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A data-driven approach to mixed-sensitivity control
with application to an active suspension system

Simone Formentin and Alireza Karimi

Abstract—In this paper, a data-driven approach is proposed to
tune fixed-order controllers for unknown stable LTI plants in a
mixed-sensitivity loop-shaping framework. The method requires
a single set of input-output samples and it is based on convex
optimization techniques; moreover, it asymptotically guarantees
the internal stability of the closed-loop system. The effectiveness
of the method is illustrated with application to the control of an
active suspension system.

Index Terms—data-driven control, identification for control,
Youla-Kučera parameterization, mixed H2-H∞ loop-shaping,
convex optimization

I. INTRODUCTION

One of the main methods to specify the desired behaviour
of a control system is to describe the frequency-domain
relations between the different signals in the loop. In robust
control theory, H2-H∞ loop-shaping are design techniques
that allow one to find a trade-off between different features,
e.g. tracking and noise rejection, by means of H2-H∞
optimization methods.
The fact that any feedback controller design must reflect a
compromise between insensitivity to different disturbances
and good stability margins is first identified in [1], where the
mixed-sensitivity criterion is introduced as a suitable quality
measure of the closed-loop behaviour. Among all different
approaches for the solution of such control-design problem,
the Youla-Kučera parameterization [2] represents one of the
most successful. As a matter of fact, by parameterizing the
feedback controller with the Youla-Kučera parameter Q, the
mixed-sensitivity problem becomes convex in the unknown Q
and the final controller is guaranteed to internally stabilize the
closed-loop system. However, in case of fixed-order controller,
the loop-shaping problem becomes much more complex,
as model-reduction techniques (see e.g. [3], [4]) must be
employed and closed-loop stability may be compromised.
In the classical model-based controller design, a model of
the plant is derived from first-principle methods or identified
using experimental data and then a controller is designed
based on the available model. This framework can be very
useful in the industrial practice, as witnessed by the huge
number of contributions in different application fields, see
e.g. [5], [6], [7]. In situations that the first-principle methods
cannot be used, three optimization problems must be solved
to obtain the final controller. First, the best model with the
desired structure that minimizes a prediction error criterion
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is identified. Then, a full-order controller is computed by
minimizing a mixed sensitivity criterion. Finally, a fixed-order
controller that best fits the frequency response of the optimal
controller is obtained by optimization or some order reduction
techniques.
In this paper, a different philosophy is proposed to solve
the mixed-sensitivity problem in the data-driven framework.
Since the unique aim of model identification is the design
of the controller, in the proposed approach this first step is
skipped by directly identifying the Youla-Kučera parameter
from a single set of data that minimizes the control criterion.
The final reduced-order controller K is then deduced from
the same data-set as the one that approximate the optimal
controller. The design issue is naturally converted into a
convex data-driven optimization problem, if Q and K are
linearly parameterized. Furthermore, in both noiseless and
noisy environments, the method is “one-shot”, i.e. it requires
only one set of input-output (I/O) samples, and it allows the
designer to avoid all the reasoning about the physics of the
system, by still guaranteeing the closed-loop stability.
Noniterative data-driven methodologies for fixed-order
controller design already exist in the model-reference control
framework, e.g. the Correlation-based Tuning (CbT [8]) and
Virtual Reference Feedback Tuning (VRFT [9], [10]). Some
recent developments of these approaches can be found, e.g.,
in [11], [12], [13], [14]. As far as the authors are aware, this
is the first time where the noniterative data-driven philosophy
is applied to the mixed-sensitivity loop-shaping problem. A
preliminary version of this work can be found in [15].
An iterative data-driven solution to the problem has instead
been presented in [16]. However, the technique presented
in this work is substantially different from the one in [16],
for several reasons: it also deals with H∞ loop-shaping
problems, it is noniterative, it has no strict constraints for the
identification experiments, it guarantees internal stability with
the resulting controller for the real system and it is based
on data collected during open-loop operation of the system
(without using preliminary stabilizing controllers).
In this paper, the effectiveness of the method will be
experimentally shown on the control of an active suspension
system, where the goal of the feedback action is the rejection
of some disturbance effects. Some data-driven control
solutions of an analogous system are performed in [17] and
in [18], using extended versions of the Virtual Reference
Feedback Tuning (VRFT) and of the Correlation-based
Tuning (CbT) methods, respectively. However, it should be
stressed that the present contribution is different for some
reasons. Firstly, VRFT and CbT do not follow a mixed
sensitivity criterion with H2 and H∞ performance criterion
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but a “model-matching” rationale. Moreover, the stability
issue was not considered in those contributions.

The paper is structured as follows. In Section II, the mixed-
sensitivity loop-shaping problem is formulated in a system-
theoretic analytical framework. Section III presents the data-
driven method in detail, while a theoretical comparison with
model-based design is given in Section IV. Section V presents
the application of the method on the active suspension system.
The paper is ended by some concluding remarks.

II. PRELIMINARIES

Consider the unknown stable LTI SISO plant Go(q
−1),

where q−1 denotes the backward-shift operator, and three
weighting functions Ws(q

−1), Wt(q
−1) and Wu(q

−1). The
loop-shaping control aim considered in this paper is to design
an LTI fixed-order controller K(q−1, ρ), linear in ρ, so as to
minimize

J(ρ) = ‖WsS(ρ)‖2 + ‖WtT (ρ)‖2 + ‖WuU(ρ)‖2 , (1)

where, S(ρ) = [1 + K(ρ)Go]
−1, T (ρ) = 1 − S(ρ), U(ρ) =

K(ρ)S(ρ), and the symbol ‖·‖ might indicate either the H2-
or the H∞-norm throughout the whole paper. Notice also that
from now on, the arguments t and q−1 are arbitrarily dropped
for space reasons. The criterion (1) is generally non-convex
with respect to the parameter vector ρ and, in most cases,
J(ρ) = 0 cannot be achieved.

Consider now the Youla-Kučera reformulation [2] of (1).
The set of all stabilizing controllers for Go(q

−1) is

C =

{
C(q−1) =

Q(q−1)

1−Q(q−1)Go(q−1)
, Q(q−1) ∈ H∞

}
.

(2)
where H∞ is the set of all stable rational transfer functions
with bounded infinity norm. Then, the three sensitivity func-
tions S(ρ), T (ρ) and U(ρ) can be rewritten as

S(q−1) =
(
1−Q(q−1)Go(q

−1)
)

(3)

T (q−1) = Q(q−1)Go(q
−1) (4)

U(q−1) = Q(q−1). (5)

It follows that the criterion (1) is convex in Q(q−1) or in
the parameters of Q(q−1), if it is linearly parameterized. The
fixed-order controller is finally found as the reduction [4]
K(q−1, ρ) of the full-order controller

C(q−1) =
Q̂(q−1)

1− Q̂(q−1)Go(q−1)
, (6)

where Q̂(q−1) ∈ H∞ is the minimizer of the loop-shaping
criterion (1).

In the Youla-Kučera setting, only (6), and not the
reduced-order controller, is guaranteed to internally stabilize
the system. However, an additional constraint based on
the following sufficient condition can be included in the
controller reduction procedure to overcome this problem and
make K(q−1, ρ) internally stabilizing.

Theorem 1: Let Go(q
−1) and Q̂(q−1) be discrete-time dy-

namical systems in H∞. The controller K(q−1, ρ) internally
stabilizes the plant Go(q

−1) if

1) ∆(ρ) = Go

[
(1 − Q̂Go)K(ρ)− Q̂

]
∈ H∞;

2) the stability radius γ̂(ρ) = ‖∆(ρ)‖∞ is less than 1.

Proof: Consider the scheme in Fig. 1, where C(q−1) is
the full-order controller (6). Since Q̂(q−1) belongs to H∞,
C(q−1) internally stabilizes the closed-loop system opened at
z. Then, both S(q−1) = 1 − Q̂(q−1)Go(q

−1) and T (q−1) =
Q̂(q−1)Go(q

−1) are stable.
From the Small-Gain Theorem (see [19]), a sufficient condi-
tion for the closed-loop stability of the interconnected system
is that the transfer function between u(t) and z(t) is stable
and its infinity norm is less than 1 (requirements 1 and 2) and
then the thesis holds.

Fig. 1. Closed-loop system with controller K(ρ) and explicit representation
of the controller-reduction.

Remark. In Theorem 1, the second condition can be used
to suitably bound the tuning of K(q−1, ρ), provided the
first requirement is satisfied. Specifically, if also stability of
the fixed-order controller K(q−1, ρ) is enforced, the first
condition is always true, since Q̂(q−1) ∈ H∞ by assumption
and S(q−1) = 1 − Q̂(q−1)Go(q

−1) is stable. On the other
hand, if K(q−1, ρ) contains an integrator, it is sufficient to
impose that Q(1) = 1/Go(1) in the Q-design procedure. By
doing this way, S(q−1) = 1 − Q̂(q−1)Go(q

−1) has a zero at
1 and (1− Q̂(q−1)Go(q

−1))K(q−1, ρ) is stable for any ρ. In
this paper, controllers with unstable poles will not be taken
into account.

In practical situation, only an approximation Ĝ of the real
system is known. Therefore, the criterion above could yield a
controller that destabilizes the closed-loop system. A possible
reformulation of the stability constraint for stable controllers
is presented next.
Let consider only a class of controllers in H∞ and suppose
that a bound

δ = sup
Ĝ

∥∥∥Ĝ−Go

∥∥∥
∞

is known. The measure of the stability radius γ̂(ρ) for the real
plant (according to its definition in Theorem 1) is such that
γ̂(ρ) ≤ γ̂′(ρ), where

γ̂′(ρ) = ‖Go‖∞
∥∥∥(1− ĜQ̂

)
K(ρ)− Q̂

∥∥∥
∞

+ ‖Go‖∞ δ
∥∥∥Q̂K(ρ)

∥∥∥
∞

(7)
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and ‖Go‖∞ can be either computed from data [8] or overes-
timated by means of ‖Ĝ‖∞ + δ. It follows that the stability
bound can be transformed in the (more conservative) convex
constraint

γ̂′(ρ) < 1, (8)

that only depends on Ĝ and δ. If this new formulation of
the stability constraint is used in model-reduction procedure,
internal stability can be guaranteed for the real system.

The standard (model-based) approach for mixed-sensitivity
H2-H∞ design is presented when a set of N input-output
noisy data {u(t), y(t)}, t = 1, .., N is available. These
data are generated in open-loop operation according to the
system dynamics, i.e. y(t) = Go(q

−1)u(t) + v(t), where
v(t) = Ho(q

−1)e(t), Ho(q
−1) is an unknown stable filter

and e(t) is a zero mean white noise. Assume also that u is a
persistent exciting stationary signal [20].

MODEL-BASED ALGORITHM
1) Choose a class of SISO LTI models

G =
{
G(q−1, θ) , θ ∈ Θ ⊂ Rdim(θ)

}
. (9)

2) Identify a data-driven model of Go(q
−1) as Ĝ =

G(q−1, θ̂), where

θ̂ = argmin
θ

‖Go −G(θ)‖2 (10)

3) Compute the optimal Youla-Kučera parameter Q̂
as the rational transfer function in H∞ that mini-
mizes (1). This can be approximately done using a
linearly parameterized Q [21].

4) Compute the full-order controller in C that guaran-
tees the optimal sensitivity trade-off as

Ĉ = Q̂/(1− Q̂Ĝ).

5) Compute the stable reduced-order controller via
“control-oriented” model reduction [22], e.g. as
K̂ = K(q−1, ρ̂), where

ρ̂ = argmin
ρ
Jk(ρ)

Jk(ρ) =
∥∥∥(1− ĜQ̂

)
Ĉ −

(
1− ĜQ̂

)
K(ρ)

∥∥∥2
(11)

such that (8) is satisfied.

In the following section, a suitable way to solve the data-
driven mixed-sensitivity problem without identifying the plant
model is proposed and analyzed.

III. DATA-DRIVEN APPROACH

Let the Youla-Kučera parameter be linearly parameterized,
i.e. Q(η) = ηTβQ(q

−1), where βQ(q
−1) is a vector of

orthonormal basis functions with the same dimension of η,
e.g., βQ(q−1) = [1 q−1 q−2 . . .]. Analogously, consider for
the controller the linear parameterization

K(q−1, ρ) = ρTβK(q−1), (12)

where βK(q−1) is a vector of orthonormal basis functions with
the same dimension of ρ.
Consider now the tuning scheme in Fig. 2. For each value of

Fig. 2. Tuning scheme for the Youla-Kučera parameter.

the parameter vector, the signals z1(t, η), z2(t, η) and z3(t, η)
can be expressed as functions of u(t) and of the output y(t),
without including the real plant dynamics:

z1(η) = Ws (1−GoQ(η)) u =Wsu−WsQ(η)y

z2(η) = WtGoQ(η)u =WtQ(η)y

z3(η) = WuQ(η)u.

In a noiseless environment, i.e. when v(t) = 0 , ∀t, the
H2- and H∞-norms of the generating functions Hi(q

−1, θ)
of such signals, i.e. the functions such that zi(t, η) =
Hi(q

−1, η)u(t) , i = 1, 2, 3, can be estimated from data. In
detail, concerning the H2-norm, it holds that, for N that tends
to infinity,

lim
N→∞

1

N

N∑
t=1

[
L(q−1)zi(t, η)

]2
= ‖Hi(η)‖22 , i = 1, 2, 3,

where the prefilter L(q−1) is such that
∣∣L(ejω)∣∣2 = 1/U(ω)

and U(ω) is an estimate of the spectrum of u. An estimate
of the H∞-norm can be instead derived via spectral estimates
as suggested in [8]. Formally, for N that tends to infinity, it
holds that

max
ωk

∣∣∣∣Φi(ωk, η)

U(ωk)

∣∣∣∣ → ‖Hi(η)‖∞ , i = 1, 2, 3,

where ωk = 2πk/(2l+ 1), k = 1, . . . , l + 1 and Φi(ωk, η) is
an estimate of the cross-spectrum between u and zi. In detail,
such spectrum may be computed as

Φi(ωk, η) =

l∑
τ=−l

Ri(τ, η)e
−jτωk

where Ri(τ, η) is an estimate of the cross-correlation function
between u and zi

Ri(τ, η) =
1

N

N∑
t=1

u(t− τ)zi(t, η).

The estimation of the H∞-norm is consistent, when l → ∞
and l/N → 0 (see [8]). Notice that, since all signals are linear
functions of η with the parameterization of Q selected above,
both the H2 squared norm and the H∞-norm are convex in
the parameter vector.
Therefore, in such noiseless setting, the problem of finding
η̂ minimizing (1) is converted in a convex optimization
problem, where the addends in the cost function, i.e the
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weighted sensitivities that generate the zi-s, are directly
computed from data. In this way, points 1-2-3 of the standard
model-based algorithm (see again Section II) are reduced to
a single identification step.
If v(t) is a generic zero-mean stochastic signal, the problem
of minimizing (1) turns out to be a standard errors-in-variables
(EIV) problem, where a model has to be identified starting
from noisy input data. In this case, different solutions are
available in the literature to make the procedure insensitive
to noise (see [23] for an overview).

The same data-driven rationale can be used to condensate
points 4-5 of the model-based algorithm in another data-based
step, without identifying Go(q

−1). In fact, the linearly param-
eterized reduced-order controller K(q−1, ρ) can be directly
identified from the same data-set used for the computation of
the Youla-Kučera parameter. Moreover, it will be shown that
the bias due to presence of noise can be easily handled if the
problem is formulated using the correlation approach.
Consider Fig. 3, where the tracking error εk(ρ) is defined as

εk(ρ) = (1−GoQ(η̂))K(ρ)u−Q(η̂)u.

Introduce now the instrumental variable vector ζ(t)

Fig. 3. Tuning scheme for the reduced-order controller.

ζ(t) = [u(t+ lk), . . . , u(t), . . . , u(t− lk)]
T

and the decorrelation criterion as

Vk(ρ) =

[
1

N

N∑
t=1

ζ(t)εk(t, ρ)

]T

1

N

N∑
t=1

ζ(t)εk(t, ρ) (13)

The following result holds for the formulation above in both
noiseless and noisy settings.

Theorem 2: Consider the decorrelation criterion (13),
where εk(t, ρ) is generated by the linearly-parameterized con-
troller (12) and filtered with Lk(q

−1) such that∣∣Lk(e
jω)

∣∣ = 1/U(ω). (14)

Then, as N, lk → ∞ and lk/N → 0, the minimizer ρ̂ of
Vk(ρ) is with probability 1 a minimizer of (11), where
Ĉ = Q(η̂)/(1−Q(η̂)Go) and η̂ is the minimizer of (1).

Proof: Following the same procedure adopted for model-
reference criterion in [8], the criterion can be proved to
statistically converge to a continuous function of the cross-
correlation indicators Rk(τ, ρ) = E[u(t− τ)εk(t, ρ)], i.e.

lim
N→∞

Vk(ρ) =

τ=lk∑
τ=−lk

Rk(τ, ρ)
2.

Notice then that if K(q−1, ρ) is stable, (1−Q(η̂)Go)K(ρ)−
Q(η̂) is stable and that the same holds if K(q−1, ρ)
contains an integrator and Q has been constrained such
that Q(1) = 1/Go(1). As a consequence, the squared
sum

∑lk
τ=−lk

Rk(τ, ρ)
2 and its limit

∑∞
τ=−∞Rk(τ, ρ)

2 are
bounded on the parameter set. Thus, as N, lk → ∞ and
lk/N → 0, Vk(ρ) converges uniformly to

∑∞
τ=−∞Rk(τ, ρ)

2

[24]. In frequency-domain, the asymptotical value of Vk(ρ)
can be rewritten by means of the Parseval theorem as

∞∑
τ=−∞

Rk(τ, ρ)
2 =

1

2π

∫ π

−π

Ψ2(ω)dω

=
1

2π

∫ π

−π

|Lk|2 |(1−GoQ(η̂))K(ρ)−Q(η̂)|2 U2(ω)dω

where Ψ is defined as

Ψ(ω) = Lk [(1−GoQ(η̂))K(ρ)−Q(η̂)]U(ω).

If the data-prefilter is selected according to (14), then (13)
asymptotically tends to (11) with Ĝ = Go and, since the
convergence is uniform, the minimizers of the two criteria
coincide.

The stability constraint can be included in the design
problem in two different ways that explained in the following
subsections.

A. Double-experiment procedure

a data-driven version of the constraint in Theorem 1
can be formulated with a second open-loop experiment, by
feeding the plant with {y(t)}t=1...N and collecting the output
{y′(t)}t=1...N .

Let ∆(ρ) be the transfer function between u and a signal z∆,
i.e.

z∆(ρ) = (1−GoQ(η̂)))K(ρ)Gou−Q(η̂)Gou.

It follows that, in a noiseless environment,

z∆(ρ) = (1−GoQ(η̂)))K(ρ)y −Q(η̂)y

= K(ρ)y −Q(η̂)K(ρ)y′ −Q(η̂)y,

that is z∆(ρ) can be computed as a function of known data
for each value of ρ. The H∞-norm of ∆(ρ) can then be
asymptotically derived as suggested in [8]. It should be
mentioned that if K(ρ) contains an integrator, the equality
constraint Q(1) = 1/Go(1) requires an additional information
on the static gain of the process, as an estimate of the plant
model is no more available.

B. Single-experiment procedure

If a stabilizing minimum-phase controller Cs is available, it
is possible to avoid ad-hoc experiments. Consider again Fig.1,
by replacing C with Cs. A different stability condition de-
pending on Cs can be straightforwardly derived by following
the same rationale in Theorem 1 and requiring that

∆s(ρ) =
Go (K(ρ)− Cs)

1 +GoCs
∈ H∞
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and γs(ρ) = ‖∆s(ρ)‖∞ < 1. In such case, ∆s(ρ) can be seen
as the transfer function between a fictitious reference rf (t)
and z∆s (see again the closed-loop scheme in Fig. 1), i.e.

z∆s(ρ) =
Go (K(ρ)− Cs)

1 +GoCs
rf ,

where rf is given by rf (t) = C−1
s (q−1)u(t) + y(t). The

expression of z∆s(ρ) may be rewritten as

z∆s(ρ) =
GoK(ρ)

1 +GoCs
rf − GoCs

1 +GoCs
rf

= C−1
s K(ρ)

GoCs

1 +GoCs
rf − y

=
(
C−1

s K(ρ)− 1
)
y

Therefore, z∆s(ρ) is completely known from data and the
H∞-norm of ∆(ρ) can again be asymptotically derived as
suggested in [8].

Remark.
• The above rationale is derived in a noiseless setting.

Several techniques for dealing with noisy data in spectral
estimation are available in the literature [8].

• If K(ρ) contains an integrator, also Cs must have it; anal-
ogously, Cs must be stable if K(ρ) is stable. However,
this is easy to achieve in practical situations.

• The “double experiment” formulation of the stability-
constraint is the same as that for the model-based case,
with the difference that the identified model Ĝ is replaced
by the “true” model Go. This fact makes the proposed
method less conservative than the standard model-based
one, where knowledge and use of the additional variable
δ (see again Section II) is required to guarantee internal
stability for the real closed-loop system.

The data-driven algorithm can be summarized in the fol-
lowing three points.

DATA-DRIVEN ALGORITHM
1) Choose a class of SISO LTI models

Q =
{
Q(q−1, η) , η ∈ Π ⊂ Rdim(η)

}
. (15)

2) Compute the optimal parameters of Q by the fol-
lowing optimization problem:

η̂ = argmin
η
JN (η) (16)

where JN (η) can be any user-defined composition
of sample-based estimates of H2- and H∞-norms
of the weighted sensitivity functions.

3) Identify the data-based reduced-order controller as
K̂ = K(q−1, ρ̂), where ρ̂ = argminρ Vk(ρ) and
one of the two proposed stability constraints is
satisfied.

IV. COMPARISON

In this section, the new approach and the standard model-
based algorithm will be discussed and compared from different
points of view, in order to highlight advantages and disadvan-
tages of the two methods.

A. Asymptotic results in case of correct parameterization

Define the optimal value for the Youla-Kučera parameter
Qo and the optimal full-order controller Co respectively as

Qo = arg min
Q∈RH∞

J(Go, Q), (17)

Co =
Qo

1−GoQo
. (18)

Consider then the F.I.R. extension of the selected classes of
models, i.e. write

G =

{
G(θ, q−i) =

nG∑
i=0

θiq
−i

}
,

Q =

{
Q(θ, q−i) =

nQ∑
i=0

ηiq
−i

}
.

The following asymptotic result holds.

Proposition 1: Assume that Go ∈ G in model-based proce-
dure and Qo ∈ Q in the data-driven case. Then:

1) the reduced-order controllers guarantee the same asymp-
totical loop-shaping performance in model-based and in
the data-driven framework.

2) if Co belongs to the class of considered fixed-order
controllers, the minimum of J(ρ) in model-based case
and in data-driven algorithm coincide, as N → ∞.

Proof: Let consider the model-based approach first. The
FIR estimate of Go is G(θ̂), where θ̂ is given by

θ̂ =

[
1

N

N∑
t=1

ψ(t)ψ(t)T

]−1

1

N

N∑
t=1

ψ(t)y(t) (19)

and ψ(t) = [u(t), u(t−1), . . . , u(t−nG+1)]. It is well known
[20] that (19) can be written as the sum of three different
terms: the real value θo, a term due to undermodeling and a
third addend depending on noise variance. Since prediction
error techniques are used and Go ∈ G, it holds that, asymptot-
ically, θ̂ → θo. Consequently, Q→ Qo and J = J(Go, Qo).
For what concerns the data-driven algorithm, the same reason-
ing can be applied. In few words, since Qo ∈ Q by hyphoteses,
Q → Qo as the number of data grows, because the proposed
method is consistent. This means that the Youla-Kučera pa-
rameter minimizing (1) is the same for both the approaches
if large data-sets are used and, subsequently, J = J(Go, Qo).
Starting from the same expression for Q, the unique difference
between (11) and (13) is the fact that (11) can be computed
by means of noiseless simulated data, obtained by feeding Ĝ
with u(t), whereas (13) must be minimized using the set of I/O
noisy data. However, the result shown in Theorem 2 assures
that, as N, lk → ∞ and lk/N → 0, the minima of two cost
functions coincide (thesis 1). The same result straightforwardly
holds if no order-reduction is required (thesis 2).
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B. Discussion about undermodeling

Theorem 1 states that both the approaches are consistent
if the right model-order is selected for G and Q. This is
not the case in many real-world applications. As obvious, a
complete theoretical analysis of the differences between the
two approaches would be very complex in this setting, since
optimization results are strictly related to the dynamic structure
of the plant. Furthermore, in model-based approach, under-
modeling of G weighs on Q and then the final value of (1)
also depends on how the Youla-Kučera parameter is calculated.
However, a ticklish aspect concerning undermodeling of the
controller can be highlighted, that is the conservatism of the
stability constraint. As explained in Section II, in order to
ensure the internal stability of the real closed-loop system,
the modeling error must be taken into account. Moreover, the
constraint γ′(ρ) < 1 may affect closed-loop performance, if
the optimal solution is close to the boundary defined by the
real constraint. A simple situation where this fact may happen
has been presented in [15].
It must be mentioned that the formulation (7) is only one of
possible solutions and that different results could be achieved
in different situations. In any case, if internal stability for the
real system has to be (asymptotically) guaranteed, a fair com-
parison between the methods must take into account a bound
on the modeling error, by introducing more conservatism in
the model-based approach.

V. EXPERIMENTAL EXAMPLE

The goal of this experimental example is to implement a
controller for an active suspension system aimed to reject
some external disturbances. In this example, the control
action will be designed in order to reject the low-frequency
disturbances. For more details on the active suspension
applications and some comparison with other technologies,
the reader is referred to [25].

The experimental setup is illustrated in Fig. 4. The system

Fig. 4. The active suspension system by Quanser R©.

contains three mobile plates, that can move in the vertical
direction independently from each other. The bottom plate
represents the perturbation of the system. The user can
impose a vertical position of this plate using a brushed servo
motor which is linked by a belt and a ball screw to the bottom
plate. The middle plate is linked by two springs to the bottom

plate. There is damping due to friction in the linear bearings
and between the springs and their guide. The top plate is the
one representing the chassis of the device to control and it
is linked by another motor to the middle plate. This second
motor is the actuator of the control system, secured in parallel
with a spring and shock absorber. The aim of the control
problem is to minimize the energy of the acceleration of the
first plate, by regulating the force provided by the second
actuator, once any disturbance is given. A position sensor
installed on the top plate enables the feedback control of
acceleration by double derivation of the signal. The sampling
time is Ts = 20 ms.

Since the above issue is formulated as a noise rejection
problem, a suitable mixed-sensitivity loop-shaping cost could
be the H2 cost

min
ρ
J(ρ) = min

ρ
‖WsS(ρ)‖22 + ‖WuU(ρ)‖22 (20)

where the weighting functions are

Ws = 10
(1− α)

2

(1− αq−1)2
, α = e−2πTs5 , Wu = 0.1. (21)

The H2-norm is the best choice in this case because, as
already said, the objective is the energy of the acceleration.
By minimizing the weighted sensitivity function together with
the input sensitivity, the resulting controller will reject the
noise in the frequency range indicated by Ws (that is, up to
5 Hz), but it will also keep the control action not too large. A
weighting on the complementary sensitivity function is instead
not needed as no explicit tracking performance are required;
specifically, the reference acceleration will be always set to
zero.
Since, in this paper, controllers are supposed to be fixed-order,
the additional requirement that only up to 5 parameters can be
used will be taken into account. Moreover, since the system
contains two derivative actions (the actual acceleration is the
second derivative of the position), the integral action will not
be employed. No constraints are instead given on Q, that in the
present method is seen only as a tool to compute the optimal
K . Then, while for K the dimension of ρ is compulsorily
5, η can be as large as desired. However, too large Q may
yield numerical problems and a smart selection of the order
is advisable.
In this case, since the optimal Q theoretically contains the
poles of the final complementary sensitivity function and the
bandwidth of S is set to 5 Hz, a reasonable choice for Q
is an FIR with dimension of η equal to the length of the
impulse response of Ws, that is 15 (it can be easily verified that
the response takes almost 0.3 s to go to zero, with the given
sampling time Ts). Concerning the length of the instrumental
variables, the same reasoning can be done, as they are used to
approximate the correlation matrix of the closed-loop output
and the size of that is related to the speed of the system.
However, some tests (not reported here for matter of space)
showed that this dimension can be increased up to 35 without
substantial changes.
In order to design the optimal controller, the open-loop data
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Fig. 5. Open-loop data collection for controller identification.

in Fig. 5 are employed. The input force sequence has been
selected as a 9th-order Maximum Length Sequence (MLS)
and the acceleration output has been collected. The MLS
is basically a pseudo-random sequence of pulses and can
be easily obtained by using a shift-register with different
feedback taps. The advantage of such a choice with respect to
a white noise excitation is that its spectrum is almost white
but the amplitude of the time-history of the force can be kept
constant at a desired level (in this case, 2 N ). The 5-parameter
controller given by the method is

K(ρ) = ρo + ρ1q
−1 + ρ2q

−2 + ρ3q
−3 + ρ4q

−4

= 3.66 + 0.05867q−1 + 2.113q−2 + 0.3015q−3

+1.165q−4

The improvement of the closed-loop system with the resulting
controller with respect to the open-loop response can be
evaluated in Fig.6, where the magnitude of the experimental
frequency response of the transfer function between the distur-
bance and the chassis acceleration is illustrated. As expected,
in the frequency range where Ws is higher, the sensitivity func-
tion of the closed-loop system gets lower and the disturbance is
better filtered. It should be here stressed that also the illustrated
frequency responses (for performance assessment) have been
computed directly from data, specifically using experimental
MLS excitation of the disturbance and Welch method [26],
whereas no analytical model has been identified.
In Fig. 6, the performance given by the optimal 5-parameter
model-based controller is also shown. For computing such a
controller, it was not possible to employ FIR identification,
as the large number of parameters required (to have a good
matching) yielded too poor closed-loop performance; there-
fore, output error (OE) identification was used (notice that this
approach is based on non-convex techniques). Specifically, the
OE(6,6,1) model (22) was identified using the oe command
of the System Identification Toolbox in Matlab [27] and
validation was obtained via the resid command. The h2syn
command [28] was then used to compute Q and the full-order
controller Co (18). The parameter vector of the reduced-order
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Fig. 6. Magnitude of the frequency response of the transfer function between
the disturbance and the body acceleration: open-loop (solid), closed-loop with
model-based controller (dash-dotted) and closed-loop with the data-driven
controller (dashed).

controller was then found by the (convex) control-oriented
controller reduction procedure at the 5th step of the model-
based design algorithm in Section II. Specifically, in this case,
the H2-norm was selected.
Notice that, despite in model-based approach the choice of
Q is completely free, the constraint in the controller struc-
ture make the final performance worse than the data-driven
approach. In particular, it can be noticed that at the frequency
corresponding to the maximum amplification factor, i.e. 3 Hz,
the data-driven approach leads to an additional disturbance
reduction of almost 10 dB. At the same time, the settling
time with the model-based controller is 1.7 seconds against
1.4 seconds of the closed-loop system with the data-driven
controller. This is coherent with the theory presented in
Section IV, as in this practical case, the dataset is not infinite
and Co might not belong to the set of 5-parameter controllers.
The advantage of the data-driven approach is due to the fact
that, in every step, the final control criterion is directly taken
into account.
The performance of the system can be quantitatively assessed
by computing the root mean square (RMS) of the estimated
acceleration â, that is

RMS =
1

r

√√√√ r∑
t=1

â2, (23)

over a set of r samples, provided a MLS excitation is given.
The RMS value, normalized with respect to the open-loop
case, is 0.76 for the model-based controller and 0.41 for the
data-driven controller when the spectrum of the excitation of
the disturbance is limited up to 10 Hz and r = 1000.
The result in Fig. 6 can then be summarized by stating that
the proposed approach guarantees - for the given application -
an additional 35% in the reduction of the acceleration energy
with respect to model-based loop-shaping.
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Ĝ(q−1) =
0.09835q−1 − 0.2304q−2 + 0.09333q−3 + 0.2106q−4 − 0.2731q−5 + 0.1006q−6

1− 3.029q−1 + 3.971q−2 − 2.67q−3 + 0.8097q−4 − 0.0365q−5 + 0.01685q−6
, (22)

VI. CONCLUDING REMARKS

A data-driven approach for controller design in mixed-
sensitivity H2-H∞ loop-shaping framework has been
proposed. The method is based on convex optimization
techniques and it is limited to stable plants. The main idea
is to derive the Youla-Kučera parameter directly from a set
of I/O data and to perform a second identification step to
identify a fixed-order controller from the same data-set. In
both the cases, the criterion to optimize is related to the final
control performance - i.e. it is “control-oriented” - and not to
the matching of the real plant. Internal stability of the closed-
loop system with the resulting controller is asymptotically
achieved by means of a convex H∞-constraint. Furthermore,
the stability constraints for the proposed technique are
generally less conservative than for the standard model-based
approach, with which the data-driven approach shares the
same asymptotical results. In this paper, the proposed method
has also been applied on an active suspension system, where
experimental results have shown very good performance
when compared to a standard model-based approach.
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