>1.6 ± 0.4</td>
<td>1.4 ± 0.3</td>
<td>1.6 ± 0.4</td>
<td>1.4 ± 0.3</td>
<td>1.6 ± 0.4</td>
<td></td>
</tr>
<tr>
<td>Phosphocreatine/organic phosphate</td>
<td>2.2 ± 0.7</td>
<td>2.0 ± 0.6</td>
<td>2.2 ± 0.7</td>
<td>2.0 ± 0.6</td>
<td>2.2 ± 0.7</td>
<td>2.0 ± 0.6</td>
<td></td>
</tr>
<tr>
<td>Phosphoester/γ-ATP</td>
<td>1.3 ± 0.3</td>
<td>1.2 ± 0.4</td>
<td>1.3 ± 0.3</td>
<td>1.2 ± 0.4</td>
<td>1.3 ± 0.3</td>
<td>1.2 ± 0.4</td>
<td></td>
</tr>
<tr>
<td>Phosphodiester/γ-ATP</td>
<td>0.24 ± 0.09</td>
<td>0.18 ± 0.09</td>
<td>0.24 ± 0.09</td>
<td>0.18 ± 0.09</td>
<td>0.24 ± 0.09</td>
<td>0.18 ± 0.09</td>
<td></td>
</tr>
</tbody>
</table>

*Statistically significant $p<0.05$; **Statistically significant $p<0.01$

DISCUSSION
As it was demonstrated in several reports, transgenic mouse models of AD can reproduce some neuropathological features of this disease. The typical neurochemical profile of AD is demonstrated by a
The decrease in NAA and increase in mlms concentrations. The lower level of NAA corresponding to reduction of neurons is consistently replicated in most studied transgenic models (Table 1). In contrast, most transgenic mouse models of AD do not show any mlms changes. One of them, AβPP×PS1ΔE9, even shows a decrease of mlms before the onset of the pathology (2.5 months) [35], although an increase is also reported at a later stage (20 months) [36]. These data suggest that the increase in mlms is only replicated when the pathology is severe. In agreement, our study on the 5xFAD mouse model, which presents a very fast development of the amyloid pathology, displays neurochemical changes typical for human AD patients much earlier, at about 9 months of age. Some authors suggest that mlms may even be an earlier marker than NAA for AD and other dementia [33, 36]. Thus, the early change in the mlms level observed in the studied 5xFAD mice may indicate closer similarity of this transgenic model with the human disease. In regard, the AβPP×PS1ΔE9 (line 85) mice measured by Chen et al. [40] might represent even a better model because it shows an increase in mlms earlier, at 3 months of age. However, since this increase in mlms appears before the onset of amyloid deposition in this model, it is unclear whether this phenomenon results from the pathology itself or from subtle effects of the transgenes during embryogenesis. Further studies at earlier time points will allow clarification of this point.

The decrease in the concentration of some neurotransmitters can also be related to neuronal death. We observed a significant decrease in GABA at 40 and 44 weeks of age and of Gln in the 36-week old AD mice relative to the wild-type ones. The GABA levels in brain of AD patients have not yet been reported due to difficulties in the detection of GABA peaks. However, improved spectral resolution and increased signal-to-noise of high-field human scanners would allow for quantification of metabolites such as GABA, Gln, and Gln, which may provide additional diagnostic information for AD.

The increase of lactate and decrease of glucose concentration in the 5xFAD mice at 36 weeks of age may be related to changes in animal physiology caused by anesthesia. Since no artificial ventilation was used and plasma glucose levels were not monitored during the experiments, these changes should be interpreted with care. In accordance with the AβPP×PS1 mice [36] but in contrast with the Tg2576 [33], no difference in the taunine concentration was found in the 5xFAD mice.

There is growing evidence that mitochondrial dysfunction associated with chronic oxidative stress can be a prominent and early event in AD and might explain selective degeneration of particular neuronal populations [64]. 31P spectroscopy confirmed some findings of 1H MRS experiments. Assuming constant concentration of ATP, the PCr level was unchanged in the 5xFAD mice, which is in accordance with observations in 1H spectra (Fig. 3). The stable concentrations of PCr in the 5xFAD mice may indicate the absence of chronic hypoxia or ischemia in the brain tissue. The same conclusion can be drawn from the unchanged phosphorylation index PCr/Pi and pH. The peaks of PME are mainly formed by phosphoethanolamine, which is also detected in 1H spectra, and phosphorylcholine, which contributes to the 1H total choline signal (Fig. 3). The PDE signal is mainly formed by glycerophosphorylcholine, which also contributes to the total choline peak in 1H spectra. None of these peaks changed significantly in the 5xFAD mice. In addition, we did not observe any decrease in the rate constant of the creatine kinase reaction k_{k} even in elderly 5xFAD mice. These results suggest that energy supplies do not appear to be primarily affected in the brain of the 5xFAD mice,
whereas energy consumption might be depressed. This conclusion is supported by a previous finding that the creatine kinase rate constant decreases under chronic brain ischemia [65]. Further studies are needed to explore the role of impaired energy metabolism in the onset of AD pathogenesis and progression in humans as well as in transgenic AD models.

ACKNOWLEDGMENTS

This study was supported by the Center for Biomedical Imaging (CIBM) of the UNIL, UNIGE, HUG, CHUV, EPFL, the Leenards and Jeantet Foundations, the EU grant No. MRTN-CT-2006-035801 (C.C.) and partially by the 7th Framework Programme of EC No. HEALTH-F2-2009-223524 (M.C.).

REFERENCES

