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Abstract 

In coastal marshes, low-permeability mud is often found overlying high permeability sandy 

deposits. A recently developed 3D creek-marsh model was used to investigate the effects of soil 

stratigraphy (a mud layer overlying a sandy-loam layer) on pore-water flow in the marsh. 

Simulation results showed significant modifications of tide-induced pore-water flow due to the 

layered soil. The presence of the lower sandy-loam layer with a relatively high hydraulic 

conductivity not only increased the pore-water flow speed but also changed the flow direction, 

particularly in the upper mud layer where enhanced vertical flow dominated. Particle tracking 

revealed large changes in the overall pore-water circulation pattern, and associated particle travel 

path and time due to the influence of the soil stratigraphy. While the amount of water exchange 

between the marsh soil and tidal water increased, the residence time of particles in both soil 

layers was reduced. Sensitivity analysis showed the importance of soil compressibility, capillary 

rise and hydraulic conductivity contrast between the soil layers in modulating the effect of soil 

stratigraphy. In particular, the total net influx and efflux across the marsh surface (including the 

creek/channel bank and bed) increased proportionally with the square root of the lower layer’s 

hydraulic conductivity. These results demonstrated the interplay of tides, marsh topography and 

soil stratigraphy in controlling the pore-water flow characteristics, which underpin solute 

transport and transformation as well as the aeration condition in the marsh soil. 

Keywords: Salt marsh; Soil stratigraphy; Coastal wetland; Surface water and groundwater 

interaction; Tide 
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Highlights: 

 We examine pore-water flow in a two-layer (mud and sandy-loam) marsh. 

 Flow in the two-layer marsh differs dramatically from that in a homogeneous marsh. 

 The underlying sandy-loam layer modifies significantly the pore-water circulation. 

 We examine effects of soil compressibility, capillarity and hydraulic conductivity. 

 

1. Introduction 

Coastal wetlands such as salt marshes have been increasingly recognized as an important 

and yet vulnerable ecosystem at the land-ocean interface, subjected to the threat of accelerating 

sea level rise due to global climate change (Fitzgerald et al., 2008). Better understanding of the 

complex wetland hydrology and hydrodynamics is needed to explore the wetlands’ ecological 

functions (e.g., biodiversity support, water quality improvement and carbon cycling) and to 

predict their responses to climate change (Zedler and Kercher, 2005). The linkage between the 

hydrological and ecological processes has been the theme of many recent studies on salt marshes 

and other wetland systems (Cola et al., 2008; Li et al., 2005; Marani et al., 2006; Marani et al., 

2007; Marani et al., 2010; Moffett et al., 2010; Moffett et al., 2012; Silvestri et al., 2005; Ursino 

et al., 2004; Wilson and Gardner, 2006; Xin et al., 2009; Xin et al., 2010; Xin et al., 2011). In 

particular, subsurface flow processes have been widely linked to two important hypotheses about 

salt marsh ecosystems: nutrient outwelling (Teal, 1962; Valiela and Teal, 1979) and plant 

zonation (Colmer and Flowers, 2008; Silvestri et al., 2005). 

Numerical studies have demonstrated significant tidal effects on pore-water flow in the 
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marsh soil (Fig. 1) (Wilson and Gardner, 2006; Xin et al., 2009; Xin et al., 2011). It has been 

shown that surface water infiltrates the soil through the marsh platform (i.e., the unchannelized 

marsh surface) when inundated by the rising tide while pore-water exfiltrates out of the marsh 

soil across the creek bank and bottom as the tide recedes. The intra-tidal groundwater dynamics 

exhibit significant flow asymmetry with non-zero mean flow velocities over the tidal period, 

leading to a circulating pore-water flow system near the creek. This local scale circulation 

provides a mechanism for more rapid solute exchange between the marsh soil and the 

hydraulically connected surface water, and ultimately affects the overall nutrient exchange 

between the marsh and coastal sea (Gardner, 2005; Wilson and Gardner, 2006; Xin et al., 2009; 

Xin et al., 2010; Xin et al., 2011). In conjunction with the pore-water circulation, the soil aeration 

condition is improved near the creek (Li et al., 2005; Ursino et al., 2004; Xin et al., 2009; Xin et 

al., 2010). For aeration-dependent marsh plants such as Spartina alterniflora (Colmer and 

Flowers, 2008; Mendelssohn et al., 1981), the near-creek circulation can thus affect positively 

plant root respiration and growth, resulting in a zone of enhanced vegetation near the creek 

(Howes et al., 1981; Howes and Goehringer, 1994; Mendelssohn et al., 1981). 

So far, modeling studies have been largely based on 2D (two-dimensional) vertical sections 

perpendicular to marsh creeks (Gardner, 2005; Li et al., 2005; Marani et al., 2006; Ursino et al., 

2004; Wilson and Gardner, 2006; Xin et al., 2009; Xin et al., 2010) that neglect the system’s 

spatial variability and flow in the along-creek direction. Exceptions are the recent studies of Xin 

et al. (2011) and Moffett et al. (2012). Xin et al. (2011) developed a 3D creek-marsh model and 

investigated tidally driven pore-water flow in the marsh soil, interacting with a creek embedded 
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in the marsh bordered by a tidal main channel (Fig. 1). They demonstrated strong 3D behavior of 

both intra-tidal pore-water flow and tidally averaged circulations, which are linked to the marsh 

topography over three key spatial scales: near the creek bank, around the creek meander and over 

long marsh sections inclined towards the main channel. Particle tracking revealed that time 

scales associated with the circulations at the three spatial scales differed by orders of magnitude. 

Two discharge zones linked to the creek and main channel, respectively, were identified (Xin et 

al., 2011). As shown in Fig. 2, these two discharge zones represent two different chemical 

pathways through the creek-marsh system. As the main channel is connected hydraulically to the 

adjacent coastal sea, it plays an important role not only for transmitting tidal signals, but also for 

chemical transport between the marsh and coastal sea. With respect to chemicals (nutrients) 

sourced from the marsh soil, circulating pore-water flows are directly responsible for generating 

fluxes of these chemicals across the marsh surface. Mass flux associated with drainage of 

pore-water at the main channel (Q1) represents a direct input to the channel. In contrast, mass 

flux driven by pore-water discharge to the creek (Q2) would be subjected to further transport and 

reactions (for reactive chemicals) within the creek surface water prior to entering the main 

channel (Q3). The mass fluxes at both the main channel and creek depend on the chemical 

concentrations at the outlet (C), which in turn vary with the paths and travel times (T) associated 

with the circulating pore-water flows. The efflux via the creek to the main channel would be 

influenced further by the transport pathways and travel times of chemicals in the creek surface 

water. 

The study by Xin et al. (2011) was based on a marsh model composed of homogeneous 
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sandy-loam. In reality, most marshes possess soil stratigraphy: commonly, low-permeability mud 

and/or silt loam are found to overlie sands or sandy-loam deposits in these wetlands (Fig. 1) 

(Carol et al., 2011; Dolphin et al., 1995; Gardner and Porter, 2001; Harvey et al., 1987; Hughes 

et al., 1998; Perillo et al., 2005; Xin et al., 2009). Based on 2D models of vertical cross-creek 

sections, Gardner (2007), Xin et al. (2009) and Wilson and Morris (2012) simulated pore-water 

flow in two-layer marsh soils as discussed above. These studies showed that the total seepage 

flux from the two-layer marsh soil to the creek is larger than that from a homogeneous mud 

marsh. The underlying sandy-loam layer enhances the pore-water circulation through the marsh. 

These studies also suggest that the presence of the sandy-loam layer lowers the groundwater 

table in the upper mud layer and hence improves local soil aeration conditions. 

Although Gardner (2007), Xin et al. (2009) and Wilson and Morris (2012) have 

demonstrated significant effects of soil stratigraphy on pore-water flow within 2D cross-creek 

sections, how soil stratigraphy modulates the pore-water circulation in a realistic, 3D marsh 

system remains an important question. This paper aims to address this question by examining the 

combined effects of marsh topography and soil stratigraphy on pore-water flow in a synthetic 3D 

marsh. The model of Yuan et al. (2011) was used to simulate coupled surface water and 

groundwater flow within the modeled marsh system. To account for the effect of varying total 

stress during inundation of the marsh platform, the SUTRA (Voss and Provost, 2008) code for 

groundwater flow modeling was modified by incorporating a tidal loading term into the 

governing Richards equation (Reeves et al., 2000). Particle tracking was used to elucidate the 

simulated flow characteristics, in particular, pore-water circulation paths related to the tidally 
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averaged flow and associated travel times. Sensitivity analysis was conducted to examine the 

effects of soil stratigraphy with different hydraulic conductivity contrasts between the two (upper 

and lower) soil layers, and with different soil compressibility and capillary rise. 

2. Conceptual and mathematical models 

2.1. Physical conditions 

The topography of the modeled marsh was similar to that of the base case in Xin et al. 

(2011). The creek-marsh system, capturing features of typical upper sections of tidal flats (Allen, 

2000; Novakowski et al., 2004; Torres and Styles, 2007), was characterized by topographic (slope) 

changes over three different scales: (1) large slopes at the creek and main channel bank (0.2 and 

0.1, respectively), (2) marsh surface elevation changes associated with the creek meander (with a 

maximum channel curvature of 
2
/500 m

-1
), and (3) a small uniform inclination angle (slope of 

0.005) over the whole marsh platform (Fig. 1; see Xin et al. (2011) for further details). 

The marsh domain was divided into two layers: an upper low-permeability mud layer and a 

lower high-permeability sandy-loam layer. In real marshes, the interface between the two soil 

layers is likely to vary spatially and temporally (Hughes et al., 1998; Xin et al., 2009). For the 

purpose of simplicity, we set the interface between the two soil layers locally at a depth (from the 

marsh platform) equivalent to 10% of the sediment thickness (Fig. 1). This depth is essentially 

the thickness of the upper mud layer. As the elevation of the marsh platform and hence the 

sediment thickness in the model increased from 6 (seaward marsh edge) to 7.25 m (marsh upper 

end), this interface varies in depth from 0.6 to 0.725 m. This stratigraphy is consistent with field 
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observations (Hughes et al., 1998; Xin et al., 2009). 

A single-constituent, sinusoidal tide was specified at the main channel boundary (Fig. 1) to 

drive surface water and groundwater flow in the model, i.e., 

 MSL( ) cos( )h t Z A t  , (1) 

where ( )h t  is the specified tidal water level [L] at time t  [T]; MSLZ  is the mean sea level [L] 

(set to 6.3 m); and A  and   are the tidal amplitude [L] (set to 1 m) and angular frequency 

[T
-1

] (set to 6  rad/h; semi-diurnal solar tide), respectively. 

2.2. Mathematical model 

As mentioned above, a coupled model based on ELCIRC for surface water flow (Zhang et 

al., 2004) and SUTRA for pore-water flow (Voss and Provost, 2008) was employed to simulate 

the interactions between surface water and groundwater in the modeled creek-marsh system 

driven by the tide. The details of the coupling approach and model validation can be found in 

Yuan et al. (2011). SUTRA was modified with a tidal loading term added to the governing 

Richards’ equation (RE) for the variably saturated pore-water flow in the marsh soil to account 

for the effects of varying total stress (Gardner and Wilson, 2006; Reeves et al., 2000). 

The original form of RE used in SUTRA is (Voss and Provost, 2008), 

 
  V

( )W
W S

S
S S K Q

t t

 
 

 
      

 with 
P

z
g




  , (2) 

where  K   is the hydraulic conductivity [LT
-1

], depending on the capillary pressure head,   

[L]; WS  is the soil water saturation [-];   is the soil porosity [-];   is the hydraulic head [L]; 

P  is the pore-water pressure [ML
-1

T
-2

], =  for the unsaturated zone; VQ  is the source/sink 
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term [T
-1

]; g  is the magnitude of the gravitational acceleration [LT
-2

];   is the fluid density 

[ML
-3

]; and SS  is the specific storativity [L
-1

]. In SUTRA, the specific storativity is (Bear, 

1979), 

 
 1SS g       

, 
(3)

 

where   [M
-1

LT
2
] and   [M

-1
LT

2
] are, respectively, the compressibility coefficients for soil 

matrix and water. The storativity term in Eq. (2) accounts for the storage change due to the 

compressibility of soil matrix and water, assuming constant total stress on the soil skeleton (Voss 

and Provost, 2008). When the marsh is flooded at high tide, fluctuations of pore-water pressure 

with varying overlying water depth would lead to changes of effective stress under the 

assumption of constant total stress, generating an artificial pressure wave through the elastic soil. 

Consequently, an artificial flux would occur at the boundary flooded (Gardner and Wilson, 

2006). Physically, the total stress on the soil skeleton is not constant during the flooding but 

varies in the same way as the pore-water pressure, thus giving approximately an invariant 

effective stress (i.e., no expansion or contraction of soil matrix). To account for the total stress 

variation and remove the artificial flux, a tidal loading term needs to be incorporated into RE 

(Gardner and Wilson, 2006; Reeves et al., 2000; Wilson and Morris, 2012; Yuan et al., 2011), 

 
    T

V

( )
1W

W S W

S
S S K S Q

t t t

 
   

 
         

, (4) 

where T  is the total stress [ML
-1

T
-2

] and T t g D t       with D  being the local 

surface water depth, i.e., local surface water level – local marsh surface elevation [L]. If the 

calculated D  is less than zero, the local marsh surface is exposed (i.e., under a constant total 
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stress) and then the tidal loading term is no longer needed (i.e.,
T 0t   ). Following the 

approach of Reeves et al. (2000), the tidal loading term was incorporated into SUTRA (Voss and 

Provost, 2008) as a source or sink. Note that SUTRA models mass flux and thus volumetric flux 

needs to be multiplied by the fluid density (  [ML
-3

]) in computing the source/sink. For each 

node (indicated here by a superscript i ) vertically beneath the overlying surface water, a mass 

flux ( MQ ) related to the tidal loading was incorporated as follows, 

    T
M

( )
1 1

i i
i i i i i

W W

gD
Q V S V S

t t

 
   

 
   

  , (5) 

where iV  [L
3
] is the control volume related to node i . Following Reeves et al. (2000), we 

tested the modified code by considering a simple “piston and spring” problem (i.e., 

compressibility-induced flow in a saturated soil column subjected to a sinusoidal tide). The 

predicted flux across the boundary was found to agree well with the analytical solution given in 

Reeves et al. (2000) (results not shown), confirming that the modification to the SUTRA code 

was appropriate. 

It should be noted that both the surface water and groundwater flow models are capable of 

simulating solute transport and its coupling with the flow, i.e., flow influenced by density 

gradients due to variations of solute concentrations. In coastal marshes, salt concentrations in 

surface water and pore-water tend to vary spatially and temporally, leading to density gradients 

that may affect the pore-water flow. While the model could simulate such effect, we chose to 

neglect it by assuming a constant water density, as done in previous numerical studies (Ursino et 

al., 2004; Wilson and Gardner, 2006; Xin et al., 2009; Xin et al., 2010), in order to focus on 
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marsh topography and soil stratigraphy in the first instance. 

2.3. Parameters values used in the simulations 

Silt loam (mud) and sandy-loam, two typical soil types commonly encountered in salt 

marshes, were used as the simulated marsh soils (Simonini and Cola, 2002). The soil in each 

layer was assumed to be homogeneous and isotropic. According to Wang et al. (1997), the 

saturated hydraulic conductivities of upper (mud) and lower (sandy-loam) soil layers were set to 

1.25 × 10
-6 

m/s and 1.23 × 10
-5 

m/s, respectively. The corresponding porosities were 0.45 (upper) 

and 0.41 (lower). For the upper soil layer, the residual water saturation, WresS , was set to be 0.15, 

and the van Genuchten (1980) water retention parameters (for calculating the soil water 

saturation and hydraulic conductivity based on local capillary pressure; see details in Yuan et al. 

(2011)), v  and n , to 2 m
-1

 and 1.41, respectively, according to the data for the soil type given 

by Carsel and Parrish (1988) (Case 1 in Table 1). The lower soil layer was expected to be (near-) 

saturated over the tidal period. Therefore, the parameter values used for the unsaturated flow 

simulation did not affect the flow in the lower layer. Compressibility of the soil matrix and water 

were, respectively, 10
-7 

Pa
-1 

and 4.47 × 10
-10 

Pa
-1

 (Freeze and Cherry, 1979). 

For comparison, a homogeneous marsh was also simulated (Case 3 in Table 1). For both the 

homogeneous and two-layer marshes, we also ran simulations with compressibility neglected 

(Cases 2 and 4 in Table 1), giving four base-case simulations. Simulations with different degrees 

of soil compressibility, capillary rise and hydraulic conductivity contrast between the two soil 

layers were also conducted to facilitate sensitivity analyses. 
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The initial and boundary conditions were the same as those used by Xin et al. (2011). 

Similar time step sizes were also used (a time step of 10 s was used in the groundwater model). 

The mesh used in Xin et al. (2011) was locally refined by a factor of 4 in the vertical direction 

(giving vertical element size around 0.05 m) for the upper layer. We checked, via mesh and 

time-step refinement, that converged results are presented below. 

3. Simulation results 

3.1. Temporal dynamics and spatial variations of pore-water flow 

The pore-water flow in the modeled two-layer marsh was generally 3D and varied with the 

tide, particularly in the areas near the creek and main channel. For both the layered and 

homogeneous marsh, simulated intra-tidal groundwater dynamics exhibited flow asymmetry with 

non-zero mean flow velocities over the tidal period. We focus here on the tidally averaged flow, 

which controlled the net water movement and solute exchange between the marsh soil and 

creek/main channel. 

To examine the effects of soil stratigraphy in detail, we selected two vertical sections: one 

across the creek and mid-way up from the main channel (at y = 100 m, Fig. 3), and the other 

perpendicular to the main channel and 10 m from the left boundary (at x = -40 m, Fig. 4). The 

tidally averaged flow was characterized by infiltration through the marsh platform, and drainage 

across the creek bank and bottom as well as the main channel bank (Figs. 3 and 4). This formed 

pore-water circulations near both the creek bank and the main channel bank, which is in 

agreement with results from previous 2D (Wilson and Gardner, 2006; Xin et al., 2009) and 3D 
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(Xin et al., 2011) modeling work. 

In the homogeneous marsh, pore-water flow developed mainly within 10 m of the creek (Fig. 

3a). The flow weakened with increasing distance from the creek, consistent with the attenuation 

of associated tidal groundwater waves. With the presence of the lower sandy-loam layer, the flow 

in the marsh soil was enhanced. Relatively strong pore-water flow developed further than 10 m 

away from the creek, within not only the lower sandy-loam layer but also the upper mud layer, 

where increased downward drainage was clearly evident (Fig. 3b). This effect can be seen more 

clearly in Fig. 5 where flow velocities are plotted for two observation points: one in the upper 

layer away from the creek and another in the lower layer under the creek bank. In the upper layer, 

the magnitude of the local flow increased with the presence of the underlying sandy-loam layer, 

particularly the velocity in the vertical direction (Fig. 5). At the corresponding observation point 

in the homogeneous mud marsh, the cross-channel flow velocity (vy) had a larger magnitude than 

that of the cross-creek (vx) and vertical flow velocities (vz) during the exposure of the local marsh 

surface. In contrast, the flow at this location in the layered marsh was predominantly vertical 

(downward), indicating drainage of pore-water from the upper to the lower layer. The flow in the 

lower layer was also intensified even though it was mainly horizontal, as in the homogeneous 

marsh. This indicated that a significant amount of pore-water drained from the upper layer was 

discharged into the creek and main channel through the underlying conductive soil, where the 

flow was active, particularly in the cross-creek direction (vx, Fig. 5e). The mechanism of 

preferential flow through the lower layer was suggested by Gardner (2007), Xin et al. (2009) and 

Wilson and Morris (2012), and was thought to influence the overall interaction between surface 
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water and groundwater (results given in §3.3). 

For the base cases, the compressibility of the soil matrix and water did not appear to affect 

the flow dynamics to any extent. The flow fields simulated with and without compressibility 

largely overlapped (Figs. 3 and 4). The effects of compressibility are further examined in §4.1. 

3.2. Particle traces and associated travel times 

Based on the tidally averaged pore-water flow, we examined the traces and travel times of 

passive particles moving through the marsh soil. The trace tracks the particle’s movement in the 

marsh sediment from the release point (at a selected location on the marsh surface) to the exit 

while the travel time measures the duration of the movement (Robinson et al., 2007; Zimmerman, 

1976). Particles were released uniformly across the marsh surface to the surface soil layer at a 

depth of 0.1 m. Thus, the results represent the behavior of both “skin circulation” near the 

sediment surface and “body circulation” that occurred underneath the surface layer as proposed 

by Billerbeck et al. (2006). 

For both the homogeneous mud marsh (Case 3) and the two-layer marsh (Case 1), the 

particle travel paths displayed 3D pore-water flow patterns linked strongly to the marsh 

topography, over a range of spatial scales: near the creek bank, around the creek meander and 

over long marsh sections inclined towards the main channel (Fig. 6). The effects of soil 

stratigraphy on the flow were manifested with significant modifications of the particle travel 

paths (Figs. 6 and 7). In particular, the exit locations of the paths changed (1) from a downstream 

creek section to an upstream section (particle A), (2) from the creek to the main channel and vice 
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versa (particles B and C), and (3) from the marsh surface to the main channel (particle D). 

Associated with the changes of the exit locations were large variations of the actual pathways 

and particle travel times; however, these variations were mixed with both lengthening and 

shortening effects taking place in different areas (Figs. 6 and 7). 

Overall the particle travel time exhibited large spatial variations by orders of magnitude, 

with small travel time occurred near the creek in both the homogeneous mud marsh (Case 3) and 

the two-layer marsh (Case 1) (Figs. 7c and 7d). Due to the high hydraulic conductivity of the 

lower sandy-loam, the particle travel time in the two-layer marsh was significantly shorter on 

average. The patterns of the spatial travel time variations were largely similar in both cases, 

dominated by the influence of the meandering creek. However, major differences existed in two 

areas. In the upper inner marsh area near the top right corner and the lower inner marsh area near 

the low left corner (Fig. 7b), particles took relatively short travel paths in the homogeneous mud 

marsh. As shown in Fig. 6, these particles traveled initially a distance towards the main channel, 

but quickly moved upward and out across the sediment surface, undergoing only a relatively 

short (in time and distance) “skin circulation”. Billerbeck et al. (2006) suggested that “skin 

circulation” near the sediment surface is induced mainly by local topographic variations, at 

relatively small scales. However, such a circulation in our modeled marsh with a plane platform 

was instead induced by the seepage face flow, which occurred across the sediment surface during 

the falling tide (Xin et al., 2011). This “skin circulation” vanished in the two-layer marsh system. 

Due to the presence of an underlying conductive layer, the vertical flow in the mud layer was 

significantly enhanced, resulting in particles taking deeper and longer travel paths to exit from 
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the main channel bank (Fig. 6) after relatively long travel times. 

To examine further the effect of soil stratigraphy, the distributions of particle travel times 

were calculated (Fig. 8). Travel times were considered separately for the “upper” and “lower” 

layer sections, and the whole marsh system in both the homogeneous and two-layer marsh cases. 

Due to the relatively high conductivity of the lower sandy-loam layer, the majority of particles 

(70%) moved through both layer sections. Overall, movement was approximately ten times faster 

in the two-layer marsh than in the homogeneous mud marsh. The difference made by the 

simulated soil stratigraphy showed a consistent effect but was less profound for fast moving 

particles (about 30%) initially released near the creek and main channel. Ninety-one percent of 

the released particles were found to have travelled through the layered marsh sediment within 

10
4
 days, in comparison with only 44% of the particles moving through the homogeneous mud 

marsh over the same period (Fig. 8). In the “upper layer” section, the particle travel times in the 

two-layer marsh were reduced significantly from those in the homogeneous mud marsh, 

especially for slowly moving particles associated with areas away from the creek and main 

channel (Fig. 8). Overall, particles in the two-layer marsh system spent most time in the lower 

layer. In contrast, it took particles much longer to travel through the “upper layer” section in the 

homogeneous marsh, comparable with the travel time in the “lower layer” section. For particles 

undergoing the “skin circulation” (13%), the “lower layer” section was bypassed. 

The above particle tracking results illustrated not only the pore-water flow patterns but also 

provided information about the extent of contact between pore water/solute and soil grains in 

different “layer” sections, both affected significantly by the soil stratigraphy. Here we investigate 
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the case where the two (mud and sandy-loam) layers possess different chemical characteristics. 

The particle tracking results suggest that in the two-layer marsh, solutes move more quickly into 

the lower sandy-loam layer, interacting less with perhaps the more reactive soil in the upper mud 

layer. This may affect considerably the fate of solutes transported through the marsh soil. In 

summary, while the presence of the sandy-loam layer enhanced the exchange in terms of water 

flux between the marsh soil and tidal water, solutes in the pore-water might be less modified by 

reactions with marsh soils before discharging into coastal water.  

3.3. Fluxes across the surface water and groundwater interface 

The presence of the lower sandy-loam layer with a relatively high hydraulic conductivity 

was shown above to enhance the tide-induced flow in the marsh soil, especially in the upper mud 

layer where the vertical infiltration was increased. Based on the simulated flow, the net flux 

across the marsh surface was calculated along the transect y = 100 m as shown in Fig. 3. The 

results showed influx through the marsh surface accompanied by efflux across the creek bank 

and bed in both the homogeneous and the two-layer marshes (Fig. 9). However, the magnitudes 

of influx and efflux both increased in the two-layer marsh as a consequence of the enhanced flow. 

While the changes of local efflux across the creek seemed to be proportional (linear) with the 

increase of the flux magnitude at the creek bed, the difference in the influx between the two 

marsh systems appeared to be more distinctive. In the homogenous marsh, the influx 

concentrated in the near-creek area as indicated by the local concave flux variation. In contrast, 

significant influx occurred more over a larger area in the two-layer marsh (with a linear flux 



 

 18 

variation). This effect was demonstrated by the difference between the two systems in the area 

(from the creek) where 80% of the total influx occurred, which increased from 32 m
3
/m

2
 in the 

homogeneous marsh to 60 m
3
/m

2
 the two-layer marsh (Fig. 9). 

For both marsh types, temporal variations of the total water flux across the interface over the 

whole marsh area were similar to that of the base case in Xin et al. (2011), except for the flux 

magnitude (Fig. 10). Drainage (efflux) occurred during the exposure period while the surface 

water recharged (influx) the soil mainly during the submergence. With the presence of the lower 

sandy-loam layer, the total exchange between surface water and groundwater increased by three 

times (14.12 m
3
 per tidal cycle in the two-layer marsh compared with 4.67 m

3
 per tidal cycle in 

the homogeneous marsh; Table 1). 

As shown earlier, pore-water undergoing tide-induced circulation in the marsh mainly exited 

at the meandering creek and main channel, resulting in net efflux over the tidal period (Table 1 

and Fig. 11). While the efflux magnitude changed case-by-case, the spatial variation of efflux 

along the creek or main channel did not exhibit any characteristic difference. The local net efflux, 

influenced slightly by the creek channel curvature, varied along the creek and produced a total 

discharge nearly proportional to the creek length. The net efflux to the creek dominated the total 

net efflux (by comparison with that to the main channel), suggesting a key role played by the 

near-creek circulation. However, as the lower soil layer changed from mud to sandy-loam, the 

ratio of net efflux to the creek to that to the main channel decreased from 9.1 to 4.9. In other 

words, the presence of the sandy-loam increased the influence of the main channel in draining 

the marsh soil. The total net efflux increased from 3.74 m
3
 in Case 3 to 11.59 m

3 
in Case 1, by a 
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factor of 3.09, which is consistent with the relative change of square root of lower soil layer’s 

hydraulic conductivity, lowerK  (i.e., 
-5 -61.23 10 1.25 10   = 3.16). Further analyses and 

discussion on the net efflux are given in §4.3. 

4. Sensitivity analyses and discussion 

 Focusing on the net efflux to the creek and main channel over the tidal period, we conducted 

sensitivity studies to assess the importance of soil compressibility, capillary rise and hydraulic 

conductivity contrast between the two soil (mud and sandy-loam) layers. 

4.1. Importance of soil matrix compressibility 

The water compressibility (~4.47 × 10
-10

 Pa
-1

) is much less than that of the soil matrix and 

hence does not affect significantly the pore-water flow. For both Cases 1 and 3, the relatively 

small soil compressibility (10
-7 

Pa
-1

) applied in the simulation did not influence much the net 

effluxes along the creek and main channel (Fig. 12a), compared with the results from the 

simulations assuming negligible soil compressibility. This minor effect was also evident in the 

results of the simulated (tidally averaged) flow field (Figs. 3 and 4) and fluxes across the surface 

water and groundwater interface (Figs. 9 and 10). Cases 1 and 3 with compressibility produced 

fluxes that were slightly higher than those without compressibility (Cases 2 and 4 listed in Table 

1). Furthermore, the peak of drainage was slightly lagged due to the influence of compressibility 

(Fig. 10). 

When the soil compressibility increased from 10
-7 

Pa
-1 

to 10
-6 

Pa
-1

, the model predicted a 

similar net efflux over the tidal period for the homogeneous mud marsh. However, the total net 
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efflux in the two-layer marsh system increased significantly from 11.59 m
3
 to 13.96 m

3 
(Fig. 

12a). Such a significant change, also evident in Fig. 9, was likely related to the two-layer soil 

configuration, particularly with a more conductive layer underneath. Generally, the variations of 

storage in an unconfined groundwater system are two-fold: volumetric change due to 

saturation/de-saturation processes and elastic storage/release due to the deformation of soil 

skeleton (i.e., soil compressibility). The former is largely affected by the groundwater table 

fluctuation while the latter acts as a source/sink term induced by the varying effective stress 

associated with pore-water pressure changes. For the homogeneous low-permeability mud marsh 

examined here, propagation of the tide-induced groundwater wave was limited in the soil (Li et 

al., 2000), leading to only a small amount of drainage over the tidal cycle. For this condition, the 

marsh interior was largely saturated, with total hydraulic head remaining close to the sediment 

surface during exposure. Although the local pore pressure during the overtopping varied in pace 

with the level of the overlaying surface water, the total stress also varied similarly to cancel out 

any changes in the effective stress. With a relatively steady effective stress condition, the soil 

compressibility generated negligible storage variations or flow in the marsh soil. In contrast, the 

presence of the underlying sandy-loam in the two-layer system led to enhanced groundwater 

wave propagation in the marsh soil, with increased ranges of pressure and effective stress 

fluctuations (Xin et al., 2009). Under such a condition, the soil compressibility, once it exceeded 

a certain level (e.g., 10
-6 

Pa
-1

), started to play a significant role in influencing the pore-water flow 

and associated flux. 

Natural marshes, composed of silt and silt-loam, tend to be highly compressible (Hemond 
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and Fifield, 1982). The results from this sensitivity analysis suggest that soil compressibility 

needs to be considered properly in modeling the behavior of these wetland systems, particularly 

those with layered soil structures. Moreover, the model needs to incorporate the tidal loading 

term to account for the total stress variations during overtopping of the marsh platform (Gardner 

and Wilson, 2006; Reeves et al., 2000; Wilson and Morris, 2012). 

4.2. Importance of capillary rise 

The effects of capillary rise were also examined based on the two-layer marsh (in 

comparison with Case 1). As the lower soil layer was expected to be largely saturated, we 

focused on the capillary properties of the upper soil layer by varying parameter values for v , 

which is inversely proportional to the capillary rise height (Parlange and Brutsaert, 1987). The 

results show that the net efflux to the creek and main channel increased with v  (Fig. 12b). For 

this case, the marsh soil near the surface underwent increased drainage on the falling tide. The 

enhanced drainage in turn permitted more water to infiltrate the marsh during the overtopping on 

the subsequent tide, resulting in an increase in both net influx and efflux. This effect 

demonstrated further the important role of the unsaturated flow in affecting the marsh soil 

condition, being directly responsible for recharge and drainage of the shallow groundwater in the 

marsh soil (Xin et al., 2011). 

As capillary rise increases, an extensive, largely saturated capillary fringe exists above the 

groundwater table. Then, water rather than air occupies most of the pore space in the upper soil 

layer where plant roots are distributed. This reduces soil aeration and adversely affects plant 
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growth in the salt marsh (Colmer and Flowers, 2008). 

4.3. Importance of hydraulic conductivity 

 Simulations were also conducted for marshes of the same layer configuration but with 

varying hydraulic conductivity contrasts between the soil layers (Klower/Kupper) via increasing 

Klower. As the contrast increased, the net efflux to both the creek and main channel increased 

significantly (Fig. 12c). This result is consistent with the findings of Gardner (2007) and Xin et 

al. (2009), both based on 2D marsh systems. 

The total net efflux was linearly correlated (R
2
 = 0.99) with lowerK  (Fig. 13). This 

correlation is consistent with the theory of groundwater wave propagation in an aquifer (e.g., 

Barry et al., 1996; Bear, 1979; Jeng et al., 2005; Li et al., 2000; Parlange et al., 1984; Teo et al., 

2003), which predicts a square-root relationship between the characteristic wave length () and 

aquifer hydraulic conductivity (Ks), i.e., 
SK  . The wave theory also predicts that the 

magnitude of the hydraulic gradient associated with the groundwater wave is inversely related to 

the wave length (1/). This, upon the application of Darcy’s law, leads to a relationship of flux 

proportional to the square root of Ks. For the modeled marsh system, the lower soil layer behaved 

like a semi-confined aquifer bounded by a low-permeability soil layer on the top. The 

groundwater wave propagated more extensively in the lower layer, which in turn affected the 

flow and flux in the upper layer and the whole marsh system. Based on the groundwater wave 

theory described above, it is expected that the net efflux from the marsh soil over the tidal period 

would depend on lowerK . 
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For the cases simulated, a larger efflux rate occurred at the creek bank with a relatively steep 

slope than at the mildly sloping main channel bank. As discussed earlier in relation to the results 

of Fig. 11, the presence of the lower high-permeability layer reduced the influence of the creek 

relative to the main channel. This effect was manifested further here with a trend of decreasing 

ratio of net efflux to the creek to that to the main channel as the hydraulic conductivity of the 

lower soil layer increased (Fig. 13). 

5. Conclusions 

Soil stratigraphy with a low-permeability mud layer overlying a high-permeability 

sandy-loam layer is a common feature of many natural salt marshes. We have examined 

numerically the effects of such soil stratigraphy on pore-water flow in a 3D creek-marsh system. 

The results highlighted strong 3D flow characteristics linked to the marsh topography, similar to 

those in a homogeneous marsh. However, the presence of the lower sandy-loam layer with a 

relatively high hydraulic conductivity not only increased significantly the magnitude of the 

pore-water flow velocity but also changed the flow direction, particularly in the upper mud layer 

where enhanced vertical flow dominated. In contrast, the comparison simulation based on a 

homogeneous marsh showed that for marshes composed of low-permeability soil without an 

underlying highly conductive layer, the tide-induced drainage is relatively weak. Under such a 

condition, the marsh system may become more like an upland wetland, affected largely by 

rainfall and evapotranspiration (Marani et al., 2006).  

The pore-water flow characteristics revealed in this study have the following implications 
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for future investigations of marsh eco-hydrology: 

(1) Soil stratigraphy is an important factor in determining pore-water flow, and solute 

transport and transformation in the marsh soil. The presence of an underlying sandy-loam layer 

modifies water fluxes across the marsh surface, which in turn may affect the total solute 

exchange between the marsh and coastal water. Since the vertical flow increased significantly in 

the upper layer, solutes move more quickly into the lower sandy-loam layer as indicated by the 

particle tracking results. This suggests that the solutes may interact less with the possibly more 

reactive soil in the upper mud layer, which would affect the fate of solutes in the soil and fluxes 

across the marsh surface. 

(2) The presence of the underlying sandy-loam layer enhances the drainage of the marsh 

soil, especially the upper layer, during the falling tide. This is likely to lead to a reduction of 

local soil water saturation and hence improved aeration of the top soil layer, favoring plant 

growth. 

(3) Soil compressibility, when combined with soil stratigraphy, is also an important factor 

which should be accounted for in quantifying pore-water flow in the marsh soil. With increased 

pore-water pressure fluctuations due to the soil stratigraphy, elastic storage/release associated 

with soil compressibility becomes an important part of the local water budget in the soil and 

hence affects considerably the pore-water flow. 

It should be pointed out that burrows produced by invertebrates (e.g., crabs) are also 

commonly found in salt marshes. These macro-pores, together with the two-layer marsh 

configuration, present even more complex soil heterogeneity. The burrows can penetrate through 
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the upper soil layer and provide preferential flow paths to the lower conductive layer (Xin et al., 

2009). In essence, the lower sand-loam layer also acted as a preferential flow path in the modeled 

marsh considered here. How this large scale preferential flow path interacts with others at local 

scales to affect the pore-water flow and solute transport in the soil within the whole marsh 

system remains an open question. 

There are other aspects of the system’s complexity that have not been considered in this 

study. In real salt marshes, the interface between the two soil layers (silt loam and sandy loam) is 

likely to vary spatially and temporally. The salinity in the surface water and pore-water may vary 

spatially and temporally due to, for example, influence of rainfall and evapotranspiration (Cao et 

al., 2012). This would lead to density-dependent flow in both surface water and pore-water. 

Natural marsh soils can be hydraulically anisotropic, which would affect the pore-water flow 

pattern as found in a lake-groundwater system (Pfannkuch and Winter, 1984; Winter and 

Pfannkuch, 1984). All these factors, reflecting the complexity of the marsh system, present 

directions for future research to improve fundamental understanding of eco-hydrological 

processes underlying the behavior of marsh eco-systems. The present study provides a starting 

point for such research. 
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Table 1. Summary of simulation cases and net flux results 
a 

Scenario 

Hydraulic conductivity 

(m s
-1

) 

Porosity 

 

Compressibility 

(Pa
-1

) 
WresS  

 

v  

(m
-1

) 

n  

 

Qcr 

(m
3
) 

Qmc 

(m
3
) 

QT 

(m
3
) 

Upper layer Lower layer Upper layer Lower layer Soil matrix Water 

Case 1 1.25 × 10
-6

 1.23 × 10
-5

 0.45 0.41 10
-7

 4.47 × 10
-10

 0.15 2 1.41 9.63 1.96  11.59 

Case 2 1.25 × 10
-6

 1.23 × 10
-5

 0.45 0.41 0 0 0.15 2 1.41 9.11 1.84 10.95 

Case 3 1.25 × 10
-6

 1.25 × 10
-6

 0.45 0.45 110
-7

 4.47 × 10
-10

 0.15 2 1.41 3.37 0.37 3.74 

Case 4 1.25 × 10
-6

 1.25 × 10
-6

 0.45 0.45 0 0 0.15 2 1.41 3.18 0.35 3.53 

a
 For the upper and lower soil layers, the same parameter values were used for the compressibility and soil water retention curve. 

Qcr: total net efflux to the creek over the tidal period; Qmc: total net efflux to the main channel over the tidal period; QT: total net efflux 

across the whole marsh system over the tidal period.
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Figure captions 

 

Fig. 1. Diagram of the modeled creek-marsh system including major flow processes: (1) 

near-creek circulation, (2) meander-modulated circulation and (3) near-channel 

circulation (after Xin et al. (2011)). The contours show the marsh surface elevation. 

The scale of the z axis is exaggerated by a factor of 8. The layered soil stratigraphy is 

also illustrated. 

Fig. 2. Schematic diagram of a conceptual model for overall exchange between a creek-marsh 

system and adjacent main channel. The dashed frame represents the creek-marsh 

system. The dotted lines indicate factors that were neglected in the present study. 

Fig. 3. Flow field based on the phase-averaged result. Both figures show 2D flow on a 

cross-section parallel to the main channel (y = 100 m). (a) is for the homogeneous 

marsh (Cases 3 and 4) and (b) is for the two-layer marsh (Cases 1 and 2). The black 

vectors are for the case without compressibility (Cases 2 and 4) and the red vectors are 

for the case with compressibility (Cases 1 and 3). Note that the flow fields with and 

without compressibility largely overlap. The blue line in (b) indicates the interface 

between the two layers. 

Fig. 4. Phase-averaged flow fields. Both figures show the 2D flow on a cross-section 

perpendicular to the main channel (x = -40 m). (a) is for the homogeneous marsh 

(Cases 3 and 4) and (b) is for the two-layer marsh (Cases 1 and 2). The black vectors 

are for the case without compressibility (Cases 2 and 4) and the red vectors are for the 
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case with compressibility (Cases 1 and 3). Note that the flow fields with and without 

compressibility largely overlap. The blue line in (b) indicates the interface between the 

two layers. 

Fig. 5. (a) Tidal water level fluctuation relative to the local marsh platform elevation (6.5 m) at y 

= 100 m. (b) and (c), pore-water flow velocity over a tidal period at x = 15.74 m, y = 

100 m and z = 6.26 m (in the upper soil layer): (b) is for the homogeneous marsh (Case 

3) and (c) is for the two-layer marsh (Case 1). (d) and (e), Pore-water flow velocity 

over a tidal period at x = 4.02 m, y = 100 m and z = 5.48 m (under the creek bank): (d) 

is for the homogeneous marsh (Case 3) and (e) is for the two-layer marsh (Case 1). 

Between the two vertical lines is the period during the marsh platform exposure. 

Fig. 6. 3D particle traces through the marsh soil. The red lines are for the layered marsh (Case 1) 

and the blue lines are for the homogeneous marsh (Case 3). Details related to the 

particle movement are given in the table. The initial locations of the observation 

particles are also plotted in Figure 7. 

Fig. 7. (a) and (c) show traces of particles initially released uniformly on the sediment surface 

(0.1 m soil depth). (b) and (d) show particle travel times. (a) and (b) are for the 

homogeneous marsh (Case 3) and (c) and (d) are for the two-layer marsh (Case 1). The 

color bars in (a) and (c) show the sediment surface elevation, and color bars in (b) and 

(d) show the travel time in Log (days). The initial locations of the four observation 

particles in Figure 6 are also shown in (a) and (c). 

Fig. 8. Percentage of travel time greater than t. 
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Fig. 9. Tidally averaged local flux (per unit area) across the marsh surface. All results are for a 

cross-section parallel to the main channel (y = 100 m). The area between the two 

colored arrows is the area where 80% of the total influx occurred in each case. 

Fig. 10. (a) Temporal changes of the tidal water level relative to local marsh surface elevations at 

various locations. (b) Surface water and groundwater exchange rate (net flux). In (b), 

negative values are for outflow and positive values are for inflow. Between the two 

vertical lines is the period during the marsh platform exposure. 

Fig. 11. (a) Local net efflux (per unit area) across the interface of surface water and groundwater 

(in m
3
/m

2
/d). Variations of net efflux (b) along the creek and (c) along the main 

channel. 

Fig. 12. Sensitivity analysis on variations of net efflux along the creek (upper subplots) and 

along the main channel (lower subplots) for different (a) soil compressibility, (b) 

capillary rises and (c) hydraulic conductivities of the lower soil layer. 

Fig. 13. Net efflux to the creek and the main channel over the tidal period versus the hydraulic 

conductivity contrast (Klower/Kupper). 
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Fig. 2 
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