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Abstract
We address the problem of microphone location cali-

bration where the sensor positions have a sparse spatial
approximation on a discretized grid. We characterize the
microphone signals as a sparse vector represented over
a codebook of multi-channel signals where the support
of the representation encodes the microphone locations.
The codebook is constructed of multi-channel signals
obtained by inverse filtering the acoustic channel and
projecting the signals onto a array manifold matrix of the
hypothesized geometries. This framework requires that
the position of a speaker or the track of its movement
to be known without any further assumption about the
source signal. The sparse position encoding vector is
approximated by model-based sparse recovery algorithm
exploiting the block-dependency structure underlying the
broadband speech spectrum. The experiments conducted
on real data recordings demonstrate the effectiveness of
the proposed approach and the importance of the joint
sparsity models in multi-channel speech processing tasks.

Index Terms: Microphone array calibration, Structured
Sparse coding, Model-based sparse recovery, Multi-party
speech signals

1. Introduction
Microphone array calibration is the fundamental initial
step in multi-channel speech processing systems. In this
paper we focus on the problem of calibrating the location
of microphones, i.e. the determination of array topol-
ogy, in order to enable spatial filtering for high-quality
speech acquisition. Before describing our work, we first
overview previous approaches for calibration of the mi-
crophone arrays to identify some of the practical chal-
lenges faced by them.

The research leading to these results has received funding from
the European Union under the Marie-Curie Training project SCALE
(Speech Communication with Adaptive LEarning), FP7 grant agree-
ment number 213850. We also thank Mohammad J. Taghizadeh for his
inputs on calibration techniques and implementation of the MDS-based
method proposed in [1].

Previous Work. McCowan and Lincoln proposed a
calibration method based on a diffuse noise field model
[1]. A diffuse noise field is characterized by noise signals
that propagate with equal probability from all locations.
The coherence in any frequency band between the noise
arriving at any two microphones can hence be shown to
be a Sinc function of the distance between the micro-
phones. McCowan and Lincoln propose to compute the
inter-microphone distances by fitting the measured coher-
ence of the noise with a Sinc function in least-squared er-
ror sense. To increase the robustness, the noise frames
are extracted and classified by k-means clustering. Al-
though their method does not require any specific set-up
or signals to be transmitted, the performance is limited to
very compact microphone arrays in an enclosure where
the diffuse noise model holds.

Alternative approaches incorporate transmission of a
known signal for microphone calibration. For instance,
Flanagan and Bell proposed a method which integrates
self-calibration and source localization. Their method
estimates the source directions of arrival (DOAs) along
with the sensors locations using the Weiss-Friedlander
technique [2]. The estimation of sensor location and
DOAs are performed alternatively until the algorithm
converges. Sachar et. al. presented an experimental
setup for calibration of the microphones by pulsed acous-
tic excitation using an array of five domed tweeters as
sources [3]. A test pulse is used to record and mea-
sure the transmission times between speakers and micro-
phones. Although the microphone array calibration tech-
niques based on transmission of known signal are usually
capable of performing some level of gain and phase cal-
ibration, their applicability is limited due the restricted
scenario of microphone recordings they employ [4, 5].

On the other hand, some approaches have been pro-
posed to calibrate the full network of ad-hoc micro-
phones given only partial information about the pair-
wise distances. In a practical method known as Multi-
Dimensional Scaling (MDS)-MAP, the shortest paths be-
tween all pairs of nodes is approximated using informa-
tion of a partly known network topology. To refine the ap-
proximation, it applies singular value decomposition and



Figure 1: Microphone (colored boxes) positions on a dicretized
grid. The occupancy of grid locations by microphones is sparse.

reconstructs a low-rank matrix by truncating the singular
values [6]. The classical MDS is then applied to estimate
the microphone coordinates.

Our Contribution. The present study provides a
new perspective on microphone array position calibra-
tion problem. We assume that the microphones already
have their gain and phase information calibrated and their
mutual coupling effects are small. In addition, we as-
sume we know the location of one source. We propose a
sparse recovery framework for microphone location esti-
mation where the unknown sensor locations are approx-
imated over a discrete grid. The key idea is that the mi-
crophone locations are sparse over the discretized area.
This idea is illustrated in Figure 1. We hypothesize a
set of locations corresponding to the unknown sensor and
calculate their weights using the Iterative Hard Thresh-
olding sparse recovery algorithm [7]. Compared to the
relevant microphone array calibration work in the litera-
ture, our approach is fundamentally different, as we pro-
vide a sparse approximation for the sensor locations as
opposed to the continuous solutions. The mathematical
formulation used in our calibration approach is a dual of
the solution of joint localization-separation via sparse ap-
proximation, which recovers multiple speech sources us-
ing known sensor positions [8, 9, 10, 11].

The paper follows with the statement of the theoreti-
cal framework of microphone calibration problem in Sec-
tion 2. The theory of the our structured sparse coding
solution is elaborated in Section 2.3. The experimental
evaluations on various practical scenarios are presented in
Section 3 along with the analysis of the empirical and the-
oretical performance bounds. The conclusions are drawn
in Section 4.

2. Sparse Coding for Microphone
Calibration

2.1. Problem Statement

We consider a scenario that an unknown sound signal
S(f) at frequency f emanates from a known location
in an enclosure and impinges on an array of M micro-
phones located at L = {l1, l2, · · · , lM} on a 2-D plane.
The room response Hlm from the source location to the
location lm is known for each of the M microphone lo-

cations. The signal captured by a microphone located at
lm would therefore be

Xlm(f) = Hlm(f)S(f)

and representing XL(f) = [Xl1(f) · · ·XlM (f)]> and
HL(f) = [Hl1(f) · · ·HlM (f)]>, we can write

XL(f) = HL(f)S(f). (1)

HL is also known as the array manifold vector and is
specific to the source location and the locations of the
microphones at L = {l1, l2, · · · , lM}. The microphone-
calibration problem is that the location of the microphone
is not known and must be estimated.

We can obtain an estimate of the source as Ŝ(f) =
HL(f)

†XL(f), where HL(f)
† represents the pseudo-

inverse of HL(f). Given that the estimate Ŝ(f) obtained
using any HL(f) is correct, then

XL(f) = HL(f)Ŝ(f) = HL(f)HL(f)
†X(f); (2)

this now gives us an effective handle to estimate L as

L = argmin
l1,l2,··· ,lM

‖XL(f)− X̂L(f)‖22, (3)

where
X̂L(f) = HL(f)HL(f)

†XL(f) (4)

is the projection of XL(f) onto the array manifold vector
HL(f).

The discerning reader may note that the objective
function of Equation (3) is merely ‖(I−HLH†L)X(f)‖22,
which is minimized if HL is chosen such that the soli-
tary non-unity singular value of I −HLH†L goes to zero.
This may appear to be independent of XL(f); however
this is not so – the corresponding eigenvector must also
be maximally aligned to XL(f) for the objective to be
minimized. Nevertheless, the formulation expressed in
Equation (3) introduces greater dependence on data.

The above modification can be succinctly stated in
matrix form as follows. Let F = {f1, f2, · · · , fB} rep-
resent a set of B adjacent frequencies within a band.
We define an array manifold matrix for M sensors
in locations L = {l1, l2, · · · , lM} as the MB × B
matrix HL(F ) obtained by stacking a set of diago-
nal matrices obtained from Hl1(f) to HlM (f). Let
Hdiag
lm

(F ) = diag([Hlm(f1)) Hlm(f2) · · ·Hlm(fB)]).
HL(F ) = [Hdiag

l1
(F ) · · ·Hdiag

lM
(F )]>. We de-

fine Xlm(F ) = [Xlm(f1) Xlm(f2) · · ·Xlm(fB)]
>;

XL(f) = [Xl1(f) · · ·XlM (f)]>. We define S(F ) =
[S(f1) S(f2) · · ·S(fB)]>. The extended equivalent of
Equation (1) is given by

XL(F ) = HL(F )S(F ). (5)

The location of the two microphones can be estimated as

L = argmin
l1,l2,··· ,lM

‖XL(F )−HL(F )HL(F )†XL(F )‖22.

(6)



This formulation indicates a parametric approach to
microphone calibration problem where L is estimated di-
rectly by minimizing the objective function stated in (6).
It defines the source locations as continuous random vec-
tors in a 2-D plane and results in a non-linear objective
which is difficult to optimize. In the this paper, we re-
sort to a non-parametric method and we formulate the
microphone calibration problem as structured sparse cod-
ing where we leverage the sparse recovery algorithms to
find the optimal solution. This idea is described in the
following Sections.

2.2. Sparse Calibration Model

We consider a scenario in which M microphones are dis-
tributed on a discrete grid of G points sufficiently dense
so that each microphone can be assumed to lie at one
of the grid points and M � G. We then define a G-
dimensional grid selector vector P with components Pi
that are 1 or 0 depending on whether or not a microphone
is present at grid point i. With this notation, note that the
number of microphones M is equal to the `0 norm of P ,
which is defined as the number of non-zero elements in
the vector. Thereby, the microphone calibration problem
can be converted into a linear regression and the solution
could be formulated as follows [11, 12]

P̂ = argmin{‖X − CP‖22 : P ∈ {0, 1}, ||P ||0 =M}
(7)

where C = H(F )H(F )†X(F ) and we drop the paren-
thesized (F ) here for brevity. The possible number of
combinations of microphone positions is therefore

(
G
M

)
,

since each of the microphones can lie at each of the G
positions. Corresponding to each of these

(
G
M

)
arrange-

ments is an array manifold vector. Any one of these could
represent the true array manifold vector for the array. The
complexity of this problem is very high so we take a
greedy sparse recovery approach.

If the location of M − K of the sensors is known a
priori and onlyK sensor locations are unknown, then the
choice of possible manifold vectors reduces to

(
G
K

)
. In

the discussion below we assume K = 1 for simplicity,
but the argument is easily extended to higher values of
K. Given the multi-channel signal recordingX ∈ CM×1
and assuming that the position of M − 1 of the micro-
phones are known, we construct a codebook denoted by
C ∈ CM×G, composed from projections of X onto G
array manifold vectors as given by Equation 4. The ith

manifold vector corresponds to a microphone array with
M − 1 microphones at known positions and the M th mi-
crophone at the ith grid locations. Since the support of P
corresponds to the location of the microphone on the grid
it is a 1-sparse vector.

Given the observations and the codebook of the signal
projections onto the manifold vectors corresponding to

G grid locations, calibration of the unknown microphone
position amounts to sparse approximation of P . The so-
lution to Equation 7 finds the location of one microphone,
given the locations of the remaining; however it general-
izes trivially to the case of K unknown microphone lo-
cations. In the following Section 2.3, we elaborate on
construction of the codebook from the observations.

2.3. Codebook of Spatial Signals

The design of the code book C is based on the reconstruc-
tion of the acoustic field from multi-channel recordings.
Consider a source signal S from a known location, which
is recorded by each of M microphones. Let the location
of ith microphone be lp(i). p(i) is unknown. The signal
Xi captured by the ith microphone is obtained by pass-
ing S through the acoustic channel of the room from the
source location to lp(i), Hp(i). Hence, we have a linear
model of the M microphone observations in spectral do-
main stated asX1(f)

...
XM (f)

 =

Hp(1)(f)
...

Hp(M)(f)

S(f), (8)

or, more succinctly, representing X(f) =
[X1(f) · · ·XM (f)]> and H(f) =
[Hp(1)(f) · · ·Hp(M)(f)]

> as earlier, X(f) =
H(f)S(f) + E, where E represents measurement
error. We will generally assume that the error is
isotropic. We refer to this equation as the forward model.

The spectral components are obtained by Short Time
Fourier Transform (STFT). As each frame is processed
independently, the frame indices are omitted in this no-
tation for brevity. This formulation relies on the narrow-
band assumption that if the source is delayed in time do-
main, i.e. if s2(t) = s1(t − l) then for all l < Lmax,
S2(f, τ) ≈ exp(−jfl)S1(f, n) where Si(f, n) is the
STFT of the time domain signal si(t), n indicates the cur-
rent frame index.

Given the formulation of Equation 8, the least-
squares approximation to the source signal S(f) is given
by Ŝ(f) = H†(f)X(f) as given in Equation 2.

In order to characterize the forward model, we con-
sider the recording environment to be a rectangular en-
closure consisting of finite-impedance walls. The point
source-to-microphone impulse responses Hi(f) to each
of the grid locations are calculated using the Image Model
technique [13]. Taking into account the properties sig-
nal propagation and multi-path effects, the frequency re-
sponse of the acoustic channel between a source located
at ν and a microphone located at li is identified as

Hi(f) =

R∑
r=1

ιr

‖li − νr‖α
exp(−jf ‖li − νr‖

τ
), (9)



where j =
√
−1, ι represents the reflection ratio of the

walls, ιr is the cumulative reflection ratio when the signal
is reflected r times and τ denotes the speed of sound. The
attenuation constant α depends on the nature of the prop-
agation and is considered in our model to equal 1, which
represents spherical propagation. Hence, characterization
of the forward model amounts to localization of the R
Images of the source along with the absorption ratios ι
associated to the reflective surfaces. Although the point-
source assumption does not hold in practice, evaluations
on real data verify that estimation of the early support of
the room impulse response function enables estimation
of ι and R, and that these can be applied to determine the
parameters of the forward model with sufficient accuracy
to enable efficient recovery of speech by sparse approxi-
mation. Details of the procedure can be found in [14, 15]
and are not repeated here; for now we will assume that ι
and R have been well estimated and are known.

Assuming we know the locations of M − 1 micro-
phones and only the M th microphone must be located,
there are only G possible valid array configurations to
consider in the construction of the codebook C in Equa-
tion 7. We compose the corresponding set of array
manifold matrices H1(F ), H2(F ), · · · , HG(F ), where
Hi(F ) represents the manifold matrix for the array con-
figuration where the first M − 1 microphones are in their
known locations, and the M th microphone is at li. We
now write the codebook as

C = [H1(F )H
†
1(F )X(F ), . . . HG(F )H

†
G(F )X(F )].

(10)
The X in the calibration model of Equation 7 must cor-
respondingly be taken to actually represent X(F ). P is
now aGB×1 matrix, with the property that it isB-sparse
with a block structure: at most B consecutive entries be-
ginning at index Bm can be non-zero, where m is an
integer.

2.4. Calibration by Structured Sparse Recovery

The calibration model expressed in (7) indicates that once
the codebook is constructed of all the spatial projections
of the multi-channel signals, calibration of the unknown
microphone position amounts to sparse approximation of
the encoding vector P which selects the projections cor-
responding to the right location. Since the codebook is
constructed of F adjacent frequencies, the non-zero com-
ponents of P has a block structure corresponding to the
common support/grid where the unknown microphone is
located. To incorporate the underlying structure of the
sparse coefficients, we use the model-based sparse recov-
ery algorithm proposed in [12] which is an accelerated
scheme for hard thresholding methods with the following
recursion:

Pi+1 =M
(
Pi + κC>(X − CPi)

)
, (11)

where the step-size κ is the Lipschitz gradient constant to
guarantee the fastest convergence speed. To incorporate
for the underlying block structure, the model projection
operatorM thresholds and retains only the one (or more
generally K) B-block with the highest energy, with sub-
sequent renormalization [12]. The support of the finally
estimated P determines the microphone location.

3. Experimental Analysis
3.1. Real Recordings Set-up

We perform some evaluations on the Multichannel Over-
lapping Numbers Corpus (MONC) [16]. This database
is acquired by playback of utterances from the origi-
nal Numbers corpus. The recordings were made in a
8.2m×3.6m×2.4m rectangular room containing a cen-
trally located 4.8m ×1.2m rectangular table. The po-
sitioning of loudspeakers was designed to simulate the
presence of the speakers seated around a circular meet-
ing room table of diameter 1.2m. The loudspeakers were
placed at 90◦ spacings at an elevation of 35cm (distance
from table surface to center of main speaker element). An
eight-element, 20cm diameter, circular microphone array
placed in the center of the table was used to record the
mixtures.

3.2. Calibration Results

The speech signals are recorded at 8kHz sampling fre-
quency. The spectro-temporal representation is obtained
by windowing the signal in 256ms frames using a Hann
function with 50% overlap. We used the algorithm pub-
lished in [15] to characterize the forward model. As men-
tioned earlier, to jointly localize all M microphones, we
will require a codebook with

(
G
M

)
entries. As this is com-

putationally infeasible, we take an incremental approach.
We first locate two microphones, which only requires a
codebook of size

(
G
2

)
, representing the array manifold

vectors for all possible pairs of locations. Thereafter, we
incrementally locate additional microphones until all mi-
crophones are calibrated. To increase the resolution of the
estimates while keeping the dimensionally of the sparse
vector bounded, we take a coarse-to-fine strategy [17].
We discretize the area into 5cm grids. The localized mi-
crophones are then re-located in 1cm accuracy using a
finer discretization. We calibrate the first two channels at
the array broad-side. We then move onto the next channel
and continue until the full network is calibrated. The av-
erage norm of calibration error for the relative geometry
is 8.9mm.

To calibrate a two-channel microphone, it is possible
to find the combinatorial solution of Equation (7). We
performed the microphone calibration by combinatorial
optimization and the results were similar to what we ob-
tained by hard thresholding expressed in Equation (11).
Given that the complexity of the combinatorial optimiza-



tion increases as O(GM ) whereas the greedy sparse re-
covery has a complexity of O(GM), it is crucial to em-
ploy the structured sparse recovery algorithms to enable
microphone array calibration in our set-up.

In addition, we use the method proposed in [1] for
calibration of the circular array used for MONC record-
ings. This method relies on diffuse noise model to find
the topology of the array and it can not perform calibra-
tion with the diffuse noise recorded in MONC database.
We conducted some data recordings with the similar mi-
crophone array set-up. The results obtained for calibra-
tion of circular microphone is about 1.2cm using about
10s recording of diffuse noise field. In practice however,
the level and length of the available diffuse noise might
be challenging to employ the technique proposed in [1].
Hence, our approach which requires only a few speech
frames (less than 1s) provides a higher applicability and
accuracy.

3.3. Empirical Performance Bounds

To establish the empirical performance bounds, we carry
out the experiments on synthetic data recordings using
ad-hoc microphones distributed in a 0.4m×0.4m area as
illustrated in Figure 1. The reference point speaker is
located at either 0.5m or 1.5m distance to the center of
the grid corresponding to a near-field or far-field speaker
respectively. We considered a 3m×3m×3m room and
synthesized the room impulse responses with the Image
Model [13] with reflective factors of 0.8 for the six walls,
which corresponds to 180ms reverberation time accord-
ing to Eyring’s formula:

β = exp(−13.82/[c(L−1x + L−1y + L−1z )T ]), (12)

where Lx, Ly and Lz are the room dimensions, τ is the
speed of sound in the air (≈ 342m/s) and T is the room
reverberation time.

We consider the scenario in which the recording con-
dition is perfectly known. To evaluate the sensitivity of
our approach to the uncertainties in the estimation of for-
ward model parameters (i.e. uncertainties or errors in es-
timates of speaker location, room geometry and absorp-
tion coefficients) we consider two mismatched test con-
ditions. In the first scenario (Mismatched1), the obser-
vations were generated with a forward model where the
codebook is constructed of the spatial projections using
a models with up to 25% error in the absorption coeffi-
cients corresponding to each of the walls. In the second
scenario (Mismatched2), we assume that the room geom-
etry is estimated with an error of 10cm and the absorption
coefficients are estimated with 25% error on each of the
six reflective walls. The performance of the microphone
calibration in terms of Root Mean Squared Error (RMSE)
is listed in the Table 1. The parameters δ indicates the res-
olution of the grid which is in our case equal to 5cm. We

considered all pairs of combinations to quantify an aver-
age expected error to calibrate the first two-channels. We
then select a third channel for calibration. We observe
that the scenario of the speaker positioned at a far-field
distance with respect to the microphone array is less sen-
sitive to the mismatched conditions.

Table 1: RMSE (cm) of microphone array calibration. Two
combinations (Co.) are considered: Pairs (P) and Triples (T).
δ indicates the resolution of the grid and is equal to 5cm in our
experiments

Acoustic condition Co. Near-field Far-field

Match. & Mismatch.1 P δ δ
T δ δ

Mismatched2 P 14.7 12.3
T 14 6

3.4. Theoretical Performance Bounds

Relying on the formulation of the microphone calibration
as sparse coding expressed in (7), the theoretical analysis
of the performance of our approach amount to the sparse
recovery guarantees and it is tied to the properties of the
codebook matrix C. A fundamental property of C is the
coherence between the columns defined as [18]

µ(C) = max
1≤j,k≤G,j 6=k

|〈cj , ck〉|
‖cj‖‖ck‖

. (13)

The coherence quantifies the smallest angle between
any pairs of the columns of C and the number of recov-
erable non-zero coefficients (K) using either convexified
or greedy sparse recovery is inversely proportional to µ as
K < 1

2 (µ
−1+1) [18]. Hence, to guarantee sparse recov-

ery performance, it is desired that the coherence is min-
imized. Since the codebook is constructed of locations
and frequency dependent Green’s function projections,
this property implies that the contribution of the source
to the array’s response is small outside the corresponding
sensor location or equivalently the resolution of the array
is maximized. Recent studies have shown that the ad-hoc
microphone arrays distributed randomly yield significant
improvements in the sparse signal reconstruction perfor-
mance [14, 10]. Thus the performance of our sparse ap-
proximation framework is entangled with the design of
the grid points for codebook construction as well as the
frequency of the signal. To analyze the codebook for the
broadband speech spectrum, we compute µ for different
frequency bands. The results are illustrated in Figure 2.

This study shows that the coherence of the code-
book is smaller for the higher frequencies and suggests
sub-band processing of the speech signal. Alternatively,
joint sparsity models enable us to reduce the ambiguity
while exploiting the synergy of the broadband compo-
nents. This issue is investigated in Figure 3.

The results indicate that processing the frequencies
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independently is quite likely to get very ambiguous due
to the high coherence of the codebook over some com-
ponents. In contrast, the block-sparsity model enables
very sharp estimates as a function of the block size.
Hence, incorporating joint sparsity models such as the
block-dependency structures improves the recovery per-
formance in sparse modeling framework.

Our formulation of the microphone calibration en-
ables calibration from multiple overlapping speech
sources. Hence, it is possible to increase the number of
sources (i.e. number of reference points) to achieve more
accurate calibration results.

4. Conclusions
We cast microphone array calibration problem as sparse
coding over a codebook of spatially projected multi-
channel signals. The support of this representation cor-
responds to the arrangement of the microphone approxi-
mated on a discretized grid. This approach enables esti-
mation of microphone array topology from recordings of
an unknown speech source positioned at a known refer-
ence point in a reverberant enclosure. We demonstrated
the effectiveness of our framework on real data record-
ings when a circular microphone array is calibrated by
a line-radial grid search. We further performed an ex-
haustive evaluation in a general setting of ad-hoc micro-
phones and quantified the average expected error in case
of acoustic ambiguities. Our studies highlight the impor-
tance of the structured sparsity models in sparse coding
framework for multi-channel speech processing tasks.
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