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Abstract

In this paper we consider the problem of recovering a high dimensional data matrix from a set of

incomplete and noisy linear measurements. We introduce a new model that can efficiently restrict the

degrees of freedom of the problem and is generic enough to find a lot of applications, for instance in

multichannel signal compressed sensing (e.g. sensor networks, hyperspectral imaging) and compressive

sparse principal component analysis (s-PCA). We assume data matrices have a simultaneous low-rank

and joint sparse structure, and we propose a novel approach for efficient compressed sensing (CS) of

such data. Our CS recovery approach is based on a convex minimization problem that incorporates this

restrictive structure by jointly regularizing the solutions with their nuclear (trace) norm and `2/`1 mixed

norm. Our theoretical analysis uses a new notion of restricted isometry property (RIP) and shows that, for

sampling schemes satisfying RIP, our approach can stably recover all low-rank and joint-sparse matrices.

For a certain class of random sampling schemes satisfying a particular concentration bound (e.g. the

subgaussian ensembles) we derive a lower bound on the number of CS measurements indicating the

near-optimality of our recovery approach as well as a significant enhancement compared to the state-of-

the-art. We introduce an iterative algorithm based on proximal calculus in order to solve the joint nuclear

and `2/`1 norms minimization problem and, finally, we illustrate the empirical recovery phase transition

of this approach by series of numerical experiments.
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I. INTRODUCTION

Suppose we are given an n1 × n2 matrix X which is joint-sparse, that is only k � n1 rows of this

matrix contain nonzero entries (a similar argument holds for joint-column-sparsity), and in the meantime

the underlying submatrix of nonzero rows (and equivalently the whole matrix X) has a low rank r �

min(k, n2). Such matrices have few degrees of freedom: if one knows the indices of those k nonzero rows,

the corresponding submatrix will only have (k+n2−r)r degrees of freedom. Following the recent trend

in the areas of compressed sensing [1]–[3], sparse approximation [4], [5] and low-rank matrix recovery

[6]–[9], we would like to know how many non-adaptive linear measurements of this matrix are sufficient

to robustly represent the whole data and, more importantly, how this compares to the state-of-the-art.

The following questions are therefore natural:

• What are the efficient information/structure-preserving measurements?

• Is there any computationally tractable algorithm that incorporates the simultaneous low-rank and

joint-sparse structures into data recovery and does it perform better than the state-of-the-art?

• And finally, how many measurements do we need to recover an exact low-rank and sparse matrix,

and is the recovery algorithm stable with respect to noisy measurements and matrices that are

approximately low-rank or not exactly joint-sparse but compressible?

This paper attempts to answer these questions. In this regard, we introduce a novel approach for CS

reconstruction of simultaneous low-rank and joint-sparse matrices. Our approach is based on a convex

problem that simultaneously uses low-rank and joint-sparsity promoting regularizations, namely, the

nuclear (trace) norm and the `2/`1 mixed-norm of the solution matrix. As a result, the solution of

this problem tends to have both desired structures. Further, we propose an efficient algorithm in order to

solve this optimization problem.

Additionally, we establish a theoretical upper bound on the reconstruction error guaranteeing the

stability of our recovery approach against noisy measurements, non-exact sparse and approximately low-

rank data matrices. We prove that, if the sampling scheme satisfies a specific restricted isometry property

(RIP), the proposed approach can stably recover all joint-sparse and low-rank matrices. In particular and

for a certain class of random sampling schemes, we prove that this property implies the following lower

bound on the number m of CS measurements:

m & O
(
k log(n1/k) + kr + n2r

)
. (1)

Compared to the necessary condition for recovery of such structured matrices, i.e. m > (k + n2 − r)r,

this measurement bound highlights the near-optimality of our recovery approach: its scaling order with
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respect to k and n2 has only an extra log factor due to the joint-sparsity pattern subset selection.

A. Application in Multichannel Signal CS

Multichannel signals are undoubtedly a perfect fit for the new compressed sensing paradigm: on

one hand, they have numerous applications e.g. in computer vision, biomedical data, sensor networks,

multispectral imaging and audio processing, just to name a few. On the other hand, the main present

challenge is the tremendously large and increasing flow of data in those applications, which poses tight

constraints on the available technologies at any of the acquisition, compression, transmission and data

analysis steps. Despite their huge dimensionality, multichannel data are often highly redundant as a

result of two categories of correlations: inter- and intra-channel correlations. Any efficient dimensionality

reduction scheme requires comprehensive modeling of both types of correlations. A straightforward

extension of the classical single-channel CS idea [1], [2] only considers inter-channel signal correlations

through an unstructured sparsity assumption on the signal in each channel and the standard recovery

approaches such as `1 minimization result in limited improvement.

The simultaneous low-rank and joint-sparse model turns out to be an ideal candidate to more restric-

tively model multichannel data and the underlying structures. In this case, the matrix X represents a

multichannel signal where n2 denotes the number of channels and n1 is the signal dimensionality per

channel. This model not only considers inter-channel signal correlations leading to a sparse representation,

but also takes into account intra-channel correlations and is able to assign a particular structure for the

sparsity : signals of different channels share a unique dominant sparsity pattern (support) and in addition,

the values of those sparse coefficients are linearly dependent across the multiple channels. Beside its

restrictiveness, this model is generic enough to hold for a wide range of applications where the entire

multichannel signal can be decomposed into few sparse sources through a linear source mixture model

as follows:

X = SHT ,

where S is an n1 × ρ matrix whose columns contain ρ � min(n1, n2) source signals that are linearly

mixed with an n2 × ρ matrix H in order to generate the whole data across multiple channels. Indeed,

for a sparse (w.l.o.g. in the canonical basis) source matrix S and an arbitrary mixing matrix H, this

factorization implies a low-rank (r ≤ ρ) and joint-sparse X .

We have discussed in our previous articles [10]–[12] the application of this model in compressive

hyperspectral imagery. The linear mixture model typically holds for this type of images where H contains
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the spectral signatures of a few materials present in the region whose distributions are indicated by the

source images, i.e. the columns of S. We have shown that leveraging both low-rank and sparse structures

enables CS to achieve significantly low sampling rates: A hyperspectral image can be subsampled by

retaining only 3% of its original size and yet be robustly reconstructed.

Alternatively, the same model can be deployed for a much more efficient CS acquisition in sensor

network applications and it can eventually enhance the tradeoff between the number n2 of sensors and

the complexity (e.g. the number of measurements per channel m/n2) of each sensor. Indeed, typical

sensor network setups are monitoring highly correlated phenomena which are mainly generated by a

small number of (sparse) sources distributed in a region, and H represents a possibly unknown Green’s

function accounting for the physical source-to-sensor signal propagation model.

B. Compressive Sparse PCA

Despite similarity in names, this paper considers a different problem than the robust principal com-

ponent analysis (r-PCA) [13], [14]. We are not interested in decomposing a data matrix into separate

low-rank L and sparse S components, i.e. X = L + S. In contrast, here X simultaneously have both

structures and our problem is more related to the sparse principal component analysis (s-PCA) literature

[15]–[17]. The s-PCA problem considers the following factorization of a data matrix:

X ≈ UV T

where, the columns of V ∈ Rρ×n2 contain the few ρ� min(n1, n2) principal components (PCs) of X and

U ∈ Rn1×ρ is a sparse matrix of the corresponding loadings of the principal components. The classical

PCA [18], which is a key tool for multivariate data analysis and dimensionality reduction, numerically

involves a singular value decomposition with orthogonal matrices U and V . However, the classical

approach comes with a key drawback: in practical setups with n1 variables and n2 observations, most of

the loadings are nonzero and thus, the main factors explaining data variance are linear combinations of all

variables, making it often difficult to interpret the results. The idea of s-PCA has been mainly proposed

to address this shortcoming at the cost of applying more complex algorithms and loosing orthogonality

of U and V .

As previously described in Section I-A, this factorization (i.e. having a small number ρ of PCs with a

sparse loading matrix U ) implies a low-rank and joint-sparse structure for UV T . Therefore an alternative

approach to solve s-PCA is to first use our method to approximate X by a simultaneous low-rank and

joint-sparse matrix, and then apply the conventional PCA to decompose the result into U and V . This
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approach (i.e. s-PCA in the compressive domain) could be particularly useful for large-dimensional data

analysis and visualization where data size is the main bottleneck. In addition, and to the best of our

knowledge, the theoretical analysis provided in this paper is the first in this direction.

C. Paper Organization

This paper is organized as follows: in Section II we review the most related works in the compressed

sensing literature and discuss the efficiency of different data priors for CS recovery. Section III presents

our novel CS reconstruction scheme for simultaneous low-rank and joint-sparse data matrices. In Section

IV we establish the theoretical guarantees of this recovery approach. The proofs of the main theorems

are provided in Section V. In Section VI we introduce a set of iterative algorithms based on the proximal

splitting method in order to solve the convex recovery problem. Finally, in Section VII we show the

empirical recovery phase transition behavior of our method for different CS acquisition schemes and we

compare them to prior art.

D. Notations

Throughout this paper we frequently use the following notations:

For the matrix X ∈ Rn1×n2 , Xi,. and X.,j respectively denote its ith row and jth column, and [X]i,j

is the element of X in the ith row and the jth column. Moreover, Xvec denotes the vector formed by

stacking the columns of X below one another:

Xvec =


X.,1

X.,2
...

X.,n2

 .
The vector space of matrices is equipped with an inner product defined for any pair of matrices

X,X ′ ∈ Rn1×n2 as follows: 〈
X,X ′

〉
, Tr(XTX ′) =

∑
i,j

[X]i,j [X
′]i,j ,

where, Tr(.) is the trace of a square matrix. Moreover, four matrix norms that we frequently use are:

1) The spectral norm ‖X‖: the largest singular value of X .

2) The nuclear norm ‖X‖∗ ,
∑

i σi which is the sum of the singular values (σi) of X .

3) The Frobenius norm ‖X‖F ,
√
〈X,X〉 =

√∑
i,j [X]2i,j =

√∑
i σ

2
i .

4) The `2/`1 mixed-norm ‖X‖2,1 ,
∑

i

√∑
j [X]2i,j that is the sum of the `2 norms of the matrix

rows.
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Since ‖.‖∗ is a norm, it is subadditive i.e., ‖X +X ′‖∗ ≤ ‖X‖∗ + ‖X ′‖∗ and the equality (additivity)

holds if X and X ′ have row and column spaces that are orthogonal XTX ′ = X(X ′)T = 0 [19].

When X is a rank r matrix, we have the following inequalities:

‖X‖ ≤ ‖X‖F ≤ ‖X‖∗ ≤
√
r‖X‖F ≤ r‖X‖. (2)

In addition, the support of a vector x ∈ Rn is defined as the set containing the indices of the nonzero

elements of x i.e.,

supp(x) ,
{
i ∈ {1 . . . n} : xi 6= 0

}
. (3)

This definition can be extended to a matrix X ∈ Rn1×n2 as follows:

supp(X) ,
⋃
j

supp(X.,j), (4)

which is the union of the supports of all of its columns. We call X a k-joint-sparse matrix when there are

no more than k rows of X containing nonzero elements, Card(supp(X)) ≤ k, where Card(.) denotes

the cardinality of a set. Note that, if X is k-joint-sparse the following inequalities hold:

‖X‖F ≤ ‖X‖2,1 ≤
√
k‖X‖F . (5)

Finally, throughout this paper we often use the notation XT which is a matrix of the same size as X

whose rows indexed by the set T are the same as X and zero elsewhere.

II. COMPRESSED SENSING

Compressed sensing [1], [2] has been introduced in the past decade as an alternative to Shannon’s

sampling theorem. The original foundations of this new sampling paradigm were built over taking

advantage of the sparsity of a wide range of natural signals in some properly-chosen orthonormal bases

and representing large dimensional sparse vectors by very small number of linear measurements, mainly

proportional to their sparsity levels.

1) CS Acquisition Protocol: m � n1n2 linear and possibly noisy measurements are collected from

the data matrix X by defining a linear mapping A : Rn1×n2 → Rm and its adjoint A∗ : Rm → Rn1×n2

as follows:

y = A(X) + z, (6)

where y ∈ Rm is the vector containing the CS measurements and z ∈ Rm is the noise vector due

to quantization or transmission errors. This formulation equivalently has the following explicit matrix
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representation:

y = AXvec + z, (7)

because any linear mapping A(X) can be expressed in a matrix form A(X) , AXvec, where the inner

product of the data matrix and each row of A ∈ Rm×n1n2 gives a noise-free element of the measurement

vector. In a similar way, we can express the adjoint operator as

A∗(y) = reshape(AT y, n1, n2).

The reshape operator applies on an n1n2 dimensional vector AT y in order to reshape it into an n1×n2
matrix such that the first n1 elements fill the first column, the next n1 elements fill the second column

and so on.

The main goal of CS is to robustly recover X from the smallest number of measurements m. Despite

the simplicity of using a linear sampling scheme and unlike Shannon’s linear signal reconstruction, CS

decoding applies more complex and nonlinear approximation methods. In the following we mention some

of the most relevant approaches to our work:

2) Unstructured Sparse Recovery by `1 Minimization: The following `1 problem, also known as Basis

Pursuit De-Noising (BPDN), was among the most successful solutions that have been initially proposed

for CS recovery of a sparse vector Xvec:

arg min
X

‖Xvec‖`1 subject to ‖y −A(X)‖`2 ≤ ε. (8)

Note that regularizing the solutions by their `1 norm, although known as the best sparsity-inducing convex

functional, can only exploit unstructured sparsity in the data. It has been shown that if the sampling

operator A satisfies the restricted isometry property (RIP), then the solution to (8) can stably recover

the underlying data [1], [2]. For sampling matrices A (or equivalently A in (6)) whose elements are

drawn independently at random from the Gaussian, Bernoulli or (in general) subgaussian distributions,

this property implies the following lower bound on the number of measurements:

m & O (kn2 log(n1/k)) , (9)

which indicates a suboptimal performance compared to the limited degrees of freedom of a simultaneous

low-rank and joint-sparse data matrix.

3) Joint-Sparse Recovery by `2/`1 Minimization: To overcome this limitation, some alternative recov-

ery approaches propose to consider a restrictive structure on the sparsity pattern of the data, namely, a

joint-sparsity structure for the nonzero coefficients of X . Some approaches based on greedy heuristics
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[20]–[22] attempt to identify the joint-sparsity support of X , whereas other methods based on convex

relaxation [23]–[25] aim at recovering both the joint-sparsity pattern and the nonzero coefficients by

penalizing other matrix norms promoting a joint-sparsity structure to their solutions. In particular, pe-

nalizing the `2/`1 mixed norm of the data matrix through the following convex problem is very popular

and has been widely used in the literature:

arg min
X

‖X‖2,1 subject to ‖y −A(X)‖`2 ≤ ε. (10)

Despite significant improvements in support recovery1, the joint-sparsity assumption fails to enhance the

entire data reconstruction (i.e. recovering both the support and the nonzero coefficients). Eldar and Mishali

[25] extend the notion of RIP to the Block-RIP and show that, if the sampling matrix A satisfies this

property, the `2/`1 problem can stably reconstruct joint-sparse matrices. For a dense i.i.d. subgaussian

sampling matrix A, the number of measurements sufficient for satisfying the Block-RIP is

m & O (k log(n1/k) + kn2) . (11)

As we can see, for a large number n2 � k log(n1/k), this bound indicates only a minor enhancement of

a log(n1/k) factor compared to the measurement bound (9) corresponding to the classical `1 problem.

This is a fundamental limitation arising from neglecting the underlying correlations among the values

of nonzero coefficients i.e., with such a loose assumption (the joint-sparsity model) the data matrix

can have kn2 nonzero elements freely taking independent values, and thus generally one requires O(k)

measurements per column for recovery.

4) Low-Rank Recovery by the Nuclear Norm Minimization: Many works have been lately focusing

on recovering a low-rank data matrix from an incomplete set of observations. In particular, the matrix

completion problem [7]–[9] deals with recovering a data matrix given only a small fraction of its entries.

The key assumption for a stable reconstruction is that the data matrix is highly redundant due to high

linear dependencies among its columns/rows and therefore it has a low rank. Similarly, Candes and Plan

[26] have shown that if the sampling operator A satisfies an extended notion of RIP, called the Rank-

RIP, then the following nuclear norm minimization problem can stably recover the underlying low-rank

matrix:

arg min
X

‖X‖∗ subject to ‖y −A(X)‖`2 ≤ ε. (12)

1It has been shown in [22] that a simple one-stage p-Thresholding algorithm can correctly identify the support of an exact

joint-sparse matrix provided m & O(k log(n1)).
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In particular, if A is drawn from the i.i.d. subgaussian distribution, then the number of measurements

sufficient for A to satisfy the Rank-RIP (and hence data recovery) is

m & O (r(n1 + n2)) . (13)

Compared to (11) and for a large number n2, we require less number of measurements thanks to properly

dealing with the high data correlations via nuclear norm regularization. As we can see in (13) and

compared to the bound (11), the growth of m remains linear by increasing the number n2 of columns,

but scales as rn2 instead of kn2 with r � k. For a large number n2, this bound indicates that O(r)

measurements per column are sufficient which is proportional to the number of principal components

of X rather than the sparsity level of each column O(k) in (11) or (9). Despite this improvement, for

n1 � n2 ignoring sparsity would significantly decrease the efficiency of this approach compared to the

few degrees of freedom of a low-rank and joint-sparse data matrix.

5) Rank Aware Joint-Sparse Recovery: Considering those previously described approaches and their

weak and strong points, one can think of the idea of combining both data priors together and reconstruct

matrices that are simultaneously low-rank and joint-sparse. Recently a few works [27], [28] have consid-

ered rank awareness in data recovery from multiple measurement vectors (MMV). More precisely, the

joint-sparse MMV inverse problem [20], [29]–[31] focuses on recovering a joint-sparse matrix X from

a set of CS measurements Y ∈ Rm̃×n2 acquired by Y = ÃX . We refer to such acquisition model as the

uniform sampling because a unique sampling matrix Ã ∈ Rm/n2×n1 applies on all columns of X .

Davies and Eldar [27] proposed a specific rank-aware greedy algorithm, that in case of using a random

i.i.d. Gaussian sampling matrix Ã is able to recover (with a high probability) an exact k-joint-sparse and

rank r X from the noiseless MMV provided

m = n2m̃ & O
(
n2k

(
1 +

log n1
r

))
. (14)

It can be viewed from (14) that this approach is more suitable for applications with high-rank data

matrices, where the columns of X are as independent as possible from each other. This is contrary

to our assumption of having a redundant, low-rank data structure. This limitation comes from the fact

that the uniform sampling scheme is not generally suitable for acquisition of correlated data matrices.

Given highly redundant data, such sampling mechanism results in a redundant set of measurements (X is

low-rank and so becomes Y , because rank(Y ) ≤ rank(X)). Think of the extreme example of having a

joint-sparse rank one matrix whose columns are identical to each other. Using a uniform sampling scheme

would result in multiple copies of the same measurements for all the columns and thus, applying any
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joint decoding scheme exploiting the intra-column correlations would be pointless as the measurements

do not carry any new information across the columns.

III. SIMULTANEOUS LOW-RANK AND JOINT-SPARSE MATRIX APPROXIMATION

Data reconstruction from CS measurements typically reduces to solving an underdetermined and noisy

linear system of equations such as (6) where m � n1n2. Without any further assumptions (6) would

admit infinitely many solutions and thus, recovery of the original data matrix is not generally feasible.

As previously discussed, however, data matrices of interest in this paper have a particular simultaneous

low-rank and joint-sparse structure restricting data to have very few degrees of freedom, i.e. less than

both the matrix dimension and the dimension of the underlying sparse coefficients. Our main goal in

this part is to propose a robust recovery scheme which incorporates properly these constrains in order to

make (6) invertible with as few measurements as possible.

Recovery of a joint-sparse and rank r data matrix from a set of noisy CS measurements can be casted

as the solution to the following minimization problem:

arg min
X

Card(supp(X)) (15)

subject to ‖y −A(X)‖`2 ≤ ε,

rank(X) ≤ r,

where ε is an upper bound on the energy of the noise, ‖z‖`2 ≤ ε. Note that finding the sparsest solution

to a linear system of equations, in general, is an NP-hard problem [32]. Problems such as minimizing

Card(supp(X)) or the rank minimization are similarly reducing to the cardinality minimization problem

of finding the sparsest element in an affine space and thus in general, finding solution to a problem like

(15) is computationally intractable. The original solution must be approximated by a polynomial-time

method.

A trivial solution could be the cascade of two classical CS recovery schemes: One identifies the joint-

support set and the other evaluates the rows of the matrix corresponding to the recovered support using

a low-rank approximation scheme. Unfortunately, the application of this approach is mainly limited to

the recovery of the exact low-rank and joint-sparse matrices. In practice signals are almost never exactly

sparse, and using the cascade strategy (e.g. recovering first the dominant k-joint-sparse part of data, and

then extracting a rank r matrix from it) for dense data matrices might not be always optimal in order to

identify the most dominant component having simultaneously both structures.
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In order to provide robustness against non-exact but approximately low-rank and joint-sparse data, we

incorporate both data priors into a single recovery formulation. We relax (15) by replacing the non-convex

terms rank(X) and Card(supp(X)) by the convex terms inducing similar structures to their solutions

i.e., the nuclear norm ‖X‖∗ and the ‖X‖2,1 mixed-norm, correspondingly. We cast the CS recovery

problem as solving one of the following three convex problems:

1) Having data nuclear norm as the regularization parameter, or provided with an estimation of it, we

solve:

arg min
X

‖X‖2,1 (16)

subject to ‖y −A(X)‖`2 ≤ ε,

‖X‖∗ ≤ τ.

2) Having the `2/`1 mixed-norm of data as the regularization parameter, or provided with an estimation

if it, we solve:

arg min
X

‖X‖∗ (17)

subject to ‖y −A(X)‖`2 ≤ ε,

‖X‖2,1 ≤ γ.

3) Having a regularization factor λ balancing between the `2/`1 norm and the nuclear norm, we solve:

arg min
X

‖X‖2,1 + λ‖X‖∗ (18)

subject to ‖y −A(X)‖`2 ≤ ε.

We explain in Section VI that all three problems above can be solved iteratively (in polynomial time)

using the parallel proximal splitting algorithm (PPXA) [33]. Note that all three formulations (16), (17)

and (18) contain a regularization parameter (either τ , γ or λ) that should be correctly tuned. In the

next section we show that, for properly-chosen parameters, the solutions of these convex problems can

robustly approximate the original data provided by very few linear measurements

IV. THEORETICAL GUARANTEES

In this section we provide the theoretical analysis of the recovery problems (16)-(18). We prove that for

certain linear mappings A, these three convex relaxations can exactly reconstruct all simultaneous low-

rank and joint-sparse data from their corresponding CS measurements. In addition, our results guarantee
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the stability of our approach against noisy measurements and non-exact low-rank and joint-sparse data.

For a certain class of random linear mappings our results establish a lower bound on the number m of

CS measurements in terms of the joint-sparsity level k and the rank r of the underlying data matrix.

A. Sampling Operator RIP

We define a specific restricted isometry property (RIP) that later helps us to build our main theoretical

results.

Definition 1. For positive integers k, r ∈ N+, a linear map A satisfies the restricted isometry property,

if for all simultaneous rank r and k-joint-sparse matrices X we have the following inequalities:

(1− δr,k)‖X‖2F ≤ ‖A(X)‖2`2 ≤ (1 + δr,k)‖X‖2F . (19)

The RIP constant δr,k is the smallest constant for which the property above holds.

As we can see and compared to the two former definitions of the Block-RIP [25] and the Rank-RIP

[19], [26], Definition 1 provides a more restrictive property which holds for the intersection set of the

low-rank and the joint (block) sparse matrices. Verifying whether a linear map satisfies RIP is generally

combinatorial and thus prohibitive for large size problems. However, for linear mappings drawn at random

from a certain class of distributions and thanks to their well-established concentration properties, the

following theorem and corollary guarantee RIP:

Theorem 1. Let A : Rn1×n2 → Rm be a random linear map obeying the following concentration bound

for any X ∈ Rn1×n2 and 0 < t < 1,

Pr
( ∣∣‖A(X)‖2`2 − ‖X‖

2
F

∣∣ > t‖X‖2F
)
≤ C exp (−cm) , (20)

where C and c are fixed constants given t. Then A satisfies RIP with constant δr,k with probability

greater than 1− Ce−κ0m, if the number of measurements is greater than

m ≥ κ1
(
k log(n1/k) + (k + 1)r + n2r

)
, (21)

where κ0 and κ1 are fixed constants for a given δr,k.

Corollary 1. For a linear map A : Rn1×n2 → Rm corresponding to a matrix A ∈ Rm×n1n2 whose

elements are drawn independently at random from the Gaussian N (0, 1/m), Bernoulli {±1/
√
m} or

subgaussian (with a proper normalization) distributions, RIP holds whenever the number of measurements

satisfies (21).
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The proof of Theorem 1 is provided in Section V-A and Corollary 1 is a straightforward application

of Theorem 1. Indeed, for the Gaussian distribution since ‖A(X)‖2`2 is a chi-squared random variable

with m degrees of freedom multiplied by ‖X‖2F /m, the following concentration bound holds:

Pr
( ∣∣‖A(X)‖2`2 − ‖X‖

2
F

∣∣ > t‖X‖2F
)
≤ 2 exp

(
− m

2
(t2/2− t3/3)

)
. (22)

Similar bounds hold for the Bernoulli and subgaussian ensembles with different constants. Regarding

Theorem 1, random linear maps drawn from these distributions indeed satisfy the deviation bound (20)

and thus RIP holds for them provided (21).

B. Main Reconstruction Error Bounds

Our main performance bounds here are derived based on the new notion of RIP defined above. Given

a set of linear measurements that are collected from a matrix X ∈ Rn1×n2 (which is not necessarily

low-rank or joint-sparse) through the sampling model (6) and by using a sampling operator A satisfying

RIP, the following theorems then bound the approximation error of the recovery problems (16)-(18):

Theorem 2. Suppose δ6r,2k < 1/7 and ‖z‖`2 ≤ ε. Let Xr,k be any rank r and k-joint-sparse matrix and

T0 = supp(Xr,k).

(a) For τ = ‖X‖∗, the solution X̂ to (16) obeys the following bound:

‖X̂ −X‖F ≤ κ′0
(
‖X −XT0‖2,1√

k
+
‖X −Xr,k‖∗√

2r

)
+ κ′1ε. (23)

Constants κ′0 and κ′1 are fixed for a given δr,k.

(b) For γ = ‖X‖2,1, the solution X̂ to (17) obeys the bound (23).

(c) For λ =
√

k
2r , the solution X̂ to (18) obeys the bound (23).

Corollary 2. Suppose δ6r,2k < 1/7 and the measurements are noiseless. Then, all exact (simultaneous)

k-joint-sparse and rank r matrices X can be exactly recovered by (16), (17) or (18) (with proper

regularization parameters) i.e., X̂ = X .

The proof of Theorem 2 is provided in Section V-B. The proof of the corollary is trivial by setting

Xr,k = XT0 = X and ε = 0 in (23). Given noisy measurements and a data matrix X that is not exactly

low-rank or joint-sparse, the reconstruction error (23) is bounded by two terms. First, it is proportional

(with a constant factor) to the power of the sampling noise. Second, it is determined by the best rank r

and k-joint-sparse approximation of X that minimizes the first term of (23). This term can be interpreted
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as a measure of data compressibility i.e., how accurately data can be approximated by a simultaneous

low-rank and joint-sparse matrix.

According to Corollary 1, for sampling matrices A drawn independently at random from the Gaussian,

Bernoulli or subgaussian distributions (and more generally, all random linear maps A satisfying (20)),

Theorem 2 guarantees that our proposed reconstruction approach based on joint nuclear and `2/`1

norms minimization can stably recover all simultaneous rank r and k-joint-sparse matrices X (with

an overwhelming probability) provided

m & O
(
k log(n1/k) + kr + n2r

)
,

which, as previously mentioned, indicates a near-optimal recovery performance regarding the degrees of

freedom of those data matrices i.e., r(k + n2 − r). In addition, this bound reveals that our proposed

recovery approach requires significantly less number of CS measurements to reconstruct such structured

data compared to the prior art methods (see (11), (13) and (14)). Unlike the `2/`1 approach (10) and

for a large number n2 of columns, our approach requires O(r) measurements per column, which is

proportional to the number of principal components of this data. In addition, compared to the nuclear

norm minimization scheme (12), we achieve a shaper lower bound on m that is proportional to the joint-

sparsity level k of the data matrix and scales sub-linearly with the column dimensionality n1. Finally, our

bound is of a different nature than (14): the lower the rank, less measurements are required. This reflects

the importance of a good design for the sampling scheme A along with a recovery approach benefiting

efficiently from data structures.

Note that Theorem 2 precisely characterizes the proper values for the regularization parameters in (16)-

(18). If there is no prior knowledge available about the nuclear norm or the `2/`1 norm of the underlying

data (and a blind tuning might be challenging), (18) brings more flexibility to the reconstruction process.

For a given λ, Theorem 2-c guarantees that the recovery error is bounded by the minimum of (23) for

the best pair r, k satisfying both RIP (i.e. δ6r,2k < 1/7) and λ =
√
k/2r.

V. PROOFS

A. Proof of Theorem 1

Let X̃T denote the k × n2 submatrix formed by selecting the rows of X indexed by a set T ⊂

{1, . . . , n1} with the cardinality k. Correspondingly, for a given T we define the restricted map AT :

Rk×n2 → Rm which applies on X̃T , and is related to A through its explicit matrix formulation (7) as
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follows:

AT (X̃T ) , ÃT (X̃T )vec,

where, ÃT ∈ Rm×kn2 is the submatrix containing the columns of A indexed by T . If we assume X is an

exact k-joint-sparse matrix whose rows are supported over the set T and zero elsewhere, we will have

A(X) = AT (X̃T ).

In this case and according to our assumption (i.e., A satisfies (20)) we can write a similar concentration

bound for a given T and X̃T :

Pr
( ∣∣∣‖AT (X̃T )‖2`2 − ‖X̃T ‖

2
F

∣∣∣ > t‖X̃T ‖2F
)
≤ C exp (−cm) . (24)

According to the Rank-RIP property defined in [26], if a linear map AT satisfies the bound (24) then,

for a given T and all rank r realizations of X̃T , we have

Pr
(∣∣∣‖AT (X̃T )‖2`2 − ‖X̃T ‖

2
F

∣∣∣ > δ‖X̃T ‖2F
)
≤ C exp

(
(k + n2 + 1)r log(36

√
2/δ)− cm

)
, (25)

where 0 < δ < 1 is a fixed constant. The proof of this statement mainly uses a covering number argument

for low-rank matrices and it can be found in [26] (see theorem 2.3). Now, by considering all possible

combinations for the subset T i.e.,
(
n1

k

)
≤
(
n1

k e
)k and applying a union bound on (25), we can deduce

(19) for all k-joint-sparse and rank r matrices X with probability greater than

1− C exp
(
k + k log(n1/k) + (k + n2 + 1)r log(36

√
2/δ)− cm

)
.

Equivalently, with probability exceeding 1− Ce−κ0m, A satisfies RIP with constant δr,k ≤ δ, whenever

m ≥ κ1
(
k log(n1/k) + (k + n2 + 1)r

)
,

where κ0 and κ1 are fixed constants for a given δ i.e., κ0 = c−log(36
√

2/δ)/κ1, and κ1 > log(36
√

2/δ)/c.

B. Proof of Theorem 2

In this part we first provide the proof of Theorem 2-a and later, we use similar techniques to prove

Theorems 2-b and 2-c. For this purpose, we prove the following two lemmas that are the key elements

for the proof of Theorem 2.

An important implication of the RIP is that for linear maps A having small RIP constants, the mea-

surement outcomes of any two k-joint-sparse and rank r orthogonal matrices become nearly orthogonal.

This statement is precisely characterized by the following lemma:
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Lemma 1. ∀X,X ′ such that, rank(X) ≤ r, rank(X ′) ≤ r′, Card(supp(X)) ≤ k, Card(supp(X ′)) ≤

k′ and 〈X,X ′〉 = 0, we have:∣∣〈A(X),A(X ′)〉
∣∣ ≤ δr+r′,k+k′‖X‖F ‖X ′‖F (26)

Proof: Without loss of generality assume X and X ′ have unit Frobenius norms. Since X ±X ′ is at

most k + k′ joint-sparse and rank(X ±X ′) ≤ r + r′, we can write

(1− δr+r′,k+k′)‖X ±X ′‖2F ≤ ‖A(X ±X ′)‖2`2 ≤ (1 + δr+r′,k+k′)‖X ±X ′‖2F .

Moreover, X and X ′ are orthogonal to each other which implies that ‖X±X ′‖2F = ‖X‖2F +‖X ′‖2F = 2.

Now, by using the parallelogram identity we can deduce:∣∣〈A(X),A(X ′)〉
∣∣ =

1

4

∣∣∣‖A(X +X ′)‖2`2 − ‖A(X −X ′)‖2`2
∣∣∣ ≤ δr+r′,k+k′ ,

which completes the proof.

Lemma 2. Let A and B be matrices of the same size and rank(A) ≤ r, supp(A) = T . ∃B1, B2

(matrices of the same size as A and B) such that:

1) B = B1 +B2,

2) supp(B1) = T , rank(B1) ≤ 2r,

3) ATB2 = 0, A(B2)
T = 0,

4) 〈B1, B2〉 = 0.

Proof: Suppose ÃT and B̃T are submatrices correspondingly containing the rows of A and B indexed

by T . Recht et al., (see Lemma 3.4 in [19]) propose a decomposition B̃T = B̃1 + B̃2 so that

• rank(B̃1) ≤ 2 rank(Ã) ≤ 2r,

• (ÃT )T B̃2 = 0, ÃT (B̃2)
T = 0,

• 〈B̃1, B̃2〉 = 0.

On the other hand, lets decompose B = BT + BT c where BT and BT c are respectively the same

as B on the index sets T and T c (the set complement of T ) and zero elsewhere. Suppose B1T and

B2T are matrices of the same size as B, whose rows indexed by T are respectively populated by the

submatrices B̃1 and B̃2, and the remaining elements are zero. We can write BT = B1T +B2T . Now, by

letting B1 = B1T and B2 = B2T +BT c one can easily verifies that B1 and B2 satisfy properties (1)-(4).
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1) Decomposition of The Error Term: Here, by using Lemma 2 we decompose the error term H =

X − X̂ into the summation of rank 2r and k-joint-sparse matrices that are mutually orthogonal to each

other. This decomposition later appears to be essential to bound the error using Lemma 1.

Let us fix the notation so that XT ∈ Rn1×n2 is a joint-sparse matrix which is identical to X for the

rows indexed by T , and zero elsewhere. Let T0 denote the joint support of Xr,k i.e., T0 = supp(Xr,k)

with Card(T0) ≤ k. Since Xr,k is additionally a rank r matrix, we can use Lemma 2 to decompose H

into orthogonal matrices H = H0
T0 +H such that,

• rank(H0
T0) ≤ 2r,

• 〈H0
T0 , H〉 = 0,

• (Xr,k)
TH = Xr,kH

T
= 0.

Further, we decompose H into the summation of disjoint k-joint-sparse matrices. For this purpose we

write H = HT0 + HT c
0

, where T c0 denotes the set complement of the support T0. Now we decompose

HT c
0

into the following terms:

HT c
0

=
∑
i≥1

HTi ,

where T1 is the set containing the indices of the k rows of HT c
0

with the largest `2 norm, T2 contains

the indices of the next k high energy rows and so on. By construction HTis are supported on disjoint

sets. We simplify the notations by using H i instead of HTi .

Next, we decompose each H i into the summation of rank 2r matrices:

H i =
∑
j≥1

H i,j .

We use here a similar decomposition proposed in [26]: let H i = UΣV T be the ordered singular value

decomposition of H i i.e., diag(Σ) is the ordered sequence of the singular values (Σi,i ≥ Σi+1,i+1). For

integers j ≥ 1, define the index sets Jj := {2r(j − 1) + 1, ..., 2rj}. Then, the decomposition terms will

be

H i,j := UJj
ΣJj

(VJj
)T ,

i.e. H i,1 corresponds to the first 2r largest singular values of H i, H i,2 corresponds to the next 2r largest

singular values of H i and so on.

Those two steps suggest a decomposition H =
∑

i≥0,j≥1H i,j , whose terms H i,j are k-joint-sparse

and rank 2r matrices mutually orthogonal to each other i.e., ∀(i, j) 6= (i′, j′)

〈H i,j , H i′,j′〉 = 0.
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Additionally, H0
T0 is orthogonal to all H i,j as a result of either having disjoint supports (i.e., for i ≥ 1),

or by the specific constructions of H0
T0 (see Lemma 2 in this paper, and Lemma 3.4 in [19]) and H0,j .

Standard computations show that the following inequality holds for all i:∑
j≥2
‖H i,j‖F ≤

‖H i‖∗√
2r

. (27)

Also, we have ∑
i≥2
‖H i‖F ≤

‖HT c
0
‖2,1√
k

. (28)

Inequalities (27) and (28) are respectively the consequences of

‖H i,j‖F ≤ (2r)−1/2‖H i,j−1‖∗

and for i > 1

‖H i‖F ≤ k−1/2‖H i−1‖2,1.

As a result, the following inequalities hold:

S ,
∑

i≥0,j≥1
(i,j)6=(1,1),(0,1)

‖H i,j‖F

≤
∑
i≥2
‖H i‖F +

∑
i≥0,j≥2

‖H i,j‖F (29)

≤ 1√
k
‖HT c

0
‖2,1 +

1√
2r

∑
i≥0
‖H i‖∗ (30)

≤ 1√
k
‖HT c

0
‖2,1 +

1√
2r
‖H‖∗. (31)

2) Proof of the Main Error Bounds: We start with the proof of Theorem 2-a. Since A(X) is corrupted

by a noise whose `2 norm is assumed to be bounded by ε, and X̂ is a feasible point for (16) we can

write,

‖A(H)‖`2 = ‖A(X − X̂)‖`2

≤ ‖y −A(X)‖`2 + ‖y −A(X̂)‖`2 ≤ 2ε. (32)
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By assumption ‖X‖∗ = τ , and since X̂ is a feasible point of (16) satisfying ‖X̂‖∗ ≤ τ we have

‖X‖∗ ≥ ‖X +H‖∗

≥ ‖Xr,k +H‖∗ − ‖Xr,k‖∗ − ‖H0
T0‖∗

= ‖Xr,k‖∗ + ‖H‖∗ − ‖Xr,k‖∗ − ‖H0
T0‖∗, (33)

which yields the following inequality:

‖H‖∗ ≤ ‖H0
T0‖∗ + 2‖Xr,k‖∗. (34)

Note that equality (33) holds because both row and column spaces of Xr,k and H are orthogonal to each

other. On the other hand, as a result of the minimization (16) we have

‖X‖2,1 ≥ ‖X +H‖2,1

= ‖XT0 +HT0‖2,1 + ‖XT c
0

+HT c
0
‖2,1

≥ ‖XT0‖2,1 − ‖HT0‖2,1 − ‖XT c
0
‖2,1 + ‖HT c

0
‖2,1.

Consequently, we can deduce:

‖HT c
0
‖2,1 ≤ ‖HT0‖2,1 + 2‖XT c

0
‖2,1. (35)

Note that HT c
0

= HT c
0

. Now, dividing both sides of (35) by
√
k and using (5) yields:

1√
k
‖HT c

0
‖2,1 ≤ ‖HT0‖F + 2e

≤ ‖H0
T0‖F + ‖H0,1‖F +

∑
j≥2
‖H0,j‖F + 2e

≤ ‖H0
T0‖F + ‖H0,1‖F +

1√
2r
‖H‖∗ + 2e (36)

≤ 2‖H0
T0‖F + ‖H0,1‖F + 2e′ + 2e, (37)

where e =
‖XT c

0
‖2,1√
k

and e′ = ‖Xr,k‖∗√
2r

. Inequality (36) is the consequence of (27), and for deriving (37)

we use (34) and (2).

Using (37) and (34), we can continue to upper bound the summation of the Frobenius norms in (31)

as follows:

S ≤ 3‖H0
T0‖F + ‖H0,1‖F + 4e′ + 2e.

≤ 3
√

2‖H0
T0 +H0,1‖F + e′′, (38)
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where e′′ = 4e′ + 2e. Note that for the last inequality we use

‖H0
T0‖F + ‖H0,1‖F ≤

√
2‖H0

T0 +H0,1‖F ,

which holds because H0
T0 and H0,1 are orthogonal to each other.

Meanwhile, by such specific error decomposition we have

rank(H0
T0 +H0,1 +H1,1) ≤ 6r,

supp(H0
T0 +H0,1 +H1,1) ≤ 2k,

and thus according to Definition 1 we can write

(1− δ6r,2k)‖H0
T0 +H0,1 +H1,1‖2F ≤ ‖A(H0

T0 +H0,1 +H1,1)‖2`2 . (39)

On the other hand,

‖A(H0
T0 +H0,1 +H1,1)‖2`2 =

∣∣∣〈A(H0
T0 +H0,1 +H1,1),A(H − H̃)〉

∣∣∣,
where,

H̃ =
∑

i≥0,j≥1
(i,j)6=(1,1),(0,1)

H i,j .

Using the Cauchy-Schwarz inequality and (32) yields:∣∣∣〈A(H0
T0 +H0,1 +H1,1),A(H)〉

∣∣∣
≤ ‖A(H0

T0 +H0,1 +H1,1)‖`2 ‖A(H)‖`2

≤ 2ε
√

1 + δ6r,2k ‖H0
T0 +H0,1 +H1,1‖F . (40)

Moreover, because H0
T0 +H0,1 is at most a rank 4r, k-joint-sparse matrix orthogonal to the summation

terms in H̃ , and so is H1,1 (a rank 2r and k-joint-sparse matrix), we can use Lemma 1 to write∣∣∣〈A(H0
T0 +H0,1 +H1,1),A(H̃)〉

∣∣∣ ≤ (δ6r,2k‖H0
T0 +H0,1‖F + δ4r,2k‖H1,1‖F

)
×
( ∑

i≥0,j≥1
(i,j)6=(1,1),(0,1)

‖H i,j‖F
)

≤
√

2 δ6r,2k‖H0
T0 +H0,1 +H1,1‖F × S

≤ 6 δ6r,2k‖H0
T0 +H0,1 +H1,1‖2F +

√
2 e′′ δ6r,2k‖H0

T0 +H0,1 +H1,1‖F .

(41)
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The second inequality is the outcome of the orthogonality of H0
T0 + H0,1 and H1,1, and replacing the

sum of the Frobenius norms by its upper bound (38) gives the last inequality. Inequalities (40) and (41)

are providing an upper bound on ‖A(H0
T0 +H0,1 +H1,1)‖2`2 :

‖A(H0
T0 +H0,1 +H1,1)‖2`2 ≤ 6 δ6r,2k‖H0

T0 +H0,1 +H1,1‖2F

+
(√

2 e′′ δ6r,2k + 2ε
√

1 + δ4r,2k

)
‖H0
T0 +H0,1 +H1,1‖F .

Now by using the lower bound derived in (39), we can deduce the following inequality:

‖H0
T0 +H0,1 +H1,1‖F ≤ αe′′ + βε, (42)

where,

α =
√

2
δ6r,2k

1− 7δ6r,2k

and

β = 2

√
1 + δ6r,2k

1− 7δ6r,2k
.

Finally, we upper bound the whole error term H as follows:

‖H‖F ≤ ‖H0
T0 +H0,1 +H1,1‖F + S

≤ (3
√

2 + 1)‖H0
T0 +H0,1 +H1,1‖F + e′′ (43)

≤ κ′0

(
‖XT c

0
‖2,1√
k

+
‖Xr,k‖∗√

2r

)
+ κ′1ε. (44)

Inequality (43) uses the bound derived in (38). Replacing ‖H0
T0 +H0,1 +H1,1‖F by its upper bound

in (42) results in the last line where the constants κ′0 = 4 + 4(3
√

2 + 1)α and κ′1 = (3
√

2 + 1)β are fixed

for a given RIP constant δ6r,2k < 1/7. This completes the proof of Theorem 2-a.

Proof of Theorem 2-b: we follow the same steps as for Theorem 2-a. Here, inequalities (33) and (34)

are the outcome of the nuclear norm minimization in (17) i.e., ‖ X‖∗ ≥ ‖X+H‖∗, and (35) holds since

γ = ‖X‖2,1 ≥ ‖X + H‖2,1. Thus, one can easily verifies that all bounds (27)-(44) are valid and the

solution of (17) obeys the error bound in (23).

Proof of Theorem 2-c: it is also similar to Theorem 2-a and almost all the previous bounds hold. We

just need to develop a new bound on 1√
k
‖HT c

0
‖2,1 + 1√

2r
‖H‖∗ i.e. inequality (31). From minimization
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(18) we have

‖X‖2,1 + λ‖X‖∗

≥ ‖X +H‖2,1 + λ‖X +H‖∗

≥ ‖XT0‖2,1 − ‖HT0‖2,1 − ‖XT c
0
‖2,1 + ‖HT c

0
‖2,1

+ λ
(
‖Xr,k‖∗ + ‖H‖∗ − ‖Xr,k‖∗ − ‖H0

T0‖∗
)
.

Thus, we can write the following bound:

‖HT c
0
‖2,1 + λ‖H‖∗ ≤ ‖HT0‖2,1 + 2‖XT c

0
‖2,1 + λ‖H0

T0‖∗ + 2λ‖Xr,k‖∗.

Dividing both sides by
√
k yields:

1√
k
‖HT c

0
‖2,1 +

λ√
k
‖H‖∗ ≤ ‖HT0‖F + λ

√
2r

k
‖H0
T0‖F + 2e+ 2λ

√
2r

k
e′

≤

(
2 + λ

√
2r

k

)
‖H0
T0‖F + ‖H0,1‖F + 2e+ 2

(
1 + λ

√
2r

k

)
e′.

Note that the last inequality uses the bound

‖HT0‖F ≤ 2‖H0
T0‖F + ‖H0,1‖F + 2e′,

which has been previously developed for obtaining (37). Now, by letting λ =
√

k
2r we achieve the

following upper bound:

1√
k
‖HT c

0
‖2,1 +

1√
2r
‖H‖∗ ≤ 3‖H0

T0‖F + ‖H0,1‖F + 4e′ + 2e,

which gives the same bound as in (38) for sum of the Frobenius norms. All other steps and inequalities

that are derived for the proof of Theorem 2-a are valid as well for Theorem 2-c. Therefore, solving (18)

with λ =
√

k
2r leads to the same error bound as in (23).

VI. THE PARALLEL PROXIMAL ALGORITHM

Problems (16)-(18) are nonlinearly constrained non-differentiable convex problems. There are numerous

methods for solving problems of this kind. We discuss here our approach based on the Parallel Proximal

Algorithm (PPXA) proposed in [33]. A remarkable advantage of using this method is the ability of having

a parallel implementation. In a nutshell, PPXA is an iterative method for minimizing an arbitrary finite

sum of lower semi-continuous (l.s.c.) convex functions, and each iteration consists of computing the

proximity operators of all functions (which can be done in parallel), averaging their results and updating
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Algorithm 1: The Parallel Proximal Algorithm to solve (16)-(18)
Input: y, A, the regularization parameters (ε and τ , γ or λ), the convergence parameter β > 0.

Initializations:

n = 0, X0 = Γ1,0 = Γ2,0 = Γ3,0 ∈ Rn1×n2

repeat

for (i = 1 : 3) do
Pi,n = prox3βfi(Γi,n)

end

Xn+1 = (P1,n + P2,n + P3,n)/3

for (i = 1 : 3) do
Γi,n+1 = Γi,n + 2Xn+1 −Xn − Pi,n

end

until convergence;

the solution until the convergence. The proximity operator of a l.s.c. function f(x) : Rn → R is defined

as proxf : Rn → Rn:

arg min
x̃∈Rn

f(x̃) +
1

2
‖x− x̃‖2`2 , (45)

which may have an analytical expression or can be solved iteratively.

In this part we rewrite each of the problems (16)-(17) as a minimization of the sum of three l.s.c.

convex functions

arg min
X∈Rn1×n2

f1(X) + f2(X) + f3(X). (46)

The template of the PPXA algorithm that solves this minimization is demonstrated in Algorithm 1. In the

following we define those functions fi and we derive their corresponding proximity operators. Note that

because fi is defined on Rn1×n2 , the definition of the proximity operator in (45) is naturally extended

for matrices by replacing the `2 norm with the Frobenius norm. Finally, β > 0 (in Algorithm 1) is a

parameter controling the speed of convergence.

A. Constrained `2/`1 Norm Minimization

We can rewrite the minimization problem (16) in the form (46) where

f1(X) = ‖X‖2,1 , f2(X) = iB`2
(X), and f3(X) = iB∗(X).
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The convex sets B`2 ,B∗ ⊂ Rn1×n2 correspond to the matrices satisfying the constraints ‖y −A(X)‖`2 ≤ ε

and ‖X‖∗ ≤ τ , respectively. The indicator function iC of a convex set C is defined as follows:

iC(X) =

{
0 if X ∈ C

+∞ otherwise

Standard calculations show that ∀i ∈ {1, . . . , n1}(
proxαf1(X)

)
i,.

=

(
‖Xi,.‖`2 − α

)
+

‖Xi,.‖`2
Xi,. (47)

which is the soft thresholding operator applied on the rows of X to shrink their `2 norms. By definition,

the proximal operator of an indicator function iC(X) is the the orthogonal projection of X onto the

corresponding convex set C. Thus, proxαf2(X) and proxαf3(X) are respectively the orthogonal projection

of X onto the sets B`2 and B∗. For a general implicit operator A, the projector onto B`2 can be computed

using an iterative forward-backward scheme as proposed in [34]. However, once A corresponds to a tight

frame (i.e. ∀y ∈ Rm A(A∗(y)) = ν y for a constant ν) then according to the semi-orthogonal linear

transform property of proximity operators [33], the orthogonal projection onto B`2 has the following

explicit formulation:

proxαf2(X) = X + ν−1A∗(r)
(

1− ε‖r‖−1`2
)
+

(48)

where, r = y −A(X).

Finally, let X = UΣV T be the singular value decomposition of X with Σ = diag(σ1, σ2 . . .), then the

projection of X onto B∗ corresponds to the projection of its singular values onto the following positive

simplex (`1 ball):

B`1 = {σ1, σ2, . . . ,∈ R+ :
∑
i

σi ≤ τ}.

More precisely, we have

proxαf3(X) = U diag(σ1, . . . , σr)V
T ,

where [σ1, σ2, . . .] = PB`1
([σ1, σ2, . . .]) and PB`1

denotes the orthogonal projection of the singular

values onto the set B`1 . This projection can be computed within few low-complex iterations using the `1

projection Matlab implementation of the SPGL1 software package [35].

B. Constrained Nuclear Norm Minimization

We rewrite the minimization (17) as (46) where

f1(X) = ‖X‖∗ , f2(X) = iB`2
(X), and f3(X) = iB`2/`1

(X).
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The function f2 and its proximity operator are the same as in the previous part. The convex set B`2/`1
corresponds to the matrices satisfying ‖X‖2,1 ≤ γ, and proxαf3(X) is the orthogonal projection of X

onto B`2/`1 .2

The proximity operator of the nuclear norm is the soft thresholding shrinkage operator applying on

the singular values of X:

proxαf1(X) = U diag(σ1, σ2, . . .)V
T (49)

where, ∀i σi =
(
σi − α

)
+

.

C. Constrained, Nuclear norm plus `2/`1 Norm Minimization

Here, we rephrase problem (18) as (46) where the functions in the summation are

f1(X) = ‖X‖2,1 , f2(X) = iB`2
(X), and f3(X) = λ‖X‖∗.

According to our previous descriptions, proxαf2 is the orthogonal projection onto the set B`2(X), proxαf3
is the singular value soft thresholding as in (49) and proxαf1 is equivalent to the soft thresholding of the

`2 norms of the rows of X as in (47).

Note that, for all three above-mentioned implementations using the ”economized” singular value

decomposition is very useful as the data matrix is assumed to be low-rank and thus it avoids a huge

computation at each iteration (particularly for a high-dimensional data).3 Since the rank r of the solution

at each iteration is unknown, at the first iteration of Algorithm 1, r is initially set to some value and later,

incremented by doubling its value until achieving the zero singular value in VI-A, or the singular value

soft thresholding parameter α in VI-B and VI-C. For the next iterations, r is initialized by the value of

the last iteration and so on. This idea has been used in the SVT software package [36] for the singular

values soft thresholding and our experiments indicates that in the early iterations of Algorithm 1 and

within at most 2 or 3 sub-iterations, r is set to its correct value, and remains fixed for the forthcoming

iterations.

2The Matlab code to perform such projection can be found in the SPGL1 package and is a natural extension of the vector

projection onto the `1 ball.
3The ”economized” singular value decomposition of a rank r matrix, here, refers to computing only the r largest (i.e. nonzero)

singular values.
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VII. NUMERICAL EXPERIMENTS

In this section we conduct a series of experiments in order to demonstrate the average behavior of

the proposed simultaneous low-rank and joint-sparse recovery approach for different problem setups, i.e.

different matrix sizes n1×n2, joint-sparsity levels k, ranks r and number of CS measurements m. Among

the three formulations suggested in this paper, we choose the nuclear norm plus the `2/`1 mixed-norm

minimization scheme in (18) (referred to as Nuclear-`2/`1) as it requires the minimum prior knowledge

about the underlying data, and the regularization parameter is set to λ =
√

k
2r as suggested by Theorem

2-c. A rank r and k-joint sparse matrix X ∈ Rn1×n2 is generated by multiplying two independent i.i.d.

Gaussian matrices X1 ∈ Rk×r and X2 ∈ Rr×n2 , and populating uniformly at random k rows of X

by the rows of X1X2. The figures that are used for performance evaluation demonstrate the empirical

reconstruction error phase transition: for a certain problem setup (n1, n2, k, r,m), the normalized recon-

struction error ‖X − X̂‖F /‖X‖F has been averaged over twenty independent random realizations of X

and A. Figures are plotted in gray scale and white pixels correspond to high reconstruction errors while

black pixels are indicating the recovery regions.

Figure 1(a) demonstrates the performance of our proposed scheme at recovering 40 × 40 random

matrices of rank r = 2, and for different joint-sparsity ratios ( kn1
) and subsampling factors ( m

n1n2
). A

dense i.i.d. random Gaussian sampling scheme A has been applied for compressed sampling of data. We

can observe that for recovering data matrices with high joint-sparsity ratios more CS measurements are

required. Meanwhile, it turns out that Nuclear-`2/`1 is able to recover even dense (non-sparse) data

matrices (i.e., k = n1) subsampled by retaining less than 40% of their original sizes. This should not

come as a surprise : despite loosing sparsity, Nuclear-`2/`1 still takes advantage of data correlations

due to the low-rank structure, which ultimately results in a successful reconstruction for an oversampling

factor nearly four times the degrees of freedom of the original data.

Figure 1(b) illustrates the error phase transition behavior of the `2/`1 minimization (10) for the same

setup. As we expect, for such highly structured data, our proposed scheme significantly outperforms the

`2/`1 approach by having a much wider recovery region.

Figures 1(c) and 1(d) repeat similar experiments but for rank r = 4 matrices. The recovery region of the

joint Nuclear-`2/`1 norm minimization is narrowed compared to the Figure 1(a) as more measurements

are required to compensate higher degrees of freedom of data in this scenario. However, this method still

keeps outperforming the `2/`1 recovery approach.
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(a) Nuclear-`2/`1, r = 2
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(b) `2/`1 minimization, r = 2
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(c) Nuclear-`2/`1, r = 4
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(d) `2/`1 minimization, r = 4

Fig. 1. Reconstruction error phase transitions for 40 × 40 matrices of rank r acquired by a dense i.i.d. Gaussian sampling

matrix: Sparsity ratio (k/n1) vs. Subsampling ratio ( m
n1n2

).

Reconstruction Using Distributed Sampling Schemes

In another experimental setup, we demonstrate the influence of different sampling schemes on our

recovery approach. Besides dense sampling, corresponding to the use of dense i.i.d. random Gaussian

matrices A in (7), we use the two following schemes particularly suited for distributed sensing applica-

tions:

• Distributed Uniform Sampling: In this case all columns of the data matrix are sampled by a unique

i.i.d. Gaussian random matrix Ã ∈ Rm̃×n1 and thus the sampling operator A corresponds to a block
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(a) Nuclear-`2/`1, dense sampling
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(b) Nuclear-`2/`1, distributed independent sampling
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(c) `2/`1 minimization, dense sampling
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(d) Nuclear-`2/`1, distributed uniform sampling

Fig. 2. Reconstruction error phase transitions for 30 × n2 matrices having r = 3 and k = 10: Number of columns (n2) vs.

Subsampling ratio ( m
n1n2

).

diagonal matrix given below:

A =


Ã 0 . . . 0

0 Ã . . . 0
...

...
. . .

...
0 0 . . . Ã

 , (50)

where m̃ = m/n2 denotes the number of measurements collected per column. As previously

mentioned in Section II-5, this sensing model is analogous to the multiple measurement vectors

(MMV) model. For multichannel signal applications such as sensor networks where each column of
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the data matrix represents the observation of a sensor node, this scheme enables all nodes to use a

unified mechanism for sampling their own local observations in a distributed manner (i.e. sampling

without intra-channel collaboration).

• Distributed Independent Sampling: In this case, an independent random Gaussian matrix Ãj ∈ Rm̃×n1

is used to collect m̃ samples from each column j of the data matrix, and thus the sampling operator

corresponds to a block diagonal matrix with distinct blocks:

A =


Ã1 0 . . . 0

0 Ã2 . . . 0
...

...
. . .

...
0 0 . . . Ãn2

 , (51)

where m̃ = m/n2. For multichannel sensing applications with strong intra channel correlations, this

sampling strategy gives the freedom of designing the blocks so that the measurements of different

channels carry diverse and non-redundant information to the decoder.

Figures 2(a)-2(d) demonstrate the reconstruction error phase transitions for various numbers of columns

n2 and CS measurements m. Data matrices of size 30 × n2 with a fixed rank r = 3 and joint-sparsity

level k = 10 are drawn at random and subsampled by dense, distributed independent or distributed

uniform random sampling matrices. These graphs suggest a useful tradeoff for practical multichannel

sensing setups, e.g. in sensor network applications, in order to design low cost/complex sensors but

distribute many of them (high number of channels n2). As we can see in Figure 2(a), the recovery region

of Nuclear-`2/`1 using dense sampling matrices follows the behavior predicted by the theoretical

analysis (see Corollaries 1 and 2) i.e.,

m

n1 n2
& O

(
k log(n1/k) + kr

n1 n2
+

r

n1

)
,

that is a constant plus a decaying term. A very similar recovery performance can be observed in Figure

2(b) using distributed independent sampling. In both cases by increasing n2, Nuclear-`2/`1 requires

less CS measurements per column (up to a minimal measurement limit).

Figure 2(c) demonstrates the performance of the `2/`1 recovery scheme using dense random sampling

matrices. Compared to Nuclear-`2/`1, the recovery region shrinks and more remarkably for high values

of n2, the minimal measurement limit becomes larger i.e. more measurements per column is required.

As a result, for multichannel sensing applications Nuclear-`2/`1 achieves better tradeoff between the

number of sensor nodes and their complexity compared to `2/`1 recovery approach.

Finally, we repeat the same experiment for the Nuclear-`2/`1 approach and using distributed uniform

random sampling matrices. We can observe in Figure 2(d) that by adding extra channels recovery does
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not improve much, which is consistent with our early explanations: The uniform sampling is not a proper

strategy for CS acquisition of low-rank data matrices because the resulting measurements become highly

redundant and they do not carry diverse information across channels.

VIII. CONCLUSION

In this paper we showed that combining the two key priors in the fields of compressive sampling

and matrix completion, namely joint-sparsity and low-rank structures, can tremendously enhance CS

dimensionality reduction performance. We proposed a joint Nuclear-`2/`1 convex minimization ap-

proach that is able to efficiently exploit such restrictive structure. Our theoretical analysis indicates that

the Nuclear-`2/`1 scheme is robust against measurement noise and non-exact low-rank and joint-

sparse data matrices. It can achieve a tight lower bound on the number of CS measurements improving

significantly the state-of-the-art. We provided algorithms to solve this type of minimization problem

enabling us to validate these improvements by several numerical experiments.

Extension of this work includes theoretical analysis of the Nuclear-`2/`1 approach for structured

random matrices (e.g., distributed independent random sampling matrices), as well as considering alterna-

tive structures such as simultaneous low-rank, sparse (rather than joint-sparse) and positive semidefinite

matrices which may find applications in high-dimensional sparse covariance matrix estimation. We are

also interested in further applications of this approach in multichannel signal compressive sampling.
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