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Abstract  

Alpha-synuclein (α-syn) is a natively unfolded protein that is closely linked to Parkinson’s 

disease (PD) by genetic, neuropathologic and biochemical evidence. Aggregated and fibrillar 

forms of α-syn are the main components of intracellular protein inclusions found in PD patients’ 

brains, termed Lewy Bodies (LB). Both in animal models and in vitro, α-syn forms fibrillar 

aggregates that resemble those observed in PD brain tissues. Although disease-associated 

mutations have been shown to promote the fibrillization of α-syn, the exact mechanisms 

responsible for triggering α-syn aggregation and toxicity in sporadic PD remain unknown. 

Addressing this gap of knowledge is crucial for understanding the molecular basis of the disease 

and developing effective therapies for the treatment of PD and other synucleinopathies. This 

project was initiated on the basis of the working hypothesis that post-translational modifications 

(PTM) may play important roles in modulating α-syn function and/or regulating its aggregation 

and toxicity. More specifically, α-syn is ubiquitously N-terminally acetylated, and 

phosphorylated (serines 87 and S129), ubiquitinated (lysines 12, 21 and 23) and truncated forms 

of α-syn have been observed in association with wild-type α-syn in LB and in brain tissues from 

PD patients and transgenic animals. Other modifications, such as phosphorylation at tyrosine 

125 (Y125), were significantly reduced in diseased brains. Despite the discovery of candidate 

enzymes that mediate α-syn phosphorylation, ubiquitination and truncation, little is known about 

how each of these modifications alters α-syn structure, function, aggregation and toxicity in 

vivo. This is primarily due to the lack of tools that allow site-specific introduction of these 

modifications and the lack of natural mutations that can mimic the effect of these modifications, 

including phosphorylation. 

The primary focus of this thesis was to develop strategies to overcome these limitations so as to 

elucidate the effect of phosphorylation at Y125 and monoubiquitination at lysine 6 (K6) on α-

syn structure, fibril formation, membrane binding and subcellular localization. Towards this 

goal, we developed two semisynthetic strategies that allow site-specific introduction of PTM in 

α-syn based on the ligation of synthetic peptides containing the desired modified amino acid 

with recombinantly expressed proteins using Expressed Protein Ligation. This approach enables 

the introduction of single or multiple PTM in the N- or C-terminal regions of α-syn, and the 

preparation of modified α-syn in milligram quantities. Using these approaches, we were able to 

show for the first time that ubiquitination stabilizes the monomeric form of the protein and 

inhibits, rather than promotes, α-syn aggregation, while phosphorylation at Y125 does not 

significantly change the structure and aggregation propensity of α-syn. With the semisynthetic 
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pY125 α-syn in our hands, we were also able to investigate for the first time the sub-cellular 

localization of pY125 α-syn through its microinjection into primary neurons. This was not 

previously possible due to technical limitations related to the absence of appropriate antibodies 

against pY125 α-syn for immunocytochemical studies and difficulties in generating site-

specifically modified α-syn. Furthermore, we were able to investigate the effect of α-syn 

phosphorylation on its interactions with other proteins, by probing the effect of pS129 and 

pY125 on the binding to a nanobody that was specifically selected by phage-display to tightly 

bind to the C-terminal domain of α-syn. Accordingly, we demonstrated that phosphorylation at a 

single residue is capable of disrupting the binding of full-length α-syn to another protein. These 

results have wide-ranging implications for the potential role of phosphorylation and other PTM 

in regulating α-syn’s function(s).  

We also exploited our ability to combine semisynthetic and enzymatic approaches to investigate 

potential cross-talk between different PTM, namely phosphorylation at Y125 and S129 and 

monoubiquitination at K6. These advances would eventually allow investigating the effect of 

cross-talk between other N and C-terminal modifications on α-syn’s properties and to 

investigate PTM-dependent protein-protein and protein-ligand interactions in vitro and in 

cellular models of synucleinopathies. 

Together, our semisynthetic approaches provide novel means for the introduction of site-specific 

modifications in the N- and C-termini of α-syn. Current efforts in our laboratory are focused on 

extending these approaches to investigate the dynamics of PTM through the use of photocaged 

modified amino acids and to prepare novel fluorescently labeled α-syn variants to investigate its 

folding at the single-molecule level in living cells. The results presented in this thesis and 

preliminary studies from our group demonstrate that semisynthetic α-syn can provide unique 

opportunities to investigate structure-function of α-syn and the role of PTM in the biology of α-

syn in health and disease.  

Keywords: Parkinson’s disease (PD); alphα-synuclein (α-syn); Lewy Bodies (LB); 

Aggregation; Amyloid; Oligomers; Dopamine (DA); Solid-phase peptide synthesis (SPPS); 

Native Chemical Ligation (NCL); Expressed Protein Ligation (EPL); Intein; Circular Dichroism 

(CD); Nuclear Magnetic Resonance (NMR); Transmission Electron Microscopy (TEM); 

Microinjection; Immunocytochemistry; Fluorescent Microscopy; Nanobodies; Isothermal 

Titration Calorimetry (ITC).  
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Resumé et Mots-clés 

La protéine alpha-synuclein (α-syn) est impliquée dans la maladie de Parkinson suite à des 

données génétiques, neuropathologiques and biochimiques. Sous forme agrégée, α-syn constitue 

la composante majoritaire des inclusions cytoplasmiques trouvées dans les neurones des patients 

de la maladie de Parkinson, communément appelées Corps de Lewy. Dans les modèles animaux 

ou dans des expériences in vitro, α-syn forme des fibrilles ressemblant aux inclusions qui ont été 

identifiées dans les cerveaux des patients. Des mutations pathogéniques ont été identifiées dans 

la séquence d’α-syn et sont capables d’engendrer une augmentation de l’agrégation de la 

protéine. Cependant, la majorité des patients de la maladie n’ont pas de mutations dans leurs 

gènes et l’identité des facteurs qui induisent l’agrégation d’α-syn dans les cas sporadiques est 

inconnue. L’étude approfondie de ces facteurs est nécessaire afin de mieux comprendre les 

bases moléculaires de la maladie et pour mieux développer des thérapies effectives pour le 

traitement de la maladie. Ce projet a été initié suite à la spéculation que les modifications post-

traductionnelles (MPT) jouent probablement un rôle important dans la régulation de la fonction 

d’α-syn, de son agrégation et de sa toxicité. 

α-syn est acétylée (N-terminale), et des formes phosphorylées (sur les serines 87, 129), 

ubiquitinées (aux lysines 12, 21 et 23) et tronquées (1-134, 1-133, 1-126, 1-122, 1-119, 1-115 

and 1-96) ont été observées dans les corps de Lewy. La quantité d’autres modifications, la 

phosphorylation à la tyrosine 125 par exemple, diminuent avec la progression de la maladie. 

Malgré la découverte de plusieurs enzymes responsables de la phosphorylation, ubiquitination et 

troncation d’α-syn, nous n’avons pas d’indications sur les effets de ces modifications sur la 

structure, fonction, agrégation et toxicité in vivo, probablement dû au fait que ces enzymes ne 

sont pas spécifiques par rapport aux acides aminées d’intérêt et que les mutants utilisés pour 

mimer ces modifications peuvent modifier intrinsèquement la structure de la protéine.  

Le but ultime de ma thèse était de développer des stratégies qui visent à surmonter ces 

limitations et à utiliser ces stratégies pour élucider l’effet de la phosphorylation à Y125 et la 

mono-ubiquitination à la lysine 6 (K6) sur la formation des fibrilles, l’interaction avec les 

membranes et la localisation dans la cellule d’α-syn. Nous avons développé deux stratégies 

semi-synthétiques qui permettent l’introduction de MPT à des positions spécifiques de la 

protéine en se basant sur une combinaison de synthèse peptidique pour la flexibilité d’acides 

aminés non naturels qui peuvent être introduits et la production de protéine recombinante dans 

E.coli. Cette méthodologie est connue sous le nom de Ligation de Protéine Exprimée.  Grace à 

cette approche, nous pouvons introduire des MPT dans le domaine N-terminal ou C-terminal 
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d’α-syn. Nous pouvons montrer pour la première fois, que la protéine mono-ubiquitinée inhibe 

l’agrégation alors que la phosphorylation à Y125 n’induit pas de changements significatifs sur la 

structure et la capacité d’agrégation de la protéine.  

De plus, nous avons pu déterminer la localisation de la protéine phosphorylée à Y125 dans la 

cellule grâce à la micro-injection de la protéine dans des neurones primaires de rat. Les études 

précédentes n’avaient pas pu accéder à ce type d’informations sur la localisation à cause de 

difficultés techniques liées à la cross-réactivité de l’anticorps anti-pY125, ce qui élimine son 

utilisation pour des études d’immunocytochimie. Nous avons aussi étudié l’effet de la 

phosphorylation sur l’interaction d’α-syn avec d’autres protéines. Nous avons choisi d’étudier 

l’effet de la phosphorylation à S129 et Y125 sur l’interaction de la protéine avec un 

« nanobody » qui a été spécifiquement sélectionné par la méthode de  « phage-display » pour 

interagir avec le domaine C-terminal d’α-syn. Les études précédentes d’interaction d’α-syn 

étaient basées sur l’utilisation de fragment de peptides C-terminaux. Nous démontrons pour la 

première fois que la phosphorylation d’un résidu unique est capable d’empêcher l’interaction de 

la protéine entière à une autre protéine. Ces résultats ont plusieurs implications concernant le 

rôle de la phosphorylation et d’autres MPT qui régulent la fonction et la dysfonction d’α-syn. 

En résumé, notre nouvelle approche semi-synthétique permet d’introduire des MPT dans le 

domaine N-terminal et C-terminal d’α-syn. La richesse de cette approche réside dans sa capacité 

d’étudier l’effet de modifications de résidus qui n’étaient pas accessibles précédemment avec les 

méthodes génétiques et chimiques standards. Nos résultats devraient permettre de préparer 

d’autres formes modifiées d’α-syn à travers l’utilisation de l’approche semi-synthétique et 

l’étude de l’influence de ces MPT d’α-syn sur la fonction physiologique et pathologique d’α-

syn.  

Mots-clés : Maladie de Parkinson ; alphα-synuclein ; Corps de Lewy ; agrégation ; fibres 

amyloïdes ; Modifications post-traductionnelles ; Oligomères ; Dopamine ; Synthèse peptidique 

en phase solide ; Ligation chimique native ; Ligation de Protéine Exprimée ; Inteine ; 

Dichroïsme circulaire ; Résonnance Magnétique Nucléaire ; Microscopique Electronique à 

Transmission ; Microinjection ; Immunocytochimie ; Microscopie de Fluorescence ; Titration 

Calorimétrique Isotherme 
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I. INTRODUCTION 

  

I.2. Parkinson’s disease 

Parkinson’s Disease (PD) is the second most prevalent neurodegenerative disease affecting 1-

2% of the population older than 60 years (de Lau and Breteler, 2006). The major symptoms of 

PD are bradykinesia, resting tremor or postural instability and the disease is characterized 

histologically by a progressive loss of neuromelanin-containing dopaminergic neurons of the 

substantia nigra (SN) pars compacta (Figure I-1.A) and the presence of intracellular 

proteinaceous inclusions termed Lewy Bodies (LB) (Figure I-1.B). The proteins alpha-synuclein 

(α-syn) and ubiquitin are major components of the LB (Spillantini et al., 1997, Wakabayashi et 

al., 1997, Spillantini et al., 1998b). Motor dysfunction in PD patients only manifest at a late-age 

after substantial dopaminergic neuron loss, suggesting a strong compensatory system in the 

early stages of the disease that counteracts the consequence of early neurodegeneration 

(Bernheimer et al., 1973). 

 

 
Figure I-1. Lewy Bodies and dopaminergic lesions in PD 
A. Schematic depiction of the loss of neuromelanin-containing neurons in the substantia nigra in PD patients. 
Image adapted from A.D.A.M images (http://www.adamimages.com/Illustration/SearchResult/1/parkinson) and B. 
Immunohistochemical analysis of dopaminergic neurons containing Lewy Bodies that are immunopositive for α-
syn (thick arrow). Figure from Spillantini et al. (Spillantini et al., 1997). 
 

The symptoms of PD appear chronologically during the different stages of the disease: non-

motor symptoms characterized by olfactory deficits, insomnia and constipation precede the 

motor symptoms whose diagnosis allows checking more precisely for the existence of PD 
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(bradykinesia and rigidity) (Section I.2.3.1). Late stages of the disease are accompanied by 

cognitive decline and psychiatric syndromes (Braak et al., 2004).  

I.2.1. Genetic causes 

While the majority of PD patients with idiopathic or late-onset disease do not seem to have 

inherited the disease, gene mutations account for 5% of total PD cases (Hatano et al., 2009). A 

large number of genes have been implicated in PD but in the focus of the thesis, we will only 

mention the most common gene mutations (Figure I-2). Two genes are responsible for 

autosomal dominant inherited causes of PD: the SNCA/PARK1 gene coding for the protein α-

syn and the PARK8 gene coding for the protein LRRK2 (Gasser, 2009). Autosomal recessive 

inherited PD is triggered by mutations in the genes PARK2, PARK6 and PARK7 coding 

respectively for Parkin, PINK-1 and DJ-1 (Gasser, 2009).  

 

Figure I-2. Major genes and loci associated with PD 
A summary of the different genes that are implicated in PD. The most studied are: SNCA and LRRK2, whose 
mutations induce autosomal dominant familial PD and Parkin, DJ-1 and PINK1 that are linked to autosomal 
recessive PD. Figure from Martin et al. (Martin et al., 2011) 
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I.2.1.1. Alpha-synuclein 

α-syn was the first identified gene to cause PD (Polymeropoulos et al., 1996). α-syn contains 

three types of disease-causing mutations: single-point mutations, whole-gene multiplication 

(duplication and triplication) (Singleton et al., 2003) and gene polymorphism (Xia et al., 1996). 

• Single-point mutations 

The A53T mutation is the most commonly found mutation in PD patients and was first 

identified in Greek/Italian families (Polymeropoulos et al., 1997). A30P and E46K mutations 

were first reported in families of German and Spanish origin respectively (Kruger et al., 1998, 

Zarranz et al., 2004). Depending on the nature of α-syn mutation, PD patients exhibit different 

clinical symptoms (Corti et al., 2011). Patients with A53T mutation do not have a single 

phenotype but present largely diverse symptoms ranging from typical PD with late-onset disease 

to atypical PD with earlier-onset, faster disease progression or dementia (Golbe et al., 1990, 

Papapetropoulos et al., 2003, Ki et al., 2007, Puschmann et al., 2009). Patients with A30P 

mutation present the symptoms of idiopathic PD (late onset and mild progression) while the 

patients with E46K mutations show severe parkinsonism phenotypes (early-onset and dementia) 

(Kruger et al., 2001, Zarranz et al., 2004).  

• Gene multiplication 

In 2003, triplication of the SNCA gene was identified in the Iowa kindred where patients with 

four copies of the gene had a very early onset (mean age: 38 years) and a fast progression of the 

disease (Singleton et al., 2003). Later, patients of French and Italian origins with SNCA 

duplication showed clinical features similar to typical idiopathic PD with a late-onset (mean age 

of onset of 48) (Chartier-Harlin et al., 2004, Ibanez et al., 2004). The Lister Swedish/American 

family presents a good example of how the number of SNCA gene copies affects the phenotypic 

expression of the disease within a single family: one branch of the family diagnosed with a 

duplication of the gene showed a typical late-onset PD while the other branch, which had a 

triplication of the gene, exhibited early-onset PD with dementia (Fuchs et al., 2007). There is 

hence a proven correlation between the number of copies of the gene and hence protein 

expression levels and the severity of the disease. Aside from the impact of single-point 

mutations on the pathogenesis, this is the first time that altered levels of α-syn expression were 

speculated to lead to the progression of PD (Eriksen et al., 2005) (Figure I-3). 
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• Allele polymorphism 

Genetic variability has been reported in the α-syn promoter where a dinucleotide repeat 

polymorphic marker REP1 with an allele-length variability was mapped upstream of the 

transcription start site of the gene (Xia et al., 1996). This gene variability was suggested to show 

an association to PD in some cases (Kruger et al., 1999, Tan et al., 2000, Farrer et al., 2001b), 

while this was not confirmed in other studies (Parsian et al., 1998, Khan et al., 2001). The 

reason behind the discrepancy has been attributed to small population studies with potential 

biases. Hence, a collaborative program of 18 research sites was launched to investigate whether 

SNCA haplotypes are associated with PD and whether REP1 variability modifies the age of 

disease-onset (Maraganore et al., 2006). The results showed association of the allele-length 

variability in REP1 with PD: individuals that had the 263 base pair (bp) allele, not the 259 bp 

allele, were associated with a high risk for PD and the genotypes did not change the age of 

disease-onset (Maraganore et al., 2006). The effect of allelic variation in REP1 on transcription 

was assessed in cellular models where expression level increased 3-fold (Chiba-Falek and 

Nussbaum, 2001). Thus, α-syn levels are influenced by genetic variability in the promoter 

region. In addition to polymorphism in the promoter region, genetic variability was also 

identified in the coding (especially in exons 5 and 6) and non-coding sequence of α-syn with an 

increased tendency for PD (Mueller et al., 2005). 

I.2.1.2. Other genes involved in Parkinson’s Disease 

• LRRK2 

While α-syn mutations are rare, mutations in the gene coding for the protein LRRK2 (Leucin 

rich repeat kinase 2) are more common and occurs in 5-15 % of patients with autosomal 

dominant PD (Berg et al., 2005). One particular mutation – G2019S – is very frequent. The gene 

encodes a large proteins of 2,527 amino acids that harbors several domains: a leucine rich 

domain LRR, a GTPase domain and a kinase domain (Mata et al., 2006) (Figure I-3).  

Several missense mutations are distributed among the sequence of LRRK2 and are present in 

patients with typical late-onset familial and sporadic PD (Paisan-Ruiz et al., 2004, Zimprich et 

al., 2004). The G2019S mutation was shown to increase the kinase activity of LRRK2 and 

mutations occurring in its GTPase domain resulted in a decrease of activity (Cookson, 2010). 

Unlike α-syn, no gene dosage effect has been observed in the case of LRRK2. Despite numerous 

studies that would link LRRK2 to the proteins α-syn and tau and to the impairment of protein 

translation, the physiological function of the protein is still unknown (Cookson, 2010). 
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• Parkin 

Autosomal recessive forms of PD can be identified by the mapping of consanguineous families. 

Parkin mutations are the most common cause of early-onset PD and occur in 50% of the 

autosomal recessive familial forms of PD (Kitada et al., 1998, Periquet et al., 2003). Clinically, 

patients with Parkin mutations show similar phenotype as sporadic PD but also possess some 

particular clinical and neuropathological features: earlier-age of onset, slower disease 

progression but complicated early-motor fluctuations (Dawson and Dawson, 2010) and the 

absence of ubiquitinated LB (Farrer et al., 2001a, Hardy et al., 2003) (Figure I-3). 

A large number and diversity of mutations, ranging from large deletions and multiplications to 

small deletions and insertions and single-point mutations have been identified (Corti et al., 

2011). The Parkin protein is an E3 ubiquitin ligase of 465 residues with different known 

substrates such as synphilin, α/β tubulin, the p38 subunit of an aminoacyl tRNA synthase, and 

Parkin-associated endothelin receptor-like receptor (Shimura et al., 2000). Mutations in Parkin 

were hypothesized to lead to the loss of the E3 ligase activity and the accumulation of non-

ubiquitinated substrates. However, in vitro studies using single-point mutations of Parkin do not 

affect its ligase activity but rather its solubility (Matsuda et al., 2006).  

• PINK1 

PINK1 (Phosphatase and tensin homologue (PTEN)-induced novel kinase 1) mutations are the 

second most common cause for early-onset PD with clinical symptoms in patients closely linked 

to patients with Parkin mutations (Valente et al., 2004a, Valente et al., 2004b, Ibanez et al., 

2006) (Figure I-3). Missense mutations in PINK1 have been reported and induce a loss-of-

function of the protein (Valente et al., 2004a). The PINK1 protein is a tumor suppressor that 

contains several domains: an N-terminal mitochondrial targeting motif, a trans-membrane 

region and a Ser/Thr kinase domain. Endogenous PINK1 has been reported to be localized 

within the inner and outer mitochondrial membrane while over-expressed PINK1 is present on 

the mitochondrial cristae (Silvestri et al., 2005). The kinase domain has been shown to face the 

cytosol while the N-terminal domain is attached inside the mitochondria (Zhou et al., 2008). 

• DJ-1 

Mutations in the DJ-1 gene are the least occurring in autosomal recessive PD (1% of the cases) 

(Bonifati et al., 2003a, Bonifati et al., 2003b) (Figure I-3). They include large deletion, missense 

mutations, frame shift and deletions of exons (Corti et al., 2011). The DJ-1 protein is a 

molecular chaperone that is activated during oxidative stress and translocates to the outer 

mitochondrial membrane (Dawson et al., 2010).  
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Studies on mutations in the different genes that induce PD when mutated provided critical 

insights into potential mechanisms through which the encoded proteins could cause PD. Those 

genes could yield therapeutic targets in the future if their normal and pathogenic functions could 

be unraveled. Until then, they shed light on the implication of cellular pathways such as 

mitochondrial dysfunction and oxidative stress on the pathogenesis, mainly due to data collected 

via the expression and genetic manipulations of these genes in cellular and animal models 

(example of Parkin and PINK1).  

 

Figure I-3. Pathogenic mutations in the proteins involved in PD 
Structural and functional domains of the proteins involved in PD. LRRK2 domains: ANK (Ankyrin repeat), LRR 
(Leucine Rich Region), ROC (homologous sequence to Ras-related superfamily of GTPases), COR (domain 
responsible for dimerization) and WD40 (structural motif). PINK1 domains: MTS (mitochondria targeting 
sequence), TM (transmembrane domain) and kinase domain. Parkin domains: UBL (ubiquitin-like domain), RING1 
(Really Interesting New Gene 1), IBR (in between RING fingers) and RING2. Figure from Martin et al.(Martin et 
al., 2011).  
 

I.2.2. Environmental factors that trigger Parkinson’s Disease: 

95% of PD cases are sporadic (Hatano et al., 2009). The environmental and molecular factors 

that trigger the pathogenesis are still unknown. Some studies have suggested that individuals 

who are exposed to manganese and copper or work on a farm using pesticides have a higher risk 

of developing PD (Gorell et al., 1999, Priyadarshi et al., 2001). The only confirmed study on the 
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link between environmental factor and PD pathogenesis is based on the discovery of toxin-

induced phenotypes. 

I.2.2.1. MPTP 

In 1982, an outbreak of parkinsonism cases emerged in drug-abusers in northern California that 

was traced back to the injection of an illicit drug, 1-methyl-4-phenyl-4-proprionoxy-piperidine 

(MPPP). The compound MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), a side product 

of the chemical synthesis reaction of MPPP, was found to induce the PD phenotype in these 

individuals (Langston et al., 1983). The selectivity of MPTP-induced toxicity to dopaminergic 

neurons is due to the conversion of this agent to MPP+ pyridinium ion by the enzyme 

monoamine oxidase B (MAO-B), which is subsequently taken up by DA transporters where it 

inhibits the complex I in DA neurons (Moore et al., 2005) (Figure I-4). MPTP exposure in drug 

users caused damage to the nigrostriatal dopaminergic pathway (Bove et al., 2005). Oxidative 

stress and decline in the activity of mitochondrial complex I of the respiratory chain in the SN of 

PD patients suggested the involvement of mitochondrial dysfunction as one possible pathway 

for neurodegeneration (Schapira et al., 1990, Jenner, 2003).  

I.2.2.2. Paraquat 

Another agent whose chemical structure closely resembles MPTP is the herbicide paraquat. 

Paraquat does not easily cross the blood-brain barrier but is still capable of inducing severe 

damage to the brain of individuals that were exposed to it (Bove et al., 2005) (Figure I-4).  

I.2.2.3. Rotenone 

Rotenone is also a major complex I inhibitor (Sherer et al., 2002a). It is a flavonoid found in the 

roots and stems of several plants and was commonly used as a pesticide and insecticide. Data on 

the stability and half-life suggest it may not have been involved in an epidemiologically-induced 

PD (Bove et al., 2005). Rotenone easily crosses the blood-brain barrier, but unlike MPP+, it is 

not selectively taken up by DA neurons (Talpade et al., 2000, Sherer et al., 2002a) (Figure I-4).  

It is important to note that the link between the inhibitors of the complex I of the respiratory 

chain, oxidative stress, and neuronal loss is still missing. Current efforts are underway to resolve 

this issue through the generation of toxin-based animal models of PD (section I.2.4.2).  
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Figure I-4. Chemical structure of MPTP, MPP+, paraquat and rotenone 
 

I.2.3. Diagnosis and treatment of PD 

I.2.3.1. Diagnosis of PD 

• Motor symptoms 

The features that best characterize PD are tremor at rest, bradykinesia, rigidity, and postural 

instability (Vingerhoets et al., 1997, Bohnen et al., 2008). Rating scales have hence been used to 

assess motor impairment in PD patients although with varying reliability (Jankovic, 2008). The 

Hoehn and Yahr scale and the Unified Parkinson’s Disease Rating Scale (UPDRS) are the most 

widely used for assessing disability and impairment (Ebersbach et al., 2006, Jankovic, 2008).  

• Imaging techniques 

The most prominent diagnosis  currently available for PD is brain imaging (Brooks and Pavese, 

2011). Brain abnormalities can be visualized using Transcranial ultrasonography (TCS) which 

detects increased echogenicity due to an augmentation of ferritin quantities in PD patients’ 

brains (Becker et al., 1995, Berg et al., 2001) and Magnetic Resonance Imaging (MRI) which 

reports changes (atrophy) in brain volume (Geng et al., 2006).  

Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography 

(SPECT) allow investigation of dopamine terminal dysfunction through the use of radiolabelled 

tracers. A 50% reduction of 18F-dopa uptake has been reported in PD patients (Morrish et al., 

1998) and uptake was inversely correlated with the degree of rigidity and bradykinesia 

(Vingerhoets et al., 1997) (Figure I-5). Other radiolabelled tracers are also used to monitor the 

transport of DA from the cytoplasm into secretory vesicles (Bohnen et al., 2006). 
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Figure I-5. PET images assessing the uptake of 18F-dopa 
Control brain (a) shows high uptake in the striatum while PD patient (b) exhibit marked reduction. The difference 
in uptake between (a) and (b) is shown in (c). Figure adapted from Obeso et al. (Obeso et al., 2010). 

 

• Non-motor symptoms 

Some non-motor symptoms such as depression, sleep disorders and constipation occurs in PD 

patients (Chahine and Stern, 2011) precede motor dysfunction in PD patients. Olfactory 

dysfunction (identification, and discrimination of smells) is also present in more than 90% of 

PD patients and standardized tests are starting to be used to detect these olfactory impairment 

(Ansari and Johnson, 1975, Doty et al., 1995, Bohnen et al., 2008). Genetic testing for disease-

linked mutation could present an appealing method to detect PD since several mutations have 

been identified. However, the variable penetrance of those mutations prevents the wide use of 

genetic testing as a diagnostic tool. Direct analysis of the blood plasma could be a useful method 

to determine if modified forms of α-syn (phosphorylated and oligomeric) are present (El-Agnaf 

et al., 2006, Foulds et al., 2011).  

While clinical diagnosis of PD patients currently relies mainly on the observation of motor 

symptoms, the detection of the histopathological hallmark of PD, i.e. the LB, still relies on post-

mortem observation of PD brain samples. New molecules that would bind to α-syn selectively in 

the LB and allow its detection in PET and SPECT could provide a drastic improvement in PD 

patient diagnosis. 

I.2.3.2. Treatment of PD 

All the treatments mentioned herein are symptomatic and no current treatment that is able to 

reverse the pathology of PD has been discovered. 

• Oral medications 

L-Dopa 

In 1960, Hornykiewicz and colleagues showed a prominent loss of dopamine (DA) in the 

putamen and the caudate nucleus of PD patients (Ehringer and Hornykiewicz, 1960). Indeed, it 

is now widely accepted that the loss of DA as the result of the degeneration of dopaminergic 
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neurons in the SN pars compacta is the major pathological hallmark of PD. DA-replacement 

therapy emerged after the isolation of L-dopa, the naturally-occurring isomer of the amino acid 

D-dopa (L-dihydroxyphenylalanine) from the bean of Vicia faba, and a successful clinical trial 

of its use in patients with a dramatic anti-akinesia effects has been reported (Birkmayer and 

Hornykiewicz, 1961) (Figure I-6). L-dopa has since been considered a “gold-standard” in drug 

therapy for PD patients. However, it has been shown that, as the disease progresses, 

involuntarily muscle movements termed dyskinesia are being seen in the treated patients. 

Around 90% of the patients experience these motor response fluctuations after 10 years of 

treatment (Ahlskog and Muenter, 2001). PET imaging studies have showed increased DA levels 

correlated with dyskinetic symptoms in the caudate-putamen (de la Fuente-Fernandez et al., 

2004). The increase of unnaturally high levels of extracellular DA may be the cause of the 

emergence of dyskinesia (Carta and Bezard, 2011). The obscure relationship between L-dopa 

administration and the clinical response has to be elucidated to design L-dopa-like drugs with 

better pharmacokinetics properties.  

 

Figure I-6. Structure of dopamine and L-dopa 
 

Anticholinergic drugs 

Anticholinergic drugs were the first treatment option for PD patients but have been supplanted 

by the use of L-dopa in patients (Brocks, 1999). The rationale for the use of anticholinergic 

drugs in therapy was based on the report of the loss of DA in PD patients and the subsequent 

imbalance between dopaminergic and cholinergic pathways (Brocks, 1999). Anticholinergic 

drugs such as beperiden and benztropine have been used in young PD patients but the treatment 

was stopped due to side-effects that were reported in the elderly (constipation and tachycardia). 

Other side-effects were reported for use of anticholinergic drugs and the inductions of 
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cholinergic deficit that could result in hallucinations in treated patients (Zahodne and Fernandez, 

2008).    

Antiglutamatergic drugs 

Excessive activation of N-methyl-D-aspartate (NMDA) receptors in PD patients is due to the 

depletion of striatal DA and the loss of its inhibitory effect on these receptors. As a 

consequence, a massive influx of Ca2+ in the neurons triggers neuronal death (Koutsilieri and 

Riederer, 2007). Amantadine and Memantine are two antiglutamatergic drugs that were used for 

the treatment of PD but their efficiency is not comparable to DA-replacement medication 

(Koutsilieri and Riederer, 2007). Also, excessive inhibition of glutamatergic function has been 

shown to be associated with schizophrenia, rendering the administration of these drugs to 

patients quite risky (Lange et al., 1997).  

• Surgical interventions 

Ablative surgery 

Advances in imaging techniques used to monitor PD progression in patient brains along with the 

growing amount of data that shows that oral medications do not revert the disease has triggered 

the development of surgical interventions in the following brain regions: motor thalamus, the 

globus pallidus, and the subthalamic nucleus (STN) (Starr et al., 1998). The choice of these 

brain regions is based on the occurrence of motor dysfunction in PD patients and the abnormal 

physiology of the globus pallidus and the STN. The patients that have undergone ablative 

surgery exhibited improvement of motor symptoms with major relief from tremors in the 

majority of cases. However, some side-effects were reported in these patients such as lip and 

hand numbness and confusion (Starr et al., 1998, Walter and Vitek, 2004).      

Deep brain stimulation 

Deep Brain Stimulation (DBS) potentially offers an alternative to the motor-complication side-

effects of DA-replacement therapy and the potential complications related to ablative surgery. 

To relieve PD patients of the symptoms of the disease, DBS relies on the use of high-frequency 

stimulation via surgically implanted electrodes in specific regions in the brain (the subthalamic 

nucleus STN and globus pallidus), with each region of the brain having different intra- and 

inter-network connectivities. It has subsequently been used to treat bradykinesia and rigidity and 

offers the promise to become the method of choice for the treatment of PD (Hamani et al., 2005, 

Fasano et al., 2012). The molecular mechanism through which DBS alleviates the symptoms is 

still unknown but it was speculated that it acts as a reversible local inactivation of an ion 
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channel or by blockage of neuronal membrane depolarization (Benazzouz et al., 1993). Apathy, 

sleep deficiency, mood disorders and anxiety, pathological gambling and compulsive eating can 

occur as side effects after stimulation of the STN (Anderson and Mullins, 2003, Guehl et al., 

2003, Fasano et al., 2012). Even though DBS can be applied to treat PD patients, it is still 

regarded as an experimental method that requires further study and optimization for the choice 

of brain area, type of electrodes to be used according to the different brain regions and better 

criteria for the selection of the patients according to their age and disease progression (Fasano et 

al., 2012). 

• Cell-replacement therapy 

Stem cell transplantation 

The aforementioned treatments above have proved effective to a point, especially when applied 

in the early stages of the disease, but they present adverse effects and do not counteract the 

progression of the disease. Grafts of human fetal ventral mesencephalic tissue have arisen as a 

way to replace dying dopaminergic neurons in the striatum (Politis and Lindvall, 2012). The 

source of the transplanted stem cells is mostly from pluripotent embryonic or somatic cells or 

from neuronal stem cells. However, due to the poor survival of the pluripotent stem cells in the 

brain and the significant risk of tumor formation, stem cells derived from fetal or adult nervous 

system have been used (Pardal and Lopez-Barneo, 2012). Excellent results were shown for PD 

patients with a dramatic reduction in rigidity and bradykinesia (Lindvall et al., 1990, Bjorklund 

et al., 2003, Mendez et al., 2008, Olanow et al., 2009). The main limitation for this technique 

resides in the availability of the donor tissue. The dissection step that precedes the 

transplantation generates a mixture of neural population with different resistance to cell death. 

Hence, due to the high cell mortality, a large number of human embryos will be needed for cell 

preparation. Due to the origin of these stem cells, ethical, moral, and legal issues will be faced in 

many countries. Motor complications such as dyskinesia were also reported in some patients, 

due to aberrant synaptic connections between transplanted and endogenous neurons. In 

summary, major research efforts will be required prior to generalizing the procedure of cell 

transplantation in PD patients. Additionally, the effect of immune reactions, the risk of tumor 

progression and the generation of motor complications will need to be investigated.  

I.2.4. Animal models of PD 

PD is a neurodegenerative disease. Considering that human brain is not an easily accessible 

organ for biochemical analysis, animal models have to be generated with the corresponding 

phenotype of the disease. While cellular models offer an easy and affordable way to identify 
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specific pathways and molecular targets, the results derived from those studies cannot be 

extended to the progression of the disease in vivo and in patients. Hence, animal models are 

needed as the next step to validate the findings, especially in the context of neurodegenerative 

diseases where complex neuronal circuitry direct the progression of the disease. Therefore, the 

availability of animal models would permit scientists to study disease mechanisms, validate 

potential molecular targets and test novel therapeutic strategies.  

I.2.4.1. Criteria for the perfect PD model 

A PD model needs to fulfill several criteria: i) the degeneration of neurons should be age-

dependent and progressive, ii) motor dysfunction such as rigidity and postural instability should 

be present and reversible in presence of dopamine-replacement therapy, iii) Lewy bodies and 

Lewy neurites should be reported in the brain slices (Dawson et al., 2010).  

I.2.4.2. Toxin-based models 

• 6-Hydroxydopamine 

6-Hydroxydopamine (6-OHDA) is the hydroxyl form of DA. It has been used as a neurotoxin 

for catecholaminergic neurons in animal models, due to the induced release of radicals and the 

inhibition of complex I and IV of the mitochondrial respiratory chain (Schober, 2004, Alvarez-

Fischer et al., 2008b). 6-OHDA does not cross the blood-brain barrier and thus stereotactic 

injections are required for the administration of the toxin to the SN or the striatum. Unilateral 

injection of the toxin is carried out in rats (where the non-injected hemisphere acts as a control) 

resulting in the loss of more than 80% of nigrostriatal neurons (Kirik et al., 1998, Schober, 

2004) and motor impairment (Lindner et al., 1999, Alvarez-Fischer et al., 2008b). However, the 

absence of protein inclusions and the acute and non-progressive neuronal damage were the 

major drawbacks of these models (Schober, 2004). 

• MPTP 

MPTP is an inhibitor of the complex I of the mitochondrial respiratory chain that was implicated 

in the emergence of PD phenotypes in drug users (Langston et al., 1983) (section I.2.2.1). 

Administration of the toxin to animal can be carried out by stereotactical injection or by 

intravenous or intraperitoneal injection in which case it rapidly reaches the blood brain barrier 

(Schober, 2004). Treatment of animals with MPTP became the basis for animal model of PD 

because of its selective uptake by dopaminergic neurons and the precedent proofs of its effect in 

humans (section I.2.2.1). Non-human primates that were treated with MPTP showed α-syn 

positive LB-like structures and presented similar clinical, pathological, neurochemical and 
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pharmacological response responses as idiopathic PD (Markey et al., 1984, Forno et al., 1988). 

Mouse models using mild continuous MPTP intoxication showed upregulation of α-syn 

expression within DA neurons, cell loss and damage in the nigrostriatal dopamine pathway (Vila 

et al., 2000, Fornai et al., 2005). However, the issue of the presence of LB-like inclusions in 

these models remains controversial (Shimoji et al., 2005, Alvarez-Fischer et al., 2008a). It is 

interesting to note that few rodent models of MPTP-induced PD exist because of the resistance 

of rats to the toxin, even mouse models have exhibited less sensitivity than primates and were 

able to recover after 48 hours of treatment (Schober, 2004).  

• Paraquat and rotenone 

Paraquat and rotenone are used as herbicide and pesticide and were shown to induce PD 

symptoms in individuals that were exposed to them (Sherer et al., 2002a, Bove et al., 2005) 

(section I.2.2.2 and I.2.2.3). Upon systemic injection of paraquat to mice, DA neuron loss, 

reduced motor activity and most importantly an up-regulation of α-syn are seen and could 

potentially suggest that the paraquat animal model reproduce the major aspects of PD (Brooks et 

al., 1999, Manning-Bog et al., 2002). Later studies have shown that the combined administration 

of paraquat and manganese exacerbated the toxicity and caused more deficits in the 

dopaminergic system (Thiruchelvam et al., 2000).  

In the rotenone-based rodent model, the toxin was administered via inhalation, subcutaneous 

injections or oral delivery (Uversky, 2004). The rats elicited motor dysfunctions (rigidity and 

postural instability) that were reversed by L-Dopa treatment (Betarbet et al., 2000, Bove et al., 

2005) along with dopaminergic neuronal loss (Uversky, 2004). Among the toxin-based models, 

rotenone-infused rats were the sole model showing LB-like inclusions that were positive for α-

syn and ubiquitin (Betarbet et al., 2000, Sherer et al., 2003). 

The use of toxin-induced animal models represents a good model of PD: substantial nigrostriatal 

degeneration is observed, along with good replication of PD motor symptoms. However, the 

absence of LB-like inclusions (except in the rotenone models) prevents the use of these models 

to study aggregation-dependent neurodegeneration. 

I.2.4.3. Genetic models 

Several animal models have relied on the expression of proteins that are involved in PD 

(LRRK2, Parkin, DJ-1 and PINK1) and the data that emerged from their use have been 

reviewed extensively (Dawson et al., 2010, Martin et al., 2011). In the scope of the manuscript 

we will focus on α-syn-based models.  
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• Transgenic models 

Mouse models 

The first transgenic (Tg) mouse model that over-expressed WT α-syn was generated by Masliah 

and colleagues, under the platelet-derived growth factor (PDGFβ) promoter (Masliah et al., 

2000). The mice showed motor impairment on the rotarod assay and the progressive 

accumulation of non-fibrillar neuronal inclusions which are positive for α-syn and ubiquitin. 

However, this model showed neither the loss of dopaminergic neurons nor the formation of LB. 

Subsequent studies suggested that the nature of the promoter used to drive the transgene 

expression dictates the pattern of expression of α-syn in the brain and the region of the brain that 

are targeted, hence defining the phenotypes of these models (Chesselet, 2008).  

The Thy1 promoter induces the expression of high levels of α-syn in cortical and subcortical 

neurons, including the SN pars compacta (Rockenstein et al., 2002). In some of the Thy1 Tg 

mice, α-syn- and ubiquitin-positive inclusions were reported, along with age-dependent motor 

impairment. However, those inclusions lacked the amyloid-like characteristic of the LB (van der 

Putten et al., 2000). In other studies, fibrillar inclusions were detected in mice over-expressing 

WT and A30P α-syn, but the localization of these inclusions was different than in PD patients; 

indeed, in old mice, the inclusions were localized to the spinal cord, amygdala and the brain 

stem (Freichel et al., 2007). 

The use of the Prion (Prp) promoter drives widespread high expression of α-syn in the 

extranigral region, and some of the phenotypes that resulted are not consistent with human PD 

(glial pathology, motor neuron degeneration). The A30P mouse model under Prp promoter only 

showed some motor dysfunction, as well as the presence of truncated species (Gomez-Isla et al., 

2003). The PD-associated mutations such as A53T have been investigated in mouse models, 

revealing protein inclusions in the spinal cord, brain stem and thalamus, leaving the 

hippocampus and the SN spared (Giasson et al., 2002, Lee et al., 2002c). Motor impairment was 

also reported for A53T compared to WT and A30P model (Lee et al., 2002c) (Figure I-7).  

The animal models that relied on the use of the tyrosine hydroxylase (TH) promoter (which 

directs expression in dopaminergic neurons) are the only ones which present nigrostriatal 

neurodegeneration. PD is undeniably a complex disease and nigrostrital degeneration may only 

represent one aspect of the disease pathology. But for these models again, only the double-

mutated variant of α-syn A53T/A30P was able to show loss of TH-positive neurons as well as 

motor impairment and age-dependent DA level reduction but without the presence of 

inclusions(Thiruchelvam et al., 2004). The other models expressing A53T, A30P or WT α-syn 

failed to show any dopaminergic neuron degeneration (Matsuoka et al., 2001, Richfield et al., 
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2002). However, the physiological relevance of the doubly-mutated variant is not clear since no 

report of PD patients carrying both A53T and A30P mutations is known. 

Truncated variants of α-syn 1-120 and 1-130 were also investigated in mouse models under the 

TH promoter and the results have been variable: over-expression of α-syn 1-130 yielded 

selective but non-progressive loss of DA neurons, as well as motor dysfunction in the mice, 

whereas the mice that over-expressed α-syn 1-120 presented some protein inclusions but not 

neuron loss (Tofaris et al., 2006, Wakamatsu et al., 2008). The mouse model produced by 

Tofaris et al. (1-120 truncation expressed in α-syn KO mice) was the first to show presence of 

inclusions (Tofaris et al., 2006) and importantly, this was done in the absence of endogenous 

murine α-syn . Small amounts of mouse α-syn were capable of inhibiting the fibrillization of 

human α-syn in vitro (Rochet et al., 2000) and the presence of endogenous mouse α-syn in Tg 

mice over-expressing human α-syn would potentially impair its fibrillization propensity in vivo. 

The correlation between the inhibition of α-syn fibril formation in vitro and the decreased 

number of inclusions in vivo was also confirmed with studies involving β-syn, another member 

of the synuclein family: in vitro studies have revealed the inhibitory effect of β-syn on α-syn 

fibrillization and protofibril formation (Uversky et al., 2002b, Park and Lansbury, 2003) and a 

reduced number of inclusions was reported in double-transgenic mice for α-syn and β-syn 

compared to α-syn Tg mice (Hashimoto et al., 2001). 

A mouse strain expressing an α-syn conditional transgene under a tetracycline promoter was 

generated by Nuber and colleagues (Nuber et al., 2008). The model failed to present fibrillar 

inclusions but showed loss of DA neurons in the SN as well as a progressive motor decline. 

Most importantly, when the expression of the transgene was turned off, the progression of the 

disease was halted but the symptoms were not reversed.  

Drosophila models 

While no single rodent model can fulfill all the criteria for a perfect PD model, Drosophila 

models over-expressing WT and mutant α-syn exhibit an age-dependent and progressive DA 

neurons loss, α-syn positive fibrillar inclusions and a decline of climbing ability (Feany and 

Bender, 2000) (Figure I-7). However, the loss of DA neurons that was initially reported by 

Feany and colleagues was not reproduced by other groups (Pesah et al., 2005) and the variability 

could be attributed to technical considerations (methods of fixing brain slices mainly) 

(Drobysheva et al., 2008). Due to the ease of genetic manipulation in Drosophila, several factors 

that could potentially influence α-syn-induced toxicity were examined (Mizuno et al., 2010): 
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studies of post-translational modifications of α-syn confirmed the presence of cross-talk 

between phosphorylation at residue 125 and 129 (Chen and Feany, 2005, Chen et al., 2009), 

expression of Parkin and PINK1 in Tg flies was shown to suppress motor impairment and 

retinal degeneration (Haywood and Staveley, 2004, 2006, Todd and Staveley, 2008) and 

dopaminergic neuronal loss was prevented by the expression of the chaperone Hsp70(Auluck et 

al., 2002) which interacts with α-syn in vitro and in vivo (section I.3.7) . 

Caenorhabditis elegans models 

Nematode models over-expressing α-syn presented accelerated dopaminergic neuron loss but no 

LB-like inclusions (Lakso et al., 2003, Kuwahara et al., 2006) (Figure I-7) .The effect of PD 

mutations on DA neurons loss was also probed in these models but did not show major 

differences with respect to the WT. Nevertheless, a reduction in DA levels was observed in the 

case where A53T or A30P were expressed (Kuwahara et al., 2006). C.elegans models do not 

allow accurate assessment of motor impairment but they have been used to perform genetic 

screenings. More than 900 gene targets were screened via RNAi knockdown and 20 genes were 

identified to potentially affect the folding of α-syn and the degeneration of neurons (Hamamichi 

et al., 2008). The effect of environment and toxins was also probed in this model confirming  

data observed in mouse and fly models on the increase of α-syn toxicity in presence of rotenone 

and 6-OHDA (Calahorro and Ruiz-Rubio, 2011) .  

 

Figure I-7. Summary of the different transgenic PD models 
Table summarizing the findings that were reported from the use of C.elegans, Drosophila and mouse models. 
Figure courtesy of Dr. Bernard Schneider, EPFL 
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• AAV-delivery models 

To develop a rat model of PD, lentiviral vectors expressing α-syn were injected into the SN of 

rats. In contrast to transgenic mice models, a selective loss of nigral dopaminergic neurons 

associated with a dopaminergic denervation of the striatum was observed in rats expressing WT 

or mutant forms of α-syn (Lo Bianco et al., 2002). Expression of WT and A53T α-syn in adult 

rats resulted in 30-80% loss of the nigral dopaminergic neurons and the presence of α-syn-

positive inclusions (Kirik et al., 2002, Klein et al., 2002, Lo Bianco et al., 2002). However, the 

expression of rat α-syn resulted in aggregation but no cell loss, suggesting that α-syn inclusions 

are not cytotoxic (Lo Bianco et al., 2002). The use of lentiviruses and adeno-associated viruses 

is more troublesome than the generation of transgenic mice since it requires stereotactic 

injection within the cell bodies of the SN pars compacta. Experts in virology are also needed to 

ensure proper handling of the virus and to confirm reproducibility (Chesselet, 2008). However, 

this methodology has major advantages: since the injection can be done in adult rats, the effects 

of early developmental expression of α-syn as well as the possibility of activation of 

compensatory mechanisms are circumvented (Waxman and Giasson, 2009). It also allows 

testing for genetic modifiers and other targets more rapidly at a lesser cost. The use of viral 

vector delivery in rat allowed the screening of phosphomimetic mutations of α-syn aiming at 

investigating the role of phosphorylation on inclusion formation and toxicity (Gorbatyuk et al., 

2008, Azeredo da Silveira et al., 2009, Oueslati et al., 2012) as well as the study of proteins and 

toxins on the rescue (Yamada et al., 2005) or the exacerbation of α-syn toxicity(Sato et al., 

2011, Mulcahy et al., 2012) (by Parkin and rotenone and GRK-6-mediated phosphorylation 

respectively). 

C.elegans and Drosophila have been used for the rapid genetic and pharmacological screening 

compounds and for the easy and quick genetic manipulation. The major limitation for the use of 

these models is their failure to exhibit complex muscle complication which are key for PD 

pathogenesis, such as bradykinesia, rigidity and postural instability. Mouse models are 

considered as a close model to humans, because of the short life-span (2 years) of the mice 

which can allow modeling a disease in a short time(Dawson et al., 2010). 

• Cellular models 

Saccharomyces cerevisiae models 

In the S.Cerevisiae model, no ortholog of α-syn is known but it provides a readily manipulable 

system to screen genes. Studies in S.cerevisiae have shown that α-syn localizes to the plasma 

membrane and forms cytoplasmic inclusions when its concentration increases (Outeiro and 
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Lindquist, 2003). A53T α-syn expression revealed the same phenotype but A30P mutant did not 

form inclusions (Outeiro and Lindquist, 2003). These inclusions however were not constituted 

of amyloid but rather α-syn associated with vesicles (Soper et al., 2008). Toxicity levels were 

also assessed and apoptotic signals, such as the accumulation of reactive oxygen species and the 

release of cytochrome c, were reported after the expression of WT or mutants α-syn (A30P and 

A53T) (Flower et al., 2005). The yeast model has been widely used for genetic screening and 

yielded novel findings such as the contribution of α-syn to the impairment of endocytosis and 

vesicle trafficking (Zabrocki et al., 2008); the α-syn-induced inhibition of ER-Golgi  trafficking 

(Cooper et al., 2006) and the modulation of the phospholipase D activity (Outeiro and Lindquist, 

2003). Moreover, different subcellular localizations of α-syn were revealed since A30P α-syn 

mutant localized to the cytoplasm (lower binding affinity to lipid vesicles in vitro) whereas WT 

and A53T bound preferentially to the plasma membrane (Sharma et al., 2006, Zabrocki et al., 

2008). Interestingly, the localization of α-syn to the membrane was associated with 

phosphorylation by the CK kinase (Zabrocki et al., 2008) and initiation of aggregation (Zabrocki 

et al., 2005). 

Mammalian cells models 

The mere expression of α-syn in cells does not result in the formation of fibrillar inclusions, 

except for a few reports using adenoviral infection of COS7 cells (Gosavi et al., 2002, Lee and 

Lee, 2002). Co-expression of other proteins or submitting the cells to oxidative stress are 

essential for the formation of cellular aggregates. Co-expression of the protein synphilin (which 

was shown to be present in the LBs) and α-syn promotes the formation of cytoplasmic 

inclusions (Engelender et al., 1999, Smith et al., 2005). The expression of the enzyme 

transglutaminase (that catalyzes the cross-linking of α-syn in vitro and in vivo) was responsible 

for the formation of inclusions in 8% of the cells (Junn et al., 2003) and a construct consisting of 

the fusion of GFP to the C-terminus of α-syn was shown to undergo truncation (in the GFP 

domain) in 5% of the cells and to induce aggregation of α-syn (McLean et al., 2001, Badiola et 

al., 2011). The low percentage of inclusion-positive cells is a major drawback of these cellular 

models. Other cellular models for α-syn aggregation were reported using toxins. Oxidative stress 

seems to promote the formation of α-syn aggregates in 5-20% of the cells that were treated with 

peroxynitrite (Paxinou et al., 2001), rotenone (Lee et al., 2002b) and FeCl2 (Hasegawa et al., 

2004, Shendelman et al., 2004, Roberti et al., 2007).  

Other cellular models relied on the uptake of extracellular α-syn that would act as a seed for the 

fibrillization of the intracellular protein. Uptake was mediated by calcium phosphate (Waxman 
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and Giasson, 2010), microinjection (Roberti et al., 2007), Lipofectamine (Nonaka et al., 2010) 

and cationic-liposomes (Luk et al., 2009). Extracellular α-syn was shown to be toxic to 

neighboring cells and to activate apoptosis signaling cascade (Danzer et al., 2011) and to 

activate microglia (Zhang et al., 2005). In one report, the toxicity was shown to be dependent on 

the concentration of the protein: extracellular α-syn fused to the TAT cell-penetrating peptide 

was able to protect the cells against H2O2 insult in the nanomolar range but gained toxicity at 

micromolar concentration (Albani et al., 2004). Cell culture studies reveal also numerous data 

discrepancies concerning the toxicity of intracellular α-syn: in some assays, the expression of 

WT α-syn rendered the cells more sensitive to cellular stress (Saha et al., 2000, Iwata et al., 

2001, Petrucelli et al., 2002), whereas in other studies, α-syn was shown to be protective (da 

Costa et al., 2000, Hashimoto et al., 2002). These discrepancies probably arise from the use of 

different cell lines and transfection methods, of different promoters and tags on the protein 

(Waxman and Giasson, 2009).  

To date, while no animal models are able to mimic all the pathological and neurological features 

of PD, each model has its own advantages and limitations. The toxin-induced model (MPTP, 

paraquat and rotenone) shows a good replication of motor dysfunction, along with neuronal loss 

but no LB-formation. In contrast, LB have been observed in transgenic models in some cases 

but a consistency in neuronal loss is still missing. As the scientific community is waiting for the 

the perfect PD model, transgenic animal models are used to investigate the role of particular 

proteins and molecular pathways through genetic screening and the toxin-induced models would 

on the other hand facilitate the screening for a therapeutic treatment.  

 

I.3. Alpha-synuclein 

I.3.1. A brief historical overview 

The first synuclein gene was discovered in 1988 by Maroteaux et al. while screening an 

expression library with an antiserum against cholinergic vesicles from the electric lobe of the 

Pacific electric ray Torpedo Californica (Maroteaux et al., 1988) (Figure I-8). A cDNA coding 

for a 140 amino acid-protein was identified and was named synuclein because of the protein’s 

localization in both the nucleus and at the presynaptic terminals. The protein was found to 

express only in nervous system tissue and it was hypothesized that synuclein could be involved 

in regulating events at the synaptic cleft via structural or regulatory pathways (Maroteaux et al., 

1988).  
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In 1993, the analysis of all protein sequences of an amyloid-plaque sample by Ueda et al. 

resulted in the identification of unknown short peptides (termed NAC for Non-Amyloid Beta 

Component) (Ueda et al., 1993).  The two NAC sequences, which exhibited high propensity to 

form amyloid fibrils (Ueda et al., 1993) corresponded to residue 61-80 and 81-95 of a 140 

amino acid precursor known to be especially expressed in the brain that was initially given the 

name NACP and later called alpha-synuclein (α-syn).  Two additional proteins with a very high 

sequence homology were later identified in human and rat brains; β-synuclein (134 residue, also 

called phosphoneuroprotein 14) (Nakajo et al., 1993) and γ-synuclein (127 amino acids) (Jakes 

et al., 1994, Lavedan et al., 1998).  

 

Figure I-8. Schematic representation of the major discoveries on α-syn 
1988: discovery of the first synuclein gene in the Pacific electric ray Torpedo Californica. 1993: the NAC fragment 
of α-syn was identified in amyloid plaques. 1997: discovery of the first disease mutation in α-syn gene A53T. 1998: 
report of the second mutation A30P and the identification of α-syn as the main component of the LB. 2004: 
discovery of the third mutation E46K. 
Photo credits: http://www.visualphotos.com/image/1x6470358/pacific_electric_ray_torpedo_californica 
http://www.liv.ac.uk/researchintelligence/issue30/alzheimers.html 
http://frontalcortex.com/?page=oll&topic=24&qid=413 
http://www.biotek.uio.no/english/research/news-and-events/news/2010/VNM_VB_artikkel_HD.html 
 
 
 
In 1997, the first α-syn mutation A53T was discovered in one Italian and three Greek families 

with an autosomal dominant inheritable form of PD (Polymeropoulos et al., 1997). The second 

mutation, A30P, was discovered very shortly after in German families (Kruger et al., 1998). In 

the meantime, while the link between α-syn and the genetics of PD was starting to emerge, the 
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missing link between the protein and the neuropathological hallmark of PD – the Lewy Bodies – 

was identified. Using antibodies against α-syn, immunohistochemical studies revealed the 

presence of the protein in neuronal cytoplasmic inclusions (NCIs) and oligodendrocytic glial 

cytoplasmic inclusions (GCIs) in multiple system atrophy (MSA) patients’ brains, and in the 

Lewy Bodies (LB) from PD patients and dementia with Lewy Bodies (DLB) patients 

(Spillantini et al., 1997, Arima et al., 1998, Spillantini et al., 1998b). A third single-point 

mutation in α-syn gene, E46K, was discovered in 2004 in a Spanish kindred and duplication and 

triplication of the gene were also reported to be associated with autosomal dominant forms of 

familial PD (Singleton et al., 2003, Chartier-Harlin et al., 2004, Zarranz et al., 2004) (Figure 

I-8).  

I.3.2. α-syn gene, transcript and protein 

The human α-syn gene SNCA lies on chromosome 4q21.3-q22 and spans a region of 111kb 

(Campion et al., 1995, Chen et al., 1995, Shibasaki et al., 1995). It is organized in 7 exons (of 

which 5 are coding) (Lavedan et al., 1998). The ATG starting codon is encoded by exon 2, the 

stop codon by exon 6 and the NAC region (that was identified in amyloid plaques in AD 

patients) is encoded by exon 4 (Figure I-9).  

 

 

Figure I-9. Organization of the α-syn gene and alternative splicing isoforms 
The α-syn gene is organized in 7 exons: the initiating methionine is encoded by exon 2, exon 3 encodes the NAC 
domain and the stop codon is present in exon 6. b) Alternative splicing of α-syn’s exons 3 and 5 results in proteins 
of 140, 126, 112 and 98 residues. Adapted from Venda et al. (Venda et al., 2010) 
 

The overall organization of the gene is conserved across animal species. Patients with 

duplication and triplication of SNCA have amplified exon 3 and 4 probably due the intrinsic 

instability of the region 4q21-23 on chromosome 4 (Chartier-Harlin et al., 2004). As for the 
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other synuclein genes, β-syn gene has been mapped to chromosome 5q35 with a total of 6 exons 

(of which 5 are coding); and the γ-syn gene lies on chromosome 10q23.2-q23.4 and has 5 exons 

(all protein-coding) (George, 2002) (Figure I-10). 

The predominant α-syn isoform consists of 140 amino acids and corresponds to the transcription 

of exons 2,3,4,5 and 6. Other isoforms of α-syn caused by alternative splicing of exons 3 and 5 

results in the production of shorter proteins. SNCA126 is produced by deletion of exon3, 

SNCA112 has a deletion of exon 5 and SNCA96 is produced by deletion of both exons 3 and 5. 

SNCA112 is the second most abundant isoforms and has been found in the brains of patients 

with LB disease (Venda et al., 2010). 

 

 
 
Figure I-10. Amino acid sequences of alpha, beta and gammα-synuclein  
The main characteristic of β-syn is the absence of 11 residues of the NAC domain, while γ-syn exhibits deletion of 
residues in the C-terminal domain compared to α-syn.  
 
 

The molecular mass of α-syn is 14460 Da and its sequence can be divided into three domains 

(Figure I-11): the amphipathic N-terminal domain and the hydrophobic NAC regions that are 

both highly conserved between species and the C-terminal domain that is variable in size and 

sequence (Surguchov, 2008).  

 

 

Figure I-11. Amino acid sequence of α-syn and its structural domains 
 

The N-terminal domain spans from residue 1 to 60 and is characterized by six imperfect repeats 

of the consensus motif KTKEGV and forms amphipathic α-helices when bound to membranes 
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and synthetic lipid vesicles (Bussell and Eliezer, 2003, Jao et al., 2004, Bisaglia et al., 2006). 

The central NAC region from residues 60 to 95 is highly hydrophobic and is essential for fibril 

formation (Giasson et al., 2001). The C-terminal domain is highly disordered and acidic (rich in 

glutamate and aspartate residues). The α-syn protein is highly conserved among mammals and 

does not exist in invertebrates (Figure I-12). The comparison of the N-terminal domain of α-syn 

between mammal and bird species shows only 4 differences within 84 residues, while the 

majority of amino acids differences reside mainly in the C-terminal domain of the protein. 

Interestingly, in the majority of vertebrates α-syn contains the A53T disease-linked mutation 

(A53T), while α-syn in primates and human has an alanine at this position (Surguchov, 2008).  

 

Figure I-12. Comparison of α-syn amino acid sequence between species 
Sequence alignment of α-syn protein from human, rat, mouse, bovine, pig, primate and chicken species. The A53T 
mutation has been highlighted in red. Alignment was based on Uniprot sequences P37840, P37377, O55042, 
Q3T0G8, Q3I5G7, P61144 and Q9I9H1.  
 

I.3.3. alpha-synuclein’s structure 

I.3.3.1. In solution 

Since α-syn does not adopt stable secondary structures in solution, it has been referred to as a 

natively unfolded protein (Weinreb et al., 1996, Fauvet et al., 2012b). It be is also heat-resistant 

and the boiling step that is commonly used in purification procedures to remove contaminating 

proteins does not affect α-syn (i.e. heating does not cause the protein to precipitate). The Stokes 

radius of α-syn is estimated to be 34 Ǻ, which would correspond to a 58kD globular protein (α-
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syn is 14kD) (Weinreb et al., 1996). When run on SDS-PAGE, the band corresponding to α-syn 

migrates at an apparent mass of around 19kD. The slow migration of α-syn in SDS-PAGE has 

been attributed to the high density of negative charges in the C-terminal domain which could 

lead to reduction in SDS binding.  

I.3.3.2. In presence of membranes 

The imperfect 6-mer repeats present in the N-terminal domain of α-syn (Figure I-13) were 

shown to be “homologous” to other repeats of 11-residues in a plant protein (LEA76, a member 

of the family of late-embryo-abundant (LEA) group III)  that shifts from random coil to α-

helical conformation upon fast drying (Wolkers et al., 2001, George, 2002). Other 11-residue 

imperfect repeats also encode a class-A2 lipid binding motif that was described in exchangeable 

apolipoproteins (Segrest et al., 1992). A theoretical wheel projection of the α-helix of α-syn was 

constructed in 1995 after the discovery of the zebra finch homologue of α-syn (synelfin). The 

representation of residues 1-18 of canary synelfin (which are identical to the corresponding 

sequence of human and rat α-syn) showed a segregation of polar and nonpolar residues in 

opposite faces of the helix in order to form hydrophobic and polar faces, similar to the 

consensus A2 amphipatic α-helix (George et al., 1995) (Figure I-13).  

 

Figure I-13. Comparison of helical wheel projection between α-syn and other proteins 
Top: Helical wheel projection of A: Human α-syn, B: synelfin (zebra finch homolog), C: apolipoprotein, D: 
LEA76. Apolar residues are shown in black. Figure from George et al.(George et al., 1995). Bottom: The imperfect 
6 repeats in α-syn N-terminal domain were highlighted in red.  
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These results suggested that α-syn can adopt a conformation that is likely to associate with lipids 

via an α-helical conformation. Indeed, it was later shown that α-syn does bind to anionic 

phospholipid vesicles and lipid-membrane mimetics (SDS micelles) (Eliezer et al., 2001) and 

adopts an α-helical conformation (Davidson et al., 1998). The N-terminal domain of α-syn is 

responsible for the interaction with phospholipids. Among the disease-associated mutations, 

only A30P exhibited weaker membrane binding affinity in vitro (Perrin et al., 2000) and in yeast 

(Outeiro and Lindquist, 2003). The loss of the A30P mutant’s vesicle-binding property was also 

confirmed in vivo as well the implication of the N-terminal domain of α-syn for the binding via 

the fractionation of adult rat brain extracts (Jensen et al., 1998).   

The region of α-syn that mediates the interaction with the micelles has been mapped to residue 

1-102/103, with the C-terminal domain of α-syn remaining unbound and unstructured (Eliezer et 

al., 2001, Jao et al., 2004). NMR-based structural studies revealed that α-syn forms two 

antiparallel broken helices (helix 1: residue 3-37 and helix 2: residue 45-92) when bound to SDS 

micelles or lipid vesicles (Bussell and Eliezer, 2003, Chandra et al., 2003, Bortolus et al., 2008, 

Drescher et al., 2008) (Figure I-14). However, it was later shown that the curvature of the 

micelles dictates the conformation of SDS-bound α-syn, i.e. whether it forms an extended single 

helix or two broken helices (Trexler and Rhoades, 2009). FRET studies have shown the 

prevalence of an extended helix in presence of large vesicles (100nm), whereas the two helix 

conformation predominates in the presence of highly-curved micelles (Trexler and Rhoades, 

2009). 

 

Figure I-14. Solution NMR structure of α-syn forming two broken helices when bound to SDS-micelles 
PDB structure: 1XQ8 
 

I.3.4. Fibrillization of alpha-synuclein 

The conversion of α-syn from soluble monomers to insoluble aggregates has been implicated in 

the formation of LB in PD and other synucleinopathies. α-syn-positive fibrillar inclusions were 

detected in the brain of patients with neurodegenerative diseases, such as PD, DLB, MSA and 
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AD using immunohistochemistry (Forno, 1996, Polymeropoulos et al., 1997, Arima et al., 1998, 

Kruger et al., 1998, Spillantini et al., 1998b, Hamilton, 2000, Cookson, 2005). The fibrillar 

nature of these α-syn-positive inclusions was confirmed by immunogold-labelling and by 

staining with fluorescent dyes that specifically bind to fibrillar amyloid-like structure 

(Thioflavin S and Congo Red dyes) (Surguchov, 2008). In vitro, α-syn readily forms long 

mature amyloid fibrils that resemble closely α-syn fibrils from post mortem PD brains (Giasson 

et al., 1999, Conway et al., 2000a) (Figure I-16).  

Although the molecular determinants of α-syn fibril formation remain unknown, studies during 

the past two decades have consistently shown that the NAC region is essential for α-syn 

aggregation (Giasson et al., 2001, Qin et al., 2007). This hypothesis is supported by the findings 

that 1) deletion of residues 71-82 from α-syn completely abolished α-syn fibril formation 

(Giasson et al., 2001); 2) the NAC region occurs within the sequence that forms the core of α-

syn fibrils as revealed by solid-state NMR studies (more specifically residues 38-95) (Heise et 

al., 2005, Kloepper et al., 2007) by limited proteolysis studies (residues mapped: 32-100) (Qin 

et al., 2007) and 3) deletion of the C-terminal domain, which results in further exposure of the 

NAC region, increases the fibrillization of α-syn in vitro, with the fragments 1-87 and 1-120 

showing the fastest aggregation rates (Crowther et al., 1998, Serpell et al., 2000, Murray et al., 

2003).  

• Mechanism of aggregation and structure of intermediates 

α-syn fibril formation follows a nucleation-dependent mechanism (Wood et al., 1999) 

characterized by an initial lag phase that is associated with the formation of a fibrillization 

competent nuclei (oligomers) followed by a rapid growth phase associated with fibril formation 

and growth, via addition of monomers until an equilibrium (plateau) is reached between the 

monomers and fibrils (Figure I-15). Consistent with a nucleated polymerization mechanism, the 

addition of preformed shortened fibrils to monomeric α-syn solutions results in elimination of 

the lag phase (Wood et al., 1999).  

I.3.4.2. Fibrils   

α-syn forms amyloid fibers that are usually 10 nm wide and 0.1-10 μm long as seen by 

transmission electron microscopy (TEM) and atomic force microscopy (AFM) (Giasson et al., 

1999, Conway et al., 2000a). These fibrils possess a cross-β-structure as discerned by X-ray 

fiber diffraction, which shows an intense reflection parallel to the axis of the fibril at around 4.7-

4.8 Ǻ (equal to the distance between two β-strands of the same β-sheet) and a signal 



  

 28 
  

perpendicular to the axis of the fibril at around 10 Ǻ (distance between two adjacent β-sheets) 

(Figure I-16) (Serpell et al., 2000).  

 

 

Figure I-15. Proposed mechanism of α-syn aggregation 
α-syn’s aggregation has been suggested to proceed via discrete intermediates. α-syn monomers assemble to form 
oligomers, some of them have pore-like properties, and further polymerize to form amyloid fibers. In vivo. the 
assembly result in the formation of LB. Adapted from a figure courtesy of Bruno Fauvet, EPFL. 
 
 
 
 

 

Figure I-16. Fibrillization of α-syn 
A: TEM image of α-syn fibrils. The scale bar represents 200nm. B: X-ray diffraction of WT, A30P, A53T and C-
terminally truncated α-syn. A reflection at 0.47 nm parallel to the fiber axis depicts the distance between two β-
strands of the same β-sheet while the weaker reflection at 1-1.1nm is perpendicular to the fiber axis and represents 
the distance between two neighboring β-sheets of the cross-β-structure. Figure B is from Serpell et al.(Serpell et al., 
2000).  
 

I.3.4.3. Oligomers 

In vitro aggregation studies revealed that α-syn fibril formation proceeds through a series of 

transient distinct oligomers. These oligomers are short-lived and very heterogenous in size 

(from 35 to 125 nm) and morphology (Hong et al., 2011). TEM and AFM studies have shown 

that α-syn can form spherical, amorphous or pore-like oligomers depending on the conditions 
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used to induce α-syn oligomerization and/or fibrillogenesis (Lashuel et al., 2002, Wright et al., 

2009, Hong et al., 2011). Although direct evidence for oligomers in the brain remains lacking, 

biochemical analysis of brain homogenates and CSF samples from PD patients (El-Agnaf et al., 

2006) and animal models of synucleinopathies (Chen et al., 2009, Colla et al., 2012) have 

revealed the presence of SDS-resistant oligomers using western blots and oligomer-specific 

ELISA assays and antibodies (Kayed et al., 2003, El-Agnaf et al., 2006) (Figure I-17).  

 

 

Figure I-17. Pore-forming oligomers of α-syn 
TEM images of oligomers of A53T and A30P α-syn. Figure from Lashuel et al. (Lashuel et al., 2002). 
 

I.3.4.4. The PD-linked mutations promote α-syn oligomerization and fibril formation 

In vitro studies have showed that the three disease associated-mutants A30P, A53T and E46K 

promote α-syn oligomerization compared to the WT protein (Conway et al., 1998, Lashuel et al., 

2002, Fredenburg et al., 2007), however only the A53T mutant was shown to increase the rate of 

fibril formation (Conway et al., 1998, Giasson et al., 1999, Conway et al., 2000b). The effect of 

PD-linked mutations was also shown to influence the size distribution and final morphology of 

α-syn oliogmers (Ding et al., 2002, Lashuel et al., 2002). For example, the A30P and E46K 

mutant promoted the formation of annular, pore-like protofibrils, whereas A53T formed both 

annular and tubular protofibrillar structures (Lashuel et al., 2002). The WT protein formed 

annular oligomers, but only after longer incubation times and to a much lesser extent that the 

PD-linked mutants (Ding et al., 2002). 

I.3.4.5. Several factors influence α-syn fibril formation 

• Lipids 

α-syn binds to synthetic phospholipid vesicles in vitro and to synaptic vesicles in vivo (Davidson 

et al., 1998, Jensen et al., 1998). Studies by Lee et al showed that membrane-bound α-syn had a 

stronger propensity to aggregate and suggested that the α-syn fibril formation could be initiated 

on neuronal membranes (Lee et al., 2002a). This hypothesis has been supported by in vitro 
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studies that showed enhanced aggregation of α-syn in presence of vesicles composed of 

polyunsaturated fatty acid acyl groups (Perrin et al., 2001, Ding et al., 2002). 

• Oxidation 

Oxidative stress has been implicated in the pathogenesis of PD (Jenner et al., 1992) and is 

thought to play a major role in α-syn-mediated toxicity. Several studies have shown that 

conditions that induce oxidative stress (treatment with peroxynitrite, rotenone and FeCl2) 

enhance α-syn aggregation and fibril formation in cell-based models (Paxinou et al., 2001, Lee 

et al., 2002b, Hasegawa et al., 2004). This oxidative-stress-induced aggregation correlates with 

increased α-syn toxicity in rat models of synucleinopathies (Sherer et al., 2003, Yu et al., 2010). 

Among the α-syn residues are susceptible to oxidation, methionine is readily oxidized to a 

sulfoxide and tyrosine to nitrotyrosine. However, α-syn does not contain cysteine residues. In 

vitro, methionine oxidation inhibits the formation of fibrils of α-syn and the addition of a 4-fold 

molar excess of oxidized α-syn completely inhibited the fibrillization of the WT protein 

(Uversky et al., 2002c). Aside from methionine oxidation, α-syn’s tyrosine nitration is induced 

by oxidative stress (Danielson et al., 2009) and was shown to be present in α-syn aggregates 

both in LB and in rat brain samples (Giasson et al., 2000, Yu et al., 2010) and to seed the 

aggregation of the WT protein (Hodara et al., 2004).  

• Metals 

α-syn is a metal-binding protein and several studies have identified different residues within  the 

C-terminus (119-124) that are involved in α-syn binding to different metal ions was reported 

(Binolfi et al., 2006, Santner and Uversky, 2010, Lu et al., 2011). Different cations can bind to 

α-syn and exhibit variable effects on the rate of α-syn fibrillization and the structure of the final 

α-syn fibrils (Santner and Uversky, 2010). Copper (II) was shown to bind to the C-terminal 

domain of α-syn and to increase its fibrillization (Paik et al., 1999, Binolfi et al., 2006) and a 

comparative study of different di- and tri-valent cations showed that Al3+ was the most effective 

in the stimulation of fibrillization (Uversky et al., 2002a). α-syn oligomerization was also 

showed to be induced by metal-binding and more specifically a report by Wright et al. showed 

the presence of a copper-induced oligomeric specie that, once separated from the monomers and 

the fibrils, was responsible for cytotoxicity (Wright et al., 2009) while Fe3+-induced oligomers 

of α-syn were able to form permeating pores at a lipid-bilayer (Kostka et al., 2008).  
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I.3.5. Functions of alpha-synuclein 

While the propensity of α-syn to form fibrils, a property that is enhanced by disease-associated 

mutations, provides a direct link between the protein and PD pathology, very little is known 

about the physiological function(s) of α-syn and how alteration in its function(s) could 

contribute to the pathogenesis of PD and other synucleinopathies. α-syn KO animal and cell-

based models have been generated in the hopes of deciphering the normal function of the 

protein. As a result, hypotheses have emerged concerning the role of α-syn in several 

physiological processes such as synaptic maintenance, DA release, axonal transport, 

neurotransmission, and inhibition of the enzyme phospholipase D activity.  

I.3.5.1. Synaptic maintenance 

Synaptic plasticity is intimately regulated by vesicle trafficking. At rest, the majority of the 

synaptic vesicles are clustered in a reserve pool. Upon increase of neuronal activity, the vesicles 

exit from the pool, are directed to the site of fusion and are prepared for exocytosis. The 

transition of the vesicles from the pool to other sites is regulated by complex cellular signals 

(Bellani et al., 2010). 

The first clue to the involvement of α-syn in maintenance of the synaptic function came when 

researchers observed the strong presence of α-syn in presynaptic terminals, its association with 

the membranes of synaptic vesicles and the increased expression of the zebra finch homolog of 

α-syn in the brain region implicated in song learning (Maroteaux et al., 1988, George et al., 

1995, Irizarry et al., 1996). Experiments looking at complete or partial down-regulation of α-syn 

in animal models or cell culture hinted towards the regulation of vesicle trafficking. In 

particular, α-syn knock out (KO) mice showed a lack of abnormalities in the synaptogenesis but 

exhibited altered DA release (Abeliovich et al., 2000). Reports in primary hippocampal neuronal 

cultures confirmed that α-syn was not involved in synapse formation since its expression was 

delayed after synapse formation (Murphy et al., 2000). Using anti-sense oligonucleotides, a 

significant reduction in the size of the distal presynaptic vesicular pool was observed upon 

knockdown of α-syn (Drobysheva et al., 2008). Another report using α-syn KO mice showed 

significant impairment in synaptic response and a slower depletion of vesicles from the reserve 

pool compared to WT α-syn mice (Cabin et al., 2002). Together, these findings led to the 

hypothesis that α-syn is implicated in the process of synaptic vesicles trafficking from the 

reserve pool to the release sites (Bellani et al., 2010). Larsen et al. reported that the level of 

docked vesicles was increased in cells over-expressing WT α-syn but that the level of secreted 
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catecholamines was reduced and hence proposed that α-syn inhibits the vesicle priming step that 

would prepare them for exocytosis (Larsen et al., 2006).   

I.3.5.2. Inhibition of phospholipase D activity 

α-syn has been shown to bind preferentially to acidic phospholipids in vitro and in vivo 

(Davidson et al., 1998, Jensen et al., 1998, Perrin et al., 2000). On the other hand, the hydrolysis 

of phosphatidylcholine to phosphatidic acid is regulated by the enzyme phospholipase D (PLD) 

that has been shown to be inhibited by WT and mutant α-syn in vitro (Jenco et al., 1998, Ahn et 

al., 2002). More specifically, tyrosine phosphorylation at residue 125 increases the inhibitory 

effect of α-syn . However, the finding that α-syn inhibits PLD was challenged by a recent report 

(Rappley et al., 2009). PLD activation is linked to cell growth and neurotransmitter release (Ahn 

et al., 2002) thus, a normal balance of lipids is required for regulating a variety of signals at the 

plasma membrane and for proper synaptic function. Therefore, alteration in lipid composition 

may play a role in an α-syn -dependent toxicity. 

I.3.5.3. Chaperone role 

α-syn, a protein with no defined secondary structure, is able to act as a chaperone in order to 

inhibit the aggregation of other proteins such as esterases that are protected against heat and pH-

stress; and alcohol dehydrogenase whose activity is preserved even from heat-induced 

denaturation. α-syn was also shown to protect against chemical-induced, heat-induced and DTT-

induced precipitation of the proteins insulin, glutathione S-transferase (GST) and bovine serum 

albumin respectively (Kim et al., 2000, Souza et al., 2000b, Ahn et al., 2006). Studies by Kim et 

al. showed that the presence of the unstructured C-terminal domain of α-syn is responsible for 

its thermal stability (Park et al., 2002) and hence is important for its chaperone activity. Indeed, 

the fragment 2-97 of α-syn has been shown to be completely devoid of chaperone-like activity 

(Souza et al., 2000b).  

I.3.5.4. Neuroprotective role 

Although the majority of studies focus on the possible toxic mechanisms of α-syn, some reports 

have suggested that it may have neuroprotective properties. The over-expression of WT α-syn in 

neuronal and mammalian cell lines protected against H2O2-induced oxidative stress (Lee et al., 

2001b, Hashimoto et al., 2002) but not against MPP+ (Lee et al., 2001b). Interestingly, A30P and 

A53T mutants did not show this protective ability (Lee et al., 2001b). A subsequent study 

showed that the protective effect of α-syn against oxidative stress induced by MPP+ but not 

H2O2 nor 6-OHDA could be reproduced in cellular models of α-syn toxicity (Jensen et al., 
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2003). Moreover, WT but not A53T α-syn mutant was able to prevent the increase of caspase-3-

like (acetyl-Asp-Glu-Val-Asp-aldehyde-sensitive caspase) after pro-apoptotic stimulation of 

neurons by staurosporine and etoposide (da Costa et al., 2000). 

Some Tg animal models over-expressing WT or A53T α-syn were also shown to resist paraquat-

induced toxicity while the control mice exhibited severe neuronal loss (Manning-Bog et al., 

2003). Moreover, no correlation was found between the presence of apoptotic neurons and α-syn 

expression in rat model of 6-OHDa-induced insult (Kholodilov et al., 1999). In addition to the 

protective effect against toxin-based insults, α-syn was shown to rescue cells from the lethal 

degeneration induced by the deletion of the co-chaperone Cysteine-string protein-α (CSPα) in 

Tg mice, while A30P α-syn was unable to show any protective effect (Chandra et al., 2005). 

This protective effect may have been mediated by the rescue of the synaptic transmission 

impairment that resulted from CSPα KO.   

I.3.6. Mechanisms of α-syn toxicity 

I.3.6.1. Why is α-syn toxic to Dopaminergic neurons? 

α-syn is widely expressed in the brain but neurodegeneration occurs mainly in the SN, i.e. in the 

dopaminergic neurons, in PD (Obeso et al., 2010). Motor deficit in PD has been attributed to the 

high susceptibility and death of dopaminergic neurons in the SN, although the molecular basis 

underlying this increased susceptibility of DA neurons remain unknown. Several studies suggest 

α-syn plays an important role in regulating the production, storage, release and reuptake of DA; 

impairment in each of these processes by α-syn could contribute to neuronal death in PD (Figure 

I-18).   

• α-syn and DA Production 

The activity of Tyrosine Hydroxylase (TH), the rate-limiting enzyme for the conversion of 

tyrosine to L-dopa, is negatively modulated by α-syn both at the gene expression level and/or by 

direct interaction with the enzyme (Perez et al., 2002, Baptista et al., 2003). Hence, under 

physiological conditions, α-syn attenuates the amount of cytoplasmic DA. When monomeric α-

syn is getting scarce due to aggregation, the inhibitory mechanism exerted by α-syn on TH 

activity is impaired, resulting in an increase of cytoplasmic DA.  

• α-syn and DA Storage 

The storage of DA in vesicles is modulated by the activity of the vesicular monoamine 

transporter 2 (VMAT2), which triggers the uptake of cytoplasmic DA into vesicles for storage 
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(Venda et al., 2010). An impairment of synaptic vesicle formation could trigger the 

accumulation of DA in the cytoplasm, resulting in cell death. This was shown in PD patients’ 

brains where levels of VMAT2 were reported to be decreased in PET studies (Lee et al., 2000). 

Moreover, the overexpression of A53T α-syn has been shown to decrease the levels of VMAT2, 

which would results in an increase of cytoplasmic DA (Lotharius et al., 2002, Lotharius and 

Brundin, 2002). Under physiological conditions, α-syn is thus able to regulate the availability of 

synaptic vesicles and the storage by VMAT2, but under pathological conditions, dysfunction of 

DA storage could lead to the accumulation of toxic dopamine which could contribute to 

neurodegeneration and cell death.  

• α-syn and DA Release 

The link between the physiological function of α-syn and synaptic vesicle trafficking was 

detailed earlier in section I.3.5.1. Over-expression of the α-syn mutants A53T and E46K, but not 

A30P, was moreover shown to induce an impairment of synaptic vesicle exocytosis (Nemani et 

al., 2010).  

• α-syn and DA Uptake 

The reuptake of DA into the presynaptic neuron is mediated by the dopamine transporter DAT. 

α-syn binds to DAT and accelerates DA uptake by increasing the number of transporters at the 

membrane. Parkin disrupts this interaction and rescues the cell from increased DA-induced 

toxicity (Lee et al., 2001a, Moszczynska et al., 2007). 

In summary, the impaired activity of α-syn on several levels of DA synthesis, storage and 

release may contribute to the increased vulnerability of dopaminergic neurons in PD (Figure 

I-18). However, the toxic effect on dopaminergic neurons does not only result from α-syn nor 

DA alone, but could result from the interaction or the synergistic toxic effect of both molecules. 

Consistent with this hypothesis, several groups have shown that oxidized DA strongly inhibits 

α-syn fibrillization and promotes the accumulation of potentially toxic oligomers (Conway et al., 

2001, Rochet et al., 2004).  
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Figure I-18. Effects of α-syn on DA synthesis, storage, release and uptake 
α-syn’s toxic effects can be reflected in several steps of DA biosynthesis, storage into vesicles, release at the 
synapse and reuptake by DAT. Figure from Venda et al. (Venda et al., 2010). 
 

I.3.6.2. Lewy Bodies: toxic or protective? 

Identification of fibrillar α-syn as the main component of the LB in PD brains led to the 

hypothesis that α-syn fibril formation is the primary cause of neurodegeneration in PD. This 

hypothesis was supported by findings demonstrating that PD-linked disease mutations accelerate 

and increase the extent of α-syn fibril formation in vitro (section I.3.4) and in animal models of 

synucleinopathies (Giasson et al., 2002, Kirik et al., 2002, Lee et al., 2002c, Lo Bianco et al., 

2002). However, this hypothesis failed to explain the following experimental observations; i) 

some of the surviving neurons in PD patients contain LB (Spillantini et al., 1997); ii) there is a 

lack of correlation between the extent of LB formation and neurodegeneration in humans. 

Moreover, LB have been detected in the brain of patients who died without showing signs of PD 

or other neurodegenerative diseases (Harding and Halliday, 1998, Richard et al., 2002). These 

findings were later better understood by in vitro data demonstrating that α-syn fibril formation, 

like amyloid-β in Alzheimer’s disease (AD), proceed through a series of distinct oligomers that 

disappear upon fibril formation (section I.3.4). The accumulated evidence in support of the toxic 

oligomer hypothesis in AD and observation of a toxic effect induced by α-syn in the absence of 

fibril formation led to the hypothesis that α-syn oligomers, rather than the fibrils, are the primary 

toxic species and fibril formation results in the sequestration of toxic α-syn species. Consistent 

with this hypothesis, two independent studies recently showed that mutations 
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(A30P/A56P/A76P and E57K/E35K) that preferentially promote the formation of or stabilize α-

syn oligomers exacerbated α-syn toxicity in C.elegans, Drosophila (Karpinar et al., 2009) and 

rat models of synucleinopathies (Karpinar et al., 2009, Winner et al., 2011). However, the 

molecular factors that induce the formation of α-syn oligomers in vivo remain unknown, but 

interactions with metals (Wright et al., 2009), polyunsaturated fatty acids (Sharon et al., 2003a, 

Sharon et al., 2003b, Assayag et al., 2007), DA (Conway et al., 2001, Rochet et al., 2004) and 

lipids (Lee et al., 2002a) have been shown to trigger and/or stabilize α-syn toxic oligomers in 

vitro with some of these oligomers inducing cytotoxicity (Assayag et al., 2007, Wright et al., 

2009).  

I.3.6.3. Mitochondrial dysfunction 

PD pathogenesis is associated with the impairment of mitochondrial function and most 

specifically of complex I of the electron transport chain. A defect in complex I activity was 

detected in the SN of PD patients (Schapira et al., 1990, Sherer et al., 2002a) and known 

inhibitors of complex I – rotenone and MPTP – cause neurodegeneration in humans and animal 

models (section I.2.2.1 and I.2.2.2). This was shown to be mediated by inhibition of ATP 

production and generation of reactive oxygen species (ROS) (Sherer et al., 2002b). Furthermore, 

pathogenic mutations in PINK1, a kinase that localizes to the mitochondrial membrane, result in 

a decrease of the complex I activity, while DJ-1, a protein that acts as an antioxidant, is mutated 

in autosomal recessive PD and is translocated to the mitochondria upon oxidative stress insult.  

The link between α-syn aggregation and complex I inhibition was initially suggested based on 

cell culture studies where rotenone treatment triggered α-syn aggregation and increased both 

DNA and protein damage (Sherer et al., 2002b). Later, it was shown that MPTP treatment of 

cells resulted in α-syn aggregation and release of caspase 3 (Kalivendi et al., 2004). 

In addition, α-syn was also shown to impair mitochondria’s structure and activity through direct 

binding. Several reports have revealed that α-syn localizes to the mitochondria in human brains 

(Devi et al., 2008) and cell-culture models (Cole et al., 2008, Nakamura et al., 2008, Shavali et 

al., 2008) and is able to bind purified mitochondria in vitro (Cole et al., 2008). The translocation 

of α-syn from the cytosol to the mitochondria was reported to increase during the progression of 

the disease (Devi et al., 2008) and was hypothesized to be triggered by acidification of the 

intracellular milieu as a result of oxidative insults (Cole et al., 2008). α-syn’s import into the 

mitochondria causes fission of the organelles, a decrease of intracellular ATP, and elevated level 

of ROS resulting in cell death (Devi et al., 2008, Nakamura et al., 2011).   
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I.3.6.4. Oxidative stress 

Impairment of the complex I of the mitochondria results in oxidative stress. Elevated level of 

oxidation markers such lipid peroxidation (Dexter et al., 1989), accumulation of the DNA 

damage product 8-hydroxy-2'-deoxyguanosine (Alam et al., 1997b), protein carbonyl formation 

(Alam et al., 1997a), and α-syn nitration (Giasson et al., 2000) were reported in the SN of PD 

patients. The increase of ROS in the SN could arise from several causes (Sherer et al., 2002a): i) 

the synthesis of DA by TH and the catabolism of DA by monoamine oxidase B generate H2O2 

and ii) the spontaneous auto-oxidation of dopamine in the cytoplasm that also yields 

H2O2.Oxidative stress is hence one of the major contributors to the pathogenesis of PD (Jenner 

et al., 1992) and could even be an early feature in the pathogenesis. 

I.3.6.5. Dysfunction of the ubiquitin/proteasome pathway 

Genetic evidence on the potential impairment of the proteasomal degradation pathway in PD 

arises from the discovery of mutations in the gene coding for Parkin, an E3 ligase, that were 

linked to autosomal recessive PD and mutations in the gene for UCHL-1, a ubiquitin C-terminal 

hydrolase, which are linked to autosomal-dominant PD (Leroy et al., 1998, Shimura et al., 

2000). It was hypothesized that defective proteasomal-degradation of α-syn would result in its 

accumulation and further aggregation in cells. One cell-based study confirmed this hypothesis 

and showed accumulation of non-ubiquitinated α-syn upon inhibition of the proteasome, while 

other studies could not reproduce this finding (Paxinou et al., 2001).  

On the other hand, proteasome activity was shown to be impaired by α-syn mutations. Stable 

PC12 lines expressing A53T α-syn but not cells expressing the WT protein showed inhibition of 

the proteasome activity which resulted in the accumulation of ubiquitinated α-syn aggregates, 

along with an increase of non-apoptotic death (Stefanis et al., 2001). Furthermore, mice over-

expressing a double-mutant form of α-syn (A30P/A53T) showed significant decline in 

proteasomal activity and an increase in the level of ubiquitinated proteins (Chen et al., 2006).  

It has been proposed that α-syn -mediated inhibition of the proteasome results from the direct 

binding of the protein to the subunit S6’ in the proteasomal cap or to the catalytic core of the 

20S proteasome, thus disrupting its degradation activity (Snyder et al., 2003, Lindersson et al., 

2004). Aggregated forms of α-syn exhibited stronger affinity to the 19S subunit of the 

proteasome with an IC50 in the range of 1 and 500nM (respectively for ubiquitin-independent 

and ubiquitin-dependent degradation). The monomeric form of α-syn did not inhibit the 

ubiquitin-dependent degradation and only showed partial inhibition of the ubiquitin-independent 

pathway (Snyder et al., 2003). Other reports have shown a preferential binding of the fibrils and 
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oligomers to another subunit of the proteasome (20S) which resulted in a marked inhibition of 

the degradation activity (Lindersson et al., 2004).  

I.3.6.6. Dysfunction of the lysosomal pathway 

Previous studies have shown that only a small fraction of α-syn is degraded by the proteasome 

(Ancolio et al., 2000, Paxinou et al., 2001, Lee et al., 2004, Vogiatzi et al., 2008, Ebrahimi-

Fakhari et al., 2011) and that the majority of the protein is readily transported into lysosomes for 

degradation (Cuervo et al., 2004, Mak et al., 2010). Treatment of cells with 3-methyladenine 

dramatically increased the steady-state levels of α-syn (Webb et al., 2003). Chaperone-mediated 

autophagy was reported to be affected by PD-linked mutations: α-syn mutants A30P and A53T 

were able to block the uptake of receptors located on the lysosomal membrane, which would 

prevent their degradation and the degradation of other substrates (Cuervo et al., 2004).  

I.3.6.7. Cell to cell transmission 

The molecular mechanisms that determine how α-syn pathology spreads in the brain remain 

unknown. Recent studies suggest that α-syn pathology spreads through cell-to-cell transmission 

and propagation mechanisms whereby α-syn aggregates are secreted by one cell, cross the 

membrane of the recipient cell where they then induce/seed the formation of α-syn aggregates 

and/or exert their toxic effects via multiple mechanisms. 

Studies on post mortem tissue of PD patients who had undergone embryonic neuron 

transplantation as a cell-replacement therapy revealed the presence of LB in 12 year-old and 16-

year-old fetal mesencephalic neuron grafts (Li et al., 2008, Chu and Kordower, 2010, Li et al., 

2010). It was hence speculated that the host-to-graft disease propagation was probably due to 

the transmission of α-syn from cell to cell (Li et al., 2008). Cell-to-cell transmission of α-syn 

was also reported in Tg mice over-expressing human α-syn that had mouse cortical neuronal 

stem cell transplants in the hippocampus. After 4 weeks, 2.5 to 15% of the grafts were positive 

to human α-syn, indicating that α-syn was transferred from the host brain to the grafts (Desplats 

et al., 2009). The transmitted α-syn had a capacity to seed aggregation and inclusions were 

shown in the grafted neurons (Hansen et al., 2011). Transmission of α-syn from neurons to glia 

was also reported in Tg mice over-expressing human α-syn under the control of a neuronal 

promoter. α-syn was detected both in neurons and glial cells and was causative of an 

inflammatory response (Lee et al., 2010).  

α-syn has also been detected in the cerebrospinal fluid, blood plasma and in the saliva of PD 

patients (El-Agnaf et al., 2003, El-Agnaf et al., 2006, Tokuda et al., 2006, Devic et al., 2011). It 

is secreted from cells by exocytosis (Lee et al., 2005) and stress factors such as serum 
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deprivation and H2O2 treatment, proteasomal or lysosomal inhibition can enhance its secretion to 

the cell culture medium (Lee et al., 2005, Steiner et al., 2011). Once released in the extracellular 

milieu, α-syn can associate with membranes thanks to its lipid-binding properties (section 

I.3.3.2). However, monomeric and fibrillar α-syn display different preferred routes of entry into 

cells: monomeric α-syn penetrates cells through passive diffusion or by association to lipid rafts 

while aggregated α-syn is uptaken through endocytosis (as suggested from data where low 

temperature, dynamin inhibitors and trypsin treatment were applied to cells) (Lee et al., 2008a). 

The toxicity of extracellular α-syn is dependent on its internalization since treatment of cells 

with endocytosis inhibitors was protective (Sung et al., 2001). In cell-based models, 

extracellular α-syn can induce the formation of α-syn aggregates inside cells if it is introduced 

via cationic liposomes, calcium phosphate, Lipofectamine or without any transfection agent 

(Luk et al., 2009, Nonaka et al., 2010, Waxman and Giasson, 2010, Steiner et al., 2011). 

However, in vivo, α-syn does not need agents to cross the cellular membrane and is able to seed 

the aggregation of endogenous α-syn (Li et al., 2008, Desplats et al., 2009).  

I.3.7. Interaction between α-syn and other proteins 

α-syn has been shown to interact with a large panel of proteins with different roles in the cellular 

function and homeostasis such as membrane trafficking, ion channel modulation, redox 

metabolism, and gene regulation (Zhou et al., 2004, Woods et al., 2007). More than 70 potential 

interacting proteins were reported to interact with α-syn in the LB (Wakabayashi et al., 2007). 

Proteomics studies using C-terminal peptide fragments of α-syn and pull-down assays from 

mouse brain synaptosomes revealed that α-syn interacts mainly with mitochondrial proteins. 

Interestingly, the phosphorylated forms of this peptide are bound preferentially to cytoskeletal 

proteins and proteins involved in the endocytotic pathways (McFarland et al., 2008) (section 

I.4.2.2). Below is a brief overview of some of the key proteins that have been shown to interact 

with α-syn: tau, synphilin, β- and γ-syn, Rab, histones and chaperones.  

I.3.7.1. Tau 

The presence of neurofibrillary tangles, composed of hyperphosphorylated forms of the 

microtubule-associated protein Tau, is one of the pathological hallmarks of AD (Querfurth and 

LaFerla, 2010). Data from post mortem analysis of PD brain samples showed the presence of 

phosphorylated Tau at serine 262 in the striatum (Wills et al., 2010). The same group showed an 

increase of Tau phosphorylation and the absence of binding to the microtubules in an A53T 

transgenic mouse model of PD (Wills et al., 2011). Mice over-expressing the A30P α-syn 

mutant elicited the same findings (Frasier et al., 2005). Aside from PD-related mutations, 
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neurotoxins (such as MPTP) were shown to trigger the hyperphosphorylation of tau in cellular 

models (Qureshi and Paudel, 2011). In vivo and in vitro evidence for a direct interaction 

between α-syn and tau came from affinity purification (Jensen et al., 1999) and a mammalian 

two-hybrid assay (Benussi et al., 2005) and from the observation that α-syn induces and 

enhances the fibrillization of tau, which does not usually proceed readily in vitro but requires the 

addition of polyanionic cofactors such as heparin (Giasson et al., 2003, Kotzbauer et al., 2004). 

This finding was successfully reproduced in cell-based models where exogenous α-syn fibrillar 

seeds induced the intracellular aggregation and hyperphosphorylation of tau (Waxman and 

Giasson, 2011). 

I.3.7.2. Synphilin 

A yeast-two hybrid screen for α-syn interactants yielded synphilin as a hit (Engelender et al., 

1999). It was later reported that synphilin is a component of the LB and was linked to PD after 

the discovery of a single-point mutation - R621C - in sporadic PD patients (Marx et al., 2003). 

These findings suggested a potential role in LB formation and PD (Wakabayashi et al., 2000). 

Furthermore, the two proteins were shown to interact in vivo (Engelender et al., 1999) and the 

interaction was shown to occur via the C-terminal domain of α-syn (Kawamata et al., 2001). 

Engelender and colleagues developed a cellular model of α-syn aggregation by co-expression of 

α-syn and synphilin and showed that expression of synphilin was required for α-syn aggregation 

(Engelender et al., 1999, McLean et al., 2001) (section I.2.4.3). These findings suggested that 

impairment of synphilin’s degradation could potentially trigger the aggregation of α-syn.  

I.3.7.3.  β-and γ-syn 

The two other members of the synuclein family β-syn and γ-syn are also expressed in the brain 

(Li et al., 2002). α-syn and β-syn were shown to interact in transgenic animal brain samples or 

in cell lines expressing both proteins (Hashimoto et al., 2001). Both β- and γ-syn bind to α-syn 

in vitro and are able to inhibit its aggregation (Hashimoto et al., 2001, Uversky et al., 2002b, 

Park and Lansbury, 2003). Moreover, crossbreeding Tg mice that over-expresses β-syn with 

mice that over-express α-syn inhibited α-syn aggregation and resulted in improved motor 

symptoms (Hashimoto et al., 2001), thus providing evidence for the interaction between the two 

proteins in vivo. These findings suggest that β-syn may act as a negative regulator of α-syn 

aggregation in vivo. Furthermore, supplementing the medium for Drosophila with a β-syn-

derived peptide composed of D-amino acids was sufficient to improve locomotor activites of 

A53T α-syn -over-expressing flies (Shaltiel-Karyo et al., 2010).   
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I.3.7.4. Rab 

Rab GTPase proteins regulate membrane trafficking processes and alternate between cytosolic 

(inactive) and membrane-bound (active) states. Consistent with the localization of α-syn at the 

synapse and the proposed role as a regulator of synaptic vesicle trafficking (section I.3.5.1), it 

was postulated that α-syn may interact with Rab proteins. Indeed, higher-molecular weight 

species of α-syn were shown to interact with Rab3a (presynaptic localization), Rab5, and Rab8 

in DLB brain samples while the monomeric form of the protein interacts weakly (Dalfo et al., 

2004, Dalfo and Ferrer, 2005). Moreover, extracellular α-syn interacts with Rab11a to ensure its 

internalization in cells (Liu et al., 2009). In a yeast model where α-syn expression impaired ER-

Golgi trafficking (specifically by affecting the vesicle docking step), the expression of Ypt1p 

(the homologue of Rab1) rescued from α-syn toxicity and similar observations were made for 

Rab1, Rab3a and Rab8 both in neuronal and fly models (Cooper et al., 2006, Gitler et al., 2008). 

I.3.7.5. Histones 

The nuclear localization of α-syn has been confirmed after toxin insults by several reports 

(Goers et al., 2003a, Surguchov, 2008) and was shown to promote cell death as evidenced by 

findings used a fusion of α-syn to a nuclear localization signal (Kontopoulos et al., 2006). The 

molecular determinants that were responsible cytotoxicity involved a binding of α-syn to 

histones. α-syn was shown to bind to Histone 1 and 3 (Goers et al., 2003a, Kontopoulos et al., 

2006) and to inhibit the acetylation of Histone 3 in cell-based and in vitro assays with reports of 

toxicity in which resulted in enhanced toxicity in cell-culture and Drosophila models 

(Kontopoulos et al., 2006). Furthermore, due to interaction of α-syn with Histone 1, the 

fibrillization rate of α-syn was dramatically increased (Goers et al., 2003a).  

I.3.7.6. Chaperones 

α-syn interacts with the chaperones Hsp27, Hsp70, and Hsp90 (Outeiro et al., 2006). 

Overexpression of Hsp27 reduced α-syn-induced toxicity in cells by 30% and the other 

chaperone Hsp70 was shown to strongly inhibit α-syn fibrillization through the preferential 

binding to α-syn oligomers (Dedmon et al., 2005). The co-chaperone carboxyl terminus of 

Hsp70-interacting protein (CHIP) co-localizes with Hsp70 and α-syn in LB and decreases the 

fibrillization rate of α-syn (Shin et al., 2005). CHIP ubiquitinates α-syn (Kalia et al., 2011) and 

directs it for degradation via the proteasomal and the lysosomal pathways (Shin et al., 2005). 
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I.4. Post-translational modifications of alpha-synuclein 

The molecular factors that are responsible for triggering α-syn aggregation and mediating its 

toxicity in sporadic PD remain unknown. The identification of different post-translational 

modifications (PTM) of α-syn within the LB suggested that these modifications could play an 

active role in the initiation of α-syn aggregation and LB formation. This hypothesis was 

supported by a landmark study by Fujiwara et al. that demonstrated for the first time that the 

majority of α-syn within LB is phosphorylated at S129. This study also suggested that 

phosphorylation at S129 enhances α-syn fibril formation (Fujiwara et al., 2002). A subsequent 

and more comprehensive analysis of α-syn PTM using mass spectrometry confirmed this 

finding and revealed the presence of additional modifications, including N-terminal acetylation, 

ubiquitination and truncation (Anderson et al., 2006) (Figure I-19). The effect of some of these 

modifications on the structure, aggregation and toxicity of α-syn has been investigated both in 

vitro and in vivo and the search for enzymes regulating these PTM remains an active area of 

investigation, as these could be potential therapeutic targets for the treatment of PD and related 

synucleinopathies (Oueslati et al., 2010). 

I.4.1. Phosphorylation at Serine residues 

α-syn contains four serine residues (two in the N-terminal domain - S9 and S42 -, S87 in the 

NAC region and S129 in the C-terminus) (Figure I-20). To date, only S129 and S87 have been 

linked to PD through phosphorylation. Okochi et al. demonstrated that α-syn expressed in cell 

lines is constitutively phosphorylated at multiple sites. By expressing different S A mutants of 

α-syn, they identified serine 129 and serine 87 as the main phosphorylation sites of α-syn 

(Okochi et al., 2000). Phosphorylation of α-syn at S87 was later discovered to be present within 

the LB (Paleologou et al., 2010).  
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Figure I-19. Most studied PTM occurring in α-syn  
Scheme summarizing α-syn’s modifications that have been shown to occur in the LB. The majority of the PTM are 
clustered in the C-terminal domain of the protein (except for ubiquitination and phosphorylation at S87). Figure 
from Oueslati et al. (Oueslati et al., 2010) 
 
 

 

Figure I-20. Conservation of the α-syn phosphorylation sites among species. 
Sequence alignment of α-syn protein from human, rat, mouse, bovine, pig, primate and chicken species. The 
phosphorylation sites that have been linked to the pathology (S87, S129 and Y125) are highlighted in red while the 
other potential phosphorylation sites are in green. Alignment was based on Uniprot sequences P37840, P37377, 
O55042, Q3T0G8, Q3I5G7, P61144 and Q9I9H1 
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The casein kinases CK1 and CK2 were implicated in phosphorylating these sites. Subsequent 

studies showed that the G-protein-coupled receptor kinases (GRKs) also phosphorylate α-syn in 

vitro and in vivo at S129 (Pronin et al., 2000, Sato et al., 2011). 

I.4.1.1. Phosphorylation at S129 

Fujiwara et al. reported that > 90% of α-syn in LB is phosphorylated at S129 compared to 4% of 

phosphorylation in total α-syn (Fujiwara et al., 2002). A comprehensive proteomics study 

carried out by Anderson et al. confirmed this finding in DLB, MSA and PD patients (Anderson 

et al., 2006). Moreover, pS129 α-syn was detected in Tg mice over-expressing α-syn (Kahle et 

al., 2002, Neumann et al., 2002, Wakamatsu et al., 2007, Rieker et al., 2011), in rat models 

expressing α-syn (Yamada et al., 2004), and in Tg flies expressing WT and mutants of α-syn 

(Takahashi et al., 2003, Chen and Feany, 2005). Interestingly, the detection of pS129 correlated 

with the formation and progression of α-syn pathology. 

Although the natural kinases and phosphatases involved in regulating the 

phosphorylation/dephosphorylation of α-syn at S129 and S87 remain unknown, some potential 

candidates have been recently identified in vitro and eventually validated in vivo (Oueslati et al., 

2010) (Figure I-21). Some of the kinases that have been identified are specific for S129: G-

coupled-receptor kinase 1,2,5 and 6 (GRK) (Pronin et al., 2000, Liu et al., 2010) and the Polo-

like kinases 2 and 3 (PLK) (Inglis et al., 2009, Mbefo et al., 2010). On the other hand, CK1 and 

CK2 have been shown to phosphorylate α-syn both at S87 and S129 (Okochi et al., 2000). CK2 

and GRK-5 have been identified in the LB (Arawaka et al., 2006, Ryu et al., 2008). It is 

important to note that not all identified kinases exhibit the same phosphorylation efficiency, and 

that some enzymes are able to phosphorylate fibrillar α-syn more efficiently than others. 

Furthermore, some kinases have been shown to phosphorylate fibrillar α-syn more preferentially 

than the monomeric form of the protein (Waxman and Giasson, 2008, Mbefo et al., 2010). The 

only phosphatase that has been identified and implicated in the dephosphorylation of pS129 α-

syn in vivo is Phosphoprotein Phosphatase 2A (PP2A) (Lee et al., 2011), whereas in vitro PP2C 

has been shown to be much more efficient (Waxman and Giasson, 2008).  
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Figure I-21. Kinases implicated in the phosphorylation of α-syn at Serine residues. 
Figure adapted from Oueslati et al. (Oueslati et al., 2010) 
 

The impact of phosphorylation at S129 on fibril formation was probed in vitro and in vivo, 

which yielded various results. In vitro phosphorylation assay using CK2 demonstrated an 

increase in α-syn aggregation (Fujiwara et al., 2002) while studies done by Paleologou et al., 

using CK1 , showed an inhibition of fibrillization (Paleologou et al., 2008). The discrepancy is 

probably due to the difference in kinases and in the extent of phosphorylation in each study 

since CK1 phosphorylates α-syn efficiently at S129 but CK2 induces only partial (< 5%) 

phosphorylation of the protein at S129.  

The expression of the kinase GRK6 in a rat model resulted in a significant increase in the levels 

of pS129 α-syn but had no effect on the fibrillization of the protein (Sato et al., 2011). Studies 

using Tg mice over-expressing α-syn, with pharmaceutically-enhanced PP2A activity, revealed 

reduced pS129 levels that were accompanied with a decrease of α-syn aggregation (Lee et al., 

2011). AAV-mediated overexpression of S129A α-syn in the SN of rats resulted in enhanced 

aggregation and loss of DA neurons (Azeredo da Silveira et al., 2009). Although these findings 

suggest that blocking phosphorylation may enhance α-syn toxicity, the increased propensity of 

S129A fibrillization in vitro (Paleologou et al., 2008) and in vivo (rats and Drosophila) (Chen 

and Feany, 2005, Gorbatyuk et al., 2008, Azeredo da Silveira et al., 2009) suggest that the 

enhanced toxicity is a result of the enhanced aggregation of this mutant rather than of the 

blocking of phosphorylation at S129.  Interestingly, while the effect of S A substitution at 

S129 on α-syn aggregation can be correlated to toxicity in the rat model of PD, the S129A 

mutant exhibited reduced toxicity in the Drosophila model compared to WT and S129E (Chen 

and Feany, 2005, Azeredo da Silveira et al., 2009). The major causes of the discrepancies 

between the results remain unknown, but may be explained by the fact that Drosophila do not 

express α-syn and that the interaction between human and rat α-syn may play an important role 

in regulating its aggregation and toxicity (Rochet et al., 2000).  
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• Effect of pS129 on toxicity 

While the effects of phosphorylation at S129 on α-syn aggregation were not identical in the 

different reports and animal models, the same discrepancies were observed for the toxicity 

effects. The co-expression of the GRK6 kinase with A53T α-syn in a rat model was shown to 

exacerbate A53T-induced toxicity while co-expression of GRK6 and the S129A mutant did not 

result in major changes in toxicity relative to the WT protein (Sato et al., 2011). Attenuating or 

blocking phosphorylation at S129 through the induction of phosphatase activity or expression of 

the S129A mutant respectively resulted in opposing effects in mice and rat models. Tg mice 

over-expressing α-syn, with an enhanced PP2A activity, revealed a better motor performance 

and reduced microglial activation, suggesting that phosphorylation at S129 might induce 

neurodegeneration (Lee et al., 2011). However, overexpression of S129A, which cannot be 

phosphorylated, in rat SN resulted in increased loss of DA neurons compared to expression of 

the WT protein (Gorbatyuk et al., 2008, Azeredo da Silveira et al., 2009).  

In invertebrate models, the effect of phosphorylation at S129 on toxicity was not consistent: the 

over-expression of the Drosophila homolog of the kinase GRK2 induced degeneration of 

dopaminergic neurons (Chen and Feany, 2005) while the expression of PLK2 suppressed α-syn 

-induced neuronal loss in C.elegans (Gitler et al., 2009). While both models do not have α-syn 

homologues the discrepancies between the Drosophila and C.elegans models could result from 

the different extent of phosphorylation by the two kinases since PLK2 was shown to 

phosphorylate α-syn more efficiently than GRK2 in vitro and cell-based studies (Mbefo et al., 

2010).  

The use of the phosphomimicking mutant S129D to investigate the effect of constitutive 

phosphorylation in the rat and Drosophila models of PD also yielded contradictory results. 

Over-expression of S129D α-syn resulted in an accelerated loss of dopaminergic neurons 

compared to WT α-syn in fly model (Chen and Feany, 2005), while no additional toxic effect 

was reported for this mutant in the rat model (Gorbatyuk et al., 2008, Azeredo da Silveira et al., 

2009).  

I.4.1.2. Phosphorylation at S87 

Unlike S129 which is highly conserved among species, a serine is present at position 87 of α-

syn in primates whereas in mice, rats and other species, this residue is an asparagine (Figure 

I-20). Recently, our group developed an antibody that is specific for pS87. Using this antibody, 

Paleologou et al. demonstrated the presence pS87 α-syn in LB and showed that the level of 

pS87 is increased in brain samples of AD, MSA and PD in comparison to healthy individuals 



  

 47 
  

(Paleologou et al., 2010). In a Tg mouse model of PD, the levels of pS87 were also shown to be 

increased compared to controls (Paleologou et al., 2010). Interestingly, pS87 α-syn seemed to be 

preferentially present in membrane fractions.  

Only CK1/2 (Okochi et al., 2000) and the dual specificity tyrosine-regulated kinase Dyrk1A 

have been shown to phosphorylate α-syn at S87 (Kim et al., 2006). pS87 and CK1 co-localize in 

inclusions in Tg mice and PD brains (Paleologou et al., 2010). No specific phosphatase that 

regulates pS87 dephosphorylation has been reported to date.  

• Effect of pS87 on the conformation and aggregation of α-syn  

S87 is the only phosphorylation site to lie within the NAC region and thus phosphorylation of 

this residue was expected to attenuate the fibrillization of α-syn. Indeed, phosphorylation at S87 

or S E/D substitution at this residue was shown to inhibit the fibrillization of α-syn in vitro 

(Waxman and Giasson, 2008, Paleologou et al., 2010). This finding was also confirmed in vivo 

where S E substitution was shown to inhibit α-syn aggregation and to protect against toxicity 

compared to WT and S87A expression that resulted in 28% loss of DA neurons and formed 

proteinase-K-resistant and ThS-positive aggregates (Oueslati et al., 2012).  

I.4.2. Phosphorylation at Tyrosines 

Previous proteomics data on α-syn phosphorylation in LB did not report phosphorylation at 

tyrosine residues (Anderson et al., 2006), as it could not be detected under the experimental 

conditions used at that time. Indeed, the tyrosine phosphorylation/dephosphorlation cycle of 

proteins is a very dynamic process and phosphotyrosine containing proteins have been reported 

to be rare (Yousefi et al., 1994).  

I.4.2.1. Phosphorylation at Y125 

Comparison of the amino acid sequences of α-syn and its homologues revealed that the four 

tyrosine residues are conserved between species (Figure I-20). Among these tyrosine residues, 

three lie in the C-terminal domain (Y125, Y133 and Y136) whereas Y39 is in the N-terminus. 

Ellis et al. were the first to demonstrate that α-syn is phosphorylated at tyrosines in cell-culture 

models (Ellis et al., 2001). Upon treatment with pervanadate, a general phosphatase inhibitor, 

Y125 was identified as the major phosphorylation site (Ellis et al., 2001, Ahn et al., 2002). Y125 

was also the major phosphorylation site using in vitro phosphorylation assays with tyrosine 

kinases (Nakamura et al., 2001, Nakamura et al., 2002, Negro et al., 2002). Chen et al. also 

showed that inhibition of phosphatases with general inhibitors enhances the detection of pY125. 

Up to 30% of total α-syn in Drosophila brain homogenate was reported to be phosphorylated at 



  

 48 
  

Y125, suggesting that phosphorylation at this residue occurs at low levels and/or is tightly 

regulated (Chen et al., 2009).   

• pY125 is a pathophysiological marker of PD 

Given that the α-syn PD-linked mutations A30P and A53T do not affect phosphorylation at 

Y125 in cells treated with phosphatase inhibitors (Ellis et al., 2001) as well as upon in vitro 

phosphorylation by the Fyn kinase (Nakamura et al., 2001), this suggests that this 

phosphorylation may not be directly linked to the pathogenesis of familial PD (Ellis et al., 

2001). However, Nakamura et al. reported that phosphorylation of α-syn at Y125 by Src and 

Pyk2/RAFTK kinases does not occur spontaneously but is induced by hyperosmotic-stress 

(Nakamura et al., 2002). Similar observations were reported in rotenone-treated cells where 

pY125 was reported among other modifications, suggesting that this PTM is induced by 

mitochondrial dysfunction (Mirzaei et al., 2006). Interestingly, in the only study from human 

brain samples that seems to stress a physiological role for pY125, the levels of pY125 α-syn 

were shown to decrease with age and with the pathology, suggesting that the loss of pY125 is 

associated with pathogenesis (Chen et al., 2009). 

 

Figure I-22. Kinases implicated in the phosphorylation of α-syn at tyrosines 
 

In vitro and cell culture studies have shown that α-syn is phosphorylated at Y125 by Fyn (Ellis 

et al., 2001, Nakamura et al., 2001), Pyk2/RAFTK (Nakamura et al., 2002), c-Src (Ellis et al., 

2001, Nakamura et al., 2002), and c-Fgr (Negro et al., 2002); and at the three tyrosine residues 

Y125, Y133 and Y136 by Syk (Negro et al., 2002) (Figure I-22). 

Only the Syk kinase was shown to efficiently phosphorylate α-syn at Y125, whereas 

phosphorylation by Fyn and c-Frg is largely substoichiometric, (Negro et al., 2002). 

Nevertheless, although Syk and α-syn have been reported to co-localize in mouse brain sections 
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(Negro et al., 2002), the natural phosphatases involved in regulating α-syn tyrosine 

phosphorylation in vivo remain unknown. 

• Effect of pY125 on the conformation and aggregation of α-syn  

Although the site-specific effect of phosphorylation at each of these tyrosine residues has not 

been fully investigated, inhibition of α-syn oligomerization and inclusion formation has been 

observed under conditions where all three C-terminal tyrosine residues are phosphorylated, i.e. 

pY125/pY133/pY136 (Negro et al., 2002). Partial phosphorylation was not sufficient to inhibit 

α-syn fibrillization (Negro et al., 2002). The combined effect of triple tyrosine phosphorylation 

was also investigated in the fly model (through the expression of Shark kinase, a homolog of 

Syk) and the same inhibitory effect of this modifications on α-syn oligomerization was reported 

(Chen et al., 2009).   

• Effect of pY125 on toxicity  

To determine the functional consequences of Y125 phosphorylation in a Drosophila model, a  

mutant form of α-syn (α-synYF) in which all C-terminal tyrosines was mutated to phenylalanine 

(Y125F/Y133F/Y136F) was generated (Chen et al., 2009). The flies over-expressing this mutant 

exhibited substantial loss of dopaminergic neurons and a reduction in climbing ability compared 

to flies over-expressing WT α-syn. These findings suggest a protective for α-syn 

phosphorylation at its C-terminal tyrosine residues and was confirmed in Tg flies over-

expressing the Shark kinase (the Drosophila homolog of Syk) and α-syn S129D mutants to 

mimic for phosphorylation at this residue: a rescue of the neurotoxicity-induced by the 

phosphomimic was reported. These findings, together with the decrease of the level of pY125 in 

humans with age and pathology progression, confirm a protective role for Y125 

phosphorylation. However, it is important to note that the effect of site-specifically-modified α-

syn at Y125 was not investigated.  

I.4.2.2. Functional roles of phosphorylation  

Although the majority of studies on α-syn phosphorylation have focused on elucidating the 

effects of this modification on α-syn aggregation, pathology and toxicity, increasing evidence 

suggest that PTM, including phosphorylation, may play important roles in regulating α-syn 

physiological and cellular properties by modulating its subcellular localization, its degradation 

and its interaction with other proteins and ligands.  
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• Subcellular localization 

The subcellular localization of proteins is an important determinant of their function and 

dysfunction. Several studies have recently shown that phosphorylation at S129 enhances the 

nuclear localization of α-syn (Wakamatsu et al., 2007, Schell et al., 2009, Mbefo et al., 2010). 

Studies in the A30P mouse model of α-syn revealed the presence of nuclear pS129 only in 

cortical regions of the brain. The nuclear localization of phosphorylated α-syn was absent in 

control littermates and increased with age in Tg mice (Schell et al., 2009). Similar observations 

were made in the A53T Tg mouse model (Wakamatsu et al., 2007). These findings were also 

confirmed in cell culture studies: HEK cells over-expressing α-syn and the kinase GRK5 

showed a nuclear localization for pS129 while the WT α-syn remained predominantly cytosolic 

(Schell et al., 2009, Mbefo et al., 2010). Although the mechanism of α-syn translocation from 

the cytosol to the nucleus, as well as the functional consequences of S129 phosphorylation in the 

nucleus remain unknown, it has been suggested that α-syn may play a role in transcriptional 

regulation in the nucleus through its interaction with histones (section I.3.7), but further studies 

are needed to test this hypothesis.     

• Targeting to the proteasome 

α-syn is degraded both by the proteasomal and lysosomal pathways (Webb et al., 2003). The 

hypothesis that specific PTM of α-syn could result in a preferential degradation was confirmed 

in studies by two independent groups who reported that proteasomal inhibition in cell-culture 

and primary neurons resulted in an increase of phosphorylated α-syn at S129, suggesting that 

phosphorylation at S129 may target α-syn to the proteasome for degradation (Chau et al., 2009, 

Machiya et al., 2010). Interestingly, this degradation was reported to be independent of 

ubiquitination (Machiya et al., 2010).  

• Inhibition of phospholipase D 

Studies by Payton et al. suggested potential functional roles for α-syn phosphorylation at Y125. 

α-syn was previously identified as an inhibitor of phospholipase D isoforms 1 and 2 (PLD) 

(Jenco et al., 1998, Ahn et al., 2002), although this finding was contradicted by another study 

(Rappley et al., 2009). Tyrosine phosphorylation at residue 125 appears to specifically play a 

role in the modulation of the activity of PLD since pY125 α-syn (obtained by treatment of the 

cells with pervanadate) rescued the activity of the enzyme (Ahn et al., 2002, Payton et al., 

2004). PLD is thought to play a role in exocytosis and α-syn could potentially regulate the 

activity of the enzyme via its own phosphorylation.  
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• Protein-protein interactions 

Other potential roles for Y125 phosphorylation may be mediated by phosphorylation-dependent 

protein-protein interactions. Peptide-based proteomic studies have identified several proteins 

from mouse synaptosomes that interact preferentially with a pY125 C-terminal α-syn peptide 

compared to the non-phosphorylated form. The increased interaction between pY125 and 

proteins from the cytoskeleton and clathrin heavy subunits could suggest that phosphorylation at 

Y125 could induce the binding of α-syn to microtubules and play a role in stabilizing synapses. 

The same interacting proteins were reported in pull-down studies using a pS129 α-syn peptide 

(McFarland et al., 2008). Together, these studies point to a potential role for phosphorylation in 

synaptic vesicle trafficking. Interestingly, the pY125 peptide interacted more preferentially with 

CK1 than the corresponding pS129 peptide, despite the fact that CK1 phosphorylates α-syn at 

S129 and not Y125 (Okochi et al., 2000). These findings point to a mechanism of cross-talk 

between the two phosphorylation sites where pY125 could be involved in a cooperative manner 

in the phosphorylation S129.  

• Binding to metal ions 

Phosphorylation at Y125 was shown to increase the binding to bivalent cation such as Cu2+, 

Pb2+ and Fe2+ and to induce the transfer of the binding sites of the metal ions from the N- to the 

C-terminal domain of α-syn to residues close to the phosphorylation sites. Similar findings were 

observed for S129 phosphorylation (Lu et al., 2011). 

I.4.3. Ubiquitination 

The discovery that LB were immunoreactive for both α-syn and ubiquitin suggested that 

ubiquitination of α-syn may play a role in LB formation (Spillantini, Crowther et al. 1998). 

Biochemical analysis of the insoluble fractions of brain samples from PD brains revealed the 

presence of  higher-molecular-weight bands (~ 22-29kD) that were immunoreactive to α-syn 

and ubiquitin, thus providing the first evidence that α-syn in LB is actually ubiquitinated and 

does not simply colocalize with ubiquitin (Hasegawa et al., 2002). 

I.4.3.1. Ubiquitinated α-syn is a pathological hallmark of PD  

The link between ubiquitinated α-syn and PD pathogenesis was provided by studies showing 

that this PTM was only present in samples from PD patients and more specifically in insoluble 

fractions of PD and DLB brain samples but not in controls (Hasegawa et al., 2002, Tofaris et al., 

2003, Anderson et al., 2006). Furthermore, α-syn was shown to be mono-, di- and to a lesser 

extent tri-ubiquitinated (Hasegawa et al., 2002, Sampathu et al., 2003, Tofaris et al., 2003, 
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Anderson et al., 2006). Interestingly, some of the ubiquitinated forms of α-syn were also shown 

to be phosphorylated at S129 (Hasegawa et al., 2002, Tofaris et al., 2003). The sites of 

ubiquitination within α-syn have been identified using mass spectrometry analysis of LB-

derived materials and were identified as K12, K21 and K23 (Anderson et al., 2006). 

 

 

 
Figure I-23. Immunoblots revealing that mono- and di-ubiquitinated α-syn is phosphorylated at S129. 
Immunoblot analysis of PD/DLB brain samples using antibodies for α-syn (LB509), pS129 α-syn and ubiquitin. 
Figure from Hasegawa et al. (Hasegawa et al., 2002) 
 

• E3 ligases and DUBs  

The conjugation of a single ubiquitin moiety or polyubiquitin chains on lysine residue relies on 

the combined enzymatic activity of a E1 ligase (Ubiquitin-activating enzyme), a E2 ligase 

(Ubiquitin-carrier enzyme) and a E3 ligase, that through substrate recognition, determines the 

site of modification (Pickart, 2001, David et al., 2011). Several E3 ligases have been reported to 

ubiquitinate α-syn in vitro and in vivo. α-syn is monoubiquitinated in vitro and in cell-culture 

models by Seven in absentia homologue-1 (SIAH-1) at residues 12, 21, 23 (same residues as in 

the LB) but also at lysines 10, 34, 43, and 96 (Lee et al., 2008b, Rott et al., 2008). Nedd4 

polyubiquitinates α-syn through K63 ubiquitin chains mainly on K12 and K96, and on K23, 45 

and 58 to a lesser extent (Tofaris et al., 2011) (Figure I-24). Other E3 ligases such as TRAF6  

and CHIP also ubiquitinate α-syn (Zucchelli et al., 2010) (Kalia et al., 2011). The USP9X 

enzyme was recently reported to deubiquitinate α-syn (Rott et al., 2011). 
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Figure I-24. Ubiquitination sites in vivo and in vitro 
SIAH-1 and Nedd4 ligases ubiquitinate α-syn in vitro at major sites (thick arrows) and at other sites to a lesser 
extent (dotted arrows). In vivo, α-syn is ubiquitinated at K12, K21 and K23 while in cell-based studies where α-syn 
and ubiquitin were co-expressed, α-syn shows ubiquitination at K6, K10 and K12. In vitro ubiquitination assays 
using rabbit reticulocytes of monomeric or fibrillar α-syn also results in heterogeneous ubiquitination sites.  
 

• Ubiquitinated α-syn and aggregation  

The fact that many α-syn inclusions in PD patients and Tg mice brains are not immunoreactive 

to anti-ubiquitin antibodies suggests that ubiquitination of α-syn is not required for its 

aggregation in vivo and that aggregation of α-syn precedes its ubiquitination (Sampathu et al., 

2003). Consistent with this hypothesis, in vitro ubiquitination experiments conducted with pre-

formed α-syn fibrils resulted in mono- and di-ubiquitinated forms that recapitulated the same 

ubiquitination pattern of α-syn obtained from brain samples, while in vitro ubiquitination of 

monomeric α-syn resulted predominantly in polyubiquitinated species (Sampathu et al., 2003). 

The sites of ubiquitination were furthermore dependent on the aggregation state of the protein. 

Nonaka et al. showed that the sites of ubiquitination of fibrillar α-syn resembled those occurring 

in vivo (Figure I-24) (Nonaka et al., 2005). Initially, in vitro and cell culture studies suggested 

that ubiquitination of α-syn promotes its aggregation. Cell-based studies using over-expressed 

E3 ligase SIAH-1 reported an increase in α-syn aggregation. SIAH-1-ubiquitinated α-syn was 

only present in Triton-insoluble fractions of cell lysates and an increase in inclusion formation 

was reported in these cells (Lee et al., 2008b, Rott et al., 2008). In vitro aggregation assays also 

showed increased fibrillization of α-syn that had been ubiquitinated by SIAH-2 (Rott et al., 

2008). These results would lead to the speculation that α-syn ubiquitination might trigger LB 

formation. 
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• Ubiquitinated α-syn and toxicity  

Very few reports have investigated the relation between ubiquitination of α-syn and cell death. 

In one report, Lee et al. have shown that ubiquitination of α-syn by SIAH-1 enhances apoptotic 

cell death (Lee et al., 2008b). Different findings were reported from yeast models where an 

ortholog of the Nedd4 ligase rescued α-syn-induced toxicity (Tofaris et al., 2011). 

I.4.3.2. Functional role of ubiquitination  

Ubiquitination of proteins represents an important mechanism not only for targeting proteins for 

degradation via the proteasome, but also for regulating protein subcellular localization and 

interaction with other proteins. In the case of α-syn, several studies have shown that the 

ubiquitin-proteasome pathway is not the main pathway involved in regulating the degradation of 

α-syn (Ancolio et al., 2000, Cuervo et al., 2004, Mak et al., 2010). No accumulation of 

ubiquitinated α-syn was observed upon pharmacologically-induced impairment of proteasomal 

function (Rideout and Stefanis, 2002, Tofaris et al., 2003) while earlier reports were able to 

reveal the presence of ubiquitinated α-syn upon proteasomal inhibition (Rideout et al., 2001). 

Co-expression of α-syn and SIAH-1 did not result in an increase of α-syn steady-state levels in 

the presence of MG132, a widely used proteasome inhibitor (Lee et al., 2008b). However, 

incubation of α-syn with SIAH-2 in presence of purified 26S proteasomes resulted in its 

degradation while WT α-syn was not degraded (Rott et al., 2011). Interestingly, two 

independent groups have shown that non-ubiquitinated α-syn can be degraded by the 

proteasome (Bennett et al., 1999, Webb et al., 2003, Machiya et al., 2010). Recently, Goldberg 

and colleagues demonstrated that Nedd4-mediated ubiquitination accelerates the degradation of 

α-syn via the lysosomal-endosomal pathway (Tofaris et al., 2011).  Together, these studies 

suggest that ubiquitination may play a role in regulating the turnover of α-syn, but the extent of 

α-syn clearance and the pathways involved are dictated by the site and pattern of ubiquitination 

as well as the E3 ligase that is used.   

I.4.4. Truncation of α-syn  

I.4.4.1. Truncation of α-syn occurs in healthy and PD individuals  

Western-blot and Mass Spectrometry (MS) analysis of purified LB from patients with 

synucleinopathies revealed the presence of truncated forms of α-syn (Baba et al., 1998, 

Campbell et al., 2001, Liu et al., 2005, Anderson et al., 2006). These species were also observed 

in several Tg mouse models of PD (Giasson et al., 2002, Lee et al., 2002c, Liu et al., 2005). The 

observation that truncation of the C-terminal domain increases α-syn aggregation in vitro 
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(Crowther et al., 1998, Serpell et al., 2000, Murray et al., 2003, Hoyer et al., 2004) led to the 

hypothesis that proteolytic cleavage of α-syn at the C-terminus may be required for or involved 

in the initiation of α-syn aggregation in vivo. This hypothesis was supported by the finding that 

expression of the PD-linked mutations resulted in increased levels of truncated α-syn in SH-

SY5Y cells and in Tg mouse models of PD (Li et al., 2005). However, truncated forms of α-syn 

(of 12, 10 and 8 kD masses) were shown to also exist in samples from healthy individuals (Li et 

al., 2005) with the 12 and 10 kD masses representing around 10-25% of total α-syn levels. The 8 

kD species was however only found in insoluble fractions of mouse and human brains. 

Proteomic studies of α-syn isolated from LB has identified the following proteolytic products of 

α-syn in LB: 1-134, 1-133, 1-126, 1-122, 1-119, 1-115 and 1-96 (Anderson et al., 2006). 

• Proteases involved in the truncation of α-syn  

A number of proteases have been identified to cleave α-syn at its C-terminal domain: Neurosin 

generates a 1-80 residues fragment as a major truncated variant. Three additional minor species 

were observed in these studies: 1-97, 1-114 and 1-121 (Iwata et al., 2003, Kasai et al., 2008), 

Calpain I cleaves monomeric α-syn within the NAC region and fibrillar α-syn after residue 120 

(Mishizen-Eberz et al., 2003, Mishizen-Eberz et al., 2005), whereas Cathepsin D, a lysosomal 

enzyme, cleaves α-syn at its C-terminus (Sevlever et al., 2008). The following α-syn fragments 

were observed upon treatment with matrix metalloproteases:  1-54, 1-57, 1-78 and 1-79 (Sung et 

al., 2005, Levin et al., 2009). The 20S proteasome also cleaves α-syn and generates truncated 

forms, but only when α-syn is in a free, non-vesicle bound state (Liu et al., 2005) (Figure I-25) 

 

Figure I-25. Truncated variants of α-syn generated by proteolysis 
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• Effect of truncations on aggregation and toxicity  

In vitro aggregation assays of α-syn 1-87 (Serpell et al., 2000), 1-110 (Crowther et al., 1998, 

Murray et al., 2003, Liu et al., 2005), 1-108 (Hoyer et al., 2004), 1-120 (Liu et al., 2005) 

(Crowther et al., 1998, Serpell et al., 2000, Murray et al., 2003, Li et al., 2005), 1-123 (Li et al., 

2005), 1-124 (Hoyer et al., 2004) and 1-130 (Crowther et al., 1998, Murray et al., 2003) have 

consistently showed that removal of the C-terminal acidic residues enhances α-syn fibril 

formation and that aggregates formed by truncated variants can seed the aggregation of the full-

length protein (Liu et al., 2005).  

In cell culture studies, overexpression of the truncated variants 1-110 and 1-120 resulted in 

increased vulnerability of cells to oxidative stress compared to the full-length protein, even 

when substoichiometric amounts of truncated variants were present (Liu et al., 2005).  

The effect of α-syn truncation on aggregation and toxicity was also investigated in various 

animal models of synucleinopathies. Drosophila models expressing the truncated 1-87 form 

showed increased accumulation of α-syn into large inclusion bodies and enhanced neurotoxicity 

(Periquet et al., 2007). Tg mice over-expressing the fragment 1-120 in α-syn KO mice showed 

the presence of α-syn-positive inclusions in the SN and olfactory bulb and increased motor 

dysfunction (Tofaris et al., 2006). Finally, Tg mice overexpressing 1-130 α-syn exhibited 

selective DA neuron loss, albeit without cytoplasmic inclusions (Wakamatsu et al., 2008). This 

could be due to the interaction between mouse and human α-syn in this model, which could be 

preventing its fibrillization as suggested by in vitro data (Rochet et al., 2000). Moreover, the 

over-expression of truncated α-syn in animal models reflects neither the physiological nor the 

pathological conditions in PD since only a small fraction of α-syn is truncated in the brain of PD 

patients (Anderson et al., 2006).  

I.4.5. Other PTM: acetylation, nitration, sumoylation 

I.4.5.1.  Acetylation 

α-syn is ubiquitously acetylated at its N-terminal Met residue (Anderson et al., 2006). Recent 

studies from our group and others have shown that N-terminal acetylation α-syn does not 

significantly influence its secondary structure, aggregation propensity or subcellular localization 

as compared to the WT protein (Fauvet et al., 2012a, Kang et al., 2012, Maltsev et al., 2012, 

Trexler and Rhoades, 2012).  
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I.4.5.2. Nitration 

Oxidative stress is one of the major pathways that have been implicated in α-syn-induced 

toxicity and neurodegeneration (section I.3.6.4). Released reactive oxygen and nitrogen species 

modify α-syn to generate species containing 3-nitrotyrosine, a modification that has been 

identified in LB (Giasson et al., 2000). Oxidative stress-induced covalent cross-linking of α-syn 

via o-o′-dityrosine formation was also detected in vitro and shown to contribute to the formation 

of stable α-syn oligomers (Souza et al., 2000a). 

I.4.5.3. Sumoylation 

α-syn has been shown to be sumoylated at lysines 96 and 102. Recent studies suggested that α-

syn sumoylation is induced by proteasomal impairment (Kim et al., 2011, Krumova et al., 

2011). The conjugates responsible for this modification were identified as SUMO1, and to a 

lesser extent SUMO2 (Dorval and Fraser, 2006). Although the consequences of α-syn 

SUMOylation remain unexplored, recent studies suggest that α-syn sumoylation blocks α-syn 

aggregation and that small amounts of the sumoylated proteins (around 10%) are sufficient to 

inhibit aggregation (Krumova et al., 2011). 

 

 

I.5. α-syn studies of Tyr phosphorylation  and ubiquitination: limitations and 

proposed solutions 

I.5.1. Studies of α-syn phosphorylation 

I.5.1.1. Use of phosphomimics 

Previous studies that aimed at investigating the phosphorylation of α-syn at Serine or Tyrosine 

residues relied primarily on the use of natural amino acids that mimic the phosphorylation state 

of these residues. When the identity of the natural kinases is not known, substitution of Serine 

and Threonine by Glutamate or Aspartate is used to mimic the phosphorylated states of both 

residues (pS/pT) in cell culture and in vivo studies (Figure I-26). Whereas the structure and 

charge similarity between pS/pT and E/D allows for mimicking some aspects of 

phosphorylation, there are no natural amino acids that mimic the phosphorylated state of 

tyrosine residues (pY). Therefore, the results from studies where E/D substitution is used to 

mimic tyrosine phosphorylation should be interpreted with caution. 
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Figure I-26. Structure of pSer, pTyr and their phosphomimics : Glu and Asp 
Due to charge similarity (net charge of -1 for E/D and -2 for pS), natural amino acids mimicking phosphorylation at 
serine have been used. 
 

Advantages and limitations of using phosphomimics 

One major advantage of using phosphomimics is their easy generation by site-directed 

mutagenesis. When the phosphomimicking substitutions reproduce key features of true 

phosphorylation, they provide a valuable tool to investigate cross-talk between different PTM 

and between phosphorylation and disease-associated mutations. In addition, the use of S/T  

E/D substitution allows for mimicking constitutive phosphorylation. However, it has become 

increasingly clear that phosphomimics do not reproduce all aspects of phosphorylation, as the 

substitution of Ser by Glu or Asp in different proteins and model systems has yielded different 

results. Herein, I will present a brief overview of previous studies that investigated α-syn 

phosphorylation through the use of phosphomimicking substitutions and our current 

understanding of the impact of these substitutions on α-syn aggregation and toxicity in vitro and 

in vivo.  

• Phosphomimics do not fully reproduce phosphorylation 

The first detailed study that compared the structure and aggregation propensity of 

phosphomimics and truly-phosphorylated α-syn at S129 (pS129) was carried out by Paleologou 

et al. (Paleologou et al., 2008). The results from this study demonstrated that the 

phosphomimicking mutations (S129E/D) do not reproduce all aspects of phosphorylation in 

vitro and in cell culture. Indeed, while the secondary structure of WT, S129E/S129D and pS129 

was random-coiled and the binding of these proteins to lipid vesicles was unaffected, differences 

emerged from high-resolution NMR studies that showed the disruption of long-range 

interactions between the N- and C-terminal domains of α-syn. Moreover, a more extended 

conformation for the phosphorylated protein, but not S129E/D, was reported as calculated by its 

hydrodynamic radius (WT: 28.2 Å, S129D: 28.3 Å, S129E: 27.8 Å, pS129: 35.3 Å). In addition, 
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in vitro fibrillization assays revealed a marked difference between the phosphomimics and 

pS129 α-syn: the S129A mutant, which is commonly used to block phosphorylation in vivo, 

aggregated more readily than the WT protein while S129E and S129D exhibited similar 

fibrillization propensities to WT α-syn. On the other hand, natively phosphorylated α-syn at 

S129 completely abolished α-syn aggregation, even in presence of 80% of WT α-syn. 

Interestingly, the effect of α-syn phosphorylation at S87 on its aggregation properties was 

reproduced by S87D or S87E. Both the phosphorylation at S87 and the substitution of S with 

E/D resulted in a marked inhibition of α-syn fibril formation in vitro and in vivo (Paleologou et 

al., 2010, Oueslati et al., 2012). 

The S129A and S129D α-syn mutants have been used in animal models to elucidate the effect of 

phosphorylation at this residue on α-syn aggregation and toxicity. Phosphorylation of α-syn at 

S129 was initially thought to block its aggregation since the overexpression of S129A α-syn in 

Drosophila and rat models resulted in an increased aggregation (Chen and Feany, 2005, 

Azeredo da Silveira et al., 2009). However, it later became clear that the increased aggregation 

propensity of this protein is due to the S A mutation rather than to the blockade of 

phosphorylation at this residue; (Paleologou et al., 2008). Whether the increased toxicity of this 

mutant, which was reported by two independent studies using the rat model of PD, is also 

caused by enhanced aggregation of this mutant remains to be determined. Nevertheless, the 

increased effect on toxicity that was shown for S129A in the rat model was not reported in 

Drosophila, where S129A was not toxic. On the other hand, expression of the phosphomimic 

S129D in fly models or co-expression of WT α-syn and GRK kinases in rats resulted in the loss 

of DA neurons and increased motor deficits (Chen and Feany, 2005, Sato et al., 2011). This 

discrepancy in terms of the toxicity of these mutants may arise from the fact that the fly, unlike 

the rat, does not express a homolog of α-syn, which could potentially influence the aggregation 

of the human protein. Indeed, in vitro studies have shown that mouse α-syn (one amino acid 

difference with rat α-syn) had a higher fibrillization propensity than human α-syn and that 

mixing both α-syn proteins resulted in the formation of more oligomers and less fibrils (Rochet 

et al., 2000). Bearing in mind recent findings that support the toxic effects of oligomers, the 

interaction between rat and human α-syn could exacerbate α-syn toxicity in rodent models and 

therefore studies using α-syn KO animals are needed to verify this hypothesis. Moreover, to 

investigate the extent of aggregation in the different animal models, different approaches were 

followed such as the use of proteinase K digestion in Drosophila in some studies and Thioflavin 
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S staining of rat brain sections in others, thus making a direct comparative assessment of 

aggregation quite difficult (Chen et al., 2005, Azeredo da Silveira et al., 2009).  

To summarize, phosphomimics exhibit the same fibrillization rate as WT α-syn both in vitro and 

in vivo while pS129 was reported to inhibit α-syn aggregation in vitro and to alter its structure 

and subcellular localization. It is thus difficult to extrapolate the relationship between 

phosphorylation and aggregation in vivo using phosphomimics. Hence, the identification of the 

natural kinases that specifically phosphorylate α-syn at this residue is crucial for accurate 

determination of the effect of this modification on α-syn aggregation and toxicity in animal 

models of synuleinopathies. 

I.5.1.2. Use of kinases 

Several kinases have been reported to phosphorylate α-syn at S129, including CK1 , CK2, 

GRKs and PLKs (sections I.4.1.1and I.4.1.2). However, only CK1 and PLKs phosphorylate α-

syn efficiently in vitro and in cell culture and co-localize with α-syn in DA neurons. While 

PLK2 and PLK3 phosphorylate α-syn specifically at S129, CK1-mediated phosphorylation 

occurs at S129 and S87. Therefore, without the use of mutations that block phosphorylation at 

S87 or S129, only PLK2 or PLK3 can be used today to induce specific and efficient 

phosphorylation of α-syn in vitro and in vivo. Recent studies suggest that expression of PLK2 in 

C.elegans and primary neuron models is neuroprotective (Gitler et al., 2009). Similarly, the 

tyrosine kinase Syk phosphorylates α-syn at the three tyrosines Y125, Y133 and Y136 in vitro. 

Other tyrosine kinases are more specific but much less efficient. Therefore, site-specific 

phosphorylation at tyrosine residues is only possible today by using Syk combined with 

mutation of the remaining tyrosine residues to phenylalanine.  

The use of a specific but non-efficient kinase is possible but one has to always take into 

consideration the level of phosphorylation achieved and the resulting heterogeneity of α-syn 

species when interpreting the results. Therefore, there is an urgent need to identify the natural 

kinases and phosphatases that are responsible for regulating α-syn phosphorylation at different 

residues. These advances will facilitate studies aimed at determining the effects of 

phosphorylation in vivo and validating these kinases as potential targets for the treatment of PD.  

I.5.1.3. Use of nonsense suppression methodology 

An alternative approach for the study of protein phosphorylation is the use of nonsense 

suppression methodology. This methodology was pioneered by P. Schultz’s group and is based 

on the generation of a pair of modified tRNA and aminoacyl-tRNA synthetase that has been 
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evolved to incorporate a modified amino acid at the position of an amber stop codon in the gene 

where the modified amino acid is to be incorporated. To date, more than 50 amino acids have 

been incorporated into proteins, spanning the range of naturals, D-amino acids, phosphorylated, 

and photocaged amino acids (Young and Schultz, 2010). The genetic code was expanded in 

2011 with the addition of phosphoserine (Park et al., 2011). This approach allowed site-specific 

incorporation of two phosphoserine residues in the activated form of human mitogen-activated 

ERK activating kinase 1 (MEK1). However, one major drawback of this approach remains the 

low yields of modified proteins obtained. In the case of MEK1, a yield of 25 micrograms of 

protein per liter of culture medium was reported. Phosphotyrosine residues have not been 

introduced in proteins using this methodology but nonhydrolyzable phosphorylated tyrosine 

analogues were successfully incorporated into the enzyme serotonin N-acetyltransferase (Zheng 

et al., 2005b, Young and Schultz, 2010). Another major limitation of the nonsense suppression 

method is the requirement for large quantities of aminoacylated tRNAs and the restricted 

number of unnatural amino acids that can be co-incorporated in a protein.  

I.5.2. Studies of α-syn ubiquitination 

In comparison to protein phosphorylation, investigating the effect of site-specific ubiquitination 

(mono- and poly-ubiquitination) in vitro is even more challenging, mainly due to the lack of 

methodologies that allow the site-specific introduction of these modifications without the 

introduction of mutations into the protein of interest. Furthermore, no natural amino acid can be 

used as a mimic for ubiquitinated lysines. In LB, α-syn has been shown to be mono-, di-, and 

sometimes triubiquitinated at K12, K21 and K23, raising questions about the nature of the 

molecular mechanisms that regulate this process in vivo. 

I.5.2.1. Methods generating native isopeptide bonds 

• E3 ligases 

The E3 ligases SIAH-1 and SIAH-2 have been shown to monoubiquitinate α-syn at K12, K21 

and K23 but also at other lysines (section I.4.3). Results from two independent groups revealed 

that SIAH-mediated ubiquitination results in an increase of α-syn fibrillization but yielded 

contradictory results on the effect of SIAH-1/2 on α-syn degradation (Lee et al., 2008b, Rott et 

al., 2008, Rott et al., 2011). The authors did not investigate the roles of ubiquitination at each 

lysine residue because of the requirement of multiple single-point mutations in the sequence of 

α-syn (which contains 15 lysine residues) to achieve site-specific ubiquitination. Recently, it 

was reported that Nedd4 polyubiquitinates α-syn mainly at K12 and K96, as well as at other 

lysines; however, the identified sites and the nature of the ubiquitin conjugates are not the same 
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as in the LB (K12, K21 and K23 are ubiquitinated in vivo). The data presented by these studies 

clearly show that only a small percentage of α-syn is ubiquitinated in presence of E3 ligases as 

evidenced by the requirement for immunoprecipitation to detect ubiquitinated forms of α-syn by 

western blotting (Rott et al., 2008, Tofaris et al., 2011). The investigation of the sub-cellular 

localization of ubiquitinated α-syn is impossible for the moment due to the absence of antibodies 

that specifically discriminate ubiquitinated α-syn from the WT protein.  

• Use of rabbit reticulocytes 

To study ubiquitination in vitro and to circumvent the use of E3 ligases, rabbit reticulocyte 

fractions that contain the enzymatic machinery necessary for ubiquitin conjugation are 

commonly used (Hasegawa et al., 2002, Nonaka et al., 2005). While this approach yielded 

mainly mono-and di-ubiquitinated forms of α-syn, similar to what is observed in the human 

brain, the sites of these modifications were not the same and were highly dependent on the 

polymerization state of the protein: when α-syn was monomeric, rabbit reticulocyte-based 

ubiquitination resulted in modification of K21, K23, K32 and K34, while fibrillar α-syn was 

ubiquitinated at K6, K10 and K12 (Nonaka et al., 2005). This methodology is also restricted for 

in vitro studies and cannot be applied for cell-based studies or in vivo.  

I.5.2.2. Non-native isopeptide bonds 

To circumvent the use of enzymatic reactions for the generation of ubiquitinated proteins, 

chemists have developed an array of chemical reactions for the conjugation of ubiquitin to 

proteins through isopeptidic-like bonds. Site-specificity was achieved but non-native isopeptide 

bonds were generated in the ligation reaction: Oxime (Shanmugham et al., 2010), triazole (Yin 

et al., 2000, Rostovtsev et al., 2002, Weikart et al., 2012) and disulfide-based (Chatterjee et al., 

2010, Chen et al., 2010) isopeptide-like bonds allowed the conjugation of a ubiquitin moiety to 

the protein of interest through either irreversible or unstable bonds ( 

Figure I-27). These approaches have been successfully applied to generate monoubiquitinated 

proteins such as histone 2B (H2B) and proliferating cell nuclear antigen (PCNA) as well as di-

ubiquitin chains (section I.5.3.3). Recently, a disulfide-bond strategy was used to generate 

several forms of monoubiquitinated α-syn at different lysine residues and enabled the site-

specific investigation of monoubiquitination on its aggregation propensity (Meier et al., 2012). 

Cysteine mutations were introduced in the sequence of α-syn as substitutions of lysines 6, 10, 

12, 21, 23, 32, 34, 46 and 96. The effect on aggregation was dependent on the site of 

ubiquitination since monoubiquitination at K23 and K10 slightly affected the rate of 

fibrillization but not its extent, while monoubiquitionation at other residues completely inhibited 
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the aggregation (Meier et al., 2012). However, it is important to stress that the use of disulfide 

linkages does not mimic the native state of the protein and may influence its structure. 

Furthermore, the unstable nature of the disulfide bond prevents further use of these 

monoubiquitinated proteins in cellular assays or introducing these proteins into cellular 

environments, where they would be readily reduced back to free proteins through reduction by 

glutathione or other cellular reducing agents.  

 

 
Figure I-27. Different approaches for the generation of isopeptide bonds for ubiquitin conjugation 
Several strategies have been used to generate monoubiquitinated proteins through the ligation of ubiquitin to the 
protein of interest via disulfide, oxime and triazole isopeptide-like bonds. 
 

I.5.3. Protein semisynthesis  

To overcome the limitations associated with the use of phosphomimicking mutations or the 

requirement for efficient and specific kinases to study the structural, functional and pathologic 

consequences of phosphorylation, a phosphorylated serine or tyrosine residue can be site-

specifically incorporated into the protein of interest using different chemical strategies. One 

obvious approach is based on the use of solid-phase peptide synthesis (SPPS), which was 

developed by Merrifield (Merrifield, 1986). This approach allows the incorporation of any 

unnatural amino acids in the sequence of a peptide of around 50-70 residues at maximum (Kent, 

1988). SPPS involves the attachment of the protected C-terminal amino acid on a polymer-based 

resin and the assembly of the subsequent amino acids stepwise from the C-terminus to the N-

terminus. Two types of protecting groups are needed in SPPS: a temporary protecting group of 
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the α-amino group of the residues, such as Fluorenylmethyloxycarbonyl (Fmoc) or tert-

butyloxycarbonyl (Boc) groups that are removed with base or acid treatment respectively, after 

the formation of each peptide bond; and side-chain protecting groups that are removed after 

assembly of the complete peptide chain (Figure I-28). Peptide bond formation is carried out by 

activating the carboxylic acid moiety of the residue to be attached using coupling agents such as 

O-Benzotriazole-N,N,N',N'-tetramethyl-uronium-hexafluoro-phosphate (known as HBTU) in 

presence of HOBt (Hydroxybenzotriazole) to eliminate side-reactions such as racemization at 

the alpha carbon. Cleavage of Fmoc-based peptides is carried out in Trifluoroacetic acid (TFA) 

in the presence of scavengers to trap reactive byproducts. Boc-based peptides are cleaved at low 

temperature with Hydrogen fluoride (HF) or with TFA/TFMSA (trifluoromethanesulfonic acid). 

The peptide is subsequently purified by reversed-phase HPLC and characterized by mass 

spectrometry. Recent advances in chemistry have allowed for efficient coupling conditions, 

minimization of side-reactions and enhanced peptide solubility, all of which have contributed to 

the development of fully-automated machines for the synthesis of peptides.   

 

 

 

Figure I-28. General SPPS scheme 
The last residue in the desired sequence is attached via its C-terminal carboxylic group to a polymer resin. 
Deprotection of the amine and activation of the carboxylic acid of the next residue allows elongation of the peptide 
and formation of a peptide bond. The same cycle is repeated for the remaining residues. Final deprotection allows 
cleaving the peptide from the resin and deprotection of the side-chains. Figure adapted from CEM website 
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I.5.3.1. Native Chemical ligation 

SPPS allows the assembly of peptides on solid support of up to 50-70 amino acids (depending 

on the sequence) (Kent, 1988, Dawson and Kent, 2000). To overcome this limitation, chemical 

ligations method were developed in the early 1990s, which have enabled the preparation of 

proteins and peptides from the ligation of unprotected peptide fragments (Kent, 1988). In 1994, 

Dawson and colleagues reported the ligation of two unprotected peptides to synthesize human 

Interleukin-8 (Dawson et al., 1994). The reaction was termed “Native Chemical Ligation” 

(NCL) and had the following characteristics: it was chemoselective and was performed in 

aqueous solutions at physiological pH, but compared to previous chemical ligation strategies, 

which generated thioesters (Schnolzer and Kent, 1992), thioethers, (Englebretsen et al., 2002), 

oximes (Thumshirn et al., 2003), thiazolidines (Liu and Tam, 1994) and disulfide bonds at the 

ligation sites (Chatterjee et al., 2010), this new reaction allowed for the generation of a native 

peptide bond at the ligation site. The reaction occurs between a peptide bearing a C-terminal 

thioester with a peptide containing an N-terminal cysteine. The first step of the reaction is 

mediated by a reversible thiol-thioester exchange between an electrophilic thioester at the C-

terminus of peptide 1 and the nucleophilic thiol of the cysteine residue at the N-terminus of 

peptide 2 (Figure I-29). This transthioesterification reaction is followed by a spontaneous S-N 

acyl shift to generate an amide bond at the ligation site. The ligation occurs hence at a cysteine 

residue and the presence of other cysteines in the sequence does not interfere since the 

irreversible S-N acyl rearrangement can only occur with an N-terminal cysteine (Hackenberger 

and Schwarzer, 2008).  

 

Figure I-29. Native Chemical Ligation Mechanism. 
 

• Catalytic thiol cofactors 

The nature of the thioester is very important for NCL. Indeed, aryl thioesters are more reactive 

than alkyl thioesters but they are also more prone to hydrolysis. The common procedure that is 

widely followed is based on the preparation of peptide thioesters as alkyl form for better 

handling and storage and the in situ conversion to aryl thioesters during the NCL reaction 
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through the addition of a thiol catalyst. The most common thiol catalysts used to date are 

thiophenol, benzyl mercaptan and 4-mercaptophenylacetic acid (MPAA) (Johnson and Kent, 

2006). The addition of the thiol catalyst also helps to maintain the cysteine at the N-terminus of 

peptide 2 in a reduced state. 

• Ligation at Alanine 

Native chemical ligation requires cysteine residues and lacking such residues in proteins 

requires the introduction of cysteine residues at the ligation site. To circumvent the introduction 

of unnatural cysteine residues in such proteins, Yan and colleagues have developed a 

desulfurization method that allow for the conversion of cysteine residues back to alanine (Yan 

and Danishefsky, 2001), which then enable carrying out ligation reactions at alanine residues, 

which occur more frequently in proteins. Hydrogenolytic desulfurization using Raney nickel 

was also used; however prolonged treatment with Raney nickel was found to result in 

demethylthiolation of methionine residues. A metal-free desulfurization step was developed in 

2007 by Wan and colleagues, which relied on the reaction between tert-butyl mercaptan and 

trialkylphosphite in presence of a radical initiator (Wan and Danishefsky, 2007). This reaction 

accommodates methionine and different cysteine protecting groups such as Acm and Thz. These 

advances expanded the use of NCL to prepare proteins of increasing size and sequence 

complexity.  

• Ligation at other residues 

Chemical advances have allowed synthesizing β-thiol-containing amino acid analogues, which 

in turn have enabled performing NCL at sites other than cysteine and alanine. After 

desulfurization, phenylalanine, leucine, valine, threonine and glutamine can be generated at the 

ligation site (Hackenberger and Schwarzer, 2008, Butterfield et al., 2012a) (Figure I-30).  
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Figure I-30. Desulfurization allows performing ligations at Ala, Phe, Thr, Leu, Val and Gln 
  

• Synthesis of peptide thioesters by SPPS 

Peptide thioesters can be prepared using Fmoc and Boc-based SPPS (Hackenberger and 

Schwarzer, 2008). For the purpose of this thesis, I will only describe thioester formation on 

Fmoc-based peptides. The thioester is usually introduced at the C-terminus of the protected 

peptide after cleavage from a 2-chlorotrityl resin under mild acidic conditions. The carboxylic 

group at the C-terminus is activated by a strong coupling reagent such as PyBOP, which is then 

attacked by a thiol to form a thioester. A final deprotection step releases the side-chain 

protections. However, using this method, there is a high risk of epimerization at the C-terminal 

residue (Hackenberger and Schwarzer, 2008) (Figure I-31.A).  

Another Fmoc-based strategy relies on the in-situ synthesis of the thioester. The peptide is 

assembled on a resin containing a protected thiol group on β-mercapto-α-hydroxypropionic 

acid. After cleavage from the resin and deprotection of the thiol, an intramolecular O-S acyl 

shift generates the thioester (Botti et al., 2004, Hackenberger and Schwarzer, 2008) (Figure 

I-31.B).  
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Figure I-31. Generation of peptide thioesters 
  

Thioester formation using an N-acyl urea-based C-terminal group has been reported recently 

(Blanco-Canosa and Dawson, 2008). A 3,4-diaminobenzoic acid group (Dbz) is added onto a 

Rink amide MBHA resin before the coupling of the first residue. After peptide assembly, the C-

terminus is activated through acylation with p-nitrophenylchloroformate followed by the 

addition of a base to promote the intramolecular attack of the anilide to form the resin-bound N-

benzimidazolinone (Nbz). The peptide is subsequently cleaved in TFA. The Nbz group is a good 

leaving group which can be used in place of a thioester during NCL, however it is not as stable 

as alkyl thioesters, therefore thiolysis of the Nbz group is often used to store the peptides as 

alkyl thioesters (Figure I-31.C). 

I.5.3.2. Expressed protein ligation 

To date, a large number of proteins of various sizes (up to 300 amino acids) have been prepared 

using NCL (Hackenberger and Schwarzer, 2008, Kumar et al., 2011). Catalytically active 

enzymes and membrane proteins have also been successfully generated (Hackenberger and 

Schwarzer, 2008). However, despite major advances in ligation reaction methodologies, the size 

limitation in SPPS and the requirement of multiple NCL reactions to prepare large proteins 

resulted in low yields and thus limited the utility of NCL to mostly small proteins. To overcome 

these limitations, two independent groups developed a strategy that combines the 

chemoselective ligation of NCL with the possibility to produce longer protein fragments via 

recombinant expression of proteins in E. coli (Evans et al., 1998, Muir et al., 1998). The 
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Expressed Protein Ligation approach (EPL) is based on the reaction between a protein fragment 

containing a thioester and another fragment harboring a cysteine at its N-terminus. Overcoming 

the size restriction in NCL through the development of EPL allowed the introduction of PTMs, 

fluorescent probes, unnatural amino acids, and stable isotopes in proteins (Muir, 2003a). Ion 

channels and membrane proteins were successfully produced using semisynthesis (Valiyaveetil 

et al., 2002, Olschewski and Becker, 2008) and the reaction could also take place in living cells 

(Giriat and Muir, 2003). 

Depending on the position of the modification, two strategies are to be followed: if the modified 

amino acid is in the N-terminal part of the protein, a peptide thioester, containing the modified 

amino acid, will be produced by SPPS and ligated to a protein fragment expressed in E. coli 

with an N-terminal cysteine (Figure I-32). If the modification is in the C-terminal domain, a 

protein thioester is produced in bacteria using intein-mediated splicing (Figure I-33) and the C-

terminal fragment containing the modified residue is prepared by SPPS (with an N-terminal 

cysteine) (Figure I-32). 

Although a wide variety of proteins can be prepared by semisynthesis, practical considerations 

have to be considered before designing an EPL strategy (Szewczuk et al., 2009): i) the modified 

amino acid to be introduced in the protein needs to be positioned within 50 amino acids from the 

N- or C-terminus of the protein of interest due to the size limitation imposed by SPPS, ii) the 

folding and the solubility of the truncated protein segments – to be expressed in fusion with the 

intein or with an N-terminal cysteine – might be different from the full-length protein and iii) 

the ligation site has to be wisely chosen so as not to disturb the native sequence of the protein 

and not to disrupt the kinetics of the NCL reaction. Indeed, the identity and steric hindrance 

induced by the amino acid that is adjacent to the ligation site influences the ligation kinetics 

(Hackenberger and Schwarzer, 2008).  

 

Figure I-32. Strategies for the semisynthesis of proteins: N- and C-terminal modifications 
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• Generation of protein thioesters 

Synthetic peptide thioesters or peptides containing an N-terminal cysteine are readily prepared 

by SPPS and the generation of recombinant protein fragments with an N-terminal cysteine 

residue relies on cloning and molecular biology (Figure I-32). The missing piece of the puzzle 

was the generation of recombinant protein thioesters. The answer came from nature itself and 

protein engineering approaches that allowed using protein splicing for EPL.  

In 1990, it was observed that the open-reading frame for the gene of Saccharomyces cerevisiae 

vacuolar ATPase (Sce VMA) was twice as large as the actual encoded protein and that 454 

amino acids that were derived from the translation of the protein had no similarity to vacuolar 

ATPases (Noren et al., 2000). Compared to RNA splicing that removes introns from the coding 

sequence, protein splicing involves the removal of intein sequences from a protein precursor. 

Inteins should be seen as around 100 amino acid enzymes that break two peptide bonds and 

ligate the two excised exteins. Over 300 inteins have been identified with low sequence 

similarity, however the key residues in the splicing event, which are situated at the junction 

between the intein and the extein, are conserved (Saleh and Perler, 2006).  

• Mechanism of protein splicing 

The sequence of the majority of inteins begins with a Cys or Ser residue and ends with an Asn 

while the first residue of the C-extein is Cys, Ser or Thr. The first step in intein-mediated protein 

splicing is an N-S or an N-O acyl shift of Cys/Ser1 of the intein (Figure I-33). To overcome the 

high energy-demanding rearrangement of the peptide bond to an ester or thioester bond, a 

conformational change was reported in inteins that pushed the equilibrium toward the thioester 

bond (Klabunde et al., 1998, Romanelli et al., 2004). In addition to the strained geometry, 

deprotonation of the nucleophilic thiol or hydroxyl of Cys/Ser1 is required as well as the 

protonation of the leaving amino group. A basic residue was identified in proximity of Cys1 that 

fulfills this role (Saleh and Perler, 2006).  

The second step of the process is a transthioesterification that involves the nucleophilic attack of 

the thiol or hydroxyl group of the first residue of the C-extein (Cys/Ser/Thr) termed +1 on the 

thioester at the junction between the N-extein and the intein. In this step, the N-extein is brought 

to the C-extein through the Cys/Ser +1. A conformational change of the intein as well as the low 

pKa of Cys+1 (estimated to be around 5.8) were suggested to favor the nucleophilic attack 

(Saleh and Perler, 2006). 

The third step involves the cyclization of the last residue of the intein (Asn) to release the intein 

with a succinimide C-terminus. In the last step, the amide bond is restored with a Cys or Ser 
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between the N-extein and the C-extein after a S-N or O-N acyl shift (Noren et al., 2000, Muir, 

2003a, Saleh and Perler, 2006).  

• Intein engineering for EPL 

Mutation of the last residue of the intein (Asn) to Ala promotes only the first step of the protein 

splicing and blocks the succinimide formation. Addition of thiols such as DTT or MESNa to the 

mutated intein results in the thiolysis of the thioester bond that was formed in the first step of the 

protein splicing, and the release of the N-extein as a thioester. Commercially available vectors 

from New England Biolabs contain the modified mini-inteins Saccharomyces cerevisiae 

vacuolar ATPase (Sce VMA1) and the Mycobacterium xenopi DNA Gyrase A (Mxe GyrA) in 

fusion with chitin-binding domain for purification purpose (Muir, 2003a). 

 

Figure I-33. Mechanism of intein splicing 
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Figure I-34. Production of protein thioesters using modified inteins 
 

• Generation of proteins with an N-terminal Cys 

Recombinant proteins with an N-terminal cysteine residue can be prepared using different 

approaches with typically high yields. The most straightforward approach is the introduction of 

a Cys codon after the initiating ATG codon in the gene of the protein of interest. The initiating 

Met will be cleaved by endogenous methionine aminopeptidases during translation, releasing a 

Cys at the N-terminus (Muir, 2003a). However, the activity of the enzymes depends on the 

identity and bulkiness of the amino acid that is adjacent to the initiating Met residue (Hirel et al., 

1989). To overcome this limitation, a protease recognition sequence can be added upstream of 

the Cys residue. Factor Xa and Tobacco Etch Virus (TEV) recognition sequences have been 

used to generate a free Cys after incubation with the protease (Muir, 2003a). In a recent study, 

Bartke and colleagues elegantly designed a plasmid that expressed their protein of interest with 

the modified TEV recognition under the control of the T7 promoter, along with the gene 

encoding the TEV protease under the control of an AraC promoter. Coexpression of the TEV-

cleavable truncated protein with TEV protease in E. coli leads to processing into a truncated 

histone in vivo (Bartke et al., 2010). To improve the solubility of the protein fragment, some 

reports have relied on the fusion with the SUMO tag (11kD). To demonstrate the feasibility of 

this approach, fragments of a membrane protein have been prepared with the SUMO tag 

upstream of the Cys residue and subsequent incubation with SUMO protease released the free 

Cys (Komarov et al., 2009).  

An alternative approach to generate proteins with an N-terminal Cys residue is based on the 

fusion to an intein that is engineered to undergo cleavage at its C-terminus as a result of a pH or 

temperature change. Plasmids encoding the intein Methanobacterium thermoautotrophicum 

(Mth) RIR1 or Mxe GyrA or Ssp DnaB are commercially available from New England Biolabs 
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and allow releasing the N-terminal Cys of a protein of interest without the use of a protease 

(Evans et al., 1999, Muir, 2003a).  

 

Figure I-35. Different approaches to generate protein fragments with N-terminal Cys. 
  

I.5.3.3. Applications of protein semisynthesis for the generation of ubiquitinated proteins 

A large panel of natural modifications (phosphorylation, acetylation, oxidation, D-amino acids) 

and unnatural modifications (photocleavable groups, non-hydrolyzable phosphonates, 

fluorescent probes, cross-linking groups) were readily incorporated into proteins via 

semisynthesis (Muir, 2003a). However, other naturally-occurring modifications such as 

glycosylation and ubiquitination present additional challenges for protein semisynthesis. Indeed, 

ubiquitination requires the conjugation of a 75-residue protein residues via an isopeptide bond; 

and different types of sugar moieties of varying complexity can be added onto the side-chains of 

asparagine (N-glycosylation) or serine/threonine (O-glycosylation). In the case of 

ubiquitination, since the isopeptide bond could not be readily produced via standard EPL, 

different approaches were followed to generate ubiquitinated proteins with an unstable or 

irreversible isopeptide bond (Spasser and Brik, 2012).  
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Figure I-36. Chemical approaches to generate monoubiquitinated proteins via isopeptide-like bonds 
A: dichloroacetone-based approach (Yin et al., 2000) ,B: disulfide-based approach (Chatterjee et al., 2010, Chen et 
al., 2010, Meier et al., 2012), C: oxime-based approach (Shanmugham et al., 2010) , D and E: oxime-based 
approach (Eger et al., 2010, Weikart and Mootz, 2010, Weikart et al., 2012). Figure adapted from Spasser and Brik 
(Spasser and Brik, 2012). 
 

• Dichloroacetone-based isopeptide bond 

This approach is based on the cross-linking of two cysteine residues with dichloroacteone and 

was used for the generation of diubiquitin chains with K63, K48, K29 and K11 isopeptidic 

linkage (Yin et al., 2000). The lysines residues to be ubiquitinated in one ubiquitin were 

replaced by Cys while the C-terminal Gly residue of the other ubiquitin was also mutated to 

Cys. Addition of dichloroacetone resulted in the formation of ubiquitin dimers that were able to 

selectively inhibit the activity of DUB (Figure I-36.A) 

• Disulfide-based isopeptide bond 

Monoubiquitinated Histone 2B (H2B) at K120 was prepared through a disulfide-bond linkage. 

H2B was expressed in E.coli with a Lys  Cys mutation at residue 120 (Chatterjee et al., 2010). 

Ubiquitin was expressed in fusion with an intein and addition of cysteamine yielded the 
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generation of ubiquitin with a C-terminal aminoethanethiol linker. Subsequent activation of 

H2B with a more reactive thiol (2,2′-dithiobis(5-nitropyridine) (DTNP)) in presence of the C-

terminally activated ubiquitin resulted in the generation of ubiquitinated H2B (Chatterjee et al., 

2010). Independently, Chen et al. described the generation of monoubiquitinated proliferating 

cell nuclear antigen (PCNA) using the same strategy (Chen et al., 2010). This approach allowed 

to generate milligram quantities of ubiquitinated proteins with good yields (80%) and to perform 

various structural studies (Chatterjee et al., 2010) or protein-protein interaction assays (Chen et 

al., 2010). The methodology can be easily extended to other proteins through the introduction of 

cysteines by single-point mutagenesis (Figure I-36.B) and was recently applied to the study of 

site-specific impact of monoubiquitination of α-syn on its fibrillization rate (Meier et al., 2012).  

• Oxime-based isopeptide bond 

The oxime-based approach relies on the condensation of an aldehyde-containing peptide with a 

peptide harboring an aminooxy group. The methodology was used to prepare peptide fragments 

derived from the diubiquitin chain (K63 and K48-linked) (Shanmugham et al., 2010). Using 

SPPS, a ubiquitin peptide where lysines were modified by aminoxyacetyl-l-diaminopropionic 

acid was prepared. Since the isopeptide bond between the two ubiquitin fragments could not be 

hydrolyzed by deubiquitinating enzymes, they were used as probes to investigate the specificity 

of the enzymes toward the substrate and it was revealed that the peptide sequence flanking the 

isopeptide bond is important for the recognition and the selectivity (Figure I-36.C).   

• Click chemistry-based isopeptide bond 

Click-chemistry allows the cycloaddition of azide-containing peptide onto an alkyne-containing 

peptide to produce a triazole at the ligation site (Rostovtsev et al., 2002). In a study by Weikart 

and colleagues, recombinant SUMO2 (a ubiquitin-like protein) and Ubc9 (an E2 ligase) were 

functionalized respectively with an alkyl and azide group. SUMO2 (with a deletion of the 

diglycine motif at the C-terminus) was fused to an intein and subsequently released as a 

thioester with MESNa. Reaction with propargylamine introduced the alkyne moiety while 

alkylation of the side chain of a cysteine residue in the substrate to be modified with 

iodoacetamide ethyl azide introduced the azide group (Figure I-36.D). The same group reported 

later the preparation of diubiquitin chains through click-chemistry and nonsense suppression 

methodology: p-azidophenylalanine (AzF) is incorporated in place of lysine residues, while 

SUMO2 is prepared as discussed earlier. By using this approach, conjugation of SUMO2 to the 

enzyme Ubc9 was reported (Weikart et al., 2012). 
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Other groups have also used click-chemistry, in addition to the nonsense suppression 

methodology, to generate diubiquitin chains where the azide function was introduced via the 

methionine analogue azidohomoalanine (Aha) and the alkyne function via a pyrrolysine 

analogue, the propargyl-protected lysine derivative Plk (Eger et al., 2010). The methionine 

analogue Aha was introduced after substituting the codon for the C-terminal Gly by a Met 

codon. Pyrrolysine analogues were incorporated at lysine sites through the amber stop codon 

UAG via a pyrrolysyl-tRNA synthetase/tRNA CUA pair (Eger et al., 2010). All Lys-linked 

diubiquitin chains were prepared and were shown to be recognized by other E3 ligases and 

subsequently polyubiquitinated (Figure I-36.E).  

• Expressed protein ligation 

McGinty and colleagues pioneered the generation of site-specifically ubiquitinated proteins with 

a native isopeptide bond using a semisynthetic approach (McGinty et al., 2008). 

Monoubiquitinated H2B at K120 was prepared via two EPL reactions: for the first ligation, 

fragment 117-125 of H2B with a photocleavable protecting auxiliary of the N-terminal Cys 

residue and another photocleavable auxiliary that was masking the amino group of the Lys 

residue at position 120 was prepared by SPPS. Ubiquitin thioester produced by thiolysis of an 

intein fusion was added to the synthetic peptide to yield a protected ubiquitinated H2B 

fragment. Upon photoirradiation, the thiol group at position 117 was released and a NCL 

reaction was carried out with the N-terminal fragment of H2B thioester (produced by intein-

mediated splicing) spanning residues 1-116 (McGinty et al., 2008) (Figure I-37). 

 

 

 
Figure I-37. Generation of monoubiquitinated H2B via a native isopeptide bond 
Figure from Ginty et al. (McGinty et al., 2008) 
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The monoubiquitinated histone H2B was able to induce the methylation of Histone 3 in the 

nucleosome and provided a proof of histone PTM cross-talk in vitro. The EPL reactions that 

resulted in the first report of a monoubiquitinated protein relied on slow ligations that take up to 

5-7 days and low yields reported (20%) (McGinty et al., 2008), rendering this methodology less 

amenable for the study of other proteins.  
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I.6. Objective of the PhD study  

One of the major research interests in the Lashuel laboratory is to elucidate the effect of PTM in 

regulating α-syn’s function in health and disease. Prior to 2008, phosphomimicking substitutions 

of S129 and S87 were routinely used in transgenic animals and cell-culture without prior 

investigation of the effect of these mutations on the structure of the protein; and it took a study 

conducted in our laboratory in 2008 to demonstrate that the phosphomimics do not reproduce all 

aspects of phosphorylation (Paleologou et al., 2008). Serine substitution by glutamate was 

shown to mimic the effect of phosphorylation at S87 on α-syn’s aggregation, but pS87 and S87E 

exhibited different membrane binding properties, whereas the S129E/D mutants did not 

reproduce the effect of phosphorylation on the structure, aggregation and subcellular 

localization of α-syn (Paleologou et al., 2008, Paleologou et al., 2010).  

At the beginning of this PhD study, the majority of PTM in α-syn were shown to localize in the 

N-terminal (ubiquitination) and the C-terminal domain of the protein (phosphorylation, 

truncation and nitration). The primary focus of my PhD project focused on investigating the 

effect of α-syn’s phosphorylation at Y125 and monoubiquitination at K6. Given that the kinases 

that phosphorylate α-syn at Tyr residues are either non-specific or inefficient and that the E3 

ligases that are responsible for the conjugation of ubiquitin to α-syn result in a mixture of the 

non-ubiquitinated form of α-syn along with mono- and di-ubiquitination on several sites, we 

decided to pursue the development of two semisynthetic approaches: one strategy to allow the 

introduction of modifications in the N-terminal domain of α-syn and which was further 

optimized to introduce any unnatural amino acid within the first 29 residues and another strategy 

for the introduction of modifications in the C-terminal region of α-syn (in the last 40 residues). 

The first strategy allowed the production of pY125 α-syn and the second one generated 

monoubiquitinated α-syn at K6 in milligram quantities (in collaboration with the group of Prof. 

Ashraf Brik). With these homogeneously modified proteins in hand, we were able to investigate 

the effect of these modifications on the structure, aggregation, subcellular localization and 

protein-protein interactions of α-syn. These studies have provided novel insight into the role of 

these PTM in the mechanism of α-syn fibril formation, and the tools generated are proven to be 

very valuable in studies aimed at identifying novel therapeutic targets and development of 

diagnostic tools based on quantitative assessment of the levels of these modifications in 

Cerebrospinal Fluid and blood. Further optimization of this methodology along with the 
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development of effective means to introduce the proteins in cells and animal models would pave 

the way for novel approaches to investigate α-syn’s biology and pathogenesis.   
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II. Chapter 1: Elucidating the role of C-terminal post-translational 

modifications using protein semisynthesis strategies: α-synuclein 

phosphorylation at tyrosine 125 

 

This chapter is part of a published article in the Journal of the American Chemistry Society 

2012, 134 (11), pp 5196–5210 (DOI: 10.1021/ja210866)j with the following authors: 

Hejjaoui M.1*, Butterfield S. 1*, Fauvet B. 1, Vercruysse F. 1, Cui J. 2, Dikiy I. 3, Prudent M. 1, 

Olschewski D. 1, Zhang Y. 2, Eliezer D. 3, Lashuel H.A. 1  
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Biotechnology, College of Life Sciences, Peking University, Beijing, China 

3. Department of Biochemistry and Program in Structural Biology, Weill Cornell Medical 
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II.2. Abstract 

Despite increasing evidence that supports the role of different post-translational modifications 

(PTM) in modulating α-synuclein (α-syn) aggregation and toxicity, relatively little is known 

about the functional consequences of each modification and whether or not these modifications 

are regulated by each other. This lack of knowledge arises primarily from the current lack of 

tools and methodologies for the site-specific introduction of PTM in α-syn. More specifically, 

the kinases that mediate selective and efficient phosphorylation of C-terminal tyrosine residues 

of α-syn remain to be identified. Unlike phospho-serine and phospho-threonine residues, which 

in some cases can be mimicked by serine/threonine  glutamate or aspartate substitutions, there 

are no natural amino acids that can mimic phospho-tyrosine. To address these challenges, we 

developed a general and efficient semisynthetic strategy that enables the site-specific 

introduction of single or multiple PTM and the preparation of homogeneously C-terminal 

modified forms of α-syn in milligram quantities. These advances have allowed us to investigate, 

for the first time, the effects of selective phosphorylation at Y125 on the structure, aggregation, 

membrane binding and subcellular localization of α-syn. The development of semisynthetic 

methods for the site-specific introduction of single or PTM represents an important advance 
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toward determining the roles of such modifications in α-syn structure, aggregation and functions 

in health and disease. 

 

II.3. Introduction 

α-synuclein (α-syn) aggregation and fibrillogenesis in the brain are the hallmark of Parkinson’s 

disease (PD) and have been linked to the pathogenesis of several neurodegenerative diseases 

that are collectively referred to as “synucleinopathies” (Trojanowski and Lee, 2003). PD is 

characterized by the formation of intraneuronal inclusions termed Lewy bodies (LB), which are 

composed primarily of insoluble fibrillar and aggregated forms of α-syn (Spillantini et al., 1997, 

Dawson, 2000). Although three mutations in the α-syn gene A30P (Kruger et al., 1998), A53T 

(Polymeropoulos et al., 1997), and E46K (Zarranz et al., 2004)) have been linked to early-onset 

forms of the disease, they account for only 1% of all PD cases. Therefore, a better understanding 

of the molecular determinants that govern the structural, aggregation and functional properties 

of α-syn is crucial to elucidating its role in the pathogenesis of sporadic and inherited forms of 

PD.   

The primary sequence of α-syn can be divided into three domains, which are: 1) The N-terminal 

domain which contains the sites of three disease-associated mutations and the imperfect 6 

repeats of a conserved sequence (KTKEGV) that play an important role in regulating α-syn 

secretion (Desplats et al., 2009), internalization (Emmanouilidou et al., 2010, Jang et al., 2010) 

and binding to membranes; 2) The central fragment, also known as the NAC - non amyloid 

component - (residues 61-95) region, is highly hydrophobic and is essential for α-syn 

oligomerization and fibrillogenesis (Del Mar et al., 2005); 3) The C-terminal region comprising 

residues 96-140. This region is highly disordered and negatively charged (10 glutamate and 5 

aspartate residues). The C-terminal region has been proposed to play a role in regulating α-syn 

transport to the nucleus and has been shown to mediate α-syn interactions with other proteins 

(Jensen et al., 1999, Giasson BI, 2003, Goers J, 2003, Cherny et al., 2004), metal ions (Paik et 

al., 1999, Brown, 2007) and natural ligands (e.g. dopamine and polyamines) (Goers et al., 

2003b). The majority of α-syn PTM (truncation, phosphorylation, methionine oxidation, and 

nitration) occurs within the C-terminal region. The clustering of PTM in this functional domain 

of the protein suggests that these modifications may be involved in the regulation of α-syn’s 

function in health and disease. This hypothesis is further supported by the fact that the majority 

of these post-translational modification sites are highly conserved across different species.  
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Furthermore, the close proximity of these different modifications suggests that they may act in 

concert, and cross-talk between these modifications may constitute an additional molecular 

switch for regulating the dynamics of α-syn function and aggregation (Figure II-1).  Previously, 

our group identified the polo-like kinases, PLK2 and PLK3, which phosphorylate α-syn 

efficiently in vitro and are major contributors to α-syn phosphorylation in vivo (Mbefo et al., 

Inglis et al., 2009). However, the kinases that carry out selective and efficient phosphorylation 

of the other known and putative phosphorylation sites (S87, Y125, Y133, and Y136) remain to 

be identified.  

Protein semisynthesis (Muir et al., 1998, Muir, 2003b, Hackenberger and Schwarzer, 2008, 

Berrade and Camarero, 2009, Chiang et al., 2009, Komarov et al., 2009, Broncel et al., 2012b, 

Spasser and Brik, 2012), which combines the powers of recombinant protein expression, peptide 

chemical synthesis and native chemical ligation (NCL) has successfully been used to study post-

translational modifications on a variety of proteins  (Muir, 2003b, Szewczuk et al., 2009) and 

offers means of generating site-specifically modified forms of α-syn (Hejjaoui et al., 2011, 

Butterfield et al., 2012b) (Figure II-2). 

 
Figure II-1. The clustering of C-terminal post-translational modifications of α-syn 
A: Schematic depiction of the sequence of α-syn with its 3 domains. The putative and identified sites of C-terminal 
phosphorylation are indicated with arrows. B: Sequence alignment of the sequences of the C-terminal domain of α-
syn from 5 different species. The conserved positions of the phosphorylation sites are highlighted in red. 
 

To address the aforementioned challenges and to facilitate the investigation of the structural and 

functional consequences of specific C-terminal PTM of α-syn, we developed a general and 

efficient semisynthetic strategy that permits the site-specific introduction of single or multiple 

PTM. Despite mounting evidence supporting the role of C-terminal phosphorylation in 
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modulating α-syn aggregation and toxicity, relatively little is known about the functional 

consequences of tyrosine phosphorylation and whether or not tyrosine and serine 

phosphorylation in this region are regulated by each other (Chen et al., 2009). This is partly due 

to the lack of tools and methodologies for the site-specific introduction of single or multiple 

PTM in α-syn. This strategy also enables the preparation of milligram quantities of 

homogeneous forms of α-syn modified at the C-terminus that are sufficient for carrying out 

detailed biochemical, biophysical and cellular studies. We used this strategy to produce α-syn 

phosphorylated at tyrosine 125 (pY125 α-syn). We choose to investigate Y125 phosphorylation 

for the following reasons: 1) the levels of pY125 α-syn have been reported to decrease with age 

(Chen et al., 2009); 2) studies by Feany and colleagues suggest that phosphorylation at Y125 

acts as a counter-regulator of pS129-induced toxicity in the fly model of PD (Chen et al., 2009), 

and provide evidence for a potential cross-talk between these two modifications; 3) because 

there are no effective mutagenesis-based strategies for mimicking tyrosine phosphorylation and 

thus very little is known about the structural and functional consequences of selective 

phosphorylation of α-syn at Y125. 

 

Figure II-2. Mechanism of Native Chemical Ligation 
Top: A peptide thioester and a peptide fragment bearing an N-terminal Cys undergo a thioester exchange followed 
by an S to N acyl migration to create an amide bond between two unprotected peptides in aqueous solution.  
Bottom: Semisynthetic strategy to generate derivatives of α-syn site-specifically phosphorylated within the C-
terminal region. The protein thioester α-syn(1-106)SR generated by recombinant protein expression is ligated by 
NCL to the synthetic C-terminal fragment α-syn(A107C-140) bearing the desired phosphorylated side chain.  A 
final desulfurization step restores the native Ala-107. 
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More specifically, we determined the effect of phosphorylation at Y125 on the structure, fibril 

formation, and phospholipid membrane association-induced conformational shifts in vitro. In 

addition, we further probed cross-talk between phosphorylation at S129, Y125, and S87 residues 

by determining the relative activity of each phosphorylated form of α-syn as a substrate for the 

kinases that phosphorylate α-syn at other residues within the C-terminus. We also assessed, for 

the first time, the subcellular localization of pY125 α-syn in mammalian cells and rat 

hippocampal neurons.  Our work demonstrates the power and potential of applying chemical 

approaches to elucidate the role of C-terminal PTM in regulating α-syn function in health and 

disease.  

 

II.4. Material and Methods 

II.4.1. Materials 

9-Fluorenylmethoxycarbonyl (Fmoc)-amino acids, t-butyloxycarbonyl (Boc)-amino acids, 2 - 

(1H - benzotriazole - 1 - yl) - 1,1,3,3 - tetramethyluronium hexafluorophosphate  (HBTU), were 

purchased from Novabiochem or Anaspec.  The side-chain functionalities of the Fmoc-amino 

acids were chemically protected as shown in parentheses: Asp(OtBu), Glu(OtBu), Lys(Boc), 

Thr(tBu), Ser(tBu), Tyr(tBu), Gln(Trt), and Asn(Trt).  Phosphorylated Tyr residues were 

purchased from Novabiochem or Anaspec as protected Fmoc-Tyr[PO(OBzl)]-OH building 

blocks.  All unlisted amino acids were not protected.  The Boc-amino acid was Boc-Cys(Trt). 

N,N-diisopropylethylamine (DIPEA), trifluoroacetic acid (TFA), triisopropylsilane (TIPS), 

sodium 2-mercaptoethanesulfonate (MESNa), ammonium iodide, 1,2-ethanedithiol (EDT), 2-

methyl-2-propanethiol (tert-butyl mercaptan, tBuSH) dimethylsulfide, guanidine hydrochloride 

(GuHCl) and tris(2-carboxyethyl)-phosphine hydrochloride (TCEP) were purchased from 

Sigma-Aldrich.  Piperidine and diethyl ether were purchased from Acros. 2-2’-Azobis[2-(2-

imidazolin-2-yl)propane] dihydrochloride (VA-044) was purchased from Wako. The solvents N-

methylpyrrolidone (NMP), dichloromethane, and HPLC-grade acetonitrile were purchased from 

VWR.   

II.4.2. General Solid Phase Peptide Synthesis and Purification 

Solid phase peptide synthesis was performed on an automated CS 336X peptide synthesizer 

from CS Bio using standard Fmoc protocols including the in situ neutralization protocol 

described by Alewood et al. (Alewood et al., 1997). A preloaded Fmoc-Ala Wang resin was 
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used. Syntheses were carried out on a 0.2 mmol scale and coupling steps were performed with 5 

eq. Fmoc-amino acid, 5 eq. HBTU/HOBt, and 5 eq. DIPEA in NMP. The N-terminal Cys 

residues were attached with Boc protecting groups on their N-terminus. Fmoc-group 

deprotections were carried out with 20% piperidine in DMF. Peptide side chain deprotections, 

removal of N-terminal Boc group and cleavage from the resin was performed by treatment with 

81.5:5:3:5:2.5:2:1.5 of TFA:water:phenol:thioanisole:EDT:Me2S:NH4I for 4 hours on a rotating 

wheel to generate peptides with a C-terminal acid functionality. The crude product was 

subsequently precipitated three times with a ten-fold excess volume of cold diethyl ether, 

dissolved in water and lyophilized. Peptides were then purified by reversed-phase HPLC 

(Waters 600 system) using a Cosmosil C18 preparative column (20x250 mm, 5µm particles, 

300Å pores) with a linear gradient of 20-70% B over 30 minutes (solvent A was water/0.1% 

TFA and solvent B was acetonitrile/0.1% TFA). Peptide elution was monitored by UV 

absorbance at 214 nm and 280 nm. Peptide masses were confirmed by MALDI-TOF-MS and 

ESI-MS analysis. Peptide purity was confirmed by re-injection on an analytical RP-HPLC 

column (Cosmosil C18, 4.6x250 mm, 5µm particles, 300Å pores). 

II.4.3. Expression and Purification of Recombinant α-Syn(1-106)SR 

C-terminally truncated human α-synuclein was initially cloned into the pT7-7 vector in fusion 

with the GyrA Mini-Intein from Mycobacterium Xenopii and a chitin binding domain (CBD) 

using the following primers: Forward: 5’-GGG CAA GAA TGA AGA AGG ATG CCG AAG 

AGC AGG AAT TCT G-3’ and reverse: 5’-CAG AAT TCC TGC TCT TCG GCA TCC TTC 

TTC ATT CTT GCC C-3’.  The α-syn fragment (1-106) was isolated by NdeI and SapI digest. 

The intein was isolated from the pTXB1 vector (New England Biolabs) by SapI and BamHI 

digest. Both fragments were ligated into pT7-7 digested by NdeI and BamHI to generate the 

plasmid pT7-7 α-syn-Mxe-CBD. To insert a polyhistidine tag at the C-terminus of the intein 

instead of CBD , an EcoRI site was introduced using site-directed mutagenesis using the 

following primers: Forward: 5’ CTG GCC TCA CCG GTC TGG AAT TCG GCC TCA CGA 

CAA ATC 3’ and reverse 5’ GAT TTG TCG TGA GGC CGA ATT CCA GAC CGG TGA 

GGC CAG 3’. An oligonucleotide containing six histidines and two stop codons with the 

digested recognition sequences of EcoRI and BamHI sites was ordered:  Forward 5’AA TTC 

CAC CAC CAC CAC CAC CAC TGA TAA G 3’ and reverse 5’ GA TCC TTA TCA GTG 

GTG GTG GTG GTG GTG G 3’. The annealed oligonucleotides were ligated into the plasmid 

pT7-7 α-syn-Mxe-CBD digested with EcoRI and BamHI. Expression was carried out in E.coli 

BL21(DE3). Protein expression was induced with 0.5 mM isopropyl-β-D-thiogalactopyranoside 
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(IPTG) and by growing the cells for 4h at 37°C. The cells were harvested by centrifugation and 

lysed by ultra-sonication in 40 mM Tris-acetate, 5 mM EDTA pH 8,3. The supernatant was 

separated from the cell debris by centrifugation (23, 000 x g, 30 min, 4°C). 4 equivalents of 

MgCl2 were added prior to the loading on the Ni-NTA column. The soluble fraction was loaded 

on a HisPrep FF 16/60 (Amersham) pre-equilibrated with 50 mM HEPES pH 7.5. A washing 

step of 50 mM HEPES 25 mM imidazole, pH 7.5 for 5 column volumes was included to remove 

non-specific binding. The protein α-syn-Mxe-His(6) was eluted with a step elution of 50 mM 

HEPES, 350 mM Imidazole pH 7.5. The splicing reaction was carried out directly in the eluate 

from the Ni-NTA column for 12 h under agitation at RT in presence of 0.25 M MESNa. The 

splicing efficiency was around 90% (by SDS-PAGE analysis, data not shown). The sample was 

subsequently purified by reverse-phase HPLC using a preparative C4 column (VYDAC, 20x250 

mm,5µm particles, 300Å pores) with a linear gradient of 20-70% B in 30 min at a flowrate of 10 

ml/min (solvent A was water/0.1% TFA and solvent B was acetonitrile/0.1% TFA). The pure 

protein thioester was obtained in a yield of 10 mg per liter of BL21 (DE3) expression medium. 

II.4.4. Expression and purification of 15N labeled proteins 

α-syn A107C: The α-syn mutant A107C was generated using single-point mutagenesis with the 

following primer pairs to generate the plasmid pT7-7 α-syn A107C: forward primer 5’ GCA 

AGA ATG AAG AAG GAT GCC CAC AGG AAG GAA TTC TG 3’ and reverse primer 5’ 

CAG AAT TCC TTC CTG TGG GCA TCC TTC TTC ATT CTT GC 3’. BL21 (DE3) cells 

were transformed with the plasmid and grown in M9 minimal media with 15N labeled 

ammonium chloride. Protein expression was induced by the addition of 1 mM IPTG for 4 h at 

37°C. After harvesting the cells by centrifugation at 6000 x g for 15 min, the cell pellet was 

resuspended in 40 mM Tris-acetate and 5mM EDTA (pH 8.3) and lysed by ultra-sonication. The 

insoluble material was removed by centrifugation at 23,000 x g for 40 min at 4°C. The 

supernatant was boiled for 15 min in a water bath at 100°C followed by centrifugation at 23,000 

x g for 40 min, which precipitates most cellular proteins but not α-syn A107C. The final 

supernatant was filtered through a PVDF membrane with 0.22 μm pores. Anion-exchange 

chromatography was performed on a Pharmacia AKTA FPLC system using a 20 mL HiPrep 

16/10 Q FF column (Amersham). The protein was eluted with a linear gradient of 0 to 1 M NaCl 

(the protein elutes at approximately 300 mM NaCl ) and subsequently purified on a Superdex 

200 26/60 size-exclusion chromatography column (Amersham) using a mobile phase of buffer 

containing 50 mM Tris, 150 mM NaCl,  pH 7.5. The purified protein was dialyzed extensively 

against de-ionized water and lyophilized and stored at -20°C until used. From 1 L of expression 
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medium, the average yield of lyophilized material was 30 mg. To remove the glutathatione 

disulfide adduct, the lyophilized powder was dissolved in a buffer containing 50 mM Tris 

150mM NaCl (pH 7.5), with 30eq of TCEP and the solution was incubated for 10 min at RT. 

The protein was subsequently purified on a C4 preparative column (Vydac) with a linear 

gradient of 20-70% B in solvent A over 30 min at a flow rate of 10 mL/min (solvent A was 

water/0.1% TFA and solvent B was acetonitrile/0.1% TFA). The 15N labeled protein was 

obtained in a final yield of 10 mg per liter of bacterial expression.  

α-syn (1-106)SR: The expression of 15N labeled α-syn(1-106) SR was carried out in a similar 

manner as for the non-labeled protein with an overall yield of pure protein of ~3.5 mg per liter. 

II.4.5. Semisynthesis and desulfurization of α-syn phosphorylated at Tyr 125 

The semisynthesis of α-syn site-specifically phosphorylated within the C-terminus (residues 

107-140) involved an NCL reaction between recombinant α-syn(1-106)SR and synthetic 

peptides α-syn (A107C-140) phosphorylated at Tyr-125 or the WT peptide. NCL reactions were 

carried out in 6 M GuHCl, 200 mM sodium phosphate buffer, pH 7.0 using 1.5 mM of α-syn(1-

106)SR and 2 molar excess of C-terminal peptide A107C-140 pY125 or A107C-140 WT 

peptide in the presence of 30 eq. TCEP in a volume of 1 mL at 37°C with shaking at 1000 rpm. 

Three ligation reactions were carried out in parallel. To monitor the NCL reactions, aliquots of 

the reaction mixture (4μl) were removed and quenched with 38 μl of water containing 0.1% 

TFA and subsequently analyzed by SDS-PAGE (15% polyacrylamide) and MALDI-TOF-MS.  

RP-HPLC was not used due to the co-elution of α-syn(1-106)SR and the ligated product under 

all conditions tested in our laboratory. Based on SDS-PAGE analysis, the desired ligated 

product was produced within 1-2 hrs.   

Free radical-based desulfurization of the semi-synthetic α-syn mutant was carried out as 

previously described by Danishefsky and colleagues (Wan and Danishefsky, 2007). In our case, 

the ligation and the desulfurization were carried out in one-pot. 1mL of a solution of 1 M of 

TCEP (in 6 M GuHCl, 200 mM sodium phosphate pH 7.0) was added to the ligation reaction. 

160 μl of 2-methyl-2-propanethiol and 100 μl of a 0.1 M solution of 2-2’-Azobis[2-(2-

imidazolin-2-yl)propane] dihydrochloride (VA-044) free radical initiator (in 6 M GuHCl, 200 

mM sodium phosphate pH 7.0) were added under argon. The reaction was incubated at 37°C 

with agitation at 1000 rpm in a ventilated fume hood for 3.5 h. The progress of desulfurization 

was followed by MALDI-TOF-MS.   
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II.4.6. Purification of the semisynthetic pY125 α-syn 

Prior to purification, the ligated desulfurized products from the 3 ligation/desulfurization 

reactions (that were carried out in parallel) were desalted through a 5mL HiTrap desalting 

column (Amersham) with 20 mM sodium dihydrogen citrate pH 4.0 as the mobile phase. The 

fractions containing the protein were subsequently pooled and manually injected on a 5 mL 

cation-exchange column HiTrap SP HP (Amersham). We took advantage of the charge 

difference between the full-length protein, the fragment α-syn(1-106)OH (hydrolyzed thioester) 

and the C-terminal 107-140 peptide for a single-column purification. At pH 4.0, the peptide is 

negatively charged (net charge: -2) and will not bind to the column while the full-length protein 

and the fragment (1-106) are positively charged and hence will bind to the column. At pH 5.0, 

the charge of the full-length protein is -1 and the fragment (1-106) has a charge of 6 and can be 

subsequently separated using a gradient of salt. We initially allow the peptide to pass in the flow 

through by washing the column after injection with 10 column volumes (CV) of 20 mM sodium 

citrate pH 4 then with a linear gradient of NaCl from 0 to 100% B (where A is a solution of 20 

mM sodium citrate pH 4, B the same solution supplemented with 0,5 M NaCl) over 4 CV on a 

Akta Purifier system. To elute bound proteins, we applied a linear gradient of NaCl from 0 to 

70% B (where A is B is a solution of 20 mM sodium citrate pH 5 and B is the same solution 

supplemented with 0,25 M NaCl) over 30 CV at a flow of 1 mL/min. The full-length protein 

elutes around 20% B and the fragment (1-106) around 30% B. The fractions containing the 

protein were extensively dialyzed against de-ionized water and lyophilized. The final yield of 

pure lyophilized protein is around 19% (9 mg).  

II.4.7. Preparation and purification of pS129 and pS87 α-syn 

Recombinant WT α-syn (3 mg per reaction, 10 µM) was phosphorylated at S129 in vitro by 

PLK3 (10 µg per reaction, 4.8 µg/mL) at 30°C in 20 mM HEPES (pH 7.4), 10 mM MgCl2, 2 

mM DTT, and 1 mM ATP. The phosphorylated protein was purified by reversed-phase HPLC 

using a semipreparative C8 column (InertSil 7.6 x 250 mm, 5 µm particles, 300Å pores). The 

proteins were eluted with a linear gradient from 20% to 40% of solvent B in solvent A over 40 

min at a flowrate of 5 mL/min (solvent A was water/0.1% TFA and solvent B was 

acetonitrile/0.1% TFA). The collected fractions were pooled according to purity assessed by 

ESI-MS and MALDI-TOF-MS. After purification, pS129 α-syn was lyophilized and stored at -

20°C until use. pS87 α-syn was prepared as previously described (Paleologou et al., 2010) .  
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II.4.8. Preparation of α-syn S129A, S129E and Y125F 

The expression and purification of α-syn S129A, S129E and Y125F were performed as 

described (II.4.4) (Paleologou et al., 2008). 

II.4.9. Circular dichroism measurements  

Protein samples (10 μM) in pH 7.5 buffer containing 50 mM Tris buffer and 150 mM NaCl 

were analyzed at 25°C using a Jasco J-815 CD spectrometer. An average of 10 spectra was 

collected in the range of 195-250 nm using a 0.1 mm path length quartz cuvette. Data points 

were acquired every 0.2 nm in the continuous scanning mode at a speed of 50 nm/min with a 

digital integration time of 2 s, and a bandwidth of 1 nm. Processed spectra were obtained by 

subtracting the baseline signal due to the buffer and cell contribution from the protein spectra 

and a final smoothing was applied (Savitzky-Golay filter; convolution width of 25 data points). 

II.4.10. In vitro Phosphorylation assay 

pY125 α-syn (6 μM) was incubated in 50 mM Tris pH 7.5, 10 mM DTT, 1 mM ATP, 1 mM 

MgCl2 in presence of 0,42 μg (1μL) of PLK3 (Invitrogen) in a total volume of 50 μL. For the 

phosphorylation by CK1, 6 μM of protein were incubated in CK1 buffer 1X supplemented with 

1 mM ATP and 1000 units of CK1 (1 μL) in a final volume of 50 μL. The reaction was allowed 

to proceed for 12 h at 30°C with no agitation. The extent of phosphorylation was monitored by 

MALDI-TOF-MS and western-blotting using pS87, pS129 and pY125-specific antibodies.  

For phosphorylation by tyrosine kinases, WT α-syn, -pS87, and -pS129 were incubated at a 

concentration of 3 µM in a final volume of 30 µL with the appropriate tyrosine kinase. Kinases 

were added at a final concentration of 50 nM. The reaction buffers were the following: Syk / 

Lyn: 50 mM Tris and 5 mM MnCl2 (50μL); Fyn / Src: 20 mM Tris and 5 mM MnCl2 (pH 7.4); 

Fgr: 50 mM Tris and 5 mM MgCl2 (pH 7.5). The reactions were started by the addition of 

freshly prepared ATP (1 mM), and incubated for 14 h at 30 °C before analysis. 

II.4.11. NMR spectroscopy  

Work carried out by Igor Diky (Prof. David Eliezer’s group) 

NMR studies were performed as previously described (Paleologou et al., 2008). Briefly, 

lyophilized 15N-labeled α-syn was dissolved in sample buffer (100 mM NaCl, 10 mM Na2HPO4, 

in 90% H2O, 10%, D2O at pH 7.4 to a concentration of 0.1-0.3 mM. For spectra in the presence 

of SDS, the sample buffer also contained 40 mM SDS. All 1H, 15N HSQC spectra were collected 

at 10 °C in the absence of SDS and at 40 °C in the presence of SDS on either a Varian INOVA 

600 MHz spectrometer (Weill Cornell Medical College) or a Bruker Avance 800 MHz 



  

 91 
  

spectrometer (New York Structural Biology Center) equipped with cryogenic probes. NMR data 

were processed by NMRPipe (Delaglio et al., 1995) and analyzed in NMRViewJ (Johnson, 

2004) . Spectra were referenced indirectly to sodium 2,2-dimethyl-2-silapentane-5-sulfonate and 

ammonia using the known chemical shift of water. Assignments for the spectra of mutant and 

phosphorylated α-syn at Y125 were estimated by transferring each previously assigned cross-

peak in the HSQC spectrum of WT α-syn to the closest unassigned cross-peak in each spectrum. 

Normalized per residue, the chemical shift change was calculated as Δδ = √(ΔδH1
2 + ΔδN15

2/25) 

/2). For PRE experiments, α-syn was dissolved in sample buffer without SDS, a 10-fold excess 

of MTSL spin-label was added and the resulting solution was incubated for 30 minutes. A 

buffer-exchange column was used to remove unbound spin-label and the sample was divided 

into diamagnetic and paramagnetic samples. DTT (final concentration 2 mM) was added to the 

diamagnetic sample to reduce off the spin-label. Matched two-dimensional HSQC spectra were 

collected on the two samples, and the ratio of the intensity of each cross-peak was determined. 

II.4.12. In vitro fibrillization assay 

pY125 α-syn and WT α-syn were incubated at 15 μM in a volume of 450 µL under constant 

agitation at 1200 rpm for 48h or 7 days at 37°C. ThT fluorescence reading was carried out with 

a ThT concentration of 10 μM and a protein concentration of 1.5 μM in a volume of 70 μL in a 

pH 8.5 buffer containing 50 mM Glycine. A TECAN spectrometer was used to measure ThT 

fluorescence at an excitation wavelength of 450 nm and an emission wavelength of 485 nm. 

Aliquots taken at 0, 24 and 48 h were measured in triplicates. Values were expressed as the ThT 

fluorescence of three measurements (mean ± S.D.). 

II.4.13. Transmission electron microscopy (TEM) 

7 μL of proteins were deposited on Formvar-coated 200 mesh copper grids (Electron 

Microscopy Sciences). Grids were washed with two drops of double-distilled H2O and stained 

with two drops of freshly prepared 2% (w/v) uranyl acetate (Electron Microscopy Sciences) and 

then vacuum dried from the edge of the grids. Specimens were viewed on a Philips CIME 12 

electron microscope, operated at 80 kV.  Digitized photographs were recorded with a CCD 

camera (Digital Camera Morada by Soft Imaging System, 4008 X 2672 pixels). 

II.4.14. Western-blot analysis 

Protein samples were separated at 80 V on 15% polyacrylamide 1 mm-thick gels over 1-2 h.  

The proteins were transferred onto nitrocellulose membranes (Omnilab SA) using a semi-dry 

transfer system (Bio-Rad) under constant current (~200 mA per membrane) and the membranes 
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were blocked for 1 h at room temperature with Odyssey blocking buffer (Li-COR Biosciences) 

diluted three-fold in PBS buffer. The membranes were probed with the relevant primary 

antibodies: mouse anti-α-syn (1:1000 dilution, BD Transduction Laboratories), rabbit anti-α-syn 

ab51252 (1:1000 dilution, Abcam), rabbit anti-α-syn SA3400 (1:1000 dilution, Biomol)  mouse 

monoclonal anti-phosphorylated α-Syn at Tyr-125 (1:1000 dilution; BD Transduction 

Laboratories), homemade rabbit anti-pY125 α-syn (1:1000); mouse monoclonal anti-pS129 α-

syn (dilution 1:5000; Wako), rabbit anti-pS87 α-syn (1:200 dilution,(Mbefo et al., 2010)) 

overnight at 4°C. After three washes with PBS buffer containing 0.1% (v/v) Tween 20 (Fluka), 

the membrane was incubated with secondary goat anti-mouse or anti-rabbit antibodies 

conjugated to Alexa 680 (dilution 1:5000; Invitrogen). The membranes were then washed three 

times with PBS buffer containing 0.01% (v/v) Tween 20 and once with PBS buffer and scanned 

on a LiCOR scanner at 700 nm. 

II.4.15. pY125 α-syn dephosphorylation assay 

HeLa cells were grown to 90% confluency in a 10cm Petri dish and lysed by occasional 

vortexing on ice over 30 min in 600 μL of lysis buffer (50 mM tris pH 7.4, 150 mM NaCl, 5% 

glycerol, 25 mM sucrose, 1% NP-40, and 0.25% sodium deoxycholate with 100 mM PMSF and 

protease inhibitor cocktail from Sigma). The lysate was clarified by centrifugation at 20800 g 

for 30 min at 4°C.  Incubation of pY125 α-syn (1.2 μg in 100 μL) with HeLa lysate was carried 

out for 0, 30 min and 1 h at 37°C. The reaction was quenched by the addition of Laemmli 

sample buffer. For inhibition by sodium orthovanadate, different concentrations of the activated 

inhibitor (0.1, 1 and 10 mM) were incubated with samples of lysate containing 1.2 μg of pY125 

α-syn for 2 h. Lysate from each incubation (300 ng) was loaded onto a SDS-PAGE gel and 

analyzed by Western-Blot with antibodies against WT α-syn and pY125 α-syn . 

II.4.16. Cell culture and transient transfection 

Human embryonic kidney cells (HEK 293T) and HeLa cells were grown in Dulbecco’s modified 

Eagle’s medium (Invitrogen) supplemented with 10% fetal bovine serum and 5% 

penicillin/streptomycin in a humidified incubator with 5% CO2 at 37 °C. For HEK 293T cells, 

transient transfection was performed in 6-well plates at a cell confluence of 70–80%, using a 

standard calcium phosphate (CaPO4) transfection protocol. For HeLa cells, transient transfection 

using LipofectamineTM 2000 (Invitrogen) was performed according to the manufacturer’s 

instructions. The total amount of plasmid used in the transfection was 2 μg/well for 6-well-

plates and 0.8 μg/well for 24-well plates. 
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II.4.17. Detection of pY125 α-syn in HEK 298T and HeLa cells 

HeLa and HEK 293T cells were grown in 6-well-plates and transfected with the plasmid pAAV 

α-syn WT and pAAV α-syn Y125F. The cells were treated with pervanadate (100 μM sodium 

orthovanadate and 4 mM H2O2) 24 h post-transfection for 5, 10 and 20 min, as reported 

previously (Ellis et al., 2001). The medium containing the inhibitor was removed, and the cells 

were subsequently harvested by pipetting in PBS or by scraping. The cells were pelleted by 

centrifugation at 100 g for 3 min, lysed by the addition of 100 μL of Laemmli buffer and boiled 

at 95°C for 30 min. 30 µL of sample was loaded on SDS-PAGE and analyzed by Western-Blot 

with antibodies for WT α-syn and pY125 α-syn 

II.4.18. Subcellular fractionation 

HEK 293 cells were grown in 6-well-plates, transfected with the plasmid pAAV WT α-syn and 

treated with pervanadate (100 μM sodium orthovanadate and 4 mM H2O2) 24h post-

transfection. Subcellular fractionation was carried out using the kit from Calbiochem according 

to the manufacturer’s instructions and as previously described (Mbefo et al., 2010). Pervanadate 

(100 μM sodium orthovanadate and 4 mM H2O2) was also added during the extraction steps.  

II.4.19. Primary neuronal cultures  

Work carried out by Jia Cui (Prof. Yan Zhang’s group) 

Rat primary neurons were cultured from newborn Sprague Dawley (SD) rat hippocampus, 

following the regulations of Peking University Animal Care and Use Committee. In brief, rat 

hippocampal tissues were dissociated with 0.25% trypsin (Invitrogen), which was then 

inactivated by 10% decomplemented fetal bovine serum (FBS, HyClone). The mixture was 

triturated through a pipette to produce a homogenous mixture. After filtering the mixture 

through 0,7 μm sterilized filters, the flow-through was centrifuged. The pellet was then washed 

once with PBS followed by one wash with Dulbecco's Modified Eagle Medium (DMEM) in 

Earle’s balanced salt solution containing 0.225% sodium bicarbonate, 1 mM sodium pyruvate, 2 

mM L-glutamine, 0.1% dextrose and antibiotic Pen-Strep with 5% FBS (all from Invitrogen). 

Cells were then plated on poly-L-lysine (Sigma) coated plates or on glass coverslips at a density 

of 1x106 cells/ml. Neurons were incubated at 37°C in DMEM without phenol red with 5% FBS 

and 5% circulating CO2. Cytarabine was added to culture media 24 hours after plating to a final 

concentration of 10 μM to inhibit cell growth. The culture medium was changed every 48 hours. 

Cells were used for experiments at day 7 of culture. 
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II.4.20. Subcellular localization of pY125 α-syn in HeLa cells  

HeLa cells were seeded on coverslips (100 000 cells in a 24-well-plate) pre-coated for 30 min at 

RT with Poly-L-lysine. The cells were transfected with the plasmid pAAV α-syn WT (0.8 µg ) 

and subsequently treated with pervanadate prepared as described above  for 30 min 24 h post-

transfection. The cells were subsequently fixed in 4% paraformaldehyde in PBS for 30 min, 

washed three times in PBS, blocked for 1 h with 3% BSA, 0.1% Triton X-100 in PBS and 

incubated overnight at 4°C with a cocktail of primary antibodies (mouse α-syn pY125, BD 

Pharmingen, 558246, 1:1000; rabbit α-syn, ab51252, Abcam, 1: 1000) in 1% BSA, 0.1% Triton 

X-100 in PBS. The cells were then washed three times with 1% BSA, 0.1% Triton X-100 in 

PBS and incubated for 1 h at RT with a cocktail of secondary antibodies (goat anti-mouse 

coupled to Alexa Fluor 568, Molecular Probes Inc., 1:1000; goat anti-rabbit coupled to Alexa 

Fluor 488, Molecular Probes Inc., 1:1000). After three washes in PBS, coverslips were counter-

stained with 4,6-diamidino-2-phenylindole (DAPI, 1:5000), washed 3 times with PBS and 

mounted on glass slides with Vectashield mounting medium (Vector). Cells were imaged using 

a Zeiss LSM700 confocal microscope. 

II.4.21. Microinjection and immunocytochemistry  

Work carried out by Jia Cui (Prof. Yan Zhang’s group) 

Thin-walled Borosilicate glass capillaries (outer diameter=1.0 mm, inner diameter=0.5 mm) 

with a microfilament (MTW100F-4, World Precision Instrument) were pulled with a 

Flaming/Brown Micropipette Puller (P-97, Sutter) to obtain injection needles with a tip diameter 

of approximately 0.5 μm. Microinjections into the cytosol of each were performed cell using an 

Eppendorf Microinjector FemtoJet and Eppendorf Micromanipulator (Eppendorf). Neurons 

were injected with 25 fl/shot at an injection pressure of 100 hPa, a compensation pressure of 50 

hPa, and an injection time of 0.1 s. pY125 α-syn was diluted for a final concentration of 1 μM in  

phosphate-buffered saline (PBS, 0.14 M NaCl, 0.003 M KCl, 0.01 M Na2HPO4, 0.002 M 

KH2PO4, pH7.2). The solutions were injected with 100 μg/ml dextran Texas Red (DTR, MW: 

3000, Molecular Probes) as a fluorescent marker or with Fast Green as a visible marker to 

enable the identification of injected cells. The injected cells were treated either with control 

DMEM medium or with pervanadate (100 μM orthovanadate and 4 mM H2O2) for 30 min. For 

immunocytochemistry, cells were fixed, permeabilized and blocked with 10% donkey serum at 

room temperature followed by incubation with anti-α-synuclein antibody (mouse α-syn pY125, 

BD Pharmingen, 558246, 1:1000; rabbit α-syn, ab51252, Abcam, 1: 1000) at 4°C for 24 h. Cy2 

or Cy3-conjugated donkey anti-rabbit antibody was used as the secondary antibody. Nuclei were 
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subsequently stained by Hoechst 33258 (1 μg/ml, Sigma) for 15 minutes in the dark. The 

coverslips were mounted on glass slides with ImmunonTM mounting medium (Shandon) and 

imaged by fluorescence microscopy (Olympus BH2-RFCA, Olympus) with a digital camera 

(Olympus DP70 Digital Microscope Camera, Olympus).  

II.4.22. Isolation, Expression and Purification of NbSyn87 

Work carried out by Farah El Tuk and Tim Guilliams (Prof. Christopher Dobson’s group) 

The antibody fragment, NbSyn87, was isolated and identified by the Dobson group using phage 

display selection following the immunization of a llama with α-syn, according to previously 

published protocol (Decanniere et al., 1999, Conrath et al., 2001). The expression and 

purification of NbSyn87 was performed as described in Guilliams et al. 2012. 

II.4.23. Isothermal Titration Calorimetry 

Work carried out by Tim Guilliams (Prof. Christopher Dobson’s group) 

Calorimetric data were recorded using an iTC200 calorimeter (MicroCal, LLC, Northampton, 

MA, USA). A solution of 40 μl of NbSyn87 at a concentration of 150 μM was titrated in 2 μl 

aliquots with a 150 s intervals into the calorimetric cell containing a standard volume (203 μl) of 

10 μM monomeric α-syn in solution. Experiments were performed at 25 °C in 10 mM phosphate 

and 150 mM sodium chloride at a pH of 7.4. The thermodynamic analysis was performed using 

the Microcal analysis software (Origin 7.0) using a simple 1:1 bimolecular binding model. 

 

II.5. RESULTS 

The semisynthesis of α-syn site-specifically phosphorylated within the C-terminus (residues 

107-140) involved an NCL reaction between the recombinant thioester α-syn(1-106)SR and the 

synthetic peptide α-syn (A107C-140) phosphorylated at Tyr-125 or the corresponding 

nonphosphorylated peptide. Because the primary sequence of α-syn does not contain any 

cysteine residues, we mutated alanine residue 107 to a cysteine to allow the NCL reaction to 

occur with the juxtaposed residue at position 106 being an unhindered residue (Gly). 

II.5.1. Generation of semisynthetic pY125 α-syn 

Recombinant α-syn(1-106)SR was expressed in E.coli utilizing the intein approach, which 

exploits the mechanism of intein self-splicing to generate recombinant proteins with a C-

terminal thioester (Figure II-3.A) (Muir et al., 1998). In the case of natural intein splicing, a 

series of transthioesterification and succinimide formation events that involve an arginine 
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residue at the C-terminus of the intein mediates the splicing of the intein and the linkage of the 

N-extein and the C-extein by an amide bond (Evans and Xu, 1999). Briefly, truncated α-syn(1-

106) was expressed in fusion with the GyrA mini-intein (Mxe GyrA) which contained a C-

terminal hexahistidine purification tag to facilitate purification from bacterial lysate.  

 

Figure II-3. Semisynthesis and characterization of phosphorylated α-syn derivatives 
A: Expressed Protein Ligation (EPL) approach to generate WT α-syn and pY125 α-syn. The α-syn(1-106)SR 
fragment was generated using intein-mediated thioester formation. MALDI-TOF analyses of 1) α-syn(1-106)SR 
(expected mass: 10744 Da [M+H]); The synthetic peptides α-syn (A107C-140) and α-syn(A107C-140)_pY125 
were generated by Fmoc-based SPPS. MALDI-TOF analyses of 2) α-syn(A107C-140)_pY125 (expected mass: 
3970 Da [M+H]);. Full-length semisynthetic α-synA107C and α-synA107C_pY125 were generated by a NCL step 
between α-syn(1-106)SR and synthetic peptide α-syn(A107C-140)_pY125 or α-syn(A107C-140). Radical 
desulfurization of the purified ligation product generated pY125 α-syn and α-syn WT. The final purification step 
involved a cation-exchange chromatographic step. B: MALDI-TOF analyses of 3) α-synA107C_pY125 (expected 
mass: 14573 Da [M+H]); and 4) pY125 α-syn (expected mass: 14541 Da ([M+H])). C: Coomassie blue stained 
SDS-PAGE analysis of the NCL reaction to generate pY125 α-syn. Lane 1, 2, 3, and 4 represent α-syn(1-106)SR; 
ligation reaction after 45 min, 90 min, and 140 min, respectively. 
 

Initially, we used the chitin binding domain from the commercially available IMPACT system 

(New England Biolabs) as a purification tag for the attachment of the fusion protein to the chitin 

beads followed by splicing on the column with 0.25 M MESNa and subsequent purification of 

the thioester by reversed-phase HPLC. We then added a C-terminal histidine tag on the intein to 

facilitate the purification of the protein from larger volumes of E.coli lysates .The purification 
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procedure was therefore modified and cell lysates were passed through a Ni-NTA column to 

immobilize the fusion protein and remove undesired proteins (Figure II-3.A). The α-syn(1-

106)SR was released by thiolysis with an excess of MESNa. The protein thioester was then 

purified by RP-HPLC and characterized by MALDI-TOF mass spectrometry and RP-HPLC 

(Figure II-3.A and Figure S II-3).  The peptide fragments α-syn (A107C-140) pY125 and α-syn 

(A107C-140) WT, each with an N-terminal cysteine, were generated by stepwise SPPS (Figure 

S II-1 and Figure S II-2). 

The expressed fragment α-syn(1-106)SR was then subjected to two separate NCL reactions 

under denaturing conditions with 2 molar excess synthetic C-terminal peptides α-syn (A107C-

140) pY125 and α-syn (A107C-140) (Figure II-3.A), generating two variants of full length α-syn 

A107C selectively phosphorylated at Tyr-125 (pY125 α-syn) and the wild-type (WT) protein, 

respectively. Hydrolyzed α-syn(1-106)-OH was generated as a minor side product, even when 

the NCL reaction was carried out at lower pH values. Due to the co-elution of α-syn(1-106)OH 

and the full-length protein by reverse phase HPLC under all conditions tested in our laboratory, 

we could not quantitatively assess the yield at each step of the semisynthesis. The final yield of 

the purified protein is 19%. (Figure II-3.C and Figure S II-5). Radical-initiated desulfurization 

of Cys-107 in the ligated proteins re-established the native Ala-107 residue in the 

phosphorylated variant of α-syn and its WT counterpart with minimal loss of starting material. 

A loss of 32 mass units from each protein was observed by MALDI-TOF-MS in each protein, 

consistent with the loss of a sulfur atom (Figure II-3.B, Figure S II-6 and Figure S II-8). 

Separation of the ligated fragment from the hydrolyzed thioester and excess C-terminal peptide 

was initially achieved by using a combination of different purification methods, including RP-

HPLC, anion-exchange, liquid isoelectric focusing and size exclusion chromatography. Only a 

combination of two or more of these techniques resulted in pure semi-synthetic proteins. 

However, this approach resulted in very low final yield. Later, the ligation products were 

purified using cation-exchange chromatography, which permitted single-step chromatographic 

separation of the full-length fragment, the hydrolyzed thioester, the C-terminal peptide and other 

contaminants (Figure S II-9, Figure S II-10 and Figure S II-11). Using optimized NCL, 

desulfurization and purification conditions, we obtained milligram quantities of the purified 

ligated proteins. In the case of α-syn phosphorylated at Y125, MALDI-TOF analysis of the 

purified products demonstrated a major peak with m/z = 14545 corresponding to the desired 

[M+H+] ions (Figure II-4.A and Figure S II-6 andFigure S II-8). Western-blot analysis using 
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anti-α-syn and anti-pY125 α-syn antibodies further confirmed the identity and purity of the 

semisynthetic WT α-syn and pY125 α-syn proteins (Figure II-4.B). 

II.5.2. Semisynthetic pY125 α-syn adopts an α-helical structure upon binding to 

membrane 

The secondary structure of the semisynthetic pY125 α-syn was investigated using circular 

dichroism in solution (50 mM Tris buffer and 150 mM NaCl, pH 7.5,) and in the presence of 

POPG vesicles (with a lipid:protein mass ratio of  20:1). As shown in Figure II-4.C, pY125 α-

syn exhibits a virtually identical CD spectrum to that of the WT recombinant α-syn in solution 

(random coil) and adopts an α-helical structure upon binding to the lipid vesicles.  

 

Figure II-4. Biochemical and biophysical characterization of semisynthetic WT and pY125 α-syn.  
A: SDS-PAGE, RP-HPLC and MALDI-TOF analyses of the pure semisynthetic pY125 α-syn. MALDI analysis 
pY125 α-syn (expected mass: 14541 Da ([M+H]), a sinapinic matrix adduct is also observed as well as the double-
charged peak. B: Western blot analyses of WT and pY125 α-syn confirmed that the phosphorylated semisynthetic 
protein could be detected by the anti-phosphorylated α-syn primary antibody, as well as by a non-phospho-specific 
antibody C: Circular dichroism spectra of pY125 α-syn in the absence (circles) and presence (triangles) of POPG 
vesicles. Open and closed symbols indicate WT recombinant α-syn and pY125 α-syn, respectively.  
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II.5.3. Phosphorylation at Y125 does not alter the structure of monomeric α-syn 

To determine the effect of Y125 phosphorylation on the structural properties of monomeric α-

syn, 15N labeled A107C α-syn and A107C/pY125 α-syn were generated for solution NMR 

studies (Figure S II-12 and Figure S II-13).  The NMR spectra of the free proteins were 

essentially identical and similar to the equivalent spectrum of the WT protein (not shown), 

indicating that both A107C and A107C/pY125 α-syn remain in the highly disordered ensemble 

characteristic of this protein (Eliezer et al., 2001). 

 

Figure II-5. NMR characterization of free and micelle-bound WT and pY125 α-syn.  
A: Paramagnetic relaxation enhancement profiles for A107C (upper panel) and A107C/pY125 (lower panel) α-syn, 
derived from the intensity ratios of equivalent resonances between 1H, 15N HSQC spectra collected with and 
without an attached spin-label.  A ratio of 1 indicates no PRE effect, while smaller ratios indicated a PRE effect, 
resulting from the proximity of the corresponding residue to the site of spin-label attachment. B: Overlaid 1H, 15N 
HSQC spectra of SDS micelle bound WT (black) and A107C/pY125 (red) α-syn (upper panel) and plots of the 
normalized chemical shift changes between the two spectra as a function of residue number (lower panel).  The 
solid line in panel B is a three-residue average.  Note that each red peak corresponds closely to a black peak, 
indicating that the structures of the two variants are highly similar in the micelle-bound state.  Black peaks without 
corresponding red peaks arise from residues 108 and beyond, where the semisynthetic A107C/pY125 protein is not 
15N-labeled and therefore does not give rise to signals in this spectrum. 
 

To assess the potential influence of phosphorylation on the transient long-range structure of the 

protein, we collected paramagnetic relaxation data for phosphorylated and unphosphorylated α-

syn modified at Cys 107 by the spin label MTSL. The paramagnetic spin label increases the 
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relaxation rate and thus broadens the resonance of any residue within ~20 Å. Intramolecular 

contacts can thus be discerned by measuring the intensity ratio of resonances in a 

paramagnetically-labeled sample to the equivalent resonances in a diamagnetic control.  

Plots of the intensity ratio as a function of residue number for A107C and A107C/pY125 α-syn, 

shown in Figure II-5.A reveal two interesting results.  First, even in the unphosphorylated 

sample, there is little indication of the previously reported long-range contacts between the C- 

and N-terminal regions of the protein (Paleologou et al., 2008). This observation is surprising, 

but suggests that position 107 may not be highly sensitive to these contacts. However, there is a 

significant difference in the data between the phosphorylated and unphosphorylated proteins in 

the regions proximal to the labeling site.  Residues close to the labeling site are broadened 

because they are covalently constrained to close proximity with the spin label, resulting in a well 

(or minimum) around position 107.   

It has been argued that the breadth of this well reflects the local compactness of the protein.  

Despite the fact that only residues prior to the position 107 in A107C/pY125 α-syn are 15N 

labeled give rise to data, it is evident that the well around position 107 is narrower for the 

phosphorylated protein.  This result indicates that in the phosphorylated protein, the C-terminal 

region samples a more expanded ensemble of conformations. 

Because the PRE data could not be used to monitor changes in long-range contacts due to 

phosphorylation at position 125, we also measured and compared the hydrodynamic radii of the 

phosphorylated and unphosphorylated proteins using pulsed field gradient NMR methods. The 

hydrodynamic radius of A107C/pY125 α-syn was found to be identical, within experimental 

error, to that of both A107C and WT α-syn, indicating that no significant overall compaction or 

expansion of the monomer occurs upon Y125 phosphorylation. These observations contrast with 

observations made in the case of S129 phosphorylation, where a significant degree of expansion 

occurs (Paleologou et al., 2008). 

We also examined the potential effects of phosphorylation at Y125 on the micelle-bound form 

of the protein; this form is thought to closely resemble one of several membrane-bound forms of 

the protein. We observed a high degree of overlap between the 1H,15N-HSQC spectra of WT 

A107C/pY125 α-syn in the presence of SDS micelles (Figure II-5.B), indicating that no gross 

structural changes in the protein occur upon phosphorylation at Y125. To more closely assess 

the effects of Y125 phosphorylation, we plotted the chemical shift changes between the two 

spectra as a function of residue number (Figure II-5.B). The results show that while the changes 

are generally small (on the order of 0.01 ppm), they are larger than those we observed for pS129 

(Paleologou et al., 2008). Furthermore, these changes appear to be slightly greater in regions 
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corresponding to the center of each of the two previously characterized helices of the micelle-

bound form of the protein (Bisaglia et al., 2005).   

II.5.4. Phosphorylation at Y125 does not affect the fibrillization of α-syn 

Previously, work from our group and others (Paleologou et al., 2008, Levitan et al., 2011) has 

shown that phosphorylation at S129 inhibits the fibrillization of α-syn in vitro. To determine 

whether phosphorylation at Y125 influences the aggregation properties of α-syn, we optimized 

conditions for α-syn fibril formation at low protein concentrations (15 µM) and compared the 

extent and kinetics of fibrillization of semisynthetic pY125 α-syn to those of the semisynthetic 

WT α-syn and recombinant WT proteins. Each protein was incubated with agitation at 37°C and 

the extent of fibrillization was assessed by ThT fluorescence and TEM after 72 h of agitation. 

As evidenced by the increase in ThT signal shown in Figure II-6, WT and pY125 α-syn forms 

mature fibrils after 24 h of incubation. Next, we assessed the amount of monomeric protein 

using a filtration assay and used TEM to characterize the structural properties of the aggregates 

formed by each protein. On the structural level, both WT and pY125 α-syn formed mature 

fibrillar structures (Figure II-6.C and Figure S II-14). 

 

Figure II-6. Fibrillization of pY125 α-syn.  
A: ThT fluorescence of recombinant WT and pY125 α-syn monitored over 48 h. B: SDS-PAGE analysis of the 
remaining WT and pY125 α-syn monomers prior to and after aggregation for 72 h and filtration through a 100 kD 
membrane. C: TEM images of WT and pY125 α-syn after 7 days of aggregation. The scale bar represents 500 nm. 
The images are representative of 5 independent experiments. The scale bar represents 500 nm. 
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After filtration of the samples through a 100 kDa membrane filter, the amount of monomeric α-

syn was assessed by SDS-PAGE analysis. No significant amounts of monomers were detected 

for WT and pY125 α-syn after 7 days (Figure II-6.B). Together, these data suggest that 

phosphorylation at Y125 does not alter the aggregation of α-syn. 

II.5.5. pY125 α-syn is dephosphorylated within minutes in vitro and in vivo 

To investigate the subcellular localization in vivo, pY125 α-syn was microinjected into 

hippocampal primary neurons at a concentration of 1 μM. Because microinjected pY125 α-syn 

might be rapidly dephosphorylated, we fixed the neurons either immediately or 30 min after 

microinjection and probed for pY125 α-syn and total α-syn using the appropriate antibodies. 

Interestingly, in the injected cells, the signal for pY125 α-syn dramatically decreased within 30 

min compared to the signal for WT α-syn (data not shown).  

 

Figure II-7. Dephosphorylation and detection of pY125 α-syn in cells  
A: Confocal images of HeLa cells transfected with WT α-syn plasmid and treated or not with pervanadate for 
30min. The scale bar represents 20 μm. Subsequently, the cells were fixed and stained with the indicated antibodies 
(respectively rabbit anti-α-syn from Abcam ab51252 and mouse anti-pY125 α-syn from BD Pharmingen). B: 
Detection of pY125 α-syn in primary neurons. Confocal images of rat hippocampal neurons microinjected with 1 
μM pY125 α-syn (25 fl/injection) together with the visible marker dye Faster Green (100 μg/ml) to identify the 
injected cells, the cells were treated with medium containing pervanadate for 30 min. Subsequently, the cells were 
fixed and stained with the indicated antibodies (respectively rabbit anti-α-syn from Abcam ab51252 and mouse 
anti-pY125 α-syn from BD Pharmingen). C: Immunoblots of HEK and HeLa cell lysates untreated or treated with 
pervanadate for 0, 5, 10 and 20min. The membranes were probed with total α-syn and pY125-specific antibodies 
(respectively rabbit anti-α-syn ab51252 from Abcam and mouse anti-pY125 α-syn from BD Pharmingen) D: 
Immunoblots of pY125 α-syn dephosphorylated from HeLa cell lysate. Membranes were probed with total α-syn 
and pY125-specific antibodies. The dephosphorylation was inhibited using different concentrations of sodium 
orthovanadate. E: Immuboblots of the subcellular fractionation of HEK cells over-expressing WT α-syn and treated 
with pervanadate for 20 min. Markers for cytoplasmic, membrane and nuclear fraction were used to assess for the 
purity of each fractions (Hsp90α, calnexin and PARP-1). 
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To confirm these observations and to test for rapid dephosphorylation in vitro, a HeLa cell 

lysate was spiked with pY125 α-syn and incubated for 0, 30 and 60 min. A loss of signal from 

the phosphorylated protein but not from the total α-syn protein was observed, indicating that 

pY125 α-syn is completely dephosphorylated by endogenous phosphatases within 30 min of 

incubation (Figure II-7.D). These results indicate tight regulation of the phosphorylation state of 

α-syn at Y125 by endogenous tyrosine phosphatases. In these experiments, dephosphorylation 

was effectively inhibited using sodium orthovanadate, a general tyrosine-phosphatase inhibitor. 

II.5.6. pY125 α-syn is localized into the cytoplasm in HeLa cells and primary neurons  

Previous attempts to characterize the possible effect of Y125 phosphorylation on the subcellular 

localization of α-syn were unsuccessful, in part due to lack of pY125-specific antibodies that are 

suitable for immunocytochemistry (Chen et al., 2009). In an attempt to overcome this limitation, 

we generated an antibody specific for pY125 α-syn and used it to immunolocalize of pY125 α-

syn in HeLa cells and rat hippocampal neurons. The pattern of pY125 α-syn immunoreactivity 

produced by this antibody was compared with the pattern obtained using a commercially 

available antibody from BD Pharmingen. 

For these experiments, we first identified conditions that prevent rapid dephosphorylation of 

pY125 α-syn. Previous reports indicated that pY125 α-syn is detectable in HEK293 cells that 

overexpress WT α-syn upon treatment with pervanadate (Ellis et al., 2001, Ahn et al., 2002). We 

validated these findings and found by Western-blot analysis of lysates from HEK293 and HeLa 

cells overexpressing human WT  α-syn, that treatment with pervanadate results in the 

upregulation of pY125 α-syn in these cells (Figure II-7.C). 

In cells over-expressing WT α-syn, but not the mutant Y125F α-syn, we observed a significant 

increase in the level of pY125 α-syn when the duration of treatment with pervanadate was 

increased. Non-specific bands of higher molecular weight were also detected with both the 

commercial (BD Pharmingen) and homemade anti pY125 α-syn antibodies after pervanadate 

treatment (Figure S II-15).  This precludes the use of these antibodies to accurately assess in 

more details the subcellular localization of pY125 α-syn in specific cellular organelles. We were 

able to partially circumvent this problem by studying the subcellular localization of pY125 α-

syn in HeLa cells overexpressing α-syn (Figure II-7.A). Quantification of the average 

fluorescence intensity of 65 cells (data not shown) treated with pervanadate showed that the 

increasing levels of cytosolic pY125 α-syn correlated well with increasing α-syn levels, and 

indicated a predominantly cytosolic localization of pY125 α-syn. We did not observe pY125 α-

syn immunoreactivity in the nucleus nor was any cytosolic increase in pY125 α-syn 
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immunoreactivity observed in HeLa cells over-expressing the mutant Y125F α-syn (Figure S 

II-16). When semisynthetic pY125 α-syn was microinjected into rat hippocampal neurons at a 

concentration of 1 μM, it showed a cytoplasmic distribution similar to the distribution of WT α-

syn immunoreactivity in HeLa cells (Figure II-7.B). To more accurately assess the subcellular 

localization of pY125, we preformed subcellular fractionation studies on HEK 293T cells 

overexpressing -synuclein in the presence and absence of pervanadate. Using this approach, we 

can demonstrate conclusively that pY125 localizes mainly in the cytosolic fraction and to a 

small extent in the membrane fraction, consistent with the results from immunocytochemistry 

(Figure II-7.E).  

II.5.7. Phosphorylation at Y125 does not block the phosphorylation at S129 and S87 in 

vitro and vice-versa 

The proximity of the three C-terminal tyrosine residues in α-syn suggests the possibility that the 

phosphorylation of one of these residues may trigger or modulate the extent of phosphorylation 

at the other residues. In a recent study, Y125 phosphorylation was suggested to protect against 

α-syn toxicity (Chen et al., 2009). Using a transgenic Drosophila model overexpressing the 

S129D phosphomimetic mutant of human α-syn in retinal and dopaminergic neurons, Chen et 

al. demonstrated that co-expression of Shark, a Drosophila homolog of the human tyrosine 

kinase Syk, which was previously reported to efficiently (although non-specifically) 

phosphorylate α-syn at Y125 (Negro et al., 2002), significantly alleviates neurodegeneration due 

to S129D α-syn expression. To investigate potential cross-talk between Y125 and S129 

phosphorylation sites, pY125 α-syn was incubated with PLK3, CK1 kinases, which are known 

to phosphorylate α-syn specifically and efficiently at S129 (PLK3) or at S87 and S129 (CK1). 

Phosphorylation at Y125, S129 and S87 was detected using the appropriate phosphospecific 

antibodies and confirmed by MALDI-TOF MS (Figure II-8.A-B).  

These results indicated that phosphorylation of α-syn at Y125 does not prevent recognition of 

the protein by PLK3 or CK1, affect the subsequent phosphorylation of pY125 α-syn at S129 and 

S87, or prevent recognition of the double-phosphorylated species (pY125/pS87 and 

pY125/pS129) by the appropriate antibodies. To determine whether phosphorylation at Y125 

influences S129 phosphorylation by endogenous kinases, we assessed the levels of pS129 in 

HeLa and HEK293 cells before and after treatment with pervanadate. Despite the significant 

increase in pY125 α-syn levels observed upon treatment with pervanadate, we did not observe 

any significant changes in pS129 levels (Figure II-9).  



  

 105 
  

A recent study by Chen and colleagues suggested that phosphorylation at S129 does not affect 

the tyrosine phosphorylation of α-syn (Chen et al., 2009). However, these results were based on 

expression of a phosphomimetic mutant (S129D) that does not reproduce all aspects of 

phosphorylation at this site (Paleologou et al., 2008). Therefore, we sought to determine whether 

prior phosphorylation at S129 effects further phosphorylation at Y125 by the non-receptor 

tyrosine kinases Syk and members of the Src family (Lyn, Fyn, c-Fgr and c-Src), which have 

been previously shown to phosphorylate tyrosine residues in the C-terminus of α-syn.  

 

Figure II-8. Phosphorylation of pY125 and pS129 α-syn.  
A: Immunoblots of pY125 α-syn phosphorylated by CK1 and PLK3. Membranes were probed using pS129, pY125, 
and α-syn antibodies. B: MALDI-TOF-MS analysis of the phosphorylation reaction after 12h. C: Immunoblots of 
pS129 α-syn phosphorylated by Syk, Lyn, Fyn, c-Src, and c-Fgr. Membranes were probed for pY125, pS129, and 
α-syn immunoreactivity. D: MALDI-TOF analysis of pS129 α-syn phosphorylated by (a) Syk, (b) Lyn, (c) Fyn, (d) 
c-Src, (e) and c-Fgr (f) after 14h of reaction. In all MALDI-TOF-MS spectra, the symbol ‘n’ indicates the peak 
corresponding to the starting material, the numbers above the other peaks correspond to the number of 
phosphorylation events, which were each detected by a +80 Da mass shift. The symbol ‘*’ indicates a sinapinic 
acid matrix adduct. 
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Figure II-9. Phosphorylation of pY125 α-syn and pS129 α-syn.  
Immunoblots of HeLa cells over-expressing WT α-syn and treated with pervanadate for 0, 5, 10 and 20min. 
Membranes were probed with pS129 and pY125 α-syn and WT α-syn antibodies. 
 

The protein was first quantitatively phosphorylated using PLK3, purified by reversed-phase 

HPLC and incubated at 3 µM for 14 h at 30°C in the presence of 100 nM of each individual 

tyrosine kinase. Western blot and MALDI-TOF-MS analyses (Figure II-8.C-D), showed the 

same efficiency and site-specificity of phosphorylation by these kinases as reported in previous 

in vitro studies. Of these kinases, Syk is by far the most efficient at phosphorylating α-syn with 

a reported Kcat/Km of around 30, it also phosphorylated multiple tyrosines within the C-terminal 

region of α-syn (Ellis et al., 2001, Negro et al., 2002). We consistently observed 

phosphorylation at Y125 and at two other sites by MALDI-TOF MS (Figure II-8.D (b)). The 

other kinases were more specific but lacked efficiency. For example, the Kcat/Km for Lyn is 

around 0.5. Most importantly, we observed that S129 phosphorylation did not block the activity 

of any of the tyrosine kinases. As a control, WT α-syn was incubated under the same conditions, 

a similar phosphorylation pattern was obtained (data not shown). Western-blot-based detection 

of Y125 phosphorylation appeared to be more sensitive than MALDI-TOF-MS because pY125 

α-syn could be detected in all of the enzymatic reactions (Figure II-8.C). Together, these data 

suggest that S129 phosphorylation of α-syn does not interfere with further modifications of the 

protein by tyrosine kinases.  Moreover, because the consensus recognition sequences of tyrosine 

kinases such as Syk includes acidic residues (Brunati et al., 1995), pS129 might act to stabilize 

the electrostatic interactions between the kinases and α-syn. 

We performed a similar experiment aimed at determining whether phosphorylation at S87, 

another disease-related phosphorylation site within α-syn that was recently identified by our 

group (Paleologou et al., 2010), influence the recognition and processing of α-syn by the soluble 

tyrosine kinases mentioned above. We observed that phosphorylation of α-syn at S87 does not 
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significantly influence the protein’s activity as a substrate for the non-receptor tyrosine kinases 

Syk, Fyn, Ly, c-Fgr, and c-Src or the site-specificity of its phosphorylation by these enzymes 

(Figure S II-17). 

II.5.8. Phosphorylation at Y125 disrupts the binding of nanobody Nb87 to α-syn C-

terminus 

Phosphorylation of α-syn at Y125 has been previously shown to affect α-syn protein-protein 

interactions as described in reports using C-terminal fragments of α-syn (McFarland et al., 

2008). We sought to probe the effect of phosphorylation at S129 and Y125 on the interaction of 

full-length α-syn with proteins or peptides that are known to bind tightly to α-syn via specific 

interactions involving the C-terminal region of the protein. After careful review of the literature, 

we decided to focus on Nanobodies, which are single antibody variable domains obtained by 

immunization of camels (Dumoulin et al., 2003, Vincke et al., 2009, De Genst et al., 2010) . 

More specifically, we took advantage of the use of Nanobody Nb87 that was previously 

identified by the Dobson group using phage-display and was shown to bind with high affinity 

(Kd in the range of nM) to α-syn (De Genst et al., 2010)(Guilliams et al, 2012). NMR studies 

have shown that Nb87 binds sites comprising α-syn C-terminal residues 118-132 (Guilliams et 

al, 2012). To assess the influence of α-syn phosphorylation at S129 and Y125, we generated the 

corresponding forms of the protein either via in vitro phosphorylation of WT α-syn with PLK3 

(pS129) or by semisynthesis (pY125) and evaluated their binding to Nb87 using Isothermal 

Titration Calorimetry technique (in collaboration with the Dobson group). Given the common 

use of phosphomimics, we also sought to compare the binding of pS129 and S129E to Nb87. 

S129A and Y125F were also included as controls.  

Phosphorylation of α-syn at Y125 and the mutation of Tyr125 to Phe resulted in 638-fold and 

23-fold lower affinity to Nb87 respectively compared to the WT protein (Figure II-10.C and 

Figure II-11.A). These results suggest that the epitope of α-syn recognized by Nb87 is most 

likely situated around residue 125 and that phosphorylation of α-syn at Y125 strongly impaired 

α-syn-Nb87 interactions. Aside from the disruption of the binding to Nb87, phosphorylation at 

Y125 also induced higher enthalpy of binding (5-fold higher), compared to WT and Y125F α-

syn (Figure II-11.A), which suggests a binding event that has an entropic contribution.   

We were also able to assess for the first time, the effect of site-specific phosphorylation of full-

length α-syn on its interactions with proteins. Phosphorylation at S129 did not affect 

significantly the binding to Nb87 and even showed a slight increase of binding affinity in 

respect to WT or S129A α-syn (Kd = 10nM) (Figure II-10. D,E,F and Figure II-11. B). 
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However, some differences emerged in the case of the phosphomimic: the binding of S129E to 

Nb87 was 4 fold weaker than pS129 (Figure II-10. D,E,F and Figure II-11. B), consistent with 

previous results from our lab highlighting major differences between phosphomimics S129E 

and S129D and phosphorylated α-syn pS129 on the structure and fibrillization rate of α-syn 

(Paleologou et al., 2008). The binding enthalpies were similar though for all α-syn constructs 

(Figure II-11.B). These results demonstrate that the phosphomimics are not suitable for 

investigating α-syn phosphorylation-dependent protein-protein interactions.  

 

Figure II-10. Raw ITC thermograms of Nb87 binding to α-syn variants  
Raw ITC thermograms of Nb87 binding to WT (A), Y125F (B), pY125 (C), pS129 (D), S129E (E), S129A (F) α-
syn. Data were recorded in PBS at 25°C.  
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Figure II-11. Dissociation constants and binding enthalpies of Nb87 binding to α-syn variants 
Dissociation constants and binding enthalpies of α-syn-Nb87 binding were calculated for WT, Y125F and pY125 α-
syn (A) and WT, pS129, S129E and S129A α-syn (B) 
 

II.6. Discussion 

Recent studies indicate that α-syn phosphorylation at serine residues S87 and S129 can 

dramatically influence α-syn structure (Paleologou et al., 2008, Paleologou et al., 2010), turn-

over (Chau et al., 2009), membrane binding (Paleologou et al., 2008, Paleologou et al., 2010), 

aggregation (Paleologou et al., 2008, Paleologou et al., 2010) and protein-protein interactions 

(McFarland et al., 2008). Notably, phosphorylations at S87 and S129 have emerged as a 

defining hallmark of PD and other synucleinopathies (Fujiwara et al., 2002, Anderson et al., 

2006). The use of phosphomimetic mutations (S E/D) combined with the identification of 

kinases that specifically phosphorylate α-syn in vitro and in vivo has facilitated detailed studies 

that aimed at investigating the structural and functional consequences of phosphorylation of the 

protein at these residues in vitro and in vivo (Okochi et al., 2000, Pronin et al., 2000, Chen and 

Feany, 2005, Gorbatyuk et al., 2008, Azeredo da Silveira et al., 2009, Chen et al., 2009, Inglis et 

al., 2009, Mbefo et al., 2010). In addition to serine residues, α-syn has also been shown to 

undergo phosphorylation at its C-terminal tyrosine residues Y125, Y133, Y136 in vitro, with a 

preference for Y125 as the major phosphorylation site (Ellis et al., 2001, Nakamura et al., 2001, 

Ahn et al., 2002, Negro et al., 2002). However, only phosphorylation at Y125 has been detected 

in vivo (Chen et al., 2009). 
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Several kinases have been reported to phosphorylate tyrosine residues in the C-terminus of α-

syn. However, all known kinases are either inefficient or lack specificity to phosphorylate α-syn 

at specific tyrosine residues in its C-terminus. The tyrosine kinase Syk phosphorylates α-syn at 

multiple tyrosine residues (Y125, Y133 and Y136) (Negro et al., 2002). In contrast, Fyn, Lyn, c-

Fgr and c-Src phosphorylate α-syn specifically at Y125, but these kinases are less efficient 

(Negro et al., 2002). The lack of specificity and efficiency of tyrosine phosphorylation of α-syn 

has hampered efforts to obtain homogenous preparations of phosphorylated α-syn and to 

elucidate the structural and functional consequences of phosphorylation at Y125. Unlike 

phospho-serine and phospho-threonine, which in some cases can be mimicked by serine  

glutamate or aspartate substitutions, there are no natural amino acids that can mimic phospho-

tyrosine. Inspired by the pioneering work of Muir and Cole on the use of expressed protein 

ligation to study the effect of site-specific phosphorylation and other post-translational 

modifications (Muir et al., 1998), we developed, for the first time, an efficient semisynthetic 

approach based on a one-pot native chemical ligation and desulfurization followed by a single 

chromatographic purification step for the production of pY125 α-syn. This strategy enabled us 

to obtain preparations of α-syn protein site-specifically modified at single or multiple residues 

within the C-terminal region comprising residues 107-140, the region that contains the majority 

of the reported PTM of the protein. Using this approach, we were able to obtain milligram 

quantities of semisynthetic WT and pY125 α-syn and to carry out detailed studies aimed at 

elucidating the effect of this modification on the structure, membrane binding, aggregation and 

subcellular localization of α-syn.  

The results presented here demonstrate that phosphorylation at Y125 does not significantly alter 

the structure of monomeric α-syn in solution (Figure II-4.B and Figure II-5). Although the 

hydrodynamic radius of pY125 α-syn is virtually identical to that of the WT protein, the 

paramagnetic relaxation data presented here indicate that the C-terminal region of pY125 α-syn 

samples a more expanded ensemble of conformations than in the WT protein. Interestingly, 

these observations contrast with the case of S129 phosphorylation, where a significant degree of 

expansion occurs (Paleologou et al., 2008). Phosphorylation at Y125 did not interfere with the 

ability of α-syn to form an α-helical structure upon binding to synthetic phosphatidylglycerol 

(POPG) or SDS micelles as assessed by CD spectroscopy. These results are consistent with 

previous observations regarding pS129 and with the fact that both S129 and Y125 lie outside the 

region involved in α-syn binding to membranes. However, the 1H,15N-HSQC spectra of the 

protein reveal small structural changes that are larger than those observed for the case of pS129 
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(Paleologou et al., 2008). Furthermore, the structural changes in the protein that result from 

Y125 phosphorylation appear to be slightly greater in regions corresponding to the centers of 

each of the two previously characterized helices of the micelle-bound form of the protein 

(Bussell and Eliezer, 2003).  Thus, while phosphorylation at Y125 does not result in large-scale 

structural changes in the micelle-bound form of the protein, it may cause slight rearrangements 

of the two micelle-bound helices. Such small changes may be consistent with results that 

indicate that modifications occuring in the C-terminal tail of the protein can influence the N-

terminal lipid-binding domain (Sevcsik et al., 2011).  

Previous studies by Negro et al. showed that co-incubation of α-syn with Syk kinase inhibits α-

syn aggregation in vitro (Negro et al., 2002). Co-expression of Syk and α-syn was also reported 

to inhibit α-syn oligomerization and inclusion formation in cell culture (Negro et al., 2002) and 

in Drosophila expressing Shark, the fly homolog of Syk (Chen et al., 2009). However, it is 

difficult to discern the relative contribution of phosphorylation at Y125 in these studies, because 

the Syk kinase phosphorylates all three C-terminal tyrosine residues (Y125, Y133 and Y136) to 

different extents. In subsequent studies by Negro and colleagues, it was reported that the 

addition of other tyrosine kinases (Lyn and c-Fgr) did not influence the aggregation of α-syn in 

vitro (Negro et al., 2002). However, the significantly reduced efficiency of these kinases for the 

phosphorylation of α-syn makes it difficult to draw any conclusions regarding the effect of 

phosphorylation at Y125 on α-syn aggregation and fibrillization. In this work, the availability of 

semisynthetic pY125 α-syn allowed us to address this question directly for the first time. WT α-

syn and semisynthetic pY125 α-syn exhibited similar aggregation properties as discerned by 

TEM and ThT fluorescence, demonstrating that pY125 α-syn behaves similarly to the 

recombinant protein produced in E. coli, unlike phosphorylation at S129, which inhibits α-syn 

fibrillization. Interestingly, pY125 α-syn exhibited similar aggregation properties as WT α-syn, 

consistent with the NMR results demonstrating that phosphorylation at Y125 induces only 

subtle structural changes on monomeric α-syn.  

The availability of semisynthetic pY125 α-syn provided unique opportunities to assess the 

subcellular localization of pY125 α-syn and to explore the potential cross-talk between 

phosphorylation at S129 and Y125. Recent studies by Chen et al. suggested that Y125 

phosphorylation may protect against α-syn toxicity by decreasing α-syn phosphorylation at S129 

(Chen et al., 2009). To investigate possible cross-talk between phosphorylation at S129 and 

Y125, we combined semisynthetic approaches and enzymatic phosphorylation assays. 

Employing optimized procedures for the in vitro phosphorylation of α-syn, we used 
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semisynthetic pY125 α-syn to examine the effect of phosphorylation at Y125 on S129 

phosphorylation by subjecting pY125 α-syn to phosphorylation by kinases that phosphorylate α-

syn efficiently at S129 (PLK3) and/or S87 and S129 (CK1) (Paleologou et al., 2008, Mbefo et 

al., 2010). To determine whether phosphorylation at S129 influence Y125 phosphorylation, we 

prepared pS129 α-syn by in vitro phosphorylation with PLK3 (Mbefo et al., 2010) and 

examined the extent of Y125 phosphorylation (pS129/pY125) by the tyrosine kinases Fyn, Lyn, 

Src, c-Fgr and Syk (Ellis et al., 2001, Nakamura et al., 2001, Ahn et al., 2002, Negro et al., 

2002). Our results demonstrate that phosphorylation at Y125 does not attenuate α-syn 

phosphorylation at S129 or S87 in vitro and vice-versa. These findings are consistent with the 

results of studies from Feany and colleagues in Drosophila suggesting that S129 

phosphorylation of α-syn does not influence Y125 phosphorylation. The levels of pY125 α-syn 

were similar in flies overexpressing WT, S129A or S129D, suggesting that S129 

phosphorylation does not influence phosphorylation at Y125. This study confirms these findings 

in mammalian cells (HeLa and HEK 293T), where no changes in pS129 levels were observed 

after treatment with phosphatase inhibitors that significantly enhance pY125 α-syn levels. 

The lack of significant interest in phosphorylation of α-syn at Y125, compared to 

phosphorylation at S87 and S129 can be attributed to difficulties in detecting significant levels 

of pY125 α-syn in human brain tissues and lack of evidence for a direct correlation between 

pY125 α-syn levels and disease progression. Proteomic and mass spectrometry analyses of α-

syn from Lewy bodies failed to detect phosphorylation at Y125 (Anderson et al., 2006). The 

rapid dephosphorylation of α-syn in post-mortem tissues may explain the limited success of 

previous studies in detecting pY125 α-syn in human brains and by biochemical analysis of 

brain-derived materials using mass spectrometry. Due to the dynamic regulation of tyrosine 

phosphorylation in vivo, detection of α-syn phosphorylation at Y125 appears to be dependent on 

the use of tyrosine phosphatase inhibitors or on the time elapsed prior to post-mortem analyses. 

Recently, Y125 phosphorylation was shown to occur both in human and Drosophila brains and 

pY125 α-syn levels was reported to decrease with aging and in PD brains, suggesting a possible 

protective role for this modification (Chen et al., 2009). Interestingly, in the presence of 

phosphatase inhibitors, 30% of α-syn in Drosophila appears to be phosphorylated at Y125 

supporting the role of Y125 phosphorylation in modulating α-syn properties. In this study, we 

showed that upon addition of pY125 α-syn to cell lysates or microinjection into primary 

neurons, pY125 α-syn is almost completely dephosphorylated within 5 min. This effect is 

blocked in the presence of pervanadate. These results are consistent with a very rapid 
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dephosphorylation of α-syn both in vitro and in vivo. Phosphorylation at Y125 appears to be 

tightly regulated such that the levels of pY125 α-syn are maintained at very low levels but 

increases significantly in cell culture, primary neurons, and brain tissues, upon treatment with 

the phosphatase inhibitor pervanadate (Ellis et al., 2001, Ahn et al., 2002, Chen et al., 2009). 

Together, these studies demonstrate that α-syn undergoes phosphorylation at Y125 in vivo and 

suggest that experiments aimed at evaluating and correlating specific PTM with disease 

progression must take into account the stability and dynamics of these modifications, and that 

the protocols used for the analysis and preparations of samples must be modified accordingly.  

Nakamura et al reported that the levels of pY125 α-syn increases by approximately 15 fold 

within the first few minutes in response to hyperosmotic stress, but then declines rapidly after 10 

min. These observations indicate the existence of efficient dephosphorylation mechanisms that 

regulate pY125 α-syn levels (Nakamura et al., 2002). However, the identities of the 

phosphatases responsible for regulating pY125 α-syn phosphorylation remain unknown. The 

availability of semisynthetic pY125 α-syn as a substrate should facilitate the development of 

assays to screen focused libraries of tyrosine phosphatase inhibitors and identify natural 

phosphatases that are involved in regulating Y125 phosphorylation in vivo. To prevent the rapid 

dephosphorylation of pY125 α-syn, we will replace phosphotyrosine by nonhydrolyzable 

phosphonate analogues (Berkowitz et al., 1996, Desmarais et al., 1999) that , once incorporated 

into α-syn, will render it resistant to phosphatase activity (Zheng et al., 2005a). Cole and 

colleagues have successfully introduced non-hydrolyzable tyrosine analogues into proteins 

using expressed protein ligation strategies and demonstrated their utility to investigate the role 

tyrosine phosphorylation in regulating the activity of different tyrosine phosphatases and their 

interaction with other proteins (Lu et al., 2003, Zheng et al., 2003, Shen et al., 2005, Zheng et 

al., 2005a, Schwarzer et al., 2006, Szewczuk et al., 2009). 

Whether phosphorylation at Y125 plays an important role in regulating α-syn aggregation and 

toxicity in vivo remains unknown. This question can only be answered by experimental 

conditions that permit site-specific regulation of phosphorylation at Y125 in vivo. To determine 

the functional consequences of Y125 phosphorylation, Feany and colleagues overexpressed WT 

α-syn, and mutant (α-syn YF) in which all C-terminal tyrosines were mutated to phenylalanine 

(Y125F/Y133F/Y136F) and compared the effects of the mutations on α-syn aggregation, 

toxicity, and locomotor deficit in flies. The mutant (α-syn YF) exhibited enhanced toxicity and 

caused a significant reduction in climbing ability compared to flies overexpressing the WT 
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protein. Additionally, overexpression of the Shark kinase, the Drosophila homolog of Syk, 

increased the levels of pY125, decreased oligomer formation and rescued the neurotoxicity of 

WT α-syn and the more toxic S129 phosphomimetic S129D. It is important to note that in both 

approaches, the three tyrosines were either mutated or phosphorylated to different extent, 

making it difficult to decipher the effects of selective modification at Y125. Identification and 

expression of the kinases that allow selective modification of pY125 and/or coexpression of 

such kinases with Y133F/Y136F is crucial for gaining insight into the role of Y125 

phosphorylation in regulating α-syn aggregation and toxicity in vivo. The availability of 

semisynthetic pY125 α-syn and our improved understanding of the dynamics of Y125 

phosphorylation should aid in the development of assays to identify the natural kinases and 

phosphatases involved in the regulation of Y125 phosphorylation and will facilitate a 

quantitative evaluation of the extent of pY125 α-syn during disease progression.  

The role of phosphorylation in regulating α-syn interactions with other proteins and ligands 

remains unexplored. Recently McFarland et al. attempted to address this knowledge gap using 

C-terminal-derived α-syn peptides (WT and phosphorylated at S129 and Y125) to 

immunoprecipitate interactants from mouse brain synaptosomes (McFarland et al., 2008). 

Phosphorylation at S129 and Y125 reduced the affinity of α-syn peptides to proteins of the 

mitochondrial electron transport complex and preferentially directed the interaction toward 

proteins involved in the cytoskeletal architecture and the endocytosis pathway. Kinases were 

also identified among the interactants of phosphorylated peptides (McFarland et al., 2008). 

Furthermore, phosphorylation of α-syn has major impacts on its binding to metal. The binding 

of α-syn to bivalent cations (Cu2+, Pb2+ and Fe2+) was reported to be increased in presence of C-

terminal peptides phosphorylated at S129 or Y125 (Lu et al., 2011). Phosphorylation also 

affected the repartition of the binding sites with a clear preference toward the C-terminal domain 

(Lu et al., 2011). Although these studies provided important insights into the potential role of 

phosphorylation in regulating α-syn’s interactions with proteins and metal ions, they were based 

on C-terminal peptide fragments which are likely to eliminate potential candidates that would 

require the binding to N-terminal and NAC region of α-syn. Therefore, the extent to which these 

studies reflect the impact of phosphorylation on the interaction of the full-length protein remains 

unknown.  

We probed here, for the first time, the effect of full-length pS129 and pY125 α-syn on its 

interactions with other proteins. When comparing the affinity of the different phosphorylation 

variants of α-syn on the binding to nanobody Nb87, it was revealed that pS129 had a slightly 
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stronger affinity to Nb87 while pY125 exhibited a 638-fold lower affinity. Phosphorylation of 

α-syn has been shown to play a major role in aggregation, with phosphorylation of S87 and/or 

S129 inhibiting its fibrillization (Paleologou et al., 2008) while phosphorylation of Y125 has no 

effect on α-syn aggregation. In addition, our binding studies confirm previous findings from our 

lab that suggested that phosphomimics do not reproduce all structural aspects of α-syn 

phosphorylation (Paleologou et al., 2008). We report here that the effect of mimicking 

phosphoserine by a glutamate also influences protein-protein interaction since the binding 

affinity of pS129 and S129E to Nb87 was not identical. We show for the first time that 

phosphorylation of a single residue of α-syn is able to disrupt strong interactions, with definitely 

strong implications for the complex of proteins interacting with α-syn in vivo and the cellular 

mechanism that are modulated as a direct consequence.   

 

 

II.7. Conclusions 

We recently reported a semisynthetic approach that enabled site-specific modification of the N-

terminus of α-syn and used this approach to prepare and characterize an α-syn form that is 

mono-ubiquitinated at Lysine 6 (Hejjaoui et al., 2011). In this study, we describe a general and 

efficient semisynthetic strategy that enables the site-specific introduction of single or multiple 

PTM of α-syn and the preparation of homogeneously modified forms of α-syn at its C-terminus 

in milligram quantities. These two approaches make it possible to prepare all the known disease-

associated PTM of α-syn, except pS87, and to study potential cross-talk between these 

modifications. These advances have allowed us to investigate for the first time the effect of 

selective phosphorylation at Y125 α-syn on the structure, aggregation, membrane binding, 

subcellular localization of the protein and protein-protein interaction. In addition, these advances 

provide unique opportunities to investigate PTM-dependent protein-protein interactions 

involving α-syn and to study the cross-talk between different PTM. Furthermore, the availability 

of these proteins is crucial for advancing current research programs with the following aims: 1) 

characterization of PTM in humans and in animal models of PD; 2) development of biomarkers 

and target identification and 3) development of sensitive assays for the detection and 

quantitative assessment of specific PTM in vivo and in biological fluids. Therefore, the 

development of these semisynthetic strategies represents an important advance toward 

unraveling the roles of PTM in determining α-syn structure, aggregation and functions in health 
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and disease. We hope that this work will encourage other research groups to pursue similar 

approaches to elucidate the role of PTM in regulating the function of other proteins, particularly 

proteins linked to neurodegenerative diseases.  
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II.8. Supporting information 

II.8.1. Synthesis and characterization of α-syn C-terminal peptides 

Peptide: α-Syn(A107C-140) 
sequence: CPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA 
synthetic specifications: couplings used HBTU; double couplings performed  at Cys107, 
Glu109, Met-116, Asp-119, and Met-127 
yield: 25% 
expected mass: 3886 Da 
 

 

Figure S II-1. Analysis of peptide α-syn A107C-140 
a) MALDI-TOF analysis (observed mass=3885.85Da) and b) RP-HPLC analysis of purified α-syn A107C-140 on a 
C18 analytical column (CosmoSil Protein-R, 4.6x250 mm, 5µm particle size) with a linear gradient of 0 to 80%B 
over 30min (A: water/0.1%TFA and B: acetonitrile/0.1% TFA).  
 

Peptide: α-syn(A107C-140)_pY125 
sequence: CPQEGILEDMPVDPDNEA-pY-EMPSEEGYQDYEPEA 
synthetic specifications: see above 
yield: 25% 
expected mass: 3969 Da 
 
 

 

Figure S II-2. Analysis of peptide α-syn A107C-140_pY125 
a) MALDI-TOF analysis (observed mass= 3968 Da). b) RP-HPLC analysis of purified α-syn A107C-140_pY125 
on a C18 analytical column (CosmoSil Protein-R, 4.6x250 mm, 5µm particle size) with a linear gradient of 0 to 
80%B over 30min (A: water/0.1%TFA and B: acetonitrile/0.1% TFA). 
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II.8.2. Generation of 15N-labeled α-syn(1-106)SR and non-labeled α-syn(1-106)SR 

 

Non-labeled α-syn(1-106)SR 

 

Figure S II-3. Analysis of α-syn(1-106)SR 
a) MALDI-TOF analysis (observed mass= 10739). The mass 5367 corresponds to the double-charged. b) RP-HPLC 
analysis of purified α-syn(1-106)SR on a C4 analytical column (CosmoSil 5C4) with a linear gradient of 0 to 80%B 
over 15min (A: water/0.1%TFA and B: acetonitrile/0.1% TFA). 
 

15N labeled α-syn (1-106)SR  

 

Figure S II-4. Analysis of 15N α-syn(1-106)SR 
a) MALDI-TOF analysis (observed mass= 10870). The mass 5434 corresponds to the double-charged. b) RP-HPLC 
analysis of purified α-syn(1-106)SR 15N labeled on a C4 analytical column with a linear gradient of 0 to 80%B over 
30min (A: water/0.1%TFA and B: acetonitrile/0.1% TFA) 
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II.8.3. Semisynthesis and purification of WT α-syn and pY125 α-syn 

 

α-SynA107C wild-type 

 

Figure S II-5. SDS-PAGE analysis of the ligation reaction 
SDS-PAGE analysis of native chemical ligation reaction between α-syn(1-106)SR and α-syn(A107C-140). 
 
 
 

 

Figure S II-6. Analysis of semi-synthetic WT α-syn 
a) MALDI-TOF analysis of the desulfurized product (expected mass: 14461). The mass of 14676 corresponds to a 
sinapinic matrix adduct and the mass of 7233 to the double-charged. b) RP-HPLC of semi-synthetic WT α-syn on 
an analytical C18 with a linear gradient of 0 to 80%B over 30min (A: water/0.1%TFA and B: acetonitrile/0.1% 
TFA). 
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α-synA107C_pY125 

 

Figure S II-7. SDS-PAGE reaction of the ligation reaction 
SDS-PAGE analysis of native chemical ligation reaction between α-syn(1-106)SR and α-syn(A107C-140_pY125). 
Note: the ligation corresponding to the gel was done with two molar excess of α-syn(1-106)SR.  
 

 

Figure S II-8. Analysis of of semi-synthetic pY125 α-syn 
a) MALDI-TOF analysis of the desulfurized product (expected mass: 14541). The mass of 14744 corresponds to a 
sinapinic matrix adduct and the mass of 7220 to the double-charged. b) RP-HPLC of semi-synthetic pY125 α-syn 
on an analytical C18 with a linear gradient of 0 to 80%B over 30min (A: water/0.1%TFA and B: acetonitrile/0.1% 
TFA). 
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General scheme of ligation and purification 

 

 

 

Figure S II-9. Scheme of the main step for the generation of pY125 α-syn 
Scheme of the main steps for the generation of pY125 α-syn: ligation, desulfurization and purification by 
chromatographic methods.   
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Figure S II-10. Scheme of the cation-exchange chromatography purification of pY125 α-syn.  
 

 

Figure S II-11. SDS-PAGE of the fractions of the cation exchange column 
A: SDS-PAGE analysis of the fractions containing pY125 α-syn (eluting from the cation exchange column at pH 
5). B: SDS-PAGE analysis of the pure lyophilized pY125 α-syn.  
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II.8.4. Generation of α-syn A107C N15 labeled and Semisynthesis of α-syn A107C_pY125 

N15 labeled 

 

α-synA107C 15N labeled 

 

Figure S II-12. Analysis of 15N labeled α-syn A107C 
a) MALDI-TOF analysis of the protein (expected mass: 14659). The mass of 14866 corresponds to a sinapinic 
matrix adduct and the mass of 7329 to the double-charged. b) RP-HPLC of 15N labeled α-syn A107C on an 
analytical Protein-R C18 column with a linear gradient of 0 to 80%B over 30min (A: water/0.1%TFA and B: 
acetonitrile/0.1% TFA). 
 

 

α-synA107C_pY125 15N labeled 

 

 

Figure S II-13. Analysis of semi-synthetic pY125 α-syn 15N labeled 
a) MALDI-TOF analysis of the ligated product (expected mass: 14701). The mass of 14913 corresponds to a 
sinapinic matrix adduct and the mass of 7350 to the double-charged. b) RP-HPLC of semi-synthetic pY125 α-syn 
15N labeled on an analytical Protein-R C18 column with a linear gradient of 0 to 80%B over 30min (A: 
water/0.1%TFA and B: acetonitrile/0.1% TFA).  
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II.8.5. TEM images of recombinant and semisynthetic WT α-syn 

 

 

 

 

Figure S II-14. TEM images of semisynthetic and WT α-syn 
TEM images of recombinant WT and semisynthetic α-syn incubated for 7 days on a rotating wheel at 37°C. The 
images are representative of 3 independent experiments. The scale bars represent 200nm. 
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II.8.6. Analysis of HEK and HeLa cells and mouse neurons treated with pervanadate: 

detection of non-specific bands 

 

 

Figure S II-15. Detection of non-specific bands using pY125 antibodies 
A. Immunoblots of HEK293 (left) and HeLa (right) cells over-expressing WT α-syn and treated with pervanadate 
for 5, 10 and 20min. Membranes were probed with WT α-syn (Biomol SA3400) and pY125 antibodies (BD 
Pharmigen). B. Immunoblots of mouse α-syn KO primary neurons treated with pervanadate for 30min. Membranes 
were probed with WT α-syn (BD transduction laboratory) and pY125 antibodies (BD Pharmigen). 
 
 

 

Figure S II-16. Detection of non-specific signal by immunocytochemistry 
Confocal images of HeLa cells over-expressing WT or Y125F α-syn and treated with pervanadate for 30min. The 
cells were fixed and stained with anti-pY125 antibody (BD pharmigen) and anti-α-syn (abcam). 
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II.8.7. Cross-talk between α-syn phosphorylation at S87 and Y125: in vitro 

phosphorylation assay 

 

 

 

Figure S II-17. Immunoblots of pY125 α-syn phosphorylated using CK1 and PLK3 
A: Immunoblots of pY125 α-syn phosphorylated using CK1 and PLK3. Membranes were probed using pS87, 
pY125, and α-syn antibodies. B: Immunoblots of pS87 α-syn phosphorylated using Syk, Lyn, Fyn, c-Src, and c-Fgr. 
Membranes were probed for pY125, pS87, and α-syn immunoreactivity. D: MALDI-TOF analysis of pS87 α-syn 
(a) phosphorylated by Syk (b), Lyn (c), Fyn (d), c-Src (e), and c-Fgr (f) after 14h of reaction. In all MALDI-TOF-
MS spectra, the symbol ‘n’ indicates the starting material peak, while the numbers above other peaks correspond to 
the number of phosphorylation events, each detected by a +80 Da mass shift. The symbol ‘*’ indicates a sinapinic 
acid matrix adduct.  
 
Supporting information for the figure S17: 
To obtain site-specific phosphorylation at S87, S129A α-syn was incubated with CKI until phosphorylation at S87 
was complete, then pS87 α-syn was purified by reversed-phase HPLC, and incubated with the tyrosine kinases in 
the same conditions as in the experiment with pS129 α-syn. Using first the mutant S129A α-syn, we showed that 
the S129A mutation itself did not influence phosphorylation at Y125 (not shown). Using the purified pS87 α-syn, 
we observed that the behavior of pS87 α-syn is similar to that of pS129 α-syn and WT α-syn: phosphorylation at 
Y125 by Syk is very efficient as judged by Western Blot (Figure S II-17.B) but again not specific as shown by 
MALDI-TOF MS (Figure S II-17. C (b)). We noted, however, that pS87 α-syn might be more efficiently 
phosphorylated at Y125 by Fyn than pS129 α-syn, since a single phosphorylation event could be seen with pS87 α-
syn but not pS129 α-syn. However, Western-Blot data does not support a large effect. 
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III. Chapter 3- Towards elucidating the role of ubiquitination in the 

pathogenesis of Parkinson’s disease using semisynthetic 

ubiquitinated α-synuclein 

 

This chapter is part of a published article in Angewandte Chemie International Edition 2011 

10;50(2):405-9 with the following authors: 

Hejjaoui M.*1, Haj-Yahya M.* 2, Kumar K.S. 2, Brik A. 2, Lashuel H.A. 1 

* these authors contributed equally 

Affiliations: 

1. Brain Mind Institute, The Swiss Federal Institute of Technology EPFL, Station 19, 1015 

Lausanne (Switzerland), Fax: (+41) 21-693-9665 http://nmnf.epfl.ch 

2. Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105 (Israel), 

Fax: (+972) 8-647-2943 http://www.bgu.ac.il/∼abrik 

 

III.2. Abstract 

Herein we report, for the first time, the semisynthesis and characterization of site-specific (K6) 

mono-ubiquitinated form of α-syn. These advances allowed us to investigate the effect of 

ubiquitination on the membrane binding, oligomerization and fibrillogenesis. The ability to site-

specifically introduce ubiquitin modifications into α-syn represents a major advance towards 

elucidating the role of ubiquitination in regulating α-syn’s function(s) in health and disease. 

 

III.3. Introduction 

Ubiquitination of lysine residues has emerged as an important mechanism for regulating a 

variety of cellular processes such as cell signaling pathways, DNA repair and protein 

degradation by the 26S proteasome (Pickart and Fushman, 2004, Ikeda and Dikic, 2008). Until 

recently, studies aiming at deciphering the effect of ubiquitination on protein function have 

relied primarily on biochemical approaches to reconstitute the ubiquitinated protein in vitro. As 

a result, the progress in the field has been very much dependent on the discovery of the E2-E3 

enzymatic machinery that is highly specific to the protein of interest (Pickart, 2001). The lack of 

effective and general method that allows site-specific incorporation of ubiquitin (Ub) or 
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polyubiquitin chains has hampered efforts to elucidate the molecular and structural basis 

underlying the effects of ubiquitination on regulating protein function. Several groups have 

recently reported elegant chemical methods to facilitate site-specific peptide and protein 

ubiquitination. Several of these methods are based on the attachment of ubiquitin through non-

native isopeptide bonds to generate enzymatically stable Ub conjugates of peptides or 

recombinant proteins (Yin et al., 2000, Li et al., 2009, Chatterjee et al., Chen et al., 2010, 

Shanmugham et al., 2010, Weikart and Mootz, 2010). Site-specific ubiquitination of peptides 

and proteins via formation of native isopeptide bond is now possible thanks to the work of Muir, 

Liu and our group (Chatterjee et al., 2007, McGinty et al., 2008, Ajish Kumar et al., 2009, Yang 

et al., 2009). 

We recently developed a highly efficient and chemoselective method to facilitate site-specific 

ubiquitination of peptides and proteins (Ajish Kumar et al., 2009). Our approach utilizes δ-

mercaptolysine residue to mediate transthioesterification with ubiquitin thioester, followed by S-

N acyl transfer to form the native isopeptide bond between ubiquitin and lysine residues. The 

thiol handle of δ-mercaptolysine is then desulfurized to furnish the desired native isopeptide 

linkage without altering the native sequence of the target peptides/proteins. To facilitate the use 

of this unique residue in Fmoc-, Boc-SPPS and in sequential ligation, δ-mercaptolysine with 

different protecting groups was also synthesized (Haj-Yahya et al., 2010). Using these 

(advanced) synthetic tools, herein we describe, for the first time, an efficient strategy for the 

semisynthesis and characterization of monoubiquitinated α-synuclein at Lys6 (T7-Ub-α-

syn(K6)).   

α-synuclein (α-syn) is a natively unfolded 140 amino acid presynaptic protein that is implicated 

in the pathogenesis of Parkinson’s disease (PD) and related neurodegenerative diseases that are 

collectively termed, “synucleopathies” (Spillantini et al., 1998a, Gai et al., 1999, Campbell et 

al., 2001). The pathology of PD is characterized by the loss of dopaminergic neurons and the 

presence of intracellular inclusions, known as Lewy Bodies (LB), composed primarily of α-syn 

(Spillantini et al., 1998a). Several posttranslational modifications, including phosphorylation, C-

terminal truncations and ubiquitination, have been shown to be closely associated with PD 

pathology and were identified in α-syn within LB isolated from PD brains (Hasegawa et al., 

2002, Sampathu et al., 2003, Tofaris et al., 2003, Anderson JP, 2006). Understanding the role of 

these modifications in regulating α-syn aggregation, LB formation and toxicity is crucial to 

understanding the biology of α-syn, elucidating its role in the pathogenesis of PD, and may lead 

to the identification of novel therapeutic targets to treat the disease.    
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The majority of α-syn species found in Lewy bodies are mono- or diubiquitinated at multiple 

lysine residues (Hasegawa et al., 2002, Sampathu et al., 2003, Anderson JP, 2006). Directed 

site-specific ubiquitination of α-syn at a single or multiple lysine residues has not been possible. 

For example, the co-expression of α-syn with ubiquitin ligases results in predominantly mono 

and di-ubiquitination at multiple sites (Lee et al., 2008b, Rott et al., 2008). Similarly, 

ubiquitination of recombinant monomeric or fibrillar α-syn using rabbit reticulocytes fraction II 

or rat-brain extracts revealed that ubiquitination occurs at multiple, but distinct lysine residues 

(Nonaka et al., 2005), thus precluding the possibility of investigating the effect of ubiquitination 

at specific lysine residues. To address this problem, we developed a semisynthetic strategy, 

combining Cys- and δ-mercaptolysine based native chemical ligation methods (NCL) (Dawson 

et al., 1994) which allows for site specific incorporation of ubiquitin and preparation of highly 

homogenous monoubiquitinated α-syn forms.  

 

III.4. Material and Methods 

III.4.1. Synthesis of α-syn (1-18)(K6mK)- thioester (1) 

Work carried out by Mahmood Haj-Yahya (Prof. Ashraf Brik’s group) 

α-syn (1-18)(K6mK)- thioester was prepared by solid phase peptide synthesis (SPPS) on 

MBHA resin (0.59 mmol/g) following the in situ neutralization protocol for Boc chemistry 

developed by Kent and coworkers.  

III.4.2. Cleavage and deprotection 

Work carried out by Mahmood Haj-Yahya (Prof. Ashraf Brik’s group) 

To the dried resin (250 mg) in a round bottom flask equipped with stirring bar, 750 μL of 

thioanisole/EDT (2:1) was added. The reaction mixture was cooled to 0 ºC, using ice bath, 

followed by the addition of TFA (5 mL) and stirred for 5-10 min. To this solution, TFMSA (500 

μL) was added slowly with constant stirring. The reaction was allowed to reach room 

temperature (RT) over 40 min and stirred for an additional 45 min. Resin was removed by 

filtration and washed with TFA. To precipitate the peptide, the combined filtrate was added 

drop-wise to 10-fold volume of cold ether, centrifugation, decanting of ether, followed by 

dissolving the residue in acetonitrile-water. RP-HPLC purification was carried out on C18-

column (Jupiter 5 micron, 300A, 250 x 21.2 mm) using 10-60% B over 30 min afforded the 

corresponding peptide 1 in ~10% yield. 
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III.4.3. Generation of α-syn N-terminal cysteine (2) 

Starting with a plasmid encoding for α-syn Δ2-17 A18C, we performed single-point 

mutagenesis to generate the N-terminal truncated fragment with alanine at position 19 mutated 

to cysteine (α-syn Δ2-18 A19C). The following primers were used: forward 5’ GAG ATA TAC 

ATA TGT GTG AGA AAA CCA AAC AGG 3’OH and reverse 5’ CCT GTT TGG TTT TCT 

CAC ACA TAT GTA TAT CTC 3’OH. For protein expression, E.coli BL21 DE3 cells were 

transformed with the plasmid and grown in LB medium until OD600 = 0.6. Protein expression 

was induced by adding 1 mM isopropyl-β-d-thiogalactopyranoside (IPTG) and the culture was 

incubated for 4 h at 37°C. After harvesting the cells, by centrifugation at 6000 g for 15 min, the 

pellet was resuspended in 40 mM Tris-acetate and 5mM EDTA pH 8.3 and lysed by ultra-

sonication. The insoluble material was removed by centrifugation at 23000 g for 40min at 4°C. 

The supernatant was boiled for 15min followed by centrifugation at 23000 g for 40min and the 

final supernatant was filtered through a PVDF membrane with a 0.22 μm cut-off. Anion-

exchange chromatography was performed on a Pharmacia AKTA FPLC system using a 25 mL 

High-TrapQ column (Amersham). The protein was eluted with a NaCl gradient (the protein 

elutes at around 300mM NaCl) and subsequently purified on a Superdex 200 26/60 size-

exclusion chromatography column (Amersham) using 50 mM Tris 150mM NaCl pH 7.5 as the 

mobile phase. The purified protein was dialyzed extensively against di-ionized water and then 

lyophilized and stored at -20°C until use. From two liters expression, the average yield of pure 

lyophilised material is 25 mg. The purity and identity of the protein was assessed by SDS-PAGE 

and MALDI-TOF analyses. The mass obtained had +26Da and +70Da thiazolidine adducts as 

previously reported by other groups (Gentle et al., 2004, Chiang et al., 2009). 

III.4.4. Deprotection of thiazolidine 

Work carried out by Mahmood Haj-Yahya (Prof. Ashraf Brik’s group) 

The expressed fragment A19C-140 (50mg, 3.94 mmol) was dissolved in 1 ml Gn.HCl (pH=7.2) 

followed by the addition of methoxylamine (1ml, 0.4 M) containing 30 eq of TCEP. The 

reaction was kept for 3.5 h at 37 C in which HPLC and mass spectrometry analysis indicated 

complete removal of the thiazolidine adducts. 

III.4.5. Ligation of peptide thioester (1) and α-syn19-140(A19C) (2) 

Work carried out by Mahmood Haj-Yahya (Prof. Ashraf Brik’s group) 

Peptide thioester, 1 (2.4 mg, 1.00  mmol) and 2, (10.5 mg, 8.3 x 10-4 mmol) were dissolved in 

400 μL of 6 M guanidine•HCl, 200mM phosphate buffer, pH 7. To this solution 8 μL each of 
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benzylmercaptan (2% v/v) and thiophenol (2% v/v) were added and incubated for 24 h at 37 ºC. 

The progress of reaction was monitored by RP-HPLC using an analytical C4 column (C-4, 300 

A, 5 micron, 150 x 4.6 mm) and a gradient of 5-60 %B over 30 min. Preparative HPLC was 

carried out on semiprepartive column (Jupiter 5 micron, 300A, 250x 10 mm) using a gradient of 

5-60% B over 30 min to afford 5.2 mg of pure ligation product 3.  

Acm removal: The purified peptide 3 (5.2 mg, 3.56 x 10-4 mmol) was dissolved in 15% acetic 

acid (648 µL) under nitrogen, and Hg(OAc)2 (3.4 mg, 0.01 mmol, 30 eq.) was added and kept at 

RT for 3 h. DTT (6.6 mg, 0.04 mmol, 120 eq.) was added and the reaction was left for another 

12 h. The reaction mixture was filtered and purified over a semi-prep HPLC column (C4, 300A, 

10 micron, 250 x 10 mm) using a gradient of 5-60% B over 30 min to give 3.5 mg of peptide 4. 

III.4.6. Generation of T7 ubiquitin thioester (5) 

The T7-tagged ubiquitin was amplified by PCR using the following primers: forward 5’GGC 

AGC CAT ATG GCT AGC ATG AC 3’OH and reverse 5’ CCG CAT CGC TCT TCG GCA 

GCC GCC GCC ACG CAG 3’OH. After digestion with NdeI and LguI (Promega and 

Fermentas), it was ligated into a similarly digested pT7-7 vector containing the mini intein Mxe 

GryA followed by a chitin-binding domain. The resulting plasmid encoding T7-Ub fused to its 

C-terminus to the intein was verified by DNA sequencing. For protein expression, E.coli BL21 

DE3 cells were transformed with the plasmid and grown in LB medium until OD = 0.6, before 

induction with with 0.5 mM IPTG for 4 h at 37°C. After harvesting the cells by centrifugation at 

6000 g for 15 min, the pelett was resuspended in 40 mM Tris-acetate 5 mM EDTA (pH 8.3) 

lysis buffer and the cells were lysed by ultra-sonication (5 cycles of 1 min non-stop pulse at 

13W and 30s rest). The insoluble material was removed by centrifugation at 23000g for 40min 

at 4°C followed by filtration through a PVDF membrane with a 0.22μm cut-off (Millipore). 

Initially, chitin beads (NEB) were used for affinity purification of the fusion proteins. However, 

we later observed that a two-step chromatographic purification protocol gave higher purity and 

yield of T7-Ub-SR. In this protocol, the supernatant was applied first to a 25 mL High-TrapQ 

anion-exchange column (Amersham) and separation was performed on a Pharmacia AKTA 

FPLC system. The protein eluted with a NaCl gradient (the protein elutes at around 200mM 

NaCl) and subsequently purified on a Superdex 200 26/60 size-exclusion chromatography 

column using 50mM Tris 150mM NaCl pH 7.5 as the mobile phase. The fractions containing 

the proteins were pooled and splicing was induced by addition of 2-mercaptoethanesulfonic acid 

(Sigma) at a final concentration of 0.5M and incubation for 12 h at room temperature. The 

splicing efficiency was determined as 60%. T7-Ub-SR was further purified by reverse phase 
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HPLC using a C4 column (Vydac) and eluted using a linear gradient of acetonitrile/0,1% TFA 

in water/0.1% TFA. The fractions containing the thioester were pooled, evaporated and 

lyophilised and kept at -20°C until used. The protein purity was assessed by analytical reverse 

phase HPLC and mass spectrometry. From 2 liters expression pelett, the average yield of 

lyophilised pure product was 6 mg. 

III.4.7. Ligation of peptide (4) with ubiquitin thioester (5) 

Work carried out by Mahmood Haj-Yahya (Prof. Ashraf Brik’s group) 

Purified peptides, 4 (3.5 mg, 2.41 x 10-4 mmol) and 5 (3.2 mg, 3.13 x 10-4 mmol), were 

dissolved in 130 μL of 6 M guanidine•HCl, 200 mM phosphate buffer pH ~7. To this solution 2 

μL each of benzyl mercaptan and thiophenol were added and incubated for 13 h at 37 ºC. The 

progress of the reaction was monitored by HPLC using an analytical C4 column and a gradient 

of 5-60% B over 30 min. The product was purified using semi-prep HPLC column (C4, 300A, 

10 micron, 250 x 10 mm) and a gradient of 5-60% B over 30 min to give 3.2 mg of pure ligation 

product 6.  

III.4.8. Procedure for desulfurization of ubiquitylated αsyn(1-140) (6) 

Work carried out by Mahmood Haj-Yahya (Prof. Ashraf Brik’s group) 

To a solution of peptide 6 (3.2 mg, 1.30 x 10-4 mmol, 1.30 mM) in 100 μL 6 M guanidine•HCl, 

200 mM phosphate buffer pH 7.9, 0.5 M TCEP (26.67 mg, 0.10 mmol) in the same buffer and 

20 μL of t-BuSH was added. To this reaction mixture, 10 μL of 0.1 M radical initiator VA-044 

in the same buffer was added and incubated at 37 ºC for 3 h. The progress of the reaction was 

was monitored by HPLC using an analytical C4 and a gradient of 5-60% B over 30 min. The 

product was purified using semi-prep HPLC column (C4, 300A, 10 micron, 250 x 10 mm) and a 

gradient of 5-60% B over 30 min to give 2.5 mg of pure desulfurized monoubiquitinated α-syn, 

7. 

III.4.9. Final purification by liquid-based isoelectric focusing 

The final product after desulfurization contained some unmodified full-length α-syn which 

appears to co-elute with T7-Ub-α-syn. The best separation of T7-Ub-α-syn from WT α-syn was 

achieved using a micro-rotofor system (Biorad), which allows for liquid-based isoelectric 

focusing of protein mixtures. T7-Ub-α-syn (125μg) was dissolved in 8M urea, 4% glycerol, 2% 

ampholytes pH range 4-6 for a total volume of 2,5mL. Constant power of 1 Watt was applied 

and the purification was allowed to proceed until voltage remained constant (~ 2h and 30min). 

The different fractions were analyzed by SDS-PAGE electrophoresis and the fraction containing 
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pure T7-Ub-α-syn was extensively dialyzed against 50mM Tris 150mM NaCl pH 7.5 and 

concentrated through a 30kD cut-off membrane (Amicon). 

III.4.10. SDS-PAGE and Western-Blot analysis 

Proteins were solubilized in 50 mM Tris 150 mM NaCl, pH 7.5. Gels were prepared using 

standard Laemmli techniques and stained with Coomassie Blue stain or with Silver staining 

(Invitrogen). For Western blot analysis, the proteins were transferred to a nitrocellulose 

membrane (Omnilab). The membranes were blocked for 15 min at RT under constant rocking 

using Odyssey blocking buffer (Li-COR Biosciences) and diluted 1:3 in phosphate-buffered 

saline (PBS). For revelation of T7-Ub-α-syn by anti-Ub antibodies, membranes were boiled in 

PBS prior to blocking and the primary antibody was incubated at RT overnight. Membranes 

incubated with anti-α-syn and anti-T7 antibodies were incubated with the following primary 

antibodies at 4 °C with constant rocking overnight: mouse anti-α-syn (1:1000 dilution; BD 

Transduction Laboratories), mouse anti-T7 (1:15000 dilution; Novagen), mouse anti-pS129 α-

syn (1:5000 dilution; Wako), rabbit anti-pS87 α-syn (1:200 dilution,(Paleologou et al., 2010)), 

mouse anti-ubiquitin (1:250 dilution; Zymed) and rabbit anti-ubiquitin (1:500 dilution; Dako). 

Membranes were washed three times with PBS-T (PBS containing 0.01% Tween), followed by 

incubation with secondary antibodies goat anti-mouse and anti-rabbit IgM conjugated to Alexa 

680 (Invitrogen). Finally, membranes were washed three times with PBS-T and once with PBS 

and scanned in a Li-COR scanner (Li-COR Biosciences).  

III.4.11. Ubiquitin hydrolysis assay 

15 μM of T7-Ub-α-syn was incubated with UCH-L3 (BostonBiochem) and the de-ubiquitination 

reaction was carried out as previously described (McGinty et al., 2009). The T7-Ub-α-syn 

contained small amount of WT α-syn which served as a reference for the formation of WT α-

syn after UCH-L3 mediated hydrolysis of T7-Ub-α-syn. Briefly, UCH-L3 was diluted to 10 μM 

in 50 mM Tris 150 mM NaCl 15 mM DTT pH 7.5 and allowed to be reduced for 15min at RT. 

From the reduced UCH-L3, 5 μL were taken into 20μL of T7-Ub-α-syn in a 37°C water bath. 

Aliquots of 5μL were taken after 2 and 10min and the reaction was quenched by addition of 5μL 

Laemmli buffer 2X. The amount of enzyme used was doubled after 10min. Aliquots were taken 

after 30 and 60min. The reaction was monitored by the appearance of WT α-syn and T7-Ub 

using SDS-PAGE electrophoresis.  
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III.4.12. In vitro phosphorylation assay 

A mixture of WT α-syn and T7-Ub-α-syn (28μM) was incubated with 10mM DTT, 1mM 

MgCl2 and 1mM ATP in 49μL of 50mM Tris pH 7.5. G-protein-coupled-receptor kinase 5 

GRK5 (1μL, 0,38μg, Invitrogen) and Polo-like kinase 3 PLK3 (1μL, 0,42μg, Invitrogen) were 

added to the sample. For phosphorylation with Casein kinase 1 CK1, 28μM of proteins were 

mixed with CK1 buffer (NEB), 1mM ATP in 49uL of Tris 50mM pH 7.5. 1000 units (1μL) of 

CK1 (NEB) were added to the sample. The reaction mixtures were incubated overnight at 30°C 

and the extent of phosphorylation was monitored by western-blotting using anti-pS129 and anti-

pS87 antibodies. 

III.4.13. Lipid binding assay 

1-Palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] sodium salt POPG (Avanti Polar 

Lipids) was purchased as a chloroform solution, and the solvent was removed by evaporation 

and lyophilization. The phospholipid was resuspended to a final concentration of 10 mg/ml in a 

solution of 50 mm HEPES 150 mm NaCl pH 7.5. To form large unilamellar vesicles, 10 cycles 

of freezing in dry ice and thawing in a 37 °C water bath were carried out. Small unilamellar 

vesicles were prepared by extrusion through a 100-nm polycarbonate membrane (Avestin) 

according to the manufacturer's instructions. The vesicles were stored at 4 °C and used within 5 

days. For lipid binding assay, 15μM of protein (WT α-syn and T7-Ub-α-syn) were incubated 

with freshly prepared POPG vesicles at a 1/10 mass ratio in 50mM Tris 150mM NaCl, pH 7.5. 

The extent of membrane binding of the proteins was analyzed by monitoring the extent of α-

helical structure in membrane-bound proteins using CD spectroscopy. 

III.4.14. Circular Dichroism (CD) Measurements 

CD spectra were obtained on a Jasco J-815 CD spectrometer using protein concentrations of 

15μM. Bovine ubiquitin was purchased from Sigma. Spectra were recorded in 0.1 cm cells from 

250 to 195 nm with a step size of 0.2 nm, a bandwidth of 1 nm, and a response time of 8s. For 

all spectra, an average of ten scans was obtained and the CD spectrum of the buffer (50mM Tris 

150 mM NaCl pH 7.5) was recorded and subtracted from the protein spectra. 

III.4.15. In vitro aggregation studies 

Protein samples (14μM in 450μL) were incubated at 37°C with constant rotation for 10 days. 

The extent of fibril formation was assessed using the Thioflavin T (ThT) fluorescence assay 

after 5, 7, and 10 days of incubation. Readings were carried out with a ThT concentration of 5 
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μM and a protein concentration of 1.4 μM in 70 μl of 50 mM glycine (pH 8.5) and fluorescence 

measurements were recorded on an “Analyst AD” spectrometer (Bucher Biotec) at an excitation 

wavelength of 450 nm and an emission wavelength of 485 nm. All samples were analyzed in 

triplicate and corrected for the fluorescence level of freshly solubilized α-syn. Values are 

expressed as the ThT fluorescence of three measurements (means ± S.D.). 

III.4.16. Transmission Electron Microscopy (TEM) 

7μL of proteins were deposited on Formvar-coated 200 mesh copper grids (Electron Microscopy 

Sciences). Grids were washed with two drops of double-distilled H2O and stained with 2 drops 

of freshly prepared 2% (w/v) uranyl acetate (Electron Microscopy Sciences) followed by 

vacuum drying from the edge of the grids. Specimens were viewed on a Philips CIME 12 

electron microscope, operated at 80 kV and digitized photographs were recorded with a CCD 

camera (Digital Camera Morada (Soft Imaging System) 4008 X 2672 pixel). 

 

III.5. Results and discussion 

III.5.1. Generation of monoubiquitinated α-syn at K6 (T7-Ub-α-syn (K6)) 

We focused our efforts on monoubiquitinated α-syn at K6 (T7-Ub-α-syn(K6)) because in vitro ubiquitination 
of fibrillar α-syn was shown to occur primarily at K6, K10 and K12 (Nonaka et al., 2005). However, our 
approach can be applied to prepare monoubiquitinated α-syn involving any lysine residues within the N-
terminal region 1-18 and can be modified to allow ubiquitination at other lysine residues. The semisynthetic 
strategy of T7-Ub-α-syn(K6) is based on expressed protein ligation ( 
Figure III-1). Our design is based on linking two fragments using native chemical ligation 

(NCL): a recombinantly expressed α-syn fragment comprising residues 19-140 bearing an N-

terminal Cys α-Syn(19-140) and a synthetic peptide thioester comprising the N-terminal 

residues 1-18 bearing δ-mercaptolysine, α-Syn(1-18)-SR, in which K6 is replaced with the 

acetamidomethyl (Acm) protected δ-mercaptolysine (Haj-Yahya et al., 2010). Notably, the 

sequence of α-syn lacks Cys residues. Therefore, the ligation site was selected at Ala19, which 

is temporarily replaced with Cys to allow NCL and the assembly of full length α-syn. 

Conversion of Cys19 to Ala19 and removal of the thiol handle of the δ-mercaptolysine is 

simultaneously achieved under desulfurization conditions to afford the native 

monoubiquitinated protein T7-Ub-α-syn(K6) (Yan and Dawson, 2001). With this design in 

mind, the C-terminal fragment with an N-terminal free cysteine α-syn(19-140) was expressed in 

E. Coli (Figure S III-1). The α-syn(1-18)-SR peptide was prepared using solid phase peptide 
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synthesis (SPPS) according to the in situ neutralization protocol for Boc-chemistry (Schnolzer et 

al., 1992), wherein the Acm-protected δ-mercaptolysine was coupled instead of K6. 

Having both fragments in hand, we then turned our attention to the ligation and ubiquitination 

steps. The NCL of α-syn(19-140) and the synthetic α-Syn(1-18)-SR peptide thioester was 

carried out under denaturing conditions (i.e. 6 M GuHCl, 200 mM phosphate buffer, pH 7) and 

in the presence of 2% v/v thiophenol/benzylmercaptan. The backbone ligation reaction was 

followed by RP-HPLC and mass spectrometry, both of which indicated a nearly complete 

ligation after 24 h, and gave the desired product in 43% isolated yield. Following the ligation 

step, the Acm protecting group was removed quantitatively by incubation with Hg(OAc)2 in 

15% acetic acid for 3 h, followed by treatment with DTT for an additional 12 h. 

 

 
 
Figure III-1.Schematic depiction of the semisynthetic strategy for the ubiquitination of α-syn at K6. 
 Next, we focused on the ubiquitination between the T7-Ub-SR and full length α-Syn(1-140) 
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presenting the free δ-mercaptolysine. Using the above described ligation conditions, a complete 

ligation of both proteins was observed after 12 h and gave the ubiquitinated product in 54% 

isolated yield ( 

Figure S III-3). Finally, the isolated product was subjected to the metal free desulfurization 

conditions for 3 h to give the native monoubiquitinated α-Syn T7-Ub-α-syn(K6) in 78 % 

isolated yield (Figure III-2) (Wan and Danishefsky, 2007). SDS-PAGE analysis of T7-Ub-α-

syn(K6) revealed a slow migrating band at ~ 26 kDa, consistent with the mass spectrometry data 

and conjugation of one molecule of ubiquitin (Figure III-3.A). Western-blot analysis of this 

sample showed that this band is detectable using anti-T7, anti-α-syn and anti-ubiquitin 

antibodies (Figure III-3.A). To verify the formation of a native isopeptidic bond between 

ubiquitin and α-syn, we incubated T7-Ub-α-syn(K 6) with ubiquitin C-terminal-

carboxyhydrolase (UCH-L3) to see if it can be hydrolyzed. Upon addition of UCH-L3, we 

observed the generation of T7-ubiquitin monomers and WT α-syn (Figure S III-5). 

  

 
 

 
Figure III-2. Analytical HPLC of the crude desulfurization reaction peak 
Analytical HPLC analysis corresponding to the desired monoubiquitinated α-Syn with the observed mass of 
24532.8 Da (calcd m/z 24531.7 Da). The progress of the reaction was analyzed using RP-HPLC (C4 column) with 
a gradient of 5%-60% B over 30 min. Reported mass is for total protein. 

 
 

III.5.2. Effect of monoubiquitination at K6 on the secondary structure 

Having verified the chemical integrity of T7-Ub-α-syn(K6), we then focused on elucidating the 

effect of ubiquitination on the secondary structure, membrane binding and aggregation 

properties of α-syn in vitro using circular dichroism (CD), thioflavin T binding assay, and 

transmission electron microscopy (TEM). As expected, WT α-syn exhibited a CD spectrum 

consistent with a random coil structure, while T7-Ub-SR showed a spectrum that reflects a 

mixture of α-helices, β-sheets and random coil, consistent with the structure of ubiquitin 
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(Jenson et al., 1980). T7-Ub-α-syn(K6) showed a CD spectrum that is virtually identical to that 

obtained from a solution containing an equimolar mixture of T7-Ub-SR and WT α-syn, 

suggesting that the native structures of ubiquitin and α-syn are preserved in the ubiquitinated α-

syn, T7-Ub-α-syn(K6).  

 

Figure III-3. Characterization of monoubiquitinated α-syn at K6 
A) SDS-PAGE analysis of T7-Ub-SR, α-syn WT and T7-Ub-α-syn. 15% gel, Silver staining. Immunoblots of T7-
Ub-SR and T7-Ub-α-syn using anti-T7 and anti-ubiquitin antibodies (Zymed) and of α-syn WT and T7-Ub-α-syn 
using anti-asyn antibody. B) CD data of T7-Ub-SR, ubiquitin (Sigma), mix of ubiquitin and α-syn WT, α-syn WT 
and T7-Ub-α-syn. CD spectra of α−syn WT and T7-Ub-α-syn bound to POPG vesicles. C) ThT fluorescence assay 
of samples taken at time 0, 5, 7 and 10 days. D) Quantification of monomeric α-syn using SDS-PAGE analysis at 
time 0 and 10 days after filtration through a 100 kDa membrane. EM images of α-syn WT and T7-Ub-α-syn at day 
7; scale bar represents 200 nm. The figures are representative of 2 independent experiments 

 
 

In neurons, α-syn shows a cytoplasmic and membrane localization. The N-terminal region 

comprising residues 1 to ~ 100 (Bisaglia et al., 2005, Ulmer et al., 2005, Bodner et al., 2010) has 

been shown to mediate α-syn interaction with membranes and adopt an α-helical structure upon 

interaction with lipid vesicles in vitro. The effect of ubiquitination on α-syn membrane binding 

has not been investigated. Figure III-3.B shows that α-syn WT and monoubiquitinated α-syn 
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adopt a similar α-helical structure upon binding to POPG vesicles, suggesting that the 

conjugation of a ubiquitin moiety on K6 does not induce major changes in the structure of α-syn 

in solution or alter its interaction with synthetic lipids. 

III.5.3. Effect of monoubiquitination at K6 on fibril formation 

To determine the effect of N-terminal ubiquitination on α-syn fibril formation, we compared the 

fibrillization of the monoubiquitinated α-syn at K6 to that of the WT protein using the ThT 

fluorescence assay and TEM.  Figure III-3.C and D demonstrate that ubiquitination at K6 results 

in significant inhibition of α-syn fibril formation as evidenced by the absence of any changes in 

the ThT signal after incubation at 37 ºC for 10 days under rotating conditions (Figure III-3.C). 

Consistent with the ThT data, WT α-syn formed extensive mature fibrillar structures, whereas 

no fibrils were detected in samples containing the monoubiquitinated protein. These findings are 

consistent with previous reports demonstrating that not all α-syn inclusions in transgenic mouse 

models are ubiquitinated (van der Putten et al., 2000, Sampathu et al., 2003), which suggests 

that ubiquitination is not required for inclusion formation and could be a late event that occurs 

after synuclein fibrillization (Sampathu et al., 2003). 

On the other hand, our data contradict other studies reporting that ubiquitination enhances α-syn 

aggregation in vitro and in cell cultures (Lee et al., 2008b, Rott et al., 2008). However, it is 

noteworthy that none of these studies examined the aggregation of homogenous preparations of 

mono-ubiquitinated α-syn, instead the samples used contained heterogeneous mixtures of 

unmodified as well as α-syn ubiquitinated at different lysine residues.  

 

III.5.4. Effect of monoubiquitination at K6 on phosphorylation 

The semisynthesis of α-syn provides unique opportunities to explore cross-talk between 

different post-translational modifications and how it influences α-syn aggregation and LB 

formation in synucleinopathies. For example, several studies have reported close association 

between ubiquitination and phosphorylation of α-syn at S129 within LB (Hasegawa et al., 2002, 

Tofaris et al., 2003, Anderson JP, 2006), suggesting that S129 phosphorylation may play a role 

in regulating α-syn ubiquitination and degradation. Studies by Nonaka et al suggested that the 

effect of S129 phosphorylation on α-syn ubiquitination in vitro is minor (Nonaka et al., 2005). 

However, the effect of ubiquitination at each of the putative lysine residue on α-syn 

phosphorylation has not been investigated. 

To explore the interplay between these two modifications, we investigated the effect of 
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ubiquitination at K6 on the extent of α-syn phosphorylation at S87 and S129 by three kinases, 

caseine kinase I, polo like kinase 3 and G-protein-coupled receptor kinase 5, which are known to 

phosphorylate α-syn at these residues (Okochi M, 2000, Arawaka et al., 2006, Mbefo et al., 

2010). We took advantage of the difference in size between WT and T7-Ub-α-syn(K6) and 

included both proteins in the phosphorylation reaction to assess the activity of the kinases and 

allow for direct comparison between the two proteins under identical phosphorylation 

conditions. We show that ubiquitination at K6 does not influence significantly the extent of α-

syn phosphorylation at S87 (by CK1) and S129 (by CK1, GRK5 and PLK3) (Figure S III-6). 

 

 

III.6. Conclusion 

In summary, we report, for the first time, the semisynthesis and characterization of site-specific 

(K6) monoubiquitinated form of α-syn (T7-Ub-α-syn(K6)). The strategy has yielded sufficient 

quantities that allowed us to perform biochemical and biophysical studies to elucidate the effect 

of this modification on the structure, membrane binding, and fibrillization of α-syn. In addition, 

we were able for the first time to investigate the cross-talk between two disease-associated post-

translational modifications (ubiquitination and phosphorylation at specific residues). The ability 

to site-specifically introduce ubiquitin modifications into α-syn represents a major advance 

towards elucidating the role of ubiquitination in regulating α-syn’s function(s) in health and 

disease. Our findings present strong evidence in the support of the hypothesis that N-terminal 

ubiquitination of α-syn stabilizes the monomeric form of the protein, thus preventing its 

oligomerization and fibrillogenesis in vitro.  

The results presented within highlight the potential of applying advances in semisynthesis of 

proteins approaches to dissect the role of post-translational modifications in modulating α-syn 

function in health and disease. Current efforts in our laboratories are focused on elucidating the 

effect of ubiquitination at other lysine residues as well as other post-translational modifications 

and extending our studies to examine the consequences of these modifications on the subcellular 

localization, life-time, and toxicity of α-syn in cellular models of synucleinopathies.  
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III.7. Supporting information 

 

 

 
Figure S III-1. Analysis of α-syn fragment A19C-140 
Analytical RP-HPLC and MALDI-Tof analysis of the purified N-terminal truncated α-syn fragment A19C-140. 
The purity of the protein was analyzed by RP-HPLC (C4 column) using a gradient of acetonitrile/0.1%TFA 5% to 
80% over 30min. The MALDI spectrum shows the observed mass 12657 and 12699 Da (calc. m/z 12631 Da) and 
the double charged 6332 Da. The addition of +26 and +70Da corresponds to the formation of thiazolidine adducts 
that form upon the spontaneous protection of the N-terminal cysteine residue during protein expression in E. Coli. 
 

 

 

 
Figure S III-2. Analysis of T7-ubiquitin-thioester 
Analytical RP-HPLC and MALDI-Tof of purified T7-ubiquitin-thioester. The purity of the protein was analyzed by 
RP-HPLC (C4 column) using a gradient of acetonitrile/0.1%TFA 5% to 80% over 30min. The MALDI spectrum 
shows the observed mass 10215 Da (calc. m/z 10216 Da) and the double charged 5107 Da.  
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Figure S III-3. Analytical data on the semisynthesis of monoubiquitinated α-Syn 
A) Analytical HPLC of the Acm removal reaction after 15 hr ; peak a corresponds to the desired product with the 
observed mass 14523 Da (calcd m/z 14524 Da); B) Analytical HPLC of the ubiquitination reaction after 12 hr; peak 
b corresponds to the hydrolyzed ubiquitin thioester and the remaining expressed T7-Ub-SR (methansulfonate 
derivative), peak c corresponds to benzylmercaptan exchange thioester, peak d corresponds to the desired product 
with the observed mass 24593.9 Da (calcd m/z 24595.8 Da), ; C) Analytical HPLC of the crude desulfurization 
reaction peak; peak e corresponds to the desired monoubiquitinated α-Syn with the observed mass of 24532.8 Da 
(calcd m/z 24531.7 Da). The progress of the reaction was analyzed using RP-HPLC (C4 column) with a gradient of 
5%-60% B over 30 min. Reported mass is for total protein. 
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Figure S III-4. SDS-PAGE analysis of rotofor fractions.  
15% SDS-PAGE silver stained gel (Invitrogen) illustrating the separation of T7-Ub-α-syn from unmodified α-syn 
using the micro-rotofor system. WT α-syn eluted pure in fraction 5 of the micro-rotofor chamber and mixed with 
T7-Ub-α-syn in fraction 6. T7-Ub-α-syn eluted pure in fraction 7. 
 
 

 
 
 
Figure S III-5. De-ubiquitination of T7-Ub-α-syn  
15% SDS-PAGE gel, coomassie staining.  
 
 

 
 
Figure S III-6. Phosphorylation of monoubiquitinated α-syn  
Immunoblots of monoubiquitinated α-syn in presence of CK1, GRK5 and Plk3 or no kinase. Detection was made 
with anti-α-syn antibody to detect total α-syn proteins and with antibodies against phospho Ser129 and phospho 
Ser87.  
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IV. Conclusion  

Despite more than two decades of intensive resarch on α-syn, our knowledge about its 

physiological functions and the mechanisms by which it contributes to neurodegeneration in PD 

and other synucleinopathies remains limited. That being said, the conceptual and technical 

advances that were made by the scientific community have certainly brought us closer to 

addressing this knowledge gap and are paving the way for exciting discoveries to be made in the 

coming years.   

A better understanding of the molecular determinants that trigger α-syn aggregation is essential 

for developing effective therapeutic strategies to inhibit this process and treat or protected 

against neurodegeneration in PD and related synucleinopathies. The discovery that some of α-

syn’s PTM (phosphorylation at S87, S129 and ubiquitination) were present mainly in LB 

suggests that these modifications play important roles in inducing α-syn aggregation and LB 

formation. Several approaches have been applied to determine the effect of these modifications 

in regulating α-syn aggregation and toxicity in different animal models of synucleinopathies.  

However, most of these approaches relied on the use of natural mutations to mimic 

phosphorylation or on the co-expression of α-syn with inefficient or non-specific kinases, in the 

case of phosphorylation. Similarly, studies aimed at addressing the role of ubiquitination relied 

on the use of E3 ligases that lack specificity and ubiquitinate α-syn at multiple lysine residues. 

While these studies have been informative, they do not allow addressing the roles of specific 

modifications in regulating α-syn’s biology in health and disease.  

Motivated by these challenges and the desire to develop novel strategies to study post-

translational modifications in neurodegenerative diseases, we sought to develop efficient 

methods for the generation of homogenous, site-specifically modified α-syn for the investigation 

of α-syn serine/tyrosine phosphorylation and ubiquitination.   

Inspired by the pioneering work of Dawson, Muir and others on the native chemical ligation of 

proteins (section I.5.3.1), we developed two strategies based on expressed protein ligation for 

the introduction of PTM in the N-terminal or the C-terminal domain of α-syn that allowed us to 

produce milligram quantities of pY125 α-syn (section II) and monoubiquitinated α-syn at K6 

(section III). These advances have allowed us to investigate, for the first time, the effects of 

selective phosphorylation at Y125 and ubiquitination at K6 on the structure, aggregation, 

membrane binding and subcellular localization of α-syn. The development of semisynthetic 

methods for the site-specific introduction of single or multiple PTM represents an important 
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advance towards determining the roles of such modifications on α-syn structure, aggregation 

and functions in health and disease. In addition, we were able to investigate cross-talk between 

phosphorylation at residues S129, Y125, and S87 by determining the relative activity of each 

phosphorylated form of α-syn as a substrate for the kinases that phosphorylate at the other 

residues. In the case of monoubiquitinated α-syn at K6, our studies demonstrated for the first 

time that ubiquitination, which was thought to enhance α-syn aggregation and LB formation, 

stabilizes instead the monomeric protein and inhibits its fibrillization. It is noteworthy that the 

semisynthesis of monoubiquitinated α-syn represents the second successful attempt to prepare 

ubiquitinated proteins via a native isopeptide bond.  

The different strategies outlined in this thesis represent powerful methodologies that can be 

extended to other proteins implicated in neurodegenerative diseases (e.g. Tau, Huntingtin) and 

allow the introduction of site-specific chemical modifications and/or PTMs. These approaches 

can also be used to site-specifically introduce fluorescent probes, fluorescence resonance energy 

transfer (FRET) fluorophores pairs, or affinity handles to allow for selective labeling at specific 

residues using small probes or the covalent immobilization or cross-linking of proteins using the 

handles (for review: (Muir, 2003a)). Non-hydrolyzable phosphonate amino acids have been 

synthesized and incorporated into proteins to prevent rapid dephosphorylation at Ser or Tyr and 

facilitate the investigation of the consequences of phosphorylation in living cells or complex 

biological samples. Furthermore, the availability of semisynthetic homogeneous post-

translationally modified forms of α-syn as substrates should aid in the development of assays to 

identify the natural enzymes (kinases, phosphatases, E3 ligases, deubiquitinases) involved in the 

regulation of these modifications and will facilitate the development of quantitative assays to 

measure the levels of these modification during disease progression. These studies are likely to 

lead to the identification of novel therapeutic targets for the treatment of PD and the 

development of diagnostic tools for early detection and monitoring of neurodegeneration in PD 

and other neurodegenerative diseases.    

  
Future Directions 

We are currently applying our semisynthetic strategy for the generation of monoubiquitinated α-

syn at K12 and K23 and, taking advantage of the native isopeptide bond in our system, we are 

investigating the effect of monoubiquitination at K12 on the degradation of α-syn by the 

proteasome, in collaboration with Aaron Ciechanover’s group. Preliminary data using purified 

proteasomes reveal an ubiquitination-dependent proteasomal degradation of α-syn (Shabek et 
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al., 2012), in contrast to previous reports which suggested that unmodified α-syn can be 

degraded by the proteasome (Bennett et al., 1999, Tofaris et al., 2001, Machiya et al., 2010).  

Recent advances and novel synthetic tools developed by our collaborators in Ashraf Brik’s 

group have enabled for the first time the generation of diubiquitin and tetraubiquitin chains by 

total chemical synthesis. These advances have enabled the generation of tetraubiquitinated α-syn 

through K48 linkage, which is currently being investigated as part of a joint collaborative 

project between the two groups. The ability to investigate mono and poly-ubiquitinated forms of 

α-syn will eventually allow us to decipher the code of α-syn ubiquitination. 

The next challenge that is currently being tackled by our group involves the development of 

efficient strategies for the delivery of semisynthetic and chemically synthesized α-syn into living 

cells to assess the effect of PTM on the cellular properties of α-syn in their natural environment. 

Our laboratory is currently investigating the use of cell-penetrating peptides to facilitate the 

delivery of the proteins into cells. TAT-peptide fusion to α-syn has been previously shown to 

transduce efficiently in cell-based and animal models (Albani et al., 2004, Recchia et al., 2008). 

If successful, our method, combining chemistry, biochemistry and biology, would definitely 

pave the way to the systematic study of all α-syn PTM in vivo.  

To expand our methodology for cell-based and animal applications for the study of cross-talks 

between phosphorylation at these two residues, we were inspired from the seminal work of 

Imperiali’s group who reported the synthesis of two photocleavable protecting groups of 

phosphorylated residues that can be cleaved using different wavelengths (Goguen et al., 2011).  

We thus plan to introduce photocaged phosphorylated serine and tyrosine residues that can, 

through irradiation at 420 and 365 nm respectively, be exposed sequentially. Moreover, the use 

of other photo-sensitive amino acid derivatives is very appealing since the near-UV wavelengths 

that are commonly used do not alter the cell’s DNA. A large panel of photo-caged and photo-

crosslinking amino acids can thus be used in cell culture and animal studies. The latter could 

furthermore benefit from the use of two-photon excitable photosensitive amino acids, due to the 

deeper tissue penetration of the lower-wavelength light used. 

In summary, now that the methodology has been developed for the introduction of any α-syn 

modification at any residue, its potential will be best harvested from the generation of tailor-

made variants to answer specific questions. This can only be achieved through the optimization 

of methodologies to introduce these proteins into cells and animal brains along with 
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development of novel chemistries for the modification of specific residues; and most 

importantly through the fruitful interactions between scientists from different disciplines.  

While semisynthetic approaches were previously used for the study of enzymes and other 

proteins (Muir, 2003a), the field is just starting to bloom for amyloid proteins and proteins 

involved in neurodegenerative diseases with recent reports of the semisynthesis of the Prion 

protein (Olschewski et al., 2007, Becker et al., 2008, Olschewski and Becker, 2008), Tau 

(Broncel et al., 2012a) and Amyloid−β (Bockhorn et al., 2010). We hope that the methodology 

will quickly expand to other laboratories for the study of proteins involved in neurodegeneration 

and that the shadows masking the impact of the different PTM on the pathogenesis of 

neurodegenerative disorders will be removed.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 149 
  

V. References 

  

1. Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM, 
Armanini M, Ryan A, Hynes M, Phillips H, Sulzer D, Rosenthal A (2000) Mice lacking alpha-synuclein display 
functional deficits in the nigrostriatal dopamine system. Neuron 25:239-252. 

2. Ahlskog JE, Muenter MD (2001) Frequency of levodopa-related dyskinesias and motor fluctuations as 
estimated from the cumulative literature. Mov Disord 16:448-458 

3. Ahn BH, Rhim H, Kim SY, Sung YM, Lee MY, Choi JY, Wolozin B, Chang JS, Lee YH, Kwon TK, 
Chung KC, Yoon SH, Hahn SJ, Kim MS, Jo YH, Min DS (2002) alpha-Synuclein interacts with phospholipase D 
isozymes and inhibits pervanadate-induced phospholipase D activation in human embryonic kidney-293 cells. J 
Biol Chem 277:12334-12342. 

4. Ahn M, Kim S, Kang M, Ryu Y, Kim TD (2006) Chaperone-like activities of alpha-synuclein: alpha-
synuclein assists enzyme activities of esterases. Biochem Biophys Res Commun 346:1142-1149. 

5. Ajish Kumar KS, Haj-Yahya M, Olschewski D, Lashuel HA, Brik A (2009) Highly efficient and 
chemoselective peptide ubiquitylation. Angew Chem Int Ed Engl 48:8090-8094 

6. Alam ZI, Daniel SE, Lees AJ, Marsden DC, Jenner P, Halliwell B (1997a) A generalised increase in 
protein carbonyls in the brain in Parkinson's but not incidental Lewy body disease. J Neurochem 69:1326-1329. 

7. Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P, Halliwell B (1997b) Oxidative 
DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia 
nigra. J Neurochem 69:1196-1203. 

8. Albani D, Peverelli E, Rametta R, Batelli S, Veschini L, Negro A, Forloni G (2004) Protective effect of 
TAT-delivered alpha-synuclein: relevance of the C-terminal domain and involvement of HSP70. FASEB J 
18:1713-1715. 

9. Alewood P, Alewood D, Miranda L, Love S, Meutermans W, Wilson D (1997) Rapid in situ neutralization 
protocols for Boc and Fmoc solid-phase chemistries. Methods in enzymology 289:14-29. 

10. Alvarez-Fischer D, Guerreiro S, Hunot S, Saurini F, Marien M, Sokoloff P, Hirsch EC, Hartmann A, 
Michel PP (2008a) Modelling Parkinson-like neurodegeneration via osmotic minipump delivery of MPTP and 
probenecid. J Neurochem 107:701-711. 

11. Alvarez-Fischer D, Henze C, Strenzke C, Westrich J, Ferger B, Hoglinger GU, Oertel WH, Hartmann A 
(2008b) Characterization of the striatal 6-OHDA model of Parkinson's disease in wild type and alpha-synuclein-
deleted mice. Exp Neurol 210:182-193. 

12. Ancolio K, Alves da Costa C, Ueda K, Checler F (2000) Alpha-synuclein and the Parkinson's disease-
related mutant Ala53Thr-alpha-synuclein do not undergo proteasomal degradation in HEK293 and neuronal cells. 
Neurosci Lett 285:79-82. 

13. Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, Barbour R, Huang J, 
Kling K, Lee M, Diep L, Keim PS, Shen X, Chataway T, Schlossmacher MG, Seubert P, Schenk D, Sinha S, Gai 
WP, Chilcote TJ (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein 
in familial and sporadic Lewy body disease. J Biol Chem 281:29739-29752. 

14. Anderson JP WD, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, Barbour R, Huang J, Kling K, 
Lee M, Diep L, Keim PS, Shen X, Chataway T, Schlossmacher MG, Seubert P, Schenk D, Sinha S, Gai WP, 



  

 150 
  

Chilcote TJ. (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in 
familial and sporadic Lewy body disease. J Biol Chem 281:29739-29752. 

15. Anderson KE, Mullins J (2003) Behavioral changes associated with deep brain stimulation surgery for 
Parkinson's disease. Curr Neurol Neurosci Rep 3:306-313. 

16. Ansari KA, Johnson A (1975) Olfactory function in patients with Parkinson's disease. J Chronic Dis 
28:493-497. 

17. Arawaka S, Wada M, Goto S, Karube H, Sakamoto M, Ren CH, Koyama S, Nagasawa H, Kimura H, 
Kawanami T, Kurita K, Tajima K, Daimon M, Baba M, Kido T, Saino S, Goto K, Asao H, Kitanaka C, Takashita 
E, Hongo S, Nakamura T, Kayama T, Suzuki Y, Kobayashi K, Katagiri T, Kurokawa K, Kurimura M, Toyoshima 
I, Niizato K, Tsuchiya K, Iwatsubo T, Muramatsu M, Matsumine H, Kato T (2006) The role of G-protein-coupled 
receptor kinase 5 in pathogenesis of sporadic Parkinson's disease. J Neurosci 26:9227-9238. 

18. Arima K, Ueda K, Sunohara N, Arakawa K, Hirai S, Nakamura M, Tonozuka-Uehara H, Kawai M (1998) 
NACP/alpha-synuclein immunoreactivity in fibrillary components of neuronal and oligodendroglial cytoplasmic 
inclusions in the pontine nuclei in multiple system atrophy. Acta Neuropathol 96:439-444. 

19. Assayag K, Yakunin E, Loeb V, Selkoe DJ, Sharon R (2007) Polyunsaturated fatty acids induce alpha-
synuclein-related pathogenic changes in neuronal cells. Am J Pathol 171:2000-2011. 

20. Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alpha-
synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295:865-868. 

21. Azeredo da Silveira S, Schneider BL, Cifuentes-Diaz C, Sage D, Abbas-Terki T, Iwatsubo T, Unser M, 
Aebischer P (2009) Phosphorylation does not prompt, nor prevent, the formation of alpha-synuclein toxic species in 
a rat model of Parkinson's disease. Hum Mol Genet 18:872-887. 

22. Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, Trojanowski JQ, Iwatsubo T (1998) 
Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. 
Am J Pathol 152:879-884. 

23. Badiola N, de Oliveira RM, Herrera F, Guardia-Laguarta C, Goncalves SA, Pera M, Suarez-Calvet M, 
Clarimon J, Outeiro TF, Lleo A (2011) Tau enhances alpha-synuclein aggregation and toxicity in cellular models of 
synucleinopathy. PLoS One 6:e26609. 

24. Baptista MJ, O'Farrell C, Daya S, Ahmad R, Miller DW, Hardy J, Farrer MJ, Cookson MR (2003) Co-
ordinate transcriptional regulation of dopamine synthesis genes by alpha-synuclein in human neuroblastoma cell 
lines. J Neurochem 85:957-968. 

25. Bartke T, Vermeulen M, Xhemalce B, Robson SC, Mann M, Kouzarides T (2010) Nucleosome-interacting 
proteins regulated by DNA and histone methylation. Cell 143:470-484. 

26. Becker CF, Liu X, Olschewski D, Castelli R, Seidel R, Seeberger PH (2008) Semisynthesis of a 
glycosylphosphatidylinositol-anchored prion protein. Angew Chem Int Ed Engl 47:8215-8219. 

27. Becker G, Seufert J, Bogdahn U, Reichmann H, Reiners K (1995) Degeneration of substantia nigra in 
chronic Parkinson's disease visualized by transcranial color-coded real-time sonography. Neurology 45:182-184. 

28. Bellani S, Sousa VL, Ronzitti G, Valtorta F, Meldolesi J, Chieregatti E (2010) The regulation of synaptic 
function by alpha-synuclein. Commun Integr Biol 3:106-109. 

29. Benazzouz A, Gross C, Feger J, Boraud T, Bioulac B (1993) Reversal of rigidity and improvement in 
motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci 5:382-
389. 



  

 151 
  

  

30. Bennett MC, Bishop JF, Leng Y, Chock PB, Chase TN, Mouradian MM (1999) Degradation of alpha-
synuclein by proteasome. J Biol Chem 274:33855-33858. 

31. Benussi L, Ghidoni R, Paterlini A, Nicosia F, Alberici AC, Signorini S, Barbiero L, Binetti G (2005) 
Interaction between tau and alpha-synuclein proteins is impaired in the presence of P301L tau mutation. Exp Cell 
Res 308:78-84. 

32. Berg D, Schweitzer KJ, Leitner P, Zimprich A, Lichtner P, Belcredi P, Brussel T, Schulte C, Maass S, 
Nagele T, Wszolek ZK, Gasser T (2005) Type and frequency of mutations in the LRRK2 gene in familial and 
sporadic Parkinson's disease*. Brain 128:3000-3011. 

33. Berg D, Siefker C, Ruprecht-Dorfler P, Becker G (2001) Relationship of substantia nigra echogenicity and 
motor function in elderly subjects. Neurology 56:13-17. 

34. Berkowitz DB, Eggen M, Shen Q, Shoemaker RK (1996) Ready Access to Fluorinated Phosphonate 
Mimics of Secondary Phosphates. Synthesis of the (alpha,alpha-Difluoroalkyl)phosphonate Analogues of L-
Phosphoserine, L-Phosphoallothreonine, and L-Phosphothreonine. J Org Chem 61:4666-4675. 

35. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the 
syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 
20:415-455 

36. Berrade L, Camarero JA (2009) Expressed protein ligation: a resourceful tool to study protein structure 
and function. Cell Mol Life Sci. 

37. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic 
systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 3:1301-1306. 

38. Binolfi A, Rasia RM, Bertoncini CW, Ceolin M, Zweckstetter M, Griesinger C, Jovin TM, Fernandez CO 
(2006) Interaction of alpha-synuclein with divalent metal ions reveals key differences: a link between structure, 
binding specificity and fibrillation enhancement. J Am Chem Soc 128:9893-9901. 

39. Birkmayer W, Hornykiewicz O (1961) [The L-3,4-dioxyphenylalanine (DOPA)-effect in Parkinson-
akinesia]. Wien Klin Wochenschr 73:787-788. 

40. Bisaglia M, Schievano E, Caporale A, Peggion E, Mammi S (2006) The 11-mer repeats of human alpha-
synuclein in vesicle interactions and lipid composition discrimination: a cooperative role. Biopolymers 84:310-316. 

41. Bisaglia M, Tessari I, Pinato L, Bellanda M, Giraudo S, Fasano M, Bergantino E, Bubacco L, Mammi S 
(2005) A topological model of the interaction between alpha-synuclein and sodium dodecyl sulfate micelles. 
Biochemistry 44:329-339. 

42. Bjorklund A, Dunnett SB, Brundin P, Stoessl AJ, Freed CR, Breeze RE, Levivier M, Peschanski M, Studer 
L, Barker R (2003) Neural transplantation for the treatment of Parkinson's disease. Lancet Neurol 2:437-445. 

43. Blanco-Canosa JB, Dawson PE (2008) An efficient Fmoc-SPPS approach for the generation of thioester 
peptide precursors for use in native chemical ligation. Angew Chem Int Ed Engl 47:6851-6855. 

44. Bockhorn JJ, Lazar KL, Gasser AJ, Luther LM, Qahwash IM, Chopra N, Meredith SC (2010) Novel 
semisynthetic method for generating full length beta-amyloid peptides. Biopolymers 94:511-520. 

45. Bodner CR, Maltsev AS, Dobson CM, Bax A (2010) Differential phospholipid binding of alpha-synuclein 
variants implicated in Parkinson's disease revealed by solution NMR spectroscopy. Biochemistry 49:862-871. 



  

 152 
  

46. Bohnen NI, Albin RL, Koeppe RA, Wernette KA, Kilbourn MR, Minoshima S, Frey KA (2006) Positron 
emission tomography of monoaminergic vesicular binding in aging and Parkinson disease. J Cereb Blood Flow 
Metab 26:1198-1212. 

47. Bohnen NI, Studenski SA, Constantine GM, Moore RY (2008) Diagnostic performance of clinical motor 
and non-motor tests of Parkinson disease: a matched case-control study. Eur J Neurol 15:685-691. 

48. Bonifati V, Rizzu P, Squitieri F, Krieger E, Vanacore N, van Swieten JC, Brice A, van Duijn CM, Oostra 
B, Meco G, Heutink P (2003a) DJ-1( PARK7), a novel gene for autosomal recessive, early onset parkinsonism. 
Neurol Sci 24:159-160. 

49. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez 
P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink 
P (2003b) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 
299:256-259. 

50. Bortolus M, Tombolato F, Tessari I, Bisaglia M, Mammi S, Bubacco L, Ferrarini A, Maniero AL (2008) 
Broken helix in vesicle and micelle-bound alpha-synuclein: insights from site-directed spin labeling-EPR 
experiments and MD simulations. J Am Chem Soc 130:6690-6691. 

51. Botti P, Villain M, Manganiello S, Gaertner H (2004) Native chemical ligation through in situ O to S acyl 
shift. Org Lett 6:4861-4864. 

52. Bove J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson's disease. NeuroRx 
2:484-494. 

53. Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of 
Parkinson's disease-related pathology. Cell Tissue Res 318:121-134. 

54. Brocks DR (1999) Anticholinergic drugs used in Parkinson's disease: An overlooked class of drugs from a 
pharmacokinetic perspective. J Pharm Pharm Sci 2:39-46. 

55. Broncel M, Krause E, Schwarzer D, Hackenberger CP (2012a) The Alzheimer's disease related tau protein 
as a new target for chemical protein engineering. Chemistry 18:2488-2492. 

56. Broncel M, Krause E, Schwarzer D, Hackenberger CP (2012b) The Alzheimer's Disease Related Tau 
Protein as a New Target for Chemical Protein Engineering. Chemistry. 

57. Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ (1999) Paraquat elicited 
neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res 823:1-10. 

58. Brooks DJ, Pavese N (2011) Imaging biomarkers in Parkinson's disease. Prog Neurobiol 95:614-628 

59. Brown DR (2007) Interactions between metals and alpha-synuclein--function or artefact? FEBS J 
274:3766-3774. 

60. Brunati AM, Donella-Deana A, Ruzzene M, Marin O, Pinna LA (1995) Site specificity of p72syk protein 
tyrosine kinase: efficient phosphorylation of motifs recognized by Src homology 2 domains of the Src family. 
FEBS Lett 367:149-152. 

61. Bussell R, Jr., Eliezer D (2003) A structural and functional role for 11-mer repeats in alpha-synuclein and 
other exchangeable lipid binding proteins. J Mol Biol 329:763-778. 

62. Butterfield S, Hejjaoui M, Fauvet B, Awad L, Lashuel HA (2012a) Chemical Strategies for Controlling 
Protein Folding and Elucidating the Molecular Mechanisms of Amyloid Formation and Toxicity. J Mol Biol. 

  



  

 153 
  

63. Butterfield S, Hejjaoui M, Fauvet B, Awad L, Lashuel HA (2012b) Chemical Strategies for Controlling 
Protein folding and Elucidating the Molecular Mechanisms of Amyloid Formation and Toxicity. the Journal of 
molecular biology 

64. Cabin DE, Shimazu K, Murphy D, Cole NB, Gottschalk W, McIlwain KL, Orrison B, Chen A, Ellis CE, 
Paylor R, Lu B, Nussbaum RL (2002) Synaptic vesicle depletion correlates with attenuated synaptic responses to 
prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci 22:8797-8807. 

65. Calahorro F, Ruiz-Rubio M (2011) Caenorhabditis elegans as an experimental tool for the study of 
complex neurological diseases: Parkinson's disease, Alzheimer's disease and autism spectrum disorder. Invert 
Neurosci 11:73-83 

66. Campbell BC, McLean CA, Culvenor JG, Gai WP, Blumbergs PC, Jakala P, Beyreuther K, Masters CL, Li 
QX (2001) The solubility of alpha-synuclein in multiple system atrophy differs from that of dementia with Lewy 
bodies and Parkinson's disease. J Neurochem 76:87-96. 

67. Campion D, Martin C, Heilig R, Charbonnier F, Moreau V, Flaman JM, Petit JL, Hannequin D, Brice A, 
Frebourg T (1995) The NACP/synuclein gene: chromosomal assignment and screening for alterations in Alzheimer 
disease. Genomics 26:254-257. 

68. Carta M, Bezard E (2011) Contribution of pre-synaptic mechanisms to L-DOPA-induced dyskinesia. 
Neuroscience 198:245-251. 

69. Chahine LM, Stern MB (2011) Diagnostic markers for Parkinson's disease. Curr Opin Neurol 24:309-317. 

70. Chandra S, Chen X, Rizo J, Jahn R, Sudhof TC (2003) A broken alpha -helix in folded alpha -Synuclein. J 
Biol Chem 278:15313-15318. 

71. Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC (2005) Alpha-synuclein 
cooperates with CSPalpha in preventing neurodegeneration. Cell 123:383-396. 

72. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, 
Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destee A (2004) Alpha-synuclein locus 
duplication as a cause of familial Parkinson's disease. Lancet 364:1167-1169. 

73. Chatterjee C, McGinty RK, Fierz B, Muir TW (2010) Disulfide-directed histone ubiquitylation reveals 
plasticity in hDot1L activation. Nat Chem Biol 6:267-269. 

74. Chatterjee C, McGinty RK, Pellois JP, Muir TW (2007) Auxiliary-mediated site-specific peptide 
ubiquitylation. Angew Chem Int Ed Engl 46:2814-2818. 

75. Chau KY, Ching HL, Schapira AH, Cooper JM (2009) Relationship between alpha synuclein 
phosphorylation, proteasomal inhibition and cell death: relevance to Parkinson's disease pathogenesis. J Neurochem 
110:1005-1013. 

76. Chen J, Ai Y, Wang J, Haracska L, Zhuang Z (2010) Chemically ubiquitylated PCNA as a probe for 
eukaryotic translesion DNA synthesis. Nat Chem Biol 6:270-272. 

77. Chen L, Feany MB (2005) Alpha-synuclein phosphorylation controls neurotoxicity and inclusion 
formation in a Drosophila model of Parkinson disease. Nat Neurosci 8:657-663. 

78. Chen L, Periquet M, Wang X, Negro A, McLean PJ, Hyman BT, Feany MB (2009) Tyrosine and serine 
phosphorylation of alpha-synuclein have opposing effects on neurotoxicity and soluble oligomer formation. J Clin 
Invest 119:3257-3265. 

  



  

 154 
  

79. Chen L, Thiruchelvam MJ, Madura K, Richfield EK (2006) Proteasome dysfunction in aged human alpha-
synuclein transgenic mice. Neurobiol Dis 23:120-126. 

80. Chen X, de Silva HA, Pettenati MJ, Rao PN, St George-Hyslop P, Roses AD, Xia Y, Horsburgh K, Ueda 
K, Saitoh T (1995) The human NACP/alpha-synuclein gene: chromosome assignment to 4q21.3-q22 and TaqI 
RFLP analysis. Genomics 26:425-427. 

81. Cherny D, Hoyer W, Subramaniam V, Jovin TM (2004) Double-stranded DNA stimulates the fibrillation 
of alpha-synuclein in vitro and is associated with the mature fibrils: an electron microscopy study. J Mol Biol 
344:929-938. 

82. Chesselet MF (2008) In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinson's 
disease? Exp Neurol 209:22-27. 

83. Chiang KP, Jensen MS, McGinty RK, Muir TW (2009) A semisynthetic strategy to generate 
phosphorylated and acetylated histone H2B. Chembiochem 10:2182-2187. 

84. Chiba-Falek O, Nussbaum RL (2001) Effect of allelic variation at the NACP-Rep1 repeat upstream of the 
alpha-synuclein gene (SNCA) on transcription in a cell culture luciferase reporter system. Hum Mol Genet 
10:3101-3109. 

85. Chu Y, Kordower JH (2010) Lewy body pathology in fetal grafts. Ann N Y Acad Sci 1184:55-67 

86. Cole NB, Dieuliis D, Leo P, Mitchell DC, Nussbaum RL (2008) Mitochondrial translocation of alpha-
synuclein is promoted by intracellular acidification. Exp Cell Res 314:2076-2089. 

87. Colla E, Jensen PH, Pletnikova O, Troncoso JC, Glabe C, Lee MK (2012) Accumulation of toxic alpha-
synuclein oligomer within endoplasmic reticulum occurs in alpha-synucleinopathy in vivo. J Neurosci 32:3301-
3305. 

88. Conrath KE, Lauwereys M, Galleni M, Matagne A, Frere JM, Kinne J, Wyns L, Muyldermans S (2001) 
Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in the camelidae. Antimicrob 
Agents Chemother 45:2807-2812. 

89. Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant alpha-
synuclein linked to early-onset Parkinson disease. Nat Med 4:1318-1320. 

90. Conway KA, Harper JD, Lansbury PT, Jr. (2000a) Fibrils formed in vitro from alpha-synuclein and two 
mutant forms linked to Parkinson's disease are typical amyloid. Biochemistry 39:2552-2563. 

91. Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT, Jr. (2000b) Acceleration of 
oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset 
Parkinson's disease: implications for pathogenesis and therapy. Proc Natl Acad Sci U S A 97:571-576. 

92. Conway KA, Rochet JC, Bieganski RM, Lansbury PT, Jr. (2001) Kinetic stabilization of the alpha-
synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 294:1346-1349. 

93. Cookson MR (2005) The biochemistry of Parkinson's disease. Annu Rev Biochem 74:29-52. 

94. Cookson MR (2010) The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease. Nat Rev 
Neurosci 11:791-797. 

95. Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, 
Cao S, Caldwell KA, Caldwell GA, Marsischky G, Kolodner RD, Labaer J, Rochet JC, Bonini NM, Lindquist S 
(2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science 
313:324-328. 



  

 155 
  

96. Corti O, Lesage S, Brice A (2011) What genetics tells us about the causes and mechanisms of Parkinson's 
disease. Physiol Rev 91:1161-1218. 

97. Crowther RA, Jakes R, Spillantini MG, Goedert M (1998) Synthetic filaments assembled from C-
terminally truncated alpha-synuclein. FEBS Lett 436:309-312. 

98. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant 
alpha-synuclein by chaperone-mediated autophagy. Science 305:1292-1295. 

99. da Costa CA, Ancolio K, Checler F (2000) Wild-type but not Parkinson's disease-related ala-53 --> Thr 
mutant alpha -synuclein protects neuronal cells from apoptotic stimuli. J Biol Chem 275:24065-24069. 

100. Dalfo E, Barrachina M, Rosa JL, Ambrosio S, Ferrer I (2004) Abnormal alpha-synuclein interactions with 
rab3a and rabphilin in diffuse Lewy body disease. Neurobiol Dis 16:92-97. 

101. Dalfo E, Ferrer I (2005) Alpha-synuclein binding to rab3a in multiple system atrophy. Neurosci Lett 
380:170-175. 

102. Danielson SR, Held JM, Schilling B, Oo M, Gibson BW, Andersen JK (2009) Preferentially increased 
nitration of alpha-synuclein at tyrosine-39 in a cellular oxidative model of Parkinson's disease. Anal Chem 
81:7823-7828. 

103. Danzer KM, Ruf WP, Putcha P, Joyner D, Hashimoto T, Glabe C, Hyman BT, McLean PJ (2011) Heat-
shock protein 70 modulates toxic extracellular alpha-synuclein oligomers and rescues trans-synaptic toxicity. 
FASEB J 25:326-336 

104. David Y, Ternette N, Edelmann MJ, Ziv T, Gayer B, Sertchook R, Dadon Y, Kessler BM, Navon A (2011) 
E3 ligases determine ubiquitination site and conjugate type by enforcing specificity on E2 enzymes. J Biol Chem 
286:44104-44115. 

105. Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of alpha-synuclein secondary 
structure upon binding to synthetic membranes. J Biol Chem 273:9443-9449. 

106. Dawson PE, Kent SB (2000) Synthesis of native proteins by chemical ligation. Annu Rev Biochem 
69:923-960. 

107. Dawson PE, Muir TW, Clark-Lewis I, Kent SB (1994) Synthesis of proteins by native chemical ligation. 
Science 266:776-779. 

108. Dawson TM (2000) New animal models for Parkinson's disease. Cell 101:115-118. 

109. Dawson TM, Dawson VL (2010) The role of parkin in familial and sporadic Parkinson's disease. Mov 
Disord 25 Suppl 1:S32-39. 

110. Dawson TM, Ko HS, Dawson VL (2010) Genetic animal models of Parkinson's disease. Neuron 66:646-
661. 

111. De Genst EJ, Guilliams T, Wellens J, O'Day EM, Waudby CA, Meehan S, Dumoulin M, Hsu ST, 
Cremades N, Verschueren KH, Pardon E, Wyns L, Steyaert J, Christodoulou J, Dobson CM (2010) Structure and 
properties of a complex of alpha-synuclein and a single-domain camelid antibody. J Mol Biol 402:326-343. 

112. de la Fuente-Fernandez R, Sossi V, Huang Z, Furtado S, Lu JQ, Calne DB, Ruth TJ, Stoessl AJ (2004) 
Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson's disease: 
implications for dyskinesias. Brain 127:2747-2754. 
 



  

 156 
  

113. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson's disease. Lancet Neurol 5:525-535. 

114. Decanniere K, Desmyter A, Lauwereys M, Ghahroudi MA, Muyldermans S, Wyns L (1999) A single-
domain antibody fragment in complex with RNase A: non-canonical loop structures and nanomolar affinity using 
two CDR loops. Structure 7:361-370. 

115. Dedmon MM, Christodoulou J, Wilson MR, Dobson CM (2005) Heat shock protein 70 inhibits alpha-
synuclein fibril formation via preferential binding to prefibrillar species. J Biol Chem 280:14733-14740. 

116. Del Mar C, Greenbaum EA, Mayne L, Englander SW, Woods VL, Jr. (2005) Structure and properties of 
alpha-synuclein and other amyloids determined at the amino acid level. Proceedings of the National Academy of 
Sciences of the United States of America 102:15477-15482. 

117. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional 
spectral processing system based on UNIX pipes. J Biomol NMR 6:277-293. 

118. Desmarais S, Friesen RW, Zamboni R, Ramachandran C (1999) 
[Difluro(phosphono)methyl]phenylalanine-containing peptide inhibitors of protein tyrosine phosphatases. The 
Biochemical journal 337 ( Pt 2):219-223. 

119. Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee SJ (2009) 
Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl 
Acad Sci U S A 106:13010-13015. 

120. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial 
import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and 
Parkinson disease brain. J Biol Chem 283:9089-9100. 

121. Devic I, Hwang H, Edgar JS, Izutsu K, Presland R, Pan C, Goodlett DR, Wang Y, Armaly J, Tumas V, 
Zabetian CP, Leverenz JB, Shi M, Zhang J (2011) Salivary alpha-synuclein and DJ-1: potential biomarkers for 
Parkinson's disease. Brain 134:e178. 

122. Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid 
peroxidation in substantia nigra is increased in Parkinson's disease. J Neurochem 52:381-389. 

123. Ding TT, Lee SJ, Rochet JC, Lansbury PT, Jr. (2002) Annular alpha-synuclein protofibrils are produced 
when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry 
41:10209-10217. 

124. Dorval V, Fraser PE (2006) Small ubiquitin-like modifier (SUMO) modification of natively unfolded 
proteins tau and alpha-synuclein. J Biol Chem 281:9919-9924. 

125. Doty RL, Bromley SM, Stern MB (1995) Olfactory testing as an aid in the diagnosis of Parkinson's 
disease: development of optimal discrimination criteria. Neurodegeneration 4:93-97. 

126. Drescher M, Veldhuis G, van Rooijen BD, Milikisyants S, Subramaniam V, Huber M (2008) Antiparallel 
arrangement of the helices of vesicle-bound alpha-synuclein. J Am Chem Soc 130:7796-7797. 

127. Drobysheva D, Ameel K, Welch B, Ellison E, Chaichana K, Hoang B, Sharma S, Neckameyer W, 
Srinakevitch I, Murphy KJ, Schmid A (2008) An optimized method for histological detection of dopaminergic 
neurons in Drosophila melanogaster. J Histochem Cytochem 56:1049-1063. 

128. Dumoulin M, Last AM, Desmyter A, Decanniere K, Canet D, Larsson G, Spencer A, Archer DB, Sasse J, 
Muyldermans S, Wyns L, Redfield C, Matagne A, Robinson CV, Dobson CM (2003) A camelid antibody fragment 
inhibits the formation of amyloid fibrils by human lysozyme. Nature 424:783-788. 



  

 157 
  

 

129. Ebersbach G, Baas H, Csoti I, Mungersdorf M, Deuschl G (2006) Scales in Parkinson's disease. J Neurol 
253 Suppl 4:IV32-35. 

130. Ebrahimi-Fakhari D, Cantuti-Castelvetri I, Fan Z, Rockenstein E, Masliah E, Hyman BT, McLean PJ, 
Unni VK (2011) Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway 
in the degradation of alpha-synuclein. J Neurosci 31:14508-14520. 

131. Eger S, Scheffner M, Marx A, Rubini M (2010) Synthesis of defined ubiquitin dimers. J Am Chem Soc 
132:16337-16339. 

132. Ehringer H, Hornykiewicz O (1960) [Distribution of noradrenaline and dopamine (3-hydroxytyramine) in 
the human brain and their behavior in diseases of the extrapyramidal system]. Klin Wochenschr 38:1236-1239. 

133. El-Agnaf OM, Salem SA, Paleologou KE, Cooper LJ, Fullwood NJ, Gibson MJ, Curran MD, Court JA, 
Mann DM, Ikeda S, Cookson MR, Hardy J, Allsop D (2003) Alpha-synuclein implicated in Parkinson's disease is 
present in extracellular biological fluids, including human plasma. FASEB J 17:1945-1947. 

134. El-Agnaf OM, Salem SA, Paleologou KE, Curran MD, Gibson MJ, Court JA, Schlossmacher MG, Allsop 
D (2006) Detection of oligomeric forms of alpha-synuclein protein in human plasma as a potential biomarker for 
Parkinson's disease. FASEB J 20:419-425. 

135. Eliezer D, Kutluay E, Bussell R, Jr., Browne G (2001) Conformational properties of alpha-synuclein in its 
free and lipid-associated states. J Mol Biol 307:1061-1073. 

136. Ellis CE, Schwartzberg PL, Grider TL, Fink DW, Nussbaum RL (2001) alpha-synuclein is phosphorylated 
by members of the Src family of protein-tyrosine kinases. J Biol Chem 276:3879-3884. 

137. Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, Stefanis L, 
Vekrellis K (2010) Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and 
impacts neuronal survival. J Neurosci 30:6838-6851. 

138. Engelender S, Kaminsky Z, Guo X, Sharp AH, Amaravi RK, Kleiderlein JJ, Margolis RL, Troncoso JC, 
Lanahan AA, Worley PF, Dawson VL, Dawson TM, Ross CA (1999) Synphilin-1 associates with alpha-synuclein 
and promotes the formation of cytosolic inclusions. Nat Genet 22:110-114. 

139. Englebretsen DR, Garnham B, Alewood PF (2002) A cassette ligation strategy with thioether replacement 
of three Gly-Gly peptide bonds: total chemical synthesis of the 101 residue protein early pregnancy factor 
[psi(CH(2)S)28-29,56-57,76-77]. J Org Chem 67:5883-5890. 

140. Eriksen JL, Przedborski S, Petrucelli L (2005) Gene dosage and pathogenesis of Parkinson's disease. 
Trends Mol Med 11:91-96. 

141. Evans TC, Jr., Benner J, Xu MQ (1998) Semisynthesis of cytotoxic proteins using a modified protein 
splicing element. Protein Sci 7:2256-2264. 

142. Evans TC, Jr., Benner J, Xu MQ (1999) The in vitro ligation of bacterially expressed proteins using an 
intein from Methanobacterium thermoautotrophicum. J Biol Chem 274:3923-3926. 

143. Evans TC, Jr., Xu MQ (1999) Intein-mediated protein ligation: harnessing nature's escape artists. 
Biopolymers 51:333-342. 

144. Farrer M, Chan P, Chen R, Tan L, Lincoln S, Hernandez D, Forno L, Gwinn-Hardy K, Petrucelli L, 
Hussey J, Singleton A, Tanner C, Hardy J, Langston JW (2001a) Lewy bodies and parkinsonism in families with 
parkin mutations. Ann Neurol 50:293-300. 



  

 158 
  

145. Farrer M, Maraganore DM, Lockhart P, Singleton A, Lesnick TG, de Andrade M, West A, de Silva R, 
Hardy J, Hernandez D (2001b) alpha-Synuclein gene haplotypes are associated with Parkinson's disease. Hum Mol 
Genet 10:1847-1851. 

146. Fasano A, Daniele A, Albanese A (2012) Treatment of motor and non-motor features of Parkinson's 
disease with deep brain stimulation. Lancet Neurol 11:429-442 

147. Fauvet B, Fares MB, Samuel F, Dikiy I, Tandon A, Eliezer D, Lashuel HA (2012a) Characterization of 
semisynthetic and naturally Nalpha-acetylated alpha-synuclein in vitro and in intact cells: implications for 
aggregation and cellular properties of alpha-synuclein. J Biol Chem. 

148. Fauvet B, Mbefo MK, Fares MB, Desobry C, Michael S, Ardah MT, Tsika E, Coune P, Prudent M, Lion 
N, Eliezer D, Moore DJ, Schneider B, Aebischer P, El-Agnaf OM, Masliah E, Lashuel HA (2012b) alpha-
Synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists 
predominantly as disordered monomer. J Biol Chem 287:15345-15364. 

149. Feany MB, Bender WW (2000) A Drosophila model of Parkinson's disease. Nature 404:394-398. 

150. Flower TR, Chesnokova LS, Froelich CA, Dixon C, Witt SN (2005) Heat shock prevents alpha-synuclein-
induced apoptosis in a yeast model of Parkinson's disease. J Mol Biol 351:1081-1100. 

151. Fornai F, Lenzi P, Ferrucci M, Lazzeri G, di Poggio AB, Natale G, Busceti CL, Biagioni F, Giusiani M, 
Ruggieri S, Paparelli A (2005) Occurrence of neuronal inclusions combined with increased nigral expression of 
alpha-synuclein within dopaminergic neurons following treatment with amphetamine derivatives in mice. Brain Res 
Bull 65:405-413 

152. Forno LS (1996) Neuropathology of Parkinson's disease. J Neuropathol Exp Neurol 55:259-272. 

153. Forno LS, Langston JW, DeLanney LE, Irwin I (1988) An electron microscopic study of MPTP-induced 
inclusion bodies in an old monkey. Brain Res 448:150-157. 

154. Foulds PG, Mitchell JD, Parker A, Turner R, Green G, Diggle P, Hasegawa M, Taylor M, Mann D, Allsop 
D (2011) Phosphorylated alpha-synuclein can be detected in blood plasma and is potentially a useful biomarker for 
Parkinson's disease. FASEB J 25:4127-4137. 

155. Frasier M, Walzer M, McCarthy L, Magnuson D, Lee JM, Haas C, Kahle P, Wolozin B (2005) Tau 
phosphorylation increases in symptomatic mice overexpressing A30P alpha-synuclein. Exp Neurol 192:274-287. 

156. Fredenburg RA, Rospigliosi C, Meray RK, Kessler JC, Lashuel HA, Eliezer D, Lansbury PT, Jr. (2007) 
The impact of the E46K mutation on the properties of alpha-synuclein in its monomeric and oligomeric states. 
Biochemistry 46:7107-7118. 

157. Freichel C, Neumann M, Ballard T, Muller V, Woolley M, Ozmen L, Borroni E, Kretzschmar HA, Haass 
C, Spooren W, Kahle PJ (2007) Age-dependent cognitive decline and amygdala pathology in alpha-synuclein 
transgenic mice. Neurobiol Aging 28:1421-1435. 

158. Fuchs J, Nilsson C, Kachergus J, Munz M, Larsson EM, Schule B, Langston JW, Middleton FA, Ross OA, 
Hulihan M, Gasser T, Farrer MJ (2007) Phenotypic variation in a large Swedish pedigree due to SNCA duplication 
and triplication. Neurology 68:916-922. 

159. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, 
Iwatsubo T (2002) alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4:160-164. 

  



  

 159 
  

160. Gai WP, Power JH, Blumbergs PC, Culvenor JG, Jensen PH (1999) Alpha-synuclein immunoisolation of 
glial inclusions from multiple system atrophy brain tissue reveals multiprotein components. J Neurochem 73:2093-
2100. 

161. Gasser T (2009) Molecular pathogenesis of Parkinson disease: insights from genetic studies. Expert Rev 
Mol Med 11:e22. 

162. Geng DY, Li YX, Zee CS (2006) Magnetic resonance imaging-based volumetric analysis of basal ganglia 
nuclei and substantia nigra in patients with Parkinson's disease. Neurosurgery 58:256-262; discussion 256-262. 

163. Gentle IE, De Souza DP, Baca M (2004) Direct production of proteins with N-terminal cysteine for site-
specific conjugation. Bioconjug Chem 15:658-663. 

164. George JM (2002) The synucleins. Genome Biol 3:REVIEWS3002. 

165. George JM, Jin H, Woods WS, Clayton DF (1995) Characterization of a novel protein regulated during the 
critical period for song learning in the zebra finch. Neuron 15:361-372. 

166. Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee 
VM (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in 
synucleinopathy lesions. Science 290:985-989. 

167. Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM (2002) Neuronal alpha-
synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 34:521-
533 

168. Giasson BI FM, Higuchi M, Golbe LI, Graves CL, Kotzbauer PT, Trojanowski JQ, Lee VM. (2003) 
Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 300:636-640. 

169. Giasson BI, Forman MS, Higuchi M, Golbe LI, Graves CL, Kotzbauer PT, Trojanowski JQ, Lee VM 
(2003) Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 300:636-640. 

170. Giasson BI, Murray IV, Trojanowski JQ, Lee VM (2001) A hydrophobic stretch of 12 amino acid residues 
in the middle of alpha-synuclein is essential for filament assembly. J Biol Chem 276:2380-2386. 

171. Giasson BI, Uryu K, Trojanowski JQ, Lee VM (1999) Mutant and wild type human alpha-synucleins 
assemble into elongated filaments with distinct morphologies in vitro. J Biol Chem 274:7619-7622. 

172. Giriat I, Muir TW (2003) Protein semi-synthesis in living cells. J Am Chem Soc 125:7180-7181. 

173. Gitler AD, Bevis BJ, Shorter J, Strathearn KE, Hamamichi S, Su LJ, Caldwell KA, Caldwell GA, Rochet 
JC, McCaffery JM, Barlowe C, Lindquist S (2008) The Parkinson's disease protein alpha-synuclein disrupts cellular 
Rab homeostasis. Proc Natl Acad Sci U S A 105:145-150. 

174. Gitler AD, Chesi A, Geddie ML, Strathearn KE, Hamamichi S, Hill KJ, Caldwell KA, Caldwell GA, 
Cooper AA, Rochet JC, Lindquist S (2009) Alpha-synuclein is part of a diverse and highly conserved interaction 
network that includes PARK9 and manganese toxicity. Nat Genet 41:308-315. 

175. Goers J M-BA, McCormack AL, Millett IS, Doniach S, Di Monte DA, Uversky VN, Fink AL. (2003) 
Nuclear localization of alpha-synuclein and its interaction with histones. Biochem J 42:8465-8471. 

176. Goers J, Manning-Bog AB, McCormack AL, Millett IS, Doniach S, Di Monte DA, Uversky VN, Fink AL 
(2003a) Nuclear localization of alpha-synuclein and its interaction with histones. Biochemistry 42:8465-8471. 

  



  

 160 
  

177. Goers J, Uversky VN, Fink AL (2003b) Polycation-induced oligomerization and accelerated fibrillation of 
human alpha-synuclein in vitro. Protein Sci 12:702-707. 

178. Goguen BN, Aemissegger A, Imperiali B (2011) Sequential activation and deactivation of protein function 
using spectrally differentiated caged phosphoamino acids. J Am Chem Soc 133:11038-11041. 

179. Golbe LI, Di Iorio G, Bonavita V, Miller DC, Duvoisin RC (1990) A large kindred with autosomal 
dominant Parkinson's disease. Ann Neurol 27:276-282. 

180. Gomez-Isla T, Irizarry MC, Mariash A, Cheung B, Soto O, Schrump S, Sondel J, Kotilinek L, Day J, 
Schwarzschild MA, Cha JH, Newell K, Miller DW, Ueda K, Young AB, Hyman BT, Ashe KH (2003) Motor 
dysfunction and gliosis with preserved dopaminergic markers in human alpha-synuclein A30P transgenic mice. 
Neurobiol Aging 24:245-258. 

181. Gorbatyuk OS, Li S, Sullivan LF, Chen W, Kondrikova G, Manfredsson FP, Mandel RJ, Muzyczka N 
(2008) The phosphorylation state of Ser-129 in human alpha-synuclein determines neurodegeneration in a rat 
model of Parkinson disease. Proc Natl Acad Sci U S A 105:763-768. 

182. Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Kortsha GX, Brown GG, Richardson RJ (1999) 
Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson's disease. 
Neurotoxicology 20:239-247. 

183. Gosavi N, Lee HJ, Lee JS, Patel S, Lee SJ (2002) Golgi fragmentation occurs in the cells with prefibrillar 
alpha-synuclein aggregates and precedes the formation of fibrillar inclusion. J Biol Chem 277:48984-48992. 

184. Guehl D, Tison F, Cuny E, Benazzouz A, Rougier A, Bioulac B, Burbaud P (2003) Complications and 
adverse effects of deep brain stimulation in Parkinson's patients. Expert Rev Neurother 3:811-819 

185. Hackenberger CP, Schwarzer D (2008) Chemoselective ligation and modification strategies for peptides 
and proteins. Angew Chem Int Ed Engl 47:10030-10074. 

186. Haj-Yahya M, Ajish Kumar KS, Erlich LA, Brik A (2010) Protecting group variations of delta-
mercaptolysine useful in chemical ubiquitylation. Biopolymers 94:504-510. 

187. Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA (2008) Hypothesis-based RNAi 
screening identifies neuroprotective genes in a Parkinson's disease model. Proc Natl Acad Sci U S A 105:728-733 

188. Hamani C, Richter E, Schwalb JM, Lozano AM (2005) Bilateral subthalamic nucleus stimulation for 
Parkinson's disease: a systematic review of the clinical literature. Neurosurgery 56:1313-1321; discussion 1321-
1314. 

189. Hamilton RL (2000) Lewy bodies in Alzheimer's disease: a neuropathological review of 145 cases using 
alpha-synuclein immunohistochemistry. Brain Pathol 10:378-384. 

190. Hansen C, Angot E, Bergstrom AL, Steiner JA, Pieri L, Paul G, Outeiro TF, Melki R, Kallunki P, Fog K, 
Li JY, Brundin P (2011) alpha-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds 
aggregation in cultured human cells. J Clin Invest 121:715-725. 

191. Harding AJ, Halliday GM (1998) Simplified neuropathological diagnosis of dementia with Lewy bodies. 
Neuropathol Appl Neurobiol 24:195-201 

192. Hardy J, Cookson MR, Singleton A (2003) Genes and parkinsonism. Lancet Neurol 2:221-228. 

193. Hasegawa M, Fujiwara H, Nonaka T, Wakabayashi K, Takahashi H, Lee VM, Trojanowski JQ, Mann D, 
Iwatsubo T (2002) Phosphorylated alpha-synuclein is ubiquitinated in alpha-synucleinopathy lesions. J Biol Chem 
277:49071-49076. 



  

 161 
  

194. Hasegawa T, Matsuzaki M, Takeda A, Kikuchi A, Akita H, Perry G, Smith MA, Itoyama Y (2004) 
Accelerated alpha-synuclein aggregation after differentiation of SH-SY5Y neuroblastoma cells. Brain Res 1013:51-
59 

195. Hashimoto M, Hsu LJ, Rockenstein E, Takenouchi T, Mallory M, Masliah E (2002) alpha-Synuclein 
protects against oxidative stress via inactivation of the c-Jun N-terminal kinase stress-signaling pathway in neuronal 
cells. J Biol Chem 277:11465-11472. 

196. Hashimoto M, Rockenstein E, Mante M, Mallory M, Masliah E (2001) beta-Synuclein inhibits alpha-
synuclein aggregation: a possible role as an anti-parkinsonian factor. Neuron 32:213-223 

197. Hatano T, Kubo S, Sato S, Hattori N (2009) Pathogenesis of familial Parkinson's disease: new insights 
based on monogenic forms of Parkinson's disease. J Neurochem 111:1075-1093. 

198. Haywood AF, Staveley BE (2004) Parkin counteracts symptoms in a Drosophila model of Parkinson's 
disease. BMC Neurosci 5:14. 

199. Haywood AF, Staveley BE (2006) Mutant alpha-synuclein-induced degeneration is reduced by parkin in a 
fly model of Parkinson's disease. Genome 49:505-510. 

200. Heise H, Hoyer W, Becker S, Andronesi OC, Riedel D, Baldus M (2005) Molecular-level secondary 
structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proc Natl 
Acad Sci U S A 102:15871-15876. 

201. Hejjaoui M, Haj-Yahya M, Kumar KS, Brik A, Lashuel HA (2011) Towards elucidation of the role of 
ubiquitination in the pathogenesis of Parkinson's disease with semisynthetic ubiquitinated alpha-synuclein. Angew 
Chem Int Ed Engl 50:405-409. 

202. Hirel PH, Schmitter MJ, Dessen P, Fayat G, Blanquet S (1989) Extent of N-terminal methionine excision 
from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc Natl Acad 
Sci U S A 86:8247-8251. 

203. Hodara R, Norris EH, Giasson BI, Mishizen-Eberz AJ, Lynch DR, Lee VM, Ischiropoulos H (2004) 
Functional consequences of alpha-synuclein tyrosine nitration: diminished binding to lipid vesicles and increased 
fibril formation. J Biol Chem 279:47746-47753. 

204. Hong DP, Han S, Fink AL, Uversky VN (2011) Characterization of the non-fibrillar alpha-synuclein 
oligomers. Protein Pept Lett 18:230-240. 

205. Hoyer W, Cherny D, Subramaniam V, Jovin TM (2004) Impact of the acidic C-terminal region comprising 
amino acids 109-140 on alpha-synuclein aggregation in vitro. Biochemistry 43:16233-16242. 

206. Ibanez P, Bonnet AM, Debarges B, Lohmann E, Tison F, Pollak P, Agid Y, Durr A, Brice A (2004) Causal 
relation between alpha-synuclein gene duplication and familial Parkinson's disease. Lancet 364:1169-1171. 

207. Ibanez P, Lesage S, Lohmann E, Thobois S, De Michele G, Borg M, Agid Y, Durr A, Brice A (2006) 
Mutational analysis of the PINK1 gene in early-onset parkinsonism in Europe and North Africa. Brain 129:686-
694. 

208. Ikeda F, Dikic I (2008) Atypical ubiquitin chains: new molecular signals. 'Protein Modifications: Beyond 
the Usual Suspects' review series. EMBO Rep 9:536-542. 

209. Inglis KJ, Chereau D, Brigham EF, Chiou SS, Schobel S, Frigon NL, Yu M, Caccavello RJ, Nelson S, 
Motter R, Wright S, Chian D, Santiago P, Soriano F, Ramos C, Powell K, Goldstein JM, Babcock M, Yednock T, 
Bard F, Basi GS, Sham H, Chilcote TJ, McConlogue L, Griswold-Prenner I, Anderson JP (2009) Polo-like kinase 2 
(PLK2) phosphorylates alpha-synuclein at serine 129 in central nervous system. J Biol Chem 284:2598-2602. 



  

 162 
  

 

210. Irizarry MC, Kim TW, McNamara M, Tanzi RE, George JM, Clayton DF, Hyman BT (1996) 
Characterization of the precursor protein of the non-A beta component of senile plaques (NACP) in the human 
central nervous system. J Neuropathol Exp Neurol 55:889-895. 

211. Iwata A, Maruyama M, Akagi T, Hashikawa T, Kanazawa I, Tsuji S, Nukina N (2003) Alpha-synuclein 
degradation by serine protease neurosin: implication for pathogenesis of synucleinopathies. Hum Mol Genet 
12:2625-2635. 

212. Iwata A, Maruyama M, Kanazawa I, Nukina N (2001) alpha-Synuclein affects the MAPK pathway and 
accelerates cell death. J Biol Chem 276:45320-45329. 

213. Jakes R, Spillantini MG, Goedert M (1994) Identification of two distinct synucleins from human brain. 
FEBS Lett 345:27-32. 

214. Jang A, Lee HJ, Suk JE, Jung JW, Kim KP, Lee SJ (2010) Non-classical exocytosis of alpha-synuclein is 
sensitive to folding states and promoted under stress conditions. J Neurochem 113:1263-1274. 

215. Jankovic J (2008) Parkinson's disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 
79:368-376. 

216. Jao CC, Der-Sarkissian A, Chen J, Langen R (2004) Structure of membrane-bound alpha-synuclein studied 
by site-directed spin labeling. Proc Natl Acad Sci U S A 101:8331-8336. 

217. Jenco JM, Rawlingson A, Daniels B, Morris AJ (1998) Regulation of phospholipase D2: selective 
inhibition of mammalian phospholipase D isoenzymes by alpha- and beta-synucleins. Biochemistry 37:4901-4909. 

218. Jenner P (2003) Oxidative stress in Parkinson's disease. Ann Neurol 53 Suppl 3:S26-36; discussion S36-
28. 

219. Jenner P, Dexter DT, Sian J, Schapira AH, Marsden CD (1992) Oxidative stress as a cause of nigral cell 
death in Parkinson's disease and incidental Lewy body disease. The Royal Kings and Queens Parkinson's Disease 
Research Group. Ann Neurol 32 Suppl:S82-87. 

220. Jensen PH, Hager H, Nielsen MS, Hojrup P, Gliemann J, Jakes R (1999) alpha-synuclein binds to Tau and 
stimulates the protein kinase A-catalyzed tau phosphorylation of serine residues 262 and 356. J Biol Chem 
274:25481-25489. 

221. Jensen PH, Nielsen MS, Jakes R, Dotti CG, Goedert M (1998) Binding of alpha-synuclein to brain vesicles 
is abolished by familial Parkinson's disease mutation. J Biol Chem 273:26292-26294. 

222. Jensen PJ, Alter BJ, O'Malley KL (2003) Alpha-synuclein protects naive but not dbcAMP-treated 
dopaminergic cell types from 1-methyl-4-phenylpyridinium toxicity. J Neurochem 86:196-209 

223. Jenson J, Goldstein G, Breslow E (1980) Physical-chemical properties of ubiquitin. Biochim Biophys Acta 
624:378-385. 

224. Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. 
Methods Mol Biol 278:313-352. 

225. Johnson EC, Kent SB (2006) Insights into the mechanism and catalysis of the native chemical ligation 
reaction. J Am Chem Soc 128:6640-6646. 



  

 163 
  

226. Junn E, Ronchetti RD, Quezado MM, Kim SY, Mouradian MM (2003) Tissue transglutaminase-induced 
aggregation of alpha-synuclein: Implications for Lewy body formation in Parkinson's disease and dementia with 
Lewy bodies. Proc Natl Acad Sci U S A 100:2047-2052. 

227. Kahle PJ, Neumann M, Ozmen L, Muller V, Jacobsen H, Spooren W, Fuss B, Mallon B, Macklin WB, 
Fujiwara H, Hasegawa M, Iwatsubo T, Kretzschmar HA, Haass C (2002) Hyperphosphorylation and insolubility of 
alpha-synuclein in transgenic mouse oligodendrocytes. EMBO Rep 3:583-588. 

228. Kalia LV, Kalia SK, Chau H, Lozano AM, Hyman BT, McLean PJ (2011) Ubiquitinylation of alpha-
synuclein by carboxyl terminus Hsp70-interacting protein (CHIP) is regulated by Bcl-2-associated athanogene 5 
(BAG5). PLoS One 6:e14695. 

229. Kalivendi SV, Cunningham S, Kotamraju S, Joseph J, Hillard CJ, Kalyanaraman B (2004) Alpha-
synuclein up-regulation and aggregation during MPP+-induced apoptosis in neuroblastoma cells: intermediacy of 
transferrin receptor iron and hydrogen peroxide. J Biol Chem 279:15240-15247. 

230. Kang L, Moriarty GM, Woods LA, Ashcroft AE, Radford SE, Baum J (2012) N-terminal acetylation of 
alpha-synuclein induces increased transient helical propensity and decreased aggregation rates in the intrinsically 
disordered monomer. Protein Sci 21:911-917. 

231. Karpinar DP, Balija MB, Kugler S, Opazo F, Rezaei-Ghaleh N, Wender N, Kim HY, Taschenberger G, 
Falkenburger BH, Heise H, Kumar A, Riedel D, Fichtner L, Voigt A, Braus GH, Giller K, Becker S, Herzig A, 
Baldus M, Jackle H, Eimer S, Schulz JB, Griesinger C, Zweckstetter M (2009) Pre-fibrillar alpha-synuclein 
variants with impaired beta-structure increase neurotoxicity in Parkinson's disease models. EMBO J 28:3256-3268. 

232. Kasai T, Tokuda T, Yamaguchi N, Watanabe Y, Kametani F, Nakagawa M, Mizuno T (2008) Cleavage of 
normal and pathological forms of alpha-synuclein by neurosin in vitro. Neurosci Lett 436:52-56. 

233. Kawamata H, McLean PJ, Sharma N, Hyman BT (2001) Interaction of alpha-synuclein and synphilin-1: 
effect of Parkinson's disease-associated mutations. J Neurochem 77:929-934. 

234. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common 
structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486-489. 

235. Kent SB (1988) Chemical synthesis of peptides and proteins. Annu Rev Biochem 57:957-989. 

236. Khan N, Graham E, Dixon P, Morris C, Mander A, Clayton D, Vaughan J, Quinn N, Lees A, Daniel S, 
Wood N, de Silva R (2001) Parkinson's disease is not associated with the combined alpha-synuclein/apolipoprotein 
E susceptibility genotype. Ann Neurol 49:665-668. 

237. Kholodilov NG, Oo TF, Burke RE (1999) Synuclein expression is decreased in rat substantia nigra 
following induction of apoptosis by intrastriatal 6-hydroxydopamine. Neurosci Lett 275:105-108. 

238. Ki CS, Stavrou EF, Davanos N, Lee WY, Chung EJ, Kim JY, Athanassiadou A (2007) The Ala53Thr 
mutation in the alpha-synuclein gene in a Korean family with Parkinson disease. Clin Genet 71:471-473. 

239. Kim EJ, Sung JY, Lee HJ, Rhim H, Hasegawa M, Iwatsubo T, Min do S, Kim J, Paik SR, Chung KC 
(2006) Dyrk1A phosphorylates alpha-synuclein and enhances intracellular inclusion formation. J Biol Chem 
281:33250-33257. 

240. Kim TD, Paik SR, Yang CH, Kim J (2000) Structural changes in alpha-synuclein affect its chaperone-like 
activity in vitro. Protein Sci 9:2489-2496. 

241. Kim YM, Jang WH, Quezado MM, Oh Y, Chung KC, Junn E, Mouradian MM (2011) Proteasome 
inhibition induces alpha-synuclein SUMOylation and aggregate formation. J Neurol Sci 307:157-161. 



  

 164 
  

242. Kirik D, Rosenblad C, Bjorklund A (1998) Characterization of behavioral and neurodegenerative changes 
following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. 
Exp Neurol 152:259-277. 

243. Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzyczka N, Mandel RJ, Bjorklund A (2002) 
Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal 
system. J Neurosci 22:2780-2791. 

244. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, 
Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605-
608. 

245. Klabunde T, Sharma S, Telenti A, Jacobs WR, Jr., Sacchettini JC (1998) Crystal structure of GyrA intein 
from Mycobacterium xenopi reveals structural basis of protein splicing. Nat Struct Biol 5:31-36. 

246. Klein RL, King MA, Hamby ME, Meyer EM (2002) Dopaminergic cell loss induced by human A30P 
alpha-synuclein gene transfer to the rat substantia nigra. Hum Gene Ther 13:605-612. 

247. Kloepper KD, Hartman KL, Ladror DT, Rienstra CM (2007) Solid-state NMR spectroscopy reveals that 
water is nonessential to the core structure of alpha-synuclein fibrils. J Phys Chem B 111:13353-13356. 

248. Komarov AG, Linn KM, Devereaux JJ, Valiyaveetil FI (2009) Modular strategy for the semisynthesis of a 
K+ channel: investigating interactions of the pore helix. ACS Chem Biol 4:1029-1038. 

249. Kontopoulos E, Parvin JD, Feany MB (2006) Alpha-synuclein acts in the nucleus to inhibit histone 
acetylation and promote neurotoxicity. Hum Mol Genet 15:3012-3023. 

250. Kostka M, Hogen T, Danzer KM, Levin J, Habeck M, Wirth A, Wagner R, Glabe CG, Finger S, 
Heinzelmann U, Garidel P, Duan W, Ross CA, Kretzschmar H, Giese A (2008) Single particle characterization of 
iron-induced pore-forming alpha-synuclein oligomers. J Biol Chem 283:10992-11003. 

251. Kotzbauer PT, Giasson BI, Kravitz AV, Golbe LI, Mark MH, Trojanowski JQ, Lee VM (2004) 
Fibrillization of alpha-synuclein and tau in familial Parkinson's disease caused by the A53T alpha-synuclein 
mutation. Exp Neurol 187:279-288. 

252. Koutsilieri E, Riederer P (2007) Excitotoxicity and new antiglutamatergic strategies in Parkinson's disease 
and Alzheimer's disease. Parkinsonism Relat Disord 13 Suppl 3:S329-331. 

253. Kruger R, Kuhn W, Leenders KL, Sprengelmeyer R, Muller T, Woitalla D, Portman AT, Maguire RP, 
Veenma L, Schroder U, Schols L, Epplen JT, Riess O, Przuntek H (2001) Familial parkinsonism with synuclein 
pathology: clinical and PET studies of A30P mutation carriers. Neurology 56:1355-1362. 

254. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O 
(1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat Genet 18:106-108. 

255. Kruger R, Vieira-Saecker AM, Kuhn W, Berg D, Muller T, Kuhnl N, Fuchs GA, Storch A, Hungs M, 
Woitalla D, Przuntek H, Epplen JT, Schols L, Riess O (1999) Increased susceptibility to sporadic Parkinson's 
disease by a certain combined alpha-synuclein/apolipoprotein E genotype. Ann Neurol 45:611-617. 

256. Krumova P, Meulmeester E, Garrido M, Tirard M, Hsiao HH, Bossis G, Urlaub H, Zweckstetter M, 
Kugler S, Melchior F, Bahr M, Weishaupt JH (2011) Sumoylation inhibits alpha-synuclein aggregation and 
toxicity. J Cell Biol 194:49-60. 

257. Kumar KS, Bavikar SN, Spasser L, Moyal T, Ohayon S, Brik A (2011) Total chemical synthesis of a 304 
amino acid K48-linked tetraubiquitin protein. Angew Chem Int Ed Engl 50:6137-6141 



  

 165 
  

258. Kuwahara T, Koyama A, Gengyo-Ando K, Masuda M, Kowa H, Tsunoda M, Mitani S, Iwatsubo T (2006) 
Familial Parkinson mutant alpha-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis 
elegans. J Biol Chem 281:334-340. 

259. Lakso M, Vartiainen S, Moilanen AM, Sirvio J, Thomas JH, Nass R, Blakely RD, Wong G (2003) 
Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. J 
Neurochem 86:165-172. 

260. Lange KW, Kornhuber J, Riederer P (1997) Dopamine/glutamate interactions in Parkinson's disease. 
Neurosci Biobehav Rev 21:393-400. 

261. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of 
meperidine-analog synthesis. Science 219:979-980. 

262. Larsen KE, Schmitz Y, Troyer MD, Mosharov E, Dietrich P, Quazi AZ, Savalle M, Nemani V, Chaudhry 
FA, Edwards RH, Stefanis L, Sulzer D (2006) Alpha-synuclein overexpression in PC12 and chromaffin cells 
impairs catecholamine release by interfering with a late step in exocytosis. J Neurosci 26:11915-11922. 

263. Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T, Lansbury PT, Jr. (2002) Alpha-synuclein, 
especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol 
322:1089-1102. 

264. Lavedan C, Leroy E, Dehejia A, Buchholtz S, Dutra A, Nussbaum RL, Polymeropoulos MH (1998) 
Identification, localization and characterization of the human gamma-synuclein gene. Hum Genet 103:106-112. 

265. Lee CS, Samii A, Sossi V, Ruth TJ, Schulzer M, Holden JE, Wudel J, Pal PK, de la Fuente-Fernandez R, 
Calne DB, Stoessl AJ (2000) In vivo positron emission tomographic evidence for compensatory changes in 
presynaptic dopaminergic nerve terminals in Parkinson's disease. Ann Neurol 47:493-503. 

266. Lee FJ, Liu F, Pristupa ZB, Niznik HB (2001a) Direct binding and functional coupling of alpha-synuclein 
to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB J 15:916-926. 

267. Lee HJ, Choi C, Lee SJ (2002a) Membrane-bound alpha-synuclein has a high aggregation propensity and 
the ability to seed the aggregation of the cytosolic form. J Biol Chem 277:671-678. 

268. Lee HJ, Khoshaghideh F, Patel S, Lee SJ (2004) Clearance of alpha-synuclein oligomeric intermediates 
via the lysosomal degradation pathway. J Neurosci 24:1888-1896. 

269. Lee HJ, Lee SJ (2002) Characterization of cytoplasmic alpha-synuclein aggregates. Fibril formation is 
tightly linked to the inclusion-forming process in cells. J Biol Chem 277:48976-48983. 

270. Lee HJ, Patel S, Lee SJ (2005) Intravesicular localization and exocytosis of alpha-synuclein and its 
aggregates. J Neurosci 25:6016-6024. 

271. Lee HJ, Shin SY, Choi C, Lee YH, Lee SJ (2002b) Formation and removal of alpha-synuclein aggregates 
in cells exposed to mitochondrial inhibitors. J Biol Chem 277:5411-5417. 

272. Lee HJ, Suk JE, Bae EJ, Lee JH, Paik SR, Lee SJ (2008a) Assembly-dependent endocytosis and clearance 
of extracellular alpha-synuclein. Int J Biochem Cell Biol 40:1835-1849. 

273. Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH, Rho S, Hwang D, Masliah E, Lee SJ (2010) Direct transfer of 
alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 
285:9262-9272. 

274. Lee JT, Wheeler TC, Li L, Chin LS (2008b) Ubiquitination of alpha-synuclein by Siah-1 promotes alpha-
synuclein aggregation and apoptotic cell death. Hum Mol Genet 17:906-917. 

275. Lee KW, Chen W, Junn E, Im JY, Grosso H, Sonsalla PK, Feng X, Ray N, Fernandez JR, Chao Y, 
Masliah E, Voronkov M, Braithwaite SP, Stock JB, Mouradian MM (2011) Enhanced phosphatase activity 
attenuates alpha-synucleinopathy in a mouse model. J Neurosci 31:6963-6971. 



  

 166 
  

  

276. Lee M, Hyun D, Halliwell B, Jenner P (2001b) Effect of the overexpression of wild-type or mutant alpha-
synuclein on cell susceptibility to insult. J Neurochem 76:998-1009. 

277. Lee MK, Stirling W, Xu Y, Xu X, Qui D, Mandir AS, Dawson TM, Copeland NG, Jenkins NA, Price DL 
(2002c) Human alpha-synuclein-harboring familial Parkinson's disease-linked Ala-53 --> Thr mutation causes 
neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. Proc Natl Acad Sci U S A 
99:8968-8973. 

278. Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, 
Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH (1998) The 
ubiquitin pathway in Parkinson's disease. Nature 395:451-452. 

279. Levin J, Giese A, Boetzel K, Israel L, Hogen T, Nubling G, Kretzschmar H, Lorenzl S (2009) Increased 
alpha-synuclein aggregation following limited cleavage by certain matrix metalloproteinases. Exp Neurol 215:201-
208. 

280. Levitan K, Chereau D, Cohen SI, Knowles TP, Dobson CM, Fink AL, Anderson JP, Goldstein JM, 
Millhauser GL (2011) Conserved C-Terminal Charge Exerts a Profound Influence on the Aggregation Rate of 
alpha-Synuclein. J Mol Biol 411:329-333. 

281. Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Bjorklund 
A, Widner H, Revesz T, Lindvall O, Brundin P (2008) Lewy bodies in grafted neurons in subjects with Parkinson's 
disease suggest host-to-graft disease propagation. Nat Med 14:501-503. 

282. Li JY, Englund E, Widner H, Rehncrona S, Bjorklund A, Lindvall O, Brundin P (2010) Characterization of 
Lewy body pathology in 12- and 16-year-old intrastriatal mesencephalic grafts surviving in a patient with 
Parkinson's disease. Mov Disord 25:1091-1096. 

283. Li JY, Henning Jensen P, Dahlstrom A (2002) Differential localization of alpha-, beta- and gamma-
synucleins in the rat CNS. Neuroscience 113:463-478. 

284. Li W, West N, Colla E, Pletnikova O, Troncoso JC, Marsh L, Dawson TM, Jakala P, Hartmann T, Price 
DL, Lee MK (2005) Aggregation promoting C-terminal truncation of alpha-synuclein is a normal cellular process 
and is enhanced by the familial Parkinson's disease-linked mutations. Proc Natl Acad Sci U S A 102:2162-2167. 

285. Li X, Fekner T, Ottesen JJ, Chan MK (2009) A pyrrolysine analogue for site-specific protein 
ubiquitination. Angew Chem Int Ed Engl 48:9184-9187. 

286. Lindersson E, Beedholm R, Hojrup P, Moos T, Gai W, Hendil KB, Jensen PH (2004) Proteasomal 
inhibition by alpha-synuclein filaments and oligomers. J Biol Chem 279:12924-12934. 

287. Lindner MD, Cain CK, Plone MA, Frydel BR, Blaney TJ, Emerich DF, Hoane MR (1999) Incomplete 
nigrostriatal dopaminergic cell loss and partial reductions in striatal dopamine produce akinesia, rigidity, tremor 
and cognitive deficits in middle-aged rats. Behav Brain Res 102:1-16 

288. Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R, Leenders KL, Sawle G, 
Rothwell JC, Marsden CD, et al. (1990) Grafts of fetal dopamine neurons survive and improve motor function in 
Parkinson's disease. Science 247:574-577 

289. Liu CF, Tam JP (1994) Peptide segment ligation strategy without use of protecting groups. Proc Natl Acad 
Sci U S A 91:6584-6588. 

  



  

 167 
  

290. Liu CW, Giasson BI, Lewis KA, Lee VM, Demartino GN, Thomas PJ (2005) A precipitating role for 
truncated alpha-synuclein and the proteasome in alpha-synuclein aggregation: implications for pathogenesis of 
Parkinson disease. J Biol Chem 280:22670-22678. 

291. Liu J, Zhang JP, Shi M, Quinn T, Bradner J, Beyer R, Chen S, Zhang J (2009) Rab11a and HSP90 regulate 
recycling of extracellular alpha-synuclein. J Neurosci 29:1480-1485. 

292. Liu P, Wang X, Gao N, Zhu H, Dai X, Xu Y, Ma C, Huang L, Liu Y, Qin C (2010) G protein-coupled 
receptor kinase 5, overexpressed in the alpha-synuclein up-regulation model of Parkinson's disease, regulates bcl-2 
expression. Brain Res 1307:134-141. 

293. Lo Bianco C, Ridet JL, Schneider BL, Deglon N, Aebischer P (2002) alpha -Synucleinopathy and selective 
dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease. Proc Natl Acad Sci U S A 
99:10813-10818. 

294. Lotharius J, Barg S, Wiekop P, Lundberg C, Raymon HK, Brundin P (2002) Effect of mutant alpha-
synuclein on dopamine homeostasis in a new human mesencephalic cell line. J Biol Chem 277:38884-38894. 

295. Lotharius J, Brundin P (2002) Impaired dopamine storage resulting from alpha-synuclein mutations may 
contribute to the pathogenesis of Parkinson's disease. Hum Mol Genet 11:2395-2407. 

296. Lu W, Shen K, Cole PA (2003) Chemical dissection of the effects of tyrosine phosphorylation of SHP-2. 
Biochemistry 42:5461-5468 

297. Lu Y, Prudent M, Fauvet B, Lashuel HA, Girault HH (2011) Phosphorylation of α-Synuclein at Y125 and 
S129 Alters Its Metal Binding Properties: Implications for Understanding the Role of α-Synuclein in the 
Pathogenesis of Parkinson’s Disease and Related Disorders. ACS Chemical Neuroscience 2:667-675. 

298. Luk KC, Song C, O'Brien P, Stieber A, Branch JR, Brunden KR, Trojanowski JQ, Lee VM (2009) 
Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. 
Proc Natl Acad Sci U S A 106:20051-20056. 

299. Machiya Y, Hara S, Arawaka S, Fukushima S, Sato H, Sakamoto M, Koyama S, Kato T (2010) 
Phosphorylated alpha-synuclein at Ser-129 is targeted to the proteasome pathway in a ubiquitin-independent 
manner. J Biol Chem 285:40732-40744. 

300. Mak SK, McCormack AL, Manning-Bog AB, Cuervo AM, Di Monte DA (2010) Lysosomal degradation 
of alpha-synuclein in vivo. J Biol Chem 285:13621-13629. 

301. Maltsev AS, Ying J, Bax A (2012) Impact of N-Terminal Acetylation of alpha-Synuclein on Its Random 
Coil and Lipid Binding Properties. Biochemistry 51:5004-5013. 

302. Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA (2002) The herbicide 
paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. J Biol 
Chem 277:1641-1644. 

303. Manning-Bog AB, McCormack AL, Purisai MG, Bolin LM, Di Monte DA (2003) Alpha-synuclein 
overexpression protects against paraquat-induced neurodegeneration. J Neurosci 23:3095-3099. 

304. Maraganore DM, de Andrade M, Elbaz A, Farrer MJ, Ioannidis JP, Kruger R, Rocca WA, Schneider NK, 
Lesnick TG, Lincoln SJ, Hulihan MM, Aasly JO, Ashizawa T, Chartier-Harlin MC, Checkoway H, Ferrarese C, 
Hadjigeorgiou G, Hattori N, Kawakami H, Lambert JC, Lynch T, Mellick GD, Papapetropoulos S, Parsian A, 
Quattrone A, Riess O, Tan EK, Van Broeckhoven C (2006) Collaborative analysis of alpha-synuclein gene 
promoter variability and Parkinson disease. JAMA 296:661-670. 

  



  

 168 
  

305. Markey SP, Johannessen JN, Chiueh CC, Burns RS, Herkenham MA (1984) Intraneuronal generation of a 
pyridinium metabolite may cause drug-induced parkinsonism. Nature 311:464-467. 

306. Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized to the 
nucleus and presynaptic nerve terminal. J Neurosci 8:2804-2815 

307. Martin I, Dawson VL, Dawson TM (2011) Recent advances in the genetics of Parkinson's disease. Annu 
Rev Genomics Hum Genet 12:301-325. 

308. Marx FP, Holzmann C, Strauss KM, Li L, Eberhardt O, Gerhardt E, Cookson MR, Hernandez D, Farrer 
MJ, Kachergus J, Engelender S, Ross CA, Berger K, Schols L, Schulz JB, Riess O, Kruger R (2003) Identification 
and functional characterization of a novel R621C mutation in the synphilin-1 gene in Parkinson's disease. Hum Mol 
Genet 12:1223-1231. 

309. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L 
(2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for 
neurodegenerative disorders. Science 287:1265-1269. 

310. Mata IF, Wedemeyer WJ, Farrer MJ, Taylor JP, Gallo KA (2006) LRRK2 in Parkinson's disease: protein 
domains and functional insights. Trends Neurosci 29:286-293. 

311. Matsuda N, Kitami T, Suzuki T, Mizuno Y, Hattori N, Tanaka K (2006) Diverse effects of pathogenic 
mutations of Parkin that catalyze multiple monoubiquitylation in vitro. J Biol Chem 281:3204-3209. 

312. Matsuoka Y, Vila M, Lincoln S, McCormack A, Picciano M, LaFrancois J, Yu X, Dickson D, Langston 
WJ, McGowan E, Farrer M, Hardy J, Duff K, Przedborski S, Di Monte DA (2001) Lack of nigral pathology in 
transgenic mice expressing human alpha-synuclein driven by the tyrosine hydroxylase promoter. Neurobiol Dis 
8:535-539. 

313. Mbefo MK, Paleologou KE, Boucharaba A, Oueslati A, Schell H, Fournier M, Olschewski D, Yin G, 
Zweckstetter M, Masliah E, Kahle PJ, Hirling H, Lashuel HA Phosphorylation of synucleins by members of the 
Polo-like kinase family. J Biol Chem 285:2807-2822. 

314. Mbefo MK, Paleologou KE, Boucharaba A, Oueslati A, Schell H, Fournier M, Olschewski D, Yin G, 
Zweckstetter M, Masliah E, Kahle PJ, Hirling H, Lashuel HA (2010) Phosphorylation of synucleins by members of 
the Polo-like kinase family. J Biol Chem 285:2807-2822. 

315. McFarland MA, Ellis CE, Markey SP, Nussbaum RL (2008) Proteomics analysis identifies 
phosphorylation-dependent alpha-synuclein protein interactions. Mol Cell Proteomics 7:2123-2137. 

316. McGinty RK, Kim J, Chatterjee C, Roeder RG, Muir TW (2008) Chemically ubiquitylated histone H2B 
stimulates hDot1L-mediated intranucleosomal methylation. Nature 453:812-816. 

317. McGinty RK, Kohn M, Chatterjee C, Chiang KP, Pratt MR, Muir TW (2009) Structure-activity analysis of 
semisynthetic nucleosomes: mechanistic insights into the stimulation of Dot1L by ubiquitylated histone H2B. ACS 
Chem Biol 4:958-968. 

318. McLean PJ, Kawamata H, Hyman BT (2001) Alpha-synuclein-enhanced green fluorescent protein fusion 
proteins form proteasome sensitive inclusions in primary neurons. Neuroscience 104:901-912. 

319. Meier F, Abeywardana T, Dhall A, Marotta NP, Varkey J, Langen R, Chatterjee C, Pratt MR (2012) 
Semisynthetic, site-specific ubiquitin modification of alpha-synuclein reveals differential effects on aggregation. J 
Am Chem Soc 134:5468-5471. 



  

 169 
  

320. Mendez I, Vinuela A, Astradsson A, Mukhida K, Hallett P, Robertson H, Tierney T, Holness R, Dagher A, 
Trojanowski JQ, Isacson O (2008) Dopamine neurons implanted into people with Parkinson's disease survive 
without pathology for 14 years. Nat Med 14:507-509. 

321. Merrifield B (1986) Solid phase synthesis. Science 232:341-347. 

322. Mirzaei H, Schieler JL, Rochet JC, Regnier F (2006) Identification of rotenone-induced modifications in 
alpha-synuclein using affinity pull-down and tandem mass spectrometry. Anal Chem 78:2422-2431. 

323. Mishizen-Eberz AJ, Guttmann RP, Giasson BI, Day GA, 3rd, Hodara R, Ischiropoulos H, Lee VM, 
Trojanowski JQ, Lynch DR (2003) Distinct cleavage patterns of normal and pathologic forms of alpha-synuclein by 
calpain I in vitro. J Neurochem 86:836-847. 

324. Mishizen-Eberz AJ, Norris EH, Giasson BI, Hodara R, Ischiropoulos H, Lee VM, Trojanowski JQ, Lynch 
DR (2005) Cleavage of alpha-synuclein by calpain: potential role in degradation of fibrillized and nitrated species 
of alpha-synuclein. Biochemistry 44:7818-7829. 

325. Mizuno H, Fujikake N, Wada K, Nagai Y (2010) alpha-Synuclein Transgenic Drosophila As a Model of 
Parkinson's Disease and Related Synucleinopathies. Parkinsons Dis 2011:212706 

326. Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson's disease. 
Annu Rev Neurosci 28:57-87. 

327. Morrish PK, Rakshi JS, Bailey DL, Sawle GV, Brooks DJ (1998) Measuring the rate of progression and 
estimating the preclinical period of Parkinson's disease with [18F]dopa PET. J Neurol Neurosurg Psychiatry 
64:314-319 

328. Moszczynska A, Saleh J, Zhang H, Vukusic B, Lee FJ, Liu F (2007) Parkin disrupts the alpha-
synuclein/dopamine transporter interaction: consequences toward dopamine-induced toxicity. J Mol Neurosci 
32:217-227. 

329. Mueller JC, Fuchs J, Hofer A, Zimprich A, Lichtner P, Illig T, Berg D, Wullner U, Meitinger T, Gasser T 
(2005) Multiple regions of alpha-synuclein are associated with Parkinson's disease. Ann Neurol 57:535-541. 

330. Muir TW (2003a) Semisynthesis of proteins by expressed protein ligation. Annu Rev Biochem 72:249-
289. 

331. Muir TW (2003b) Semisynthesis of proteins by expressed protein ligation. Annu Rev Biochem 72:249-
289. 

332. Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. 
Proc Natl Acad Sci U S A 95:6705-6710. 

333. Mulcahy P, O'Doherty A, Paucard A, O'Brien T, Kirik D, Dowd E (2012) Development and 
characterisation of a novel rat model of Parkinson's disease induced by sequential intranigral administration of 
AAV-alpha-synuclein and the pesticide, rotenone. Neuroscience 203:170-179. 

334. Murphy DD, Rueter SM, Trojanowski JQ, Lee VM (2000) Synucleins are developmentally expressed, and 
alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 
20:3214-3220. 

335. Murray IV, Giasson BI, Quinn SM, Koppaka V, Axelsen PH, Ischiropoulos H, Trojanowski JQ, Lee VM 
(2003) Role of alpha-synuclein carboxy-terminus on fibril formation in vitro. Biochemistry 42:8530-8540. 



  

 170 
  

336. Nakajo S, Tsukada K, Omata K, Nakamura Y, Nakaya K (1993) A new brain-specific 14-kDa protein is a 
phosphoprotein. Its complete amino acid sequence and evidence for phosphorylation. Eur J Biochem 217:1057-
1063 

337. Nakamura K, Nemani VM, Azarbal F, Skibinski G, Levy JM, Egami K, Munishkina L, Zhang J, Gardner 
B, Wakabayashi J, Sesaki H, Cheng Y, Finkbeiner S, Nussbaum RL, Masliah E, Edwards RH (2011) Direct 
membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein. J 
Biol Chem 286:20710-20726. 

338. Nakamura K, Nemani VM, Wallender EK, Kaehlcke K, Ott M, Edwards RH (2008) Optical reporters for 
the conformation of alpha-synuclein reveal a specific interaction with mitochondria. J Neurosci 28:12305-12317. 

339. Nakamura T, Yamashita H, Nagano Y, Takahashi T, Avraham S, Avraham H, Matsumoto M, Nakamura S 
(2002) Activation of Pyk2/RAFTK induces tyrosine phosphorylation of alpha-synuclein via Src-family kinases. 
FEBS Lett 521:190-194. 

340. Nakamura T, Yamashita H, Takahashi T, Nakamura S (2001) Activated Fyn phosphorylates alpha-
synuclein at tyrosine residue 125. Biochem Biophys Res Commun 280:1085-1092. 

341. Negro A, Brunati AM, Donella-Deana A, Massimino ML, Pinna LA (2002) Multiple phosphorylation of 
alpha-synuclein by protein tyrosine kinase Syk prevents eosin-induced aggregation. FASEB J 16:210-212. 

342. Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, Chaudhry FA, Nicoll RA, Edwards RH 
(2010) Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle 
reclustering after endocytosis. Neuron 65:66-79. 

343. Neumann M, Kahle PJ, Giasson BI, Ozmen L, Borroni E, Spooren W, Muller V, Odoy S, Fujiwara H, 
Hasegawa M, Iwatsubo T, Trojanowski JQ, Kretzschmar HA, Haass C (2002) Misfolded proteinase K-resistant 
hyperphosphorylated alpha-synuclein in aged transgenic mice with locomotor deterioration and in human alpha-
synucleinopathies. J Clin Invest 110:1429-1439. 

344. Nonaka T, Iwatsubo T, Hasegawa M (2005) Ubiquitination of alpha-synuclein. Biochemistry 44:361-368. 

345. Nonaka T, Watanabe ST, Iwatsubo T, Hasegawa M (2010) Seeded aggregation and toxicity of {alpha}-
synuclein and tau: cellular models of neurodegenerative diseases. J Biol Chem 285:34885-34898. 

346. Noren CJ, Wang J, Perler FB (2000) Dissecting the Chemistry of Protein Splicing and Its Applications. 
Angew Chem Int Ed Engl 39:450-466. 

347. Nuber S, Petrasch-Parwez E, Winner B, Winkler J, von Horsten S, Schmidt T, Boy J, Kuhn M, Nguyen 
HP, Teismann P, Schulz JB, Neumann M, Pichler BJ, Reischl G, Holzmann C, Schmitt I, Bornemann A, Kuhn W, 
Zimmermann F, Servadio A, Riess O (2008) Neurodegeneration and motor dysfunction in a conditional model of 
Parkinson's disease. J Neurosci 28:2471-2484. 

348. Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, 
Schapira AH, Halliday G (2010) Missing pieces in the Parkinson's disease puzzle. Nat Med 16:653-661. 

349. Okochi M, Walter J, Koyama A, Nakajo S, Baba M, Iwatsubo T, Meijer L, Kahle PJ, Haass C (2000) 
Constitutive phosphorylation of the Parkinson's disease associated alpha-synuclein. J Biol Chem 275:390-397 

350. Okochi M WJ, Koyama A, Nakajo S, Baba M, Iwatsubo T, Meijer L, Kahle PJ, Haass C. (2000) 
Constitutive phosphorylation of the Parkinson's disease associated alpha-synuclein. J Biol Chem 275:390-397. 

351. Olanow CW, Kordower JH, Lang AE, Obeso JA (2009) Dopaminergic transplantation for Parkinson's 
disease: current status and future prospects. Ann Neurol 66:591-596 



  

 171 
  

352. Olschewski D, Becker CF (2008) Chemical synthesis and semisynthesis of membrane proteins. Mol 
Biosyst 4:733-740. 

353. Olschewski D, Seidel R, Miesbauer M, Rambold AS, Oesterhelt D, Winklhofer KF, Tatzelt J, Engelhard 
M, Becker CF (2007) Semisynthetic murine prion protein equipped with a GPI anchor mimic incorporates into 
cellular membranes. Chem Biol 14:994-1006. 

354. Oueslati A, Fournier M, Lashuel HA (2010) Role of post-translational modifications in modulating the 
structure, function and toxicity of alpha-synuclein: implications for Parkinson's disease pathogenesis and therapies. 
Prog Brain Res 183:115-145 

355. Oueslati A, Paleologou KE, Schneider BL, Aebischer P, Lashuel HA (2012) Mimicking phosphorylation 
at serine 87 inhibits the aggregation of human alpha-synuclein and protects against its toxicity in a rat model of 
Parkinson's disease. J Neurosci 32:1536-1544. 

356. Outeiro TF, Klucken J, Strathearn KE, Liu F, Nguyen P, Rochet JC, Hyman BT, McLean PJ (2006) Small 
heat shock proteins protect against alpha-synuclein-induced toxicity and aggregation. Biochem Biophys Res 
Commun 351:631-638. 

357. Outeiro TF, Lindquist S (2003) Yeast cells provide insight into alpha-synuclein biology and pathobiology. 
Science 302:1772-1775. 

358. Paik SR, Shin HJ, Lee JH, Chang CS, Kim J (1999) Copper(II)-induced self-oligomerization of alpha-
synuclein. Biochem J 340 ( Pt 3):821-828. 

359. Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, van der Brug M, Lopez de Munain A, Aparicio S, 
Gil AM, Khan N, Johnson J, Martinez JR, Nicholl D, Carrera IM, Pena AS, de Silva R, Lees A, Marti-Masso JF, 
Perez-Tur J, Wood NW, Singleton AB (2004) Cloning of the gene containing mutations that cause PARK8-linked 
Parkinson's disease. Neuron 44:595-600. 

360. Paleologou KE, Oueslati A, Shakked G, Rospigliosi CC, Kim HY, Lamberto GR, Fernandez CO, Schmid 
A, Chegini F, Gai WP, Chiappe D, Moniatte M, Schneider BL, Aebischer P, Eliezer D, Zweckstetter M, Masliah E, 
Lashuel HA (2010) Phosphorylation at S87 is enhanced in synucleinopathies, inhibits alpha-synuclein 
oligomerization, and influences synuclein-membrane interactions. J Neurosci 30:3184-3198. 

361. Paleologou KE, Schmid AW, Rospigliosi CC, Kim HY, Lamberto GR, Fredenburg RA, Lansbury PT, Jr., 
Fernandez CO, Eliezer D, Zweckstetter M, Lashuel HA (2008) Phosphorylation at Ser-129 but not the 
phosphomimics S129E/D inhibits the fibrillation of alpha-synuclein. J Biol Chem 283:16895-16905. 

362. Papapetropoulos S, Ellul J, Paschalis C, Athanassiadou A, Papadimitriou A, Papapetropoulos T (2003) 
Clinical characteristics of the alpha-synuclein mutation (G209A)-associated Parkinson's disease in comparison with 
other forms of familial Parkinson's disease in Greece. Eur J Neurol 10:281-286. 

363. Pardal R, Lopez-Barneo J (2012) Neural stem cells and transplantation studies in Parkinson's disease. Adv 
Exp Med Biol 741:206-216 

 

364. Park HS, Hohn MJ, Umehara T, Guo LT, Osborne EM, Benner J, Noren CJ, Rinehart J, Soll D (2011) 
Expanding the genetic code of Escherichia coli with phosphoserine. Science 333:1151-1154. 

365. Park JY, Lansbury PT, Jr. (2003) Beta-synuclein inhibits formation of alpha-synuclein protofibrils: a 
possible therapeutic strategy against Parkinson's disease. Biochemistry 42:3696-3700. 



  

 172 
  

366. Park SM, Jung HY, Chung KC, Rhim H, Park JH, Kim J (2002) Stress-induced aggregation profiles of 
GST-alpha-synuclein fusion proteins: role of the C-terminal acidic tail of alpha-synuclein in protein 
thermosolubility and stability. Biochemistry 41:4137-4146. 

367. Parsian A, Racette B, Zhang ZH, Chakraverty S, Rundle M, Goate A, Perlmutter JS (1998) Mutation, 
sequence analysis, and association studies of alpha-synuclein in Parkinson's disease. Neurology 51:1757-1759. 

368. Paxinou E, Chen Q, Weisse M, Giasson BI, Norris EH, Rueter SM, Trojanowski JQ, Lee VM, 
Ischiropoulos H (2001) Induction of alpha-synuclein aggregation by intracellular nitrative insult. J Neurosci 
21:8053-8061. 

369. Payton JE, Perrin RJ, Woods WS, George JM (2004) Structural determinants of PLD2 inhibition by alpha-
synuclein. J Mol Biol 337:1001-1009. 

370. Perez RG, Waymire JC, Lin E, Liu JJ, Guo F, Zigmond MJ (2002) A role for alpha-synuclein in the 
regulation of dopamine biosynthesis. J Neurosci 22:3090-3099. 

371. Periquet M, Fulga T, Myllykangas L, Schlossmacher MG, Feany MB (2007) Aggregated alpha-synuclein 
mediates dopaminergic neurotoxicity in vivo. J Neurosci 27:3338-3346. 

372. Periquet M, Latouche M, Lohmann E, Rawal N, De Michele G, Ricard S, Teive H, Fraix V, Vidailhet M, 
Nicholl D, Barone P, Wood NW, Raskin S, Deleuze JF, Agid Y, Durr A, Brice A (2003) Parkin mutations are 
frequent in patients with isolated early-onset parkinsonism. Brain 126:1271-1278. 

373. Perrin RJ, Woods WS, Clayton DF, George JM (2000) Interaction of human alpha-Synuclein and 
Parkinson's disease variants with phospholipids. Structural analysis using site-directed mutagenesis. J Biol Chem 
275:34393-34398 

374. Perrin RJ, Woods WS, Clayton DF, George JM (2001) Exposure to long chain polyunsaturated fatty acids 
triggers rapid multimerization of synucleins. J Biol Chem 276:41958-41962. 

375. Pesah Y, Burgess H, Middlebrooks B, Ronningen K, Prosser J, Tirunagaru V, Zysk J, Mardon G (2005) 
Whole-mount analysis reveals normal numbers of dopaminergic neurons following misexpression of alpha-
Synuclein in Drosophila. Genesis 41:154-159. 

376. Petrucelli L, O'Farrell C, Lockhart PJ, Baptista M, Kehoe K, Vink L, Choi P, Wolozin B, Farrer M, Hardy 
J, Cookson MR (2002) Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome 
dysfunction selectively affects catecholaminergic neurons. Neuron 36:1007-1019. 

377. Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503-533. 

378. Pickart CM, Fushman D (2004) Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 
8:610-616. 

379. Politis M, Lindvall O (2012) Clinical application of stem cell therapy in Parkinson's disease. BMC Med 
10:1. 

380. Polymeropoulos MH, Higgins JJ, Golbe LI, Johnson WG, Ide SE, Di Iorio G, Sanges G, Stenroos ES, Pho 
LT, Schaffer AA, Lazzarini AM, Nussbaum RL, Duvoisin RC (1996) Mapping of a gene for Parkinson's disease to 
chromosome 4q21-q23. Science 274:1197-1199. 

381. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, 
Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, 
Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in 
families with Parkinson's disease. Science 276:2045-2047. 



  

 173 
  

382. Priyadarshi A, Khuder SA, Schaub EA, Priyadarshi SS (2001) Environmental risk factors and Parkinson's 
disease: a metaanalysis. Environ Res 86:122-127. 

383. Pronin AN, Morris AJ, Surguchov A, Benovic JL (2000) Synucleins are a novel class of substrates for G 
protein-coupled receptor kinases. J Biol Chem 275:26515-26522. 

384. Puschmann A, Ross OA, Vilarino-Guell C, Lincoln SJ, Kachergus JM, Cobb SA, Lindquist SG, Nielsen 
JE, Wszolek ZK, Farrer M, Widner H, van Westen D, Hagerstrom D, Markopoulou K, Chase BA, Nilsson K, 
Reimer J, Nilsson C (2009) A Swedish family with de novo alpha-synuclein A53T mutation: evidence for early 
cortical dysfunction. Parkinsonism Relat Disord 15:627-632. 

385. Qin Z, Hu D, Han S, Hong DP, Fink AL (2007) Role of different regions of alpha-synuclein in the 
assembly of fibrils. Biochemistry 46:13322-13330. 

386. Querfurth HW, LaFerla FM (2010) Alzheimer's disease. N Engl J Med 362:329-344. 

387. Qureshi HY, Paudel HK (2011) Parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP) and alpha-synuclein mutations promote Tau protein phosphorylation at Ser262 and destabilize microtubule 
cytoskeleton in vitro. J Biol Chem 286:5055-5068 

388. Rappley I, Gitler AD, Selvy PE, LaVoie MJ, Levy BD, Brown HA, Lindquist S, Selkoe DJ (2009) 
Evidence that alpha-synuclein does not inhibit phospholipase D. Biochemistry 48:1077-1083. 

389. Recchia A, Rota D, Debetto P, Peroni D, Guidolin D, Negro A, Skaper SD, Giusti P (2008) Generation of 
a alpha-synuclein-based rat model of Parkinson's disease. Neurobiol Dis 30:8-18. 

390. Richard IH, Papka M, Rubio A, Kurlan R (2002) Parkinson's disease and dementia with Lewy bodies: one 
disease or two? Mov Disord 17:1161-1165. 

391. Richfield EK, Thiruchelvam MJ, Cory-Slechta DA, Wuertzer C, Gainetdinov RR, Caron MG, Di Monte 
DA, Federoff HJ (2002) Behavioral and neurochemical effects of wild-type and mutated human alpha-synuclein in 
transgenic mice. Exp Neurol 175:35-48. 

392. Rideout HJ, Larsen KE, Sulzer D, Stefanis L (2001) Proteasomal inhibition leads to formation of 
ubiquitin/alpha-synuclein-immunoreactive inclusions in PC12 cells. J Neurochem 78:899-908. 

393. Rideout HJ, Stefanis L (2002) Proteasomal inhibition-induced inclusion formation and death in cortical 
neurons require transcription and ubiquitination. Mol Cell Neurosci 21:223-238. 

394. Rieker C, Dev KK, Lehnhoff K, Barbieri S, Ksiazek I, Kauffmann S, Danner S, Schell H, Boden C, Ruegg 
MA, Kahle PJ, van der Putten H, Shimshek DR (2011) Neuropathology in mice expressing mouse alpha-synuclein. 
PLoS One 6:e24834 

395. Roberti MJ, Bertoncini CW, Klement R, Jares-Erijman EA, Jovin TM (2007) Fluorescence imaging of 
amyloid formation in living cells by a functional, tetracysteine-tagged alpha-synuclein. Nat Methods 4:345-351. 

396. Rochet JC, Conway KA, Lansbury PT, Jr. (2000) Inhibition of fibrillization and accumulation of 
prefibrillar oligomers in mixtures of human and mouse alpha-synuclein. Biochemistry 39:10619-10626. 

397. Rochet JC, Outeiro TF, Conway KA, Ding TT, Volles MJ, Lashuel HA, Bieganski RM, Lindquist SL, 
Lansbury PT (2004) Interactions among alpha-synuclein, dopamine, and biomembranes: some clues for 
understanding neurodegeneration in Parkinson's disease. J Mol Neurosci 23:23-34. 

398. Rockenstein E, Mallory M, Hashimoto M, Song D, Shults CW, Lang I, Masliah E (2002) Differential 
neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor 
and Thy-1 promoters. J Neurosci Res 68:568-578. 



  

 174 
  

399. Romanelli A, Shekhtman A, Cowburn D, Muir TW (2004) Semisynthesis of a segmental isotopically 
labeled protein splicing precursor: NMR evidence for an unusual peptide bond at the N-extein-intein junction. Proc 
Natl Acad Sci U S A 101:6397-6402. 

400. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: 
copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew Chem Int Ed Engl 41:2596-
2599. 

401. Rott R, Szargel R, Haskin J, Bandopadhyay R, Lees AJ, Shani V, Engelender S (2011) alpha-Synuclein 
fate is determined by USP9X-regulated monoubiquitination. Proc Natl Acad Sci U S A 108:18666-18671. 

402. Rott R, Szargel R, Haskin J, Shani V, Shainskaya A, Manov I, Liani E, Avraham E, Engelender S (2008) 
Monoubiquitylation of alpha-synuclein by seven in absentia homolog (SIAH) promotes its aggregation in 
dopaminergic cells. J Biol Chem 283:3316-3328. 

403. Ryu MY, Kim DW, Arima K, Mouradian MM, Kim SU, Lee G (2008) Localization of CKII beta subunits 
in Lewy bodies of Parkinson's disease. J Neurol Sci 266:9-12. 

404. Saha AR, Ninkina NN, Hanger DP, Anderton BH, Davies AM, Buchman VL (2000) Induction of neuronal 
death by alpha-synuclein. Eur J Neurosci 12:3073-3077. 

405. Saleh L, Perler FB (2006) Protein splicing in cis and in trans. Chem Rec 6:183-193. 

406. Sampathu DM, Giasson BI, Pawlyk AC, Trojanowski JQ, Lee VM (2003) Ubiquitination  

of alpha-synuclein is not required for formation of pathological inclusions in alpha-synucleinopathies. Am J Pathol 
163:91-100. 

407. Santner A, Uversky VN (2010) Metalloproteomics and metal toxicology of alpha-synuclein. Metallomics 
2:378-392. 

408. Sato H, Arawaka S, Hara S, Fukushima S, Koga K, Koyama S, Kato T (2011) Authentically 
phosphorylated alpha-synuclein at Ser129 accelerates neurodegeneration in a rat model of familial Parkinson's 
disease. J Neurosci 31:16884-16894 

409. Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I 
deficiency in Parkinson's disease. J Neurochem 54:823-827. 

410. Schell H, Hasegawa T, Neumann M, Kahle PJ (2009) Nuclear and neuritic distribution of serine-129 
phosphorylated alpha-synuclein in transgenic mice. Neuroscience 160:796-804. 

411. Schnolzer M, Alewood P, Jones A, Alewood D, Kent SB (1992) In situ neutralization in Boc-chemistry 
solid phase peptide synthesis. Rapid, high yield assembly of difficult sequences. Int J Pept Protein Res 40:180-193. 

412. Schnolzer M, Kent SB (1992) Constructing proteins by dovetailing unprotected synthetic peptides: 
backbone-engineered HIV protease. Science 256:221-225. 

413. Schober A (2004) Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP. Cell 
Tissue Res 318:215-224. 

414. Schwarzer D, Zhang Z, Zheng W, Cole PA (2006) Negative regulation of a protein tyrosine phosphatase 
by tyrosine phosphorylation. Journal of the American Chemical Society 128:4192-4193. 

415. Segrest JP, Jones MK, De Loof H, Brouillette CG, Venkatachalapathi YV, Anantharamaiah GM (1992) 
The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J Lipid 
Res 33:141-166. 



  

 175 
  

416. Serpell LC, Berriman J, Jakes R, Goedert M, Crowther RA (2000) Fiber diffraction of synthetic alpha-
synuclein filaments shows amyloid-like cross-beta conformation. Proc Natl Acad Sci U S A 97:4897-4902. 

417. Sevcsik E, Trexler AJ, Dunn JM, Rhoades E (2011) Allostery in a disordered protein: oxidative 
modifications to alpha-synuclein act distally to regulate membrane binding. J Am Chem Soc 133:7152-7158. 

418. Sevlever D, Jiang P, Yen SH (2008) Cathepsin D is the main lysosomal enzyme involved in the 
degradation of alpha-synuclein and generation of its carboxy-terminally truncated species. Biochemistry 47:9678-
9687. 

419. Shaltiel-Karyo R, Frenkel-Pinter M, Egoz-Matia N, Frydman-Marom A, Shalev DE, Segal D, Gazit E 
(2010) Inhibiting alpha-synuclein oligomerization by stable cell-penetrating beta-synuclein fragments recovers 
phenotype of Parkinson's disease model flies. PLoS One 5:e13863. 

420. Shanmugham A, Fish A, Luna-Vargas MP, Faesen AC, El Oualid F, Sixma TK, Ovaa H (2010) 
Nonhydrolyzable ubiquitin-isopeptide isosteres as deubiquitinating enzyme probes. J Am Chem Soc 132:8834-
8835. 

421. Sharma N, Brandis KA, Herrera SK, Johnson BE, Vaidya T, Shrestha R, Debburman SK (2006) alpha-
Synuclein budding yeast model: toxicity enhanced by impaired proteasome and oxidative stress. J Mol Neurosci 
28:161-178. 

422. Sharon R, Bar-Joseph I, Frosch MP, Walsh DM, Hamilton JA, Selkoe DJ (2003a) The formation of highly 
soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson's disease. Neuron 
37:583-595. 

423. Sharon R, Bar-Joseph I, Mirick GE, Serhan CN, Selkoe DJ (2003b) Altered fatty acid composition of 
dopaminergic neurons expressing alpha-synuclein and human brains with alpha-synucleinopathies. J Biol Chem 
278:49874-49881. 

424. Shavali S, Brown-Borg HM, Ebadi M, Porter J (2008) Mitochondrial localization of alpha-synuclein 
protein in alpha-synuclein overexpressing cells. Neurosci Lett 439:125-128. 

425. Shen K, Hines AC, Schwarzer D, Pickin KA, Cole PA (2005) Protein kinase structure and function 
analysis with chemical tools. Biochim Biophys Acta 1754:65-78. 

426. Shendelman S, Jonason A, Martinat C, Leete T, Abeliovich A (2004) DJ-1 is a redox-dependent molecular 
chaperone that inhibits alpha-synuclein aggregate formation. PLoS Biol 2:e362. 

427. Sherer TB, Betarbet R, Greenamyre JT (2002a) Environment, mitochondria, and Parkinson's disease. 
Neuroscientist 8:192-197. 

428. Sherer TB, Betarbet R, Stout AK, Lund S, Baptista M, Panov AV, Cookson MR, Greenamyre JT (2002b) 
An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered alpha-synuclein metabolism 
and oxidative damage. J Neurosci 22:7006-7015. 

429. Sherer TB, Kim JH, Betarbet R, Greenamyre JT (2003) Subcutaneous rotenone exposure causes highly 
selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 179:9-16. 

430. Shibasaki Y, Baillie DA, St Clair D, Brookes AJ (1995) High-resolution mapping of SNCA encoding 
alpha-synuclein, the non-A beta component of Alzheimer's disease amyloid precursor, to human chromosome 
4q21.3-->q22 by fluorescence in situ hybridization. Cytogenet Cell Genet 71:54-55. 

431. Shimoji M, Zhang L, Mandir AS, Dawson VL, Dawson TM (2005) Absence of inclusion body formation 
in the MPTP mouse model of Parkinson's disease. Brain Res Mol Brain Res 134:103-108. 



  

 176 
  

432. Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka 
K, Suzuki T (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 
25:302-305. 

433. Shin Y, Klucken J, Patterson C, Hyman BT, McLean PJ (2005) The co-chaperone carboxyl terminus of 
Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and 
lysosomal pathways. J Biol Chem 280:23727-23734. 

434. Silvestri L, Caputo V, Bellacchio E, Atorino L, Dallapiccola B, Valente EM, Casari G (2005) 
Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol 
Genet 14:3477-3492. 

435. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra 
A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, 
Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) alpha-Synuclein locus triplication causes Parkinson's 
disease. Science 302:841. 

436. Smith WW, Margolis RL, Li X, Troncoso JC, Lee MK, Dawson VL, Dawson TM, Iwatsubo T, Ross CA 
(2005) Alpha-synuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells. 
J Neurosci 25:5544-5552. 

437. Snyder H, Mensah K, Theisler C, Lee J, Matouschek A, Wolozin B (2003) Aggregated and monomeric 
alpha-synuclein bind to the S6' proteasomal protein and inhibit proteasomal function. J Biol Chem 278:11753-
11759. 

438. Soper JH, Roy S, Stieber A, Lee E, Wilson RB, Trojanowski JQ, Burd CG, Lee VM (2008) Alpha-
synuclein-induced aggregation of cytoplasmic vesicles in Saccharomyces cerevisiae. Mol Biol Cell 19:1093-1103. 

439. Souza JM, Giasson BI, Chen Q, Lee VM, Ischiropoulos H (2000a) Dityrosine cross-linking promotes 
formation of stable alpha -synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of 
neurodegenerative synucleinopathies. J Biol Chem 275:18344-18349. 

440. Souza JM, Giasson BI, Lee VM, Ischiropoulos H (2000b) Chaperone-like activity of synucleins. FEBS 
Lett 474:116-119. 

441. Spasser L, Brik A (2012) Chemistry and Biology of the Ubiquitin Signal. Angew Chem Int Ed Engl. 

442. Spillantini MG, Bird TD, Ghetti B (1998a) Frontotemporal dementia and Parkinsonism linked to 
chromosome 17: a new group of tauopathies. Brain Pathol 8:387-402. 

443. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998b) alpha-Synuclein in filamentous 
inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies. Proc Natl Acad Sci U S A 
95:6469-6473. 

444. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in 
Lewy bodies. Nature 388:839-840. 

445. Starr PA, Vitek JL, Bakay RA (1998) Ablative surgery and deep brain stimulation for Parkinson's disease. 
Neurosurgery 43:989-1013; discussion 1013-1015. 

446. Stefanis L, Larsen KE, Rideout HJ, Sulzer D, Greene LA (2001) Expression of A53T mutant but not wild-
type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of 
dopamine release, and autophagic cell death. J Neurosci 21:9549-9560. 

447. Steiner JA, Angot E, Brundin P (2011) A deadly spread: cellular mechanisms of alpha-synuclein transfer. 
Cell Death Differ 18:1425-1433. 



  

 177 
  

448. Sung JY, Kim J, Paik SR, Park JH, Ahn YS, Chung KC (2001) Induction of neuronal cell death by Rab5A-
dependent endocytosis of alpha-synuclein. J Biol Chem 276:27441-27448. 

449. Sung JY, Park SM, Lee CH, Um JW, Lee HJ, Kim J, Oh YJ, Lee ST, Paik SR, Chung KC (2005) 
Proteolytic cleavage of extracellular secreted {alpha}-synuclein via matrix metalloproteinases. J Biol Chem 
280:25216-25224. 

450. Surguchov A (2008) Molecular and cellular biology of synucleins. Int Rev Cell Mol Biol 270:225-317. 

451. Szewczuk LM, Tarrant MK, Cole PA (2009) Protein phosphorylation by semisynthesis: from paper to 
practice. Methods Enzymol 462:1-24. 

452. Takahashi M, Kanuka H, Fujiwara H, Koyama A, Hasegawa M, Miura M, Iwatsubo T (2003) 
Phosphorylation of alpha-synuclein characteristic of synucleinopathy lesions is recapitulated in alpha-synuclein 
transgenic Drosophila. Neurosci Lett 336:155-158. 

453. Talpade DJ, Greene JG, Higgins DS, Jr., Greenamyre JT (2000) In vivo labeling of mitochondrial complex 
I (NADH:ubiquinone oxidoreductase) in rat brain using [(3)H]dihydrorotenone. J Neurochem 75:2611-2621. 

454. Tan EK, Matsuura T, Nagamitsu S, Khajavi M, Jankovic J, Ashizawa T (2000) Polymorphism of NACP-
Rep1 in Parkinson's disease: an etiologic link with essential tremor? Neurology 54:1195-1198. 

455. Thiruchelvam M, Brockel BJ, Richfield EK, Baggs RB, Cory-Slechta DA (2000) Potentiated and 
preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems: environmental risk factors 
for Parkinson's disease? Brain Res 873:225-234. 

456. Thiruchelvam MJ, Powers JM, Cory-Slechta DA, Richfield EK (2004) Risk factors for dopaminergic 
neuron loss in human alpha-synuclein transgenic mice. Eur J Neurosci 19:845-854. 

457. Thumshirn G, Hersel U, Goodman SL, Kessler H (2003) Multimeric cyclic RGD peptides as potential 
tools for tumor targeting: solid-phase peptide synthesis and chemoselective oxime ligation. Chemistry 9:2717-2725. 

458. Todd AM, Staveley BE (2008) Pink1 suppresses alpha-synuclein-induced phenotypes in a Drosophila 
model of Parkinson's disease. Genome 51:1040-1046. 

459. Tofaris GK, Garcia Reitbock P, Humby T, Lambourne SL, O'Connell M, Ghetti B, Gossage H, Emson PC, 
Wilkinson LS, Goedert M, Spillantini MG (2006) Pathological changes in dopaminergic nerve cells of the 
substantia nigra and olfactory bulb in mice transgenic for truncated human alpha-synuclein(1-120): implications for 
Lewy body disorders. J Neurosci 26:3942-3950. 

460. Tofaris GK, Kim HT, Hourez R, Jung JW, Kim KP, Goldberg AL (2011) Ubiquitin ligase Nedd4 promotes 
alpha-synuclein degradation by the endosomal-lysosomal pathway. Proc Natl Acad Sci U S A 108:17004-17009 

461. Tofaris GK, Layfield R, Spillantini MG (2001) alpha-synuclein metabolism and aggregation is linked to 
ubiquitin-independent degradation by the proteasome. FEBS Lett 509:22-26. 

462. Tofaris GK, Razzaq A, Ghetti B, Lilley KS, Spillantini MG (2003) Ubiquitination of alpha-synuclein in 
Lewy bodies is a pathological event not associated with impairment of proteasome function. J Biol Chem 
278:44405-44411. 

463. Tokuda T, Salem SA, Allsop D, Mizuno T, Nakagawa M, Qureshi MM, Locascio JJ, Schlossmacher MG, 
El-Agnaf OM (2006) Decreased alpha-synuclein in cerebrospinal fluid of aged individuals and subjects with 
Parkinson's disease. Biochem Biophys Res Commun 349:162-166. 

464. Trexler AJ, Rhoades E (2009) Alpha-synuclein binds large unilamellar vesicles as an extended helix. 
Biochemistry 48:2304-2306. 



  

 178 
  

465. Trexler AJ, Rhoades E (2012) N-Terminal acetylation is critical for forming alpha-helical oligomer of 
alpha-synuclein. Protein Sci 21:601-605. 

466. Trojanowski JQ, Lee VM (2003) Parkinson's disease and related alpha-synucleinopathies are brain 
amyloidoses. Ann N Y Acad Sci 991:107-110. 

467. Ueda K, Fukushima H, Masliah E, Xia Y, Iwai A, Yoshimoto M, Otero DA, Kondo J, Ihara Y, Saitoh T 
(1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc 
Natl Acad Sci U S A 90:11282-11286 

468. Ulmer TS, Bax A, Cole NB, Nussbaum RL (2005) Structure and dynamics of micelle-bound human alpha-
synuclein. J Biol Chem 280:9595-9603. 

469. Uversky VN (2004) Neurotoxicant-induced animal models of Parkinson's disease: understanding the role 
of rotenone, maneb and paraquat in neurodegeneration. Cell Tissue Res 318:225-241. 

470. Uversky VN, Li J, Bower K, Fink AL (2002a) Synergistic effects of pesticides and metals on the 
fibrillation of alpha-synuclein: implications for Parkinson's disease. Neurotoxicology 23:527-536. 

471. Uversky VN, Li J, Souillac P, Millett IS, Doniach S, Jakes R, Goedert M, Fink AL (2002b) Biophysical 
properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta- and 
gamma-synucleins. J Biol Chem 277:11970-11978. 

472. Uversky VN, Yamin G, Souillac PO, Goers J, Glaser CB, Fink AL (2002c) Methionine oxidation inhibits 
fibrillation of human alpha-synuclein in vitro. FEBS Lett 517:239-244. 

473. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, 
Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks 
WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004a) Hereditary early-onset Parkinson's 
disease caused by mutations in PINK1. Science 304:1158-1160. 

474. Valente EM, Salvi S, Ialongo T, Marongiu R, Elia AE, Caputo V, Romito L, Albanese A, Dallapiccola B, 
Bentivoglio AR (2004b) PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol 
56:336-341. 

475. Valiyaveetil FI, MacKinnon R, Muir TW (2002) Semisynthesis and folding of the potassium channel 
KcsA. J Am Chem Soc 124:9113-9120. 

476. van der Putten H, Wiederhold KH, Probst A, Barbieri S, Mistl C, Danner S, Kauffmann S, Hofele K, 
Spooren WP, Ruegg MA, Lin S, Caroni P, Sommer B, Tolnay M, Bilbe G (2000) Neuropathology in mice 
expressing human alpha-synuclein. J Neurosci 20:6021-6029. 

477. Venda LL, Cragg SJ, Buchman VL, Wade-Martins R (2010) alpha-Synuclein and dopamine at the 
crossroads of Parkinson's disease. Trends Neurosci 33:559-568. 

478. Vila M, Vukosavic S, Jackson-Lewis V, Neystat M, Jakowec M, Przedborski S (2000) Alpha-synuclein 
up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. J 
Neurochem 74:721-729. 

479. Vincke C, Loris R, Saerens D, Martinez-Rodriguez S, Muyldermans S, Conrath K (2009) General strategy 
to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J 
Biol Chem 284:3273-3284. 

480. Vingerhoets FJ, Schulzer M, Calne DB, Snow BJ (1997) Which clinical sign of Parkinson's disease best 
reflects the nigrostriatal lesion? Ann Neurol 41:58-64. 



  

 179 
  

481. Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L (2008) Wild type alpha-synuclein is degraded by 
chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem 283:23542-23556. 

482. Wakabayashi K, Engelender S, Yoshimoto M, Tsuji S, Ross CA, Takahashi H (2000) Synphilin-1 is 
present in Lewy bodies in Parkinson's disease. Ann Neurol 47:521-523. 

483. Wakabayashi K, Matsumoto K, Takayama K, Yoshimoto M, Takahashi H (1997) NACP, a presynaptic 
protein, immunoreactivity in Lewy bodies in Parkinson's disease. Neurosci Lett 239:45-48. 

484. Wakabayashi K, Tanji K, Mori F, Takahashi H (2007) The Lewy body in Parkinson's disease: molecules 
implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology 27:494-506. 

485. Wakamatsu M, Ishii A, Iwata S, Sakagami J, Ukai Y, Ono M, Kanbe D, Muramatsu S, Kobayashi K, 
Iwatsubo T, Yoshimoto M (2008) Selective loss of nigral dopamine neurons induced by overexpression of 
truncated human alpha-synuclein in mice. Neurobiol Aging 29:574-585. 

486. Wakamatsu M, Ishii A, Ukai Y, Sakagami J, Iwata S, Ono M, Matsumoto K, Nakamura A, Tada N, 
Kobayashi K, Iwatsubo T, Yoshimoto M (2007) Accumulation of phosphorylated alpha-synuclein in dopaminergic 
neurons of transgenic mice that express human alpha-synuclein. J Neurosci Res 85:1819-1825. 

487. Walter BL, Vitek JL (2004) Surgical treatment for Parkinson's disease. Lancet Neurol 3:719-728. 

488. Wan Q, Danishefsky SJ (2007) Free-radical-based, specific desulfurization of cysteine: a powerful 
advance in the synthesis of polypeptides and glycopolypeptides. Angew Chem Int Ed Engl 46:9248-9252. 

489. Waxman EA, Giasson BI (2008) Specificity and regulation of casein kinase-mediated phosphorylation of 
alpha-synuclein. J Neuropathol Exp Neurol 67:402-416. 

490. Waxman EA, Giasson BI (2009) Molecular mechanisms of alpha-synuclein neurodegeneration. Biochim 
Biophys Acta 1792:616-624. 

491. Waxman EA, Giasson BI (2010) A novel, high-efficiency cellular model of fibrillar alpha-synuclein 
inclusions and the examination of mutations that inhibit amyloid formation. J Neurochem 113:374-388. 

492. Waxman EA, Giasson BI (2011) Induction of intracellular tau aggregation is promoted by alpha-synuclein 
seeds and provides novel insights into the hyperphosphorylation of tau. J Neurosci 31:7604-7618. 

493. Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003) Alpha-Synuclein is degraded by 
both autophagy and the proteasome. J Biol Chem 278:25009-25013. 

494. Weikart ND, Mootz HD (2010) Generation of site-specific and enzymatically stable conjugates of 
recombinant proteins with ubiquitin-like modifiers by the Cu(I)-catalyzed azide-alkyne cycloaddition. 
Chembiochem 11:774-777. 

495. Weikart ND, Sommer S, Mootz HD (2012) Click synthesis of ubiquitin dimer analogs to interrogate 
linkage-specific UBA domain binding. Chem Commun (Camb) 48:296-298. 

496. Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT, Jr. (1996) NACP, a protein implicated in 
Alzheimer's disease and learning, is natively unfolded. Biochemistry 35:13709-13715. 

497. Wills J, Credle J, Haggerty T, Lee JH, Oaks AW, Sidhu A (2011) Tauopathic changes in the striatum of 
A53T alpha-synuclein mutant mouse model of Parkinson's disease. PLoS One 6:e17953. 

498. Wills J, Jones J, Haggerty T, Duka V, Joyce JN, Sidhu A (2010) Elevated tauopathy and alpha-synuclein 
pathology in postmortem Parkinson's disease brains with and without dementia. Exp Neurol 225:210-218. 



  

 180 
  

499. Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campioni S, 
Tzitzilonis C, Soragni A, Jessberger S, Mira H, Consiglio A, Pham E, Masliah E, Gage FH, Riek R (2011) In vivo 
demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A 108:4194-4199. 

500. Wolkers WF, McCready S, Brandt WF, Lindsey GG, Hoekstra FA (2001) Isolation and characterization of 
a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta 1544:196-206. 

501. Wood SJ, Wypych J, Steavenson S, Louis JC, Citron M, Biere AL (1999) alpha-synuclein fibrillogenesis is 
nucleation-dependent. Implications for the pathogenesis of Parkinson's disease. J Biol Chem 274:19509-19512. 

502. Woods WS, Boettcher JM, Zhou DH, Kloepper KD, Hartman KL, Ladror DT, Qi Z, Rienstra CM, George 
JM (2007) Conformation-specific binding of alpha-synuclein to novel protein partners detected by phage display 
and NMR spectroscopy. J Biol Chem 282:34555-34567. 

503. Wright JA, Wang X, Brown DR (2009) Unique copper-induced oligomers mediate alpha-synuclein 
toxicity. FASEB J 23:2384-2393. 

504. Xia Y, Rohan de Silva HA, Rosi BL, Yamaoka LH, Rimmler JB, Pericak-Vance MA, Roses AD, Chen X, 
Masliah E, DeTeresa R, Iwai A, Sundsmo M, Thomas RG, Hofstetter CR, Gregory E, Hansen LA, Katzman R, 
Thal LJ, Saitoh T (1996) Genetic studies in Alzheimer's disease with an NACP/alpha-synuclein polymorphism. 
Ann Neurol 40:207-215. 

505. Yamada M, Iwatsubo T, Mizuno Y, Mochizuki H (2004) Overexpression of alpha-synuclein in rat 
substantia nigra results in loss of dopaminergic neurons, phosphorylation of alpha-synuclein and activation of 
caspase-9: resemblance to pathogenetic changes in Parkinson's disease. J Neurochem 91:451-461. 

506. Yamada M, Mizuno Y, Mochizuki H (2005) Parkin gene therapy for alpha-synucleinopathy: a rat model of 
Parkinson's disease. Hum Gene Ther 16:262-270. 

507. Yan LZ, Dawson PE (2001) Synthesis of peptides and proteins without cysteine residues by native 
chemical ligation combined with desulfurization. J Am Chem Soc 123:526-533. 

508. Yang R, Pasunooti KK, Li F, Liu XW, Liu CF (2009) Dual native chemical ligation at lysine. J Am Chem 
Soc 131:13592-13593. 

509. Yin L, Krantz B, Russell NS, Deshpande S, Wilkinson KD (2000) Nonhydrolyzable diubiquitin analogues 
are inhibitors of ubiquitin conjugation and deconjugation. Biochemistry 39:10001-10010. 

510. Young TS, Schultz PG (2010) Beyond the canonical 20 amino acids: expanding the genetic lexicon. J Biol 
Chem 285:11039-11044. 

511. Yousefi S, Green DR, Blaser K, Simon HU (1994) Protein-tyrosine phosphorylation regulates apoptosis in 
human eosinophils and neutrophils. Proc Natl Acad Sci U S A 91:10868-10872. 

512. Yu Z, Xu X, Xiang Z, Zhou J, Zhang Z, Hu C, He C (2010) Nitrated alpha-synuclein induces the loss of 
dopaminergic neurons in the substantia nigra of rats. PLoS One 5:e9956. 

513. Zabrocki P, Bastiaens I, Delay C, Bammens T, Ghillebert R, Pellens K, De Virgilio C, Van Leuven F, 
Winderickx J (2008) Phosphorylation, lipid raft interaction and traffic of alpha-synuclein in a yeast model for 
Parkinson. Biochim Biophys Acta 1783:1767-1780. 

514. Zabrocki P, Pellens K, Vanhelmont T, Vandebroek T, Griffioen G, Wera S, Van Leuven F, Winderickx J 
(2005) Characterization of alpha-synuclein aggregation and synergistic toxicity with protein tau in yeast. FEBS J 
272:1386-1400. 



  

 181 
  

515. Zahodne LB, Fernandez HH (2008) Pathophysiology and treatment of psychosis in Parkinson's disease: a 
review. Drugs Aging 25:665-682. 

516. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez 
O, Atares B, Llorens V, Gomez Tortosa E, del Ser T, Munoz DG, de Yebenes JG (2004) The new mutation, E46K, 
of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164-173. 

517. Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhou Y, Hong JS, Zhang J (2005) 
Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson's disease. 
FASEB J 19:533-542. 

518. Zheng W, Schwarzer D, Lebeau A, Weller JL, Klein DC, Cole PA (2005a) Cellular stability of serotonin 
N-acetyltransferase conferred by phosphonodifluoromethylene alanine (Pfa) substitution for Ser-205. The Journal 
of biological chemistry 280:10462-10467. 

519. Zheng W, Schwarzer D, Lebeau A, Weller JL, Klein DC, Cole PA (2005b) Cellular stability of serotonin 
N-acetyltransferase conferred by phosphonodifluoromethylene alanine (Pfa) substitution for Ser-205. J Biol Chem 
280:10462-10467. 

520. Zheng W, Zhang Z, Ganguly S, Weller JL, Klein DC, Cole PA (2003) Cellular stabilization of the 
melatonin rhythm enzyme induced by nonhydrolyzable phosphonate incorporation. Nat Struct Biol 10:1054-1057. 

521. Zhou C, Huang Y, Shao Y, May J, Prou D, Perier C, Dauer W, Schon EA, Przedborski S (2008) The 
kinase domain of mitochondrial PINK1 faces the cytoplasm. Proc Natl Acad Sci U S A 105:12022-12027. 

522. Zhou Y, Gu G, Goodlett DR, Zhang T, Pan C, Montine TJ, Montine KS, Aebersold RH, Zhang J (2004) 
Analysis of alpha-synuclein-associated proteins by quantitative proteomics. J Biol Chem 279:39155-39164. 

523. Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, 
Calne DB, Stoessl AJ, Pfeiffer RF, Patenge N, Carbajal IC, Vieregge P, Asmus F, Muller-Myhsok B, Dickson DW, 
Meitinger T, Strom TM, Wszolek ZK, Gasser T (2004) Mutations in LRRK2 cause autosomal-dominant 
parkinsonism with pleomorphic pathology. Neuron 44:601-607. 

524. Zucchelli S, Codrich M, Marcuzzi F, Pinto M, Vilotti S, Biagioli M, Ferrer I, Gustincich S (2010) TRAF6 
promotes atypical ubiquitination of mutant DJ-1 and alpha-synuclein and is localized to Lewy bodies in sporadic 
Parkinson's disease brains. Hum Mol Genet 19:3759-3770. 

 

 

 

 

 

  



  

 182 
  

  



  

 183 
  

VI. Table of Figures 
 

 FIGURE I-1. LEWY BODIES AND DOPAMINERGIC LESIONS IN PD ................................................................................................. 1 

 FIGURE I-2. MAJOR GENES AND LOCI ASSOCIATED WITH PD ..................................................................................................... 2 

 FIGURE I-3. PATHOGENIC MUTATIONS IN THE PROTEINS INVOLVED IN PD ................................................................................... 6 

 FIGURE I-4. CHEMICAL STRUCTURE OF MPTP, MPP+, PARAQUAT AND ROTENONE ...................................................................... 8 

 FIGURE I-5. PET IMAGES ASSESSING THE UPTAKE OF 18F-DOPA ................................................................................................. 9 

 FIGURE I-6. STRUCTURE OF DOPAMINE AND L-DOPA............................................................................................................. 10 

 FIGURE I-7. SUMMARY OF THE DIFFERENT TRANSGENIC PD MODELS ........................................................................................ 17 

 FIGURE I-8. SCHEMATIC REPRESENTATION OF THE MAJOR DISCOVERIES ON Α-SYN....................................................................... 21 

 FIGURE I-9. ORGANIZATION OF THE Α-SYN GENE AND ALTERNATIVE SPLICING ISOFORMS .............................................................. 22 

 FIGURE I-10. AMINO ACID SEQUENCES OF ALPHA, BETA AND GAMMΑ-SYNUCLEIN ...................................................................... 23 

 FIGURE I-11. AMINO ACID SEQUENCE OF Α-SYN AND ITS STRUCTURAL DOMAINS ........................................................................ 23 

 FIGURE I-12. COMPARISON OF Α-SYN AMINO ACID SEQUENCE BETWEEN SPECIES ........................................................................ 24 

 FIGURE I-13. COMPARISON OF HELICAL WHEEL PROJECTION BETWEEN Α-SYN AND OTHER PROTEINS .............................................. 25 

 FIGURE I-14. SOLUTION NMR STRUCTURE OF Α-SYN FORMING TWO BROKEN HELICES WHEN BOUND TO SDS-MICELLES .................... 26 

 FIGURE I-15. PROPOSED MECHANISM OF Α-SYN AGGREGATION .............................................................................................. 28 

 FIGURE I-16. FIBRILLIZATION OF Α-SYN .............................................................................................................................. 28 

 FIGURE I-17. PORE-FORMING OLIGOMERS OF Α-SYN ............................................................................................................ 29 

 FIGURE I-18. EFFECTS OF Α-SYN ON DA SYNTHESIS, STORAGE, RELEASE AND UPTAKE .................................................................. 35 

 FIGURE I-19. MOST STUDIED PTM OCCURRING IN Α-SYN ...................................................................................................... 43 

 FIGURE I-20. CONSERVATION OF THE Α-SYN PHOSPHORYLATION SITES AMONG SPECIES. .............................................................. 43 

 FIGURE I-21. KINASES IMPLICATED IN THE PHOSPHORYLATION OF Α-SYN AT SERINE RESIDUES. ...................................................... 45 

 FIGURE I-22. KINASES IMPLICATED IN THE PHOSPHORYLATION OF Α-SYN AT TYROSINES ................................................................ 48 

 FIGURE I-23. IMMUNOBLOTS REVEALING THAT MONO- AND DI-UBIQUITINATED Α-SYN IS PHOSPHORYLATED AT S129. ...................... 52 

 FIGURE I-24. UBIQUITINATION SITES IN VIVO AND IN VITRO .................................................................................................... 53 

 FIGURE I-25. TRUNCATED VARIANTS OF Α-SYN GENERATED BY PROTEOLYSIS .............................................................................. 55 

 FIGURE I-26. STRUCTURE OF PSER, PTYR AND THEIR PHOSPHOMIMICS : GLU AND ASP ................................................................ 58 

 FIGURE I-27. DIFFERENT APPROACHES FOR THE GENERATION OF ISOPEPTIDE BONDS FOR UBIQUITIN CONJUGATION .......................... 63 

 FIGURE I-28. GENERAL SPPS SCHEME ............................................................................................................................... 64 

 FIGURE I-29. NATIVE CHEMICAL LIGATION MECHANISM. ...................................................................................................... 65 

 FIGURE I-30. DESULFURIZATION ALLOWS PERFORMING LIGATIONS AT ALA, PHE, THR, LEU, VAL AND GLN ...................................... 67 

 FIGURE I-31. GENERATION OF PEPTIDE THIOESTERS .............................................................................................................. 68 

 FIGURE I-32. STRATEGIES FOR THE SEMISYNTHESIS OF PROTEINS: N- AND C-TERMINAL MODIFICATIONS ......................................... 69 

 FIGURE I-33. MECHANISM OF INTEIN SPLICING .................................................................................................................... 71 

 FIGURE I-34. PRODUCTION OF PROTEIN THIOESTERS USING MODIFIED INTEINS........................................................................... 72 

 FIGURE I-35. DIFFERENT APPROACHES TO GENERATE PROTEIN FRAGMENTS WITH N-TERMINAL CYS. .............................................. 73 

 FIGURE I-36. CHEMICAL APPROACHES TO GENERATE MONOUBIQUITINATED PROTEINS VIA ISOPEPTIDE-LIKE BONDS ........................... 74 



  

 184 
  

 FIGURE I-37. GENERATION OF MONOUBIQUITINATED H2B VIA A NATIVE ISOPEPTIDE BOND ......................................................... 76 

 FIGURE II-1. THE CLUSTERING OF C-TERMINAL POST-TRANSLATIONAL MODIFICATIONS OF Α-SYN ................................................... 83 

 FIGURE II-2. MECHANISM OF NATIVE CHEMICAL LIGATION .................................................................................................... 84 

 FIGURE II-3. SEMISYNTHESIS AND CHARACTERIZATION OF PHOSPHORYLATED Α-SYN DERIVATIVES ................................................... 96 

 FIGURE II-4. BIOCHEMICAL AND BIOPHYSICAL CHARACTERIZATION OF SEMISYNTHETIC WT AND PY125 Α-SYN. ................................ 98 

 FIGURE II-5. NMR CHARACTERIZATION OF FREE AND MICELLE-BOUND WT AND PY125 α-SYN. ................................................... 99 

 FIGURE II-6. FIBRILLIZATION OF PY125 Α-SYN. .................................................................................................................. 101 

 FIGURE II-7. DEPHOSPHORYLATION AND DETECTION OF PY125 Α-SYN IN CELLS ........................................................................ 102 

 FIGURE II-8. PHOSPHORYLATION OF PY125 AND PS129 Α-SYN. ........................................................................................... 105 

 FIGURE II-9. PHOSPHORYLATION OF PY125 Α-SYN AND PS129 Α-SYN. .................................................................................. 106 

 FIGURE II-10. RAW ITC THERMOGRAMS OF NB87 BINDING TO Α-SYN VARIANTS...................................................................... 108 

 FIGURE II-11. DISSOCIATION CONSTANTS AND BINDING ENTHALPIES OF NB87 BINDING TO Α-SYN VARIANTS ................................. 109 

 FIGURE III-1.SCHEMATIC DEPICTION OF THE SEMISYNTHETIC STRATEGY FOR THE UBIQUITINATION OF α-SYN AT K6. ........................ 136 

 FIGURE III-2. ANALYTICAL HPLC OF THE CRUDE DESULFURIZATION REACTION PEAK .................................................................. 137 

 FIGURE III-3. CHARACTERIZATION OF MONOUBIQUITINATED α-SYN AT K6 .............................................................................. 138 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



  

 185 
  

Curriculum Vitae- Mirva Hejjaoui 

Citizenship:  French – Lebanese 
Address:  Swiss Federal Institute of Technology Lausanne – EPFL 
    SV BMI LMNN, AI 2135, Station 15 
    1015, Lausanne, Switzerland 
Tel:    0041 21 693 07 65 
E-mail:   mirva.hejjaoui@epfl.ch 
  
Education         

PhD advisor: Professor Hilal Lashuel 

 
 Scholarship of Excellency awarded by the French Government (Major 30 000 �) 

 
 Scholarship of Excellency awarded by the French Government (AEFE 20 000 �) 
  
Publications and Poster presentations  
  

  
  

Scientific communications 
  
  

• Shabek N., Herman-Bachinsky Y., Buchsbaum S., Lewinson O., Haj-Yahya M., Hejjaoui 
M., Lashuel H., Sommer T., Brik A., Ciechanover A., Molecular Cell, 2012 (in press) 

  

• Butterfield S., Hejjaoui M., Fauvet B., Awad L., Lashuel H., Chemical Strategies for 
Controlling Protein folding and Elucidating the Molecular Mechanisms of Amyloid 
Formation and Toxicity, Journal of Molecular Biology, 2012, 421(2-3) 

  

• Hejjaoui M., Butterfield S., Fauvet B., Vercruysse F., Cui J., Dikiy I., Prudent M., 
Olschewski D., Zhang Y., Eliezer D., Lashuel H., Elucidating the role of C-terminal post-
translational modifications using protein semisynthetic strategies: α-synuclein 
phosphorylation at tyrosine 125, Journal of the American Chemistry Society, 2012, 
134(11). 

  

• Hejjaoui M., Haj-Yahya M., Kumar A., Brik A. and Lashuel H., Towards Elucidation of 
the Role of Ubiquitination in the Pathogenesis of Parkinson’s Disease with 
Semisynthetic Ubiquitinated α-Synuclein, Angewandte Chemie International Edition, 
2011, 50(2) 

  
Poster presentations 

  
  

Oral presentation 

  

Swiss Federal Institute of Technology EPFL Lausanne, Switzerland
PhD in Chemical Biology, Parkinson’s disease  10.08-09.12

 

Ecole Nationale Supérieure de Chimie de Montpellier  Montpellier, France
“Engineering in Chemistry” French elite diploma  09.05-08.08

University of Montpellier  Montpellier, France
First two years of a Bachelor degree in biochemistry   09.03-08.05

           Society of Neuroscience  Washington, 2011
           22nd American peptide symposium    San Diego, 2011
           4th International peptide symposium  Kyoto, 2010
           EPFL-ETH-Tokyo tech joint symposium  Lausanne, 2010

           Brain Mind institute  Lausanne, 2012



  

 186 
  

 Professional Experiences  

Advisor: Prof. Hilal Lashuel 
  

• Pioneered the design of efficient strategies for the semisynthesis of α-synuclein to 
elucidate the impact of post-translational modifications on aggregation, structure and 
subcellular localization 

• Supervised the projects of undergraduate students and assisted in teaching courses 

Advisor: Dr. Francois Autelitano 
  

• Developed a protocol for the identification of proteins interacting with Lymphotoxin β 
receptor 

• Work resulted in the identification of novel target proteins for treatment of inflammatory 
diseases and allowed for the present continuation of the project by colleagues at Sanofi-
Aventis 

Advisor: Prof. Charles Richardson/Dr.Udi Qimron 
  

• Optimized a high-throughput screening assay on a generated library of 7000 
transductant strains to detect for resistance to phage infection. 

• In 3 months, delivered a system typically requiring more than 6 months and identified 
the bacterial gene responsible for the resistance 

Advisor: Prof. Hilal Lashuel 
  

• Optimized an assay for the limited proteolysis of α-synuclein bound to membranes still 
used by an entire core facility at the EPFL  

  
  
 Technical Skills 
  
Chemistry: Solid phase peptide synthesis, Native chemical ligation. 
  

Molecular biology: Single-point mutagenesis, Classical cloning, PCR. 
  

Biochemistry: Expression of proteins in E.Coli, Purification of proteins using: affinity 
chromatography, anion and cation exchange, reverse-phased chromatography. 
  

Biophysics: Protein oligomerization studies, Circular dichroism 
  

 Cellular biology: Cell culture, transfection using calcium phosphate and lipofectamine, 
subcellular fractionation, immunoprecipitation, immunocytochemistry. 

  

Microscopy: Transmission electron microscopy, Wide-field fluorescence microscopy 
  
  
  
 

  

Swiss Federal Institute of Technology Lausanne EPFL Lausanne, Switzerland
Doctoral assistant   10.08-09.12

Sanofi-Aventis Pharmaceuticals   Labège, France
Research internship   03.08-08.08

Harvard Medical School  Boston, USA
Research assistant  06.07-09.07

Swiss Federal Institute of Technology Lausanne EPFL Lausanne, Switzerland
Summer Research Scholar  07.06-08.06



  

 187 
  

  

 Leadership Activities & Personal Strength 

• Launched a collaboration between the fair organizers and the EPFL direction  
• Budgeted the project, organized the participation of 4 students and prepared materials 

for kids 
  

  

• Organized the prestigious graduation of my peers (over 500 attendees) 
• Supervised a team of 15 persons and managed the financial budget (around 20,000 �) 

  
Interests:  Swimming, basket-ball (ENSCM team 2005), karate Shotokan, salsa 
dance and travelling  
  
Languages: French (bilingual), Arabic (bilingual), English (fluent), German (basic) 
 

 

Swiss Federal Institute of Technology EPFL Lausanne, Switzerland
Representing the EPFL at Beirut Science Fair 
  

 2010-2011

Ecole Nationale Supérieure de Chimie de Montpellier  Montpellier, France
Head of the Gala society   03.06-12.07


