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Abstract In recent years, due to the proliferation of sensor netwadthsre has been a
genuine need of researching techniques for sensor datasiicouand manage-
ment. To this end, a large number of techniques have emehgedtvocate
model-basedsensor data acquisition and management. These technigaes u
mathematical models for performing various, day-to-daks$danvolved in man-
aging sensor data. In this chapter, we survey the statileséitt techniques for
model-based sensor data acquisition and management. Weé\siiscussing
the techniques for acquiring sensor data. We, then, digbesapplication of
models in sensor data cleaning; followed by a discussion atetrbased meth-



ods for querying sensor data. Lastly, we survey model-basstiods proposed
for data compression and synopsis generation.

Keywords:  model-based techniques, data acquisition, query proggssata cleaning, data
compression.

1. Introduction

In recent years, there has been tremendous growth in thegdatxated
by sensor networks. Equivalently, there are pertinentriiegcies proposed in
recent literature for efficiently acquiring and managingsse data. One im-
portant category of techniques that have received signifigdiention are the
model-based techniques. These techniques use mathdmatidels for solv-
ing various problems pertaining to sensor data acquistioth management.
In this chapter, we survey a large number of state-of-theradel-based tech-
nigues for sensor data acquisition and management. Madelebtechniques
use various types of models: statistical, signal procgssiegression-based,
machine learning, probabilistic, or time series. These efsderve various
purposes in sensor data acquisition and management.

It is well-known that many physical attributes, like, amiiieemperature or
relative humidity, vary smoothly. As a result of this smawths, sensor data
typically exhibits the following properties: (a) it is camizous (although we
only have a finite number of samples), (b) it has finite enengit © band-
limited, (c) it exhibits Markovian behavior or the value atime instant de-
pends only on the value at a previous time instant. Most mbdséd tech-
niques exploit these properties for efficiently performiagious tasks related
to sensor data acquisition and management.

In this chapter, we consider four broad categories of sedata manage-
ment tasks: data acquisition, data cleaning, query proggsand data com-
pression. These tasks are pictorially summarized in theekaymple shown
in Figure 1.1. From Figure 1.1, it is interesting to note howirgle type
of model (linear) can be used for performing these variosksta For each
task considered in this chapter, we extensively discussugrwell-researched
model-based solutions. Following is the detailed disarssih the sensor data
management tasks covered in this chapter:

m Data Acquisition: Sensor data acquisition is the task responsible for
efficiently acquiring samples from the sensors in a senswvark. The
primary objective of the sensor data acquisition task ist@iraenergy
efficiency. This objective is driven by the fact that mosts®s are
battery-powered and are located in inaccessible locafegs, environ-
mental monitoring sensors are sometimes located at highdas and
are surrounded by highly inaccessible terrains). In tlegdiure, there
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Figure 1.1: Various tasks performed by models-based techniques. (&)-to
prove acquisitional efficiency, a function is fitted to thestfithree sensor val-
ues, and the remaining values (shown dotted) are not adjsirece they are

within a threshold, (b) data is cleaned by identifying outliers after fitting a

linear model, (c) a query requesting the value at tifnean be answered us-
ing interpolation, (d) only the first and the last sensor gatan be stored as
compressed representation of the sensor values.

are two major types of acquisition approaches: pull-bagetl mush-
based. In the pull-based approach, data is only acquiredsstradefined
frequency of acquisition. On the other hand, in the pusledapproach,
the sensors and the base station agree on an expected bpbangbrs
only send data to the base station if the sensor values ddwigih such
expected behavior. In this chapter, we cover a represeatatillection
of model-based sensor data acquisition approaches [2,71216] 18,
27, 28, 41, 66].

s Data Cleaning: The data obtained from the sensors is often erroneous.

Erroneous sensor values are mainly generated due to tbeviod] rea-

sons: (@) intermittent loss of communication with the senfm sen-
sor’s battery is discharged, (c) other types of sensorrislufor exam-
ple, snow accumulation on the sensor, etc. Model-basedagipes for
data cleaning often use a model to infer the most probabksosemlue.

Then the raw sensor value is marked erroneous or outliee ifatv sen-
sor value deviates significantly from the inferred sensdwezaAnother
important approach for data cleaning is known as declaaata clean-
ing [32, 46, 54]. In this approach, the user registers S®&-tjueries
that define constraints over the sensor values. Sensorsvataenarked
as outliers when these constraints are violated. In additichese meth-
ods, we also discuss many other data cleaning approacheg3323,

21, 52, 65]

» Query Processing: Obtaining desired answers, by processing queries

is another important aspect in sensor data managementislohépter,



we discuss the most significant model-based techniquesutenygro-

cessing. One of the objectives of these techniques is tepsogueries
by accessing/generating minimal amount of data [64, 5]. &llbased
methods that access/generate minimal data, and also harssieg val-

ues in data, use models for creating an abstraction layartbeesen-
sor network [18, 33]. Other approaches model the sensoesdiy a
hidden Markov model (HMM), associating state variableshi ¢ensor
values. It, then, becomes efficient to process queries beestate vari-
ables, which are less in number as compared to the sensasvill

Furthermore, there are approaches that use dynamic plisbabnod-

els (DPMs) for modeling spatio-temporal evolution of thes® data
[33, 29]. In these approaches, the estimated DPMs are usepiéoy

processing.

s Data Compression: It is well-known that large quantity of sensor data
is being generated by every hour. Therefore, eliminatirdumeancy
by compressing sensor data for various purposes (likeagtorquery
processing, etc.) becomes one of the most challenging.tddkslel-
based sensor data compression proposes a large humbehmifjtexs,
mainly from the signal processing literature, for this tfsk72, 22, 53,
7]. Many approaches assume that the user provides an agdtwand,
and based on this bound the sensor data is approximatedtingsn
compressed representations of the data [24]. A large nuoitbether
techniques exploit the fact that sensor data is often aig@] thus, this
correlation can be used for approximating one data streamasmiother
[24, 67, 49, 3].

This chapter is organized as follows. In Section 2, we defiegteliminar-
ies that are assumed in the rest of the chapter, followed ligcassion of im-
portant techniques for sensor data acquisition. In Se@jore survey model-
based sensor data cleaning techniques, both on-line anidardvodel-based
guery processing techniques are discussed in Section 4ecitio8 5, model-
based compression techniques are surveyed. At the endprs6atontains a
summary of the chapter along with conclusions.

2. Model-Based Sensor Data Acquisition

In this section, we discuss various techniques for modséthasensor data
acquisition. Particularly, we discuss pull- and push-Hasensor data acquisi-

1We usemodel-base@ndmodel-driverinterchangeably.
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tion methods. In general, model-based sensor data a¢guitgchniques are
designed for tackling the following challenges:

Energy Consumption: Obtaining values from a sensor requires high amount
of energy. In contrast, since most sensors are batterysgolwthey have lim-
ited energy resources. Thus, a challenging task is to miairtiie number of
samples obtained from the sensors. Here, models are usedlémting sen-
sors, such that user queries can be answered with reasa@lecy using
the data acquired from the selected sensors [2, 17, 16, 27, 28

Communication Cost: Another energy-intensive task is to communicate the
sensed values to the base station. There are, therefoerakewodel-based
techniques proposed in the literature for reducing the comaoation cost, and
maintaining the accuracy of the sensed values [41, 18, §6, 12

Table 1.1:Summary of notations.
Symbol  Description

S Sensor network consisting of sensefswherej = (1,...,m).
Sj Sensor identifier for a sensor g
Vij Sensor value observed by the senspat timet¢;, such thaw;; € R.
V5 Row vector of all the sensor values observed at timeuch that; € R™.
Vij Random variable associated with the sensor vajye
2.1 Preliminaries

We start by describing our model of a sensor network and kstiaiy the
notation that is utilized in the rest of the chapter. The sengtwork consid-
ered in this chapter consists of a set of stationary seissergs;|1 < j < m}.
The value sensed by a sensgrat timet; is denoted as;;, which is a real
number. In addition, note that we usg wherej = (1,...,m), as sensor
identifiers. In certain cases the sampling interval coulclbigorm, that is,
ti+1 — t; is same for all the values @f> 1. In such cases, the time stamps
become irrelevant, and it is sufficient to use only the inflér denoting the
time axis.

In this chapter, we assume a scenario where the sensorseatéonenvi-
ronmental monitoring. We assume that all the sensors aréoniog/sensing
only one environmental attribute, such as, ambient tenllpxefaAs discussed
in Section 1, we assume that the environmental attribute weitor is suf-
ficiently smooth and continuous. If necessary for rendethmg discussion
complete and convenient, we will introduce other attrisubeing monitored
by the sensors. But, in most cases, we restrict ourselvesing only ambient

2We useambient temperaturandtemperatureéinterchangeably.
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1 101:00] 1 |34 |7.2[0.1
1 |01:00| 2 |52|85/|08
1 |01:00| 3 |7.1]22]02
2 |01:05| 1 |34 |7.2/|07
2 |01:05| 2 |52 (8509
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sensor_values

Figure 1.2: Database table containing the sensor values. The posititreo
sensors; is denoted asr;, y;). Since the sensors are assumed to be stationary,
the position can also be stored using a foreign-key relshignbetweers ; and
(x,y;). But, for simplicity, we assume that tis&nsor _val ues table is in

a denormalized form.

temperature. Figure 1.2 shows a conceptual representstibe sensor values
in a form of a database table, denotedasisor _val ues.

2.2 The Sensor Data Acquisition Query

Sensor data acquisition can be defined as the processesitigrand con-
tinuously maintaining theensor _val ues table. In existing literature, nat-
urally, many techniques have been proposed for creatingramntaining the
sensor _val ues table. We shall discuss these techniques briefly, desgribin
their important characteristics and differences with pteehniques. We use
the sensor data acquisition query shown in Query 1.1 foudisng how dif-
ferent sensor data acquisition approaches process su@na Query 1.1 is a
query that triggers the acquisition of ten sensor valyg$rom the sensors;
at a sampling interval of one second. Moreover, Query 1.theégypical sen-
sor data acquisition query that is used by many methods fgating sensor
data.

SELECT s;, vi; FROMsensor _val ues SAMPLE | NTERVAL 1s FCR 10s

Query 1.1:Sensor data acquisition query.

2.3 Pull-Based Data Acquisition

Broadly, there are two major approaches for data acquisitfull-based
and push-based (refer Figure 1.3). In the pull-based satetaracquisition
approach, the user defines the interval and frequency ofadgtasition. Pull-
based systems only follow the user’s requirements, andseulsor values as
defined by the queries. For example, using 3#/PLE | NTERVAL clause
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Figure 1.3: Push- and pull-based methods for sensor data acquisition.

of Query 1.1, users can specify the number of samples anddhaency at
which the samples should be acquired.

In-Network Data Acquisition. This approach of sensor data acqui-
sition is proposed by TinyDB [45, 44, 43], Cougar [69] and Aif68]. These
approaches tightly link query processing and sensor dapaisiton. Due to
the lack of space, we shall only discuss TinyDB in this sutigec

TinyDB refers to its in-network query processing paradiggdequisitional
Query ProcessingdACQP). Let us start by discussing how ACQP processes
Query 1.1. The result of Query 1.1 is similar to the table shawrigure 1.2.
The only difference, as compared to Figure 1.2, is that thelref Query 1.1
containsl0 x m rows. The naive method of executing Query 1.1 is to simul-
taneously poll each sensor for its value at the samplingvateand for the
duration specified by the query. This method may not work dukmited
range of radio communication between individual sensodsla@ base station.

Data Acquisition using Semantic Overlays: TinyDB proposes a tree-based
overlay that is constructed using the sensr3 his tree-based overlay is used
for aggregating the query results from the leaf nodes to ¢loé mode. The
overlay network is especially built for efficient data acjtion and query pro-
cessing. TinyDB refers to its tree-based overlay networ8amantic Routing
Trees(SRTs). A SRT is constructed by flooding the sensor netwoth ttie
SRT build requestThis request includes the attribute (ambient tempergture
over which the SRT should be constructed. Each sensawhich receives
the build request, has several choices for choosing itsypafa) if s; has no
children, which is equivalent to saying that no other sehssrchosen; as its
parent, thers; chooses another sensor as its parent and sends its curet va
v;; to the chosen parent ingarent selection messagar (b) if s; has children,

it sends a parent selection message to its parent indictiiengange of am-
bient temperature values that its children are coveringaddition, it locally
stores the ambient temperature values from its childremgabath their sensor
identifiers.



Next, when Query 1.1 is presented to the root node of the SRIrwards
the query to its children and prepares for receiving theltesiAt the same
time, the root node also starts processing the query lo¢adfer Figure 1.4).
The same procedure is followed by all the intermediate ssriadhe SRT. A
sensor that does not have any children, processes the quetfpravards the
value ofv;; to its parent. All the collected sensor valugs are finally for-
warded to the root node, and then to the user, as a result afuiigy. This
completes the processing of the sensor data acquisitialy (Qeery 1.1). The
SRT, moreover, can also be used for optimally processingeggtjon, thresh-
old, and event based queries. We shall return to this pdiet ila Section 4.1.

SELECT Si, Vij
FROM sensor values

Figure 1.4: Toy example of a Semantic Routing Tree (SRT) and Acquisdtion
Query Processing (ACQP) over a sensor network with five ssnsbotted
arrows indicate the direction of query response. A giversgeappends its
identifier s; and valuev;; to the partial result, which is available from its sub-
tree.

Multi-Dimensional Gaussian Distributions. The Barbie-Q
(BBQ) system [17, 16], on the other hand, employs multiateriGaussian
distributions for sensor data acquisition. BBQ maintaimsti-dimensional
Gaussian probability distribution over all the sensor§$inData is acquired
only as much as it is required to maintain such a distributfeansor data ac-
quisition queries specify certain confidence that they iregn the acquired
data. If the confidence requirement cannot be satisfied, theme data is
acquired from the sensors, and the Gaussian distributiarpdsated to sat-
isfy the confidence requirements. The BBQ system modelsehgos values
using a multi-variate Gaussian probability density fumet(pdf) denoted as
p(Vi1, Via, ..., Vim), WhereV;1, Vio, ..., Vi, are the random variables associ-
ated with the sensor values,, v, . .., v;;, respectively. This pdf assigns a
probability for each possible assignment of the sensoregaly. Now, let us
discuss how the BBQ system processes Query 1.1.
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In BBQ, the inferred sensor value of sensgr at each time;, is defined
as the mean value df;;, and is denoted as;;. For example, at timey, the
inferred sensor values of the ambient temperaturerarero, . . ., 01,. The
BBQ system assumes that queries, like Query 1.1, provideit@dional con-
straints: (i) error bound, for the valuesu;;, and (ii) the confidence — ¢
with which the error bound should be satisfied. Admittedhgse additional
constraints are for controlling the quality of the querypasse.

Suppose, we already have a pdf before the first time instandben the
confidence of the sensor valug; is defined as the probability of the random
variableVy; lying in betweenv;; — € andvy; + ¢, and is denoted aB(Vy; €
[01; — €, 715 + €]). If the confidence is greater than- ¢, then we can provide
a probably approximately correct value for the temperatwithout spending
energy in obtaining a sample from sensgr On the other hand, if a sensor’s
confidence is less thah — 9, then we should obtain one or more samples
from the sensor (or other correlated sensors), such thatahigdence bound
is satisfied. In fact, it is clear that there could be potdigtimany sensors for
which the confidence bound may not hold.

As a solution to this problem, the BBQ system proposes a proeeto
chose the sensors for obtaining sensor values, such thaptifielence bound
specified by the query is satisfied. First, the BBQ system &srippm all the
sensorsS at timet;, then it computes the confidend® (S) that it has in a
sensors; as follows:

B;(S) = P(Vi; € [v1 — €, 015 + €]|v1), (1.1)

wherev; = (v11,v19,...,v1m) IS the row vector of all the sensor values at
time t;. Second, for choosing sensors to sample, the BBQ systens pose
optimization problem of the following form:

i C(S,), 1.2
SOQSang%l(%o)Zl—é.( ) (1.2)

wheresS, is the subset of sensors that will be chosen for samp(itg,) and
B(S,) = @ Zj:s]-eso B;(S) are respectively the total cost (or energy re-
quired) and average confidence for sampling senSgrsSince the problem
in Eg. (1.2) is NP-hard, BBQ proposes a greedy solution teestilis prob-
lem. Details of this greedy algorithm can be found in [17]. &ecuting the
proposed greedy algorithm, BBQ selects the sensors forlsamthen it up-
dates the Gaussian distribution, and returns the means@alue o, . . . , U1,.
These mean values represent the inferred values of therseatsonet,. This
operation when performed ten times at an interval of onergkgenerates the
result of the sensor data acquisition query (Query 1.1).
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2.4 Push-Based Data Acquisition

Both, TinyDB and BBQ, are pull-based in nature: in theseesystthe cen-
tral server/base station decides when to acquire sensgrs/ibm the sensors.
On the other hand, in push-based approaches, the sensamsmaiusly decide
when to communicate sensor values to the base station Figige 1.3). Here,
the base station and the sensors agree on an expected beajfatie sensor
values, which is expressed as a model. If the sensor valwéstelérom their
expected behavior, then the sensors communicate only thateie values to
the base station.

PRESTO. The Prelictive Stadage (PRESTO) [41] system is an example
of the push-based data acquisition approach. One of the anginiments that
PRESTO makes against pull-based approaches is that due paoilthstrategy,
such approaches will be unable to observe any unusual oestiteg patterns
between any two pull requests. Moreover, increasing thefraquency for
better detection of such patterns, increases the overmilfgrconsumption of
the system.

The PRESTO system contains two main components: PREST@praxd
PRESTO sensors. As compared to the PRESTO sensors, the PRE®es
have higher computational capability and storage ressuréée task of the
proxies is to gather data from the PRESTO sensors and to agseres posed
by the user. The PRESTO sensors are assumed to be batteeyegoand
remotely located. Their task is to sense the data and tranistaiPRESTO
proxies, while archiving some of it locally on flash memory.

Now, let us discuss how PRESTO processes the sensor datsitoqu
query (Query 1.1). For answering such a query, the PRESTRga@lways
maintain a time-series prediction model. Specifically, BRE maintains a
seasonal ARIMA (SARIMA) model [60] of the following form fagach sen-
sor:

Vij = V(i—1)j + V(i-L)j — V(i—L-1); T 0ei-1 — Oe;_ +00¢;_1 1, (1.3)

wheref and © are parameters of the SARIMA model, are the prediction
errors andL is known as the seasonal period. For example, while mongori
temperaturel. could be set to one day, indicating that the current temperat
(vij) is related to the temperature yesterday at the same tipner(;) and a
previous time instantf;_z,_1);). In short, the seasonal periddallows us to
model the periodicity that is inherent in certain types dbada

In the PRESTO system the proxies estimate the parametehe aghodel
given in Eq. (1.3), and then transmit these parameters toidhudl PRESTO
sensors. The PRESTO sensors use these models to prediensoe galue; ;,
and only transmit the raw sensor valygto the proxies when the absolute dif-
ference between the predicted sensor value and the rawrsahse is greater
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than a user-defined threshaldThis task can be summarized as follows:
|’Uz‘j — ﬁ,‘j| > 9, transmitv,»j to proxy. (1.4)

The PRESTO proxy also provides a confidence interval for @aeticted
value it computes using the SARIMA model. Like BBQ (refer i@t 2.3.0),
this confidence interval can also be used for query proogssince it rep-
resents an error bound on the predicted sensor value. $itilBBQ, the
PRESTO proxy queries the PRESTO sensors only when the desindidence
interval, specified by the query, could not be satisfied Withvalues stored at
the PRESTO proxy. In most cases, the values stored at thg peoxbe used
for query processing, without acquiring any further valtresn the PRESTO
sensors. The only difference between PRESTO and BBQ is RRESTO
uses a different measure of confidence as compared to BB@eFuletails of
this confidence interval can be found in [41].

Ken. For reducing the communication cost, the Ken [12] framework
employs a similar strategy as PRESTO. Although there is alkégrence be-
tween Ken and PRESTO. PRESTO uses a SARIMA model; this madgl o
takes into account temporal correlations. On the other hided uses a dy-
namic probabilistic model that takes into account spatidl t@mporal correla-
tions in the data. Since a large quantity of sensor data ieleted spatially,
and not only temporally, Ken derives advantage from suctisgpamporal cor-
relation.

The Ken framework has two types of entitisszk andsource Their func-
tionalities and capabilities are similar to the PRESTO pramd the PRESTO
sensor respectively. The only difference is that the PRESdi@or only rep-
resents a single sensor, but a source could include moreoti®sensor or a
sensor network. The sink is the base station to which theoseatuesy;; are
communicated by the source (refer Figure 1.3).

The fundamental idea behind Ken is that both, source and sialntain
the same dynamic probabilistic model of data evolution. Jtwece only com-
municates with the sink when the raw sensor values devigtenidea certain
bound, as compared to the predictions from the dynamic pitiktac model.
In the meantime, the sink uses the sensor values predictdelmodel.

As discussed before, Ken uses a dynamic probabilistic ntbdélconsid-
ers spatio-temporal correlations. Particularly, its dyieaprobabilistic model
computes the following pdf at the source:

PViig1)1s - Viignym V15 -, 03) = /P(V(Z‘H)la s VigymIVits -5 Vim)

p(‘/;l, e ,‘/Z‘m|’l)1, e ,Ui)d‘/il e d‘/zm
(1.5)
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This pdf is computed using the observations that have besrmcmicated
to the sink; the values that are not communicated to the siakgamored by
the source, since they do not affect the model at the sink.t,de@ch sensor
contained in the source computes the expected sensor \&hgekqg. (1.5) as
follows:

V(it1)j = /V(iJrl)jp(V(iJrl)lw--aV(iJrl)m)dV(iJrl)l"'dV(iJrl)m' (1.6)

The source does not communicate with the sinkoif,); — v(i1);] < 9,
whered is a user-defined threshold. If this condition is not satikftee source
communicates to the sink the smallest number of sensors;adueh that thé
threshold would be satisfied. Similarly, if the sink does meateive any sensor
values from the source, it computes the expected sens@sigjy,); and uses
them as an approximation to the raw sensor values. If thersitgives a few
sensor values form the source, then, before computing theceed values, the
sink updates its dynamic probabilistic model.

A Generic Push-Based Approach. The last push-based approach
that we will survey is a generalized version of other pussebaapproaches
[38]. This approach is proposed by Silbersteinal. [61]. Like other push-
based approaches, the base station and the sensor netnegloagn expected
behavior, and, as usual, the sensor network reports vahlgsvben there is a
substantial deviation from the agreed behavior. But, entither approaches,
the definition of expected behavior proposed in [61] is m@m®eagic, and is not
limited to a threshold.

In this approach a sensor can either be an updater (one whiresaer
forwards sensor values) or an observer (one who receivemisgalues). A
sensor node can be both, updater and observer, dependingetherit is on
the boundary of the sensor network or an intermediate nolde updaters and
the observers maintain a model encoding funcfign and a decoding function
fdec. These model encoding/decoding functions define the adreleavior of
the sensor values. The updater uses the encoding functesrctale the sensor
valuew;; into a transmission messagg, and transmits it to the observer.

The observer, then, uses the decoding funcfign to decode the message
g;; and construct;;. If the observer finds that;; has not changed signifi-
cantly, as defined by the encoding function, then the obs&asesmits anul |
symbol. Anul | symbol indicates that the sensor valuesigppressedy the
observer. Following is an example of the encoding and degptiinctions
[61]:

= Vij — Vyj, if |Uij - Ui’j| > 9,

Jene(vij,virj) = {gij 1.7)

gij =nul |, otherwise.
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Oi—1)j + gij, 1f gij #null;

1.8
'IA}(Z‘,l)j, if g’Lj = nul l. ( )

fdec(gija 77(1‘71)3') = {

In the above example, the encoding functifp. computes the difference be-
tween the model predicted sensor valye and the raw sensor valug;. Then,
this difference is transmitted to the observer only if it isgjer thard, other-
wise thenul | symbol is transmitted. The decoding functiffn. decodes the
sensor valué;_;); using the messagg; .

The encoding and decoding functions in the above examplauaposefully
chosen to demonstrate how théhreshold approach can be replicated by these
functions. More elaborate definitions of these functionkjclv are used for
encoding complicated behavior, can be found in [61].

3. Model-Based Sensor Data Cleaning

A well-known characteristic of sensor data is that it is utaia and erro-
neous. This is due to the fact that sensors often operatedigitharged batter-
ies, network failures, and imprecision. Other factorshsag low-cost sensors,
freezing or heating of the casing or measurement devicepagation of dirt,
mechanical failure or vandalism (from humans or animalsy/e affect the
quality of the sensor data [31, 73, 23]. This may cause afignt prob-
lem with respect to data utilization, since application;ygierroneous data
may yield unsound results. For example, scientific apptioatthat perform
prediction tasks using observation data obtained fromlaea less-reliable
sensors may produce inaccurate prediction results.

To address this problem, it is essential to detect and doeresneous val-
ues in sensor data by employid@ta cleaning The data cleaning task typi-
cally involves complex processing of data [71, 30]. In madtr, it becomes
more difficult for sensor data, since true sensor valueesponding to erro-
neous data values are generally unobservable. This hasdeusw approach —
model-based data cleaningn this approach, the most probable sensor values
are inferred using well-established models, and then ahesrare detected by
comparing raw sensor values with the corresponding irdesemsor values. In
the literature there are a variety of suggestions for mbdskd approaches for
sensor data cleaning. This section describes the key misai&proposed by
these approaches, particularly focusing on the modelsingbd data cleaning
process.

3.1 Overview of Sensor Data Cleaning System

A system for cleaning sensor data generally consists offmjor compo-
nents: user interface, stream processing engine, anomaly deteata data
storage(refer Figure 1.5). In the following, we describe each comgrd.
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Figure 1.5: Architecture of sensor data cleaning system.

User Interface: The user interface plays two roles in the data cleaning groce
First, it takes all necessary inputs from users to perforta dkeaning, e.g.,
name of sensor data and parameter settings for models. &dberresults of
data cleaning, such as ‘dirty’ sensor values captured bwatioenaly detector,
are presented using graphs and tables, so that users camcatiether each
candidate of such dirty values is an actual error. The coefirresults are then
stored to (or removed from) the underlying data storage dgenadized views.

Anomaly Detector: The anomaly detector is a core component in sensor data
cleaning. It uses models for detecting abnormal data valUd®e anomaly
detector works in online as well as offline mode. In the onfit@le, whenever

a new sensor value is delivered to the stream processingesrtie dirtiness

of this value is investigated and the errors are filtered pstantly. In the
offline mode, the data is cleaned periodically, for instamcee per day. In the
following subsections, we will review popular models useddnline anomaly
detection.

Stream Processing Engine: The stream processing engine maintains stream-
ing sensor data, while serving as a main platform where ther aystem com-
ponents can cooperatively perform data cleaning. The alyae#ector is typ-
ically embedded into the stream processing engine, it nsmyka implemented

as a built-in function on database systems.

Data Storage: The data storage maintains not only sensor values, butlaso t
corresponding cleaned data, typically in materializedvsie This is because
applications on sensor networks often need to repeatedigrpedata cleaning
over the same data using different parameter settingsdontidels, especially
when the previous parameter settings turn out to be inapiptegdater. There-
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fore, it is important for the system to store cleaned datatalohse views with-
out changing the original data, so that data cleaning caretfermed again at
any point of time (or time interval) as necessary.

3.2 Models for Sensor Data Cleaning

This subsection reviews popular models that are widely usdide sensor
data cleaning process.

Regression Models. As sensor values are a representation of physical
processes, it is naturally possible to uncover the follgwanoperties: conti-
nuity of the sampling processes and correlations betwefégratit sampling
processes. In principle, regression-based models exgilbér or both of these
properties. Specifically, they first compute the dependdérmy one variable
(e.g., time) to another (e.g., sensor value), and then denshe regression
curves as standards over which the inferred sensor valsielerd he two most
popular regression-based approaches use polynomial aglly€§tev regres-
sion for cleaning sensor values.

Polynomial Regression: Polynomial regression finds the best-fitting curve
that minimizes the total difference between the curve aot eaw sensor value
v;; attimet;. Given a degred, polynomial regression is formally defined as:

’l}Z‘j:C—i-Oél'ti+"'+Oéd't;'ia (19)

wherec is a constant andy, . . . , a4 are regression coefficients.

Polynomial regression with high degrees approximate dgivea series with
more sophisticated curves, resulting in theoretically eresscurate description
of the raw sensor values. Practically, however, low-degadgnomials, such
as constantd = 0) and linear § = 1), also perform satisfactorily. In addition,
low-degree polynomials can be more efficiently constru@edccompared to
high-degree polynomials. A (weighted) moving average rdg] is also
regarded as a polynomial regression.

Chebyshev Regression: Chebyshev regression is another popular model class
for fitting sensor values, since they can quickly compute-opéimal approx-
imations for given time series. Suppose that time valygary within a range
[min(¢;), max(¢;)]. We, then, obtain normalized time valugswithin a range
[—1,1], by using the following transformation functiof(t;) and its inverse
transformation functiorf ~1(¢.) as follows:

flts) = <ti S —Qi_min(ti)> ' max(t;) 2— min(t;)’ (1.10)

£ = <t/ ~max(t;) — min(ti)> N max(t;) + min(ti). (1.11)

‘ 2 2



16

Thresh. ID.S
“ l u l select (thres)

Use ctrl/shift to
select multiple items

Figure 1.6: Detected anomalies based on 2-degree Chebyshev regression

Next, given a degreé, Chebyshev polynomial is defined as:
vij = [ (cos(d - cos™! (f(t:)))).

Figure 1.6 illustrates a data cleaning process using deyjyi€bebyshev
polynomials. Here, the raw sensor values are plotted asgreeves, while
the inferred values, obtained by fitting a Chebyshev polyiatsnare overlaid
by black curves. The anomaly points are then indicated bytiaerlying red
histograms as well as red circles.

Probabilistic Models. In sensor data cleaning, inferring sensor val-
ues is perhaps the most important task, since systems gadétect and clean
dirty sensor values by comparing raw sensor values with ¢meesponding
inferred sensor values. Figure 1.7 shows an example of tiaectianing pro-
cess using probabilistic models. At time= 6, the probabilistic model infers
a probability distribution using the previous values, . . ., vs; in the sliding
window. The expected valug; (e.g., the mean of the Gaussian distribution in
the future) is then considered as the inferred sensor valugehsos;.

Next, the anomaly detector checks whether the raw sensoe vgl resides
within a reasonably accurate area. This is done in orderdolctvhether the
value isnormal For instance, th8c range can cover 99.7 % of the density
in the figure, wherey; is supposed to appear. Thus, the data cleaning process
can consider thate; is not an error. At; = 7, the window slides and now
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contains raw sensor values;, ..., vs;. By repeating the same process, the
anomaly detector finds;; resides out of the error bounddA range) in the
inferred probability distribution, and is identified as aroealy [57].

probability
distribution inferred

anomaly —a
oV

7j

value

i ° :
VZ/.+ o °® 5/3 ° iji ° 5
| 30_ SRS i
sliding window </ 3o |
: time }
t; = =7

Figure 1.7: An example of data cleaning based on a probabilistic model.

A vast body of research work has utilized probabilistic mMeder comput-
ing inferred values. Th&alman filteris perhaps one of the most common
probabilistic models to compute inferred values corredpanto raw sensor
values. The Kalman filter is a stochastic and recursive diairfig algorithm
that models the raw sensor valug as a function of its previous value (or
state)v(;_1); as follows:

Uij = Av(i,l)j + Buz + Wy,

whereA and B are matrices defining the state transition from time to time
t;, u; is the time-varying input at time;, andw; is the process noise drawn
from a zero mean multi-variate Gaussian distribution. Bj,[éhe Kalman filter
is used for detecting erroneous values, as well as inteafgsfating missing
sensor values. Jaigt al. [29] also use the Kalman filter for filtering possible
dirty values.

Similarly, ElInahrawy and Nath [21] proposed to use Bayesbtem to es-
timate a probability distributior®;; at timet; from raw sensor values;;, and
associate them with an error model, typically a normal itistron. Built on
the same principle, a neuro-fuzzy regression model [52] abélief propa-
gation model based on Markov chains [13] were used to ideatibmalies.
Tranet al. [65] propose a method to infer missing or erroneous valu&s=iD
data. All the techniques for inferring sensor values alsabénquality-aware
processing of sensor data streams [36, 37], since infegrsos values can
serve as the bases for indicating the quality or precisigh@faw sensor val-
ues.
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Outlier Detection Models. An outlier is a sensor value that largely
deviates from the other sensor values. Obviously, outiedtion is closely
related to the process of sensor data cleaning. The od#ieetion techniques
are well-categorized in the survey studies of [51, 8].

In particular, some of the outlier detection methods focnssensor data
[59, 71, 15]. Zhanget al. [71] offer an overview of such outlier detection
techniques for sensor network applications. Deligiarsakal. [15] consider
correlation, extended Jaccard coefficients, and regredsieed approximation
for model-based data cleaning. Shetral. [59] propose to use a histogram-
based method to capture outliers. Subramareaai. [62] introduce distance-
and density-based metrics that can identify outliers. litaah, the ORDEN
system [23] detects polygonal outliers using the triantgalavireframe surface
model.

3.3 Declarative Data Cleaning Approaches

From the perspective of using a data cleaning system, stipga declar-
ative interface is important since it allows users to easdgtrol the system.
This idea is reflected in a wide range of prior work that presoSQL-like
interfaces for data cleaning [32, 46, 54]. These proposals tomplicated
mechanisms of data processing or model utilization fromuters, and facili-
tate data cleaning in sensor network applications.

More specifically, Jeffenet al. [31, 32] divide the data cleaning process
into five tasksPoint, Smooth, Merge, ArbitratandVirtualize These tasks are
then supported within a database system. For example, thes@fzment in
Query 1.2 performs anomaly detection within a spatial gieby determining
the average of the sensor values from different sensoreisdme proximity
group. Then, individual sensor values are rejected if threyoaitside of one
standard deviation from the mean.

As another approach, Raat al. [54] focus on a systemic solution, based
on rewriting queries using a set of cleansing rules. Spetlificthe system
offers the rule grammar shown in Figure 1.8 to define and dga@rious data
cleaning tasks. Unlike the prior relational database agugres, Mayfielet al.

DEFI NE [rul e nane]
ON [tabl e nane]
FROM [tabl e nane]

CLUSTER BY [cluster key]
SEQUENCE BY [sequence key]

AS [ pattern]
WHERE [condi tion]
ACTI ON [ DELETE | MODI FY | KEEP]

Figure 1.8: An example of anomaly detection using a SQL statement.
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SELECT spati al granul e, AVEt enp)

FROMdata s [ Range By 5 nin]
(SELECT spati al _granul e, avg(tenp) as avg,
stdev(tenp) as stdev
FROMdata [Range By 5 nmin]) as a

WHERE a. spati al granul e = s. spatial granul e
ANDa. avg + (2xa.stdev) < s.tenp
ANDa. avg - (2+a.stdev) > s.tenp

Query 1.2:An example of anomaly detection using a SQL statement.

[46] model data as a graph consisting of nodes and links. ,Tthey, provide
an SQL-based, declarative framework that enables datarevimespecify or
discover groups of attributes that are correlated, andyagiptistical methods
that validate and clean the sensor values using such depsese

4. Model-Based Query Processing

In this section we elaborate another important task in getsta manage-
ment — query processing. We primarily focus on in-netword aentralized
guery processing approaches. We consider different quasiguming the sen-
sor network described in Section 2.1, and then discuss holwaggproach pro-
cesses these queries. In Section 2, however, we followegpEmoach where
we chose a singe query (i.e., Query 1.1) and demonstratedlifi@nent tech-
niques processed this query. On the contrary, in this seatie chose different
queries for all the approaches, and then discuss theseambhe® along with
the queries. We follow this procedure since, unlike Sec®ipine assumptions
made by each query processing technique are different. , Thukighlight-
ing the impact of these assumptions and simplifying theudision, we select
different queries for each approach.

4.1 In-Network Query Processing

In-network query processing first builds an overlay netwdike, the SRT
discussed in Section 2.3.0). Then, the overlay network ésl dgr increasing
the efficiency of aggregating sensor values and processieges. For in-
stance, while processing a threshold query, parent nodekstise query to the
child nodes only when the query threshold condition overlajh the range of
sensor values contained in the child nodes, which is storétei parent node’s
local memory.

Consider the threshold query given in Query 1.3. Query lgBests the
sensor identifiers of all the sensors that have sensed atatmegreater than
10°C at the current time instance. Before answering this queeyassume
that we have already constructed a SRT as described in 8&c#drefer Fig-
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ure 1.4). Query 1.3 is sent by the root node of the SRT to itsliem that are
a part of the query response. The child nodes check whetbesetfisor value
they have sensed is greater tH&AC. If the sensor value is greater th&?C
at a child node, then that child node appends its sensorifidend the query
response. The child node, then, forwards the query to ildreim and waits
for their response. Once all the children of a particularenbdve responded,
then that node forwards the response of its entire sub-trees fparent. In
the end, the root node receives all the sensor identifietsat have recorded
temperature greater than°C.

SELECT s; FROMsensor .val ues WHERE v;; > 10°C AND¢; == NOW)

Query 1.3:Return the sensor identifiess wherev;; > 10°C.

4.2 Model-Based Views

The MauveDB [18] approach proposes standard database [d8Jvas an
abstraction layer for processing queries. These views amtained in a form
of a regression model; thus they are calteddel-basediiews. The main ad-
vantage of this approach is that the model-based view candrementally
updated as fresh sensor values are obtained from the serfmathermore,
incremental updates is an attractive feature, since sudhtep are computa-
tionally efficient.

Before processing any queries in MauveDB, we have to firsttere model-
based view. The query for creating a model-based view is shio@uery 1.4.
The model-based view created by this query is cdlegModel . Reghbdel
is a regression model in which the temperature is the dependeiable and
the sensor positiofr;, y;) is an independent variable (refer Figure 1.9). Note
thatRegModel is incrementally updated by MauveDB. At timgvalues from
sensorss, s3 and at timet, the value from sensor, are respectively used to
update the view. The view update mechanism exploits thetfiattregression
functions can be updated. Further details regarding thatepdechanism can
be found in [18].

CREATE VI EWRegModelAS FI T v OVERz?, zy, y2, =,y
TRAI NI NG.DATA SELECT z;,y;,v;; FROMsensor val ues
VWHERE tz > tsta'rt AND tz < tend

Query 1.4:Model-based view creation query.

Once this step is performed many types of queries can beatedlwsing
the Reghvodel view. For instance, consider Query 1.5. MauveDB evaluates
this query by interpolating the value of temperature at fikgdrvals on the
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x- and y-axis; this is similar to database view materialama{19]. Then the
positions(z, y) where the interpolated temperature value is greater 1ha@
are returned.

Admittedly, although updating the model-based view is &ffit but for
processing queries the model-based view should be matedaht a certain
fixed set of points. This procedure produces a large amoumterhead when
the number of independent variables is large, since it diiaally increases
the number of points where the view should be materialized.

SELECT z, y FROMRegModeMHERE v > 10°C

Query 1.5:Querying model-based views.

4.3 Symbolic Query Evaluation

This approach is proposed by the FunctionDB [64] system.camDB,
like MauveDB, also interpolates the values of the dependaridble, and then
uses the interpolated values for query processing.

As discussed before, the main problem with value interpmias that the
number of points, where the sensor values should be intggublincrease dra-
matically as a function of the number of independent vaeisbAs a solution
to this problem, FunctionDB symbolically executes the fiffer example, the
WHERE clause in Query 1.5) and obtains feasible regions of thepedgent
variables. These feasible regions are the regions thatdat¢he exact response
to the query, at the same time contain a significantly low nemd$ values to
interpolate. FunctionDB evaluates the query by interjfidatalues only in
the feasible regions, followed by a straightforward evéiduaof the query.

model-based
views

model-based °

views are )
continuously ; U time
i

updated

® -- sensors O -- sensor values

Figure 1.9: Example of theRegMbdel view with three sensorRegh©bdel
is incrementally updated as new sensor values are acquired.
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Moreover, FunctionDB treats the temperature of the seasas a contin-
uous function of timef;(t), instead of treating it as discrete values sampled
at time stampg;. An example of a query in the FunctionDB framework is
given in Query 1.6. This query returns the time valudsetweent s+ and
tenqg Where the temperature of the sensgpis greater thari0°C. Note that the
time valuest are not necessarily the time stampsvhere a particular sensor
value was recorded.

SELECT ¢t WHERE f1(t) > 10°CAND¢t > tstart ANDE < terna GRID t 1S

Query 1.6:Continuous threshold query.

For defining the values of the time axigor any continuous variable), Func-
tionDB proposes th€Rl D operator. Thé&RI D operator specifies the interval
at which the functiory; (¢) should be interpolated between timg,,; andt.,,q.
For instance@GRI D t 1s indicates that the time axis should be interpolated
at one second intervals between timg,; andt.,qy. To process Query 1.6,
FunctionDB first symbolically executes tRERE clause and obtains the fea-
sible regions of the time axis (independent variable). Thesing theGRI D
operator, it generates time stanifisin the feasible regions. The sensor value
is interpolated at the time stamf#$ using regression functions. Lastly, the
query is processed on these interpolated values, and tanepstl; C 17
where the temperature is greater tHaAC are returned.

4.4 Processing Queries over Uncertain Data

In this form of query processing the assumption is that sedata is in-
herently uncertain. This uncertainty can arise due to uarfactors: loss of
calibration over time, faulty sensors, unsuitable envinental conditions, low
sensor accuracy, etc. Thus, the approaches that treat skxtacas uncertain,
assume that each sensor value is associated with a randdableaiand is
drawn from a distribution. In this subsection, we discuss such methods
that model uncertain data by either a dynamic probabilistadiel or a static
probability distribution.

Dynamic Probabilistic Models. Dynamic probabilistic models
(DPMs) are proposed for query processing in [33, 29]. Thesdats continu-
ously estimate a probability distribution. The estimateabability distribution
is used for query processing. Mainly, there are two types odlels that are
frequently used for estimating dynamic probability distitions: particle fil-
ters and Kalman filters. Patrticle filters are generalizethfof Kalman filters.
Since we have already discussed Kalman filters in Sectionh&2 we will
focus on patrticle filtering.



A Survey of Model-Based Sensor Data Acquisition and Management 23

Consider a single sensor, say; the particle filtering approach [4], at each
time instant;, estimates and storpsveighted tuple§ (w),, v} ), ..., (w?, o)},
where the weightv}; denotes the probability af!, being the sensor value of
the sensos; at timet;, and so on. An example of particle filtering is shown in
thepf _sensor val ues table in Figure 1.10.

Now, consider Query 1.7 that requests the average temper@¥G(v;;)
between timé.;,; andt.,,4. To evaluate this query, we assume that we already
have executed the particle filtering algorithm at each tins¢eince;; and have
created thepf _sensor _val ues table. We, then, perform the following two
operations:

1. For each time; betweent,,+ andt., 4, we compute the expected tem-
peraturev;; = >°7_ wl; - v}, The formal SQL syntax for computing
the expected values using thé_sensor _val ues table is as follows:

SELECT ¢t;,>7_, wl; - v}, FROMpf _sensor val ues WHERE ¢; >
tstart AND; < £ong GROUP BY t;

2. The final result is the average of all thg that we computed in Step 1.

Essentially, the tupleg(w},v};),. .., (wh,v)} represent a discretized
pdf for the random variabl&;;. Moreover, the most challenging tasks in par-
ticle filtering are to continuously infer weights},, ..., w?, and to select the
optimal number of particleg, keeping in mind a particular scenario and type
of data [4].

SELECT AVG(v;1) FROMpf _sensor _val ues WHERE ¢ > tg¢art ANDE < tena

Query 1.7:Compute the average temperature between timg andt., .

AR AR AV AR
10100 1({34|72|1 |1.1|0.1
10100 1(34|72| 2 |3.0(0.6
10100 1(34|72|3 |52|0.3
2 01:05| 2 52|85 |1 (31|04
2101:05| 252|852 |79|03
2 01:05| 2 52|85 |3 (64|03

Figure 1.10: Particle filtering store® weighted sensor values for each time
instance;.



24

Static Probabilistic Models. Chenget al. [9-11] model the sen-
sor value as obtained from an user-defined uncertainty raRge example,
if the value of a temperature sensorlig’C, then the actual value could vary
between13°C and17°C. Furthermore, the assumption is that the sensor value
is drawn from a static probability distribution that has gop over the uncer-
tainty range.

Thus, for each sensar; we associate an uncertainty range betwiegand
u;;, in which the actual sensor values can be found. In additr@npdf of the
sensor values of sensey is denoted ag;;(v). Note that the pdf has non-zero
support only betweef}; andu;;. Consider a query that requests the average
temperature of the sensorgsandss at timet;. Since the values of the sensors
s1 andss are uncertain in nature, the response to this query is a pdftdd
aspayg(v). This pdf gives us the probability of the sensor valukeing the
averagepq.,q(v) is computed using the following formula:

min(wi,v—1i;5)
Pavg (V) = / pi1(y)piz(v — x)d. (1.12)

maz(li1,v—u;y)

Naturally, Eq. (1.12) becomes more complicated when thexarany (and
not only two) sensors involved in the query. Additional detabout handling
such scenarios can be found in [9].

4.5 Query Processing over Semantic States

The MIST framework [5] proposes to use Hidden Markov ModeisMs)
for deriving semantic meaning from the sensor values. HMMNsvaus to
capture the hidden states, which are sometimes of moresttiran the actual
sensor values. Consider, as an example, a scenario wheserikersS are
used to monitor the temperature in all the rooms of a buildi@gnerally, we
are only interested to know which rooms are hot or cold, rathen the actual
temperature in those rooms. We, then, can use a two-state Mitvistates
Hot (denoted a¢/) andCold (denoted a€”) to continuously infer the semantic
states of the temperature in all the rooms.

Furthermore, MIST proposes an in-network index structarendexing the
HMMs. This index can be used for improving the performanceuedry pro-
cessing. For instance, if we are interested in finding thensothat areHot
with probability greater thaf.9, then the in-network model index can effi-
ciently prune the rooms that are surely not a part of the qtesgonse. Due
to the lack of space, we shall not cover the details of indexstraction and
pruning. We encourage the interested reader to read tosvialy paper [5].
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4.6 Processing Event Queries

Event queries are another important class of queries thgiraposed in the
literature. These queries continuously monitor for a patéir event that could
probably occur in sensor data. Consider a setup consistiRér i sensors in
a building. An event query could monitor an event of a persaeréng a room
or taking coffee, etc. Moreover, event queries can also tistezed, not only
to monitor a single event, but a sequence of events that greriemt to the
user. Again, due to space constraints, we shall not coveofing event query
processing approaches in detail. The interested readefeised to the prior
works on this subject [55, 65, 68, 45].

5. Model-Based Sensor Data Compression

Recent advances in sensor technology has resulted in thelatity of a
multitude of (often privately-held) sensors. Embeddedssgnfunctionality
(e.g., sound, accelerometer, temperature, GPS, RFID,igtcow included in
mobile devices, like, phones, cars, or buses. The large aeudailthese devices
and the huge volume of raw monitored data pose new chall€ogassistain-
able storage and efficient retrieval of the sensor datarasedo this end, a
multitude of model-based regression, transformation dtetifig techniques
have been proposed for approximation of sensor data stredimnis section
categorizes and reviews the most important model-baseaqipes towards
compression of sensor data. These models often exploibgeatporal cor-
relations within data streams to compress the data withertaio error norm;
this is also known atossy compressionMoreover, several standard orthog-
onal transformation methods (like, Fourier or wavelet $farm) reduce the
amount of storage space required by reducing the dimen#ijoofdata.

Unlike the assumptions of Section 2, where we assumed arseeswork
consisting of several sensors, here we assume that we om@alsngle sensor.
We have dropped the several sensors assumption to simpdifgdtation and
discussion in this section. Furthermore, we assume thaahsor values from
the single sensor are in a form ofdata stream Let us denote such a data
stream as a sequence of data tugles; ), wherew; is the sensor value at time
ti.

5.1 Overview of Sensor Data Compression
System

The goal of the sensor data compression system is to appatiensen-
sor data stream by a set of functions. Data compression oethat we are
going to study in this section permit the occurrence of agipmation errors.
These errors are characterized by a specific error normhéranbre, a stan-
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dard approach to sensor data compression is to segmenttthstoEam into
data segmenis@nd then approximate each data segment, so that a spefic er
norm is satisfied. For example, if we are consideringithenorm, then each
sensor value of the data stream is approximated within @m baunde.

Let us assume that we ha¥e segments of a data stream. We denote these

segments asg!, g%, ...,¢%, where ¢! approximates the data tuples
((t1,v1),...,(ti,vi,)), while g*, wherek = 2, ... K, approximates the data
items ((tik71+1, Uik71+1), (tik,1+27 Uik71+1), ey (tik,vik)). Similar to [20],

we distinguish between two classes of the segments usegpooxdamation,
namely connected segmengnd disconnected segmentsn connected seg-
ments, the ending point of the previous segment is the sgapoint of the
new segment. On the contrary, in disconnected segmentapfireximation
of the new segment starts from the subsequent data item gtrébeam. Discon-
nected segments offer more approximation flexibility and/ nead to fewer
segments; however, for linear approximation [35], theyessitate the storage
of two data tuples (i.e., start tuple and end tuple) per degangnt, as opposed
to connected segments.

Since functions are employed for approximating data se¢snenly the ap-
proximated data segments are stored in the database drstdee raw sensor
values of the data stream [64, 50]. A schema for linear setgnepresented in
[64], consisting of a table, referred to Banct i onTabl e, where each row
represents a linear model with attributesar t ti me, end_ti me, sl ope
andi nt er cept (i.e., base) of the segment. In case of connected segments
[20], theend_t i e attribute can be omitted.

A more generic schema for storing data streams, approxihigtenultiple
models was proposed in [50] that consists of one tabdgy (rent Tabl e) for
storing the data segments, and a second tie€| Tabl e) for storing the
model functions, as depicted in Figure 1.11. A tuple of Segyment Tabl e
contains the approximation data for a segment in the timervat
[start_tinme,end_tine]. The attributé d stands for identification of the
model that is used in the segment. The primary key inSagnent Tabl e
is thest art _ti ne, while in theModel Tabl e itis i d. When, both, lin-
ear and non-linear models are employed for approximatied,t _-val ue is
the lowest raw sensor value encountered in the segment, iagldt _val ue
is the highest raw sensor value encountered in the segmenthid case,
start time,endtine,left_val ue andri ght _val ue define a rect-
angular bucket that contains the values of the segment.

The attributenodel _par ans stores the parameters of the model associ-
ated with the model identifierd. For example, regression coefficients are
stored for the regression model. The attribatedel _par ans has variable
length (e.g.,VARCHAR or VARBI NARY data types in SQL) and it stores the
concatenation of the parameters or their compressed spati®n, by means
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Multi-model approximation
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Figure 1.11:The database schema for multi-model materialization.

of standard lossless compression techniques (refer &) or by a bitmap
coding of approximate values, as proposed in [3]. Each tuplkhe Mod-
elTable corresponds to a model with a particuldrandf unct i on. The at-
tributef unct i on represents the name of the model and it maps to the names
of two user defined functions (UDFs) stored in the datababe.fifst function
implements the mathematical formula of the model, and ticerse function
implements the inverse mathematical formula of the modelny. Both the
UDFs are employed for answering value-based queries. Whueldirst func-

tion is used for value regeneration over fixed time steps (edferred to as
gridding), the second function is used for solving equations.

5.2 Methods for Data Segmentation

In [34], the piecewise linear approximation algorithms eategorized in
three groups: sliding window, top-down and bottom-up. Tidirgy window
approach expands the data segment as long as the data tglas fiottom-up
approach first applies basic data segmentation employmgliting window
approach. Then, for two consecutive segments, it calGlaierging cost in
terms of an approximation error. Subsequently, it mergessdgments with
the minimum cost within the maximum allowed approximatioroe and up-
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dates the merging costs of the updated segments. The premdssvhen no
further merging can be done without violating the maximurpragimation
error. The top-down approach recursively splits the stresgmtwo segments,
S0 as to obtain longest segments with the lowest error uhtlegments are
approximated within the maximum allowed error.

Among these three groups, only the sliding window approachhbe used
online, but it employs look-ahead. The other two approagesform better
than the sliding window approach, but they need to scan &, deence they
cannot be used for approximating streaming data. Basedi®woliservation,
Keoghet al. [34] propose a new algorithm that combines the online psings
property of the sliding window approach and the performanicéne bottom-
up approach. This approach needs a predefined buffer letigtie buffer is
small, then it may produce many small data segments; if tiierda large, then
there is a delay in returning the approximated data segniEme. maximum
look-ahead size is constrained by the maximum allowed deddween data
production and data reporting or data archiving.

5.3 Piecewise Approximation

Among several different data stream approximation tealesq piecewise
linear approximation has been the most widely used [34, B&cewise lin-
ear approximation models the data stream with a separaarlianction per
data segment. Piecewise constant approximation (PCApaippates a data
segment with a constant value, which can be the first valueso$égment (re-
ferred to as the cache filter) [47], the mean value or the meditue (referred
to as poor man’'s compression - midrange (PMC-MR) [39]).

In the cache filter, for all the sensor values in a segngénthe following
condition should be satisfied:

Vi ap — Vi 1| <€ forp=1,... i (1.13)

wheree is the maximum allowed approximation error according to theg
norm. Also, for PMC-Mean and PMC-MR the sensor values in ansedg*
should satisfy the following condition:
; — min v < 2. :
11%aék Vip_14p 1gglgnik Vip_+p < 2¢€ (1.14)
Furthermore, for PMC-Mean, the approximation value for segmenty® is

given by the mean value of the sensor values in seggterBut, for PMC-MR
it is given as follows:

MAX] <p<iy Vig_y+p — MIN1<p<iy, Vig_ 1 +p
5 :
The data segmentation approach for PMC-MR is illustratdeigoire 1.12.
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Figure 1.12:Poor Man’'s Compression - MidRange (PMC-MR).

Moreover, the linear filter [34] is a simple piecewise lin@g@proximation
technique in which the sensor values are approximated Img@&tnnecting the
first and second point of the segment. When a new data tuptetha approx-
imated by this line with the specified error bound, a new setrisestarted. In
[20], two new piecewise linear approximation models weigppsed, namely
SwingandSlide that achieve much higher compression compared to the cache
and linear filters. We briefly discuss the swing and sliderfltslow.

Swing and Slide Filters. The swing filter is capable of approximating
multi-dimensional data. But, for simplicity, we descrilte algorithm for one-
dimensional data. Given the arrival of two data tuplasv;) and (ta, v2) of
the first segment of the data stream, the swing filter maigtaiset of lines,
bounded by an upper line' and a lower linel'. u! is defined by the pair
of points (t1,v1) and (t2,v2 + €), while I! is defined by the pair of points
(t1,v1) and(te, v — €), Wheree is the maximum approximation error bound.
Any line segment between' andi! can represent the first two data tuples.
When (t3,v3) arrives, first it is checked whether it falls within the linEs
u!. Then, in order to maintain the invariant that all lines itthe set can
represent all data tuples so fat, (respectivelyu') may have to be adjusted
to the higher-slope (respectively lower-slope) line defibg the pair of data
tuples((t1,v1), (t3,vs —€)) (respectively((¢1, v1), (t3, v3 + €))). Lines below
this newl! or above this new:' cannot represent the data tugte, v3). The
segment estimation continues until the new data tuple altsof the upper
and lower lines for a segment. The generated line segmetitdozompleted
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filtering interval is chosen so as to minimize the mean sqearer for the
data tuples observed in that interval. As opposed to the §ligr (described
below), in the swing filter the new data segment starts froenethd point of
the previous data segment.

In the slide filter, the operation is similar to the swing filtbut upper
and lower linesu and! are defined differently. Specifically, aftét;,v;)
and (t2, vo) arrive, u! is defined by the pair of data tuplés;,v; — ¢) and
(t2,v9+¢€), while ! is defined by(t1, v1 + €) and(t2, va — €). After the arrival
of (t3,v3), I* (respectivelyu') may need to be adjusted to the higher-slope (re-
spectively lower-slope) line defined 9§t ;, v; + €), (t3, vz — €)) (respectively
((ti,vi — €), (t3,v3 + €))), wherei € [1,2]. The slide filter also includes a
look-ahead of one segment, in order to produce connectenesdg instead of
disconnected segments, when possible.

Palpanagt al. [48] employamnesic functionand propose novel techniques
that are applicable to a wide range of user-defined apprdxighéunctions.
According to amnesic functions, recent data is approxichatih higher ac-
curacy, while higher error can be tolerated for older dataand Faloutsos
[70] suggested approximating a data stream by dividingtd egual-length
segments and recording the mean value of the sensor vaatdalthwithin the
segment (referred to as segmented means or as piecewisgaiggapproxi-
mation (PAA)). On the other hand, adaptive piecewise comstaproximation
(APCA) [6] allows segments to have arbitrary lengths.

Piecewise Linear Approximation. The piecewise linear approx-
imation uses the linear regression model for compressitg steeams. The
linear regression model of a data segment is given as:

v; =5§-t; + b, (1.15)

whereb ands are known as the base and the slope respectively. The differe
betweenv; andt; is known as the residual for timg. For fitting a linear
regression model of Eq. (1.15) to the sensor values t; € [ty;te], the
ordinary least squares (OLS) estimator is employed. The &ftighator selects
b ands such that they minimize the following sum of squared redilua

RSS(b,s) = Ze [v; — (s - t; 4+ b)]*.

ti=ty
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Thereforep ands are given as:

> (s )
b= - 2 vj
e tytte &
ti=ty Zti:tb (ti — =25t
te
s = t; =ty Uy o tb+t€
te —tp+1 2
Here, the storage record of each data segment of the dasanst@nsists of
([ty; tel; b, s), Where[ty; t.] is the segment interval, andandb are the slope
and base of the linear regression, as obtained from Eq.)(1.16
Similarly, instead of the linear regression model, a poigia regression
model (refer Eg. (1.9)) can also be utilized for approximgteach segment
of the data stream. The storage record of the polynomiaessgsn model is
similar to the linear regression model. The only differeiscthat for the poly-
nomial regression model the storage record contains péeasne, ..., aq
instead of the parametebsands.

(1.16)

5.4 Compressing Correlated Data Streams

Several approaches [14, 42, 24] exploit correlations antfigrent data
streams for compression. The GAMPS approach [24] dynalyiggntifies
and exploits correlations among different data segmertgtsen jointly com-
presses them within an error bound employing a polynonma-approxima-
tion algorithm. In the first phase, data segments are indilig approximated
based on piecewise constant approximation (specificalyPhlC-Mean de-
scribed in Section 5.3). In the second phase, each data segsrapproxi-
mated by a ratio with respect to a base segment. The segnrergddoy the
ratios is called the ratio segment. GAMPS proposes to sterdase segment
and the ratio segment, instead of storing the original dedggnent. The idea
here is that, in practice, the ratio segment is flat and tbezefan be signifi-
cantly compressed as compared to the original data segment.

Furthermore, the objective of the GAMPS approach is to ifleatset of
base segments, and associate every data segment with aegasens such
that the ratio segment can be used for reconstructing tlzesggiment within a
L, error bound. The problem of identification of the base segmismosed
as afacility location problem. Since this problem is NP-hard, a polynomial-
time approximation algorithm is used for solving it, and guoing the base
segments and the assignment between the base segmentseasegiaents.

Prior to GAMPS, Deligiannakigt al. [14] proposed the self-based regres-
sion (SBR) algorithm that also finds a base-signal for cosging historical
sensor data based on spatial correlations among diffeagatsireams. The
base-signal for each segment captures the prominent ésatfithe other sig-
nals, and SBR finds piecewise correlations (based on limggession) to the
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base-signal. Lirt al. [42] proposed an algorithm, referred to as adaptive linear
vector quantization (ALVQ), which improves SBR in two wayg:it increases

the precision of compression, and (ii) it reduces the badthwdionsumption by
compressing the update of the base signal.

5.5 Multi-Model Data Compression

The potential burstiness of the data streams and the enmdirced by
the sensors often result in limited effectiveness of a simgbdel for approxi-
mating a data stream within the prescribed error bound. éAwkedging this,
Lazaridiset al. [39] argue that a global approximation model may not be the
best approach and mention the potential need for using preulthodels. In
[40], itis also recognized that different approximationdats are more appro-
priate for data streams of different statistical propsrti€he approach in [40]
aims to find the best model approximating the data streandlmasthe overall
hit ratio (i.e., the ratio of the number of data tuples fitting the madehe total
number of data tuples).

Papaioannoet al. [50] aim to effectively find the best combination of dif-
ferent models for approximating various segments of treastrregardless of
the error norm. They argue that the selection of the mostieffienodel de-
pends on the characteristics of the data stream, namelybatstiness, data
range, etc., which cannot be always knosvpriori for sensors and they can
even be dynamic. Their approach dynamically adapts to theepties of the
data stream and approximates each data segment with thauitatie model.
They propose a greedy approach in which they employ multipbpelels for
each segment of the data stream and store the model thaveshie high-
est compression ratio for the segment. They experimenpatiyed that their
multi-model approximation approach always produces fewerqual data seg-
ments than those of the best individual model. Their apgraauld also be
used to exploit spatial correlations among different ladties from the same
location, e.g., humidity and temperature from the saméosiaty sensor.

5.6 Orthogonal Transformations

The main application of the orthogonal transformation apphes has been
in dimensionality reduction, since reducing the dimenaiityrimproves per-
formance of indexing techniques for similarity search irgéacollections of
data streams. Typically, sequences of fixed length are ndafmp@oints in
an N-dimensional Euclidean space; then, multi-dimensionaéss methods,
such as R-tree family, can be used for fast access of thoséspdince, se-
guences are usually long, a straightforward applicatioth@@bove approach,
which does not use dimensionality reduction, suffers frariggmance degra-
dation due to the curse of dimensionality [56].
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The process of dimensionality reduction can be describddliasvs. The
original data stream or signal is a finite sequence of realegbr coefficients,
recorded over time. This signal is transformed (using aifpdcansforma-
tion function) into a signal in a transformed space. To ah@dimensionality
reduction, a subset of the coefficients of the orthogonalsfaamation are se-
lected as features. These features form a feature spaceh vehsimply a
projection of the transformed space. The basic idea is tooappate the orig-
inal data stream with a few coefficients of the orthogonaigfarmation; thus
reducing the dimensionality of the data stream.

Discrete Fourier Transform (DFT).  The Fourier transform is the
most popular orthogonal transformation. It is based on tmple observa-
tion that every signal can be represented by a superpositisime and cosine
functions. The discrete Fourier transform (DFT) and digcossine transform
(DCT) are efficient forms of the Fourier transform often ugedpplications.
The DFT is the most popular orthogonal transformation ans fivat used in

[1, 22]. The Discrete Fourier Transform of a time sequeneexg, ..., xn_1
is a sequenc& = Xy, ..., Xny_1 of complex numbers given by:
e
X = e i, (1.17)
j=0

The original signal can be reconstructed by the inversei€ouansform ofX,
which is given by:

N-1
zj=Y Xpe? v, (1.18)
k=0

In [1], Agrawal et al. suggest using the DFT for dimensionality reduction
of long observation sequences. They argue that most rewlsignly require
a few DFT coefficients for their approximation. Thus sinitlasearch can be
performed only over the first few DFT coefficients, insteadheffull observa-
tion sequence. This provides an efficient and approximatgiso to the prob-
lem of similarity search in high-dimensional spaces. Theg the Euclidean
distance as the dissimilarity measure.

Discrete Wavelet Transform. Wavelets can be thought of as a
generalization of the Fourier transform to a much largerilfaf functions
than sine and cosine. Mathematically, a wavelet is a funatig, defined on
the real number®, which includes an integer translation byalso called a
shift, and a dyadic dilation (a product by the powers of twapwn as stretch-
ing. The functions); ;. play a similar role as the exponential functions in the
Fourier transformz); , form an orthonormal basis for the*(R) space. The
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L?(R) space consists of all the functions whdsenorm is finite. Particularly,
the functions); ., wherej andk are integers are given as follows:

Pin(t) = 27227t — k). (1.19)

Similar to the Fourier transform, by using the orthonormasib functions
;. x, We can uniquely express a functigne L?(R) as a linear combination
of the basis functiong; ;. as follows:

=Y < fibin> i (1.20)

JkEZ

where< f,g >:= fR fgdz is the usual inner product of two functions in
L?(R).

The Haar wavelets are the most elementary example of wavdleé mother
wavelety for the Haar wavelets is the following function:

1, if 0<t<0.5,
YHaar(t) = ¢ =1, if 05 <t <1, (1.21)
0, otherwise

Ganesaret al. [26, 25] proposed in-network storage of wavelet-based sum-
maries of sensor data. Recently, discrete wavelet trams(DWT) was also
proposed in [53, 7] for sensor data compression. For sadiErstorage and
querying, they propose progressive aging of summariesaattidharing tech-
niques.

Discussion. The basis functions of some wavelet transforms are non-
zero only on a finite interval. Therefore, wavelets may bey @file to cap-
ture local (time dependent) properties of the data, as @uptwsFourier trans-
forms, which can capture global properties. The computatiefficiency of

the wavelet transforms is higher than the Fast Fourier fioams(FFT). How-
ever, while the Fourier transform can accurately approteénagbitrary signals,
the Haar wavelet is not likely to approximate a smooth fuorctiusing few
features.

The wavelet transform representation is intrinsically gded with approx-
imating sequences whose length is a power of two. Using wilith se-
guences that have other lengths require ad-hoc measutesethae the fi-
delity of the approximation, and increase the complexityhef implementa-
tion. DFT and DCT have been successfully adapted to incrextheamputa-
tion [72]. However, as each DFT/DCT coefficient makes a dlobatribution
to the entire data stream, assigning less significance tpabiedata is not ob-
vious with these transformations.
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5.7 Lossless vs. Lossy Compression

While lossless compression is able to accurately recartsthe original
data, lossy compression techniques approximate datarstre#hin a certain
error bound. Most lossless compression schemes perfornsteps in se-
guence: the first step generates a statistical model fomih# data, and the
second step uses this model to map input data to bit sequeidesse bit
sequences are mapped in such a way that frequently encedrdata will
produce shorter output than infrequent data. Generalgsergompression
schemes include DEFLATE (employed by gzip, ZIP, PNG, etc2\W (em-
ployed by GIF, compress, etc.), LZMA (employed by 7zip). Tnenary en-
coding algorithms used to produce bit sequences are Hufftodimg (also
used by DEFLATE) and arithmetic coding. Arithmetic codinthieves com-
pression rates close to the best possible, for a particialistical model, which
is given by the information entropy. On the other hand, Haffncompression
is simpler and faster but produces poor results.

Lossless compression techniques, however, are not adefquad number
of reasons: (a) as experimentally found in [39], gzip lossleompression
achieves poor compression (50%) compared to lossy teaobmidb) lossless
compression and decompression are usually more commahyiantensive
than lossy techniques, and (c) indexing cannot be emplayedréhived data
with lossless compression.

6. Summary

In this chapter, we presented a comprehensive overvieweoVvdhous as-
pects of model-based sensor data acquisition and manageRrenarily, the
objectives of the model-based techniques are efficient aleqaisition, han-
dling missing data, outlier detection, data compressiata dggregation and
summarization. We started with acquisition techniques TiknyDB [45], Ken
[12], PRESTO [41]. In particular, we focused on how acqusdil queries are
disseminated in the sensor network using routing trees [A#gn we surveyed
various approaches for sensor data cleaning, includinghpatial-based [73],
probabilistic [21, 63, 52, 65] and declarative [31, 46].

For processing spatial, temporal and threshold queriegjetaled query
processing approaches like MauveDB [18], FunctionDB [@&tticle filter-
ing [33], MIST [5], etc. Here, our primary objective was tondenstrate how
model-based techniques are used for improving variouscespéquery pro-
cessing over sensor data. Lastly, we discussed data caigrdechniques,
like, linear approximation [34, 39, 48], multi-model approations [39, 40,
50] and orthogonal transformations [1, 22, 53, 7].
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All the methods that we presented in this chapter were modstd. They
utilized models — statistical or otherwise — for describiagnplifying or ab-
stracting various components of sensor data acquisitidmsamagement.
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