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Abstract—This paper investigates the construction of determin-
istic measurement matrices preserving the entropy of a random
vector with a given probability distribution. In particular, it is
shown that for a random vector with i.i.d. discrete components,
this is achieved by selecting a subset of rows of a Hadamard
matrix such that (i) the selection is deterministic (ii) the fraction
of selected rows is vanishing. In contrast, it is shown that for
a random vector with i.i.d. continuous components, no entropy
preserving measurement matrix allows dimensionality reduction.
These results are in agreement with the results of Wu-Verdu
on almost lossless analog compression. This paper is however
motivated by the complexity attribute of Hadamard matrices,
which allows the use of efficient and stable reconstruction algo-
rithms. The proof technique is based on a polar code martingale
argument and on a new entropy power inequality for integer-
valued random variables.

Index Terms—Entropy-preserving matrices, Analog compres-
sion, Compressed sensing, Entropy power inequality.

I. INTRODUCTION

Information theory has extensively studied the lossless
and lossy compression of discrete time signals into digi-
tal sequences. These problems are motivated by the model
of Shannon, where an analog signal is first acquired, by
sampling it at a high enough rate to preserve all of its
information (Nyquist-Shannon sampling theorem), and then
compressed. More recently, it was realized that proceeding
to “joint sensing-compression” schemes can be beneficial. In
particular, compressed sensing introduces the perspective that
sparse signals can be compressively sensed to decrease mea-
surement rate. As for joint source-channel coding schemes,
one may wonder why this would be useful? Eventually, the
signal is represented with the same amount of bits, so why
would it be preferable to proceed jointly or separately? In a
nutshell, if measurements are expensive (such as for example
in certain bio-medical applications), then compressed sensing
is beneficial.

From an information-theoretic perspective, compressed
sensing can be viewed as a form of analog to analog com-
pression, namely, transforming a higher dimensional discrete
time signal into a lower-dimensional one over the reals,
without “losing information”. The key point being that, since
measurements are analog, one may as well pack as much
information in each measurement (whereas in the compression
of discrete signals, a measurement on a larger alphabet is more
expensive than a measurement in bits). However, compressing
a vector in R™ into a vector in R™, m < n, without regularity

constraints is not an interesting problem, since R™ and R™
have the same cardinality.

Recently, [1] introduced a more reasonable framework to
study analog compression from an information-theoretic per-
spective. By requiring the encoder to be linear and the decoder
to be Lipschitz continuous, the fundamental compression limit
is shown to be the Rényi information dimension. The setting
of [1] also raises a new interesting problem: in the same way
that coding theory aims at approaching the Shannon limit
with low-complexity schemes, it is a challenging problem to
devise efficient schemes to reach the Rényi dimension. Indeed,
in this analog framework, realizing measurements in a low
complexity manner is at the heart of the problem: it is rather
natural that the Rényi dimension is the fundamental limit
irrespective of complexity considerations, but without a low-
complexity scheme, one may not have any gain in proceeding
with a joint compression-sensing approach. For example in
the compressed sensing, with O(klog(n/k)) instead of O(k)
measurements, k-sparse signals can be reconstructed using [y
minimization, which is a convex optimization problem, rather
than [y minimization, which is intractable [6], [7]. Hence, in
general, complexity requirements may raise the measurement
rate.

The scope of this paper is precisely to investigate what
measurement rates can be achieved by taking into account the
complexity of the sensing matrix, which in turn, influences
the complexity of the reconstruction algorithm. Our goal is
to consider signals that are memoryless and drawn from a
probability distribution on R, which may be purely atomic,
purely continuous or mixed. It is legitimate to attempt reaching
this goal by borrowing tools from coding theory, in particular
from codes achieving least compression rates in the discrete
setting. Our approach is based on using Hadamard matrices for
encoding (taking measurements) and developing a counter-part
of the polar technique [2], [3] with arithmetic over R (or Z for
atomic distributions) rather than Fy or F,. The proof technique
uses the martingale approach of polar codes and a new
form of entropy power inequality for discrete distributions.
Rigorous results are obtained and sensing matrix construction
is deterministic. A nested property is also investigated which
allows one to adapt the measurement rate to the sparsity level
of the signal.

Recently, spatially-coupled LDPC codes have allowed to
achieve rigorous results in coding theory. This approach has
been exploited by [4], [S], which proposes the use of spatially



coupled matrices for sensing. In [5], the mixture case is
covered and further analysis on the reconstruction algorithm
is provided. However, the sensing matrix is still random. It
is known that Hadamard matrices truncated randomly afford
desirable properties for compressed sensing. We extend this
work and show that by knowing signal distribution, Hadamard
matrices can be truncated deterministically to achieve a min-
imal measurement rate.

II. RELATED WORK

Let X, Xs,...,Xx be iid. Bernoulli(p) random vari-
ables, where N = 2" for some n € Z,. We use the notation
a] for the column vector (a;,a;4+1,...,a;)" and set a] to null
if j < i. We also define [r] = {i € Z : 1 < i < r}. Let
G - 1 1 Xn

Moo
and let YlN = ByG NX{V , where By is a specific shuffling
matrix introduced in [3] which changes the order of the rows of
Gn. Define H; = H(Y;|Y{™ '), i € [N], to be the conditional
entropy of Y; given Yffl. In [3], Arikan shows that for any
d > 0 and for large N, the values H;, i € [N], polarize to 0
or 1. This provides a compression scheme achieving the least
compression rate, since for every ¢ € (0,1)

#{i€[N]:H; e (1-46,1]}
N

From another point of view, every Y; is associated with
a specific row of the matrix Gx and (1) indicates that
the “measurement” rate required to extract the informative
components is close to the entropy of the source H(X) for
large V.

In signal acquisition, measurements are analog. Hence, one
could consider YV = Gy X{¥ with arithmetic over the real
field and investigate if any “polarization phenomenon” occurs.
The difference is that, in this case, the measurement alphabet
is unbounded. In particular, the H; values are not bounded
above.

, where ® denotes the Kronecker product,

— H(X). (1)

III. PROBLEM STATEMENT

Definition 1 (Restricted iso-entropy property). Let X{¥ be
discrete i.i.d. random variables with a probability distribution
px supported on a finite set. The family {®y } of measurement
matrices, where @ has dimension my X N, is e-REP(px)
with measurement rate p if

HO o XY) _
N —
and limsupy_, o, "3 = p.

In general, the labeling /N can be any subsequence of Z .
We will consider N = 2", n € Z.

Definition 2. Let X{V be continuous (or mixture) random
variables with probability distribution px. The family of
measurement matrices {®} of dimension my x N is (e,7)-
REP(px ) with measurement rate p if
1) there exists a single letter quantizer ) : R — Z such
that M.ML.S.E. of X given Q(X) is less that ~,

2) for any N,

HQXM e XY) _
N )

where Q(X1) = (Q(X1), Q(X2), ..., Q(Xn))",
3)

. my

limsup — = p.

N—00

We address the following questions in this paper:

1) Given a probability distribution px over a finite set, and
€ > 0, is there a family of measurement matrices that
is e-REP and has measurement rate p? What is the set
of all possible (e, p) pairs? Is it possible to construct
a near optimal family of truncated Hadamard matrices
with a minimal measurement rate? How is the truncation
adapted to the distribution px?

2) Is it possible to obtain an asymptotic measurement rate
below 1 for continuous distributions?

Remark 1. The RIP notion, introduced in [6], [7], is useful in
compressed sensing, since it guarantees a stable [y-recovery.
We consider truncated Hadamard matrices satisfying e-REP
condition and since they have a Kronecker structure, we obtain
a low-complexity reconstruction algorithm. However, this part
is not emphasized in this paper, and we mainly focus on
the construction of the truncated Hadamard matrices. Section
VI provides numerical simulations of a divide and conquer
ML decoding algorithm and illustrates the robustness of the
recovery to noise. In a future work, we will investigate the use
of a recovery algorithm a la [5].

IV. MAIN RESULTS

The main results of this paper are summarized here.

®mn
_11 1) SN = 2" n €
Z.} be the family of Hadamard matrices, where By is the
row shuffling matrix introduced in [3]. Suppose X7V are i.i.d.
random variables with distribution px over a finite subset
of Z. Let Y{¥ = JyX{ and define H, = H(Y;|Y{™h)
and my = #{i € [N] : H; > €}. The (¢,px)- truncated
Hadamard family {Jy}, is the set of matrices of dimension
mpy X N obtained by selecting those rows of Jy with H; > e.

Definition 3. Let {Jy = By

Theorem 1 (Absorption phenomenon). Let X be a discrete
random variable with a probability distribution px supported
on a finite subset of 7Z. For a fixed ¢ > 0, the family of
(€, px )-truncated Hadamard matrices {Jn, N = 2", n € Z,}
(defined above) are e-REP(px ) with measurement rate 0. In
other words,

lim sup My _ 0.

N—o0 N
Remark 2. Although all of the measurement matrices Jy
are constructed by truncating the matrices Jy, the order and
number of the selected rows, my, to construct Jy depends
on the distribution px.

For continuous distributions, and for any fixed distortion ~,
the measurement rate approaches 1 as e tends to 0. This result



has been shown in [1] in a more general context. We recover
this result in our setting for the case of a uniform distribution
over [—1,1].

Lemma 1. Let py be the uniform distribution over [—1,1] and
let Q:[-1,1) = {0,1,...,q — 1} be a uniform quantizer for
X with M.M.S.E. less than ~y. Assume that {®x} is a family
of full rank measurement matrices of dimension my x N. If
{®n} is (€,7)-REP(py), then the measurement rate, p, goes
to 1 as e tends to 0.

Theorem 2 (An EPI over Z). For every probability distribu-
tion p over Z,

H(pxp) — H(p) > g(H(p)), (2)

where g : Ry — Ry is strictly increasing, lim,_, . g(x) =
m and g(z) = 0 if and only if x = 0.

Remark 3. This theorem complements the work in [8] to ob-
tain an entropy power inequality for discrete random variables.

V. PROOF OVERVIEW

A. An EPI for Discrete Random Variables

Entropy power inequality for continuous and independent
random variables X and Y is

92h(X+Y) > 92h(X) 4 92h(Y)

3)

where h denotes the differential entropy. If X and Y have the
same density p, then (3) becomes
1
h(p*p) 2 hip) + 3,
which implies a guaranteed increase of the differential entropy.
For this reason, we call (2) an EPI for discrete random
variables.

Lemma 2. Let ¢ > 0 and suppose p is a probability measure
over 7, such that H(p) = c. Then, for any i € Z,

H(p*p)—c>cpi — (1+pi)ha(pi),

where ho(x) = —xlogy(z) — (1 —x) log, (1 — x) is the binary
entropy function and p; denotes the probability of i.

Lemma 3. Letc>0,0< a < % and n € 7. Assume that p is

a probability measure on Z such that o < p((—oo,n]) < 1—a
and H(p) = ¢, then

lp*p1 —p*palli > 20,

where py = mp‘(foo,n] and py = mphwﬂ,m)
are scaled restrictions of p to (—oo,n] and fn + 1,00)
respectively.

Lemma 4. Assuming the hypotheses of Lemma 3,
2

Q
H —c> — — 2,
(pxp)—c=> 3702 (2) [p*p1 —p*p2li
Lemma 5. Assuming the hypotheses of Lemma 3,
2 4
H(pxp) == —

log(2)

Proof of Theorem 2: Suppose that p is a distribution over
Z with H(p) = c. Set y = ||p||co- There is an av > 1_Ty and an
integer n such that a < p((—oo,n]) < 1 — «. Using Lemma
2 and Lemma 3, it results that H(p *p) — ¢ > g(c) where

1— 4

maX(ébg‘é)), cy — (1+y)ha(y))-

It is easy to check that g(c) is a continuous function of ¢. The
monotonicity of g follows from the fact that cy — (1+1y)ha(y)
is an increasing function of ¢ for every y € [0, 1]. For strict
positivity, note that (1 — y)? is strictly positive for y € [0, 1)
and it is 0 when y = 1, but limy,_,; cy — (1 + y)ha(y) = ¢
Hence for ¢ > 0, g(c) > 0. If ¢ = 0 then

1-y)*
8log(2)

min

g(c) = Juin

_(1-y)?
8log(2)’

and its minimum over [0, 1] is 0. For asymptotic behavior, note

h =0 —(1 h =0 d(l—y)4: 1
that at y ey — (L+y)ha(y) and g155(2) 8Tog(2)"

Hence, from continuity, it results that g(c) < gyozy for any
¢ > 0. Also for any € > 0 there exists a ¢y such that for
any e <y <1, cy — (1 +y)ha(y) > Sl%g@)' Thus for any
€ > 0 there is a ¢y such that for ¢ > ¢p, the outer minimum
over y in g(c) is achieved on [0, €]. Hence, for any ¢ > co,

g(c) > éi:ge();). This implies that for every € > 0,

max( sy — (1+y)ha(y))

| . 1-o
>1 = liminf g(c) =
STog(@) = msupg(c) 2 minfg(c) 2 Froms,
and lim,, o g(C) = ﬁg@). ,

Figure 1 shows the EPI gap. As expected, for large values of
H (p), the gap approaches the asymptotic value éﬂ%g(%' This is
very similar to the EPI bound obtained for continuous random

variables.

EPI gap for discrete random variables
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Fig. 1: EPI gap for discrete random variables

B. Conditional Entropy Martingale

Assume that X{V, N =2"n € Zy4,is aset of i.i.d. random
variables with probability distribution px over a finite subset

Xn
of Z. Let YlN = JNX{V, where Jy = Bng_ll }) is
the shuffled Hadamard matrix of dimension and let H; =

H(Y;|Yi™1),i € [N], be the conditional entropy values.



Lemma 6. Let X1V be as in the previous part and let Z{ =
BNGN XY where G and By are as before. Assume that
H; = H(Z;|Z7Y), i € [N], then H; = H;, i € [N].

Remark 4. The only point of Lemma 6 is that in application,
it is preferred to use J because the rows of J are orthogonal
to one another. For simplicity of proofs, we use G matrices
and relate to the polar code notations [2], [3].

Notice that we can represent By Gy in a recursive way. Let
us define two binary operation @ and & as follows

O(a,b)=a+b

®(a,b) = b,
where + is the usual integer addition. It is easy to see that
we can do the multiplication by ByG in a recursive way.
Figure 2 shows a simple case for B4G4. The — or + sign

on an arrow shows that the result for that arrow is obtained
by applying a & or & operation to two input operands. If we

Xy —b%}—»{ —
4
Xo a @ Y3

_ —+
X3 @) Y

X, T + ++ Y,

Fig. 2: Recursive structure for multiplication by G4

consider a special output Y,,, there are a sequence of & and &
operations on the input random variables which result in Y,,.
An easy way to find this sequence of operations is to write
the binary expansion of m — 1. Then, each 0 in this expansion
corresponds to a © operation and each 1 corresponds to a
@ operation. Using this binary labeling, we define a binary
stochastic process. Assume that Q@ = {0,1}°°, and F is the
o-algebra generated by the cylindrical sets

S o) = {w € Qsuch that wy, =1, ,w;, =1}

for every integer s and iy,%9,--- ,is. We define F,, as the
o-algebra generated by the first n coordinates of w and
Fo = {0,9Q} as the trivial o-algebra. We also define the
uniform probability measure p over the cylindrical sets by
11(S(iy i, in)) = 5= This measure can be uniquely extended
to F. Let [w], = wiws...w, denote the first n coordinates
of w = wiwz... and Y|, denote the random variable
Y;, where the binary expansion of ¢ — 1 is [w],, and let
Yl = {¥, + [ < [w]n}. We also define the random

variable I,, by

11,02,

Ly(w) = H(Y},, [Y ). 4)

n

It is also important to note that
In+1([w]n7 0) :H(}/[UJ]n + }A}[W]n

where ~ denotes an independent copy of the corresponding
random element.

ylln yllny o (s)

Theorem 3. (I,,,F,) is a martingale.

C. Main Theorem
Proof of Theorem 1: Assume that Y{¥ = JyX{', for
N =2"n € Z,,and H; = H(Y;[Y{™1), i € [N]. Also fix
€ > 0. Let us define
K, ={i:i€[N]|,H; > ¢},
Vi, ={Yj: j € Kn}.

Hence, by Definition 3, |K,,| = my and Jx is obtained from
Jn by selecting the rows with index in K,,. We have

HXNJInXN) = HXN) - I(XV; Iy XN)
=H(YN) - H(Yg,)) = H(Yke)|Yik,))

< 3 B <K= (N - my)e,
ieK¢

which implies that

H(XN|InXT) < N —my)e
N - N -

This shows that the family {Jy} is e-REP. Now it remains to
show that the measurement rate of this family is 0. To prove
this, we use Lemma 6 and construct the martingale I,, by
(4). I, is a positive martingale and converges to a random
variable I, almost surely. Our aim is to show that for any
two positive numbers a and b where a < b, (I € (a,b)) =
0, which implies that p(I € {0,00}) = 1. Since I,, is a
martingale, E{I,,} = E{Iy} = H(X) < oo. Using Fatou’s
lemma we obtain E{I,} < liminf F{I,} = H(X;) < oo,
which implies that (I, = oo) = 0. Hence, I,, converges
almost surely to 0 and it also converges to 0 in probability. In
other words, given € > 0,

K, .
lim sup u(I,, > €) = limsup % = lim sup N _y,

n—00 n—00 N —o00 N
This implies that for a fixed € > 0 the measurement rate p is
0. Now it remains to prove that for any two positive numbers
a and b, where a < b, u(I» € (a,b)) = 0. Fix a 6 > 0 then
for every w in the convergence set there is a ngy such that for
n > ng, |Iny1(w) — In(w)] < §. This implies that for n > ng

(1 (w) = In(W)| = [Tns1([w]n, 0) = Tn([w]n)| < 0.

Using (5) and the entropy power inequality (2), it results that
0 < I,(w) < p(0) where p(d) can be obtained from the EPI
curve in Figure 1. This implies that I,, must converge to 0 and
this completes the proof. [ ]

VI. NUMERICAL SIMULATIONS
For simulation, we use a binary random variable, where
px(0)=1—p for some 0 < p < %.
A. Absorption Phenomenon

Figure 3 shows the absorption phenomenon for p = 0.05
and N = 256,512.



Absorption Scheme for N=256, p=0.05

Absorption Scheme for N=512, p=0.05
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Fig. 3: Absorption trace for p = 0.05

Absorption Scheme for N=512

Absorption Scheme for N=512
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Absorption phenomenon is shown in Figure 4 for N = 512 ter
and different values of p. It is seen that the high entropy indices T
. . . . . & 12r
for smaller p are included in the high entropy indices of larger Sl
p. We call this the “nested” property. 5
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C. Robustness to Measurement Noise A
0 5 10 15 20
SNR, [dB]

Figure 5 shows the stability analysis of the reconstruction al-
gorithm to i.i.d. A'(0, 0?) measurement noise. For simulation,
we used N = 512, p = 0.05 and a 0.01-REP measurement
matrix by keeping all of the rows of the matrix Jy with indices
in the set K. For recovery, we used ML decoder which exploits
the recursive structure of the polar code. We define the signal
to noise ratio at the input and output of the decoder as:

ZiGK ( i2)

SNRyy = S
N 2
SNROU[ Zl:l ( 1 )

N ~ P
dim1 E(1Xi = X4[?)

where X is the output of the ML decoder. The result shows
approximately 4 dB loss in SNR for high SNR regime.
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