
Chapter 1

A SURVEY OF MODEL-BASED SENSOR
DATA ACQUISITION AND MANAGEMENT

Saket Sathe
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland

saket.sathe@epfl.ch

Thanasis G. Papaioannou
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland

thanasis.papaioannou@epfl.ch

Hoyoung Jeung
SAP Research
Brisbane, Australia

hoyoung.jeung@sap.com

Karl Aberer
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland

karl.aberer@epfl.ch

Abstract In recent years, due to the proliferation of sensor networks, there has been a
genuine need of researching techniques for sensor data acquisition and manage-
ment. To this end, a large number of techniques have emerged that advocate
model-basedsensor data acquisition and management. These techniques use
mathematical models for performing various, day-to-day tasks involved in man-
aging sensor data. In this chapter, we survey the state-of-the-art techniques for
model-based sensor data acquisition and management. We start by discussing
the techniques for acquiring sensor data. We, then, discussthe application of
models in sensor data cleaning; followed by a discussion on model-based meth-

2

ods for querying sensor data. Lastly, we survey model-basedmethods proposed
for data compression and synopsis generation.

Keywords: model-based techniques, data acquisition, query processing, data cleaning, data
compression.

1. Introduction

In recent years, there has been tremendous growth in the datagenerated
by sensor networks. Equivalently, there are pertinent techniques proposed in
recent literature for efficiently acquiring and managing sensor data. One im-
portant category of techniques that have received significant attention are the
model-based techniques. These techniques use mathematical models for solv-
ing various problems pertaining to sensor data acquisitionand management.
In this chapter, we survey a large number of state-of-the-art model-based tech-
niques for sensor data acquisition and management. Model-based techniques
use various types of models: statistical, signal processing, regression-based,
machine learning, probabilistic, or time series. These models serve various
purposes in sensor data acquisition and management.

It is well-known that many physical attributes, like, ambient temperature or
relative humidity, vary smoothly. As a result of this smoothness, sensor data
typically exhibits the following properties: (a) it is continuous (although we
only have a finite number of samples), (b) it has finite energy or it is band-
limited, (c) it exhibits Markovian behavior or the value at atime instant de-
pends only on the value at a previous time instant. Most model-based tech-
niques exploit these properties for efficiently performingvarious tasks related
to sensor data acquisition and management.

In this chapter, we consider four broad categories of sensordata manage-
ment tasks: data acquisition, data cleaning, query processing, and data com-
pression. These tasks are pictorially summarized in the toyexample shown
in Figure 1.1. From Figure 1.1, it is interesting to note how asingle type
of model (linear) can be used for performing these various tasks. For each
task considered in this chapter, we extensively discuss various, well-researched
model-based solutions. Following is the detailed discussion on the sensor data
management tasks covered in this chapter:

Data Acquisition: Sensor data acquisition is the task responsible for
efficiently acquiring samples from the sensors in a sensor network. The
primary objective of the sensor data acquisition task is to attain energy
efficiency. This objective is driven by the fact that most sensors are
battery-powered and are located in inaccessible locations(e.g., environ-
mental monitoring sensors are sometimes located at high altitudes and
are surrounded by highly inaccessible terrains). In the literature, there

A Survey of Model-Based Sensor Data Acquisition and Management 3

f(t)

data cleaning

(b)

t

v

t1 t2
t

outlier

query processing

(c)

f(t)
v

t1 t2

t

f(t)

t1 t2

t

store
v

data compression

(d)

value

t'

v

t1

data acquisition

(a)

t2

f(t)

Figure 1.1: Various tasks performed by models-based techniques. (a) toim-
prove acquisitional efficiency, a function is fitted to the first three sensor val-
ues, and the remaining values (shown dotted) are not acquired, since they are
within a thresholdδ, (b) data is cleaned by identifying outliers after fitting a
linear model, (c) a query requesting the value at timet′ can be answered us-
ing interpolation, (d) only the first and the last sensor value can be stored as
compressed representation of the sensor values.

are two major types of acquisition approaches: pull-based and push-
based. In the pull-based approach, data is only acquired at auser-defined
frequency of acquisition. On the other hand, in the push-based approach,
the sensors and the base station agree on an expected behavior; sensors
only send data to the base station if the sensor values deviate from such
expected behavior. In this chapter, we cover a representative collection
of model-based sensor data acquisition approaches [2, 12, 17, 16, 18,
27, 28, 41, 66].

Data Cleaning: The data obtained from the sensors is often erroneous.
Erroneous sensor values are mainly generated due to the following rea-
sons: (a) intermittent loss of communication with the sensor, (b) sen-
sor’s battery is discharged, (c) other types of sensor failures, for exam-
ple, snow accumulation on the sensor, etc. Model-based approaches for
data cleaning often use a model to infer the most probable sensor value.
Then the raw sensor value is marked erroneous or outlier if the raw sen-
sor value deviates significantly from the inferred sensor value. Another
important approach for data cleaning is known as declarative data clean-
ing [32, 46, 54]. In this approach, the user registers SQL-like queries
that define constraints over the sensor values. Sensor values are marked
as outliers when these constraints are violated. In addition to these meth-
ods, we also discuss many other data cleaning approaches [31, 73, 23,
21, 52, 65]

Query Processing: Obtaining desired answers, by processing queries
is another important aspect in sensor data management. In this chapter,

4

we discuss the most significant model-based techniques for query pro-
cessing. One of the objectives of these techniques is to process queries
by accessing/generating minimal amount of data [64, 5]. Model-based
methods that access/generate minimal data, and also handlemissing val-
ues in data, use models for creating an abstraction layer over the sen-
sor network [18, 33]. Other approaches model the sensor values by a
hidden Markov model (HMM), associating state variables to the sensor
values. It, then, becomes efficient to process queries over the state vari-
ables, which are less in number as compared to the sensor values [5].
Furthermore, there are approaches that use dynamic probabilistic mod-
els (DPMs) for modeling spatio-temporal evolution of the sensor data
[33, 29]. In these approaches, the estimated DPMs are used for query
processing.

Data Compression: It is well-known that large quantity of sensor data
is being generated by every hour. Therefore, eliminating redundancy
by compressing sensor data for various purposes (like, storage, query
processing, etc.) becomes one of the most challenging tasks. Model-
based sensor data compression proposes a large number of techniques,
mainly from the signal processing literature, for this task[1, 72, 22, 53,
7]. Many approaches assume that the user provides an accuracy bound,
and based on this bound the sensor data is approximated, resulting in
compressed representations of the data [24]. A large numberof other
techniques exploit the fact that sensor data is often correlated; thus, this
correlation can be used for approximating one data stream with another
[24, 67, 49, 3].

This chapter is organized as follows. In Section 2, we define the preliminar-
ies that are assumed in the rest of the chapter, followed by a discussion of im-
portant techniques for sensor data acquisition. In Section3, we survey model-
based sensor data cleaning techniques, both on-line and archival. Model-based
query processing techniques are discussed in Section 4. In Section 5, model-
based compression techniques are surveyed. At the end, Section 6 contains a
summary of the chapter along with conclusions.

2. Model-Based Sensor Data Acquisition

In this section, we discuss various techniques for model-based1 sensor data
acquisition. Particularly, we discuss pull- and push-based sensor data acquisi-

1We usemodel-basedandmodel-driveninterchangeably.

A Survey of Model-Based Sensor Data Acquisition and Management 5

tion methods. In general, model-based sensor data acquisition techniques are
designed for tackling the following challenges:

Energy Consumption: Obtaining values from a sensor requires high amount
of energy. In contrast, since most sensors are battery-powered, they have lim-
ited energy resources. Thus, a challenging task is to minimize the number of
samples obtained from the sensors. Here, models are used forselecting sen-
sors, such that user queries can be answered with reasonableaccuracy using
the data acquired from the selected sensors [2, 17, 16, 27, 28].

Communication Cost: Another energy-intensive task is to communicate the
sensed values to the base station. There are, therefore, several model-based
techniques proposed in the literature for reducing the communication cost, and
maintaining the accuracy of the sensed values [41, 18, 66, 12].

Table 1.1:Summary of notations.
Symbol Description

S Sensor network consisting of sensorssj , wherej = (1, . . . , m).
sj Sensor identifier for a sensor inS.
vij Sensor value observed by the sensorsj at timeti, such thatvij ∈ R.
vi Row vector of all the sensor values observed at timeti, such thatvi ∈ R

m.
Vij Random variable associated with the sensor valuevij .

2.1 Preliminaries

We start by describing our model of a sensor network and establishing the
notation that is utilized in the rest of the chapter. The sensor network consid-
ered in this chapter consists of a set of stationary sensorsS = {sj|1 ≤ j ≤ m}.
The value sensed by a sensorsj at time ti is denoted asvij, which is a real
number. In addition, note that we usesj, wherej = (1, . . . ,m), as sensor
identifiers. In certain cases the sampling interval could beuniform, that is,
ti+1 − ti is same for all the values ofi ≥ 1. In such cases, the time stampsti
become irrelevant, and it is sufficient to use only the indexi for denoting the
time axis.

In this chapter, we assume a scenario where the sensors are used for envi-
ronmental monitoring. We assume that all the sensors are monitoring/sensing
only one environmental attribute, such as, ambient temperature2. As discussed
in Section 1, we assume that the environmental attribute we monitor is suf-
ficiently smooth and continuous. If necessary for renderingthe discussion
complete and convenient, we will introduce other attributes being monitored
by the sensors. But, in most cases, we restrict ourselves to using only ambient

2We useambient temperatureandtemperatureinterchangeably.

6

sensor_values

vijyjxjsjtii

Figure 1.2: Database table containing the sensor values. The position of the
sensorsj is denoted as(xj , yj). Since the sensors are assumed to be stationary,
the position can also be stored using a foreign-key relationship betweensj and
(xj , yj). But, for simplicity, we assume that thesensor values table is in
a denormalized form.

temperature. Figure 1.2 shows a conceptual representationof the sensor values
in a form of a database table, denoted assensor values.

2.2 The Sensor Data Acquisition Query

Sensor data acquisition can be defined as the processes of creating and con-
tinuously maintaining thesensor values table. In existing literature, nat-
urally, many techniques have been proposed for creating andmaintaining the
sensor values table. We shall discuss these techniques briefly, describing
their important characteristics and differences with other techniques. We use
the sensor data acquisition query shown in Query 1.1 for discussing how dif-
ferent sensor data acquisition approaches process such a query. Query 1.1 is a
query that triggers the acquisition of ten sensor valuesvij from the sensorssj

at a sampling interval of one second. Moreover, Query 1.1, isthe typical sen-
sor data acquisition query that is used by many methods for collecting sensor
data.

SELECT sj , vij FROM sensor values SAMPLE INTERVAL 1s FOR 10s

Query 1.1:Sensor data acquisition query.

2.3 Pull-Based Data Acquisition

Broadly, there are two major approaches for data acquisition: pull-based
and push-based (refer Figure 1.3). In the pull-based sensordata acquisition
approach, the user defines the interval and frequency of dataacquisition. Pull-
based systems only follow the user’s requirements, and pullsensor values as
defined by the queries. For example, using theSAMPLE INTERVAL clause

A Survey of Model-Based Sensor Data Acquisition and Management 7

base station
sensor network

s1

s2 s4

s3 s7

s6

s5

s8

s10

s9
user

query
sensor values

expected behavior

deviated sensor values

query

sensor valuesenergy

efficient

pull-based

push-based

Figure 1.3:Push- and pull-based methods for sensor data acquisition.

of Query 1.1, users can specify the number of samples and the frequency at
which the samples should be acquired.

In-Network Data Acquisition. This approach of sensor data acqui-
sition is proposed by TinyDB [45, 44, 43], Cougar [69] and TiNA [58]. These
approaches tightly link query processing and sensor data acquisition. Due to
the lack of space, we shall only discuss TinyDB in this subsection.

TinyDB refers to its in-network query processing paradigm asAcquisitional
Query Processing(ACQP). Let us start by discussing how ACQP processes
Query 1.1. The result of Query 1.1 is similar to the table shown in Figure 1.2.
The only difference, as compared to Figure 1.2, is that the result of Query 1.1
contains10 ×m rows. The naı̈ve method of executing Query 1.1 is to simul-
taneously poll each sensor for its value at the sampling interval and for the
duration specified by the query. This method may not work due to limited
range of radio communication between individual sensors and the base station.

Data Acquisition using Semantic Overlays: TinyDB proposes a tree-based
overlay that is constructed using the sensorsS. This tree-based overlay is used
for aggregating the query results from the leaf nodes to the root node. The
overlay network is especially built for efficient data acquisition and query pro-
cessing. TinyDB refers to its tree-based overlay network asSemantic Routing
Trees(SRTs). A SRT is constructed by flooding the sensor network with the
SRT build request. This request includes the attribute (ambient temperature),
over which the SRT should be constructed. Each sensorsj, which receives
the build request, has several choices for choosing its parent: (a) if sj has no
children, which is equivalent to saying that no other sensorhas chosensj as its
parent, thensj chooses another sensor as its parent and sends its current value
vij to the chosen parent in aparent selection message, or (b) if sj has children,
it sends a parent selection message to its parent indicatingthe range of am-
bient temperature values that its children are covering. Inaddition, it locally
stores the ambient temperature values from its children along with their sensor
identifiers.

8

Next, when Query 1.1 is presented to the root node of the SRT, it forwards
the query to its children and prepares for receiving the results. At the same
time, the root node also starts processing the query locally(refer Figure 1.4).
The same procedure is followed by all the intermediate sensors in the SRT. A
sensor that does not have any children, processes the query and forwards the
value ofvij to its parent. All the collected sensor valuesvij are finally for-
warded to the root node, and then to the user, as a result of thequery. This
completes the processing of the sensor data acquisition query (Query 1.1). The
SRT, moreover, can also be used for optimally processing aggregation, thresh-
old, and event based queries. We shall return to this point later in Section 4.1.

1
s

5
s

2
s

4
s

3
s

SELECT sj , vij

FROM sensor_values

s5 vi5

s1 vi1

s5 vi5

s3 vi3

s3 vi3

s4 vi4

s1 vi1

s5 vi5

s3 vi3

s4 vi4

s2 vi2

Figure 1.4:Toy example of a Semantic Routing Tree (SRT) and Acquisitional
Query Processing (ACQP) over a sensor network with five sensors. Dotted
arrows indicate the direction of query response. A given sensor appends its
identifiersj and valuevij to the partial result, which is available from its sub-
tree.

Multi-Dimensional Gaussian Distributions. The Barbie-Q
(BBQ) system [17, 16], on the other hand, employs multi-variate Gaussian
distributions for sensor data acquisition. BBQ maintains amulti-dimensional
Gaussian probability distribution over all the sensors inS. Data is acquired
only as much as it is required to maintain such a distribution. Sensor data ac-
quisition queries specify certain confidence that they require in the acquired
data. If the confidence requirement cannot be satisfied, thenmore data is
acquired from the sensors, and the Gaussian distribution isupdated to sat-
isfy the confidence requirements. The BBQ system models the sensor values
using a multi-variate Gaussian probability density function (pdf) denoted as
p(Vi1, Vi2, . . . , Vim), whereVi1, Vi2, . . . , Vim are the random variables associ-
ated with the sensor valuesvi1, vi2, . . . , vim respectively. This pdf assigns a
probability for each possible assignment of the sensor valuesvij . Now, let us
discuss how the BBQ system processes Query 1.1.

A Survey of Model-Based Sensor Data Acquisition and Management 9

In BBQ, the inferred sensor value of sensorsj, at each timeti, is defined
as the mean value ofVij, and is denoted as̄vij. For example, at timet1, the
inferred sensor values of the ambient temperature arev̄11, v̄12, . . . , v̄1m. The
BBQ system assumes that queries, like Query 1.1, provide twoadditional con-
straints: (i) error boundǫ, for the values̄vij , and (ii) the confidence1 − δ

with which the error bound should be satisfied. Admittedly, these additional
constraints are for controlling the quality of the query response.

Suppose, we already have a pdf before the first time instancet1, then the
confidence of the sensor valuev1j is defined as the probability of the random
variableV1j lying in between̄v1j − ǫ andv̄1j + ǫ, and is denoted asP (V1j ∈
[v̄1j − ǫ, v̄1j + ǫ]). If the confidence is greater than1− δ, then we can provide
a probably approximately correct value for the temperature, without spending
energy in obtaining a sample from sensorsj. On the other hand, if a sensor’s
confidence is less than1 − δ, then we should obtain one or more samples
from the sensor (or other correlated sensors), such that theconfidence bound
is satisfied. In fact, it is clear that there could be potentially many sensors for
which the confidence bound may not hold.

As a solution to this problem, the BBQ system proposes a procedure to
chose the sensors for obtaining sensor values, such that theconfidence bound
specified by the query is satisfied. First, the BBQ system samples from all the
sensorsS at time t1, then it computes the confidenceBj(S) that it has in a
sensorsj as follows:

Bj(S) = P (V1j ∈ [v̄1j − ǫ, v̄1j + ǫ]|v1), (1.1)

wherev1 = (v11, v12, . . . , v1m) is the row vector of all the sensor values at
time t1. Second, for choosing sensors to sample, the BBQ system poses an
optimization problem of the following form:

min
So⊆S andB(So)≥1−δ.

C(So), (1.2)

whereSo is the subset of sensors that will be chosen for sampling,C(So) and
B(So) = 1

|So|

∑

j:sj∈So
Bj(S) are respectively the total cost (or energy re-

quired) and average confidence for sampling sensorsSo. Since the problem
in Eq. (1.2) is NP-hard, BBQ proposes a greedy solution to solve this prob-
lem. Details of this greedy algorithm can be found in [17]. Byexecuting the
proposed greedy algorithm, BBQ selects the sensors for sampling, then it up-
dates the Gaussian distribution, and returns the mean values v̄11, v̄12, . . . , v̄1m.
These mean values represent the inferred values of the sensors at timet1. This
operation when performed ten times at an interval of one second generates the
result of the sensor data acquisition query (Query 1.1).

10

2.4 Push-Based Data Acquisition

Both, TinyDB and BBQ, are pull-based in nature: in these systems the cen-
tral server/base station decides when to acquire sensor values from the sensors.
On the other hand, in push-based approaches, the sensors autonomously decide
when to communicate sensor values to the base station (referFigure 1.3). Here,
the base station and the sensors agree on an expected behavior of the sensor
values, which is expressed as a model. If the sensor values deviate from their
expected behavior, then the sensors communicate only the deviated values to
the base station.

PRESTO. The Predictive Storage (PRESTO) [41] system is an example
of the push-based data acquisition approach. One of the mainarguments that
PRESTO makes against pull-based approaches is that due to the pull strategy,
such approaches will be unable to observe any unusual or interesting patterns
between any two pull requests. Moreover, increasing the pull frequency for
better detection of such patterns, increases the overall energy consumption of
the system.

The PRESTO system contains two main components: PRESTO proxies and
PRESTO sensors. As compared to the PRESTO sensors, the PRESTO proxies
have higher computational capability and storage resources. The task of the
proxies is to gather data from the PRESTO sensors and to answer queries posed
by the user. The PRESTO sensors are assumed to be battery-powered and
remotely located. Their task is to sense the data and transmit it to PRESTO
proxies, while archiving some of it locally on flash memory.

Now, let us discuss how PRESTO processes the sensor data acquisition
query (Query 1.1). For answering such a query, the PRESTO proxies always
maintain a time-series prediction model. Specifically, PRESTO maintains a
seasonal ARIMA (SARIMA) model [60] of the following form foreach sen-
sor:

vij = v(i−1)j + v(i−L)j − v(i−L−1)j + θei−1 − Θei−L + θΘei−L−1, (1.3)

whereθ andΘ are parameters of the SARIMA model,ei are the prediction
errors andL is known as the seasonal period. For example, while monitoring
temperature,L could be set to one day, indicating that the current temperature
(vij) is related to the temperature yesterday at the same time (v(i−L)j) and a
previous time instant (v(i−L−1)j). In short, the seasonal periodL allows us to
model the periodicity that is inherent in certain types of data.

In the PRESTO system the proxies estimate the parameters of the model
given in Eq. (1.3), and then transmit these parameters to individual PRESTO
sensors. The PRESTO sensors use these models to predict the sensor valuêvij ,
and only transmit the raw sensor valuevij to the proxies when the absolute dif-
ference between the predicted sensor value and the raw sensor value is greater

A Survey of Model-Based Sensor Data Acquisition and Management 11

than a user-defined thresholdδ. This task can be summarized as follows:

|vij − v̂ij | > δ, transmitvij to proxy. (1.4)

The PRESTO proxy also provides a confidence interval for eachpredicted
value it computes using the SARIMA model. Like BBQ (refer Section 2.3.0),
this confidence interval can also be used for query processing, since it rep-
resents an error bound on the predicted sensor value. Similar to BBQ, the
PRESTO proxy queries the PRESTO sensors only when the desired confidence
interval, specified by the query, could not be satisfied with the values stored at
the PRESTO proxy. In most cases, the values stored at the proxy can be used
for query processing, without acquiring any further valuesfrom the PRESTO
sensors. The only difference between PRESTO and BBQ is that,PRESTO
uses a different measure of confidence as compared to BBQ. Further details of
this confidence interval can be found in [41].

Ken. For reducing the communication cost, the Ken [12] framework
employs a similar strategy as PRESTO. Although there is a keydifference be-
tween Ken and PRESTO. PRESTO uses a SARIMA model; this model only
takes into account temporal correlations. On the other hand, Ken uses a dy-
namic probabilistic model that takes into account spatial and temporal correla-
tions in the data. Since a large quantity of sensor data is correlated spatially,
and not only temporally, Ken derives advantage from such spatio-temporal cor-
relation.

The Ken framework has two types of entities,sinkandsource. Their func-
tionalities and capabilities are similar to the PRESTO proxy and the PRESTO
sensor respectively. The only difference is that the PRESTOsensor only rep-
resents a single sensor, but a source could include more thanone sensor or a
sensor network. The sink is the base station to which the sensor valuesvij are
communicated by the source (refer Figure 1.3).

The fundamental idea behind Ken is that both, source and sink, maintain
the same dynamic probabilistic model of data evolution. Thesource only com-
municates with the sink when the raw sensor values deviate beyond a certain
bound, as compared to the predictions from the dynamic probabilistic model.
In the meantime, the sink uses the sensor values predicted bythe model.

As discussed before, Ken uses a dynamic probabilistic modelthat consid-
ers spatio-temporal correlations. Particularly, its dynamic probabilistic model
computes the following pdf at the source:

p(V(i+1)1, . . . , V(i+1)m|v1, . . . , vi) =

∫

p(V(i+1)1, . . . , V(i+1)m|Vi1, . . . , Vim)

p(Vi1, . . . , Vim|v1, . . . , vi)dVi1 . . . dVim.

(1.5)

12

This pdf is computed using the observations that have been communicated
to the sink; the values that are not communicated to the sink are ignored by
the source, since they do not affect the model at the sink. Next, each sensor
contained in the source computes the expected sensor value using Eq. (1.5) as
follows:

v̄(i+1)j =

∫

V(i+1)jp(V(i+1)1, . . . , V(i+1)m)dV(i+1)1 . . . dV(i+1)m. (1.6)

The source does not communicate with the sink if|v̄(i+1)j − v(i+1)j | < δ,
whereδ is a user-defined threshold. If this condition is not satisfied, the source
communicates to the sink the smallest number of sensor values, such that theδ
threshold would be satisfied. Similarly, if the sink does notreceive any sensor
values from the source, it computes the expected sensor valuesv̄(i+1)j and uses
them as an approximation to the raw sensor values. If the sinkreceives a few
sensor values form the source, then, before computing the expected values, the
sink updates its dynamic probabilistic model.

A Generic Push-Based Approach. The last push-based approach
that we will survey is a generalized version of other push-based approaches
[38]. This approach is proposed by Silbersteinet al. [61]. Like other push-
based approaches, the base station and the sensor network agree on an expected
behavior, and, as usual, the sensor network reports values only when there is a
substantial deviation from the agreed behavior. But, unlike other approaches,
the definition of expected behavior proposed in [61] is more generic, and is not
limited to a thresholdδ.

In this approach a sensor can either be an updater (one who acquires or
forwards sensor values) or an observer (one who receives sensor values). A
sensor node can be both, updater and observer, depending on whether it is on
the boundary of the sensor network or an intermediate node. The updaters and
the observers maintain a model encoding functionfenc and a decoding function
fdec. These model encoding/decoding functions define the agreedbehavior of
the sensor values. The updater uses the encoding function toencode the sensor
valuevij into a transmission messagegij , and transmits it to the observer.

The observer, then, uses the decoding functionfdec to decode the message
gij and construct̂vij . If the observer finds thatvij has not changed signifi-
cantly, as defined by the encoding function, then the observer transmits anull
symbol. Anull symbol indicates that the sensor value issuppressedby the
observer. Following is an example of the encoding and decoding functions
[61]:

fenc(vij , vi′j) =

{

gij = vij − vi′j , if |vij − vi′j | > δ;

gij = null, otherwise.
(1.7)

A Survey of Model-Based Sensor Data Acquisition and Management 13

fdec(gij , v̂(i−1)j) =

{

v̂(i−1)j + gij , if gij 6= null;

v̂(i−1)j , if gij = null.
(1.8)

In the above example, the encoding functionfenc computes the difference be-
tween the model predicted sensor valuevi′j and the raw sensor valuevij . Then,
this difference is transmitted to the observer only if it is greater thanδ, other-
wise thenull symbol is transmitted. The decoding functionfdec decodes the
sensor valuêv(i−1)j using the messagegij .

The encoding and decoding functions in the above example arepurposefully
chosen to demonstrate how theδ threshold approach can be replicated by these
functions. More elaborate definitions of these functions, which are used for
encoding complicated behavior, can be found in [61].

3. Model-Based Sensor Data Cleaning

A well-known characteristic of sensor data is that it is uncertain and erro-
neous. This is due to the fact that sensors often operate withdischarged batter-
ies, network failures, and imprecision. Other factors, such as low-cost sensors,
freezing or heating of the casing or measurement device, accumulation of dirt,
mechanical failure or vandalism (from humans or animals) heavily affect the
quality of the sensor data [31, 73, 23]. This may cause a significant prob-
lem with respect to data utilization, since applications using erroneous data
may yield unsound results. For example, scientific applications that perform
prediction tasks using observation data obtained from cheap and less-reliable
sensors may produce inaccurate prediction results.

To address this problem, it is essential to detect and correct erroneous val-
ues in sensor data by employingdata cleaning. The data cleaning task typi-
cally involves complex processing of data [71, 30]. In particular, it becomes
more difficult for sensor data, since true sensor values corresponding to erro-
neous data values are generally unobservable. This has led to a new approach –
model-based data cleaning. In this approach, the most probable sensor values
are inferred using well-established models, and then anomalies are detected by
comparing raw sensor values with the corresponding inferred sensor values. In
the literature there are a variety of suggestions for model-based approaches for
sensor data cleaning. This section describes the key mechanisms proposed by
these approaches, particularly focusing on the models usedin the data cleaning
process.

3.1 Overview of Sensor Data Cleaning System

A system for cleaning sensor data generally consists of fourmajor compo-
nents: user interface, stream processing engine, anomaly detector, anddata
storage(refer Figure 1.5). In the following, we describe each component.

14

ti

10:2

11:2

:

sensors

i

2

1

:

vij

10.1

10.9

:

stream processing engine

raw sensor data cleaned data

(materialized views)

user interface

data storage

anomaly detector

ti

10:2

11:2

:

i

2

1

:

vij

fixed

10.9

:

of
fli

ne

online

Figure 1.5:Architecture of sensor data cleaning system.

User Interface: The user interface plays two roles in the data cleaning process.
First, it takes all necessary inputs from users to perform data cleaning, e.g.,
name of sensor data and parameter settings for models. Second, the results of
data cleaning, such as ‘dirty’ sensor values captured by theanomaly detector,
are presented using graphs and tables, so that users can confirm whether each
candidate of such dirty values is an actual error. The confirmed results are then
stored to (or removed from) the underlying data storage or materialized views.

Anomaly Detector: The anomaly detector is a core component in sensor data
cleaning. It uses models for detecting abnormal data values. The anomaly
detector works in online as well as offline mode. In the onlinemode, whenever
a new sensor value is delivered to the stream processing engine, the dirtiness
of this value is investigated and the errors are filtered out instantly. In the
offline mode, the data is cleaned periodically, for instance, once per day. In the
following subsections, we will review popular models used for online anomaly
detection.

Stream Processing Engine: The stream processing engine maintains stream-
ing sensor data, while serving as a main platform where the other system com-
ponents can cooperatively perform data cleaning. The anomaly detector is typ-
ically embedded into the stream processing engine, it may also be implemented
as a built-in function on database systems.

Data Storage: The data storage maintains not only sensor values, but also the
corresponding cleaned data, typically in materialized views. This is because
applications on sensor networks often need to repeatedly perform data cleaning
over the same data using different parameter settings for the models, especially
when the previous parameter settings turn out to be inappropriate later. There-

A Survey of Model-Based Sensor Data Acquisition and Management 15

fore, it is important for the system to store cleaned data in database views with-
out changing the original data, so that data cleaning can be performed again at
any point of time (or time interval) as necessary.

3.2 Models for Sensor Data Cleaning

This subsection reviews popular models that are widely usedin the sensor
data cleaning process.

Regression Models. As sensor values are a representation of physical
processes, it is naturally possible to uncover the following properties: conti-
nuity of the sampling processes and correlations between different sampling
processes. In principle, regression-based models exploiteither or both of these
properties. Specifically, they first compute the dependencyfrom one variable
(e.g., time) to another (e.g., sensor value), and then consider the regression
curves as standards over which the inferred sensor values reside. The two most
popular regression-based approaches use polynomial and Chebyshev regres-
sion for cleaning sensor values.

Polynomial Regression: Polynomial regression finds the best-fitting curve
that minimizes the total difference between the curve and each raw sensor value
vij at timeti. Given a degreed, polynomial regression is formally defined as:

vij = c+ α1 · ti + · · · + αd · t
d
i , (1.9)

wherec is a constant andα1, . . . , αd are regression coefficients.
Polynomial regression with high degrees approximate giventime series with

more sophisticated curves, resulting in theoretically more accurate description
of the raw sensor values. Practically, however, low-degreepolynomials, such
as constant (d = 0) and linear (d = 1), also perform satisfactorily. In addition,
low-degree polynomials can be more efficiently constructedas compared to
high-degree polynomials. A (weighted) moving average model [73] is also
regarded as a polynomial regression.

Chebyshev Regression: Chebyshev regression is another popular model class
for fitting sensor values, since they can quickly compute near-optimal approx-
imations for given time series. Suppose that time valuesti vary within a range
[min(ti),max(ti)]. We, then, obtain normalized time valuest′i within a range
[−1, 1], by using the following transformation functionf(ti) and its inverse
transformation functionf−1(t′i) as follows:

f(ti) =

(

ti −
max(ti) + min(ti)

2

)

·
2

max(ti) − min(ti)
, (1.10)

f−1(t′i) =

(

t′i ·
max(ti) − min(ti)

2

)

+
max(ti) + min(ti)

2
. (1.11)

16

Figure 1.6:Detected anomalies based on 2-degree Chebyshev regression.

Next, given a degreed, Chebyshev polynomial is defined as:

vij = f−1(cos(d · cos−1(f(ti)))).

Figure 1.6 illustrates a data cleaning process using degree-2 Chebyshev
polynomials. Here, the raw sensor values are plotted as green curves, while
the inferred values, obtained by fitting a Chebyshev polynomials, are overlaid
by black curves. The anomaly points are then indicated by theunderlying red
histograms as well as red circles.

Probabilistic Models. In sensor data cleaning, inferring sensor val-
ues is perhaps the most important task, since systems can then detect and clean
dirty sensor values by comparing raw sensor values with the corresponding
inferred sensor values. Figure 1.7 shows an example of the data cleaning pro-
cess using probabilistic models. At timeti = 6, the probabilistic model infers
a probability distribution using the previous valuesv2j , . . . , v5j in the sliding
window. The expected valuēv6j (e.g., the mean of the Gaussian distribution in
the future) is then considered as the inferred sensor value for sensorsj.

Next, the anomaly detector checks whether the raw sensor valuev6j resides
within a reasonably accurate area. This is done in order to check whether the
value isnormal. For instance, the3σ range can cover 99.7 % of the density
in the figure, wherev6j is supposed to appear. Thus, the data cleaning process
can consider thatv6j is not an error. Atti = 7, the window slides and now

A Survey of Model-Based Sensor Data Acquisition and Management 17

contains raw sensor valuesv3j , . . . , v6j . By repeating the same process, the
anomaly detector findsv7j resides out of the error bound (3σ range) in the
inferred probability distribution, and is identified as an anomaly [57].

anomaly

va
lu

e

sliding window

3

ti = 6

probability
distribution inferred

expected value

3

ti = 7
time

v
5j v

6j

v
6j

v
3j

v
6j

v
7j

v
7j

!
v

2j

Figure 1.7:An example of data cleaning based on a probabilistic model.

A vast body of research work has utilized probabilistic models for comput-
ing inferred values. TheKalman filter is perhaps one of the most common
probabilistic models to compute inferred values corresponding to raw sensor
values. The Kalman filter is a stochastic and recursive data filtering algorithm
that models the raw sensor valuevij as a function of its previous value (or
state)v(i−1)j as follows:

vij = Av(i−1)j +Bui + wi,

whereA andB are matrices defining the state transition from timeti−1 to time
ti, ui is the time-varying input at timeti, andwi is the process noise drawn
from a zero mean multi-variate Gaussian distribution. In [63], the Kalman filter
is used for detecting erroneous values, as well as inter/extrapolating missing
sensor values. Jainet al. [29] also use the Kalman filter for filtering possible
dirty values.

Similarly, Elnahrawy and Nath [21] proposed to use Bayes’ theorem to es-
timate a probability distributionPij at timeti from raw sensor valuesvij, and
associate them with an error model, typically a normal distribution. Built on
the same principle, a neuro-fuzzy regression model [52] anda belief propa-
gation model based on Markov chains [13] were used to identify anomalies.
Tranet al. [65] propose a method to infer missing or erroneous values inRFID
data. All the techniques for inferring sensor values also enable quality-aware
processing of sensor data streams [36, 37], since inferred sensor values can
serve as the bases for indicating the quality or precision ofthe raw sensor val-
ues.

18

Outlier Detection Models. An outlier is a sensor value that largely
deviates from the other sensor values. Obviously, outlier detection is closely
related to the process of sensor data cleaning. The outlier-detection techniques
are well-categorized in the survey studies of [51, 8].

In particular, some of the outlier detection methods focus on sensor data
[59, 71, 15]. Zhanget al. [71] offer an overview of such outlier detection
techniques for sensor network applications. Deligiannakis et al. [15] consider
correlation, extended Jaccard coefficients, and regression-based approximation
for model-based data cleaning. Shenet al. [59] propose to use a histogram-
based method to capture outliers. Subramaniamet al. [62] introduce distance-
and density-based metrics that can identify outliers. In addition, the ORDEN
system [23] detects polygonal outliers using the triangulated wireframe surface
model.

3.3 Declarative Data Cleaning Approaches

From the perspective of using a data cleaning system, supporting a declar-
ative interface is important since it allows users to easilycontrol the system.
This idea is reflected in a wide range of prior work that proposes SQL-like
interfaces for data cleaning [32, 46, 54]. These proposals hide complicated
mechanisms of data processing or model utilization from theusers, and facili-
tate data cleaning in sensor network applications.

More specifically, Jefferyet al. [31, 32] divide the data cleaning process
into five tasks:Point, Smooth, Merge, Arbitrate, andVirtualize. These tasks are
then supported within a database system. For example, the SQL statement in
Query 1.2 performs anomaly detection within a spatial granule by determining
the average of the sensor values from different sensors in the same proximity
group. Then, individual sensor values are rejected if they are outside of one
standard deviation from the mean.

As another approach, Raoet al. [54] focus on a systemic solution, based
on rewriting queries using a set of cleansing rules. Specifically, the system
offers the rule grammar shown in Figure 1.8 to define and execute various data
cleaning tasks. Unlike the prior relational database approaches, Mayfieldet al.

DEFINE [rule name]
ON [table name]
FROM [table name]
CLUSTER BY [cluster key]
SEQUENCE BY [sequence key]
AS [pattern]
WHERE [condition]
ACTION [DELETE | MODIFY | KEEP]

Figure 1.8:An example of anomaly detection using a SQL statement.

A Survey of Model-Based Sensor Data Acquisition and Management 19

SELECT spatial granule, AVG(temp)
FROM data s [Range By 5 min]

(SELECT spatial granule, avg(temp) as avg,
stdev(temp) as stdev
FROM data [Range By 5 min]) as a

WHERE a.spatial granule = s.spatial granule
AND a.avg + (2*a.stdev) < s.temp
AND a.avg - (2*a.stdev) > s.temp

Query 1.2:An example of anomaly detection using a SQL statement.

[46] model data as a graph consisting of nodes and links. They, then, provide
an SQL-based, declarative framework that enables data owners to specify or
discover groups of attributes that are correlated, and apply statistical methods
that validate and clean the sensor values using such dependencies.

4. Model-Based Query Processing

In this section we elaborate another important task in sensor data manage-
ment – query processing. We primarily focus on in-network and centralized
query processing approaches. We consider different queries assuming the sen-
sor network described in Section 2.1, and then discuss how each approach pro-
cesses these queries. In Section 2, however, we followed an approach where
we chose a singe query (i.e., Query 1.1) and demonstrated howdifferent tech-
niques processed this query. On the contrary, in this section, we chose different
queries for all the approaches, and then discuss these approaches along with
the queries. We follow this procedure since, unlike Section2, the assumptions
made by each query processing technique are different. Thus, for highlight-
ing the impact of these assumptions and simplifying the discussion, we select
different queries for each approach.

4.1 In-Network Query Processing

In-network query processing first builds an overlay network(like, the SRT
discussed in Section 2.3.0). Then, the overlay network is used for increasing
the efficiency of aggregating sensor values and processing queries. For in-
stance, while processing a threshold query, parent nodes send the query to the
child nodes only when the query threshold condition overlaps with the range of
sensor values contained in the child nodes, which is stored in the parent node’s
local memory.

Consider the threshold query given in Query 1.3. Query 1.3 requests the
sensor identifiers of all the sensors that have sensed a temperature greater than
10◦C at the current time instance. Before answering this query,we assume
that we have already constructed a SRT as described in Section 2.2 (refer Fig-

20

ure 1.4). Query 1.3 is sent by the root node of the SRT to its children that are
a part of the query response. The child nodes check whether the sensor value
they have sensed is greater than10◦C. If the sensor value is greater than10◦C
at a child node, then that child node appends its sensor identifier to the query
response. The child node, then, forwards the query to its children and waits
for their response. Once all the children of a particular node have responded,
then that node forwards the response of its entire sub-tree to its parent. In
the end, the root node receives all the sensor identifierssj that have recorded
temperature greater than10◦C.

SELECT sj FROM sensor values WHERE vij > 10◦C AND ti == NOW()

Query 1.3:Return the sensor identifierssj wherevij > 10◦C.

4.2 Model-Based Views

The MauveDB [18] approach proposes standard database views[19] as an
abstraction layer for processing queries. These views are maintained in a form
of a regression model; thus they are calledmodel-basedviews. The main ad-
vantage of this approach is that the model-based view can be incrementally
updated as fresh sensor values are obtained from the sensors. Furthermore,
incremental updates is an attractive feature, since such updates are computa-
tionally efficient.

Before processing any queries in MauveDB, we have to first create a model-
based view. The query for creating a model-based view is shown in Query 1.4.
The model-based view created by this query is calledRegModel. RegModel
is a regression model in which the temperature is the dependent variable and
the sensor position(xj , yj) is an independent variable (refer Figure 1.9). Note
thatRegModel is incrementally updated by MauveDB. At timet1 values from
sensorss1, s3 and at timet2 the value from sensors2 are respectively used to
update the view. The view update mechanism exploits the factthat regression
functions can be updated. Further details regarding the update mechanism can
be found in [18].

CREATE VIEW RegModelAS FIT v OVER x2, xy, y2, x, y

TRAINING DATA SELECT xj , yj , vij FROM sensor values
WHERE ti > tstart AND ti < tend

Query 1.4:Model-based view creation query.

Once this step is performed many types of queries can be evaluated using
theRegModel view. For instance, consider Query 1.5. MauveDB evaluates
this query by interpolating the value of temperature at fixedintervals on the

A Survey of Model-Based Sensor Data Acquisition and Management 21

x- and y-axis; this is similar to database view materialization [19]. Then the
positions(x, y) where the interpolated temperature value is greater than10◦C
are returned.

Admittedly, although updating the model-based view is efficient, but for
processing queries the model-based view should be materialized at a certain
fixed set of points. This procedure produces a large amount ofoverhead when
the number of independent variables is large, since it dramatically increases
the number of points where the view should be materialized.

SELECT x, y FROM RegModelWHERE v > 10◦C

Query 1.5:Querying model-based views.

4.3 Symbolic Query Evaluation

This approach is proposed by the FunctionDB [64] system. FunctionDB,
like MauveDB, also interpolates the values of the dependentvariable, and then
uses the interpolated values for query processing.

As discussed before, the main problem with value interpolation is that the
number of points, where the sensor values should be interpolated, increase dra-
matically as a function of the number of independent variables. As a solution
to this problem, FunctionDB symbolically executes the filter (for example, the
WHERE clause in Query 1.5) and obtains feasible regions of the independent
variables. These feasible regions are the regions that include the exact response
to the query, at the same time contain a significantly low number of values to
interpolate. FunctionDB evaluates the query by interpolating values only in
the feasible regions, followed by a straightforward evaluation of the query.

t1 t2

model-based

views

10
20

40

10
20

50

10
20

40

10
20

50

s1

s2 s3

s1

s2 s3
v11

v13

v22

-- sensors -- sensor values

model-based

views are

continuously

updated
time

Figure 1.9: Example of theRegModel view with three sensors.RegModel
is incrementally updated as new sensor values are acquired.

22

Moreover, FunctionDB treats the temperature of the sensorsj as a contin-
uous function of timefj(t), instead of treating it as discrete values sampled
at time stampsti. An example of a query in the FunctionDB framework is
given in Query 1.6. This query returns the time valuest betweentstart and
tend where the temperature of the sensors1 is greater than10◦C. Note that the
time valuest are not necessarily the time stampsti where a particular sensor
value was recorded.

SELECT t WHERE f1(t) > 10◦C AND t > tstart AND t < tend GRID t 1s

Query 1.6:Continuous threshold query.

For defining the values of the time axist (or any continuous variable), Func-
tionDB proposes theGRID operator. TheGRID operator specifies the interval
at which the functionf1(t) should be interpolated between timetstart andtend.
For instance,GRID t 1s indicates that the time axis should be interpolated
at one second intervals between timetstart and tend. To process Query 1.6,
FunctionDB first symbolically executes theWHERE clause and obtains the fea-
sible regions of the time axis (independent variable). Then, using theGRID
operator, it generates time stampsTI in the feasible regions. The sensor value
is interpolated at the time stampsTI using regression functions. Lastly, the
query is processed on these interpolated values, and time stampsT ′

I ⊆ TI

where the temperature is greater than10◦C are returned.

4.4 Processing Queries over Uncertain Data

In this form of query processing the assumption is that sensor data is in-
herently uncertain. This uncertainty can arise due to various factors: loss of
calibration over time, faulty sensors, unsuitable environmental conditions, low
sensor accuracy, etc. Thus, the approaches that treat sensor data as uncertain,
assume that each sensor value is associated with a random variable, and is
drawn from a distribution. In this subsection, we discuss two such methods
that model uncertain data by either a dynamic probabilisticmodel or a static
probability distribution.

Dynamic Probabilistic Models. Dynamic probabilistic models
(DPMs) are proposed for query processing in [33, 29]. These models continu-
ously estimate a probability distribution. The estimated probability distribution
is used for query processing. Mainly, there are two types of models that are
frequently used for estimating dynamic probability distributions: particle fil-
ters and Kalman filters. Particle filters are generalized form of Kalman filters.
Since we have already discussed Kalman filters in Section 3.2, here we will
focus on particle filtering.

A Survey of Model-Based Sensor Data Acquisition and Management 23

Consider a single sensor, says1, the particle filtering approach [4], at each
time instantti, estimates and storespweighted tuples{(w1

i1, v
1
i1), . . . , (w

p
i1, v

p
i1)},

where the weightw1
i1 denotes the probability ofv1

i1 being the sensor value of
the sensors1 at timeti, and so on. An example of particle filtering is shown in
thepf sensor values table in Figure 1.10.

Now, consider Query 1.7 that requests the average temperature AVG(vij)
between timetstart andtend. To evaluate this query, we assume that we already
have executed the particle filtering algorithm at each time instanceti and have
created thepf sensor values table. We, then, perform the following two
operations:

1. For each timeti betweentstart andtend, we compute the expected tem-
peraturev̄i1 =

∑p
l=1 w

l
i1 · vl

i1. The formal SQL syntax for computing
the expected values using thepf sensor values table is as follows:

SELECT ti,
∑p

l=1w
l
i1 · vl

i1 FROM pf sensor values WHERE ti >
tstart AND ti < tend GROUP BY ti

2. The final result is the average of all thev̄i1 that we computed in Step 1.

Essentially, the tuples{(w1
i1, v

1
i1), . . . , (w

p
i1, v

p
i1)} represent a discretized

pdf for the random variableVi1. Moreover, the most challenging tasks in par-
ticle filtering are to continuously infer weightsw1

i1, . . . , w
p
i1 and to select the

optimal number of particlesp, keeping in mind a particular scenario and type
of data [4].

SELECT AVG(vi1) FROM pf sensor values WHERE t > tstart AND t < tend

Query 1.7:Compute the average temperature between timetstart andtend.

pf_sensor_values

yjxjsjtii p
p

ij
v p
w

Figure 1.10: Particle filtering storesp weighted sensor values for each time
instanceti.

24

Static Probabilistic Models. Chenget al. [9–11] model the sen-
sor value as obtained from an user-defined uncertainty range. For example,
if the value of a temperature sensor is15◦C, then the actual value could vary
between13◦C and17◦C. Furthermore, the assumption is that the sensor value
is drawn from a static probability distribution that has support over the uncer-
tainty range.

Thus, for each sensorsj we associate an uncertainty range betweenlij and
uij , in which the actual sensor values can be found. In addition,the pdf of the
sensor values of sensorsj is denoted aspij(v). Note that the pdf has non-zero
support only betweenlij anduij. Consider a query that requests the average
temperature of the sensorss1 ands2 at timeti. Since the values of the sensors
s1 ands2 are uncertain in nature, the response to this query is a pdf, denoted
aspavg(v). This pdf gives us the probability of the sensor valuev being the
average.pavg(v) is computed using the following formula:

pavg(v) =

∫ min(ui1,v−li2
)

max(li1,v−ui2
)
pi1(y)pi2(v − x)dx. (1.12)

Naturally, Eq. (1.12) becomes more complicated when there are many (and
not only two) sensors involved in the query. Additional details about handling
such scenarios can be found in [9].

4.5 Query Processing over Semantic States

The MIST framework [5] proposes to use Hidden Markov Models (HMMs)
for deriving semantic meaning from the sensor values. HMMs allow us to
capture the hidden states, which are sometimes of more interest than the actual
sensor values. Consider, as an example, a scenario where thesensorsS are
used to monitor the temperature in all the rooms of a building. Generally, we
are only interested to know which rooms are hot or cold, rather than the actual
temperature in those rooms. We, then, can use a two-state HMMwith states
Hot (denoted asH) andCold (denoted asC) to continuously infer the semantic
states of the temperature in all the rooms.

Furthermore, MIST proposes an in-network index structure for indexing the
HMMs. This index can be used for improving the performance ofquery pro-
cessing. For instance, if we are interested in finding the rooms that areHot
with probability greater than0.9, then the in-network model index can effi-
ciently prune the rooms that are surely not a part of the queryresponse. Due
to the lack of space, we shall not cover the details of index construction and
pruning. We encourage the interested reader to read the following paper [5].

A Survey of Model-Based Sensor Data Acquisition and Management 25

4.6 Processing Event Queries

Event queries are another important class of queries that are proposed in the
literature. These queries continuously monitor for a particular event that could
probably occur in sensor data. Consider a setup consisting of RFID sensors in
a building. An event query could monitor an event of a person entering a room
or taking coffee, etc. Moreover, event queries can also be registered, not only
to monitor a single event, but a sequence of events that are important to the
user. Again, due to space constraints, we shall not cover anyof the event query
processing approaches in detail. The interested reader is referred to the prior
works on this subject [55, 65, 68, 45].

5. Model-Based Sensor Data Compression

Recent advances in sensor technology has resulted in the availability of a
multitude of (often privately-held) sensors. Embedded sensing functionality
(e.g., sound, accelerometer, temperature, GPS, RFID, etc.) is now included in
mobile devices, like, phones, cars, or buses. The large number of these devices
and the huge volume of raw monitored data pose new challengesfor sustain-
able storage and efficient retrieval of the sensor data streams. To this end, a
multitude of model-based regression, transformation and filtering techniques
have been proposed for approximation of sensor data streams. This section
categorizes and reviews the most important model-based approaches towards
compression of sensor data. These models often exploit spatio-temporal cor-
relations within data streams to compress the data within a certain error norm;
this is also known aslossy compression. Moreover, several standard orthog-
onal transformation methods (like, Fourier or wavelet transform) reduce the
amount of storage space required by reducing the dimensionality of data.

Unlike the assumptions of Section 2, where we assumed a sensor network
consisting of several sensors, here we assume that we only have a single sensor.
We have dropped the several sensors assumption to simplify the notation and
discussion in this section. Furthermore, we assume that thesensor values from
the single sensor are in a form of adata stream. Let us denote such a data
stream as a sequence of data tuples(ti, vi), wherevi is the sensor value at time
ti.

5.1 Overview of Sensor Data Compression
System

The goal of the sensor data compression system is to approximate a sen-
sor data stream by a set of functions. Data compression methods that we are
going to study in this section permit the occurrence of approximation errors.
These errors are characterized by a specific error norm. Furthermore, a stan-

26

dard approach to sensor data compression is to segment the data stream into
data segments, and then approximate each data segment, so that a specific error
norm is satisfied. For example, if we are considering theL∞ norm, then each
sensor value of the data stream is approximated within an error boundǫ.

Let us assume that we haveK segments of a data stream. We denote these
segments asg1, g2, . . . , gK , where g1 approximates the data tuples
((t1, v1), . . . , (ti1 , vi1)), while gk, wherek = 2, . . . ,K, approximates the data
items ((tik−1+1, vik−1+1), (tik−1+2, vik−1+1), . . . , (tik , vik)). Similar to [20],
we distinguish between two classes of the segments used for approximation,
namelyconnected segmentsand disconnected segments. In connected seg-
ments, the ending point of the previous segment is the starting point of the
new segment. On the contrary, in disconnected segments, theapproximation
of the new segment starts from the subsequent data item in thestream. Discon-
nected segments offer more approximation flexibility and may lead to fewer
segments; however, for linear approximation [35], they necessitate the storage
of two data tuples (i.e., start tuple and end tuple) per data segment, as opposed
to connected segments.

Since functions are employed for approximating data segments, only the ap-
proximated data segments are stored in the database, instead of the raw sensor
values of the data stream [64, 50]. A schema for linear segments is presented in
[64], consisting of a table, referred to asFunctionTable, where each row
represents a linear model with attributesstart time, end time, slope
andintercept (i.e., base) of the segment. In case of connected segments
[20], theend time attribute can be omitted.

A more generic schema for storing data streams, approximated by multiple
models was proposed in [50] that consists of one table (SegmentTable) for
storing the data segments, and a second table (ModelTable) for storing the
model functions, as depicted in Figure 1.11. A tuple of theSegmentTable
contains the approximation data for a segment in the time interval
[start time, end time]. The attributeid stands for identification of the
model that is used in the segment. The primary key in theSegmentTable
is thestart time, while in theModelTable it is id. When, both, lin-
ear and non-linear models are employed for approximation,left value is
the lowest raw sensor value encountered in the segment, andright value
is the highest raw sensor value encountered in the segment. In this case,
start time, end time, left value andright value define a rect-
angular bucket that contains the values of the segment.

The attributemodel params stores the parameters of the model associ-
ated with the model identifierid. For example, regression coefficients are
stored for the regression model. The attributemodel params has variable
length (e.g.,VARCHAR or VARBINARY data types in SQL) and it stores the
concatenation of the parameters or their compressed representation, by means

A Survey of Model-Based Sensor Data Acquisition and Management 27

Figure 1.11:The database schema for multi-model materialization.

of standard lossless compression techniques (refer Section 5.7) or by a bitmap
coding of approximate values, as proposed in [3]. Each tuplein the Mod-
elTable corresponds to a model with a particularid andfunction. The at-
tributefunction represents the name of the model and it maps to the names
of two user defined functions (UDFs) stored in the database. The first function
implements the mathematical formula of the model, and the second function
implements the inverse mathematical formula of the model, if any. Both the
UDFs are employed for answering value-based queries. Whilethe first func-
tion is used for value regeneration over fixed time steps (also referred to as
gridding), the second function is used for solving equations.

5.2 Methods for Data Segmentation

In [34], the piecewise linear approximation algorithms arecategorized in
three groups: sliding window, top-down and bottom-up. The sliding window
approach expands the data segment as long as the data tuples fit. The bottom-up
approach first applies basic data segmentation employing the sliding window
approach. Then, for two consecutive segments, it calculates merging cost in
terms of an approximation error. Subsequently, it merges the segments with
the minimum cost within the maximum allowed approximation error, and up-

28

dates the merging costs of the updated segments. The processends when no
further merging can be done without violating the maximum approximation
error. The top-down approach recursively splits the streaminto two segments,
so as to obtain longest segments with the lowest error until all segments are
approximated within the maximum allowed error.

Among these three groups, only the sliding window approach can be used
online, but it employs look-ahead. The other two approachesperform better
than the sliding window approach, but they need to scan all data, hence they
cannot be used for approximating streaming data. Based on this observation,
Keoghet al. [34] propose a new algorithm that combines the online processing
property of the sliding window approach and the performanceof the bottom-
up approach. This approach needs a predefined buffer length.If the buffer is
small, then it may produce many small data segments; if the buffer is large, then
there is a delay in returning the approximated data segment.The maximum
look-ahead size is constrained by the maximum allowed delaybetween data
production and data reporting or data archiving.

5.3 Piecewise Approximation

Among several different data stream approximation techniques, piecewise
linear approximation has been the most widely used [34, 39].Piecewise lin-
ear approximation models the data stream with a separate linear function per
data segment. Piecewise constant approximation (PCA) approximates a data
segment with a constant value, which can be the first value of the segment (re-
ferred to as the cache filter) [47], the mean value or the median value (referred
to as poor man’s compression - midrange (PMC-MR) [39]).

In the cache filter, for all the sensor values in a segmentgk, the following
condition should be satisfied:

∣

∣vik−1+p − vik−1+1

∣

∣ < ǫ for p = 1, . . . , ik, (1.13)

whereǫ is the maximum allowed approximation error according to theL∞

norm. Also, for PMC-Mean and PMC-MR the sensor values in a segmentgk

should satisfy the following condition:

max
1≤p≤ik

vik−1+p − min
1≤p≤ik

vik−1+p ≤ 2ǫ . (1.14)

Furthermore, for PMC-Mean, the approximation value for thesegmentgk is
given by the mean value of the sensor values in segmentgk. But, for PMC-MR
it is given as follows:

max1≤p≤ik vik−1+p − min1≤p≤ik vik−1+p

2
.

The data segmentation approach for PMC-MR is illustrated inFigure 1.12.

A Survey of Model-Based Sensor Data Acquisition and Management 29

25.9

25.95

26

26.05

26.1

26.15

04.22.08 20:09 04.23.08 00:57

T
e

m
p

e
ra

tu
re

 (
o
C

)

Date & Time (mm/dd/yy hours:min)

Raw Data

PMC-MR

2ε

Figure 1.12:Poor Man’s Compression - MidRange (PMC-MR).

Moreover, the linear filter [34] is a simple piecewise linearapproximation
technique in which the sensor values are approximated by a line connecting the
first and second point of the segment. When a new data tuple cannot be approx-
imated by this line with the specified error bound, a new segment is started. In
[20], two new piecewise linear approximation models were proposed, namely
SwingandSlide, that achieve much higher compression compared to the cache
and linear filters. We briefly discuss the swing and slide filters below.

Swing and Slide Filters. The swing filter is capable of approximating
multi-dimensional data. But, for simplicity, we describe its algorithm for one-
dimensional data. Given the arrival of two data tuples(t1, v1) and(t2, v2) of
the first segment of the data stream, the swing filter maintains a set of lines,
bounded by an upper lineu1 and a lower linel1. u1 is defined by the pair
of points (t1, v1) and (t2, v2 + ǫ), while l1 is defined by the pair of points
(t1, v1) and(t2, v2 − ǫ), whereǫ is the maximum approximation error bound.
Any line segment betweenu1 and l1 can represent the first two data tuples.
When (t3, v3) arrives, first it is checked whether it falls within the linesl1,
u1. Then, in order to maintain the invariant that all lines within the set can
represent all data tuples so far,l1 (respectivelyu1) may have to be adjusted
to the higher-slope (respectively lower-slope) line defined by the pair of data
tuples((t1, v1), (t3, v3 − ǫ)) (respectively((t1, v1), (t3, v3 + ǫ))). Lines below
this newl1 or above this newu1 cannot represent the data tuple(t3, v3). The
segment estimation continues until the new data tuple fallsout of the upper
and lower lines for a segment. The generated line segment forthe completed

30

filtering interval is chosen so as to minimize the mean squareerror for the
data tuples observed in that interval. As opposed to the slide filter (described
below), in the swing filter the new data segment starts from the end point of
the previous data segment.

In the slide filter, the operation is similar to the swing filter, but upper
and lower linesu and l are defined differently. Specifically, after(t1, v1)
and (t2, v2) arrive, u1 is defined by the pair of data tuples(t1, v1 − ǫ) and
(t2, v2 + ǫ), while l1 is defined by(t1, v1 + ǫ) and(t2, v2 − ǫ). After the arrival
of (t3, v3), l1 (respectivelyu1) may need to be adjusted to the higher-slope (re-
spectively lower-slope) line defined by((tj , vj + ǫ), (t3, v3 − ǫ)) (respectively
((ti, vi − ǫ), (t3, v3 + ǫ))), wherei ∈ [1, 2]. The slide filter also includes a
look-ahead of one segment, in order to produce connected segments instead of
disconnected segments, when possible.

Palpanaset al. [48] employamnesic functionsand propose novel techniques
that are applicable to a wide range of user-defined approximating functions.
According to amnesic functions, recent data is approximated with higher ac-
curacy, while higher error can be tolerated for older data. Yi and Faloutsos
[70] suggested approximating a data stream by dividing it into equal-length
segments and recording the mean value of the sensor values that fall within the
segment (referred to as segmented means or as piecewise aggregate approxi-
mation (PAA)). On the other hand, adaptive piecewise constant approximation
(APCA) [6] allows segments to have arbitrary lengths.

Piecewise Linear Approximation. The piecewise linear approx-
imation uses the linear regression model for compressing data streams. The
linear regression model of a data segment is given as:

vi = s · ti + b, (1.15)

whereb ands are known as the base and the slope respectively. The difference
betweenvi and ti is known as the residual for timeti. For fitting a linear
regression model of Eq. (1.15) to the sensor valuesvi : ti ∈ [tb; te], the
ordinary least squares (OLS) estimator is employed. The OLSestimator selects
b ands such that they minimize the following sum of squared residuals:

RSS(b, s) =

te
∑

ti=tb

[vi − (s · ti + b)]2.

A Survey of Model-Based Sensor Data Acquisition and Management 31

Therefore,b ands are given as:

b =

te
∑

ti=tb

(

ti −
tb+te

2
∑te

ti=tb
(ti −

tb+te
2)ti

)

vi,

s =

∑te
ti=tb

vi

te − tb + 1
− b

tb + te

2
.

(1.16)

Here, the storage record of each data segment of the data stream consists of
([tb; te]; b, s), where[tb; te] is the segment interval, ands andb are the slope
and base of the linear regression, as obtained from Eq. (1.16).

Similarly, instead of the linear regression model, a polynomial regression
model (refer Eq. (1.9)) can also be utilized for approximating each segment
of the data stream. The storage record of the polynomial regression model is
similar to the linear regression model. The only differenceis that for the poly-
nomial regression model the storage record contains parametersα1, . . . , αd

instead of the parametersb ands.

5.4 Compressing Correlated Data Streams

Several approaches [14, 42, 24] exploit correlations amongdifferent data
streams for compression. The GAMPS approach [24] dynamically identifies
and exploits correlations among different data segments and then jointly com-
presses them within an error bound employing a polynomial-time approxima-
tion algorithm. In the first phase, data segments are individually approximated
based on piecewise constant approximation (specifically the PMC-Mean de-
scribed in Section 5.3). In the second phase, each data segment is approxi-
mated by a ratio with respect to a base segment. The segment formed by the
ratios is called the ratio segment. GAMPS proposes to store the base segment
and the ratio segment, instead of storing the original data segment. The idea
here is that, in practice, the ratio segment is flat and therefore can be signifi-
cantly compressed as compared to the original data segment.

Furthermore, the objective of the GAMPS approach is to identify a set of
base segments, and associate every data segment with a base segment, such
that the ratio segment can be used for reconstructing the data segment within a
L∞ error bound. The problem of identification of the base segments is posed
as afacility location problem. Since this problem is NP-hard, a polynomial-
time approximation algorithm is used for solving it, and producing the base
segments and the assignment between the base segments and data segments.

Prior to GAMPS, Deligiannakiset al. [14] proposed the self-based regres-
sion (SBR) algorithm that also finds a base-signal for compressing historical
sensor data based on spatial correlations among different data streams. The
base-signal for each segment captures the prominent features of the other sig-
nals, and SBR finds piecewise correlations (based on linear regression) to the

32

base-signal. Linet al. [42] proposed an algorithm, referred to as adaptive linear
vector quantization (ALVQ), which improves SBR in two ways:(i) it increases
the precision of compression, and (ii) it reduces the bandwidth consumption by
compressing the update of the base signal.

5.5 Multi-Model Data Compression

The potential burstiness of the data streams and the error introduced by
the sensors often result in limited effectiveness of a single model for approxi-
mating a data stream within the prescribed error bound. Acknowledging this,
Lazaridiset al. [39] argue that a global approximation model may not be the
best approach and mention the potential need for using multiple models. In
[40], it is also recognized that different approximation models are more appro-
priate for data streams of different statistical properties. The approach in [40]
aims to find the best model approximating the data stream based on the overall
hit ratio (i.e., the ratio of the number of data tuples fitting the modelto the total
number of data tuples).

Papaioannouet al. [50] aim to effectively find the best combination of dif-
ferent models for approximating various segments of the stream regardless of
the error norm. They argue that the selection of the most efficient model de-
pends on the characteristics of the data stream, namely rate, burstiness, data
range, etc., which cannot be always knowna priori for sensors and they can
even be dynamic. Their approach dynamically adapts to the properties of the
data stream and approximates each data segment with the mostsuitable model.
They propose a greedy approach in which they employ multiplemodels for
each segment of the data stream and store the model that achieves the high-
est compression ratio for the segment. They experimentallyproved that their
multi-model approximation approach always produces feweror equal data seg-
ments than those of the best individual model. Their approach could also be
used to exploit spatial correlations among different attributes from the same
location, e.g., humidity and temperature from the same stationary sensor.

5.6 Orthogonal Transformations

The main application of the orthogonal transformation approaches has been
in dimensionality reduction, since reducing the dimensionality improves per-
formance of indexing techniques for similarity search in large collections of
data streams. Typically, sequences of fixed length are mapped to points in
anN -dimensional Euclidean space; then, multi-dimensional access methods,
such as R-tree family, can be used for fast access of those points. Since, se-
quences are usually long, a straightforward application ofthe above approach,
which does not use dimensionality reduction, suffers from performance degra-
dation due to the curse of dimensionality [56].

A Survey of Model-Based Sensor Data Acquisition and Management 33

The process of dimensionality reduction can be described asfollows. The
original data stream or signal is a finite sequence of real values or coefficients,
recorded over time. This signal is transformed (using a specific transforma-
tion function) into a signal in a transformed space. To achieve dimensionality
reduction, a subset of the coefficients of the orthogonal transformation are se-
lected as features. These features form a feature space, which is simply a
projection of the transformed space. The basic idea is to approximate the orig-
inal data stream with a few coefficients of the orthogonal transformation; thus
reducing the dimensionality of the data stream.

Discrete Fourier Transform (DFT). The Fourier transform is the
most popular orthogonal transformation. It is based on the simple observa-
tion that every signal can be represented by a superpositionof sine and cosine
functions. The discrete Fourier transform (DFT) and discrete cosine transform
(DCT) are efficient forms of the Fourier transform often usedin applications.
The DFT is the most popular orthogonal transformation and was first used in
[1, 22]. The Discrete Fourier Transform of a time sequencex = x0, . . . , xN−1

is a sequenceX = X0, . . . ,XN−1 of complex numbers given by:

Xk =

N−1
∑

j=0

e−i2π k
N

j. (1.17)

The original signal can be reconstructed by the inverse Fourier transform ofX,
which is given by:

xj =
N−1
∑

k=0

Xke
i2π k

N
j. (1.18)

In [1], Agrawal et al. suggest using the DFT for dimensionality reduction
of long observation sequences. They argue that most real signals only require
a few DFT coefficients for their approximation. Thus similarity search can be
performed only over the first few DFT coefficients, instead ofthe full observa-
tion sequence. This provides an efficient and approximate solution to the prob-
lem of similarity search in high-dimensional spaces. They use the Euclidean
distance as the dissimilarity measure.

Discrete Wavelet Transform. Wavelets can be thought of as a
generalization of the Fourier transform to a much larger family of functions
than sine and cosine. Mathematically, a wavelet is a function ψj,k defined on
the real numbersR, which includes an integer translation byk, also called a
shift, and a dyadic dilation (a product by the powers of two),known as stretch-
ing. The functionsψj,k play a similar role as the exponential functions in the
Fourier transform:ψj,k form an orthonormal basis for theL2(R) space. The

34

L2(R) space consists of all the functions whoseL2 norm is finite. Particularly,
the functionsψj,k, wherej andk are integers are given as follows:

ψj,k(t) = 2j/2ψ(2jt− k). (1.19)

Similar to the Fourier transform, by using the orthonormal basis functions
ψj,k, we can uniquely express a functionf ∈ L2(R) as a linear combination
of the basis functionsψj,k as follows:

f =
∑

j,k∈Z

< f,ψj,k > ψj,k, (1.20)

where< f, g >:=
∫

R fgdx is the usual inner product of two functions in
L2(R).

The Haar wavelets are the most elementary example of wavelets. The mother
waveletψ for the Haar wavelets is the following function:

ψHaar(t) =











1, if 0 < t < 0.5,

−1, if 0.5 < t < 1,

0, otherwise.

(1.21)

Ganesanet al. [26, 25] proposed in-network storage of wavelet-based sum-
maries of sensor data. Recently, discrete wavelet transform (DWT) was also
proposed in [53, 7] for sensor data compression. For sustainable storage and
querying, they propose progressive aging of summaries and load sharing tech-
niques.

Discussion. The basis functions of some wavelet transforms are non-
zero only on a finite interval. Therefore, wavelets may be only able to cap-
ture local (time dependent) properties of the data, as opposed to Fourier trans-
forms, which can capture global properties. The computational efficiency of
the wavelet transforms is higher than the Fast Fourier transform (FFT). How-
ever, while the Fourier transform can accurately approximate arbitrary signals,
the Haar wavelet is not likely to approximate a smooth function using few
features.

The wavelet transform representation is intrinsically coupled with approx-
imating sequences whose length is a power of two. Using wavelets with se-
quences that have other lengths require ad-hoc measures that reduce the fi-
delity of the approximation, and increase the complexity ofthe implementa-
tion. DFT and DCT have been successfully adapted to incremental computa-
tion [72]. However, as each DFT/DCT coefficient makes a global contribution
to the entire data stream, assigning less significance to thepast data is not ob-
vious with these transformations.

A Survey of Model-Based Sensor Data Acquisition and Management 35

5.7 Lossless vs. Lossy Compression

While lossless compression is able to accurately reconstruct the original
data, lossy compression techniques approximate data streams within a certain
error bound. Most lossless compression schemes perform twosteps in se-
quence: the first step generates a statistical model for the input data, and the
second step uses this model to map input data to bit sequences. These bit
sequences are mapped in such a way that frequently encountered data will
produce shorter output than infrequent data. General-purpose compression
schemes include DEFLATE (employed by gzip, ZIP, PNG, etc.),LZW (em-
ployed by GIF, compress, etc.), LZMA (employed by 7zip). Theprimary en-
coding algorithms used to produce bit sequences are Huffmancoding (also
used by DEFLATE) and arithmetic coding. Arithmetic coding achieves com-
pression rates close to the best possible, for a particular statistical model, which
is given by the information entropy. On the other hand, Huffman compression
is simpler and faster but produces poor results.

Lossless compression techniques, however, are not adequate for a number
of reasons: (a) as experimentally found in [39], gzip lossless compression
achieves poor compression (50%) compared to lossy techniques, (b) lossless
compression and decompression are usually more computationally intensive
than lossy techniques, and (c) indexing cannot be employed for archived data
with lossless compression.

6. Summary

In this chapter, we presented a comprehensive overview of the various as-
pects of model-based sensor data acquisition and management. Primarily, the
objectives of the model-based techniques are efficient dataacquisition, han-
dling missing data, outlier detection, data compression, data aggregation and
summarization. We started with acquisition techniques like TinyDB [45], Ken
[12], PRESTO [41]. In particular, we focused on how acqusitional queries are
disseminated in the sensor network using routing trees [44]. Then we surveyed
various approaches for sensor data cleaning, including polynomial-based [73],
probabilistic [21, 63, 52, 65] and declarative [31, 46].

For processing spatial, temporal and threshold queries, wedetailed query
processing approaches like MauveDB [18], FunctionDB [64],particle filter-
ing [33], MIST [5], etc. Here, our primary objective was to demonstrate how
model-based techniques are used for improving various aspects of query pro-
cessing over sensor data. Lastly, we discussed data compression techniques,
like, linear approximation [34, 39, 48], multi-model approximations [39, 40,
50] and orthogonal transformations [1, 22, 53, 7].

36

All the methods that we presented in this chapter were model-based. They
utilized models – statistical or otherwise – for describing, simplifying or ab-
stracting various components of sensor data acquisition and management.

Acknowledgments

This work was supported by the OpenSense project (Nano-Terareference
number 839401), NCCR-MICS (http://www.mics.org), and by the OpenIoT
project (EU FP7-ICT 287305).

References

[1] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in se-
quence databases. InFoundations of Data Organization and Algorithms,
pages 69–84, 1993.

[2] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella. Energy
conservation in wireless sensor networks: A survey.Ad Hoc Networks,
7(3):537–568, 2009.

[3] A. Arion, H. Jeung, and K. Aberer. Efficiently maintaining distributed
model-based views on real-time data streams. InGLOBECOM, pages
1–6, 2011.

[4] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on
particle filters for online nonlinear/non-gaussian bayesian tracking.IEEE
Transactions on Signal Processing, 50(2):174–188, 2002.

[5] A. Bhattacharya, A. Meka, and A. Singh. MIST: Distributed indexing
and querying in sensor networks using statistical models. In VLDB, pages
854–865, 2007.

[6] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani. Locally adaptive
dimensionality reduction for indexing large time series databases.ACM
Transactions on Database Systems (TODS), 27(2):188–228, 2002.

[7] K. Chan and W. Fu. Efficient time series matching by wavelets. InICDE,
pages 126–133, 1999.

[8] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Computing Surveys, 41(3):1–58, 2009.

[9] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic
queries over imprecise data. InSIGMOD, pages 551–562, 2003.

[10] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluationof probabilistic
queries over imprecise data in constantly-evolving environments. Infor-
mation Systems, 32(1):104–130, 2007.

[11] R. Cheng, S. Singh, and S. Prabhakar. U-DBMS: A databasesystem for
managing constantly-evolving data. InVLDB, pages 1271–1274, 2005.

A Survey of Model-Based Sensor Data Acquisition and Management 37

[12] D. Chu, A. Deshpande, J. Hellerstein, and W. Hong. Approximate data
collection in sensor networks using probabilistic models.In ICDE, pages
48–48, 2006.

[13] F. Chu, Y. Wang, S. Parker, and C. Zaniolo. Data cleaningusing belief
propagation. InIQIS, pages 99–104, 2005.

[14] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Compressing histor-
ical information in sensor networks. InSIGMOD, pages 527–538, 2004.

[15] A. Deligiannakis, V. Stoumpos, Y. Kotidis, V. Vassalos, and A. Delis.
Outlier-aware data aggregation in sensor networks. InICDE, pages 1448–
1450, 2008.

[16] A. Deshpande, C. Guestrin, W. Hong, and S. Madden. Exploiting corre-
lated attributes in acquisitional query processing. InICDE, pages 143–
154, 2005.

[17] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong.
Model-driven data acquisition in sensor networks. InVLDB, pages 588–
599, 2004.

[18] A. Deshpande and S. Madden. MauveDB: Supporting model-based user
views in database systems. InSIGMOD, pages 73–84, 2006.

[19] R. Elmasri and S. Navathe.Fundamentals of database systems. Addison
Wesley, 6th edition, 2010.

[20] H. Elmeleegy, A. Elmagarmid, E. Cecchet, W. Aref, and W.Zwaenepoel.
Online piece-wise linear approximation of numerical streams with preci-
sion guarantees. InVLDB, pages 145–156, 2009.

[21] E. Elnahrawy and B. Nath. Cleaning and querying noisy sensors. In
WSNA, pages 78–87, 2003.

[22] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence
matching in time-series databases. InSIGMOD, pages 419–429, 1994.

[23] C. Franke and M. Gertz. ORDEN: Outlier region detectionand explo-
ration in sensor networks. InSIGMOD, pages 1075–1077, 2009.

[24] S. Gandhi, S. Nath, S. Suri, and J. Liu. GAMPS: Compressing multi
sensor data by grouping and amplitude scaling. InSIGMOD, pages 771–
784, 2009.

[25] D. Ganesan, D. Estrin, and J. Heidemann. DIMENSIONS: Why do we
need a new data handling architecture for sensor networks? In SIG-
COMM, pages 143–148, 2003.

[26] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin,and H. J. An
evaluation of multi-resolution storage for sensor networks. In SenSys,
pages 89–102, 2003.

38

[27] C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden. Distributed
regression: An efficient framework for modeling sensor network data. In
IPSN, pages 1–10, 2004.

[28] H. Gupta, V. Navda, S. Das, and V. Chowdhary. Efficient gathering of
correlated data in sensor networks.ACM Transactions on Sensor Net-
works (TOSN), 4(1):4, 2008.

[29] A. Jain, E. Chang, and Y.-F. Wang. Adaptive stream resource manage-
ment using Kalman Filters. InSIGMOD, pages 11–22, 2004.

[30] S. Jeffery, G. Alonso, M. Franklin, W. Hong, and J. Widom. A pipelined
framework for online cleaning of sensor data streams. InICDE, page
140, 2006.

[31] S. Jeffery, G. Alonso, M. Franklin, W. Hong, and J. Widom. Declarative
support for sensor data cleaning. InPervasive, pages 83–100, 2006.

[32] S. Jeffery, M. Garofalakis, and M. Franklin. Adaptive cleaning for RFID
data streams. InVLDB, pages 163–174, 2006.

[33] B. Kanagal and A. Deshpande. Online filtering, smoothing and proba-
bilistic modeling of streaming data. InICDE, pages 1160–1169, 2008.

[34] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online algorithm for
segmenting time series. InICDM, pages 289–296, 2001.

[35] E. Keogh and M. Pazzani. An enhanced representation of time series
which allows fast and accurate classification, clustering and relevance
feedback. InSIGKDD, pages 239–241, 1998.

[36] A. Klein. Incorporating quality aspects in sensor datastreams. InPIKM,
pages 77–84, 2007.

[37] A. Klein and W. Lehner. Representing data quality in sensor data stream-
ing environments.Journal of Data and Information Quality, 1(2):1–28,
2009.

[38] Y. Kotidis. Snapshot queries: Towards data-centric sensor networks. In
ICDE, pages 131–142, 2005.

[39] I. Lazaridis and S. Mehrotra. Capturing sensor-generated time series with
quality guarantees. InICDE, pages 429–440, March 2003.

[40] Y. Le Borgne, S. Santini, and G. Bontempi. Adaptive model selection
for time series prediction in wireless sensor networks.Signal Processing,
87(12):3010–3020, 2007.

[41] M. Li, D. Ganesan, and P. Shenoy. PRESTO: Feedback-driven data man-
agement in sensor networks.IEEE/ACM Transactions on Networking
(TON), 17(4):1256–1269, 2009.

[42] S. Lin, V. Kalogeraki, D. Gunopulos, and S. Lonardi. Online information
compression in sensor networks. InIEEE International Conference on
Communications, 2006.

A Survey of Model-Based Sensor Data Acquisition and Management 39

[43] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG: A tiny ag-
gregation service for ad-hoc sensor networks.ACM SIGOPS Operating
Systems Review, 36(SI):131–146, 2002.

[44] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. Thedesign of an
acquisitional query processor for sensor networks. InSIGMOD, pages
491–502, 2003.

[45] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TinyDB: An acqui-
sitional query processing system for sensor networks.TODS, 30(1):122–
173, 2005.

[46] C. Mayfield, J. Neville, and S. Prabhakar. ERACER: A database approach
for statistical inference and data cleaning. InSIGMOD, pages 75–86,
2010.

[47] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries
over distributed data streams. InSIGMOD, pages 563–574, 2003.

[48] T. Palpanas, M. Vlachos, E. Keogh, D. Gunopulos, and W. Truppel. On-
line amnesic approximation of streaming time series. InICDE, pages
339–349, 2004.

[49] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery
in multiple time-series. InVLDB, pages 697–708, 2005.

[50] T. Papaioannou, M. Riahi, and K. Aberer. Towards onlinemulti-model
approximation of time series. InIEEE MDM, pages 33–38, 2011.

[51] A. Patcha and J.-M. Park. An overview of anomaly detection techniques:
Existing solutions and latest technological trends.Computer Networks,
51(12):3448–3470, 2007.

[52] A. Petrosino and A. Staiano. A neuro-fuzzy approach forsensor network
data cleaning. InKES, pages 140–147, 2007.

[53] I. Popivanov. Similarity search over time series data using wavelets. In
ICDE, pages 212–221, 2002.

[54] J. Rao, S. Doraiswamy, H. Thakkar, and L. Colby. A deferred cleansing
method for RFID data analytics. InVLDB, pages 175–186, 2006.

[55] C. Ré, J. Letchner, M. Balazinksa, and D. Suciu. Event queries on corre-
lated probabilistic streams. InSIGMOD, pages 715–728, 2008.

[56] H. Samet.Foundations of multidimensional and metric data structures.
Morgan Kaufmann, 2006.

[57] S. Sathe, H. Jeung, and K. Aberer. Creating probabilistic databases from
imprecise time-series data. InICDE, pages 327–338, 2011.

[58] M. Sharaf, J. Beaver, A. Labrinidis, and P. Chrysanthis. TiNA: A scheme
for temporal coherency-aware in-network aggregation. InMobiDE, pages
69–76, 2003.

40

[59] B. Sheng, Q. Li, W. Mao, and W. Jin. Outlier detection in sensor net-
works. InMobiHoc, pages 219–228, 2007.

[60] R. Shumway and D. Stoffer.Time series analysis and its applications.
Springer-Verlag, New York, 2005.

[61] A. Silberstein, R. Braynard, G. Filpus, G. Puggioni, A.Gelfand, K. Mu-
nagala, and J. Yang. Data-driven processing in sensor networks. InCIDR,
2007.

[62] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and
D. Gunopulos. Online outlier detection in sensor data usingnon-
parametric models. InVLDB, pages 187–198, 2006.

[63] Y. Tan, V. Sehgal, and H. Shahri. SensoClean: Handling noisy and in-
complete data in sensor networks using modeling. Technicalreport, Uni-
versity of Maryland, 2005.

[64] A. Thiagarajan and S. Madden. Querying continuous functions in a
database system. InSIGMOD, pages 791–804, 2008.

[65] T. Tran, C. Sutton, R. Cocci, Y. Nie, Y. Diao, and P. Shenoy. Probabilistic
inference over RFID streams in mobile environments. InICDE, pages
1096–1107, 2009.

[66] D. Tulone and S. Madden. PAQ: Time series forecasting for approximate
query answering in sensor networks. InEWSN, pages 21–37, 2006.

[67] L. Wang and A. Deshpande. Predictive modeling-based data collection
in wireless sensor networks. InEWSN, pages 34–51, 2008.

[68] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event process-
ing over streams. InSIGMOD, pages 407–418, 2006.

[69] Y. Yao and J. Gehrke. Query processing in sensor networks. In CIDR,
2003.

[70] B.-K. Yi, H. Jagadish, and C. Faloutsos. Efficient retrieval of similar time
sequences under time warping. InICDE, pages 201–208, 1998.

[71] Y. Zhang, N. Meratnia, and P. Havinga. Outlier detection techniques for
wireless sensor networks: A survey.IEEE Communications Survey &
Tutorials, 12(2), 2010.

[72] Y. Zhu and D. Shasha. StatStream: Statistical monitoring of thousands of
data streams in real time. InVLDB, pages 358–369, 2002.

[73] Y. Zhuang, L. Chen, X. Wang, and X. Lian. A weighted moving average-
based approach for cleaning sensor data. InICDCS, page 38, 2007.

