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Abstract

In this thesis, we address the analysis of activities from long term data logs with an emphasis
on video recordings. Starting from simple words from video, we progressively build methods to infer
higher level scene semantics. The main strategies used to achieve this are: the use of simple low-
level visual features that can be readily extracted, and of probabilistic topic models that come with
powerful learning and inference tools.

In the initial part of the thesis, we investigate the use of a simple topic model called Probabilis-
tic Latent Semantic Analysis (PLSA) for video scene analysis. By quantizing location, optical flow
direction and foreground blob size into words, and considering short video clips as documents, we
discover topics from PLSA that represent recurrent activities in the scene. We then demonstrate
how the topics can be used to analyze the scene activities, segment the scene into homogeneous
activity regions and detect abnormalities.

The topics from PLSA have no temporal structure and hence do not represent activities well. To
address this issue, we develop a novel sequential topic model called Probabilistic Latent Sequential
Motifs (PLSM) which automatically discovers sequential patterns called motifs that include tempo-
ral information from videos. To address the problem of observations caused by multiple activities
in the scene, the PLSM formulation uses explicit random variables to represent time at different
levels: at a higher level to determine when a motif starts in the video, and at a lower level to know
the order of words within the motif. Using a sparsity constraint on the event start times, and MAP
priors on the temporal axis of the motifs, we designed an inference algorithm. When applied to
surveillance videos, the model captures motifs that resemble trajectories. The model provides more
information than PLSA, giving clues about when and where an activity starts, when it ends and
how it is executed. As in many unsupervised topic models, deciding the most appropriate number
of topics is a difficult problem. To address this, we reformulate PLSM using principles of Bayesian
non-parametrics. The new method called Hierarchical Dirichlet Latent Sequential Motifs (HDLSM)
uses Dirichlet processes at multiple levels to select a suitable number of motifs and identify their
occurrences in the data.

The final objective is to analyze how events in a scene are organized. At a global level, a scene
can be thought of as undergoing a sequence of phases, each with distinct characteristics. At a more
local level, the individual activities can exhibit dependencies that are possibly causal in nature. Fol-
lowing this, we propose a new graphical model called Mixed Event Relationship (MER) model, that
incorporates the learning of both local rules and global states simultaneously from a binary event
matrix. Learning these scene semantics is achieved using an iterative Gibbs sampling procedure.
While the global scene states recover traffic cycles, the local rules provide information about single
and multi-object activity interactions.

We validate the proposed methods with elaborate experiments on nine different challenging
datasets with a wide variety of activity content. The results prove the general applicability of the
different methods proposed in this thesis. We believe that they can have wider applications on data
coming from sensor logs of other modalities too.
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Résumé

Dans ce manuscrit, nous nous intéressons à l’analyse d’activités à partir de longs enreg-
istrements avec un intérêt particulier pour les données vidéo. Partant de simples mots extraits
de vidéos, nous proposons des méthodes pour obtenir une compréhension de plus haut niveau de
la sémantique de la scène observée. Les principales stratégies utilisées pour cela sont : l’utilisa-
tion de descripteurs visuels de bas niveau et la proposition de modèles probabilistes avec les outils
d’apprentissage et d’inférence associés.

Dans la première partie de cette thèse, nous abordons l’utilisation d’un topic model simple appelé
Probabilistic Latent Semantic Analysis (PLSA) pour l’analyse de scène vidéo. En quantifiant la
localisation, la direction du flux optique et la taille de l’objet de premier plan pour en faire des mots,
et en considérant de courts clips vidéos comme des documents, nous découvrons des topics à l’aide de
PLSA qui représentent les activités récurrentes dans la scène. Nous montrons ensuite comment les
topics extraits peuvent être utilisés pour analyser les activités présentes dans la scène, segmenter
la scène en régions d’activité homogènes et détecter des anomalies.

Les topics extraits par PLSA n’ont pas de structure temporelle et ne représentent donc pas
efficacement les activités. Pour traiter ce problème, nous développons un nouveau topic model
séquentiel appelé Probabilistic Latent Sequential Motifs (PLSM) qui permet de découvrir de
manière automatique des topics séquentiels appelés motifs qui capturent l’information temporelle
des vidéos. Pour faire face au problème du mélange des observations issues d’objets différents
de la scène, la formulation du modèle PLSM fait appel à des variables aléatoires explicites pour
représenter le temps à plusieurs échelles : à un haut niveau pour déterminer le début d’un motif et
à un niveau plus bas pour expliciter l’ordre d’apparition des observations dans le motif. En utilisant
une contrainte d’éparsité sur les instants de début des événements et des a priori sur la dimension
temporelle des motifs, nous proposons un algorithme d’inférence. Appliqué à des scènes vidéos, le
modèle capture des motifs assimilables à des trajectoires. Le modèle fournit plus d’information que
PLSA, donnant une information sur le début et la fin des activités et sur la façon dont elles sont
exécutées. Comme pour de nombreux topic models non supervisés, il est difficile de décider du nom-
bre approprié de motifs à retenir. Pour cela, nous reformulons le modèle PLSM en utilisant les
principes bayésiens non paramétriques. La nouvelle méthode appelée Hierarchical Dirichlet Latent
Sequential Motifs (HDLSM) utilise des processus de Dirichlet à plusieurs niveaux pour sélectionner
le nombre adéquat de motifs et identifier leurs occurrences dans les données.

Notre objectif final est d’analyser comment les événements sont organisés dans une scène. À
un niveau global, une scène peut être vue comme une séquence de phases, chaque phase ayant
des caractéristiques propres. Â un niveau plus local, les activités individuelles peuvent exhiber
des dépendances qui peuvent łtre de nature causale. En conséquence, nous proposons un nouveau
modèle graphique appelé Mixed Event Relationship (MER) qui comprend l’apprentissage simultané
de règles locales et d’états globaux à partir d’une matrice binaire d’événements. L’apprentissage
de la sémantique de la scène se fait à l’aide d’une procédure d’échantillonnage de Gibbs itérative.
Alors que les états globaux correspondent aux cycles de traffic, les règles locales fournissent de
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l’information à propos d’interactions entre activités impliquant possiblement plusieurs objets.
Nous validons les méthodes proposées par des expériences sur neuf jeux de données com-

plexes contenant une grande variété d’activités. Les résultats prouvent l’applicabilité générale des
différentes méthodes proposées dans ce manuscrit. Nous pensons qu’elles peuvent avoir des champs
d’applications plus larges sur des données issues d’enregistrements de capteurs d’autres modalités.

Mots-clés : vidéo, activité, segmentation de scène, anomalies, détection d’événement, relations
entre événements, multi-caméras, séquentiel, motifs, reconnaissance de motifs, fouille de données,
non supervisée, topic models probabilistes, échantillonnage de Gibbs, PLSA, LDA, PLSM, DP, HDP,
HDLSM, MER.
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The Chiseled Child

A shapeless rock in the hands of an adept sculptor becomes a great piece of art. So too is life; in
this untiring journey towards perfection, we meet sculptors great and wise, who shape and chisel
our thoughts, career and destination. At this point in time, when I look back with a sense of
nostalgia, I see all those sculptors who by their chisels of thought, word and deed have shaped me
so far. On such occasions, there are some feelings that can never find their way to expressions, and
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the same.

Foremost, I express my deepest sense of gratitude to my guide Jean-Marc, for his immense
patience, encouragement and guidance. I always admired his analytical skills, uncompromising
attention to details and grasp of the subject. Indeed, I could not have asked for a better supervisor.
Merci beacoup Jean-Marc! Besides, I am deeply grateful for the invaluable help and support from
Rémi. From simple little software tools to involved technical discussions he has helped in many
ways to progress in my work. Merci beacoup Rémi!

I would like to thank Prof. Pascal Fua, Prof. Shaogang Gong, Prof. Bernt Schiele and Prof.
Pascal Frossard for agreeing to be part of my defense committee. I appreciate their kind gesture,
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CC, Dinesh, Elie, Elisa, Kenneth, Paul, Sileye, Samira, Stefan and Vasil for the many interest-
ing discussions during the team meetings and reading groups. I would like to thankfully mention
the help extended by Alex and Romain in proof reading my thesis. Their prompt comments and
suggestions were very useful.

Any one traveling from a crowded Indian city to scenic Martigny in Switzerland would know
what makes Martigny quite distinct. The lofty mountains, the gusty winds, the scenic valley are
certainly the most awe-inspiring. But the sparse population, the sound of silence and the breeze
of loneliness are certainly conspicuous and greets every visitor alike. In the last four years, many
have helped me brave this lonely journey through their camaraderie. My thanks and kudos goes
to Anindo, Anirudh, Ashtosh, Cosmin, Deepu, Gokul, Hari, Harsha, Hugo, Lakshmi, Laurent, Leo,
Marco, Mathew, Nik, Radu, Ramya, Roger, Tatiana and Venke. I have enjoyed all those tiring
hikes in the breath-taking Alps, competitive badminton shots, fitness-freaking jogging rounds and
swimming lessons, funny karoke sessions, spicy barbeques and Indian dinners, intense debates and
stimulating discussions and many more such fun-filled activities with them. It has made my stay
in Martigny a memorable one and I certainly consider myself fortunate to have known them all.
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Chapter 1

Introduction

Inventions are the crest jewels of human intelligence and intuition. One such invention that has
achieved an exalted position in human history is that of computers. While initially created for high
speed number crunching, it has progressively invaded human lives, assisting and supplementing
humans in their day to day chores. Ever since Prof. John McCarthy coined the term Artificial
Intelligence, researchers have been attempting to make intelligent machines i.e., computers that
speak, understand, see and in general, perceive the world through their sensors just as humans
use their senses. This is easier said than done due to one important reason among others. We,
through evolution have acquired an astounding ability to process complex and abstract patterns to
the extent that we fail to recognize them as complex tasks.

For example, we perceive a number of actions like walking, running, eating, drinking, etc., ev-
eryday as part of our daily routine. If we look carefully, each of them involves complex movements
of the limbs, with possibly millions of variations due to time, place, circumstances and more impor-
tantly due to the individual’s anatomy. Nevertheless, we recognize and understand such complex
patterns quite accurately. Surprisingly, we even pick an individual’s idiosyncrasies in gait and
personal habits. Not to mention, the complexities involved due to view point variations and the
presence of other activities in the background.

In another example, consider that a person is asked to look at a public scene like a metro station
ticketing hall for a few minutes and asked to present his understanding of the scene. He or she
would most likely come up with a summary that looks like this: “people enter the hall from the
south-west entrance, leave through the north-east exit. People often consult the map in the north-
ern side wall, before buying the ticket. On average, there is a crowd flux in the station once every
five minutes due to arrival of a train, and so on”. Such an analysis, though apparently trivial, is
achievable because of the innate ability of the human visual system to process low-level visual in-
formation at an extremely high speed, and pass selective information to the brain to derive abstract
semantic descriptions of the observations.

We are entering an era of pervasive computing. More and more private and public settings are
equipped with sensors including CCTV cameras, generating tones of data everyday. It is therefore

7



8 CHAPTER 1. INTRODUCTION

vital to create intelligent machines that can mimic human abilities; machines that can observe
colossal amounts of data and churn out information with semantic significance and human inter-
pretability.

In this thesis we target one such problem of designing automatic methods to discover latent
knowledge from data. Before going into details, we will take a detour to convince ourselves as
to why data mining problems in general are important, and list some of the open challenges in
the domain. Subsequently, details about the specific problem solved in this thesis, the approach
adopted and the contributions made will be presented.

1.1 Motivation

Significant development in sensing technologies has resulted in a number of sensors that can
detect and record human activities. Today, Global Positioning Systems (GPS), SMS and call logs
record our position and networking activities. Passive Infra-Red (PIR) sensors detect our move-
ments in buildings. Consumer electronic devices come with accelerometers and gyroscopes that can
record our motion activities. Even while on the web, our browsing activities are recorded by online
advertising companies. Understanding and analyzing this vast data pool could reveal important
clues about human activities and their interactions, which can be further used to anticipate and
detect interesting events automatically. Achieving this is of prime interest to many applications,
e.g., customized advertising through reality mining, health care through activity mining and action
detection, security and customer analysis through video analytics to name only a few.

Video content analysis, more popularly known as video analytics is one such research domain
that uses data from CCTV cameras monitoring private and public settings to discover interesting
information of the scene. Activity analysis, specifically using videos has wide reaching applications
in many domains. We list some of them here.

Video Surveillance. These days, practically every public setting like train stations, airports,
shopping malls, traffic junctions and streets are monitored using surveillance cameras. But much
of this content is rarely screened and merely serve as record for forensic analysis. Moreover, search-
ing for a specific occurrence in this enormous quantity of data amounts to looking for a needle in a
haystack. A surveillance camera becomes more usable if it is packaged with intelligence to detect
events that require attention as they happen and take action in close to real time. This has moti-
vated several corporate bigwigs and Original Equipment Manufacturers (OEM) like IBM, Google,
Honeywell, GE security, ObjectVideo, Philips, Sony, etc., to have dedicated research teams to create
end-to-end surveillance systems. Several academic research projects like VSAM 1, CARETAKER,
VANAHEIM 2 and SAMURAI 3 have also invested time and effort to create intelligent surveillance
systems that perform tasks such as tracking, trajectory analysis, crowd monitoring, counting and
so on.

1. www.cs.cmu.edu/vsam/
2. www.vanaheim-project.eu/
3. www.samurai-eu.org/
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(a) (b)

(c) (d)

Figure 1.1. Various applications of video activity analysis. (a) A monitor operating multiple cameras from a metro
station site in a control room. (b) Abnormal occurrences detected and highlighted. (c–d) Event statistics collected
from a metro station, e.g., (c) Average number of people crossing the turnstile during the day shows a peaking trend
around 8h30-11h00. (d) Histogram of waiting times of trains in the station.

Automatic stream selection is another application where video analysis can play a crucial role.
Nowadays, many of the transport-infrastructure settings like metro stations and airports, monitor
different parts of their sites by employing human operators. The videos from different locations of
the site are sent to a control room where the operators scan the scenes online (see Figure 1.1(a)) and
alert the concerned authorities in case of an unusual event like an accident or property vandalism.
But there is a huge issue involved in this mode of working. To quote the New Scientist magazine 4:
“We are having too many cameras and not enough pairs of eyes to watch them all”. More precisely,
having human operators to scan multiple views at any time has been quite inefficient because of the
short attention span that humans can afford. Also, monitoring the same scene repeatedly over time
creates tiredness, boredom and results in missing potential unusual events. A way to reduce the
strain on the operators is to have an automated procedure that pre-screens the views and passes on
only the most interesting views from the site. This gives a two stage screening process (automated
and manual) while making efficient use of the operator’s attention.

Content based retrieval. In many occasions like criminal investigations, it is necessary to browse
through several hours or days of video recordings. This may be done using some prior knowledge
on place or time of occurrence of an event. Otherwise, it is a tedious process in the absence of any
meta-information about the content of the video. One way to address this problem is to use video
pattern mining methods to learn the activity patterns in the video, derive semantic interpretations
and natural language descriptions. This can serve as a potent annotation of the data and a tool to
browse the video more easily.

4. New Scientist 13 November 2003
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Infrastructure planning. End-users of infrastructure projects look for event statistics to help
in their planning and management. For example, information about crowd congestion and their
duration, queue formation and their average waiting times etc., could provide interesting statistics
on events occurring in the scene. Figures 1.1(c–d) show some statistics collected about the average
number of people crossing the turnstiles during morning busy hours and average waiting time
of trains in a Rome metro station. Similarly, a manager of a large commercial complex may re-
arrange and improve the store periodically by observing places where customers spend most of
their shopping time.

Pattern mining. More generally, pattern mining from sequential data has much wider implica-
tions in domains other than video analysis. Consider for example a meteorology grid set up across
a region collecting various atmospheric variables along time. This defines a time series consisting
of multiple observations. Mining recurring patterns from such a data can reveal useful informa-
tion regarding weather patterns and correlations between various atmospheric parameters (Basak
et al., 2004). Similarly, looking at latent temporal patterns in cellphone GPS and call logs reveal a
variety of daily routines followed by people. In the area of elderly care, sensor information coming
from accelerometers worn by people can be analyzed to extract patterns that correspond to routines
like shopping, cooking and the like. Such a general view of the activity analysis problem allows us
to extend our methods to several other potential applications ranging from meteorology, biology to
sensor processing.

1.2 Challenges

Though automatic activity analysis has been receiving considerable research attention over the
last few years, little success has been achieved in building intelligent deployable systems due to
various challenges:

– Sensor Placement: Often we use the same sensors to solve multiple problems. An applica-
tion that requires robust tracking results for example, should use data from overhead cameras
to avoid occlusions. But data from such a view may not be suitable for applications that need
human identification, behavior and interaction analysis. Since installing cameras along with
the required networking and storage for each application becomes expensive, in practice, a
compromise is achieved by many applications sharing the same data.

– Activity definition: There is a high degree of ambiguity in the definition of various terms
used in activity analysis research. For example, consider the two frequently interchanged
terms Action and Activity. It is unclear as to what in a video is an action and an activity.
This ambiguity is more pronounced in the definition of terms such as “normal” and “unusual”
actions or activities especially demanded in surveillance applications. Unusual activities are
rare, hard to describe, hard to predict and can be subtle. Since this requires a more detailed
look, we will revisit this aspect later in this chapter.

– Data variability: Every automated surveillance system suffers from acquisition problems.
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Video data from such settings have cluttered background, camera motion, frequent occlusions,
photometric variations due to lighting and shadows, view point variations, video artifacts due
to compression etc.

– Activity modeling: The first step in activity analysis is activity modeling. For example, a
vision based approach to analyzing a person’s behavior would involve continuous tracking of
the person, segmenting the person from the background, extracting visual features that are
potentially view invariant and finally employing a suitable learning technique. Each of these
steps are still challenging problems in computer vision. Furthermore, there are variations in
time taken to perform the action, individual styles, physical appearances. Activity modeling
often involves modeling of interactions (between people, people and environment) and context,
which adds another layer of difficulty to the problem. From a computational perspective too,
modeling activities remains a challenge.

– Data labeling: Using many of the learning approaches to identify activities especially in a
supervised context, requires significant amount of labeling. But human labeling is tedious,
time consuming, expensive and error prone. Especially in the case of videos, annotating activ-
ities in the presence of multiple other activities happening simultaneously is cumbersome.

– Adaptation: Requirements of surveillance systems vary from one user to another. For ex-
ample, an operator monitoring a traffic scene might be interested in crowd congestion while
a train or tube station operator is more interested in vandalism, violence and accidents like
people falling on the tracks. Due to such varying needs, techniques developed for each site be-
come exclusively fine-tuned to certain operational conditions with hard-coded rules, resulting
in lesser adaptability.

1.3 Terminology

Terms such as “actions”, “activity”, “behavior” and “events” are often interchanged and not de-
fined clearly in activity analysis research. Looking at Merriam Webster dictionary 5 definitions for
the terms say the following: An action is the state or process of doing something or being active.
An activity is a lively action or movement . Even from these definitions, there is considerable over-
lap and confusion on what constitutes an action and an activity. We go by the definition provided
in (Turaga et al., 2008) where, “action” is used to refer to simple motion patterns usually executed
by a single person that typically lasts for a short duration of time in the order of few seconds, e.g.,
walking, swimming. On the other hand “Activities” may refer to complex sequences of actions per-
formed by one or more humans with a longer temporal extent, e.g., shopping or two persons engaged
in a discussion. In this work, since we use unsupervised, co-occurrence based methods to learn pat-
terns, our results can be interpreted as actions sometimes (e.g., a vehicle moving from left to right)
and as activities (e.g., a vehicle moving from left to right while people waiting to cross the road) at
other times. Therefore, we will consistently use the term activity or activity patterns to refer to the

5. www.merriam-webster.com
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learned patterns.
An event is defined as something that takes place; an occurrence. We will also use the term

“events” to indicate any occurrence, start of an activity.
A behavior is defined as the response of an individual, group, or species to its environment.

From the definition of the term “behavior”, we understand that the interpretation should consider
the environment or the context as well. Furthermore, an individual, a group or even a scene as a
whole can exhibit a behavior. For example, an individual’s behavior in a traffic controlled junction
is different from its behavior in an uncontrolled road. A scene’s behavior is the set of activities
that occur defined by the scene context such as the number of roads, junctions, traffic lights, their
durations and periodicity.

Unusual or abnormal events are another set of ambiguous terms. The term unusual is defined
as “not habitually or commonly occurring or done”, whereas abnormal is defined as “deviating from
what is normal or usual, typically in a way that is undesirable”. We can understand that these
terms refer to the same thing except that the latter carries a strain of negativity with it. Using a
data-driven perspective, unusual or abnormal events can be defined as something that cannot be
explained using the training data or not seen in the training data.

1.4 Objectives and Approach

This thesis considers the challenging problem of deriving conceptual descriptions from a video
input, otherwise called “automatic video activity analysis”. The input videos come from complex
video streams arriving from public scenes like busy traffic scenes or crowded metro stations. By
deriving a high-level human understandable semantics of the scene we would like to address ques-
tions like: 1) what are the recurrent or dominant activities in the scene and how many of them
occur? 2) are the event occurrences periodic or random? 3) what are the general rules such as right
of way, traffic lights and pedestrian preferences observed in the scene? 4) what is the status of an
event discovered: does it depend on others or does it occur independently? 5) are there interesting
or abnormal event occurrences like vehicles jumping traffic lights?

This thesis presents several novel methods to answer the above questions. The approaches
presented stem from the observation that videos are times series data and the activities occurring in
the scene are hidden patterns in the time series. Therefore, although primarily motivated by video
analysis applications, we also show that the methods proposed here could have a wider application
to sensor logs other than videos.

The approach of this thesis is based on three paradigms. They are:
– Low-level features: Since our datasets come from crowded scenes with multiple objects of

different kinds acting simultaneously, configuring a multi-object tracker individually for each
scene becomes computationally expensive. Therefore, we aim to avoid object centric features
that come from tracking and resort to simple visual features that include foreground pixels
and optical flow.
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– Minimal supervision: As noted before, labeling huge volumes of video is a tedious and
error prone process. A solution to this labelling problem is to employ unsupervised or semi-
supervised methods, where a model is learned initially with no supervision, and labels are
used at a latter stage to perform detection, classification and evaluation 6. Such approaches
have been successfully applied for several vision tasks such as scene classification (Quelhas
et al., 2005) and face detection (Nguyen et al., 2009).

– Probabilistic Topic models (PTM): Among the popular unsupervised methods to date,
PTMs have been successfully used by the computer vision community for various tasks such as
object recognition, human activity recognition (Niebles et al., 2008). They have also been used
with a variety of modalities like accelerometers (Huynh et al., 2008), cell phone GPS (Farrahi
and Perez, 2008), etc. Additionally since PTMs are essentially graphical models, they enable
us to model complex real life phenomena which can be solved using established inference
tools.

1.5 Contributions and Thesis Organization

By abstracting out minor details, Figure 1.2 gives a bird’s eye view of the contributions and
organization of this thesis. The chapters in this thesis are organized chronologically to reflect the
order in which contributions were made. The thesis therefore progresses from simple models to
more sophisticated ones at the latter chapters. A brief summary of each of the chapters and the
contributions is as follows:

Chapter 2. A brief overview of various methods in the literature for activity analysis is presented
and the contributions of this thesis are highlighted, contrasting it with the existing works.

Chapter 3. A detailed look at the various datasets used and the procedure followed to extract
features are presented.

Chapter 4. As an initial step towards using topic models for activity analysis, we propose to
use Probabilistic Latent Semantic Analysis (PLSA) along with simple visual features like location,
foreground blob size and optical flow extracted from video to obtain dominant patterns of activities
from a busy traffic junction video (Varadarajan and Odobez, 2009). Using the topics learned,

– we perform some analysis to rank the activities with respect to particular semantics, e.g.,
direction of motion, speed or size of objects;

– a novel activity based scene segmentation is proposed to obtain regions of similar activity
content;

– we study various abnormality measures in the given context and propose a novel measure
based on document reconstruction error.

Chapter 5. In a topic model framework, the temporal information in the video is normally ignored.
To model the word dynamics within an activity, we propose a novel topic model based approach

6. Here, we expect that our model generated in an unsupervised fashion will reduce human effort at consequtive stages.



14 CHAPTER 1. INTRODUCTION

big, small

(x,y)

Temporal  Document time

words

PLSA PLSM, HDLSM MER

Spatially localized patterns

Chapter 4

Motifs, Motif start times

& (Number of motifs)

Chapter 5, Appendix B

Global states, Local rules

Chapter 6 

location

optical flow

object size

Chapter 3 

Figure 1.2. A pictorial overview of this thesis. Chapter 3 deals with deriving a video representation, from visual features
to discrete word counts In Chapter 4, word counts within overlapping time windows are concatenated, ignoring all
temporal information and used with PLSA to discover activities. In chapter 5, PLSM uses the temporal document to
discover motifs and their start times. In Appendix B, the number of motifs for a dataset is derived automatically in a
non-parametric PLSM like model. In chapter 6, the motif occurrences are used to learn behaviors and global scene
states.
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called Probabilistic Latent Sequential Motifs (PLSM) (Varadarajan et al., 2010), for discovering
dominant sequential activity patterns called motifs from word×time counts or temporal documents.
The model has the following features:

– motifs not only capture the co-occurrence of words in a temporal window, but also the temporal
order in which the words occur within this window;

– parameter estimation in this model is formulated by jointly inferring motifs as well as their
starting times, allowing us to implicitly align the occurrences of the same pattern during
learning;

– a regularized EM procedure to encourage sparse distributions, is proposed. We see that when
documents are corrupted by noise, imposing the sparsity constraint on the motif occurrence
distribution improves motif recovery;

Results from exhaustive experiments involving synthetic and real-life datasets of single and multi-
camera views (Emonet et al., 2011b), quantitative evaluations on event detection and prediction
tasks and experiments on Time Delay of Arrival (TDOA) data prove the effectiveness of the model.

Chapter 6. We propose a novel model called the Mixed Event Relationship (MER)
model (Varadarajan et al., 2012), that takes as input binary event matrix, whose entries indicate
the start of a fixed set of short-term temporal activities over time, and outputs both local and global
scene level rules. The generative model has the following properties:

– it assumes that events can occur either independently or depending on other events, decided
by a binary random variable in the generative model.

– there are global scene states that regulate which of the activities can spontaneously occur;
– there exist local rules that link past activity occurrences to current ones with temporal lags.
– model parameters are efficiently inferred using a collapsed Gibbs sampling scheme.

Experiments on various datasets from the literature show that the model is able to capture tempo-
ral processes at multiple scales: global scene level and local inter-activity level.

Chapter 7. We conclude the thesis with a brief summary of the important contributions made and
outline the potential directions for future work.

Appendix. In Appendix A, the Expectation Maximization equations for PLSM inference are
explained. In Appendix B, the Hierarchical Dirichlet Latent Sequential Motifs model, a non-
parametric Bayesian technique based on Dirichlet process to decide on the number of sequential
motifs and locate them is presented. In Appendix C, Gibbs sampling steps for the MER model are
explained. In Appendix D, some basic concepts and formulations from Bayesian statistics that are
used in this thesis are presented.
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Chapter 2

Literature review

In this chapter, we present a brief overview of the main components of various activity analysis
methods. A chart of the topics covered in this chapter is presented in Figure 2.1. Due to the high
volume of research work done in this domain, we will restrict this overview to methods pertinent to
this thesis. Therefore, the main focus of discussion in the rest of this chapter will be on the following
subtopics.

– Video representation, which deals with how and with which features we represent video
content and more particularly activities;

– Learning approaches, which deals with how activities are inferred or learned from low-level
feature representations;

– Probabilistic Topic models, a class of graphical models to obtain meaningful patterns from
discrete data using co-occurrence analysis; given its importance in this thesis, we will dwell
into more details on how it is being adapted and applied for activity analysis;

– Evaluation, which deals with estimating the goodness of a proposed method for tasks under
activity analysis.

For more elaborate reviews we refer to survey papers on visual surveillance (Hu et al., 2004), track-
ing (Yilmaz et al., 2006), action recognition (Turaga et al., 2008) and trajectory based activity anal-
ysis (Morris and Trivedi, 2008b).

2.1 Video representation

Let us consider an artist’s sketch of a natural scene, a façade of a building or a person. The sketch
contains simple outlines of the drawing, but still convey sufficient information to distinguish one
from the other. In fact, there is an increasing evidence that the human visual system perceives and
interprets all that it sees by first processing low-level visual features like corners and edges (Lowe,
2000; Pasupathy and Connor, 2002) and object boundaries at the lower levels of the visual cortex.
Our objective in video representation is to extract such concise representations of the video. Since
videos usually come with enormous information, it is computationally efficient and often sufficient

17



18 CHAPTER 2. LITERATURE REVIEW
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Figure 2.1. A pictorial overview of the topics covered in this review chapter.

to work with such low-level visual features. Thanks to the wide research interest in computer vision
over many years, we now have established methods to extract these low-level features.

Video representation methods can be broadly classified into two categories: i) pixel based fea-
tures and ii) object based features. Pixel based features are obtained by processing every pixel in
the image and do not involve any object level semantics. Usually, these methods involve computa-
tion of pixel similarities, image derivatives over space and time or applications of mutliple filters.
Object centric features on the other hand, work with features that represent a semantic object like
a human or his face in the video. They typically involve segmenting individual objects in the frame
and establishing their correspondence over time. In the following sections we will briefly review the
most popular methods adopted for representing video content.

2.1.1 Background subtraction

Detecting foreground objects and segmenting them from a sequence of frames captured from a
static camera is a good clue of activities occurring in a scene. For example, by following foreground
blobs over a sequence of frames as in Figure 2.2(e–h), one may easily perceive activities like a car
moving or a person standing at a location. Typically, background subtraction methods work by first
learning the background of the scene and then classifying each pixel in the frames as either belong-
ing to the background or foreground regions. The extracted foreground blobs are then used to derive
cues such as object size, aspect ratio and object silhouettes that are used in further video processing
steps. For instance, temporal activity templates were created for action recognition by aggregating
foreground blobs obtained from background subtraction in (Bobick and Davis, 2001). Similarly, the
ratio of foreground pixels in a region is used to represent the amount of activity in a multi-camera
setting with poor video quality in (Loy et al., 2009). Background subtraction also serves as an im-
portant pre-processing step for many human detection and tracking tasks (Yao and Odobez, 2008a).
Today, we have many reliable background subtraction methods that work in real-time, but they are
still affected by illumination variations, shadows cast by moving objects, dynamic backgrounds like
waving tree branches, moving escalators, animated advertisements in the background and station-
ary foreground objects. To address these issues, many adaptive background learning methods were
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Figure 2.2. Background subtraction from a sequence of frames indicates a car moving from bottom to the right. The
white blobs in images (e–h) correspond to foreground regions of the frames in (a–d). Images in (i–l) show optical flow
vectors for the corresponding foreground regions

also proposed in the literature (Stauffer and Grimson, 1999; Yao and Odobez, 2007).

2.1.2 Optical flow and motion detection

Most actions are characterized by some specific movement or motion patterns. Therefore, most
activity analysis approaches rely heavily on some form of motion detection. A simple method to
detect motion is by computing frame differences. A more reliable approach is to compute optical
flow features, which is the apparent motion of individual pixels over successive frames. The basic
assumption underlying optical flow computation is brightness constancy. According to this, pixel
intensities are assumed to remain constant under displacement from one frame to another. One way
of getting optical flow is by block matching, where for every block in the first image the algorithm
looks for a corresponding block in the second image. Different metrics can be used to measure
similarity or difference between blocks: e.g., cross correlation, squared difference or robust error
norms. Another class of methods are called differential methods, which include popular algorithms
by Horn and Schunk (1981) and Tommasi and Kanade (1991). They differ in the regularization
terms used in the computation. While Horn and Schunk (1981) use a global smoothness on the
optical flow vectors, Tommasi and Kanade (1991) in their KLT method, obtain the weighted least
squared fit of the brightness constancy constraints implemented over multiple resolutions. Working
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on muti-resolution pyramids gives a better estimate of the flow especially when objects move faster
in the video. See Figure 2.2(i–l) for the optical flow features extracted for the frames in Figure 2.2(a–
d) using the KLT method.

Without sophisticated object detection or segmentation, optical flow methods provide a good
estimate of the regions undergoing motion as well as their direction. This has been successfully
used in many vision tasks like motion segmentation (Odobez and Bouthemy, 1995), point tracking,
image registration (Tommasi and Kanade, 1991) and action recognition from a distance by Efros
et al. (2003). Recently, they have also been used to study higher level activities. For instance
in (Hospedales et al., 2009; Kuettel et al., 2010; Wang et al., 2008b), quantized optical flow features
were used to derive scene behaviors from videos of urban traffic. In (Andrade et al., 2006; Mehran
et al., 2009; Wu et al., 2010), they propose methods to understand crowd behaviors and detect
abnormal situations by studying dynamics of optical flow features.

In practice, optical flow vectors are preprocessed before they are put to use. In some cases,
vectors with magnitude beyond a certain threshold are selected to filter out spurious flow vectors
due to acquisition noise. In cases, where background subtraction is also used, it is more efficient to
extract optical flow vectors only on foreground pixels. Though we have many efficient off-the shelf
optical flow implementations, they suffer from clutter, low frame rates and relatively large motion
in contrast to the object size resulting in poor motion estimates.

2.1.3 Spatio-temporal features

Many human activities involve only certain parts of the body. For instance, a human walking in-
volves distinct movements of the hands and legs and little or no action of the torso. Spatio-temporal
features aim to capture such informative subvolumes that provide strong cues about activity in the
the video. There are several methods adopted for this purpose in computer vision distinguished by
their sparse or dense nature, the characteristics they extract from the subpatches and so on.

One approach to obtain spatio-temporal features is to simply consider dense 3D subvolumes
and compute image statistics withing the volumes. Another approach is to use large filter banks
such as oriented Gabor filters, Gaussian kernels and their derivatives and extract regions of high
response. Extracting sparse space-time interest points instead of 3D volumes is an alternative
approach, inspired by 2D image corner detectors like (Harris and Stephens, 1988; Tommasi and
Kanade, 1991).

Various features from subvolumes were proposed for activity analysis. One way is to collect
statistics of dense space time volumes and match them with template volumes from a training set.
For example, Boiman and Irani (2007) used a database of spatio-temporal patches built from normal
behaviors and consider abnormal actions in a video as those patterns that cannot be composed
by the learned patches from the database. Ke et al. (2007) used spatio-temporal shapes from the
patches for a similar application. Kim and Grauman (2009) use flow patterns from subvolumes with
probabilistic PCA and enforce global consistency constraint using a MRF model. This was applied
to detect abnormal events like loitering, skipping payments and zig-zag movements in a metro
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station. In (Kratz and Nishino, 2009), gradients within spatio-temporal volumes are modeled using
3D Normal distributions. The spatial relationships among the spatio-temporal patterns are learned
using a coupled HMM. This is employed in an anomaly detection task in dense crowd situations. In
case of sparse interest points, a K-means clustering is used by (Niebles et al., 2008; Schuldt et al.,
2004) to build a code-book and recognize human actions like walking, running and punching.

Apart from this, there are also features based on image appearance like histogram of oriented
gradients, motion history images, dynamic textures that have also been used for activity analy-
sis. Appearance-based features usually demand a relatively better quality frame resolution, where
object appearances are distinct and clear. Due to this, they are not widely used in surveillance
applications where videos generally come with poor resolution and low frame rates.

So far, we reviewed various activity representation methods given by low-level features. Pixel
level features are interesting as they can be extracted without any a-priori knowledge about the
video content. However, in some pixel based methods, we get rid of the object identity and therefore,
a particular object and its activities cannot be separated from others when multiple objects occur
in the scene simultaneously.

2.1.4 Object trajectories

An alternative to pixel based approaches is to use object centric features from tracking. Object
tracking can be defined as the problem of estimating the location of an object in the 2D image plane
or in 3D space as it moves around the scene. This implies that objects appearing in successive
frames are linked or associated with consistent labels. Tracking based approaches are preferred for
activity analysis since they directly allow us to perform object level analysis. For example, by using
a tracking based surveillance system monitoring a parking lot, activities indicating potential theft
such as abnormal trajectories of driving or people loitering around cars could be detected. Similarly,
trajectories can help us understand how humans behave and interact in a multi-person scene. See
Figure 2.3(a) for some examples of human tracking for surveillance and behavior analysis.

Object tracking methods can be categorized based on:
– tracking task: single or multiple objects; physical setup: where and how many sensors are

used; scenario: indoor or outdoor and crowd density;
– object representation used for tracking: feature points, contours, silhouettes and bounding

box;
– formulation of the tracking problem: optical flow based methods, Kernels, Kalman filters,

Particle filters and other dynamic Bayesian networks and detection based trackers;
– features used for association: color histograms, corners, edges, optical flow and texture fea-

tures.
There is usually a tradeoff between ease in extracting the features and their viability to be tracked
well. For example, point features are easy to extract, but tracking over a long period of time is
harder due to their poor discriminative power. On the other hand, a human is tougher to detect in
a frame while being relatively easier to track continuously due the distinct identity. Tracking mul-
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Figure 2.3. Tracking and tracklet based approaches for activity analysis. (a) Tracking humans for behavior analy-
sis (Breitenstein et al., 2009b; Heili et al., 2011). (b) Trajectories from long term observations. (c) Custering trajectories
in (c) to infer scene semantics, taken from (Makris and Ellis, 2003). (d–f) Tracklets from outdoor and indoor scenes,
courtesy (Jouneau and Carincotte, 2011a,b)

tiple objects in a scene simultaneously is a challenging task. Trackers need to be initialized dynam-
ically, and there is severe object occlusion due to complex interactions. To solve this, researchers
have used several alternate strategies like using multiple cameras as in (Yao and Odobez, 2008b).
or tracking by detection methods as in (Andriluka et al., 2008; Heili et al., 2011).

After successful tracking, object specific information such as its position, velocity, acceleration
and curvature from the trajectory can be used for higher level tasks like activity detection, scene
analysis and abnormality detection (Andriluka et al., 2008; Fu et al., 2005; Hervieu et al., 2008;
Makris and Ellis, 2003; Stauffer and L.Grimson, 2000; Wang et al., 2004, 2008b). One such exam-
ple of detecting paths in a scene is shown in Figure 2.3(b,c). The object tracking research domain
has grown into a matured area with a vast literature over the past few years due to its importance
in several applications. Please see the review by Yilmaz et al. (2006) for more details. While track-
ing gives good results in uncluttered scenarios, it is sensitive to background clutter, small object
size, complex object shape appearance and motion, illumination changes, object occlusion and in-
accurate camera calibration. The problem becomes more pronounced in the case of crowded scenes
as frequent occlusions make reliable tracking almost impossible. Most importantly, while dealing
with surveillance tasks there are varieties of objects, e.g., varieties of vehicles and pedestrians with
varying size based on the view point appearing in the scene, which need to be modeled and tracked.
Also, the visual features such as velocity and curvature from the trackers depend on the distance
and the angle of the viewed action. Thus most of the feature representations derived from trajec-
tories are not translation, rotation and scale invariant at the same time. Therefore, it is tough to
deploy a generic tracker to obtain successful results in surveillance settings.
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2.1.5 Tracklets

Tracklets are intermediate representations, meaning, they have the advantages of both pixel
level features like optical flow and object level features e.g., see Figure 2.3(d–f). Object trajecto-
ries from a scene are a rich source of activity information, but suffer from several challenges. On
the other hand, pixel based features can be readily extracted but provide less object centric infor-
mation. Typically in multi-object tracking scenarios, there is severe inter-object occlusion creating
short term trajectories of objects. Tracklets can also come from feature point tracking methods like
the KLT tracker (Tommasi and Kanade, 1991). Their temporal support can vary depending upon
the specific circumstances. Using tracklet extraction methods in uncluttered scenes can result in
consistent, long tracklets approximating the object trajectory quite well. In cluttered and crowded
scenes however, tracklets can be discontinuous extending not more than a second.

Traditionally, researchers have used tracklets by merging them to create longer trajecto-
ries (Singh et al., 2008). But in some cases, tracklets themselves have been used as features for
higher level processing. For example Chan et al. (2006) propose a method that jointly performs
tracklet linking and event detection in an airport refueling setup. Jouneau and Carincotte (2011b)
analyzed tracklets through a cascade of HMM and HDP-HMM models to detect abnormal events
in a traffic junction. In (Zhou et al., 2011), tracklets are linked using an Markov random field topic
model and further used for identifying regular paths, sources and sinks from the crowded New-York
central station.

2.1.6 Vocabulary design

In practice, many activity analysis methods quantize features into discrete bins called words.
Then, their raw occurrences or accumulated counts (through histograms) called “bag-of-words” are
used in successive analysis steps. For quantization or dictionary learning, two main strategies are
used: Predefined, where the vocabulary is defined a priori or Adaptive, where the vocabulary is
learned for instance, through clustering.

Predefined vocabulary. The quantization steps are decided based on some a priori knowledge
such as frame size or flow directions. For instance, pixel position in an image can be quantized into
10 × 10 non-overlapping grids and flow directions can be quantized into the four or eight cardinal
directions. A predefined vocabulary is simple to obtain and allows an easy interpretation, but an
increase in the feature dimension increases the vocabulary size drastically. But increased vocabu-
lary can be allocated to background regions in the image that do not have any activity. Further, this
will also accommodate some feature combinations that are never observed in the data e.g., a high
velocity in a pedestrian area. A traditional way to deal with this is to use some training data and
keep only words that appear a minimum number of times.

Adaptive vocabulary. This is a data driven approach to creating vocabulary. The quantization
steps are learned from the features by usually employing a clustering approach like K-Means, Gaus-
sian Mixture Model (GMM), or Probabilistic Latent Semantic Analysis (PLSA). The advantage here
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is that the vocabulary is decided based on the distribution of the data and thus concise enough to
represent the data. However, the quantization depends on the density of the feature space: high
density regions are given many words, while low density regions are not represented well which is
typical of clustering approaches. A more important question is the choice of the vocabulary size;
while the vocabulary size should depend on the complexity of the data, it is usually hand picked
with some a priori knowledge. Furthermore, whenever the training data is updated, it has to be
followed by a fresh round of learning to update the vocabulary.

2.2 Learning Methods in activity modeling

Learning methods are used to derive patterns from the low-level features. These patterns are
then used to identify an activity or tell apart an unusual behavior from the rest. Learning meth-
ods differ based on the amount of labels required to learn the patterns. Conventionally, learning
methods are broadly classified into unsupervised and supervised methods. Based on the quality
and quantity of labels and when the labels are sought during the learning process, there are sev-
eral variants of supervised learning methods namely: weakly supervised, semi-supervised, active
learning and online learning. We will restrict our review to supervised and unsupervised methods
in the coming sections.

2.2.1 Supervised activity modeling

Supervised learning methods require that the labels for the different classes are well defined
and all the training samples are labeled before the learning phase. This is usually suitable when
the events are well defined as in cases such as detecting unattended luggages (Smith et al., 2006),
queue formations (Naturel and Odobez, 2008) and vandalism in public places (Sacchi and Regaz-
zoni, 2000). Many earlier methods for activity analysis adopted a supervised learning strategy.
Brand et al. (1997) trained a Coupled Hidden Markov Models (CHMM) for gesture classification,
where each gesture sample has a class label. The likelihoods coming from the learned CHMM were
then used to classify test gesture samples. Brand and Kettnaker (2000) and Jiao et al. (2004) used
a set of normal trajectories to train HMMs for each event class and used this to detect abnormal
trajectories. Gong and Xiang (2003) used a Multi linked Hidden Markov Model, where each state
is made to represent one of the event classes known a priori. Actions of daily living like drinking,
walking and punching (Laptev and Lindeberg, 2005; Laptev and Pérez, 2007) were recognized by
training classifiers on labeled and segmented action samples obtained from movies. Other flavors
of supervised learning such as logic or rule based learning, where domain knowledge is provided in
terms of well defined logical statements were also used for activity analysis (Shet et al., 2005; Tran
and Davis, 2008).

While supervised methods can perform quite well when provided with accurate labels and a
suitable classifier such as Boosting, SVMs, Random Forest, it is usually hard to define positive and
negative classes clearly in surveillance settings. In complex scenes, multiple activities occur simul-
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taneously. Therefore, the same clip can be associated with for instance, a normal event class and an
abnormal event class. Moreover, many supervised activity analysis and recognition methods simi-
lar to object recognition, assume that actions can be segmented (temporally) and detected (detecting
the action performer) from the rest of the scene. While tracking based approaches, by nature, sep-
arate objects and their activities from the scene, action recognition methods such as (Laptev and
Pérez, 2007) and (Patron et al., 2010), compile datasets with detailed annotations about when and
where activities occur in the video. But, labeling huge quantities of video with precision on time
and space is a laborious, time consuming and error prone task. Furthermore, in many surveillance
setups, it is difficult to come up with a precise definition of normal and abnormal classes due to the
large number of actions and their variations.

2.2.2 Unsupervised activity modeling

In contrast to supervised methods, unsupervised methods do not use labels of the data points
during the learning process. Unsupervised activity analysis have been mostly based on cluster-
ing algorithms. Clustering is the process of grouping similar data points into a number of subsets
called clusters such that samples within a cluster are close to each other with respect to a distance
measure. Clustering methods should address three main issues to obtain valid outputs: first, the
choice of distance or similarity measure; second, the choice of the clustering algorithm (e.g., itera-
tive, hierarchical, co-occurrence based and online adaptive) method; and third, the choice of model
size (number of clusters).

Both pixel level features like optical flow or object centric features like trajectories have been
treated with clustering methods to obtain higher level information about the scene. For example, Xi-
ang and Gong (2005) use statistics like centroid, width, height, filling ratio from foreground blobs
and motion features with a Gaussian Mixture Model (GMM) clustering to derive event classes. The
posterior probabilities from the GMM is then used with a multi-observation HMM to derive com-
posite behavior models for the clips. Yang et al. (2009) proposed a co-occurrence based approach
to cluster quantized optical flow features and derive motion patterns from traffic scenes. Alter-
natively, Zen and Ricci (2011) use optical flow direction and magnitude, percentage of foreground
pixels in a given region along with convex optimization procedure based on Earth mover’s distance
to discover behavior prototypes and salient activities from traffic scenes and basketball shows. Due
to the convex optimization procedure, it is not prone to local minima. In (Saleemi et al., 2010),
they argue for the benefits of unquantized optical flow features and use this with a hierarchical
clustering approach to derive motion patterns.

Trajectory clustering methods were also quite popular to derive scene semantics. Trajectories
are represented as time series, where the observations for each point in the trajectory come from
features such as velocity, curvature, blob size and color. Given that trajectories are of variable
lengths, most methods focused on using time warping methods like Dynamic Time Warping (DTW)
and Hidden Markov Model (HMM) to calculate trajectory similarities (Brand and Kettnaker, 2000;
Hervieu et al., 2008). Porikli (Porikli, 2004) modeled trajectories using an HMM, whose param-
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eters were used as features for clustering. A Hausdorff distance based trajectory clustering was
used in (Wang et al., 2004) to learn common vehicle activities. A co-occurrence based hierarchical
approach to cluster trajectories was proposed in (Stauffer and L.Grimson, 2000) to learn activity
patterns. Alternatively, in (Fu et al., 2005), they addressed the time warping problem of trajecto-
ries by re-sampling them at equal space intervals. A spectral clustering was then used to group
trajectories into dominant paths and lanes. (Zhang et al., 2006) also compare various trajectory
similarity measures for clustering and surveillance in outdoor scenes. The results of trajectory
clustering could have many applications. The clustered trajectories can be used to learn common
activity classes. When a new trajectory is presented, it can be classified into one of the learned
classes or an abnormal one if it diverges from every known class beyond an acceptable threshold.

Apart from clustering approaches, unsupervised methods also include non-parametric or model
free methods (Boiman and Irani, 2007; Breitenstein et al., 2009a). These methods usually work by
building a database of common patterns from normal observations and detecting irregularities or
novelties by looking at their similarity to the database of objects.

Labeling data being a prime concern in activity analysis, unsupervised methods have been more
popular in the recent days. However, as mentioned earlier, the choice of the clustering algorithm,
the similarity measure and the number of clusters are some important parameters that have impli-
cations in the performance of the system. Moreover, since clustering methods run typically without
any human intervention, some amount of human interpretation and analysis of the clusters is in-
volved at the post-processing stage.

2.2.3 Probabilistic Topic Models

Probabilistic Topic Models (PTM) are a class of Bayesian belief networks that deal with discrete
data. They were initially proposed for text data mining to automatically discover main themes or
topics from large corpus of text documents. The text corpus is usually given as a set of documents,
represented by simple unordered word counts or bag-of-words, ignoring the order in which they
occur. Through the analysis of word co-occurrences in documents, PTMs discover the topics and
their importance in the document composition. Models like Probabilistic Latent Semantic Analysis
(PLSA) (Hofmann, 2001), Latent Dirichlet Allocation (LDA) (Blei et al., 2003a) and, Hierarchical
Dirichlet Processes (HDP) (Teh et al., 2006) are some well known examples of PTMs.

With a domain specific design of vocabulary, they have been applied to mine patterns from a wide
range of data logs such as, natural images (Fei-Fei and Perona, 2005; Quelhas et al., 2005), action
videos (Niebles et al., 2008), cell phone logs (Farrahi and Perez, 2008) and wearable sensors (Huynh
et al., 2008). Applications of topic models in video scene analysis started as a niche area, but has
received considerable attention recently due to its success in discovering semantically meaningful
patterns from simple low-level visual features in an unsupervised fashion (Hospedales et al., 2009;
Kuettel et al., 2010; Li et al., 2008; Wang et al., 2008b). Additionally, it brings in the powerful tools
of probabilistic generative models enabling us to model complex real life phenomena. For example,
Wang et al., (Wang et al., 2008b) introduced the use of location and optical flow features along with
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Figure 2.4. Introducing time in PTMs. (a) Markov clustering topic model: uses time at a higher level of the scene,(b)
Dependent Dirichlet Processes- Hidden Markov Model - infinite mixture of infinite HMMs, (c) Time LDA model: concate-
nates features and their time of occurrence within a manually segmented clip as a word.

a hierarchical Bayesian approach to identify activities and their interactions from video of a four
road junction. Li et al., (Li et al., 2008) used PLSA on clustered low-level features to infer activities
in local regions at the first level, and global activity correlations at the next level. This was then
used to detect anomalies in a traffic scene.

In our own work (Varadarajan and Odobez, 2009), we used PLSA to extract dominant patterns
of activities from low-level features and sort the patterns in terms of dominant features in the topic.
The inferred activities were then used to segment the scene into regions of homogeneous activities.
We used a richer feature set compared to (Wang et al., 2008b) by considering also static pixels and
foreground blob size.

2.2.4 Temporal modeling with PTMs

Although PTMs are able to discover scene activities, the actual modeling of temporal information
remains an important challenge. By relying only on the analysis of unordered word co-occurrence
(due to the bag-of-words approach) within a time window, most topic models fail to represent the
sequential nature of activities, although activities are often temporally ordered. For example, in
traffic scenes, people wait at zebra crossings until all vehicles have moved away before crossing the
road, giving rise to a temporally localized and ordered set of visual features. Concatenating word
(feature) counts over a large temporal window and representing activities as “static” distributions
as is done in PLSA implementations may be concise but not complete, as it does not allow us to
distinguish it from an abnormal situation where a person crosses the road while vehicles are still
moving.

Recently, several approaches have been proposed to include sequential information in text mod-
eling. This was done either to represent single word sequences (Gruber et al., 2007; Wallach, 2006),



28 CHAPTER 2. LITERATURE REVIEW

or at a higher level, by modeling the dynamics of topic distributions over time (Blei and Lafferty,
2006b; Gohr et al., 2009; Wang et al., 2008a). For instance, (Wallach, 2006) introduced word bi-gram
statistics within a LDA-style model to represent topic-dependent Markov dependencies in word se-
quences, while in the Topic over Time method of (Wang and McCallum, 2006), topics defined as
distributions over words and time were used in a LDA model to discover topical trends over the
given period of the corpus.

Many of these temporal models have been adapted for activity analysis. For in-
stance, (Hospedales et al., 2009) introduced a Markov chain on scene level behaviors. As seen in
Figure 2.4(a), the chain relates the behaviors, but activities are still considered as a mixture of un-
ordered (activity) words. More recently, (Kuettel et al., 2010) used the HDP-HMM paradigm shown
in Figure 2.4(b) (Hierarchical Dirichlet Process, HDP, and Hidden Markov Model HMM of (Teh
et al., 2006)), to identify multiple temporal topics and scene level rules. Unfortunately, for all four
tested scenes only a single HMM model was discovered in practice, meaning that temporal ordering
was concretely modeled at the global scene level using a set of static activity distributions, similar
to what was done in (Hospedales et al., 2009). Another attempt was made in (Li et al., 2009), which
modeled topics as feature×time temporal patterns, trained from video clip documents where the
timestamps of the feature occurrences relative to the start of the clip were added to the feature.
However, in this approach, the same activity has different word representations depending on its
temporal occurrence within the clip, which prevents the learning of consistent topics from the reg-
ularly sampled video clip documents. To solve this issue of activity alignment with respect to the
clip start, in (Faruquie et al., 2009) (see Figure 2.4(c)), manually segmented clips were used so that
the start and end of each clip coincided with the traffic signal cycles present in the scene. This
method has two drawbacks: firstly, only topics synchronized with respect to the cycle start can be
discovered. Secondly, such a manual segmentation is time consuming and tedious. From this we
observe that none of the existing approaches addressed the issue of recovering activities with their
exact temporal structure without any manual segmentation of the videos.

To this end, we propose a novel topic model called Probabilistic Latent Sequential Motifs
(PLSM), that recovers the temporal order in which words occur within an activity motif, solving
the challenging case of temporal overlaps of several activities in the scene.

2.2.5 Model Selection

As mentioned in section 2.2.2, the size of the model is an important parameter to be determined
in unsupervised learning methods that are akin to clustering. Usually in real-life scenarios, we
have some rough a priori knowledge of the number of clusters. This is the case, for instance, in our
video activity analysis scenarios, where this number qualitatively depends on the scene complexity
and the features used. Still, being able to adapt the model size as a function of the actual data is
desirable. In our problem, the model selection issue translates to identifying an appropriate number
of topics or motifs. Activity analysis methods that relied on trajectory clustering have dealt with this
problem in several ways. For instance, Morris et al., in (Morris and Trivedi, 2008a), first over cluster
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trajectories followed by an agglomerative merge procedure. Minimization (maximization) of some
optimality criterion like cross validation performance, ratio between inter-cluster and intra-cluster
distances, were also used in number of works (Atev et al., 2006; Figueiredo and Jain, 2002; Hu et al.,
2006; McLachlan and Peel, 2005; Porikli, 2004). Information theoretic methods like the Bayesian
Information Criterion (BIC) (Chen and Gopalakrishnan, 1998; Jiao et al., 2004; Schwarz, 1978) in
essence seek models that find a compromise between likelihood fitting and model complexity (Xiang
and Gong, 2006). Using a Bayesian view, some methods explicitly compute models of different sizes
and store them. A prior on the model size is then used along with all the different models in the
inference stage (Richardson and Green, 1997). But this method is time consuming and involves
marginalizing over all the different models and their prior values. Additionally, the prior on the
model size should be carefully modeled. A non-informative prior could do more harm than using a
selected model. Many works on topic models evaluate a set of models using the perplexity measure
or predictive likelihood on held-out data (Blei and Lafferty, 2006a; Corduneanu and Bishop, 2001)
and keep the best performing model for future use.

Recent developments in non-parametric methods have revealed an elegant approach to model
selection, where one can have in theory an infinite number of topics, but with a finite amount of
data, select an appropriate number. The term non-parametric means that the model complexity
is never fixed and can grow with the data. Non-parametric models can automatically infer an
adequate model size from the data, without the need for an explicit model comparison step.

One example is a Dirichlet process (DP), defined formally as follows: given a probability measure
G0 over a measurable space Θ, and a positive real number α, G ∼ DP (.|G0, α) means that for any
partition {A1, A2, . . . , Ak} of Θ,

{G(A1), G(A2), . . . , G(Ak)} ∼ Dirichlet ({αG0(A1), αG0(A2), . . . , αG0(Ak)}) (2.1)

The two parameters of a DP are: a base distribution G0 and a positive real number α, called
the concentration parameter. DP (G0, α) has the same support as G0 and a draw from DP results
in a discrete distribution even if G0 is continuous. Intuitively, a DP can be thought of as an infinite
dimensional Dirichlet distribution or a distribution over distributions. The Stick breaking construc-
tion by Sethuraman (1994), the Chinese Restaurant Process and the more general Pitmann-Yor
process are some popular methods for realizing a DP.

The Hierarchical Dirichlet Processes (Teh et al., 2006) by Teh et al.is a non-parametric topic
model that makes use of Dirichlet processes at multiple levels to select the number of topics auto-
matically for a document corpus. A similar model was explored for automatically discovering static
activity topics and interactions from traffic video clips in (Wang et al., 2009) and selecting the model
order.

Inspired by these non-parametric methods for model selection, (in collaboration with Rémi
Emonet) we propose a new model called the Hierarchical Dirichlet Latent Sequential Motifs
(HDLSM) (Emonet et al., 2011a), a non-parametric Bayesian improvisation over the PLSM model.
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HDLSM incorporates a new generative model using the concepts of DP at multiple levels: a DP at
a higher level to select the number of motifs, and another DP at a lower level to select the motif
occurrences. The model parameters are inferred using a Collapsed Gibbs sampling scheme 1.

2.3 Inferring scene semantics

In this section, we briefly review some of the methods proposed in the literature to infer higher
level scene semantics such as scene cycles, causality and periodicity.

Many attempts have been made to identify global scene states 2 . Infering global scene states
and their sequence is of interest because they help us understand the presence of global traffic rules,
cyclic patterns and furthermore, provide context to detect aberrations in scene behaviors. Recently,
few methods have attempted this task. In methods similar to PLSA which do not model time
explicitly, the dominant topic or cluster at the time instant is taken to be the scene state (Faruquie
et al., 2009; Li et al., 2008; Zen and Ricci, 2011). When a DBN like model is used, this is given by
the hidden states of the Markov model (Hospedales et al., 2009; Kuettel et al., 2010).

In the case of modeling activity dependencies and interactions, most methods rely on some
form of DBNs with complex links between the hidden states to capture this information. Cou-
pled HMM (Brand et al., 1997), parallel HMM (Vogler and Metaxas, 1999) and multi-observation
HMM (Xiang and Gong, 2008) are some examples of this. In all these cases, the Markovian as-
sumption constrains the dependency of a current event to an event in the immediate past, while in
reality, it can be caused by some event, farther back in time. In dynamic topic model based meth-
ods (Hospedales et al., 2009), the Markov chain runs at a higher level between distinct global scene
behaviors, correlating only the global states and not associating the local activities. Additionally,
since the states are usually a mixture of local events, it is not clear as to which local event in the
past triggered the current one. Kuettel et al. (2010) therefore discover both local and global rules
separately. For local rule finding, they rely on an exhaustive exploration of activity combinations
and on a comparison with predefined Markov templates which is both hard to compare to and not
scalable.

Among non-Markov style methods, Wang et al. (Wang et al., 2009) infer multi-object interactions
from scenes using an improvisation of the Hierarchical Dirichlet Processes model. But their method
uses static distributions for topics and interactions and does not model the dynamics within the
interactions. In both single and muti-camera setups, researchers have proposed models to infer
causal relationships among events and regional activities by considering the observations over time
as a time series and computing measures to assess their pairwise relationships. Prabhakar et al.
(2010) consider a point process representation of the individual time series’ and infer causality by
analyzing the pairwise relationships of the process spectral representation. (Loy et al., 2009) use

1. Please see section 6.2.4 for more details on collapsed Gibbs sampling.
2. A global scene state can be defined as a rule of the scene that dictates what activities can occur for the duration of the

state. For example, in traffic controlled scenes, the traffic lights turning red or green determines which activities can occur
and when they occur in the scene as a whole (vehicles will stop in one side of the road, while stopped vehicles start to move
on the other side).
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canonical cross correlation and time delayed mutual information methods to correlate time series
that represent events in local regions of a multiple camera setup. Since these methods are free from
the first order Markovian assumption, they capture arbitrary temporal lags among individual local
events. But associating a causal dependence to every event is not necessary since there could be
independent events that are triggered by a global scene state.

Our work presented in chapter 6 addresses this issue of inferring global rules while not com-
promising on local activity dependencies. In a novel model called Mixed Event Relationship (MER)
model, we consider that activities can be either independent or dependent. Independent events are
triggered by global behavior states while dependent events can be associated to any past event, not
just limited to event in the immediate past.

2.4 Performance Evaluation

Several quantitative methods exist to objectively evaluate activity analysis methods. But there
is little agreement on a common set of tasks and performance measures. This is mainly due to
several problems such as: i) unavailability of public datasets due to privacy concerns; ii) variations
in video data; iii) variety of tasks attempted and iv) incompatibility of methods and their outputs.
Due to some recent efforts (Li et al., 2008; Wang et al., 2009), more and more video datasets of
public settings are available for activity analysis research, while simultaneously bringing in some
convergence of ideas.

Supervised methods. As it is common in supervised methods, test data contains both positive
and negative samples, and their labels are estimated using the learned model. The detection or
classification accuracy on the test set is then used to evaluate the model performance.

Unsupervised methods. Several evaluation methods are used when the learning strategy is un-
supervised. Quality of the clusters learned can be estimated objectively using measures such as ra-
tio of average intra-class distances vs average inter-class distances, cluster compactness and cluster
homogeneity (Zen and Ricci, 2011). When trajectories are clustered into different paths of the scene,
clusters can be used to classify test trajectories into one of the learned paths. Outlier trajectories
and clusters with very small support can give information about possible abnormalities. This can be
evaluated easily, as in the case of supervised learning, if we have labels for test trajectories (Morris
and Trivedi, 2008b). While using clustering methods or PTMs on low-level visual features, a similar
approach can be followed where test clips can be labeled as normal or abnormal and compared with
the ground truth. This was used to detect typical traffic violations like jay-walking, vehicles passing
out of turn and vehicles skipping red lights (Hospedales et al., 2009; Li et al., 2009; Wang et al.,
2009). In the above cases, we observe that though an unsupervised learning strategy is adopted,
it reduces to a one class classification problem where the training class is carefully selected with
predominantly normal data samples, calling for the need of labels. Inevitably, we resort to creating
a test set with some subjective interpretation of an abnormality.

In some cases, the learned clusters provide labels that have a real-world interpretation. For



32 CHAPTER 2. LITERATURE REVIEW

instance, in (Saleemi et al., 2010; Wang et al., 2009), each video clip can be labeled into one of
several interaction classes. The labels from clustering are then compared with the labels from
human annotations to evaluate the model’s effectiveness.

A similar evaluation method can be adopted when patterns from PTMs can be associated with
real world events such as vehicle taking a right turn or people crossing the road. This serves as
an unsupervised event detector, whose performance can be evaluated on a test set with objective
human labels on event occurrences. The results returned by the model are evaluated using precision
and recall measures.

Online prediction task. Here, the learned model (e.g., from PTM) can be used to infer the param-
eters on partial observations up to time t, and predict the activity at time t+ 1. The predictions can
then be objectively compared with observations at time t + 1. A well learned model is expected to
give a relatively high predictive likelihood. This evaluation method has several advantages. Firstly,
it requires no human labeling and uses the observation directly for evaluation. Secondly, it can be
extended for checking online abnormal occurrences, where a low prediction at any time could po-
tentially indicate an unusual occurrence and thirdly, this could be extended to evaluate time series
model in general.

2.5 Summary

In this chapter we surveyed the essential parts of a typical video activity analysis method
namely, video representation, activity modeling, inferring higher level scene semantics and eval-
uation. In the video representation part, we discussed pixel-based and object-based approaches
and their pros and cons in representing video content. Following this, the discussion on learning
methods for activity analysis revealed that coming up with a clear definition of all possible normal
and abnormal events is difficult. This makes a strong case for unsupervised supervised or semi-
supervised methods over supervised methods. A recent trend in unsupervised methods for activity
analysis called PTMs was discussed in detail with its accompanying aspects like model selection,
and higher level scene semantics inference. Finally, we also listed some of the well known evalua-
tion tasks adopted in this domain.

After this careful study, we opt for pixel level features: a combination of the foreground pixels,
blob size and optical flow vectors. We detail our initial experiments with the PLSA, LDA mod-
els to discover and analyze dominant activities from the videos in chapter 4. Our study revealed
that PTM’s were not properly adapted for recovering activities from videos, meaning, the tempo-
ral aspect of activities were not modeled at the individual activity level. We address this issue
by proposing the PLSM model in chapter 5. Advancing this further, the PLSM model is reformu-
lated using non-parametric Bayesian methods in Appendix B. In order to infer higher level scene
semantics like global behavior states and event associations that are not necessarily Markovian in
nature, we propose the MER model in chapter 6. Furthermore, we evaluate the proposed methods
on different tasks including abnormality detection, event detection and online prediction.



Chapter 3

Datasets and Feature Extraction

It is often said that data in hand determines the research problem. While it is arguably true, the
idea is less disputed in many computer vision and machine learning research areas. In this thesis
too, datasets play an important role and hence deserves a special chapter, especially to illustrate its
content. In this chapter, details about the datasets used in this thesis are presented in section 3.1.
In section 3.2, details on the feature extraction and representation procedures followed in this thesis
are presented.

3.1 Datasets

In this thesis, we validate the proposed methods through experiments on a variety of video and
audio datasets. All the video datasets used here are from static cameras. However, this does not
preclude the use of our models on other types of videos obtained from moving cameras. By adapting
the visual features and words (e.g., trajectories, spatio-temporal interest points) accordingly one
can still apply the proposed models. The datasets used here vary in the following aspects:

– videos of simple to complex scenes of urban traffic, having free as well as signal controlled
movements;

– videos of indoor scenes from crowded metro stations spanning single and dual views;
– Time Delay Of Arrival (TDOA) data of a traffic scene recorded using binary microphones.

We will present each dataset in the following sections.

3.1.1 Outdoor traffic scenes

MIT data. The MIT scene (Wang et al., 2009) is a two-lane and four-road junction captured from
a distance, where there are complex interactions among vehicles arriving from different directions,
and few pedestrians crossing the road (see Figure 3.1(a) for sample frames and common activities).
This has a duration of 90 minutes, recorded at 30 frames per second (fps), and a resolution of
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(a) Dominant activities from MIT data (Wang et al., 2009) along with some sample frames

(b) Dominant activities from Far-Field data (Varadarajan et al., 2010) along with some sample frames

(c) Dominant activities from Traffic Junction data (Varadarajan and Odobez, 2009) along with some sample frames

(d) Dominant activities from Junction data (Li et al., 2008) along with some sample frames

(e) Dominant activities from ETH-Zurich data (Kuettel et al., 2010) along with some sample frames

Figure 3.1. Outdoor urban scene datasets used in this thesis.

480× 756 which was down-sampled to half its size.
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Far-Field data. The Far-field scene (Varadarajan et al., 2010) depicts a three-road junction cap-
tured from a distance, where typical activities are moving vehicles (see Figure 3.1(b) for sample
frames and common activities). As the scene is not controlled by a traffic signal, activities occur at
random with large variations in their speed. The video duration is 108 minutes, recorded at 25 fps
and a 280× 360 frame resolution.

Traffic Junction. This is a video captured from a portion of busy traffic-controlled road junc-
tion (Varadarajan and Odobez, 2009). The video is 44 minutes long recorded at 25 fps sampling
rate, and has a frame size of 288 × 360. Few sample frames with common activities are shown in
Figure 3.1(c). The scene has multiple activities that include people walking on the pavement, peo-
ple waiting for vehicles to cross, people crossing on zebra crossings, vehicles moving in and out of
the scene in different directions etc. Some unusual activities such as people crossing the road at
the wrong place (out of zebra crossing), vehicle parked at the pedestrian path and vehicles stopping
ahead of the stop line are observed here.

QMUL Junction data. The QMUL Junction data, with sample frames in Figure 3.1(d) due to (Li
et al., 2008), is filmed from a four road junction scene in London. The video is 1 hour (90000 frames)
long, recorded at 25 fps and a resolution of 360 × 288. The scene is regulated by traffic lights and
dominated by four types of traffic flows. There is a continuous flow of traffic in the scene for the
entire duration of the video. Instances of jay-walking, unusual traffic flows caused by fire engine
and ambulance are observed in this dataset.

ETH Zurich data. This dataset with some sample frames and activities in Figure 3.1(e) is taken
from a junction, where activities due to pedestrians crossing the road, cars and trams moving along
the road are seen. This scene is also controlled by traffic lights. The video is 1 hour long, recorded
at 25 fps with a resolution of 900x560.

3.1.2 Metro indoor scenes

Rome metro station. The Metro station data (Figure 3.2(a)) is captured from a static camera
looking at a hallway. As colored arrows show some dominant movements: people arriving there
from several directions, buying tickets, staying in the hall, or going through turnstiles leading to
the train platform. The scene is usually crowded with a high degree of unstructured movement by
people. More importantly, due to the low view point, motion at a given image location can be due to
people moving at different depths in the scene, making the low level image measurements highly
ambiguous. The video is 120 minutes long and captured at 5 fps with a frame resolution of 576×720.

Torino metro station. We also tested our model by combining data from multiple synchronized
views of Torino station (Emonet et al., 2011b). We considered two kinds of binary views: 1) non-
overlapping views and 2) overlapping views. The first scene (Figure 3.2(b)) is made of two non-
overlapping views, recording two neighboring areas: a stairs/escalator area and a walking area. In
the bottom view of Figure 3.2(b), we can see people taking the escalator or the stairs to go up or get
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(a) Rome metro station

(b) Torino metro station: Non overlapping views

(c) Torino metro station: Overlapping views

Figure 3.2. Indoor, unstructured scenes from Rome and Torino metro stations. a)Rome metro station b) orthogonal (over-
lapping) views of a ticketing hall fused into one montage. c) Non-overlapping views showing an stairs and escalator
(below) and a passage hall (top) fused into one

down respectively. The staircase leads to the left side corner of the passage hall that is in on the
top view of Figure 3.2(b). Some common motion patterns are given using the colored arrows.

The second scene (Figure 3.2(c)) is from two overlapping views of a ticketing hall of the metro
station. The hall is connected to the two station entrances, contains two vending machines and has
a row of turnstiles used as entry or exit points to the metro network. Due to the overlapping views,
the activities that can be seen from both the cameras are marked with same colors. People enter
through the turnstiles and use the escalators that are at the rear-end of Figure 3.2(c) bottom view.
Exiting people (marked in cyan) walk out of the sides of this view and appear at the rear-end of
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25 cm

2 microphones

Vehicle Vehicle

Figure 3.3. Audio scene analysis setup. a) A snapshot of the physical: An array of two microphones is located on a
road side. b) A graphic showing the physical setup more clearly. The audio time difference of arrival (TDOA) between
these microphone is measured and provides information about the azimuths of sound sources.

Figure 3.2(c) top view. Each view is recorded at 5 fps and has 704x288 frame resolution.

3.1.3 Data from micro-phone arrays

To test the generality of the model, we used it for analyzing a scene using acoustic data. The
recording setup is described in Figure 3.3.

The recording was done using two microphones located on the side of a two-way road where the
main activities are essentially vehicles either going from left to right or from right to left, at dif-
ferent speeds. This dataset has 41 recordings of 20 seconds each. In this experiment, our activity
feature characterizes the sound source locations, and relies on the time difference of arrival (TDOA)
principle: a sound generated by a source located at an azimuth angle θ relative to the microphone
pair arrives at the microphones with a time difference of τ(θ) between them. We use dense TDOA
information extracted from the microphones to build temporal documents. At each time instant,
we compute on an 80ms temporal window the generalized cross-correlation GCC(τ) between the
two signals for different τ values corresponding to azimuth angles from almost −90◦ to 90◦. We
then normalize the measurements, and further subtract a uniform value from the result. The nor-
malization provides some invariance to car loudness, while the subtraction removes uniform noise
that might have been amplified by the normalization step. Finally, the representation is simpli-
fied by averaging the measurements on 25 regular intervals ∆τi to measure the “amount” of sound
signal coming from the direction θ(τi) and construct the word-time frequency matrix n(wτi , ta, d).
Figure 3.4 shows a sample document (a clean one) with multiple vehicles passing: five cars going
from left to right (upward ramp) and one car going from right to left (downward ramp).

Figure 3.4. TDOA sample temporal document showing multiple occurrences of cars going from left to right (upward
ramp) and one occurrence of car going from right to left (downward ramp) overlapping. The horizontal axis is time
(one time step is 80ms), the vertical axis is the azimuth angle.
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3.2 Feature extraction

As argued in chapter 2, we rely on simple pixel level visual features for video representation
due to the efficiency in extraction and their ability to represent various activities in any scene. The
video is therefore represented using foreground pixels, optical flow and in a special case the size of
foreground blobs too. The adopted topic model approaches use counts of discrete data entities called
words, which are collected in sets called documents. Therefore, to discover activity patterns using
topic models, we need to define our vocabulary (the set of visual words characterizing the scene
content), and how we build our video documents. In our case, a visual activity could be described
by three types of features: location, motion, and size features.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.5. Demonstrating quantized features. (a–d) Images from Traffic Junction scene, (e–h) Optical flow vectors of
foreground pixels quantized into four cardinal directions and static pixels. shown in five colors: red, light and dark blue,
cyan and green. (i–l) Foreground blob size is classified into two classes and displayed with color codes: yellow is small
and violet is big. We can see that vehicles and group of people being shown under the “big” category.

Location: In many surveillance scenes, most of the activities are characteristic of the place where
they occur. Thus, location has to be taken into account when building our vocabulary, and we divide
the image into cells of size C ×C pixels. Therefore, for a video of dimension 280× 360, with C = 10,
we obtain a set of 28×36 cells. The cell size has an impact on the resolution of the learned patterns.
Small cells result in large vocabularies, but the learned patterns will have a fine spatial resolution,
while large cells shrink the vocabulary size significantly and provide a coarse estimate of the action
locations. We experimented with different cell sizes for location quantization e.g., 10× 10 and 4× 4.
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Motion: To identify the relevant parts of the scene, we first perform background subtraction us-
ing the algorithm proposed in (Yao and Odobez, 2007) and detect the foreground pixels. See Fig-
ure 3.5(a–d) for some sample frames from Traffic Junction dataset. Their corresponding foreground
regions are shown in Figure 2.2(a–d). For each of them, we also compute its optical flow using the
Lucas-Kanade algorithm. Using a small threshold (= 0.1) on the resultant optical flow vector mag-
nitude, foreground pixels are categorized into static pixels (static label) and moving pixels. Moving
pixels are further differentiated by quantizing their motion direction into four or eight cardinal
direction labels. Thus, in total, we have 5 or 9 possible motion words at each location giving a vo-
cabulary of 28×36×5 = 5040 words or 28×36×9 = 9072 words respectively for a video of dimensions
280 × 360. Quantized optical flow with 5 bins is shown with color codes in Figure 3.5(e–h). As in
quantizing location, the number of bins used for optical flow quantization increases or decreases
the vocabulary size. But a fine quantization gives a precise interpretation of the results in terms of
the direction of movement.

Size: To further characterize foreground objects, we can associate with each foreground pixel the
size of the connected component it belongs to. The foreground blobs can be roughly classified into
two categories based on foreground blob size. The first one consists of small blobs corresponding
mainly to pedestrians and the second one consists of large blobs corresponding to vehicles or group
of pedestrians. This categorization can be obtained by applying a simple K-Means clustering on the
extracted blob sizes with K = 2, and use the cluster number as a size word describing roughly the
size of objects in the scene. Please see Figure 3.5(i–l) for the color coded size words. We see that
pedestrians (yellow blobs) contribute to small size and vehicles and pedestrian groups (violet blobs)
contribute to the bigger size.

Size features are interesting when, a) the scene has objects of different sizes so that each object
can be analyzed based on their size, b) when views are not crowded, as crowded scene result in
connected blobs and do not meet our need, and c) when the scene is of uniform depth, i.e., object
size remains roughly constant irrespective of its position in the scene. In our initial experiments in
chapter 4, we used blob size features too since, in the Traffic Junction dataset (see Figure 3.1(c)),
there are objects of different sizes with their sizes roughly preserved through out the scene. This is
not applicable in cases such as Far-Field (Figure 3.1(b)) or MIT data (Figure 3.1(a)) where mostly
only vehicles appear and we need to calibrate object sizes based on their distance from the camera.

3.3 Summary

In this chapter we presented the various datasets used in this thesis. The datasets coming from
state of the art papers and projects like CARETAKER and VANAHEIM have a good variety in
terms of content. The feature and vocabulary design process illustrates how the video content is
simplified for further processing. More specific details about the vocabulary and documents will be
provided while we discuss the experimental results in the coming chapters.



40 CHAPTER 3. DATASETS AND FEATURES



Chapter 4

Activity Analysis Using PLSA

After deciding to use probabilistic topic models (PTMs) as our data mining tool, we started
with the Probabilistic Latent Semantic Analysis (PLSA) by (Hofmann, 2001). In the rest of this
chapter, we will quickly review the basic ideas behind PLSA and LDA and see how they can be
used in our application of mining activities from videos. We will then present some analysis on the
topics extracted followed by their use on two applications: activity based scene segmentation and
abnormal event detection.

4.1 Introducing PLSA

PLSA and LDA are generative models, meaning, they are based on probabilistic sampling rules
that describe how words in a document are generated. To get an intuition of the generative process
of PLSA, let us consider that a columnist for Wall Street Journal decides to write an article on the
Global Economic Crisis. He would first plan his article based on some sub-topics that could possibly
be Economy, Stocks and Banking for example. Then, he might decide the importance to be given
for each of the sub-topics possibly reflected by the number of words or paragraphs for the subtopics.
For example he might decide to write about each of the above topics in about {5, 5, 7} paragraphs
of the same size respectively. Then, for each topic, he would choose the most appropriate words to
convey his ideas on the subject. Now, let us consider for a moment that a computer, ignorant of
language grammar and word order is assigned a job to generate a number of such articles using an
algorithm. Then if each word is indicated by the variable w, each topic by z and document by d,
perhaps it might have the method given in Algorithm 1 in its RAM for drawing a “bag of Nd words”
for each document d,

Graphical Model. The procedure described in Algorithm 1 is called a generative process and its
pictorial version in Figure 4.1(a) is called the PLSA graphical model. In this notation, the circular
nodes represent random variables. Shaded circles indicate observed variables and transparent
circles represent latent variables.

41
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Algorithm 1 The PLSA generative model
for d = 1 to D; do

for for j = 1 to Nd; do
draw a topic z ∼ p(z|d)
draw a word w ∼ p(w|z)

end for
end for

w

Nd

D

Video clips

Activities

Features

(a) PLSA

β

w

Nd

D

Nz

(b) LDA

Figure 4.1. The PLSA and LDA topic models. See text for the explanation.

In the case of Figure 4.1(a), w and d are observed and z is called a latent variable which needs
to be estimated. The directed edges indicate conditional dependencies. Here, we have w depending
on z and the presence of z introduces a conditional independence: a word w and document d are
conditionally independent given the topic z, indicated as w ⊥⊥ d|z. Intuitively, this means that words
depend only on the topic and not on the document for which it is generated. The plates indicate
repetition of the sampling process, where the variable in the bottom right of the plate indicates the
number of samples. In Figure 4.1(a), the plate surrounding w and z indicates that z is sampled Nd
times, each time followed by a w sample. In other words, for each document d, there are Nd (z, w)

pairs.

Distributions. The importance given to each topic is given by the probability distribution p(z|d).
In the example taken, this would simply be the proportion of the three topics in the article given
by {5/17, 5/17, 7/17}. Similarly, the number of times each word occurs under a topic gives the
distribution p(w|z). This would mean that words like fiscal deficit, banks and GDP will have high
probability under the topic “Economy” and, words like profit booking, NASDAQ, LSE and banks
may occur more frequently under the “Stocks” topic. Note that the term banks occurs in more
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Figure 4.2. A 2 dimensional simplex defined in a three dimensional word space. Topics and documents lie in the simplex.
Documents can be expressed as a convex combination of topics. By Hofmann (2001); Steyvers and Griffiths (2007)

than one topic. 1 The conditional independence assumption in the model can be used to split the
joint distribution of the model into smaller factors. More precisely, the joint distribution of all the
variable triplets (w, z, d) can be written as

P (w, z, d) = P (d)P (w|z)P (z|d) (4.1)

Furthermore, the probability of an observation pair (w, d) can be obtained by marginalizing out
the topic variable in the joint distribution:

P (w, d) =

Nz∑
z=1

P (w, z, d) = P (d)

Nz∑
z=1

P (z|d)P (w|z) (4.2)

A closer look at equation (4.2) reveals that the model decomposes the conditional probabilities of
words in a document p(w|d) as a convex combination of the topic specific word distributions p(w|z),
where the weights are given by the topic distribution p(z|d) in a document.

4.1.1 Geometric Interpretation and relation to other models

Geometrical Interpretation. The vocabulary of Nw words defines an Nw dimensional space. All
multinomial distributions over this vocabulary lie on the Nw − 1 dimensional simplex, illustrated
in Figure 4.2, where every point sums to 1. The topics as well as the documents lie in the same
Nw − 1 dimensional simplex. However, the topic distribution p(z|d) lies in the Nz − 1 dimensional
simplex. By representing a document as a mixture of topics, we seek a lower dimensional (Nz �
Nw), decomposition of the documents.

Matrix Factorization. Due to the lower dimensional view of documents that PLSA offers, as

1. Note that the word banks can also occur in documents that talk about rivers and water bodies, which is an example of
polysemy.
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Figure 4.3. Comparing PLSA and LSA as matrix factorization methods. By Hofmann (2001); Steyvers and Griffiths (2007)

pointed out by (Hofmann, 2001), it can be viewed as a dimensionality reduction method too. This
compels us to compare PLSA with other matrix factorization and dimensionality reduction methods
like Latent Semantic Analysis (LSA) and Non-negative Matric Factorization (NMF). In LSA, a
document-word matrix is factorized into two orthogonal matrices: a matrix of document vectors
and a matrix of word vectors along with a diagonal matrix of singular values. Figure 4.3 illustrates
this decomposition. In case of PLSA, the document-word matrix factorizes into two matrices: a
topic distribution matrix p(w|z) and a document distribution matrix p(z|d). The diagonal matrix
that we see in LSA can be assumed to be absorbed by either of the matrices. Though conceptually
similar, LSA and PLSA differ in many ways. Firstly, the two matrices that PLSA produces contain
independent probability distributions that sum to one, whereas in LSA the factorized matrices have
orthonormal components, taking any value from the real line R, that are not necessarily positive
or summing to one. Having no such constraint on the values creates difficulty in inferring the
importance of a word in a topic and the contributions of a topic in a document. NMF (Lee and
Seung, 2001) addresses this issue by constraining the vectors to have non-negative values but they
still need not sum to one 2.

PLSA, by providing distributions that sum to one, allows us to interpret the importance of words
and topics. Furthermore, this sense of proportion and non-exclusiveness of words (i.e., words can
participate in multiple topics), helps us to disambiguate multiple meanings of the same word (pol-
ysemous) and multiple words meaning the same thing (synonymous) using their weights and the
context.

Latent Dirichlet Allocation. The generative model of PLSA is not complete, i.e., it does not
say how the topic weights P (z|d) are generated, making it difficult to generalize for unseen docu-
ments. Blei et al. (2003a) solved this by introducing a Dirichlet prior distribution Dir(α) on the topic
weights, θd = P (z|d) and named it Latent Dirichlet Allocation (see Figure 4.1(b)). The Dirichlet dis-

2. There are also works that have compared different matrix factorization methods Gaussier and Goutte (2005); Girolami
and Kabán (2003).
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tribution being the conjugate prior for multinomial distributions, makes it an appropriate choice for
the prior, simplifying the mathematical complexity in the inference stage. A K dimensional random
variable θ is said to follow a Dirichlet distribution parameterized by ~α if:

P (θ|~α) =
Γ(
∑K
i=1 αi)∏K

i=1 Γ(αi)

K∏
i=1

θαi−1
i (4.3)

where Γ denotes the Gamma distribution and, 0 ≤ θi ≤ 1,∀i and
∑
i θi = 1. Note that ~α

‖~α‖1 rep-
resents the expected values of the parameter θ (where ‖~α‖1 is the L1 norm of ~α). When Dirichlet
distribution is used as a prior over the parameters θ of a multinomial distribution, ‖~α‖ denotes
the strength of the prior, and can be viewed as a count of virtual observations distributed accord-
ing to ~α

‖~α‖1 . Usually, a non informative symmetric Dirichlet prior {α1 = . . . = αk} is used. When
the strength of the prior is increased, the effect is a smoothed document distribution. Similar to
the {θ, α} pairs, Griffiths and Steyvers (2002a,b, 2004) suggested a Dirichlet prior Dir(β) over the
multinomial topic distributions ϕz = P (w|z) and called it the smoothed LDA.

PTMs vs Clustering. The ability of PTMs in grouping co-occurring words encourages us to com-
pare and contrast them with the conventional clustering methods. PTMs and clustering methods
differ mainly on the following aspects: i) clustering methods group data using a distance measure
defined on the feature space while grouping by PTMs are induced by feature co-occurrences; ii)
choice of the distance measure plays a critical role in determining the shape, size and the quality of
clusters, while in PTMs the temporal extent of the document and vocabulary are the key factors; iii)
clustering methods can deal with discrete and continuous data, while conventional PTMs such as
PLSA and LDA deal with recurring counts of discrete entities. Therefore, by selecting PTMs over
clustering methods for activity analysis, we accept a simple but valid assumption that activities
leave a trail of co-occurring observations. A more complicated choice on the distance metric is thus
avoided.

4.1.2 PLSA Inference

The parameters of PLSA i.e., the distributions {p(w|z), p(z|d)} are estimated iteratively using
the maximum likelihood principle. More precisely, given a set of training documents D, the log-
likelihood of the model parameters Θ can be expressed by:

L(Θ|D) =
∑
d∈D

∑
w

n(w, d) log (P (w|d)) (4.4)

where, n(w, d) is the word count in documents and P (w|d) is given by the generative model as
in equation (4.2). The optimization is conducted using the Expectation-Maximization (EM) algo-
rithm (Hofmann, 2001). The EM procedure starts by initializing the parameters using random
values. Then in the Expectation step of equation (4.5) the posterior distribution of the latent vari-
able is calculated as:
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P (z|w, d) =
P (w, z, d)∑Nz

z=1 p(w, z, d)
=

P (w|z)P (z|d)∑Nz

z′=1 P (w|z′)P (z′|d)
(4.5)

In the Maximization step, by maximizing the Expected likelihood function of PLSA the model pa-
rameters are estimated as:

P (w|z) ∝
D∑
d=1

n(w, d)P (z|w, d) (4.6)

P (z|d) ∝
Nw∑
w=1

n(w, d)P (z|w, d) (4.7)

At test time, we are interested in estimating the weights P (z|d) of the topics for a document
d. This is achieved by running the EM algorithm keeping the learned model P (w|z) fixed and
maximizing the log likelihood of the words in the document:

Lud(P (z|d)) =
∑
w

n(d,w) log

(∑
z

P (z|d)P (w|z)

)
(4.8)

The above algorithm for PLSA derives point estimates of the parameters directly and is said
to suffer from problems involving local maxima of the likelihood function. In the case of LDA,
there are several exact and approximate inference methods to estimate the parameters. Mean
field approximation (Buntine, 2002), Variational inference (Blei et al., 2003a), Expectation propa-
gation (Minka and Lafferty, 2002) and Markov Chain Monte Carlo (MCMC) methods (Griffiths and
Steyvers, 2004) are some of them.

To discover activities from videos, we experimented with both PLSA and LDA models. PLSA
parameters were learned using equations (4.5–4.7) and the LDA parameters were learned using
the C implementation provided at (Blei et al., 2003b). Since we have no a priori knowledge about
which topics are more probable in a document or which words are more probable in a topic, we
chose symmetric (non-informative) hyper priors for LDA, i.e., we set α = 0.1 and β = 0.1. With this
setting of LDA, we obtained topics that were qualitatively similar to the ones obtained from PLSA.
To avoid a cumbersome process of selecting appropriate priors for the LDA model and to save on
computational time, we chose the simpler PLSA implementation in all our further analysis in this
chapter.

4.2 Activity patterns and scene segmentation

To illustrate the use of the PLSA model on activity analysis, we consider three datasets: The
Traffic Junction video, Far-field video and MIT video described in section 3.1 and reminded here in
Figures 4.4(a–c). To apply PLSA, we need to define our semantic space; that is, the vocabulary set
and the input documents.

Vocabulary. Our vocabulary could be defined as a Cartesian product of the location, motion, and
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(a) Traffic Junction (b) Far field (c) MIT data

Figure 4.4. Datasets used for activity analysis using PLSA

size word spaces. Consider for an image size of 280x360, with location quantized into 10x10 bins,
flow features quantized into 5 bins and with 2 size words, we would get 28 × 36 × 5 × 2 = 10080

words. However, while knowing the joint feature (motion, size) for each location might be desirable
(for instance to distinguish between cars and people on zebra crossings), this results in a high
dimensional vocabulary. As PLSA models word co-occurrences across documents, we expect that
topics will capture separately people activity or car activity at a given location since they don’t
occur simultaneously. In other words, given an activity and location, we expect the motion and size
to be independent, and thus we can simply concatenate them and define the set of words for a cell
c, denoted by Vc, to be the concatenation of the motion and size words, 3 leading to a codebook of
28×36× (5 + 2) = 7056 words instead of 10080 words. Thus, a word can be denoted by wc,m, where c
is the location and m are the motion and size characteristic labels. In this chapter, we show results
with both 10x10 location grids as well as 4x4 location grids. Similarly, we used 5 and 9 bins to
quantize optical flow words.

Documents. Documents are represented as a simple bag-of-words. That is, the video is first di-
vided into short term clips. Then the word counts n(w, d) for the document d are obtained by count-
ing the number of occurrences of a word w in the document. The documents are usually created
from overlapping clips. The length of the clip considered for creating documents is an important
parameter in PLSA like models. Shorter clips (usually of 1 sec duration) result in spatially localized
activities, while longer clips give patterns spanning large spatial extent. For our experiments in
this chapter, documents were created using overlapping clips of 5 seconds duration.

We present some topics that were discovered by the approach and show how it can be used to
identify activities related to different object sizes or to segment the scene into different semantic
regions.

4.2.1 Activity patterns

An activity like a vehicle moving on the road can be described by a set of motion and size features
co-occurring over a sequence of locations. Similarly, a pedestrian standing at the foot path can

3. This means that when constructing documents, a pixel will provide two words for the cell it belongs to: a motion word
and a size word.
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(a) m = right (b) m = left (c) m = up (d) m = down (e) m = static (f) m = small (g) m = big

Figure 4.5. Location activations by word type in a PLSA topic. Given a topic that represents vehicle moving towards
top right, the images show the locations where each word type m = right,left,up,down,small,big is active within a PLSA
topic.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.6. Examples of common activity patterns. Vocabulary created from 10x10 location qunatization, 5 motion bins
and 2 size words. (a–b) vehicles passing, (c) pedestrians crossing the road, (d–f) topics involving small objects - pedes-
trians walking on the foot path, (g–h) the first two topics involving static pixels, (g) partially occluded vehicle waiting
for signal (top right) with pedestrians waiting for signal at the bottom-right, (h) pedestrians waiting at the footpath for
crossing the road.

be described by a co-occurring set of static pixels and size features. Thus, each activity pattern
or a topic is a strongly co-occurring set of visual features represented by P (w|z). To identify the
set of locations which are mainly active for a given topic, one way is to look at locations that are
active (non-zero value) for each motion and size word given a topic. A example of this for a topic
representing “vehicles moving towards top right” is given in Figure 4.5. For this topic, we see that
word types: m = “right” and m = “big size” are active and that the rest of them have insignificant
activations.

Another compact way is to marginalize the word distribution with respect to the words that
occur at the same location. That is, we can plot the map defined for each cell c by: P (activity ∈
c|z) =

∑
w∈Vc

P (w|z). This leads to the concatenation of the location activations from all the word
types. For example, Figure 4.6(a) is a concatenation of the Figs. 4.5(a–g). Figure 4.6(a)-(f) show the
activity locations of selected topics highlighted in red.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7. PLSA activity patterns from MIT data, Vocabulary created from 4x4 location qunatization and 9 motion bins.
The topics in (a–e) represent vehicles moving in different directions. Topics in (f–g) represent activities if vehicles waiting
for the signal. Activity generated by trees moving due to wind is seen in (h).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.8. PLSA activity patterns from Far-field data. Vocabulary created from 4x4 location qunatization and 9 motion
bins. Patterns that form complete object trajectories.(a–d) shows a vehicle moving from bottom right, taking a turn
and moving towards top right. (e–h) vehicles moving in the exact opposite direction of (a–d).

Understanding topics by features. We can identify which of the extracted topics are more re-
lated to the activities of objects of small or large sizes by ranking the aspect according to the size
probability obtained by marginalizing over the word ’small size’ of every cell, i.e., by computing
P (size = small|z) =

∑
wc,m/m=small P (w|z). For instance, Figure 4.6(d,e,f) show the top ranking top-

ics from 10 topics involving small objects that correspond to pedestrians walking on the side-walk.
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A similar analysis can be done with static objects, and corresponding topics indicate pedestrians
waiting to cross the road and cars waiting at the traffic light (Figure 4.6(g,h)). Interestingly, note
that the model was able to discover that during several parts of the junction traffic cycle, both
pedestrians (bottom right) and vehicles (top right) needed to wait simultaneously.

We could obtain topics of similar semantic content from other datasets too. These topics are
generated by using 4x4 grids for location words and 9 bins for motion, a finer quantization com-
pared to the images in Figure 4.7. In Figure 4.7–4.8, topics obtained from MIT and Far-Field data
respectively are shown. In the case of MIT data, Figure 4.7(a–e) show vehicles moving in different
directions. For example, in Figure 4.7(a–b) vehicles moving top to bottom of the scene and vice-
versa. In Figure 4.7(c), vehicles come from the left side and taking a left turn, move towards the
top of the scene. In Figure 4.7(d), vehicles move from the top to the right. Two static topics corre-
sponding to vehicles waiting for the signal are shown in Figure 4.7(f–g) and interestingly, some tree
movements are captured in Figure 4.7(h).

In Far-Field data (Figure 4.8), since there are not many static events, we obtain mostly topics
that correspond to moving vehicles. The example in Figure 4.8 shows various topics that span the
entire trajectory of a vehicle when it appears from either at the bottom right Figure 4.8(a–d) or
from the top right in Figure 4.8(e–h).

4.2.2 Scene segmentation

Another way to investigate the learned topic is to segment the scene according to the extracted
activities. Knowledge of the semantic scene regions could then provide context to the actions and
thus help in understanding the intent of actions in a scene location. For example, in a typical traffic
scene as in Figure 4.4, activities like pedestrians walking along the pavement or waiting at the
zebra crossings are seen on the pedestrian side while vehicular movements are (in principle) only
seen on the roads. An activity based segmentation achieves this by grouping parts of the scene into
segments such that each segment corresponds to locations where similar semantic activities take
place.

Approach. Scene segmentation works on a representation of each pixel in the scene. Li et al. (2008)
represents each pixel using quantized spatio-temporal words that are observed at this location
in the training data. We propose an alternative method to characterize a location by the set of
topics or activities that can occur at this pixel. This should lead to a less noisy representation, and
implicitly incorporate temporal information as the activities model observations which co-occur,
unlike raw feature distributions (Li et al., 2008). Activities at the cell location c are represented by
the topic distribution at this cell, denoted P (z|c) and defined as: P (z|c) = P (z|Vc) ∝ P (Vc|z)P (z) =∑
w∈Vc

P (w|z)P (z). In practice, we expect these distributions to smoothly evolve when the location
c moves along semantically similar regions (e.g., while moving along the same side of the road), and
change abruptly when the location moves across some semantic border (e.g., moving from the road
zone to the sidewalk region). Thus, clusters mainly correspond to smooth manifolds which can not
be well represented using metric based clustering approaches like K-means. We used a spectral
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clustering algorithm by Ng et al. (2001), which has been shown to better capture such manifolds. It
takes an affinity matrix A as input, which is given by:

Aci,cj = exp(
−D2

Bhat(P (z|ci), P (z|cj))
2σ2

) (4.9)

where DBhat denotes the Bhattacharyya distance used to compute the pairwise similarity between
the two activity distributions at cell ci and cj , and is defined by:

DBhat(P,Q) =

√
1−

∑
x∈X

√
P (x).Q(x). (4.10)

The scale σ is taken to be the value that gives minimum cluster distortion (Ng et al., 2001).

Results. Figure 4.9 illustrates the results from Traffic Junction data obtained by applying the

(a) K = 2 (b) K = 3 (c) K = 4 (d) K = 9

(e) K = 2 (f) K = 3 (g) K = 4 (h) K = 9

Figure 4.9. Semantic Scene Segmentation obtained from 10 PLSA Topics, with the segments on top and the scene
below with the clusters superimposed. (a,e) 2 clusters (b,f) 3 clusters (c,g) 4 clusters, (d,h) 9 clusters

spectral clustering algorithm with 2, 3, 4 and 9 clusters respectively, while the number of topics
extracted with PLSA was 10. As it can be seen, the results reveal that the number of clusters
correspond to different levels of details in interpreting the semantic activities in the scene. When
K = 2, the algorithm segments the scene into regions of with activity and no activity respectively 4.
When K = 3, the activity region is further divided into the pedestrian and vehicle regions. When
K = 4, the road is split into the different sides of the road. When K = 9, further semantic regions
like the region corresponding to zebra crossing, where both car and pedestrian motion can occur,
or the different regions from where people come to cross the road (and wait) appear. To further
demonstrate the methods applicability, we also show scene segments obtained from MIT and Far-
field data in Figure 4.10. Figure 4.10 has 2, 3 and 9 segments obtained from 20 topics of MIT

4. Note that the segmentation algorithm does not impose any geometrical or location constraint to obtain connected
segments.
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(a) MIT, K = 2 (b) MIT, K = 3 (c) MIT, K = 9 (d) FF, K = 2 (e) FF, K = 8

(f) MIT, K = 2 (g) MIT, K = 3 (h) MIT, K = 9 (i) FF, K = 2 (j) FF, K = 8

Figure 4.10. Semantic Scene Segmentation obtained from 10 PLSA Topics on MIT and Far-field data. with the segments
and their superimposition on the scene. (a,b,c,f,g,h) show segments from MIT data: (a,f) K = 2, (b,g) K = 3 and (c,h)
K = 9. (d,e,i,j) show from Far-field data: (d,i) K = 2 and (e,j) K = 8.

followed by 2 and 8 segments from 20 topics of Far-Field data. When K = 2, one segment represents
regions of activity and the other represents the background region in both MIT and Far-field data.
When K is increased in the MIT case, finer regions corresponding to different motion directions
emerge. Interestingly, in Figure 4.10(b,g,c,h), the segment in yellow corresponding to moving trees
emerges consistently. In the Far-field case, as K is increased, we see that the lanes of the road
that correspond to different motion directions get separated. Here again in Figure 4.10(d,i,e,j), the
regions in cyan and yellow are caused by trees moving in the wind. Thus, we see that there is not
a single valid value for K, but that each value leads to a scene segmentation with clear semantic
interpretation.

4.3 Abnormality detection

There are several methods proposed in the literature that capture abnormal events. In this
section, we present those that are pertaining to the topic model that we are using, and evaluate
their performance on the Traffic Junction dataset.

4.3.1 Abnormality measures

Modeling using a generative approach gives scope for a variety of measures to identify unusual
patterns in the data. But little study has been done in comparing the different measures on the
same task. Here, we present various possible measures that can be used based on the approach
we consider, and evaluate the measures within the proposed framework to understand their merits
and demerits.

Fitting measures. The estimation of the topic distribution P (z|d) of a given clip is obtained by
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optimizing the log-likelihood function of equation (4.8). Thus, one natural way to consider if a clip
is normal or abnormal is to use this log-likelihood measure Lud(P (z|d)) at the end of the fitting
phase. If the activities happening within the clip correspond to those observed in the training
dataset, then the fitting will be able to find a suitable topic distribution explaining the bag-of-word
representation of the clip. Thus, normal clips will generally provide high log-likelihood. On the
other hand, if an abnormal activity is going on, none of the learned topics will be able to explain
the observed words of that activity, resulting in a low likelihood fit. The likelihood expression in
equation (4.8) suffers from a severe drawback: it is not normalized and thus, whatever the quality of
the fit, the measure is highly correlated with the document size. To solve this issue, we can exploit
the average log-likelihood of each word, by dividing n(w, d) by the number of words nd =

∑
w n(d,w)

in equation (4.8), and get the normalized log-likelihood measure:

Lnld (P (z|d)) =
∑
w

n(d,w)

nd
log
∑
z

P (z|d)P (w|z) =
∑
w

Po(w|d) logPc(w|d) (4.11)

where Po(w|d) = n(d,w)
nd

is called the objective distribution as it is measured directly from the
test document, and Pc(w|d) =

∑
z P (z|d)P (w|z) is called the constrained distribution as it lies in the

constrained simplex spanned by the topic distribution P (w|z) (cf Figure 4.2).

Distribution reconstruction errors. The goal of optimizing the likelihood function is to fit the
constrained distribution to the objective distribution. Thus, one possibility to evaluate the quality
of the fitting is to measure the discrepancy between the two distributions. For instance, we could
use the Kullback-Leibler divergence to estimate this discrepancy which leads to:

LKLd (P (z|d)) = KL[Po(w|d)|Pc(w|d)] (4.12)

= −
∑
w

Po(w|d) logPc(w|d) +
∑
w

Po(w|d) logPo(w|d)

= −Lnld (P (z|d))−H(Po(w|d))

where H(Po(w|d)) is the entropy of document d, which is a constant specific to each document.
From this expression we note that the topic distribution P (z|d) which maximizes the likelihood
expression in equation (4.8) is actually the one that minimizes the KL divergence LKL. We can thus
interpret the fitting as a document reconstruction process where the error in reconstruction is given
by equation (4.12). This interpretation permits us to use a variety of measures capable of estimating
the discrepancy between the distributions. The Bhattacharyya distance given by equation (4.10)
is one such valid candidate to compare Po and Pc. Therefore we define the Bhattacharyya error
measure as,

LBhd (P (z|d)) = DBhat (Po(w|d), Pc(w|d)) (4.13)



54 CHAPTER 4. ACTIVITY ANALYSIS USING PLSA

4.3.2 Results and discussion

We first trained a model using 2210 clips containing normal clips. For testing the different
measures on the Traffic Juction video, we labeled 320 clips different from the training set containing
140 normal activities, and 180 video clips with abnormal events, where abnormality is defined as:
people crossing the road at the wrong place (far away from zebra crossing), vehicle parked at the
pedestrian path, or vehicles stopping ahead of the stop line while the stop sign is red. In the
following experiments, unless stated otherwise, 20 topics were used to model the scene activities.

Qualitative illustration. The abnormality measures that we have defined allowed us to identify
multiple instances of several abnormal events occurring both in isolation or simultaneously with
other normal activities in the image. Figure 4.11 shows the first video clips that were retrieved as
abnormal using the normalized log-likelihood Lnl 5 measure. The object causing the abnormality is
marked with a red box for identification. Figure 4.11(a,d) shows the event where a car is parked
in the pedestrian foot path. In (d), additionally a pedestrian crosses the road in the wrong place.
In Figure 4.11(b,e) a car stops ahead of the stop line, and this stop is not due to stopped cars in
front of it. This is a rare occurrence that happened because the car could not cross the road before
the red light went on and hence had to stop to let the vehicles on the other directions pass. In
Figure 4.11(c,f) pedestrians were crossing the road away from the foot path.

Quantitative evaluation. Precision-Recall (PR) curves were considered to quantitatively assess
the performance of the approach and compare the abnormality measures. Figure 4.12(a) shows
the PR curves for the Likelihood, Normalized Likelihood, KL-Divergence and Bhattacharyya dis-
tance based abnormality measures. We first note that unnormalized likelihood measure does not
achieve a good performance. The reconstruction error measure obtained from KL-divergence and
Bhattacharya distance shows better performance, but still not as good as the normalized likelihood
measure, which achieves the best performance with good detection rates (with a precision of almost
1 for a recall of 50%).

Document size normalization. An analysis of the detection errors made using the likelihood
measure, the KL-divergence, and the Bhattacharyya distance, reveal that they are affected by
document size or entropy. This is illustrated in Figure 4.12(b), where we plot the Bhattacharya
distance error measure as a function of the document size. We can observe from Figure 4.12(b)
that smaller documents (with low entropy) tend to have higher reconstruction error, while larger
documents (with high entropy) tend to have lower error. The normalized log-likelihood measure
directly alleviates this effect by using the average word log-likelihood as abnormality measure. The
KL-divergence measure can be normalized by removing the document specific entropy term. When
this is done, we are left with the cross entropy term H(Po|Pc) given by:

H(Po|Pc) =
∑
w

Po(w|d) logPc(w|d) (4.14)

5. The Adaptive Bhattacharyya measure that we will describe below produced the same results.
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(a) (b) (c)

(d) (e) (f)

Figure 4.11. The top abnormal events retrieved using the the Adaptive Bhattacharyya measure, equation (4.15). Note
that, for illustration purposes, several abnormal documents corresponding to the same already displayed events have
been omitted. (a,d) shows the event where a car is parked in the pedestrian foot path. (d) pedestrian crossing the
road in the wrong place, (b,e) a car stopping ahead of the stop line. (c,f) pedestrian crossing the road away from the
foot path.

which is simply the normalized log-likelihood measure.

In the case of Bhattacharyya distance, such a direct normalization is not possible. Therefore
we treat this bias by performing an adaptive normalization based on document size which can be
learned from the training data. For this, we construct a histogram of document size in the training
set, and calculate for each bin the expected error measure for documents belonging to that bin
(please see the red curve in Figure 4.12(b)). Then, for a test document, its reconstruction error
using Bhattacharyya distance is normalized with the expected error according to its size before
being compared with the abnormality threshold. In other words, we consider the measure,

LBh−add (P (z|d)) = LBhd (P (z|d))/LBhd (nd) (4.15)

as our normalized or Adaptive Bhattacharyya abnormality measure. Figure 4.12(c) shows the re-
sults obtained after removal of the document size bias. As it can be seen, this leads to a considerable
improvement, and the Adaptive Bhattacharyya measure performs now as good as the normalized
log-likelihood measure, although with a different behavior. While the latter one performs better
at medium recall, the Adaptive-Bhattacharyya measure succeeds to keep a precision significantly
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Figure 4.12. (a) Precision-Recall(PR) curves for Likelihood: equation (4.8), Normalized Likelihood: equation (4.11), KL-
Divergence: equation (4.12) and Bhattacharyya distance: equation (4.13). (b) Bhattacharyya abnormality error mea-
sure vs Document Size: Scatter plot showing the relation between the Document size (number of words) and Bhat-
tacharyya distance abnormality measure. The superimposed curve in red shows the expected Bhattacharyya error for
a given size computed from the training data. (c) PR curves for Normalized Likelihood, Bhattacharyya distance and
Adaptive Bhattacharyya measure: equation (4.13,4.15).
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Figure 4.13. (a) PR curves for Normalized Likelihood: equation (4.11), Adaptive Bhattacharyya measure: equa-
tion (4.13,4.15), with and without using the size words. (b) Effect of varying the number of topics: PR curves for Nor-
malized Likelihood (left), and (c) Adaptive Bhattacharyya measure (right) when using 10, 20, 50 and 100 Topics.

higher than random for very high recall.

Video Features. We also evaluate the effect of adding the size words in our description of activ-
ities, as compared to using just optical flow words as used by Wang et al. (2008b). This is shown
in Figure 4.13(a), where the normalized log-likelihood and Adaptive Bhattacharyya measure ab-
normality PR curves are plotted with and without object size words. These curves show that the
detection rates improve significantly when object size words are used as compared to just optical
flow words. The size features help in distinguishing activities due to pedestrians vs vehicles, this
helps in identifying some abnormalities like pedestrians crossing the road at the wrong place char-
acterized by a small sized object in a location with predominantly vehicles.

Number of topics. Finally, Figure 4.13(b–c) plots the PR curves for our two best measures when
10, 20, 50 and 100 topics were used (20 topics were used in the other curves) to model the different
scene activities. As it can be seen, the number of topics does not affect the results significantly.
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This is particularly true for the normalized likelihood measure. In case of Adaptive Bhattacharyya
measure, we observe this as we increase the number of topics beyond 20.

4.4 Summary

In this chapter, we first introduced the topic model framework and explained the parameter
estimation procedure. This will be a precursor to the methods to be discussed in future chapters.
In our initial application of PLSA for activity analysis task, the activity patterns discovered in
a strictly unsupervised setting with simple features, produced convincing results. The patterns
obtained could also be used to segment the scene and detect abnormal events. However, there are
some limitations. The PLSA or the LDA models ignore the ordering of words in a video clip resulting
in topics without any temporal order. It is also difficult to infer scene level rules by directly using
PLSA topics. In the following chapters, we will address these issues by proposing a more powerful
approach that incorporates temporal information in the model.
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Chapter 5

Probabilistic Latent Sequential
Motifs

Temporal order is an intrinsic nature of most human activities. Consider an online sensor mon-
itoring mouse clicks and their locations from browsing activity of individuals. Mining this sensor
log, one may discover recurrent sequential patterns of mouse clicks such as compose-send, compose-
spellcheck-send, reply-send or even fwd-send clicks. Extending this to physical human activities
like walking or running, we see that they also adhere to a particular temporal order in moving the
limbs. Therefore, it is essential to discover activities with their temporal structures, for benefits of
better understanding and completeness in representation.

But in reality recovering such sequential patterns is made difficult due to one important prop-
erty of the observations. In most real-life scenarios, multiple activities occur simultaneously leading
to a mixed observation over time. To understand this problem, consider that we have two sensors
recording water and electricity usage in an apartment. We could expect to spot activity patterns
(motifs) like a short duration-high water consumption followed by short duration-high electric con-
sumption (filling a kettle and then starting a boiler). We could also expect patterns like one hour
long alternating water and electric consumption (due to a washing machine). Due to the presence
of multiple persons, multiple occurrences of these two motifs can occur at the same time and with
no particular synchronization. Note that the two motifs share the same basic actions but differ
only in the order of execution. Similar examples can be found in many other domains such as
spatio-temporal brain activity modeling and weather pattern mining to name a few.

In this chapter we propose a novel graphical model called Probabilistic Latent Sequential Motifs
(PLSM), that discovers sequential patterns called motifs from sensor logs of the nature described
above. Our particular interest is to discover such motifs from surveillance video logs, where the
motifs represent dominant activities in the scene. In the previous chapter, we saw how the PLSA
topic model could be applied to mine activities from video scenes. One important limitation of this
approach is the bag of words assumption which leads to activities with no particular temporal struc-

59
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ture. Modeling word dynamics within topics in the presence of multiple activities can be achieved
if we can idenitify each instance of the activities and their observations respectively from the rest
of the scene observations. But unlike object trajectories, pixel level features lose the object identity
and observations from individual activities cannot be separated easily. The model introduced in this
chapter solves this problem of discovering motifs and identifying their precise time of occurrences.
To constrain the model so that we obtain sparse and peaky activity starting time distributions (al-
most resembling an a-periodic dirac comb function) the model inference also incorporates a novel
sparsity constraint based on KL-divergence.

The rest of this chapter is organized as follows. We will first provide an intuition of the PLSM
model, its application to video activity analysis, its input and outputs in the beginning of section 5.1.
Then, we will introduce the PLSM model with details, including the inference procedure. Experi-
ments on synthetic data are first conducted in section 5.3 to effectively demonstrate various aspects
of the model. Application of the PLSM model to extract recurring activities from surveillance videos
is explained in section 5.4, which includes experiments on three different video datasets from state
of the art papers and three video datasets of single and multi-camera views from crowded metro
stations. The captured PLSM motifs are shown and discussed in section 5.5, with quantitative ex-
periments on an activity prediction task and on a comparison with ground truth labeled data. The
generality of the PLSM method is further demonstrated in section 5.6, which presents its appli-
cation to audio traffic localization data captured by microphone array sensors. Finally, section 5.7
concludes the chapter with a discussion and a summary.

5.1 Probabilistic Latent Sequential Motif Model

Before formalizing our approach, we illustrate the activity discovery algorithm on a simple video
case, as shown in Figure 5.1. Assume that in this scene, only two activities can occur, and that we
have a vocabulary of Nw = 7 words, where each word characterizes the motion activity happen-
ing in some local regions (the colored blobs in Figure 5.1(a)). The method to automatically define
these scene specific words is described in section 5.4.1. The main idea of the PLSM model illus-
trated in Figure 5.1 is that each occurrence of a scene activity leaves a noisy and variable trace
in the word×time count matrix. The count matrix in Figure 5.1(b) shows a simple case with ob-
servations from multiple occurrences of the two activities, making clear that activities can overlap
in time, share the same vocabulary, occur without any particular synchronization, and are often
accompanied with noise. Our goal in this difficult scenario is thus to recover the latent structure by
learning the activity temporal patterns called motifs and their time of occurrence as illustrated in
Figure 5.1(b).

5.1.1 Notation and model overview

In this section we introduce our notation, a more detailed description of the model’s generative
process, and the EM steps derived to infer the model parameters, including the handling of sparsity,
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(a) Words from two activities shown as
colored blobs.
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(b) A temporal document d defined as a word×time count matrix n(w, ta, d),
and on the right, the result of the PLSM algorithm (discovered activity motifs
and their starting time).

Figure 5.1. Applying PLSM to discover activities from videos. (a) Assume that the scene contains only two activities (Ac-
tivity A - black and Activity B -red), and that we are able to automatically extract seven low-level activity words labeled
{w1, . . . , w7} depicted with colored blobs in the image. (b) Each activity occurrence leaves a (noisy) observation trail
in a word×time count matrix according to a specific temporal pattern. For instance, in a simple case, activity A could
be specified by the particular sequence of word [w6, w3, w4, w5]. Note that these trails can share vocabularies and
can be interleaved, i.e., have temporal overlap. The goal of the PLSM algorithm is thus to identify the latent structure
characterized by the activity motifs and their start times from the observed count matrix n(w, ta, d).

the exploitation of priors, and the model selection.

Figure 5.2(a) formally illustrates the process of generating a frequency matrix n(w, ta, d), which
we call a temporal document. A qualitative description of this process is given in Figure 5.1(b).
Let D be the number of temporal documents in the corpus, indexed by d. Let V = {wi}Nw

i=1 be the
vocabulary of words that can occur at any given instant ta ∈ [1, . . . , Td], where Nw is the size of our
vocabulary and Td is the number of discrete time steps of temporal documents d (and thus repre-
sents the duration of the temporal documents). A temporal document is then described by its count
matrix n(w, ta, d) indicating the number of times a word w occurs at the absolute time ta within the
temporal document d; a temporal document d thus contains Nd =

∑
w,ta

n(w, ta, d) words in total.
According to our model, these temporal documents are generated from a set of Nz (Nz is the number
of motifs) motifs {zi}Nz

i=1 represented by temporal patterns P (w, tr|z) with a fixed maximal duration
of Tz time steps (i.e., tr ∈ [0, . . . , Tz − 1]), where tr denotes the relative time at which a word occurs
within a motif. A motif can occur and start at any time instant ts ∈ [1, . . . , Tds] within the temporal
document 1. In other words, qualitatively, temporal documents are generated by taking the motifs
and reproducing them in a probabilistic way (through sampling) at their starting positions within
the temporal document, as illustrated in Figure 5.1(b) and Figure 5.2(a).

1. The starting time ts can range over different intervals, depending on hypotheses. In the experiments, we assumed
that all words generated by a motif starting at time ts occur within a temporal document; hence ts takes values between 1
and Tds, where Tds = Td − Tz + 1. However, we can also assume that motifs are partially observed (beginning or end are
missing). In this case ts ranges between 2− Tz and Td.
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5.1.2 Generative Process

Our data D is the matrix n(w, ta, d) containing counts of triplets of the form (w, ta, d). The actual
process to generate these triplets (w, ta, d) is given by the graphical model depicted in Figure 5.2(b)
and works as follows:

Algorithm 2 The PLSM generative model

- draw a temporal document d with probability P (d).

- draw a latent motif z ∼ P (z|d); {where P (z|d) denotes the probability that a word in temporal
document d originates from motif z.}

- draw the starting time ts ∼ P (ts|z, d). {where P (ts|z, d) denotes the probability that the motif z
starts at time ts within the temporal document d.}

- draw a word and relative time pair (w, tr) ∼ P (w, tr|z). {where P (w, tr|z) denotes the joint
probability that a word w occurs at time tr within the motif z. Note that since P (w, tr|z) =
P (tr|z)P (w|tr, z), this draw can also be done by first sampling the relative time from P (tr|z) and
then the word from P (w|tr, z), as implied by the graphical model of Figure 5.2(b).}

- set ta = ts + tr. {This assumes that P (ta|ts, tr) = δ(ta − (ts + tr)), that is, the probability density
function P (ta|ts, tr) is a Dirac function. Alternatively, we could have modeled P (ta|ts, tr) as a noise
process specifying uncertainty on the time occurrence of the word.}

The main assumption in the above model is that given the motifs, the words within the temporal
document are independent of the motif start; that is, the occurrence of a word only depends on the
motif, not on the time when a motif starts.

Furthermore, contrasting PLSM with PLSA and LDA models, we find that PLSM performs
temporal modeling at two different levels which the latter misses out completely. The temporal
modeling is done: a) within motifs to identify when words occur, i.e., at which relative time with
respect to the motif beginning, given by the distribution P (w, tr|z); b) within documents, to identify
when a motif actually starts in the document given by the distribution P (ts|z, d). The term motif for
P (w, tr|z) is therefore used to distinguish them from simple word distributions P (w|z) of PLSA/LDA
models.

Before going into more details of the model, let us establish the connections between the pro-
posed model and its application to video activity analysis. Our input to the model is the pre-
processed video represented by the word count matrix n(w, ta, d) in Figure 5.1(b) or 5.2(a). The
words that appear in this temporal document are spatially localized activities like the blobs shown
in Figure 5.1(a) or Figure 5.12. The method used to derive these local activities is detailed in sec-
tion 5.4.1. The motifs P (w, tr|z) used in the generative process are the dominant activities that
occur in the scene as shown in Figures 5.1(a) or in Figures 5.14, 5.15 or 5.16. The generative pro-
cess uses the start times of activity motifs in the video represented by the distribution P (ts|z, d).
This is indicated using the red and black arrows in Figure 5.1(b) and is used to detect events in
section 5.5.3.
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Figure 5.2. Generative process. a) Illustration of the temporal document n(w, ta, d) generation. Words (w, ta = ts + tr)
are obtained by first sampling the motifs and their starting times from the P (z|d) and P (ts|z, d) distributions, and then
sampling the word and its temporal occurrence within the motif from P (w, tr|z). b) Graphical model (shaded circles
represent observed variables and unshaded ones indicate latent variables).

The joint distribution of all variables can be derived from the graphical model. However, given
the deterministic relation between the three time variables (ta = ts + tr), only two of them are
actually needed to specify this distribution. For instance, we have

P (w, ta, d, z, ts, tr) = P (tr|w, ta, d, z, ts)P (w, ta, d, z, ts) (5.1)

=

{
P (w, ta, d, z, ts) if tr = ta − ts
0 otherwise

In the following, we will mainly use ts and ta. Accordingly, the joint distribution is given by:

P (w, ta, d, z, ts) = P (d)P (z|d)P (ts|z, d)P (w, ta − ts|z). (5.2)

5.2 Model inference

In this section we will discuss the model inference with details about the EM equations and the
sparsity constraint.

5.2.1 Likelihood optimization with sparsity constraint

Our data D is the set of temporal documents n(w, ta, d). The likelihood of observing this data is
given by the equation:

P (D) =

D∏
d=1

Td∏
ta=1

Nw∏
w=1

P (w, ta, d)n(w,ta,d) (5.3)

From these observations, our goal is to discover the motifs and their starting times. This is a diffi-
cult task since the motif occurrences in the temporal documents overlap temporally, as illustrated in
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Figure 5.2(a). The estimation of the model parameters Θ, i.e., the probability distributions 2, P (z|d),
P (ts|z, d), and P (w, tr|z) can be done by maximizing the log-likelihood L(D|Θ) of the observed data
D. This is obtained by taking log on both sides of equation (5.3) and by marginalizing over the
hidden variables Y = {ts, z} (since tr = ta − ts, as discussed at the end of the previous subsection):

L(D|Θ) =

D∑
d=1

Nw∑
w=1

Td∑
ta=1

n(w, ta, d) log

Nz∑
z=1

Tds∑
ts=1

P (w, ta, d, z, ts) (5.4)

Sparsity in topic models. One common issue in non-parametric topic models is that distributions
are often loosely constrained, resulting in non-sparse process representations which are often not
desirable in practice. Similar to the sparse coding representational scheme (Yi Zhang, 2010), what
we seek are distributions where most of the elements in a vector are zero while few elements are
significantly different from zero. For instance, in PLSA, one would like each document d to be rep-
resented by a few topics z with high weights P (z|d), or each topic P (w|z) to be represented by only
a few words with high probability. But in practice, nothing guides the learning procedure towards
such a goal. The same applies to LDA models despite the presence of priors on the multinomial
P (z|d) (Wang and Blei, 2009).

Approaches to this problem have been proposed in areas related to topic models. In Non-negative
Matrix Factorization (NMF), a non-probabilistic model close to PLSA, Hoyer (2005) proposed to set
and enforce through constrained optimization an a-priori sparsity level defined by a relationship
between the L1 and L2 norm of the matrices to be learned. Very recently, Wang and Blei (2009)
introduced a model that decouples the need for sparsity and the smoothing effect of the Dirichlet
prior in HDP, by introducing explicit selector variables determining which terms appear in a topic.
The even more complex focused topic model of Williamson et al. (2009) similarly addresses sparsity
for hierarchical topic models but relies on an Indian Buffet Process to impose sparse yet flexible
document topic distributions.

Introducing sparsity constraints. To address the sparsity issue, we propose an alternative
approach. The main idea is to guide the learning process towards sparser (more peaky) distributions
characterized by smaller entropy. We achieve this by adding a regularization constraint in the EM
optimization procedure that favors lower entropy distributions by maximizing the Kullback-Leibler
divergence between the distribution to be learned and the uniform distribution (maximum entropy).
This results in a simple procedure that can be applied to most EM like inference schemes where a
sparsity constraint on the distribution is desirable.

In our model this is the case of P (ts|z, d): one would expect this distribution to be peaky, exhibit-
ing high values for only a limited number of time instants ts. To encourage this, we propose to guide
the learning process towards sparser distributions by using a penalized likelihood optimization cri-
terion.

There are several candidates for this penalty term. For instance, we could use a direct ap-
proach by minimizing the L0 or L1 norm of P (ts|z, d) considered as a vector of parameters, or use

2. Note that P (d) ∝ Nd and is thus not unknown.
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an entropy-based penalty term that favors low entropy and hence, sparse-distributions. However,
such methods either do not suit well our probabilistic modeling approach (for instance, the L1 norm
of P (ts|z, d) can not be optimized as it is always equal to 1), or do not lead to simple optimization
schemes (Besnerais et al., 1999). Thus, we preferred to achieve this indirectly by adding a regu-
larization constraint to maximize the Kullback-Leibler (KL) divergence DKL(U ||P (ts|z, d)) between
the uniform distribution U (maximum entropy) and the distribution of interest. Interestingly, in the
past regularization approaches using KL-divergence to the uniform distribution have been used in
physics (Besnerais et al., 1999), and have been shown to have good properties for sparse approxi-
mation, such as differentiable and increased stability of the solution (Bradley and Bagnell, 2008).
In our case, the formulation we exploit has also the advantage of leading to a simple modification
of the EM inference scheme.

Though such an approach can be applied to any distribution of the model, we demonstrate this
approach by applying it to P (ts|z, d). After development and removing the constant term, our con-
strained objective function is now given by:

Lc(D|Θ) = L(D|Θ)−
∑
ts,z,d

λz,d
Tds
· log(P (ts|z, d)) (5.5)

where λz,d denotes a weighting coefficient balancing the contribution of the regularization compared
to the data log-likelihood.

EM optimization. As is often the case with mixture models, equation (5.5) can not be solved
directly due to the summation terms inside the logarithm. Thus, we employ an Expectation-
Maximization (EM) approach and maximize the expectation of the (regularized) complete log-
likelihood instead, defined as:

E[L] =

D∑
d=1

Nw∑
w=1

Td∑
ta=1

Nz∑
z=1

Tds∑
ts=1

n(w, ta, d)P (z, ts|w, ta, d) logP (w, ta, d, z, ts)

−
∑
ts,z,d

λz,d
Tds
· log(P (ts|z, d)) (5.6)

The solution is obtained by iterating the equation (5.7–5.10) (see Appendix A for more details on this
derivation). In the Expectation step, the posterior distribution of the hidden variables is calculated
as in equation (5.7) where the joint probability is given by equation (5.2). In the Maximization step
equations (5.8 – 5.10), the model parameters are updated by maximizing equation (5.6) along with
the constraint that each of the distributions sum up to one.

In practice, the EM algorithm is initialized using random values for the motif distributions (see
also next subsection) and stopped when the data log-likelihood increase is too small. A closer look at
the equations shows that in the E-step, the responsibilities of the motif occurrences (z, ts) in explain-
ing the word pairs (w, ta) are computed (where high responsibilities will be obtained for informative
words, i.e., words appearing in only one motif and at a specific relative time), whereas the M-step
aggregates these responsibilities to infer the motifs and their occurrences. In other words, the pos-
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E-step:

P (z, ts|w, ta, d) =
P (w, ta, d, z, ts)

P (w, ta, d)
where, P (w, ta, d) =

Nz∑
z=1

Tds∑
ts=1

P (w, ta, d, z, ts) (5.7)

M-step:

P (z|d) ∝
Tds∑
ts=1

Tz−1∑
tr=0

Nw∑
w=1

n(w, ts + tr, d)P (z, ts|w, ts + tr, d) (5.8)

P (ts|z, d) ∝ max

(
ε,

(
Nw∑
w=1

Tz−1∑
tr=0

n(w, ts + tr, d)P (z, ts|w, ts + tr, d)

)
− λz,d
Tds

)
(5.9)

P (w, tr|z) ∝
D∑
d=1

Tds∑
ts=1

n(w, ts + tr, d)P (z, ts|w, ts + tr, d) (5.10)

Figure 5.3. The EM algorithm steps.

terior terms P (z, ts|w, ta, d) can be interpreted as weights or votes given to motif occurrences which
are accumulated in equations (5.9–5.10) to identify the relevant motif occurrences. Furthermore,
by associating occurring words (w, ta) to motif occurrences (z, ts), this posterior implicitly aligns all
the words of a motif instance with its starting time, and as a consequence statistically achieves a
soft alignment of multiple occurrences of the same motif, even in the presence of temporal overlap
with the same or other motifs.

When looking at equation (5.9), we see that the effect of the additional sparsity constraint is
to set to a very small constant ε the probability of terms which are lower than λz,d/Tds (before
normalization), thus increasing the sparsity as desired. To set sensible values for λz,d we used the
rule of thumb λz,d = λ nd

Nz
, where nd denotes the total number of words in the temporal document,

and λ the sparsity level. Note that when λ = 1, the correction term λz,d/Tds in equation (5.9) is
equal to the average (over ts) of the term on the right hand side of equation (5.9) involving sums.

Inference on unseen temporal documents. Once the motifs are learned, their time occurrences
in any new temporal document – represented by P (z|dnew) and P (ts|z, dnew), can be inferred using
the same EM algorithm, but keeping the motifs fixed and using only equation (5.8) and equa-
tion (5.9) in the M-step.

5.2.2 Maximum a-posterior Estimation (MAP)

In graphical models, Bayesian approaches are often preferred compared to maximum-likelihood
(ML) ones, especially if there is knowledge about the model parameters. This is the case for methods
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like LDA that can improve over PLSA by using Dirichlet priors on the multinomial distributions.
However, as it was shown in Girolami and Kabán (2003) and Chien and Wu (2008), LDA is equiva-
lent to PLSA when priors are uninformative or uniform, which is a common situation in practice.

The MAP estimation of parameters Θ can be formulated as follows:

ΘMAP = arg max
Θ

(logP (Θ|D)) = arg max
Θ

(logP (D|Θ) + logP (Θ)) (5.11)

where P (D|Θ) is the likelihood term given by equation (5.4), and P (Θ) is the prior density over the
parameter set. In practice, it is well known that using priors that are conjugate to the likelihood
simplifies the inference problem. Since our data likelihood is defined as a product of multinomial
distributions, we employ Dirichlet distributions as priors.

Application to the PLSM model. Our parameter set Θ comprises the multinomial parameters
P (w, tr|z), P (z|d), and P (ts|z, d). We don’t have any a priori information about the motif occurrences
P (ts|z, d) nor can we obtain an updated prior that is common to all the temporal documents in a gen-
eral scenario. Moreover, for this term, we employ the sparsity constraint rather than a smoothing
prior. Thus, we will use the MAP approach to set priors on the other multinomial parameters. Re-
placing in equation (5.5) the log-likelihood by the parameter log-posterior probability, the criterion
to optimize simply becomes Lm(D|Θ) = Lc(D|Θ) + logP (Θ), with the last term given by:

P (Θ) ∝
∏
d,z

P (z|d)αz,d−1
∏
z,w,tr

P (w, tr|z)αw,tr,z−1, (5.12)

where αz,d and αw,tr,z denote the Dirichlet parameters governing the prior distributions of P (z|d)

and P (w, tr|z) respectively. As before, Lm can be conveniently optimized using an EM algorithm,
which leads to the same update expression as in Figure 5.3, except that equation (5.8) and equa-
tion (5.10) need to be modified to account for the prior.

PMAP(z|d) ∝ (αz,d − 1) +

Tds∑
ts=1

Tz−1∑
tr=0

Nw∑
w=1

n(w, ts + tr, d)P (z, ts|w, ts + tr, d) (5.13)

PMAP(w, tr|z) ∝ (αw,tr,z − 1) +

D∑
d=1

Tds∑
ts=1

n(w, ts + tr, d)P (z, ts|w, ts + tr, d) (5.14)

5.2.3 Model Selection

To select the right number of motifs, we use the BIC measure, which penalizes the training
data likelihood based on the number of parameters and data points. A general version of the BIC
measure of a model M is given by:

BIC(M) = −2L(D|Θ) + λbicN
M
p log(n) (5.15)
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(a) Motifs to generate temporal documents (b) A generated temporal document

(c) Temporal Document with uniform noise (d) Temporal Document with location noise
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(e) Ground truth
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(f) Clean, λ = 0.0
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(g) Clean, λ = 0.5
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(h) Uni. noise, λ = 0.5
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(i) Loc. noise, λ = 0.5

Figure 5.4. Synthetic experiments. (a) The five motifs, (b) A segment of a generated temporal document, (c,d)
The same segment perturbed with: (c) Uniform noise (σsnr = 1), (d) Location noise (σ = 1) added to each word time
occurrence ta. (e) the true motif occurrences (only 3 of them are shown for clarity) in the temporal document segment
shown in (b). (f–i) the recovered motif occurrences p(ts|z, d) when using as input (f) the clean temporal document (cf
b) and no sparsity constraint λ = 0 (g) or with sparsity constraint λ = 0.5; (h) the noisy temporal document (c) and
λ = 0.5 (i) the noisy temporal document (d) and λ = 0.5.

where, L is the likelihood of the model and is given by equation (5.4), NM
p denotes the number

of parameters of model M , n is the number of data points, and λbic is a coefficient that controls
the influence of the penalty. Note that the above equation leads to the standard BIC criterion
when λbic, the weight of the penalty term, is 1. In practice, we followed the approach of (Chen
and Gopalakrishnan, 1998) or (Tritschler and Gopinath, 1999) and used a validation set to fix
this parameter in the numerical experiments. In essence, this criterion seeks models that find a
compromise between likelihood fitting and model complexity. In practice, we conduct optimization
for models with different number of motifs according to previous subsections, and finally keep the
model with the minimum BIC measure.

5.3 Experiments on synthetic data

In order to investigate and validate various aspects and strengths of the model we first con-
ducted experiments using synthetic data.

5.3.1 Data and experimental protocol

Data synthesis. Using a vocabulary of 10 words, we created five motifs with duration ranging
between 6 and 10 time steps (see Figure 5.4(a)). Then, for each experimental condition (e.g., a noise
type and noise level), we synthesized 10 temporal documents of 2000 time steps following the gener-
ative process described in section 5.1.2, assuming equi-probable motifs and 60 random occurrences
per motif. One hundred time steps of one temporal document are shown in Figure 5.4(b), where
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(a) From clean temporal document, λ = 0 (b) From clean temporal document, λ = 0.5

(c) From Uniform noise(σsnr = 1), λ = 0 (d) From Uniform noise(σsnr = 1), λ = 0.5

(e) From Location noise(σ = 1), λ = 0 (f) From Location noise(σ = 1), λ = 0.5

Figure 5.5. Synthetic experiments. Recovered motifs without (a,c,e) and with (b,d,f) sparsity constraints λ = 0.5 under
different noise conditions. (a,b) from clean data; (c,d) from temporal documents perturbed by Uniform noise, σsnr = 1,
cf Figure 5.4(c); (e,f) from temporal documents perturbed with Location noise σ = 1, cf Figure 5.4(d).

the intensities represent the word count (larger counts are darker). In Figure 5.4(e) corresponding
starting times of the first three motifs out of the five motifs are shown for the sake of clarity. Note
that there is a large amount of overlap between motifs.

Adding noise. Two types of noise were used to test the method’s robustness. In the first case,
words were added to the clean temporal documents by randomly sampling the time instant ta and
the word w from a uniform distribution, as illustrated in Figure 5.4(c). We call this Uniform noise.
Here, the objective is to measure the algorithm’s performance when the ideal co-occurrences are
disturbed by random word counts. The amount of noise is quantified by the ratio σsnr = Nnoise

w /N true
w

where, Nnoise
w denotes the number of noise words added and N true

w is the number of words in the
clean temporal document. In practice, noise can also be due to variability in the temporal execution
of the activity. Thus, in the second case, a Location noise was simulated by adding random shifts
sampled from a Gaussian distribution with σ ∈ [0, 2] to the time occurrence ta of each word, resulting
in blurry temporal documents, as shown in Figure 5.4(d).

Model parameterization. As we do not assume any prior on the parameter model, we did not use
the MAP approach in these experiments, and optimized the penalized likelihood of equation (5.5).
For each temporal document, 10 different random initializations were tried and the model maxi-
mizing the objective criterion was kept as the result.

Performance measure. The learning performance is evaluated by measuring the normalized
cross correlation 3. Averages and corresponding error-bars computed from the results obtained on
the 10 generated temporal documents are reported.

3. The correspondence between the ground truth motifs and the estimated ones is made by optimizing the normalized
cross-correlation measure between the learned motifs p̂(tr, w|z) and the true motifs p(tr, w|z).



70 CHAPTER 5. PROBABILISTIC LATENT SEQUENTIAL MOTIFS

0 0.5 1 1.5 2
0.4

0.6

0.8

1

Noise ratio (σ
snr

)

C
o

rr
e

la
ti

o
n

 w
it

h
 t

ru
th

 

 

λ = 0

λ = 0.5

(a) Uniform Noise

0 0.5 1 1.5 2
0.4

0.6

0.8

1

Noise ratio (σ)
C

o
rr

e
la

ti
o

n
 w

it
h

 t
ru

th

 

 

λ = 0

λ = 0.5

(b) Location Noise
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(c) Uniform Noise
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(d) Location Noise
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(e) Changing motif length
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(f) Average entropy
Figure 5.6. (a,b) Average motif correlation between the estimated and the ground truth motifs for different levels of (a)
Uniform noise, (b) Location noise. (c,d) Average motif correlation between the estimated and the ground truth motifs
for different sparsity weight λ and for different levels of (c) Uniform noise, (d) Location noise on a word time occurrence
ta. (e) Effect of varying motif length Tz from 5 to 15, for two levels of uniform noise. (f) Average entropy of p(ts|z, d) as
a function of sparsity λ.

5.3.2 Results

Results on clean data. Figs 5.5(a) and 5.5(b) illustrate the recovered motifs with and without the
sparsity constraint. As can be seen, without sparsity, two of the obtained motifs are not well recov-
ered. This can be explained as follows. Consider the first of the five motifs. Samples of this motif
starting at a given instant ts in the temporal document can be equivalently obtained as a mixture of
the first motif in Figure 5.5(a) occurring at three consecutive ts values with probabilities less than
one. This can be visualized in Figure 5.4(f), where the peaks in the blue curve P (ts|z = 1, d) are
three times wider and lower than in the ground truth. When using the sparsity constraint, the mo-
tifs are well recovered, and the starting time occurrences better estimated, as seen in Figure 5.5(b).

Robustness to noise. Figure 5.5(c) and 5.5(e) illustrate the recovered motifs under noise without
a sparsity constraint. We can clearly observe that the motifs are not well recovered (e.g., the third
motif is completely missed). With sparsity, Figure 5.5(d) and 5.5(f), motifs are better recovered, but
reflect the presence of the generated noise, i.e., the addition of uniform noise in the motifs in the
first case, and the temporal blurring of the motifs in the second case. The curves in Figure 5.6(a)
and 5.6(b) show the degradation of the learning as a function of the noise level.

Effect of sparsity. We also analyzed the performance of the model by varying the weight of the
sparsity constraint for different noise levels and noise types. Figure 5.6(a) and 5.6(b) show that the
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(a) Three motifs

0.20 0.20 0.19 0.19 0.15 0.07

(b) Six motifs

Figure 5.7. Estimated motifs sorted by their P (z|d) values (given below each motif) when the number of motifs is (a)
Nz = 3. True motifs are merged. (b) Nz = 6. A duplicate version of a motif with slight variation is estimated.

model is able to handle quite a large amount of noise in both cases, and that the sparsity approach
always provides better results. While the best results without the constraint gives only a correlation
of 0.8, we achieve a much better performance (approximately 0.95) with sparsity. In Figure 5.6(c)
and 5.6(d), we see the performance of the method for various values of the sparsity weight λ and
for varying noise levels. We notice that as the weight for sparsity increases, the performance shoots
up. However, an increase in the sparsity weight beyond 0.5 often leads to degraded and sometimes
unstable performance. Finally also note, as illustrated by Figure 5.6(f), that an increase in the
sparsity weight λ leads to lowering the entropy of p(ts|z, d), as desired.

We conclude from these results that we obtain a marked improvement in recovering the motifs
from both clean and noisy temporal documents when sparsity constraint is used.

Number of motifs and model selection. We first studied the qualitative effect of changing Nz,
the number of motifs. As illustrated in Figure 5.7. When Nz is lower than the true number, we
observe that each estimated motif consistently captures several true motifs. For instance, the first
motif in Figure 5.7(a) merges the 1st and 5th motif of Figure 5.4(a). When the number of motifs
is larger than the true value, like Nz = 6 in the example, we see that a variant of one motif is
captured, but with lower probability. We observe the same phenomenon as we further increase the
number of motifs.

We also tested our model selection approach based on the BIC criteria, as explained in sec-
tion 5.2.3. To set λbic, we generated five extra clean temporal documents and used them to select an
appropriate value of this parameter. Then, the same value was used to perform tests on other clean
or noisy temporal documents. Figure 5.8(a) displays the BIC values obtained for a clean temporal
document by varying the number of motifs from 2 to 15. As can be seen, the criteria reaches its
minimum for 5 motifs. Histograms in Figure 5.8(b) show the number times a motif size is selected
for a set of temporal documents. Although not perfect, the results show that the method is able to
retrieve an appropriate number of motifs. In the presence of strong noise with as many noise words
as true words, the number of found motifs is usually larger. This is expected as we need more motifs
to explain the additional noise in the data.

Motif length. The effect of varying the maximum duration Tz of a motif and in the presence of
noise is summarized in Figure 5.6(e). When Tz becomes lower than the actual motif duration, the
recovered motifs are truncated versions of the original ones, and the “missing” parts are captured
elsewhere, resulting in a decrease in correlation. On the other hand, longer temporal windows do
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Figure 5.8. (a) Example of a BIC measure on a synthetic temporal document. (b) Selection histograms (number of times
a motif is selected) using BIC on 10 temporal documents, with the following conditions: clean, λ = 0, clean, λ = 0.5,
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Figure 5.9. Illustration of the method Li et al. (2009). Individual TOS Bag-of-Words (BoW) documents
Doct1 , Doct2 , Doct3 , ... are created from the video count matrix by sliding a window over time, and considering each
pair (word×relative-time-to-the-window-start) in these windows as a TOS wordwTOS

ij . In the example, the TOS vocabulary
is thus of size 7 × 4 = 28 (ie documents are defined as counts of these wTOS

ij words). Note how with TOS-LDA, the same
motif occurrence in the video can result in different set of BoW representation depending on when the motif started
w.r.t to the start of the document window, and that all documents are considered to be independent.

not really affect the learning, even under noisy conditions. However, the performance under clean
and noisy conditions are significantly worse with no sparsity constraint.

Comparison with TOS-LDA (Li et al., 2009). TOS-LDA works by collecting independent Bag-
of-Words (BoW) documents from the video and then by applying an LDA topic discovery method to
these documents. Figure 5.9 illustrates on the temporal documents shown in Figure 5.1(b) how the
BoW documents of the TOS-LDA method are constructed. These documents are simply obtained
from windows of a fixed temporal duration swept over the video, and by associating to each word wi
a time stamp trj relative to the start of each fixed-size window. In other words, the TOS vocabulary
is defined as the set of words wTOS

ij = (wi × trj). In Figure 5.9, we show three sample documents
created from the video by sliding a window of 4 time steps duration over three time steps. The first
document is made of the TOS words {wTOS

61 , w
TOS
32 , w

TOS
43 , w

TOS
54 } = {(w6, t

r
1), (w3, t

r
2), (w4, t

r
3), (w5, t

r
4)}, and

similarly, the second document contains {wTOS
31 , w

TOS
42 , w

TOS
53 }, and so on for other documents. Thus, in

this approach, one can clearly see that the same observed activity results in different sets of words
for each document depending on its relative time occurrence within these sliding windows (in the
example, documents 1 and 2 have orthogonal representations although they contains the same
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Figure 5.10. Five temporal topics obtained from the TOS-LDA method Li et al. (2009) with clean data.

sub-activity from the video). Said differently, in the learning, several motifs (being time shifted
versions of each other) will be needed to capture the same activity and account for the different
times at which it can occur within the window. As pointed out in the literature review chapter 2,
section 2.2.4, the method clearly lacks an alignment procedure that indicates when the motif starts,
an information that is manually supplied in Faruquie et al. (2009) for activities based on traffic
cycles.

We applied TOS-LDA to the same set of synthetic temporal documents created as previously
described, and Figure 5.10 shows the obtained motifs when using clean data. Since the method
does not align the activity motifs, none of the five extracted TOS-LDA topics truly represents one
of the five patterns used to create the temporal documents. Rather, they contain parts, blurry and
mixed versions of them, with some of the patterns (e.g., the vertical bar) not appearing at all.

5.4 Application to video scene activity analysis

Our objective is to identify recurring activities in video scenes from long term data automati-
cally. In this section, we explain how we can use the PLSM model for this purpose, and describe
the video preprocessing used to define the words and temporal documents required by the PLSM
model. We then present the datasets used for experiments and finally show three different ways of
representing the learned motifs.

5.4.1 Activity word and temporal document construction

To apply the PLSM model to videos, we need to specify its inputs: the words w forming its vo-
cabulary and that define the semantic space of the learned motifs, and the corresponding temporal
documents. One possibility would be to define quantized low-level motion features and use these
as our words. However, this would result in a redundant and unnecessarily large vocabulary. We
thus propose to first perform a dimensionality reduction step by extracting spatially localized ac-
tivity (SLA) patterns from the low-level features and use the occurrences of these as our words to
discover sequential activity motifs using the PLSM model. To do so, we use the approach presented
in chapter 4 and apply a standard PLSA procedure to discover NA dominant SLA patterns through
raw co-occurrence analysis of low-level visual words wll. The work flow of this process is shown in
Figure 5.11, and explained below.

Low-level words wll. The visual words come from the location cue (quantized into 4 × 4 non-
overlapping cells) and motion cue as explained in chapter 3. The foreground pixels are categorized
into either static pixels (static label) or pixels moving into one of the eight cardinal directions by



74 CHAPTER 5. PROBABILISTIC LATENT SEQUENTIAL MOTIFS

Low Level 1 sec.

Documents
Video

bg. sub.

optical flow PLSA

PLSM

1 sec.

windowing

SLA patterns
(pLSM words)

Temporal

Documents

PLSM

Motifs

Motifs

Starting Times

Figure 5.11. Flowchart for discovering sequential activity motifs in videos. Quantized low-level features are used to build
1 second bag-of-words documents, from which Spatially Localized Activity patterns (SLA) are learned and further used
to build the temporal documents used as input to PLSM.

thresholding the flow vectors. Note that the static label will be extremely useful for capturing
waiting activities, which contrasts with previous works (Wang et al., 2009).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 5.12. Representative SLA patterns obtained by applying PLSA on (a–e) far-field data, (f–j) MIT data and (k–o)
Traffic junction data, (p–t) Metro station data.

Low-level SLA patterns zll. We apply the PLSA algorithm on a document-word frequency matrix
n(dta , w

ll) obtained by counting for the document dta the low-level words appearing in Nf frames
within a time interval of one second centered on time ta. The result is a set of NA SLA patterns
characterized by their multinomial distributions P (wll|zll), and the probabilities P (zll|dta) provid-



5.4. APPLICATION TO VIDEO SCENE ACTIVITY ANALYSIS 75

ing the topic distribution for each document. While PLSA captures dominant low-level word co-
occurrences, it can also be viewed as a data reduction process since it provides a much more concise
way of representing the video underlying activities at a given instant ta, using only NA topics, a
number much smaller than the low-level vocabulary size. We observed that, with 50 to 100 SLA
topics/patterns, we get an accurate description of the scene content. We also ran HDP (Teh et al.,
2006), which automatically finds the number of topics, and we obtained between 20 and 60 topics
depending on the parameters and the dataset. Following these observations, we used NA = 75 to
get both a good representation of the scenes and a reasonable complexity for PLSM processing.

We can visualize the result of this step by superimposing the distributions P (wll|zll) over the
image, indicating the locations where they have high probabilities. This is illustrated in Figure 5.12,
which shows representative SLA patterns obtained from each of the four video scenes described
below, with their locations highlighted in green 4. Clearly, the SLA patterns represent spatially
localized activities in the scene.

Building PLSM temporal documents. In our approach, we define the PLSM words as being the
SLA patterns (i.e., we have w ↔ zll and Nw = NA). Thus, to build the temporal documents d for
PLSM, we need to define our word count matrix n(w, ta, d) characterizing the amount of presence
of the SLA patterns zll in the associated low-level document at this instant ta, i.e., dta . To do so, we
exploit two types of information: the overall amount of activity in the scene at time ta, and how this
activity is distributed amongst the SLA patterns. The word counts were therefore simply defined
as:

n(d, ta, w) = n(dta)P (zll|dta) (5.16)

where n(dta) denotes the number of low-level words observed at a given time instant (i.e., within
the 1 second interval used to build the dta document). As for the number of temporal documents
and their length Td, this does not affect our modeling. Therefore, one may choose to use the entire
video as a single document. However, in practice, we used documents of duration Td equal to 120
(video clips of 2 minutes) for the urban datasets, or 600 (clips of 10 minutes) for the metro dataset.

5.4.2 Motif representation

Before looking at the results obtained from the datasets, we explain how learned motifs are
represented visually. In Figure 5.13, we provide three different ways of representing a recovered
motif of Tz = 10 time steps (seconds) duration obtained from PLSM. By definition, a PLSM motif
is a distribution P (w, tr|z) over w × tr space. Thus the direct depiction of the motif is that of the
P (w, tr|z) matrix as given in Figure 5.13(k). This shows that the distribution is relatively sparse,
that words often occur at several consecutive time steps, and that several words co-occur at each
time step. However, this does not provide much intuition about the activities captured by the

4. Note that the topic distributions contain more information than the location probability: for each location, we know
what types of motion are present as well. This explains the location overlap between several topics, e.g., between those of
Figure 5.12(b) and Figure 5.12(e), which have different dominant motion directions.
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(a) tr =1 (b) tr =2 (c) tr =3 (d) tr =4 (e) tr =5

(f) tr =6 (g) tr =7 (h) tr =8 (i) tr =9 (j) tr =10

(k)
P (w, tr|z)

(l) collapsed tr =1:10

Figure 5.13. Three different representations of a PLSM motif. (k) Motif probability matrix. The x axis denotes tr , and the y
axis the words. (a-j) For each time step tr , weighted overlay on the scene image of the locations associated to each
word (i.e., the SLA patterns). (l) All time steps collapsed into one image color-coded according to the rainbow scheme,
(Violet for tr = 1 to Red for tr = Tz).

motif. The second way of representing the motif is to back-project on the scene image and for each
time step tr, the locations associated with the words (the SLA patterns) probable at this time step,
similar to the illustration of the SLA patterns in Figure 5.12. This is illustrated in Figure 5.13(a–j).
This provides a good representation of the motif, but is space consuming. An even more realistic
representation giving a true grasp of the motifs is provided by rendering them as animated gifs.
Some results are hosted in the permanent institution web-page: http://www.idiap.ch/paper/
plsm/plsm.html.

Due to media and space limitations, we use here an alternative version of these representations
that collapses all time step images into a single image using a color-coded scheme, as shown in
Figure 5.13(l). Note that the color at a given location is the one of the largest time step tr for which
the location probability is non zero. Hence, the representation may hide some local activities due
to the collapsing effect. However, in the large majority of cases, the representation provides good
intuition of the learned activities.

http://www.idiap.ch/paper/plsm/plsm.html
http://www.idiap.ch/paper/plsm/plsm.html
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5.5 Video Scene Analysis Results

In this section, complementary details about the algorithm implementation are provided. Then,
recovered motifs on the four datasets are shown and commented on. We then report the results
of quantitative experiments on a counting task and on a prediction task to further validate our
approach.

5.5.1 Experimental details

For the low-level processing, 1 second intervals were used to build the low-level documents and
then the PLSM temporal document. To reduce the computational cost, optical flow features were
estimated and collected in only Nf = 5 frames of these intervals. To favor the occurrence of the
word probability mass at the start of the estimated motifs, we relied on the MAP framework and
defined Dirichlet prior parameters for the motifs 5 as αw,tr,z = τ · 1

Nz
· f(tr), where f denotes a

normalized (i.e., the values of f(tr) sums to 1) decreasing ramp function as f(tr) ∝ (Tz− tr)+ c, Tz is
the motif duration and c is a constant term. In other words, we did not impose any prior on the word
occurrence probability, only on the time when they can occur. The strength of the prior is given by
the term τ and is defined as a small fraction (we used 0.1) of the average number of observations
in the training data for each of the Nz · Nw · Tz motif bins. In practice, the prior plays a role when
randomly drawing the motifs at initialization, where they are generated from the prior, and during
the first few EM iterations. After, given the (low) level of the τ value and the concentration of the
real observations on a few motif bins (see an estimated topic in Figure 5.13), its influence becomes
negligible. With regards to the sparsity weight, since there is a large range of values from 0.15 to
0.5 that leads to good results, we set λ to 0.5 in all our real data experiments.

5.5.2 PLSM motifs and activities

In this section, we show the motifs recovered from outdoor traffic scenes as well as from and
single and multi-camera views from metro stations.

Outdoor scenes

We first sought for motifs of maximum 10 seconds duration, i.e., Tz = 10. Note that 10 seconds
already captures relatively long activities, especially when dealing with vehicles. At the end of this
Section, we also show results when looking for 20 second motifs.

The number of 10s motifs selected automatically using the BIC criteria were 20, 26, 16 for the
Far-field, MIT, Traffic junction datasets respectively. A selection of the top-ranking representative
motifs are shown in Figure 5.14, Figure 5.15, Figure 5.16 and Figure 5.17 using the collapsed color
representation (cf Figure 5.13), along with their probability P (z) in explaining the training data. 6

5. Note that we did not set any prior on the topic occurrences within the temporal document, i.e., we set αz,d = 0.
6. In the website http://www.idiap.ch/paper/plsm/plsm.html, exhaustive set of results are provided with motifs

rendered in animated-GIF.

http://www.idiap.ch/paper/plsm/plsm.html
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(a) P (z) = 0.096 (b) P (z) = 0.027 (c) P (z) = 0.067 (d) P (z) = 0.092

(e) P (z) = 0.077 (f) P (z) = 0.073 (g) P (z) = 0.039 (h) P (z) = 0.031

(i) P (z) = 0.027 (j) P (z) = 0.038 (k) P (z) = 0.049 (l) P (z) = 0.036

Figure 5.14. Far-field data. Twelve representative motifs of 10s duration, out of 20. The method is able to capture the
different vehicular trajectory segments.

Below we comment on the results.

Far-field data. The analysis of the motifs show the ability of the method to capture the dominant
vehicle activities and their variations due to differences of trajectory, duration, and vehicle type,
despite the presence of trees at several places that perturb the estimation of the optical flow. For
instance, Figure 5.14(a–c) correspond to vehicles moving towards the top right of the image, and
Figure 5.14(d–f) to vehicles moving from the top right. Figure 5.14(g) corresponds to vehicles mov-
ing from left of the scene to the top right, Figure 5.14(h) to vehicles moving from left to bottom and
Figure 5.14(i) to movement towards the left.

Some of the motifs capture the full presence of a vehicle in the scene (e.g, Figure 5.14(h)) but
most of the activities are longer than the motif duration (10 seconds). The only solution for the al-
gorithm is thus to split the activities in multiple motifs. For example motifs (g), (c) and (k) together
cover the complete trajectory of a car going from the left to the top right of the scene. We observe
that the algorithm tend to factor out the common subparts of the trajectories, for example motif (c)
is also used for cars coming from the bottom right and going to the top right. The split of trajectories
becomes unnecessary when we increase the motif duration, e.g., to 20 seconds as in Figure 5.20.
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We also see that vehicle speed has an impact on the recovered motifs. When the possible speed
differences are important, multiple motifs are recovered for the different speeds. In Figure 5.14,
this is the case for (a) and (b) which differ in the distance crossed by the motifs (and also in the size
of the vehicle).

Motifs in Figure 5.14(j,k) represent the activities of vehicles moving in and out of the scene at
the top of the scene. Since this location is far from the camera, and vehicles in both directions have
to slow down due to a bump in the road, their apparent motion in the image is very slow and all
the words are concentrated over a small region for the entire motif duration. Finally, the motif in
Figure 5.14(l) represents the activity of two vehicles moving in opposite directions on the top part
of the road.

(a) P (z) = 0.049 (b) P (z) = 0.045 (c) P (z) = 0.042 (d) P (z) = 0.036

(e) P (z) = 0.047 (f) P (z) = 0.045 (g) P (z) = 0.044 (h) P (z) = 0.025

(i) P (z) = 0.040 (j) P (z) = 0.039 (k) P (z) = 0.035 (l) P (z) = 0.040

Figure 5.15. MIT data. Representative motifs of 10s duration out of 26. (a–d) Activities due to waiting objects. (e–l)
Activities due to motion.

MIT data. This dataset is quite complex, with multifarious activities occurring concurrently and
being only partially constrained by the traffic light. Even in this case, our method extracted mean-
ingful activities corresponding to the different phases of the traffic signal cycle, as shown in Fig-
ure 5.15. Briefly speaking, one finds two main activity types: waiting activities, shown in Fig-
ure 5.15(a-d) 7, and dynamic activities as shown in Figure 5.15(e-l) of vehicles moving from one

7. Waiting activities are characterized by the same word(s) repeated over time in the motif. Thus the successive time
color-coded images overwrite the previous ones in the collapsed representation as explained in Section. 5.4.2, leaving visible
only the last (orange, red) time instant.
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side of the junction to the other after the lights change to green. Note that waiting activities were
not captured in previous works like Wang et al. (2009), are identified here thanks to the use of
background subtraction and of static words.

(a) P (z) = 0.090 (b) P (z) = 0.089 (c) P (z) = 0.085 (d) P (z) = 0.073

(e) P (z) = 0.058 (f) P (z) = 0.052 (g) P (z) = 0.052 (h) P (z) = 0.048

Figure 5.16. Traffic Junction data. Representative motifs of 10s duration. (a-d) vehicle activities. (e-h) pedestrian
activities.

Traffic junction data. Despite the small amount of data (44min) and complex interactions be-
tween the objects of the scene, the method is able to discover the dominant activities as shown in
Figure 5.16. For instance, Figures 5.16(a–c) show some dynamic activities due to vehicles in the
scene. These activities usually last for just around 5 seconds, which explains the absence of the
whole color range in the images. More specifically, Figure 5.16(a) corresponds to vehicles going
straight; Figure 5.16(b) shows vehicles coming from the top right and turning to their right at the
bottom and Figure 5.16(c) shows vehicles moving bottom middle to the top right. Waiting activi-
ties are also captured, as illustrated in the motif of Figure 5.16(d), which displays vehicles waiting
for the signal. Interestingly, another set of motifs capture pedestrian activities, despite the fact
that they are less constrained and have more variability in localization, size and shape, timing and
dynamics. This comprises people moving on the sidewalk (Figure 5.16(e,f)), but also pedestrians
crossing the road on the zebra crossing as in motifs from Figure 5.16(g,h).

Indoor scenes

For the Rome metro station, when the motif length was set to 10 seconds, we obtained 25 motifs
using the BIC criteria. For the multicamera views from Torino, to allow motifs to capture any
inter-camera transitions a maximum motif length of 15 seconds was used and we obtained around
20 motifs from each case. Note that for these challenging indoor scenes, only optical flow features
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(a) P (z) = 0.038 (b) P (z) = 0.029 (c) P (z) = 0.013 (d) P (z) = 0.053

(e) P (z) = 0.072 (f) P (z) = 0.070 (g) P (z) = 0.048 (h) P (z) = 0.091

Figure 5.17. Metro Station data. Eight representative motifs of 10s duration, out of 25 depicting (a–c) people moving
towards top of the scene from bottom right, bottom-middle and bottom left respectively; (d) people leaving the ticket
machine towrds the turnstiles; (e–f) people around the turnstiles and crossing them at different places to reach the
platform, and (g–h) mixed activities around the information booth and in the tunstile area.

were used for the low-level visual representation.

Rome metro station. Despite the disorderly movements that continuously occur in the scene, the
method is able to capture typical structured motion patterns that exist. Typical activities consists
of people moving towards the top of the scene from different origins due to their arrival from differ-
ent places in the metro station. Figure 5.17(a–c) show these movements from bottom right, bottom
middle and bottom left respectively. Other typical activities correspond to people leaving the ticket
machine towards the turnstiles Figure 5.17(d) and crossing the turnstiles at different places Fig-
ure 5.17(e,f), and mixed motion patterns, Figure 5.17(g,h). This clearly demonstrates that our model
can successfully extract patterns even from crowded scenes containing unstructured movements.

Multi-camera activities from Torino metro station. Is it possible to obtain activities that span
multiple cameras using PLSM and without explicit calibration methods? is an interesting question.
To answer this question, we experimented with view pairs as illustrated in section 3.1.2; the first
view-pair is from non-overlapping but neighboring metro regions and the second view-pair is from
a ticketing hall viewed in orthogonal angles.

The views were combined at the feature level i.e., first, optical flow features were extracted,
quantized and words were created individually from the views. The individual words from the two
cameras were then concatenated and treated as if from a single view. Then, creating SLA patterns
and temporal documents for PLSM were done in the same way as explained in section 5.4.1.

Figures 5.18 and 5.19 show the motifs obtained from the view-pairs. In Figure 5.18, where
the views are not overlapping, we find that the motifs are mostly independent. Figure 5.18(a)
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(a) (b) (c)

(d) (e) (f)

Figure 5.18. Representative motifs from non-overlapping view-pairs fused at the feature level. The motifs are mostly
independent or restricted to single views, reflecting the non-overlapping nature of the views.

shows people going up the stairs mostly by the escalators. Figure 5.18(b,c) show some typical
movements in the passage, i.e., people moving from left to right and right to left respectively. The
motifs in Figure 5.18(b,e) are also the exit paths coming either from the (invisible) mezzanine in
Figure 5.18(b) or from the stairway in Figure 5.18(e) (with the motif correctly spanning over the
two cameras). Motifs also capture people entering the passage (from the turnstiles). There are
multiple variations (6 of them) of this activity due to distance from the camera and speeds. One
speed variation is shown in Figure 5.18(c,f) which differ only by the color palette: Figure 5.18(f)
ends in green meaning it is slower and longer than Figure 5.18(c).

When the cameras are overlapping as shown in Figure 5.19, PLSM motifs help us infer the
relationships exisitng across multiple views. Figure 5.19(a,d) show people entering the station and
going to the nearest turnstiles. Figure 5.19(g) shows people entering from the left side often go
to the right side. This behavior is explained by the presence, on the right, of an elevator and the
escalator for going down to the platform. Figure 5.19(b) captures people coming from the escalator
(blue in the middle left part of the lower image), and then exiting the station (red in the upper
image) after passing behind the pillar. We also see that this behavior is actually correlated with
some activity on the right: we see here the two ways of reaching the station exits from the metro
platform. This is an example where the motifs explain the entry and exit points in the views.
Figure 5.19(e,h) show some typical trajectory of people who use the station as an underground
passage without actually going beyond the turnstiles. Figure 5.19(c) shows one of the different
ways of going to the vending machine. In Figure 5.19(f,i), the two ways of leaving the vending
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.19. Representative motifs from overlapping view-pairs fused at the feature level. Motifs here reflect the rela-
tionship between the two views very well. The

machines are seen: Figure 5.19(f) for the one on the right and Figure 5.19(i) for the one on the left.

From these motifs, we observe that we can extract activities that span multiple cameras by
simply fusing the features together. While the cameras are overlapping, most motifs span both the
cameras explaining their relationships and providing a soft camera calibration. When the views
are non-overlapping, motifs are independent and mostly restricted to single views. These examples
also highlight the advantage of the temporal aspect of the PLSM motif. That is, the temporal order
within motifs has enabled us to explain where or in which camera view an activity starts and where
it ends, giving clues about entry and exit points in the scene. Additionally, the temporal order can
be used to infer the transit times between the camera views.

Many existing methods for multi-camera activity analysis rely on either a) inter-camera calibra-
tion, b) inter-camera object correspondences or c) modeling distribution of transition times between
cameras. The work closest to what is presented in this section is by Loy et al. (Loy et al., 2009),
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where they rely on more robust lower level features (static and moving activities in the foreground)
computed over semantically derived region segments. Cross Canonical Correlation Analysis (xCCA)
is then applied to extract relations among the regions from multiple views and derive the topology
of the camera network. Although the obtained model is used to improve person reidentification
across views, the approach does not result in a detailed temporal activity model with automatic soft
calibration as we propose here.

Topic Length.

(a) P (z) = 0.101 (b) P (z) = 0.096 (c) P (z) = 0.036 (d) P (z) = 0.049

(e) P (z) = 0.092 (f) P (z) = 0.066 (g) P (z) = 0.060 (h) P (z) = 0.055

(i) P (z) = 0.102 (j) P (z) = 0.088 (k) P (z) = 0.161 (l) P (z) = 0.082

Figure 5.20. Motifs of 20s duration that mainly differ from their 10s shorter counterparts. (a–d) Far-field, (e–h) MIT, and
(i–j) Traffic junction data (k–l) Metro station data. All the above motifs capture the full extent of the activities within the
scene.

We also experimented with longer motif duration Tz. For instance Figure 5.20 shows motifs of
20 second duration from all the three datasets. Since longer motifs capture more activities, the BIC
measure selected only 16, 16, 14 and 12 motifs for the Far-field, MIT, Traffic junction and Metro
station data respectively. Broadly speaking, when one extends the motif maximal length beyond
the actual duration of a scene activity, the same motif is estimated, as already observed with syn-
thetic data 8. This is typically the case with the short vehicle motifs in the MIT (Figure 5.15(f,l))

8. Note however that longer motifs increase the chance of observing some random co-occurrences, as the amount of
overlap with other activities, potentially unexplained by current motifs, increases as well. This is particularly true when
the amount of data is not very large like in the Traffic junction case.
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or Traffic junction (Figure 5.16(a-c)) datasets. Still, as activities can often be described with differ-
ent time granularities, variations or other motifs may appear. For instance, as the travel time of
vehicles in the Far-field or MIT scenes usually lasts longer than 10 seconds, vehicle activities are
now captured as a single motif as shown in Figure 5.20 rather than as a sequence of shorter motifs
of 5 to 10 seconds in length. As an example, the motif in Figure 5.20(a) combines the activities of
Figure 5.14(e,d). The same applies with the pedestrian activities in the Traffic Junction case (cf
Figure 5.20(i,j)). In case of metro station data, the motif in Figure 5.20(k) captures people mov-
ing towards the turnstile and crossing it, one after another. Figure 5.20(l) shows movement from
bottom of the scene.

Effect of MAP Prior on time

In this section, we provide an illustration of how the MAP framework is used to improve PLSM
results. In section 5.5.1, we proposed to use MAP to favor the occurrences of the motif words at the
start of the motif. Since our motifs aim at capturing real world activities, we prefer that the SLA
activity starts exactly at the first time instant of the motif rather than after a few time steps. This
is explained in Figure 5.21.

(a) without MAP prior (b) with MAP prior

(c) P (w, tr|z) of (a) (d) P (w, tr|z) of (b)

Figure 5.21. Illustrating effect of MAP prior on tr .

In Figure 5.21, the same activity of vehicle moving from bottom right and taking a right turn
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(a) without sparsity (b) with sparsity (c) events

Figure 5.22. Precision/recall curves for the detection of 3 types of events mapped onto 3 topics, evaluated on a 12
minute test video. Results are provided both without and with sparsity. F-score at equal precision and recall (three
curves): without sparsity (0.958, 0.818, 0.833), with sparsity (0.958, 0.818, 1). Area under the curves: without sparsity
(0.995, 0.931, 0.967), with sparsity (0.997, 0.867, 1).

extracted from two runs of PLSM (a) without a prior, (b) with a MAP prior on tr is shown. The
prior used is a decreasing ramp as a function of the time-step and the length of the motif, given
by f(tr) ∝ (Tz − tr) + c. Figure 5.21(c and d) show the P (w, tr|z) matrix of Figure 5.21(a and b)
respectively. Darker color indicates a higher probability. The motifs are 10 time steps (10 seconds)
long. Without prior (cf. Figure 5.21(a and c)), we can observe that no words occur in the first
3 time steps, which means that the activity captured by PLSM effectively starts after a relative
time of 4 seconds from the beginning of the motif. This is also indicated by the rendered motif
in Figure 5.21(a) that starts with green color instead of blue. When using the ramp MAP prior
on the temporal axis, the PLSM algorithm actually recovers motifs with words occurring in the
first time steps of the motifs, as seen in the matrix Figure 5.21(d) and in the image Figure 5.21(b)
which starts with the Violet-Blue color. Notice that as a consequence of having words at the motif
beginning, PLSM will better capture longer activities, as shown by the longer trailing parts in the
matrix (d) which is reflected by a longer extension of the activity towards the top right of the scene
in the (b) image.

5.5.3 Event detection

To evaluate how well the recovered motifs match the real activities observed in the data, we
performed a quantitative analysis by using the PLSM model to detect particular events. Indeed, as
the model can estimate the most probable occurrences P (ts, z|d) of a topic z for a test document d, it
is possible to create an event detector by considering all ts for which P (ts, z|d) is above a threshold.
By varying this threshold, we can control the trade-off between precision and completeness (i.e.,
recall).

For this event detection task, we labeled a 12 minute video clip from the Far-field scene, distinct
from the training set, and considered all the different car activities that pass through the three



5.5. VIDEO SCENE ANALYSIS RESULTS 87

road junction. Activity categories that occurred fewer than 5 times in this test data were discarded,
which left us with the 3 activity categories depicted in Figure 5.22 with a total of 51 occurrences.

Given the fully unsupervised nature of our method, we manually associated each ground truth
category to one of the discovered motifs (of maximum 10 second duration). This one to one manual
association is a very minimal form of supervision and is somewhat suboptimal: the recovered PLSM
motifs might not be matching the labelled events, and the one to one matching is somewhat limiting
(see results below). The motifs considered for event detection are shown in 5.14(a,d,i). Using the
occurrences P (ts, z|d) of these motifs 9, precision/recall curves were computed. They are shown in
Figure 5.22 both without and with sparsity.

From the curves, it is evident that for two out of the three events, we obtain a close to 100%
result, especially with sparsity. The worst performance is for the activity “top right to bottom right”
which gives a F-score of around 80%. This lower performance is due to the fact that there are
two motifs recovered that can explain the same ground truth activity (they may represent minor
variations in speed but could be merged to improve results). Overall, the results prove that the
discovered motifs match the real activities well, and that motif starting times could be exploited for
real event detection.

5.5.4 Activity prediction

The predictive model. Given the set of scenes used here, it is possible to predict the most probable
words that can occur in the near future. This is used mainly as a method to evaluated different
other models with the proposed PLSM method. We have thus defined our task as estimating the
probability P predt (w) that a word w appears at time t given all past information, that is, given the
temporal document n(w, ta, d) up to time ta = t− 1.

In our generative modeling approach, a word at time t can occur due to either a motif that has
already started at a past time ts ∈ [t− Tz + 1, t− 1], or due to a motif that starts at the same time t.
Hence, we define the prediction model as:

P predt (w) ∝ (1− γ)

t−1∑
ts=t−Tz+1

∑
z

P̂ (ts, z|d)P (w, t− ts|z) + γ
∑
z

P (z)P (w, 0|z), (5.17)

where P̂ (ts, z|d) denotes our estimation that the motif z starts at time ts given the observed data,
γ represents the probability that a topic starts at the current instant, and P (z) represents the motif
prior probability estimated (along with the motifs) on training data 10. To set γ, we have given equal
priority to the starting time instants, and set γ = 1

Tz
, i.e., a value of 0.1 in the current experiments.

To obtain P̂ (ts, z|d) we simply apply our inference procedure to the temporal document n(w, ta, d)

9. To perform the temporal association we allowed a constant offset between the event in the ground truth, and the
starting time of a motif learned from PLSM.

10. Note that rather than simply using P (z) as the prior for a motif to start at time t, we could have further exploited the
past informations available in the past motif occurrences P̂ (ts, z|d) (e.g., the motif of Figure 5.14(e) is often followed by that
of Figure 5.14(d) several seconds later). However, as this is not part of our model, we preferred to go for the simpler case.
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using only observations up to time t− 1.

Evaluation protocol. The prediction performance was evaluated using a standard 10 folds cross-
validation approach. That is, each dataset (5500 and 6500 time steps in the MIT and Far-field
cases, respectively) was split in 10 folds. Then, for each fold, the complementary 90% of the data
was used to train a model that was tested and evaluated on this fold. The reported results are the
average over the 10 folds. As performance measure, we used the average normalized prediction
log-likelihood (ANL) defined as:

ANL =
1

Ntest

∑
t

∑
w n(w, t, d) log(P predt (w))∑

w n(w, t, d)
(5.18)

It is a standard measure for evaluating the modeling performance of topic models (Wang et al.,
2009), and is directly (inversely) related to the perplexity measure that is also commonly used to
evaluate the generalization power of topic models (Blei et al., 2003a; Hofmann, 2001). A higher
ANL value indicates a better predictive capacity and vice versa. In order to compare the prediction
accuracy of our model, we implemented three other methods for prediction.

Temporal Constancy. In this method, we assume that observations do not change over time and
hence observations at any time can be approximated by the observations from its immediate past.
More specifically, the probability P predt (w) of a word appearing at time t is given by:

P predt (w) =
n(w, t− 1) + c

cNw +
∑
w n(w, t− 1)

, (5.19)

where the constant c is a smoothing term added to predict a possible future word that does not occur
at time t− 1. A popular terminology for this is Laplace smoothing. We set c = 1 in our experiments.

Simple HMM. Here, the sequences of observation vectors ot(w) = n(w, t, d) from the training tem-
poral documents were used to learn in an unsupervised fashion (i.e., by maximizing the data-
likelihood) a fully-connected HMM with n states. The emission probabilities were defined as Gaus-
sians with a diagonal covariance matrix. At test time, the trained HMM was used to compute the
expected state probability at time t given all observations up to time t− 1, from which the expected
observation vector (and hence a predicted word probability P predt (w)) was inferred.

Topic HMM. The second model is a more sophisticated approach in line with (Hospedales et al.,
2009), wherein the Markov chain models the dynamics of a global behavior state. More precisely,
we first apply PLSA (with n topics) to the set of training documents {ot, t ∈ training}. This results
in a set of topics P (w|z) and topic distributions o′t(z) = P (z|ot). We then learn a HMM with n

states using the topic observation sequence o′t. The HMM states learned with this method capture
distinct scene level behaviors characterized by interacting topics and the Markov chain models the
temporal dependencies among them. We thus refer to this method as Topic HMM. At test time,
the expected state, topic and word probability distributions can be successively computed using the
learned model.

Results. Firstly, the results from the temporal constancy method (equation (5.19)) were interest-
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Figure 5.23. Average Normalized Prediction log-likelihoods for (a) Far-field data, (b) MIT data. In both plots, the x-axis
represents either the number of motifs (PLSM model), or the number HMM states in the two other cases.

ing and helped us in understanding the nature of the two datasets better. The AVL values obtained
from this method for Far-field and MIT datasets were −3.5 and −3.3 respectively. In case of Far-field
data, this method outperforms the HMM method for all states. It also performs better than Topic-
HMM until 10 states. However for the MIT dataset, it also outperforms the PLSM approach 11.
Investigating these results revealed that MIT data is dominated by a huge number of waiting ac-
tivities, a phenomenon that represents 45% to 55% of the total observations. Since waiting activities
produce repeating words, a smoothed replication of the close past makes accurate predictions. This
accuracy (for the waiting activities) is difficult to surpass. For instance, PLSM learns motifs that
capture co-occurring activities. When only some activities associated to a given motif are appearing
in the past, this motif is nevertheless triggered and used to predict the potential occurrence of all
the activities in the future, hence loosing some prediction accuracy. In other words, PLSM learns
co-occuring activities, such as cars waiting in opposite directions of the junction, but not necessar-
ily isolated events such as a car waiting only in one direction. Hence, when an isolated ’waiting’
event happens, the simple replication of the past will be much more accurate. Finally, note that the
constancy assumption does not generalize well besides these waiting activities: it performs worse
in the Far-Field case, and would perform poorly in the MIT case if one would remove the no-motion
words obtained from background subtraction.

Figure 5.23 presents the results of PLSM and the two other competitive methods. We observe
that the simple HMM method gives the worst predictions on both datasets compared to the more
sophisticated Topic-HMM, whose observations come from the PLSA topics. However, overall, the
PLSM model gives a much better performance than the two HMM based methods, showing that
the incorporation of temporal information at the topic level rather than at the global scene level is
a better strategy. In the Far-field case, where the scene is not governed by any specific rules, PLSM

11. Note that when c = 0, the AVL measures dip to -9.2 and -4.6 for the Far-field and MIT datasets respectively, supporting
the need for a smoothing term.
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performs consistently and significantly better with an average likelihood 200% greater than that
of the Topic-HMM when n = 5, and 90% greater when n = 30. Note that both methods improve as
more motifs or states are used, but saturate beyond a value of 30.

On the MIT data, the situation is somewhat different. PLSM and HMM based approaches
perform similarly when the motifs/states is n = 5. The HMM approaches have an advantage as
they are able to model the different phases of the regular cycle governed by the traffic lights that
the scene goes through. These distinct global behavior states and the transitions between them
are captured explicitly in the Topic-HMM and to a lesser extent in the HMM method whereas
our method does not have any prior on the sequences of motif occurrences. Nevertheless, PLSM
provides a finer and more detailed description of the activities and its prediction accuracy improves
consistently beyond the performance of the other methods that have difficulties to take advantage
of the modeling of questionable and unpredictable sub-phase global scene activity patterns. Note
however that the difference with the other models is not as high in this case as on the Far-field
data, but the PLSM model still performs 35% better than the Topic-HMM. Finally, it is interesting
to note that the prediction accuracy of the PLSM method tends to saturate for a number of motif
Nz close to that selected using the BIC criterion (20 for the Far-field data, 26 for MIT data).

5.6 Audio Scene Analysis with Microphone array

The PLSM model can be applied to any multivariate time-series that can be described as
word×time counts. To test the generality of the model, we used it for analysing a scene using
acoustic data. The setup used to capture and the features used to obtain temporal documents were
explained in chapter 3. Here, we present the motifs obtained by applying PLSM on the TDOA data.

For the experiments, 30 recordings of approximately 20 seconds each were used, comprising a
total of around 120 car passing events. Given the 80ms time step, each recording produced a tem-
poral document of around 250 time instants with 25 possible words (angles). The PLSM approach
was applied to these temporal documents, with the same MAP setting and sparsity level (λ = 0.25)
as in the video case. However, given the known expected number of topics (four), we did not use
the BIC criterion. The results are shown in Figure 5.24 when using a maximum length of 30 time
steps (≈ 2.5 seconds). Despite the noise and variations in vehicle speed (from around 35 to 70km/h),
we observe that the dominant patterns are clearly captured: the ramp ones, corresponding to the
car passing in front of the microphones; and the almost stationary motifs corresponding to cars
approaching or leaving. Indeed, in this latter cases, azimuth angles are around +90 or −90 degrees
and do not vary much. These activities get captured as separated motifs (from the ramp ones) be-
cause the measured duration of the “approach phase” is highly variable and depends on the sound
volume of the car: a louder car will be perceived earlier by the microphones. Similar results were
obtained when searching for motifs from 30 to 70 time steps. For instance, Figure 5.25 shows the
results with a length of 60 time steps(≈ 5 seconds).
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Figure 5.24. Four sequential motifs of 30 timesteps (≈ 2.5 seconds) from TDOA data.

Figure 5.25. Four sequential motifs of 60 timesteps (≈ 5 seconds) from TDOA data.

5.7 Conclusion
In this chapter we proposed a novel unsupervised approach for discovering activity motifs from

multivariate temporal sequences. The PLSM model infers temporal patterns of a maximum time
duration by modeling the temporal co-occurrence of visual words, which significantly differs from
previous topic model based approaches. PLSM motifs include the temporal aspect and is therefore
more complete in its representation. This is made possible thanks to the introduction of latent vari-
ables representing the motif start times, bringing the following advantages: a) implicit alignment of
occurrences of the same motif while learning, and b) inference of the activity start times. The model
parameters can be inferred efficiently using an Expectation-Maximization procedure that exploits a
novel sparsity constraint. The effectiveness of our model was extensively validated using synthetic
as well as real life data sets from both structured and unstructured scenes. When features from
multiple cameras were fused and presented to PLSM, we could obtain motifs that span both the
cameras wherever relevant and motifs restricted to single views in other cases. The synthetic data
was primarily used to demonstrate several aspects of the model like the effect of noise, the sparsity
constraint, the topic length and the number of topics effectively. Qualitative results and quantita-
tive experiments on event detection and prediction tasks showed that the approach was discovering
motifs consistent with the scene activities and was resulting in superior performance compared to
other state of the art Dynamic Bayesian Network based alternatives. Although the method was
demonstrated for activities in a video, we claim that it can have wide applications where sequential
patterns need to be extracted. This claim was sufficiently demonstrated using data from a different
modality like the TDOA data.

The model offers room for further improvements. For instance, although we have used the
Bayesian Information Criteria measure to determine the number of topics, we still observe a few
motifs (usually of lower p(z)) that are copies or minor variations of other motifs, which could hence
be merged. This could be better dealt with by using other data driven approaches like Dirichlet
Processes Teh et al. (2006) (please see Appendix B for an example). Finally, our model identifies
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activities and their starting times, but does not discover higher-level knowledge on the motif oc-
currences. Modeling these occurrences in terms of dependencies or interactions could enhance the
global understanding of the scene through, for instance, the identification of scene level rules (e.g.
right of way) or activity cycles due to the presence of a traffic light.



Chapter 6

Mixed Event Relationship Model

6.1 Introduction

Data from sensor logs capturing human activities exhibit complex dependencies. Assumptions
made in modeling and mining these long-term data logs should be as realistic as possible. Consider
for example, the MERL sensor dataset 1, which is recorded using 200 Passive Infrared Sensors
(PIR) over a period of one year. These wireless sensors detect movements of people and generate a
single activation when a person or group moves in the neighborhood of the sensor. PIRs could in
turn activate other sensors like a video camera to visually record the action or trigger appliances
such as lights. Mining common motion patterns from such a dataset is an interesting problem for
infrastructure management and understanding human behavior.

A similar case can be made with surveillance data considered in the previous chapters that mon-
itor traffic and people activities in the view. Parallels could be drawn between PIR activations in the
sensor log data and event detections from single or multi-camera scene videos. From surveillance
videos we would like to understand the different activities going on in the scene, the dependencies
between them and possibly the different phases of the scene with their unique characteristics.

In this chapter, we address this issue by proposing a novel model called the Mixed Event
Relationship (MER) model, that takes as input a binary event matrix whose entries indicate for
instance the start of a fixed set of short-term temporal activities over time, and outputs both local
rules (e.g., the implicit rules such as the “right of way” that are followed, or the sequence of trajec-
tory segments that a pedestrian has to follow to reach a destination in a multi-camera set-up) and
global scene states for instance, determined by the traffic lights.

The rest of this chapter is organized as follows. In section 6.2, we first present an intuition of
the model using an example, and then build the model from the basic ideas of dynamic Bayesian
networks. Then we summarize the model with its generative perspective and inference. Following
this, we present experimental details in section 6.3. Our results along with analysis and conclusions

1. http://www.merl.com/wmd/details.html
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Figure 6.1. Data from sensor logs, an illustration – Observations are binary matrices: can be from event occurrences
of short term activities or sensor activations. Each observation occurs either independently or as a continuation of a
previous observation. A scene-level state controls the number of activities starting at a given instant, their type as well
as whether they are independent or not.

are given in sections 6.4 and 6.5 respectively.

6.2 Model and Inference

In this section, we first introduce some of the important characteristics of activity data that we
would like to model and proceed to build the model step by step. Finally, we will formalize the
model with the generative process and the inference procedure.

6.2.1 Characteristics of activity data

Figure 6.1 shows a snapshot of a binary matrix of event occurrences. The event occurrences are
given by red and blue boxes in the matrix. The figure also illustrates some typical characteristics
of the data which are as follows:

– Simultaneous occurrence of multiple events. As shown in Figure 6.1, multiple events
are activated simultaneously; for instance, in a traffic scene, people can be walking in the
pedestrian area while vehicles stop or move in different directions of the scene simultaneously.

– Scene states. A scene can go through different states characterized by different activities. In
Figure 6.1, the states are represented as colored circles on top and indicate that 2 states can
happen. We can also see that the global state 1 mostly triggers activity 2. In a traffic scene
controlled by lights, states can represent the different phases of the signal. The different
phases can trigger different types of events and possibly a different number of events.

– Dependent and Independent events. Events generated could be of two types, which are
labeled as independent and dependent. The independent events start on their own due to the
nature of the state. In Figure 6.1, they are given as red boxes with an arrow from the state.
For example, a static vehicle starting to move after a switch in traffic signal can be considered
independent. The dependent events on the other hand are triggered by some event in the
past and are indicated with blue boxes. The relation that caused one event to be triggered by
another one in the past is indicated with an arrow between the events.

– Variable temporal lags. The temporal lag between every pair of related events cannot
be fixed, i.e., a pair of events can co-occur with a variable temporal lag between them. In
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Figure 6.1, we see that event-2 often occurs after event-1 with a time lag of 3 to 5 seconds We
can consider that there is an average temporal lag between a particular pair of events with
some minor variability around the average. Therefore, these lags are not necessarily of first
order, i.e., they do not necessarily depend on the immediate past.

In our approach, we would like to model these general characteristics of activity data. We will
give an idea of how this can be achieved by relaxing the assumptions of the existing models.

6.2.2 Building the model

To build the model that achieves our goals, let us first start by reviewing the basic ideas of a
DBNs. Consider a discrete time series, i.e., a sequence of observations where an observation at
each instant of time takes a value from one of Nc possible values. Good examples are sequence
of words in a sentence, or weather observations over a sequence of days (sunny, rainy and cloudy)
as shown in Figure 6.2(a). This can be modeled using a stochastic process called a Markov chain.
Here at each time instant t, we have a random variable ct that takes one of the possible values or
states depending on the random variables in the past, namely the set {ct−1, ct−2, . . . , ..c0}. Usually,
we restrict the dependency to the observation in the immediate past, i.e., P (ct|ct−1, ct−2, . . . , ..c0) =

P (ct|ct−1), resulting in a Markov chain of the first order. Here, the jump from one state to another
in the sequence, P (ct|ct−1) is probabilistically given by the transition parameters π, a set of Nc
multinomial distributions. In a Bayesian formulation, every parameter is sampled from a prior
distribution. In this case, since the transition probabilities form a discrete distribution, they are
sampled from a Dirichlet distribution with hyper-parameter ϕ as shown in in the graphical model
in Figure 6.2(c).

But often, we do not have access to the true state value but only observe some characteristics
of the true state. Such observations and states are modeled using the Hidden Markov Models
(HMM) as shown in Figure 6.3(a). Now we need two sets of random variables; let ct represent
the state of the system at time t that is hidden and Ot, the observation from ct, encircled in a
shaded node. Note that the arrows connecting the hidden nodes is similar to the simple Markov
chain we saw in Figure 6.2, except that it is now a hidden state capable of generating observations.
Invoking the properties of conditional independence, we can say that the observation at time t, Ot

is conditionally independent of past states ct−1 or past observations Ot−1 given the current state ct

of the system. The observations are modeled as a function of the hidden state parameters. Here,
we will assume that the observations are discrete taking one of the Nz values depending on the
hidden state. Similarly, the transitions can be modeled using a Discrete distribution parameterized
by θk for each state k, and are called the emission distributions. Again to make this consistent with
the Bayesian formulation, the emission parameters {θk}Nc

k=1 are sampled from a Dirichlet prior
distribution Dirichlet(α) resulting in the model given in Figure 6.3(b).

In the HMM model, we assumed that there is a single observation generated by the state at an
instant. But activity content of a scene can vary over time. We need to accommodate a variable
number of events, and indeed each state might be charecterized by different levels of activities.
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Figure 6.2. Three different representations of a Markov model. (a) Pictorial representation of a chain system. (b) A first
order Markov model unfolded in time, (c) The model in (b) with multinomial parameters and Dirichlet priors in Bayesian
view.
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Figure 6.3. Hidden Markov Model variants: (a) Conventional representation of HMM. (b) Bayesian view of HMM with
multinomial transitions and emission distributions with their respective Dirichlet priors. c) HMM generating variable num-
ber of observations with a Poisson parameter and a Gamma prior.

This variability in the number of observations can be modeled using a Poisson distribution 2 which
gives an integer value based on a parameter λ. To accommodate this variability, we add a Poisson
parameter λk into each HMM state k. Then the observations for any instant are obtained as follows:
draw the number of observations N t

o|k ∼ Poisson(λk); then draw the observations {Oti}
Nt

o
i=1 as Oti |k ∼

Discrete(θk). This is shown in Figure 6.3(c), where we adopt a Bayesian approach and add a Gamma
prior to the Poisson parameter. The Gamma distribution parameterized by γ = {γ1, γ2} 3 being a
conjugate distribution to Poisson distribution, becomes the natural choice for the prior distribution.
This results in a mathematically convenient solution for the posterior parameters.

Now we have an HMM that can generate a variable number of discrete observations. As illus-
trated in Figure 6.1, there are both indepedent and dependent events, where the dependent events
are triggered by an event in the past. To model this phenomenon, we associate a selector variable
sampled from a Bernoulli distribution to each event. A sample from the Bernoulli distribution takes
a value of 1 or 0. Therefore, the sample values are used to decide if an event should be independent
or not; in one case, the event is generated from a state-dependent multinomial and in another case,
the event is generated from some past event. This entire process is more formally described in the
following parts of the section.

2. Poisson distribution is used to express the probability of a given number of events occurring in a fixed interval of time
and/or space.

3. The hyper-parameters also have a real-word interpretation that γ1 indicates the mean count of observations in γ2
intervals.
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Figure 6.4. Graphical Model – green: links to generate all activities, blue: links to generate dependent activities, red:
links to generate independent activities.

6.2.3 Generative Process

In this section we describe the generative process of the model in detail. The notations used in
the model are given in Table 6.1 and the graphical model is shown in Figure 6.4. Our data O is the
binary event matrix with Td columns indicating time, and Nz rows indicating the fixed set of events.
Every non-zero entry Oti , in the matrix represents an event i.e., the start of an activity i at time t.
The generative process consists of three parts: i) generating parameters for the global scene states;
ii) generating parameters for event relations and iii) generating the events.

Global scene states. We assume that the scene passes through Nc possible states, i.e., at each
instant t, the scene is in a state ct among the Nc possible ones, depending on the previous state
ct−1. The state ct controls the number of observations that can occur using a Poisson distribu-
tion with parameter λct , the proportion of dependent or independent events using a Bernoulli
distribution with parameter εct , the set of independent events using a Multinomial distribution
with parameter θct and and its transitions from ct to ct+1 using the transition parameter πct .
Poisson, Bernoulli, Discrete and the transition parameters are sampled from prior distributions:
Gamma(γ1, γ2), Beta(ξ0, ξ1), Dirichlet(α) and Dirichlet(ϕ) respectively. The choice of the prior distri-
butions is due to their conjugate properties that result in mathematical tractability.

Local event relations. The local event relations determine which event occurs after which other
event. Since the dependency can be attributed to an event that occurred not just in immediate
past but farther back in time, it needs to be captured using two entities: i) a Discrete distribution
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Symbol Description
α Dirichlet prior on independent activities
β Dirichlet prior on motif transitions
µ0, σ2

0 Hyper-parameters of Gaussian prior
γ = {γ1, γ2} Hyper-parameters of Gamma prior
ξ = {ξ0, ξ1} Hyper-parameters of Beta prior
ϕ Dirichlet prior on state transitions
τz′(z) Transition from event z′ to z
δz′,z, σ

2 Mean and a fixed variance on time lag between z′ and z
θk Distribution over activities set, for each state k
λk Poisson parameter to select N t

o, for each state k
εk Bernoulli parameter to select sti, for each state k
πk Global state transitions, for each state k vsp
N t
o Number of activities at time t

P t Set of past events for time t
N t
p Number of past events for time t

Tk Number of time instants explained by state k
Tl Maximum lag for event associations

Table 6.1. Notations used in this chapter

Discrete(τz′(.)) for each past observation of type z′ to capture the transition between events, and ii)
a Gaussian distribution with mean δz′,z on temporal lags for each possible transition from z′ to z.
The transition and lag parameters are obtained from Dirichlet(β) and N (δz′,z|µ0, σ

2
0) respectively.

Sampling events. At each time t, the number of events N t
o is sampled from a Poisson(λct). For

each of event Oti , we associate a binary selector variable sti ∈ {0, 1} sampled from Bernoulli(εct). The
selector variable sti decides if the event is generated depending on one of the past occurrences or
independently. When sti = 1, we rely on the current state to start an independent event and sample
Oti from Discrete(θct). When sti = 0, we decide Oti to be dependent and associate it with another

variable vti which indicates one of the past events from the set P t = {Ot′i }
Nt

p

i=1,t′<t Practically, we
limit the dependency to a fixed temporal extent in the past t− Tl ≤ t′ < t.

In the generative process, we assume that when the decision variable is 0, there is at least one
event in the past that would take responsibility of generating the current event. More precisely,
when sti = 0, we assume that P t 6= ∅ and that there exists a past event z′ such that τz′,z 6= 0.
When P t = ∅, we expect that such a state of the scene is captured in the global state variable hence
generating only sti = 1. Please see the inference derivation in Appendix C on how this issue is
addressed by jointly sampling sti, vti .

A similar use of binary decision variables can be seen in the text mining domain, where it is
used to decide if words need to be associated to form phrases (Griffiths et al., 2007; Wang et al.,
2007) or not. However, unlike in text, where there is a single observation at any time, videos have
multiple event occurrences at any instant with large temporal variations making this association a



6.2. MODEL AND INFERENCE 99

1. for each k = 1, . . . , Nc global states;
(a) draw Poisson parameter λk ∼ Gamma(γ1, γ2)

(b) draw Bernoulli parameter εk ∼ Beta(ξ0, ξ1)

(c) draw Multinomial parameter θk ∼ Dirichlet(α)

(d) draw state transitions πk ∼ Dirichlet(ϕ)

2. for each event type z ∈ [1..Nz], draw transitions τz ∼ Dirichlet(β);

3. for each event pair z′, z ∈ [1..Nz]
2, draw lags δz′,z ∼ N (δz′,z|µ0, σ

2
0)

4. for each t in 1, . . . , Td

(a) draw ct ∼ Discrete(πct−1)

(b) draw a number N t
o ∼ Poisson(λct)

(c) for each i in 1, . . . , N t
o

– draw a binary value sti ∼ Bernoulli(εct)

– if sti = 1, draw Oti ∼ Discrete(θct) ,
– if sti = 0, draw vti |P t ∼ Uniform( 1

Nt
p
), where P t is the set of past events

P t(vti) = z′ is the past event occurring at t′ upon which Oti depends on.
– draw Oti ∼ N (t− t′|δz′,z, σ2) ·Discrete(τz′),

where δz′,z is the mean lag between z′ and z. σ2 is a fixed variance.

Figure 6.5. The Mixed Event Relationship model generative process

complex problem. It is also interesting to note that several types of Hidden Markov Model (HMM)
can be derived from our MER model. For instance, when the number of activities N t

o is 1, it reduces
to a kind of HMM where observations at each time instant can be either dependent or independent
of the current state. When si is always set to 1, it reduces to the standard HMM, where the states
generate all the observations from a state specific Discrete distribution.

6.2.4 Model Inference

Hierarchical Bayesian models like LDA, HDP, HDLSM result in mathematical intractable forms
for the posterior distributions. Therefore, approximate inference methods like variational Bayes
and MCMC methods are popularly used to infer the latent variables of the model. A particular
inference method that is of interest to us is the collapsed Gibbs sampling procedure (Griffiths and
Steyvers, 2004) due to its simplicity and faster convergence. The collapsed Gibbs sampling method
integrates out (collapses) the parameter(s) resulting in a smaller set of variables to be estimated.
In other words, collapsing implies sampling the latent variables and skipping the steps of sampling
the parameter(s). The parameters are later inferred from the latent variable samples after the
burn-in period. This collapsing step results in a smaller set of parameters, faster convergence of
the posterior distribution and easier implementations (Liu, 1994).

Exact inference for the MER model is intractable. But thanks to conjugate pairs like Poisson-
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Gamma, Dirichlet-Multinomial and Beta-Bernoulli and Normal-Normal, it is possible to derive a
collapsed Gibbs sampling algorithm by integrating out the parameters {π, λ, ε, θ, τ, δ} (please see
Appendix D for more details on their conjugacy properties). The algorithm proceeds by iteratively
sampling the decision variable sti, and indicator variable vti for each observation Oti conditioned
on all other variables, parameters and hyper-parameters. The state indicators ct are sampled for
each time instant conditioned on the rest of the variables. The complete derivation of the sampling
equations is given in Appendix C. Below, we give the main idea behind the inference process.

Since each occurrence also gives its occurrence time implicitly, we will drop the t associated with
sti and denote it by si except in places where time needs to be mentioned explicitly. We will also use
O,S, V to refer to the set of occurrences, their corresponding selector variables, and indicator vari-
ables. O¬i, S¬i, V¬i, will indicate all the occurrences, selector variables and the indicator variables
except the ith one and hp refers to the set of hyper-parameters set: {ϕ, γ, ξ, α, β, µ0, σ

2
0}.

For a given observation i, we re-sample si and vi jointly. For the case where si = 1 (independent
event), vi is not meaningful and we obtain the following sampling probability:

p(si = 1, vi|Oti = z, ct = k, S¬i, V¬i, O¬i, C¬i, hp) ∝
l
(1)
−i,k + ξ1

l
(.)
−i,k + ξ0 + ξ1

·
q

(z)
−i,k + α

q
(.)
−i,k +Nzα

(6.1)

In the equation (6.1), q(z)
−i,k is the count of motif z occurring with state k when sti = 1 removing the

current observation. Similarly, l(1)
−i,k and l

(0)
−i,k are the counts of si = 1 and si = 0 appearing with

state k after omitting the current observation. Qualitatively, the probability of si = 1 is based on
two factors; the first term on the right depends on how often an independent event is selected from
the state k, and the second term depends on how often the event z is associated with the state k.

In cases where an observation depends (i.e., si = 0) on the jth one in the past (i.e., vi = j) that is
of type z′, we have the following sampling probability:

p(si = 0, vi = j|O,S¬i, V¬i, ci = k,C¬i, hp) ∝
l
(0)
−i,k + ξ0

l
(.)
−i,k + ξ0 + ξ1

r
(z)
−i,z′ + β

r
(.)
−i,z′ +Nz · β

N
(
f(P t(j), Oti)|δz′,z, σ

)
,

(6.2)

where r(z)
−i,z′ is the count of event z appearing after z′ and f(P t(j), Oti) is the temporal delay between

P t(j) = z′ and Oti = z. The mean temporal lag for each pair of events δz′,z is the posterior estimate
obtained from all associations made between z′ and z during the inference, except the current one
and σ2 is a fixed variance in the lag. The equation (6.2) which gives the probability of si = 0 is based
on three terms mainly. The first term on the right side depends on how often a dependent event
is observed under state k, the second term gives the number of times a transition from z′ to z is
made, and the third term gives the probability of the current time lag t− t′ for the pair z′ to z under
the Gaussian distribution with the mean lag δz′,z and a variance σ2. These two equations (6.1,6.2)
show that there are two competing factors to explain an event. The event becomes independent or
dependent based on which one of the two factors explain the observation better.

For re-sampling the global state ct = k at time t, the sampling depends on four factors coming
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from the links in the graphical model. The terms are: a) the number of transitions made from ct−1

to ct and from ct to ct+1, b) the chances of observing the current number of observations N t
o under

the state k, c) the chances of observing the current proportion of independent and dependent events,
i.e., the number of times we see a si = 0 or 1 under the state k, and lastly d) the number of times
the independent event types of the current time instant have co-occurred with the state k. These
factors are relatively complicated and provided in Appendix C, equation (C.24).

6.3 Experimental setup

Datasets – To evaluate the MER methods we experimented on 4 different video datasets that
were presented in chapter 3. The MIT dataset (Wang et al., 2009), the QMUL Junction
dataset (Hospedales et al., 2009), the Far-field dataset (Varadarajan et al., 2010) and the ETH
dataset (Kuettel et al., 2010) were used. In the following section we explain how the binary event
matrix is obtained and then present the results.

Video to Events. In practice, the MER model can be made to work with count matrices with some
adaptation. But in our implementation, we used a sparse binary event matrix as input where the
non-zero entries correspond to activity starts (events). To obtain this, we used the PLSM model
proposed in chapter 5, that takes a temporal document as input and produces motifs and their start
times as output. More precisely, the video was converted to a single temporal document as described
in section 5.4.1. By applying PLSM on the temporal document, we obtained dominant activities of
the scene as P (w, tr|z) and their start times as P (z, ts|d) or simply P (z, ts) (as we have a single
document now). Using a small threshold th on the starting time probabilities P (z, ts), we create the
binary event matrix B where the entries B(z, ts) = 1, if P (z, ts) ≥ th and B(z, ts) = 0 otherwise.
The threshold was selected by assuming that confident event detections should be more than the
uniform value i.e., 1/(Nz × Td), which is a small value. We obtained 25, 20, 20 and 15 motifs from
the MIT, QMUL Junction, ETH and Far-field datasets, all with a fixed maximal duration of 5 or 10
seconds. Since the motifs from MIT and Far-field datasets were sufficiently demonstrated in the
previous chapter 5, we show some sample motifs from QMUL Junction and ETH-Zurich datasets
and the binary event matrices obtained from them.

Sample events from QMUL Junction dataset. Figure 6.6 shows 5 sample events out of the 20
motifs obtained from the QMUL Junction video by applying PLSM. These motifs are 5 seconds long.
The motifs are represented using the same scheme described in section 5.4.2. The motifs represent
traffic activity: a) from left to right, b) from bottom left to top left, c) from top right to bottom right
d) from bottom of the scene towards right and, e) from right to left. This is captured from UK where
people drive on the left.

In Figure 6.7, we show the binary event matrix from 20 PLSM motifs over a 5 minute segment
of QMUL junction video, obtained by the procedure described just before. Dark locations indicate
presence of an event corresponding to that row at the time corresponding to the column. In this ma-
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(a) (b) (c) (d) (e)

Figure 6.6. 5 sample motifs out of the 20 motifs obtained by applying PLSM on QMUL junction video. Time within the
activity is color-coded from violet to red. Locations of violet show the initial positions of the event and red shows the
final location of the event.

Figure 6.7. Binary event matrix of 300 seconds from QMUL Junction data, obtained by thresholding the p(ts, z|d) distri-
bution. Rows indicate motifs and columns indicate time. We can observe a pattern in the matrix showing a periodic
phenomenon.

trix we can observe periodic epochs of events caused by the traffic signals. Within each epoch, there
are self repeating events, for instance, the motifs in Figure 6.6(b,c) are often triggered repeatedly
due to vehicles passing one after the other within a cycle.

Sample events from the ETH-Z dataset. Figure 6.8 shows eight sample motifs out of the 20
motifs obtained from ETH video by applying PLSM. These motifs are 5 second long. The motifs are
represented using the same scheme described in section 5.4.2. The events represent a variety of
activities due to vehicles, trams and pedestrians. For example, Figure 6.8(a,b) show trams passing
from top right to bottom left and vice-versa. Figure 6.8(c,d) show pedestrian crossing the road, and
Figure 6.8(e–h) show vehicles moving along the curved road from top left to top right. Figure 6.9
shows a binary event matrix from a set of 20 events, over 300 seconds of the ETH video. Here
again, we can see periodic epochs and self repeating activities due to the traffic signals. The short
stretches of activations along the rows are due to self repeating activities. We will see that this
property is captured by the MER model as self loops in Figure 6.15.

Parameter Settings. As we have no a-priori information on any of the parameters, we used
non-informative symmetric Dirichlet distributions for {α,ϕ, β}. Similarly, we set equal values to
the Beta hyper-parameters ξ0 = ξ1 = 1 and the same follows for the Gamma distribution hyper-
parameters too. Since our motifs are 5 second long, we can expect dependent events to be triggered
after an average temporal lag between 1 to 10 seconds. So the prior for the mean temporal lag was
given by a Gaussian distribution with a wide spread, i.e., with µ0 = 5 and σ2

0 = 4. The maximum lag
Tl, i.e., maximum temporal lag between dependent events is set to twice the duration of activities.
We used 90% of the duration of each video mentioned for training our MER model. Gibbs sampling
was run for a sufficiently long number of iterations (1000 for each of them), where each iteration
consists of sampling the selector variable sti and the indicator variable vti for all the observations
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.8. Eight sample motifs out of 20 obtained from ETH-Z video by applying PLSM. Time within the activity is color-
coded from violet to red. Locations of violet show the initial positions of the event and red shows the final location of
the event.

Figure 6.9. Binary event matrix of 300 seconds from ETH-Z data. Obtained by thresholding the p(ts, z) distribution. Rows
indicate motifs and columns indicate time.

and the state variable ct for all the time instants. However, in all our experiments we found that
the sampler reached stationarity after 600 iterations.

6.4 Results

In this section we present some of the global scene level rules as well as local rules obtained by
applying the MER model.

6.4.1 Global rules

In our model the global rules are characterized by the scene-level states, their transition proba-
bilities, and their attributes. These correspond to the parameters {π, θ, ε, λ}. Here, we show global
rules obtained from QMUL Junction and MIT datasets.

QMUL Junction dataset. With a-priori knowledge about the scene activities, we applied MER
model to extract 4 global states from QMUL Junction dataset. The colored pattern (blue, cyan,
yellow and red) in Figure 6.10 top, shows the inferred state sequence of the scene over 10 minutes
of video. Below the state sequence we see the top ranking independent activities of the four states.
These activities correspond well to vehicles moving in the vertical directions (blue), moving from
bottom and turning towards the right (yellow), from left to right (red) and right to left (cyan) respec-
tively; in summary, they form the main phases of the cycle occurring in the scene. The repetitive
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100 200 300 400 500

Figure 6.10. Four scene states obtained by our model from the QMUL Junction dataset. The four states represented by
the colors blue, cyan, yellow and red are plotted for 600 seconds of video. Lower part: dominant activities found to
occur at each of the 4 states. Red ellipse: an abnormality where an emergency vehicle interrupts the traffic momen-
tarily.

pattern of colors (states) clearly shows that our model properly captures the periodic cycles of the
scene that are due to traffic lights. A notable exception in the periodic repetition of the states is
circled in the right part of Figure 6.10. This is an unusual event when a fire engine crosses from
left to right, freezing all other traffic.

MIT dataset. On the MIT dataset, we used 2 states in our model to produce the results shown
in Figure 6.11. We also experimented with 3 and 4 states and obtained comparable results with a
finer segmentation of the scene activities. The two states inferred by our model correspond to the
two main periods in the traffic cycle. The first state (in blue) corresponds to vehicles moving in the
top-down directions and vehicles waiting on the horizontal lanes. Similarly, the second state (in red)
captures vehicles moving in the horizontal directions, while vehicles on vertical lanes are waiting
(only one of these activities is shown due to space restrictions). We see that the scene periodically
follows the alternating traffic signals, except for some rare glitches.

6.4.2 Local rules

Our model captures local rules in the form of transitions from one activity to another, with a
time lag and fixed-variance Normal distribution. We can represent the set of local rules in the
form of a graph with (blue) edges annotated with a weight indicating the number of transitions
between the edges and the mean temporal lag δz′,z information as done for example in fig. 6.12
(detailed later). On such a figure, we can also show the number of times an activity was generated
as an independent occurrence with some sourceless (red) edges. As independent activities can be
caused by different scene-level states, the sourceless edges are annotated with the scene-level state
(ci) that cause them. For space and readability reasons we filtered out low frequency edges in the
illustrations using a threshold count of 30.
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100 200 300 400 500 600 700 800 900 1000

Figure 6.11. Two scene states obtained from MIT data shown for 1000 seconds. The two states correspond to distinct
periods of the traffic signal cycle. The time indicated in blue correspond to motion in the top-down directions. The red
region correspond to left-right movements.

Far-field dataset. Figure 6.12 shows the graph of activities recovered by our model for the Far-field
dataset with PLSM motifs of 5 seconds duration. Since there are no traffic signals, we used a single
global state. In this dataset, 13 of the 15 activities have been found to have notable dependencies.
Interestingly, Figure 6.12 properly exhibits two independent sub-parts in the graph. The two sub-
graphs correspond to the two main vehicle directions. The upper part of Figure 6.12 shows a chain a-
b-c-d-e for a vehicle coming from the right and disappearing on the top of the image. Only activities
a and b have been found to be spontaneous starts of activities. The sum of the lags δ of each
subgraph also gives the duration of the full trajectory of a vehicle in the scene which is around 10 to
15 seconds. To account for some vehicles slowing down or stopping at this location due to a single-
lane tunnel on the top right, we see that d and e activities have self loops. To account for possible
variations in vehicle speed, some “shortcut” transitions are also captured. For example, we see that
it is common to do directly b-d in 5.4 seconds instead of doing b-c-d in 6.1 seconds. The lower part of
Figure 6.12 captures the other direction for cars. Starts are spread on the three activities f, g, and
h. The loop on state f (same for g and h) is explained by the scene: cars coming from the top tend
to group together as there is a single-lane tunnel where cars cannot cross and have to wait for cars
from the other direction to finish passing.

Figure 6.13 shows the local rules from Far-field data when the event matrix was created from
10 second long PLSM motifs. Here again, we obtain three main spontaneous starts of events: The
sequence a-b-c-d) indicates activity starting from the top right and moving towards the bottom
right. The sequence in Figure 6.13(e-f-h-i) indicates activity starting from bottom right and moving



106 CHAPTER 6. MIXED EVENT RELATIONSHIP MODEL

91 (c=1)

122 (c=1)

42 (c=1)

58 (δ=1.931)

88 (δ=6.5795)

61 (c=1)

64 (δ=2.8906)

86 (δ=5.4186)

87 (c=1)

52 (δ=1.7885)

37 (c=1)

77 (δ=3.2208)

38 (δ=6.4474)

77 (δ=2.3766)

61 (δ=1.1803)

87 (δ=3.6782)

67 (δ=6.7463)

56 (δ=1.2143)

36 (δ=4.7778)

59 (δ=1.8814)

54 (δ=6.6667)

86 (δ=2.4535)

53 (δ=4.2642)

68 (δ=4.4706)

100 (δ=3.98)

52 (δ=1.25)

a b

c

d

e

f

g

h

i

j

k

mm

n

Figure 6.12. Event relationships from Far-field data with 5 second long motifs. Low frequency edges are not shown
(those with counts below 30). Blue edges: transitions with weight and lag δ. Red edges: independent activity with
weight and causing state (here with only 1 state). 80% of the occurrences were dependent activities.

towards top right. The sequence in Figure 6.13(g-h-i) indicates vehicles starting from the middle
left and moving towards top right. Interestingly, this shares the trajectory h-i with the previous
activity. One might notice that here we have longer activity segments which are approximately
10 second and therefore, fewer transitions when compared to Figure 6.12. But the results are
consistent despite the change in the motif durations. We also see an isolated motif at the top. The
large spatial support indicates that it is an event due to large trucks. Large trucks usually slow
down to make the turn which explains the self loops.

MIT dataset. On the MIT dataset, 24 out of 25 activities have been found to have dependencies.
Activities with high dependencies are shown in Figure 6.14. Among them, the six activities on the
right corner of the figure are only self dependent and mostly correspond to stopped cars. Dependent
activities Figure 6.14(j-k) also correspond to trees waving due to wind. Three activities (lower-right
corner) are found to be starting and self-looping: they all correspond to examples of cars starting.
A car starting is an activity that repeats itself because multiple cars are usually waiting for the
green light and start successively. In addition to repeating static activities, the model captures
trajectories made of multiple activities such as h-i and d-e-c. Some interesting soft rules are also
captured like in Figure 6.14(f-g), where vehicles coming from the left Figure 6.14(g) often turn only
after vehicles coming in the opposite direction have passed.

ETH-Zurich dataset. The transitions from ETH dataset is presented in Figure 6.15. Experiments
were run with 20 motifs of 5 seconds each, and asking for 2 global states from the MER model. We
can observe that the two states capture the two dominant movements in the scene. The state c1
corresponds to tram movements and people crossing in the diagonal directions (bottom left - top
right). The motifs labeled Figure 6.15(j,k) show this. The self loops show that groups of people cross
the road probably following each other. The other state c2 corresponds to cars moving along the
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Figure 6.13. Event relationships from Far-field data with 10 second long motifs. Low frequency edges are not shown
(those with counts below 30). Blue edges: transitions with weight and lag δ. Red edges: independent activity with
weight and causing state (here with only 1 state). 80% of the occurrences were dependent activities.

curved road (from top-left to top-right) in the scene. One such track is Figure 6.15(i-d-g-h). We also
see that after the event labeled Figure 6.15(c) generated by state c1, events usually generated by
state c2 can follow, implying that in some cases the vehicles pass through the road only after people
have crossed the road. This is quite evident when we look at the connection in Figure 6.15(c-g-h)
where the vehicles have been waiting for people to finish crossing and start immediately after that.
Here again, we observe self loops on most of the motifs indicating number of cars following each
other through the curved path.

6.4.3 Numerical evaluation on a prediction task

To objectively measure the performance of MER model we used the prediction task proposed in
section 5.5.4. Recall that our task is to estimate the probability P predt (w) that a word w appears
at time t given all past information, that is, given the temporal document n(w, ta, d) up to time
ta = t − 1. As discussed in section 5.5.4, a word at time t can occur due to either a motif that has
already started at a past time ts ∈ [t− Tz + 1, t− 1], or due to a motif that starts at the same time t.
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Figure 6.14. Event relationships from MIT dataset. Low frequency edges with counts below 20 are filtered. Blue edges:
transitions with weight and lag δ. Red edges: independent activity with weight and causing state. 75% of the occur-
rences were dependent activities.

The prediction is given by:

P predt (w) ∝
∑
z

(
(1− γ)

t−1∑
ts=t−Tz+1

P̂ (ts, z|d)P (w, t− ts|z) + γ · Pt(z)P (w, 0|z)

)
, (6.3)

where P̂ (ts, z|d) denotes our estimation that the motif z starts at time ts given the observed data,
γ represents the probability that a topic starts at the current instant.

The PLSM model has a limitation in predicting which motif starts at time t based on past ob-
servations. Therefore, in the above equation (6.3), we have a blind motif prior Pt(z), which is the
marginal probability of a motif starting at any time t. This blind motif prior probability is estimated
from training data by simply normalizing the number of times each motif appears in the temporal
document. Given the global rules and inter-event relations learned from MER, we can refine this
term further to give a better prediction.

Prediction using MER and PLSM. To estimate Pt(z) using MER, we consider the motif start
times P̂ (ts, z|d) within the sub-window ts ∈ [t−Tz+1, t−1] and create a test binary event matrix re-
quired for MER. Then, by fixing the MER model parameters learned from a training set, and using
the test binary event matrix, we follow the MER generative process to create events at time t. The
proportion of event counts generated by MER is then used for Pt(z) in the prediction formulation.
Indeed, this process can be repeated by appending Pt(z) to P̂ (ts, z|d) to estimate Pt+1(z), given by:

P predt+1 (w) ∝
∑
z

(
(1− γ)

t−1∑
ts=t−Tz+2

P̂ (ts, z|d)p(w, t− ts|z) +
γ

2
Pt+1(z)P (w, 0|z) +

γ

2
Pt(z)p(w, 1|z)

)
(6.4)
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Figure 6.15. Event relationships from ETH-Z data with motifs of 5 seconds duration Low frequency edges are not shown
(those with counts below 30). Blue edges: transitions with weight and lag δ. Red edges: independent activity with
weight and causing state (here with only 1 state). 95% of the occurrences were dependent activities.

In equation (6.4), the prediction at time t+ 1 in addition to the motif starts in ts ∈ [t− Tz + 2, t− 1],
is affected by motifs that start at t and t + 1 and hence we have two prior terms now. The terms
Pt(z) and Pt+1(z) refer to the proportion of event starts obtained from MER for time t and t + 1.
We call this prediction method MER+PLSM. We validate this approach by testing it on the Far-
field data, by varying the number of PLSM motifs used to build the binary event matrix. In all
the cases the maximum motif duration was 10 seconds, with a single state for the MER model as
demonstrated in Figure 6.13. The baselines used for the comparison were: i) Temporal constancy
method, ii) PLSM with a blind prior, and iii) Topic-HMM; all extended to predict observations at t+1

also. Parameters such as the sliding window size, the values for γ were same as in the experiments
presented in section 5.5.4.

Figure 6.16 shows the Average Normalized predictive log-likelihood (ANL) computed from these
models using a 10 fold cross validation procedure. The X-axis indicates the number of PLSM motifs
with 10 second duration or the number of behavioral states in Topic-HMM. First, we know from
Figure 5.23 and Figure 6.16 that PLSM performs well in predicting the first time-step. But the
prediction accuracy drops down a bit for the second time step, in particular as the number of motifs
is increased. This can be explained by the absence of any scene level knowledge on which activity
triggers which others. The Topic-HMM does not do as well as PLSM for both first and second
time-steps. But they consistently improve as the states are increased with a small reduction for
the second time-step. The MER+PLSM model outperforms both PLSM with the blind prior and
Topic-HMM at both the first and second time-steps. Recall that using the MER model with only
one state and no dependent events boils down to the blind prior. Since the MER model uses the
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Figure 6.16. Prediction accuracy – Average Normalized predictive log-likelihood (ANL) for the first or the second future
time steps.

inter-activity relations in addition to the regular PLSM method, it is reasonable to conclude that
the activity dependencies learned from MER has improved the performance of PLSM prediction.
Finally, for the temporal constancy method we obtained ANL values -3.5 for the first time-step and
-4.7 for the second time step. The low measure for the second time step shows that the temporal
constancy assumption can not generalize well for longer term predictions.

6.5 Conclusion

In this chapter, we presented a novel method called (MER) model that accepts a binary event
matrix and discovers temporal relationships between event pairs as well as global rules dictating
the scene. The main novelty comes from our observation that events need not be strictly dependent
on the current state of the system but also on any event in the past. We proposed an efficient Gibbs
sampling algorithm to infer the latent variables and the parameters. The hard task of attributing
an activity to the past or to the global scene state is solved thanks to the joint sampling of the latent
variables. We evaluated our method on a variety of scenes containing complex activity patterns.
The results demonstrate our model’s ability to capture both local rules (event-event relationships)
and global rules (event-state relationships) automatically. This is in contrast with methods such
as (Tran and Davis, 2008), where a combination of logical rules, representing domain knowledge,
and probabilistic models were used to perform activity analysis.

However, there are some limitations of the MER model that needs discussion. Firstly, the MER
model assumes that events are detected reliably and the data is given as a binary event matrix. It
does not rely on strength or confidence of the event. Secondly, in our case we fix the prior mean and
variance of the temporal lag parameter using a priori knowledge on the average motif durations.
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While the model adapts the mean temporal lag δz′,z(.) using the data, it cannot accommodate large
variations e.g., 10 seconds lag for some event-pairs and 1 minute lag for some other event-pairs.
One way to address this is by applying MER repeatedly with different values for the prior mean
and variance.
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Chapter 7

Conclusions and Future work

7.1 Conclusions

The subject of this thesis was to extract recurrent activity patterns from sensor logs by observ-
ing data over a long period of time. A wide context of applications motivated this choice: video
content analysis for surveillance, stream selection and automatic summarization, video search and
retrieval, human activity analysis using multi-modal sensors such as accelerometers, PIR, GPS and
cell phone logs. To achieve this, we followed three paradigms established in Computer Vision and
Machine Learning: 1) use of low-level features like back-ground subtraction and optical flow, so that
they can be readily extracted without involving higher level scene semantics like object detection
and tracking. 2) use of unsupervised methods, so that labeling large amount of data can be avoided.
3) use of a Probabilistic Topic Model formalism, due to its ability to succinctly capture latent themes
in the data through co-occurrence analysis. The contributions made and the experiments done were
chronologically presented in the chapters each adding a new dimension to the previous one. More
precisely, after having presented the literature review in chapter 2 and summarized our datasets
and features in chapter 3, chapter 4–6 described our original contributions that are summarized as
follows:

In Chapter 4, we first investigated the use of PTMs for activity analysis. Using PLSA, with
location, motion and size features, dominant patterns were successfully extracted. The resulting
patterns were useful in understanding the common activities in the scene. Furthermore, it also
provided scope to analyze the activities based on the participation of the visual features. Then, us-
ing the topic posterior distribution at each location as features, a novel activity scene segmentation
algorithm was presented. The clustering algorithm showed meaningful results for any cluster size.
Abnormality detection using PLSA was another task attempted. We proposed a novel abnormality
detection measure based on document reconstruction error that compared well with existing mea-
sures. This exercise helped us to identify key areas to address, and provided avenues for further
investigation.

In Chapter 5 we moved from discovering simple topics with unordered words to more infor-
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mative sequential patterns called motifs and introduced a novel probabilistic activity modeling ap-
proach called Probabilistic Latent Sequential Motifs (PLSM). The novelties were many fold. First,
unlike methods similar to PLSA, where topics only model the co-occurrence of words within a time
window, PLSM uses a temporal document given as word-time occurrences and discovers motifs, i.e.,
topics with a temporal structure. Second, the model considers the important case where activities
occur concurrently but not necessarily in synchrony in the temporal document. Third, the method
explicitly models with latent variables, the starting time of the activities within the temporal docu-
ment, enabling to implicitly align the occurrences of the same pattern during the joint inference of
the temporal topics and their starting times. Fourth, the inference framework is enhanced with a
sparsity constraint and a MAP estimation of the temporal variables of the motif. Elaborate exper-
iments with structured as well as less structured data, spanning single and multiple views were
used to demonstrate that the different outputs of the model have semantic significance; the motifs
provide information about how and where an activity starts, how it proceeds and ends, the start
time distributions along with the motifs can be used for event detection and future word prediction.
For the challenging problem on selecting the appropriate number of motifs, we also proposed (in
collaboration with Dr. Rémi Emonet) a new method called HDLSM that is based on the principles
of Bayesian non-parametrics.

In Chapter 6, we considered motif detections or activiations called events to identify the under-
lying processes that govern their occurrences over time in complex surveillance scenes. To this end,
we proposed a novel model called MER model, that accounts for two main factors: (i) the existence
of global scene states that regulate which of the events can spontaneously occur; (ii) local rules that
link past events to current ones with temporal lags. These complementary factors were mixed in
the probabilistic generative process, thanks to the use of a binary random variable that selects for
each event which one of the above two factors is applicable. The MER model uses a binary event
matrix derived from the start time distributions learned from PLSM. All model parameters are
efficiently inferred using a collapsed Gibbs sampling inference scheme. Experiments on various
datasets from the literature showed that the model is able to capture temporal processes at multi-
ple scales: scene-level first order Markovian process, and causal relationships amongst events, thus
providing a rich interpretation of the scene’s dynamical content.

7.2 Limitations and Future work

While we have shown many insights into activity modeling, the work does have some limitations.
In this section, we highlight them and propose some ways of improving the model. At the end, we
also present some potential new directions for research investigation.

Duplicate Motifs. In the PLSM model, while we used the BIC criteria to decide on the number of
motifs, we still get duplicates apparently representing the same activity. Our understanding of this
problems is that it could be due to over specified SLA vocabulary or motifs trying to capture minor
variations in object speed.
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We encountered a problem due to duplicate motifs while building the event detector in sec-
tion 5.5.3. The event detector was built by associating a single motif to an activity. But occasionally,
the competing duplicate motifs (that were not considered for the event detector) explain away an
occurrence resulting in a missed detection. A naive solution to this problem is to apply a post pro-
cessing step that merges motifs that are similar beyond a threshold. An alternative is to include a
procedure in the inference process such that, after every few iterations, duplicate motifs are merged
if it returns a better likelihood. Also using non-parametric methods like HDLSM can address this
issue by selecting the appropriate motif size automatically.

Modeling speed variations. There is significant speed variations in the scene activities due to
vehicle acceleration and perspective issues. While the PLSM model handles variations in local
activity execution timing well, it can fail to handle large variations in the overall execution speed.
There are several ways to handle this. First, we can conduct an a-posteriori analysis, by identifying
motif replicas differing by speed execution variations. Second, we can apply PLSM on multiple
temporal documents of the same video, each created with a different time resolution, for instance,
0.5 second to 5 seconds. Or we can introduce an explicit latent variable to model the execution
speed. Although this can be added in a straightforward manner in the model, this would result in
increased computational complexity.

Parametric forms for motifs. Currently, the motifs P (w, tr|z) are represented as probability
tables. The parameters used to represent motifs therefore, increase as the the motif duration is
increased. An interesting alternative is to model the temporal variable distribution P (tr|w, z) using
parametric forms. For instance, the Beta distribution Beta(α, β) covering the (normalized) duration
of the motif is an attractive choice due to its flexibility in capturing a variety of shapes. But this
limits P (tr|w, z) to have a single mode. Another alternative is a multi-modal distribution like the
Gaussian mixture model. Changing to parametric forms will require some adaptations in the model.
The mathematical tractability of the inference method needs to be considered while making the
choice of the distribution.

Integrating MER and PLSM. Currently our activity analysis pipeline has several components:
PLSA (SLA patterns), PLSM and finally the MER model, each of them performed independently. It
would be better to create an end to end model that uses visual features and discovers words, motifs,
scene states and event relationships. This can be achieved by building a generative process with
multiple layers. The benefits apart from ease of use would be that each layer can propagate its
learning to the other resulting in better overall learning. For instance, the scene states and event
relations learned from the MER model at an iteration can constrain the P (ts, z|d) distribution at
the next iteration resulting in better motifs, this in turn resulting in better estimates of MER
parameters. But such a method would involve a fair amount of sophistication in terms of the
generative modeling and its inference.

Issues with MER model. As discussed in section 6.5, the MER model currently relies on a binary
event matrix. But it would be better if the detection strengths from P (ts, z|d) are taken into account.
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This can be addressed by reformulating the MER generative process such that the observations are
not just binary values but a value from the [0, 1] interval. Correspondingly, the inference procedure
needs to be updated so that instead of just co-occurrence counts, their strengths are also accommo-
dated. Furthermore, performance of the MER model in the presence of spurious detections needs
to be tested.

Online methods. As explained in chapter 1, one of the thesis motivations is to use activity analysis
algorithms for automatic stream selection. While the strength of PLSA and PLSM on detecting
unusual events were demonstrated in chapter 4 and (Emonet et al., 2011b) respectively, deploying
them on a metro station for automatic stream selection can pose additional challenges. Currently,
PLSA and PLSM are learned in a batch mode and the model is not updated, whereas in a real-life
monitoring situation there is continuous flow of data that may contain novel actions. So there is
a need to design online versions of the proposed models that are capable of updating the model
parameters as new data arrive. This requires answers to few important questions: a) what criteria
should be used to judge novelty of the incoming data and b) how can the model be updated, which
in our case translates to relearning the vocabulary, re-selecting the number of topics or motifs and
adjusting their weights.

Action recognition. Unsupervised methods like PLSA have also been used to automatically clas-
sify or localize different actions in video sequences (Niebles et al., 2008). These methods mostly
relied on a bag-of-words approach, learned a model and associated a topic or cluster with each
class. The classification and localization of actions is done by simply considering the action cate-
gory with the maximum topic posterior distribution. In similar directions, we believe that some
unique features of the PLSM method such as: a) the ability to capture temporal structures through
motifs, b) ability to multiplex several activities in parallel and c) localize the motifs precisely in
time, could prove advantageous in building a good action detector. However, the choice of visual
features (e.g., spatio-temporal features instead of optical flow), the ability to handle view changes
and the discriminative ability of the motifs, are some aspects that need investigation.

Other modalities. Many sensor logs other than videos including PIRs in buildings, GPS and
call logs in cell phones, accelerometers have been used along with unsupervised data-mining tools.
MERL dataset (Wren et al., 2007) and the Reality mining dataset (Eagle and Pentland, 2009) are
some example candidates for this. But there are several challenges that need to be addressed
before. Each of these sensors may be sampled with varying frequencies, each has varying timescales
and different characteristics, and each has its own sources of noise For example, GPS data from
cell phones suffers from noise due to the sensor as well as human behavior. GPS often does not
work indoors, there might be problems in signal reception during travels, the cell phone might
be switched off and the person might forget the phone or lend it to friends. Therefore, to study
the performance of the proposed models on a different modality data, possibly with some model
adaptations could be an interesting line of research.
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Appendix A

Parameter estimation for PLSM

In this section we detail the derivation of equations involved in PLSM inference. Our data
D = n(w, ta, d) is a matrix of counts, where each triplet (w, ta, d) denotes the number of times a
word w, appears at time ta in document d. The probability of observing this data is given by:

P (D) =

D∏
d=1

Td∏
ta=1

Nw∏
w=1

P (w, ta, d)n(w,ta,d) (A.1)

Taking the log on both sides we obtain our objective log-likelihood function as

L(D) = logP (D) =
D∑
d=1

Td∑
ta=1

Nw∑
w=1

n(w, ta, d) logP (w, ta, d) (A.2)

Since P (w, ta, d) =
∑Tds

ts=1

∑Nz

z=1 P (w, ta, d, z, ts), the log-likelihood equation conditioned on the
model parameters Θ i.e., the probability distributions P (z|d), P (ts|z, d), and P (w, tr|z) is written as

L(D|Θ) =

D∑
d=1

Nw∑
w=1

Td∑
ta=1

n(w, ta, d) log

Nz∑
z=1

Tds∑
ts=1

P (w, ta, d, z, ts) (A.3)

We want to infer the model parameters with a constraint that the distribution on motif starting
times P (ts|z, d) is sparse and peaky. To achieve this goal as said in section 5.2, we want to max-
imize DKL(U ||P (ts|z, d)), the KL divergence between Uniform distribution and P (ts|z, d). So the
constrained log-likelihood equation is given by:
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Symbol Description
D Dataset, count matrices of the form n(w, ts, d)
z Motif
w Word (SLA patterns for real data)
d Document index
ta Time index in document
ts Start time of a motif
tr Relative time from the start of the motif
Θ Model parameters {P (z|d), P (ts|z, d), P (w, tr|z)}
Nz Number of motifs
Nw Vocabulary size (number of different words)
D Number of documents
Tz Duration of a motif
Td Duration of the document
Tds Number of motif start time indices in a document
λz,d Sparsity constraint weight
λbic Penalty term weight in BIC equation

Table A.1. Notations used in the paper

Lc(D|Θ) = L(D|Θ) +
∑
z,d

λz,dDKL(U ||P (ts|z, d)) (A.4)

= L(D|Θ) +
∑
z,d

λz,d

Tds∑
ts=1

1

Tds
log

1/Tds
P (ts|z, d)

(A.5)

= L(D|Θ) +
∑
z,d

λz,d

(
Tds∑
ts

1

Tds
log

1

Tds
−

Tds∑
ts=1

1

Tds
logP (ts|z, d)

)
(A.6)

By removing the constant factor we obtain equation (5.5) given by

Lc(D|Θ) = L(D|Θ)−
∑
ts,z,d

λz,d
Tds

logP (ts|z, d) (A.7)

But the above equation cannot be solved directly due to summation terms inside the log making
it intractable. Instead, the EM approach works by optimizing the expected log-likelihood of the
complete data w.r.t to the hidden variables keeping the constraint unchanged, which gives

E[Lc] =

D∑
d=1

Nw∑
w=1

Td∑
ta=1

Nz∑
z=1

Tds∑
ts=1

n(w, ta, d)P (z, ts|w, ta, d) logP (w, ta, d, z, ts)

−
∑
ts,z,d

λz,d
Tds
· log(P (ts|z, d)) (A.8)

Notice that now, the log operates over the joint probability over all the variables and not just
the observed variables. An optimized way to compute this is by using equation (5.2) and indices
tr and ts instead of ta. The joint distribution can be split into its constituent distributions using
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equation (5.2) So, the expected log-likelihood equation is re-written as:

E[Lc] =

D∑
d=1

Nw∑
w=1

Tz∑
tr=1

Nz∑
z=1

Tds∑
ts=1

n(w, ta, d)P (z, ts|w, ts + tr, d) log[P (z|d)P (ts|z, d)

P (tr|z)P (w|tr, z)]−
∑
ts,z,d

λz,d
Tds
· logP (ts|z, d)

=

D∑
d=1

Nw∑
w=1

Tz∑
tr=1

Nz∑
z=1

Tds∑
ts=1

n(w, ta, d)P (z, ts|w, ts + tr, d)[logP (z|d)

+ logP (ts|z, d) + logP (tr|z) + logP (w|tr, z)]−
∑
ts,z,d

λz,d
Tds
· logP (ts|z, d)

The goal is thus to optimize this expression with constraints so that the distributions sum to
one. Therefore such constraints are enforced using lagrangian multipliers. Finally, the constrained
objective function that is optimized is given by:

H(Θ) = E[Lc] +
∑
z

γz

(
1−

∑
w,tr

P (w, tr|z)

)
+
∑
z,d

δz,d

(
1−

∑
ts

P (ts|z, d)

)

+
∑
d

τd

(
1−

∑
z

P (z|d)

)
(A.9)

Where γz, δz,d and τd are the lagrangian multipliers. The EM algorithm works by iterating through
the following E-step and M-step:

E-step: In the Expectation step, the posterior distribution of hidden variables (z, d) is computed
where the parameters come from the previous iteration’s M-step,

P (z, ts|w, ta, d) =
P (d, z, ts, ta, w)

P (w, ta, d)

=
P (z|d)P (ts|z, d)P (tr|z)P (w|tr, z)∑

z′,t′s
P (z′|d)P (t′s|z′, d)P (ta − t′s|z′)P (w|ta − t′s, z′)

(A.10)

M-step: In the Maximization step, maximizing H(Θ) w.r.t to the parameters which are the
probability mass functions results in the following set of equations.

Tds∑
ts=1

Tz−1∑
tr=0

Nw∑
w=1

n(w, ts + tr, d)P (z, ts|w, ts + tr, d)− τdP (z|d) = 0, 1 ≤ d ≤ D,

Td∑
ta=1

Nw∑
w=1

n(w, ts + tr, d)P (z, ts|w, ts + tr, d)− λz,d
Tds
− δz,dP (ts|z, d) = 0, 1 ≤ d ≤ D, 1 ≤ z ≤ Nz

D∑
d=1

Tds∑
ts=1

n(w, ts + tr, d)P (z, ts|w, ts + tr, d)− γzP (w, tr|z) = 0, 1 ≤ z ≤ Nz
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by eliminating the lagrangian multipliers 1, we obtain the following expressions that were pre-
sented in (equations (5.8–5.10))

P (z|d) ∝
Tds∑
ts=1

Tz−1∑
tr=0

Nw∑
w=1

n(w, ts + tr, d)P (z, ts|w, ts + tr, d) (A.11)

P (ts|z, d) ∝ max

(
ε,

(
Nw∑
w=1

Tz−1∑
tr=0

n(w, ts + tr, d)P (z, ts|w, ts + tr, d)

)
− λz,d
Tds

)
(A.12)

P (w, tr|z) ∝
D∑
d=1

Tds∑
ts=1

n(w, ts + tr, d)P (z, ts|w, ts + tr, d) (A.13)

1. also taking into account that probabilities need to be positive. As a technical detail, a minimum value ε is required for
p(ts|z, d) to avoid undefined log-likelihoods in the objective function.
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Hierarchical Dirichlet Latent
Sequential Motifs

In this chapter, we present the Hierarchical Dirichlet Latent Sequential Motifs (HDLSM) model,
which is a non-parametric improvisation of the PLSM model. This work was done in collaboration
with Rémi Emonet and published in (Emonet et al., 2011a). We also note that the notations used in
this chapter differ from the notations previously used in chapter 5. Here, we confirm to the notation
style that is widely followed in the Bayesian non-parametrics community.

The rest of this chapter is organized as follows: In section B.1, we will first present an overview
of our approach and its goals. In section B.2, we give a background of the Dirichlet Processes (DP).
followed by the explanation of the HDLSM model in section B.2.2. For details about the inference
procedure and implementation, we refer to (Emonet et al., 2011a).

B.1 Approach Overview

The input to our HDLSM model is a set of temporal documents (possibly a single long one) as
presented in section 5.1 and show here in Figure B.1. This observed document is defined as a table
of counts, where the entries reflect the amount of presence of a word from a fixed vocabulary at every
instant of the temporal document. Our approach is depicted in Figure B.1 where each document is
represented as a set of motif occurrences (e.g., 7 of them in Figure B.1). Each occurrence is defined
by a starting time instant and a motif. Motifs are shared by different occurrences within and across
documents.

In our model, an important aspect is the use of Dirichlet Processes (DP). A DP is a non-
parametric Bayesian process that represents an infinite mixture model. The term non-parametric
refers to the fact that the model grows automatically to account for the observations. Dirichlet
processes are often used to determine automatically the number of relevant elements in a mixture
model (e.g., number of topics or number of gaussians). A DP is an infinite mixture but observations
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Figure B.1. Schematic generative model. A temporal document is made of word counts at each time instant. Each
document is composed of a set of occurrences, each being defined as a motif type and a starting time. The motifs
are shared by the occurrences within and across documents.

from a DP most probably tend to cluster on some limited elements of the mixture.
We use two levels of DP in our approach. At a lower level, within each document, we model the

set of occurrences using a DP: the observations then cluster around an automatically determined
number of occurrences. At a higher level, we model the set of motifs using a DP: the occurrences
(and their associated observations) within and across documents then cluster around an automati-
cally determined number of motifs. With this hierarchical approach, each observation is associated
through its occurrence to a motif.

B.2 Proposed Model

Our model relies on Dirichlet Processes (DP) to discover motifs, their number, and find their
occurrences. We will thus start by introducing DP before describing the core of our model in details.

B.2.1 Background on Dirichlet Processes (DP)

Here we introduce Dirichlet Processes, a method to naturally handle infinite mixture models
and a building block of our proposed model. The mixture components we are using are categor-
ical distributions 1 but all elements in the current subsection can be interpreted identically with
any mixture model such as a Gaussian Mixture Model. We use Comp to denote the component
distribution in this introductory section.

Figure B.2a is a graphical representation of a finite mixture model with K components. The β
vector is giving the weight of each mixture component and α is a prior (possibly uninformative) on
these weights. Each Φk represents the parameters of a mixture component and for each observation
xi, zi represents the index of the mixture component this observation is coming from.

Figure B.2b first shows that we can explicitly represent the mixture component selected by

1. sometimes “multinomial” is used in place of “categorical”
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Figure B.2. Finite mixture and Dirichlet Process (infinite mixture): a) finite mixture with K elements; b) mixture represen-
tation for DP; c) compact representation for DP.

each observation noted θi. We use dashed arrows to indicate deterministic relations, here θi = Φzi

(or, expressed as a draw from a Dirac distribution: θi ∼ δΦzi
). More importantly, Figure B.2b

also illustrates the uniqueness of a Dirichlet Process, i.e., there are an infinite number of mixture
components instead of a finite number K. To adapt to this infinite mixture elements, the weight
vector β is of infinite length and the prior α takes a specific form. The α prior is now a single positive
real value used as the parameter of a “GEM” (Griffiths, Engen, McCloskey) also known as a “stick
breaking” process. This process produces an infinite list of weights that sum to 1: the first weight
β1 = β′1 is drawn from a beta distribution Beta(1, α), the second weight is drawn in the same way
but only from the remaining part, i.e. β2 = (1 − β1) ∗ β′2 with β′2 drawn from Beta(1, α), and so on
for the other weights, hence the “stick breaking” name. In addition to these weights, each mixture
component parameter set Φk is drawn independently from a prior H, and each observation is drawn
from its mixture component. We thus have the following:

β ∼ GEM(α) (B.1)

∀k φk ∼ H (B.2)

∀i zi ∼ Categorical(β) (B.3)

xi ∼ Comp(φzi) (B.4)

A more compact equivalent notation can be used to represent a Dirichlet Process. While the
mixture representation is well adapted for deriving the Gibbs sampling scheme, the compact rep-
resentation is widely used and might help us to get a quick overview of the model. In the compact
representation from Figure B.2c, individual mixture components are not shown and instead their
weighted countable infinite mixture G =

∑∞
k=1 βkδφk

is used. The corresponding representation,
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Figure B.3. The HDLSM model. a) with DP compact notation; b) with developed Dirichlet processes (using stick-breaking
convention at both levels). Dashed arrows represents deterministic relations (conditional distributions are a Dirac).

using a DP notation, is given as:
G ∼ DP (α,H) (B.5)

∀i θi ∼ G (B.6)

xi ∼ θi (B.7)

B.2.2 Base of the Proposed Model

Our goal is to automatically infer a set of motifs (temporal activity patterns) from a set of docu-
ments containing time-indexed words. More precisely, let us define a document j as a set of obser-
vations {(wji, atji)}i=1...Nj

, where wji is a word belonging to a vocabulary V and atji is the absolute
time instant at which the observation occurs within the document.

We also consider time information when defining our “motifs” as temporal probabilistic maps.
More precisely, if φk denotes a motif table (i.e., the parameters of a categorical distribution), then
φk(w, rt) denotes the probability that the word w occurs at a relative time instant rt after the start
of the motif.

Our goal is to infer the set of motifs from one or more temporal documents. As discussed pre-
viously, this must be done altogether with inferring the occurrences (instants of occurrence) of all
motifs in the documents. As it is difficult to fix the number of motifs before hand, we use a DP to
allow the learning of a variable number of motifs from the data. Similarly, within each temporal
document, we use another DP to model all motif occurrences as we don’t know their number in
advance.
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Our generative model is thus defined using the graphical models presented in Figure B.3. Fig-
ure B.3a depicts our model using the compact Dirichlet process notation done for DP in Figure B.2c,
whereas Figure B.3b depicts the developed notation (cf Figure B.2b). Notice that in these drawings,
two variables in an elongated circle form a couple, indicating that they are generated together: the
pair itself is drawn from a distribution over the pairs.

The equations associated with Figure B.3a are as follows:

M ∼ DP (γ,H) where H = Dir(η) (B.8)

∀j Oj ∼ DP (α, (Uj ,M)) (B.9)

∀j ∀i (stji, θji) ∼ Oj (B.10)

(rtji, wji) ∼ Categorical(θji) (B.11)

atji = stji + rtji (B.12)

where deterministic relations are denoted with “=”. The first DP level generates our list of motifs in
the form of an infinite mixture M . Each motif is drawn from H, defined as a Dirichlet distribution
of parameter η.

Contrary to simpler mixture models such as LDA or HDP, our set of mixture components is not
only shared across documents, but also across motif occurrences using the DP at the second level.
More precisely, the document specific distribution Oj is not defined as a mixture over motifs, but
as an infinite mixture over occurrences from “start-time × motif” (cf Figure B.1), since the base
distribution is defined by (Uj ,M). Each of the atoms is thus a couple (ostk, φk), where ostk ∼ Uk is
the occurrence starting time drawn from Uj , a uniform distribution over the set of possible motif
starting times in the document j, and φk ∼M is one of the motifs drawn from the mixture of motifs.

Observations (wji, atji) are then generated by repeatedly sampling a motif occurrence (equa-
tion (B.10)), using the obtained motif θji to sample the word wji and its relative time in the motif
rtji (equation (B.11)). From the relative time rtji, using the sampled starting time stji, the word
absolute time occurrence atji can be deduced (equation (B.12)).

The fully developed model given in Figure B.3b helps to understand the generation process and
the inference better. The corresponding equivalent equations can be written as:

βM ∼ GEM(γ) (B.13)

∀k φk ∼ H (B.14)

∀j βoj ∼ GEM(α) (B.15)

∀j∀o ostjo ∼ Uj and kjo ∼ βM (B.16)

∀j∀i oji ∼ βoj (B.17)

zji = kjoji and stji = ostjoji (B.18)

(rtji, wji) ∼ Categorical(φzji) (B.19)

atji = stji + rtji (B.20)



128 APPENDIX B. HIERARCHICAL DIRICHLET LATENT SEQUENTIAL MOTIFS

The main difference with the compact model is that the way motif occurrences are generated is
explicitly represented. Occurrences are the analog of the “tables” in the Chinese Restaurant Process
analogy of the HDP model: both the global GEM distribution over motifs βM and Uj are used to
associate motif indices kjo and starting times ostjo to each occurrence (Eq. B.16), while the document
specific GEM βoj is used to sample the occurrence associated with each word (equation (B.17)), from
which generating the observations can be done as presented above (equation (B.18–B.20)).

B.3 PLSM vs HDLSM

In this section we briefly present a qualitative comparison of the PLSM and HDLSM method
interms of the motifs obtained and their related aspects.

(a) p(z) = 0.060 (b) p(z) = 0.059 (c) p(z) = 0.059 (d) p(z) = 0.055 (e) p(z) = 0.054

(f) p(z) = 0.052 (g) p(z) = 0.049 (h) p(z) = 0.048 (i) p(z) = 0.043 (j) p(z) = 0.041

Figure B.4. Top ten motifs out of 26 from MIT data discovered using PLSM method. The motifs are 10 seconds long. The
BIC criteria was used to select the number of motifs.

(a) p(z) = 0.0848 (b) p(z) = 0.0838 (c) p(z) = 0.0804 (d) p(z) = 0.0757 (e) p(z) = 0.0690

(f) p(z) = 0.0648 (g) p(z) = 0.0627 (h) p(z) = 0.0620 (i) p(z) = 0.0536 (j) p(z) = 0.0524

Figure B.5. Top ten motifs out of 24 motifs from MIT data discovered using HDLSM method. The motifs are 10 seconds
long.

In Figure B.4, we show 10 top ranked motifs out of 26, extracted from MIT data using the PLSM
method. The BIC criteria was used to select the number of motifs. In Figure B.5, we show 10 top
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ranked motifs out of 24, extracted from MIT data using HDLSM method. The number of motifs is
automatically decided by HDLSM. From this experiment, we first note that we arrive at the same
ball park figure for the number of motifs using both BIC criteria and HDLSM. When comparing the
top ten motifs from both the methods, we see that they capture very similar activities, with some
differences in the weights assigned to the motifs.
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Appendix C

Parameter estimation for MER
model

As is the case of many hierarchical Bayesian models like Blei et al. (2003a); Heinrich (2004),
exact inference for our model is intractable. But since the model consists of conjugate pairs like
Gamma-Poisson, Dirichlet-Multinomial and Beta-Bernoulli and Normal-Normal, it is possible to
derive a collapsed Gibbs sampling algorithm by integrating out the parameters {π, λ, ε, θ, τ, δ}. The
algorithm proceeds by iteratively sampling the decision variable sti, indicator variable vti for each
observation Oti conditioned on all other variables, parameters and hyper-parameters. The state
indicators ct are sampled for each time instant conditioning on rest of the variables.

Since each occurrence also gives its occurrence time implicitly, we will drop the t associated with
sti, vti , Oti and simplify them by using si, vi and oi instead except in places where time needs to be
mentioned explicitly. We will also use capital letters O,S, V to refer to the set of occurrences, their
corresponding selector variables, and indicator variables. O¬i, S¬i, V¬i, will indicate all the occur-
rences, selector variables and the indicator variables except the ith one. C¬i is used to indicate the
state variables at all time instants except at the current time i.e., ct. The set of hyper-parameters
set {ϕ, γ, ξ, α, β, µ0, σ

2
0} is simply referred as hp.

Selector and Indicator variables.

We would like to sample the selector variables si and vi together for each observation oi. We
need to sample this according to the probabilities of four different conditions.

– Case 1: p(si = 1, vi = −1) : When si = 1, vi takes a dummy value of −1. This probability
depends on two factors: i) Probability of seeing a si = 1 at the current state and ii) Probability
of the event corresponding to the current observation to be generated by the current state
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directly.
p(si = 1, vi = −1|S¬i, V,O,C, hp..) ∝ p(si = 1, vi = −1, S¬i, V¬i, O,C|hp)

∝ p(vi = −1|si = 1)p(oi = z|si = 1, ci = k, S¬i, V¬i, O¬i, hp)·

p(si = 1|S¬i, ct = k,C¬i, hp) (C.1)

∝ p(oi = z|ci = k, si = 1, S¬i, V¬i, O¬i, hp)·

p(si = 1|ct = k, S¬i, C¬i, hp) (C.2)

∝
∫
p(oi = z|si = 1, ci = k, θk)p(θk|S¬i, O¬i, C¬i)dθk·∫

p(si = 1|ci = k, εk)p(εk|S¬i, C¬i)dεk (C.3)

Expression C.1 is obtained by splitting the LHS of the equation into p(oi = z|si = 1, ci =

k, S¬i, V¬i, O¬i, hp) which is the likelihood part and p(si = 1|S¬i, ct = k,C¬i, hp) which is the
prior part and by noting that
p(vi = −1|si = 1) = 1.
Finally the two parts of expression C.3 are Multinomial-Dirichlet, and Bernoulli-Beta pairs
respectively. They are conjugate pairs and therefore the parameters can be integrated out in
closed form. Evaluating the integral leads to calculating the expectation of the Dirichlet and
Beta distributions which is given as:

p(si = 1, vi = −1|S¬i, V,O,C, hp..) ∝
q

(z)
−i,k + α

q
(.)
−i,k +Nzα

·
l
(1)
−i,k + ξ1

l
(.)
−i,k + ξ0 + ξ1

(C.4)

In the above expression qz−i,k is a count of number of times motif z is observed with state k
when sti = 1 removing the current observation. Similarly, and l1−i,k is the count of si = 1

appearing with state k barring the current observation.
– Case 2: p(si = 1, vi = j) : By our definition, this case is impossible and therefore p(si = 1, vi =

j) = 0

– Case 3: p(si = 0, vi = −1) : Again by the definition of vti , it has no meaning when si = 0.
Therefore, this probability also equals zero.

– Case 4: ∀j ∈ P t, p(si = 0, vi = j) :
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p(si = 0, vi = j|ci = k,O, S¬i, V¬i, C¬i, hp) ∝ p(si = 0, vi = j, ci = k, S¬i, V¬i, O,C¬i|hp)

(C.5)

∝ p(vi = j|si = 0, ci = k, S¬i, V¬i, P
t, C¬i, hp)

p(si = 0|oi = z, ci = k, S¬i, V¬i, O¬i, C¬i, hp) (C.6)

∝ p(vi = j|si = 0, P t)p(si = 0|ci = k, S¬i, C¬i, ξ)

p(oi = z|si = 0, P t(j) = z′, S¬i, O¬i, V¬i, β, µ0, σ
2
0) (C.7)

∝ 1

N t
p

· p(si = 0|ci = k, S¬i, C¬i, ξ)

p(oi = z|si = 0, P t(j) = z′, S¬i, O¬i, V¬i, β, µ0, σ
2
0) (C.8)

∝ 1

N t
p

∫
p(si = 0|εk, ci = k)p(εk|S¬i, C¬i)dεk·∫

p(oi = z|si = 0, P t(j) = z′, τz′)p(τz′ |S¬i, V¬i)dτz′ ·∫
p(oi = z|si = 0, P t(j) = z′, δz′(z)) · p(δz′(z)|S¬i, V¬i)dδz′(z) (C.9)

We move from expression C.5 to expression C.7 by splitting it into likelihood prior terms and
simplifying using conditional independence of the variables, i.e., vi is conditionally indepen-
dent of all other variables given si and P t. Also the 1

Nt
p

factor in expression C.8 comes from
our definition of vi in the generative process.
There are three integrals to the right hand side of the above equation. The first integral is
similar to the second part of expression C.4, but instead deals with counts of si = 0 in state k.
The second integral is a Dirichlet-Multinomial distribution arising from the transition matrix.
The third integral is a Gaussian-Gaussian conjugate coming from the temporal lag. Thanks
to the conjugacy property, we can evaluate all the three integrals in closed form and get the
following proportionality term:

p(si = 0, vi = j|O,S¬i, V¬i, ci = k,C¬i, hp) ∝
1

N t
p

·
l
(0)
−i,k + ξ0

l
(.)
−i,k + ξ0 + ξ1

·
r

(z)
−i,z′ + β

r
(.)
−i,z′ +Nz · β

·

N
(
t− t′|δ−i,z′(z), σ2

z′,z + σ2
)

(C.10)

In the above equation, l(0)
−i,k indicates the number of times si = 0 occurs with state k. r(z)

−i,z′ is
the number of times motif z appears after z′. r(.)

−i,z′ is the total count of any event appearing
after z′. t− t′ is the temporal lag between the occurrences P t(vi) = z′ and oi = z. δ−i,z′(z) and
σ2
n are the posterior mean and variance of the temporal lag calculated from all associations of

type z′ and z. All the above calculations exclude the current observation. The posterior mean
and variance are given by
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δz′(z) =

(
µ0

σ2
0

+
D(z′, z)

σ2

)
· σ2

z′,z (C.11)

σ2
z′,z =

(
1

σ2
0

+
r

(z)
−i,z′

σ2

)−1

(C.12)

µ0 and σ2
0 are the prior mean and standard deviation of the lag parameter. The variance of

lags between motif pairs is fixed at σ2. D(z′, z) is the sum of all lag due to associations of type
z′ and z. For a more detailed derivation of this expression we refer to Murphy (2007).

State variables.

Here we derive the expression for getting the current state variable ct. This is done by looking
at all the connections coming in and out of the node ct in the graph.

p(ct = k|C¬i, S, V,O,No, hp) ∝ p(ct = k,C¬i, S¬i, V,O,No, hp) (C.13)

∝
∫
λk

p(N t
o|λk, ct = k)p(λk|N−to , γ1, γ2)dλk·

Nt
o∏

i=1

∫
εk

p(sti|εk, ct = k)p(εk|C−t, S−t, ξ)dεk·

∏
i∈{j:stj=1}

∫
θk

p(oi|sti = 1, εk, c
t = k)p(θk|C−t, S−t, O−t, α)dθk

∫
π

p(ct = k, ct−1, ct+1|π)p(π|C−{t−1,t,t+1}, S−t, N−to )dπ (C.14)

Here C−t, S−t, O−tN−to refer to all the states, selector variables, and occurrences and number of
occurrences except at time t. Based on the edges coming in and out of ct we get four parts in the
above equation relating to: 1) number of events, 2) number of independent and dependent events
generated, 3) the motifs coming from the current state and, 4) the probability of arriving at ct from
ct−1 and reaching ct+1 from ct. We will deal with each of them individually.

Occurrence Count.

∫
λk

p(N t
o|λk, ct = k)p(λk|N−to , γ1, γ2)dλk =

∫
λk

λ
Nt

o

k · e−λk

N t
o!

·
γγ21 λ

∑
i∈{cj=k,j 6=t}N

i
o+γ1−1

k · e−λk(γ2+u)

Γ(γ1)
dλk

(C.15)

where γ1 and γ2 are the parameters of Gamma distribution and u =
∑
i I(ci = k, i 6= t). Making use

of the Gamma-Poisson conjugacy we can write the above equation as:

∫
λ

p(N t
o|λk, ct = k)p(λk|N−to , γ1, γ2)dλk =

∫
λk

λ
∑

i∈{cj=k,j 6=t}N
i
o+Nt

o+γ1−1

k e−λk(γ2+u+1)γγ21

N t
o! · Γ(γ1)

dλk

(C.16)
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by noting that for the Gamma distribution∫
λ

Gamma(λ|γ1, γ2)dλ =

∫
λ

e−γ2λλγ1−1γγ12

Γ(γ1)
dλ = 1 (C.17)

and by multiplying and dividing the equation by the appropriate terms and removing constant
terms, we get,∫

λk

p(N t
o|λk, ct = k)p(λk|N−to , γ1, γ2)dλk ∝

Γ(ω1)

N t
o! · ω

ω1
2

(C.18)

where, ω1 =
∑
i∈{cj=k,j 6=t}N

i
o +N t

o + γ1, ω2 = γ2 + u+ 1

Motifs and Selector variables.∏
i∈{j:sti=1}

∫
ε

p(sti = 1|εk, ct = k)p(εk|C−t, S−t, ξ)dεk =

∫
εk

ε
l1t
k (1− εk)l

0
t Dir(l−t,k + ξ)dεk

=
∆(lt + l−t,k + ξ)

∆(l−t,k + ξ)
(C.19)

=
Γ(l1t + l1−t,k + ξ1)Γ(l0t + l0−t,k + ξ0)

Γ(l1t + l1−t,k + ξ1 + l0t + l0−t,k + ξ0)
·

Γ(l0−t,k + l1−t,k + ξ0 + ξ1)

Γ(l0−t,k + ξ0)Γ(l1−t,k + ξ1)

(C.20)

The above distribution is a Beta-Bernoulli distribution, with the Beta hyper-parameters ξ =

{ξ0, ξ1}. Due to their conjugacy, we obtain the expression directly in terms of Gamma functions.
where,

∆(~α) =

∏K
i=1 Γ(αi)

Γ(
∑K
i=1 αi)

(C.21)

In the above expression lt = {l0t , l1t } stands for the number of times, sti = 0/1 at the current instant
t. l−t,k = {l0−t,k, l1−t,k} is the number of times sti = 0/1 from all other time instants when the state is
at k except the current one.

∏
i∈{j:stj=1}

∫
θ

p(oi|sti = 1, εk, c
t = k)p(θk|C−t, S−t, O−t, α)dθk =

∫
θk

Nz∏
z=1

θ
qzt
k,zDir(qz−t,k + α)dθk

=
∆(qt,k + q−t,k + α)

∆(q−t,k + α)
(C.22)

Here again we have a Dirichlet-Multinomial combination. The multinomial parameter is in-
tegrated out and the resulting expresion is in terms of Gamma functions. The count variables
qt = {qzt }

Nz
z=1 is the vector containing the number of times a motif z is observed at the current in-

stant (it is either 1 or 0 in our case), and q−t,k = {qz−t,k}
Nz
z=1 gives the the number of times each motif

z is observed with k at all other instants except the current time t.
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State transitions.∫
π

p(ct = k, ct−1, ct+1|π)p(π|C−{t−1,t,t+1}, ϕ)dπ ∝
nc

t

−i,ct−1 + ϕ

n
(·)
−i,ct−1 +Ncϕ

·
nc

t+1

−i,ct + I(ct−1 = ct = ct+1) + ϕ

n
(·)
−i,ct + I(ct−1 = ct) +Ncϕ

(C.23)

The state transition is defined by the counts nc
t

−i,ct−1 , nc
t+1

−i,ct , which are number of times a tran-
sition occurs from state ct−1 to state ct, and from ct to ct+1 after removing the current link. I is an
Identity function that takes value 1, when the argument is true and 0 otherwise. n(·)

−i,ct is the the
count of transitions from ct to all other states barring the current transition. Please refer Griffiths
et al. (2004) for this derivation.

Putting all the four parts together we get:

p(ct = k|C¬i, S, V,O,No, hp) ∝
Γ(ω1)

N t
o! · ω

ω1
2

·
Γ(l1t + l1−t,k + ξ1)Γ(l0t + l0−t,k + ξ0)

Γ(l1t + l1−t,k + ξ1 + l0t + l0−t,k + ξ0)
·

Γ(l0−t,k + l1−t,k + ξ0 + ξ1)

Γ(l0−t,k + ξ0)Γ(l1−t,k + ξ1)
·

∆(qt,k + q−t,k + α)

∆(q−t,k + α)
·
nc

t

−i,ct−1 + ϕ

n
(·)
−i,ct−1 +Ncϕ

·
nc

t+1

−i,ct + I(ct−1 = ct = ct+1) + ϕ

n
(·)
−i,ct + I(ct−1 = ct) +Ncϕ

(C.24)

It is important to note that, in practice calculating Delta functions ∆(·) or Gamma functions Γ(·)
result in overflows. This was the case while sampling the state probabilities. So we made use of log
probabilities instead to calculate the state transitions. Calculations in Log probabilities are both
efficient and safe.



Appendix D

Bayesian Statistics

Here are some basic concepts involving conjugacy of distributions that are typically used in this
thesis and more generally in Bayesian parameters estimation. The core of this analysis is the use
of Bayes rule which tells us how to combine the prior probability p(θ) and the likelihood p(D|θ) to
get the posterior p(θ|D):

p(θ|D) =
p(D|θ)p(θ)
p(D)

, (D.1)

where the denominator is

p(D) =

∫
p(D|θ)p(θ)dθ (D.2)

This equation (D.2) is often computationally difficult to compute. However when the prior and
likelihood terms have certain nice mathematical forms, we can work out the integration easily.
This computation is also used to calculate the predictive probablity of some new data given the
parameters computed from existing data. More specifically, we say a prior distribution is conjugate
to a likelihood if, when multiplied together, the posterior has the same mathematical form as the
prior distribution. Here are some prior-likelihood conjugate pairs.

Dirichlet-Multinomial model.
Consider a K dimensional multinomial random variable ~θ, where 0 ≤ θi ≤ 1,∀i and

∑
i θi = 1.

Rolling a 6 faced dice is a typical example of draws from a multinomial distribution where K = 6

i.e., there are one of six possibilities at each draw. Let D be the counts of the K events in a set of N
trials. Then the likelihood of this data is simply:

L(~θ|D) = p(~θ|C) =

K∏
i=1

θni
i=1 (D.3)

where, ni is the number of times the ith event is observed. Let us consider that we have some
prior information about this experiment and roughly know the prior counts of each of the K events
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i.e., a vector of counts ~α. Then the multinomial parameter ~θ can be thought as a draw from this
prior counts given by the Dirichlet distribution.

p(~θ|~α) =
1

∆(~α)

k∏
i=1

θαi−1
i , (D.4)

where ∆(~α) =
∏k

i=1 Γ(αi)

Γ(
∑k

i=1 αi)
and Γ denotes the Gamma distribution. Note that ~α

‖~α‖1 represents the
expected values of the parameter θ (where ‖~α‖1 is the L1 norm of ~α), and, when the Dirichlet is
used as a prior over the parameters θ of a multinomial distribution, ‖~α‖ denotes the strength of the
prior, and can be viewed as a count of virtual observations distributed according to ~α

‖~α‖1 .

Property 1:∫
Θ

p(θ|~α)dθ =

∫
Θ

1

∆(~α)

k∏
i=1

θαi−1
i dθ = 1 (D.5)

therefore we get

∆(~α) =

∫
Θ

k∏
i=1

θαi−1
i dθ (D.6)

Property 2: Now given the data D and the prior counts ~α, we can obtain a posterior estimate of the
multinomial parameters, using the above properties.

p(~θ|C, ~α) =

∏N
n=1 p(cn|~θ)p(~θ|~α)∫

Θ

∏N
n=1 p(cn|~θ)p(~θ|~α)d~θ

(D.7)

=

∏K
i=1 θ

αi+ni−1
i

∆(~α+ ~n)
(D.8)

= Dir(~θ|~α+ ~n),where, ~n = {ni}Ki=1 (D.9)

Finally what we get is in the form of a Dirichlet distribution Dir(~α+~n). This is simply the effect
of Dirichlet-Multinomial Conjugacy. But called in several names as Polya urn scheme or sampling
with over-replacement.

Property 3: Modeling a new dataset Dnew, we can calculate the probability of this data given our
multinomial and Dirichlet parameters. This is done by integrating out the multinomial parameters
as follows:

p(Dnew|~α) =

∫
Θ

p(Cnew|~θ)p(~θ|~α)d~θ (D.10)

=

∫ K∏
i=1

θni
i

1

∆(~α)

K∏
i=1

θαi−1
i d~θ (D.11)

=
∆(~α+ ~n)

∆(~α)
,where, ~n = {ni}Ki=1 (D.12)

We see that the above equation (D.12) is independent of ~θ as it is integrated out. This distribu-
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tion is called the Polya distribution or Dirichlet-Multinomial distribution.

Property 4: A Gamma function over variables taking discrete values behaves as, Γ(x) = x!, there-
fore, Γ(x+ 1) = x · Γ(x)

Beta-Bernoulli model. The Beta-Bernoulli model is a special case of the Dirichlet-Multinomial
model where the number of possibilities at each draw is limited to two e.g., a head or toss. There-
fore all the properties mentioned in the Dirichlet-Multinomial model are applicable to the Beta-
Bernoulli model by setting K = 2.

Gamma-Poisson model. Let D = {x1, x2, . . . , xN} be a set of observations that are independent
and identically distributed according to a Poisson distribution p(x|λ) with parameter λ. Then the
likelihood of the observations is given as:

p(D|λ) = ΠN
i=1p(xi|λ) (D.13)

∝ λ
∑

i xie−Nλ (D.14)

The conjugate prior for the Poisson distribution is the Gamma distribution which is given by:

p(λ|α, β) = λα−1e−βλ
βα

Γ(α)
(D.15)

where Γ(α) is the Gamma function, as described above giving (α− 1)! for integers. α and β are the
hyper-parameters, where α is the mean prior observations seen in β intervals.

Now writing the Bayes rule with Poisson likelihood and Gamma prior we get,

p(λ|D, α, β) ∝ λ
∑

i xie−Nλλα−1e−βλ
βα

Γ(α)
(D.16)

∝ λα−1+
∑

i xie−λ(N+β) (D.17)

which in its mathematical form resembles the Gamma distribution. By setting α∗ =
∑
i xi + α and

β∗ = N + β, we get:

p(λ|D, α, β) =
λα−1+

∑
i xie−λ(N+β)(N + β)

∑
i xi+α

Γ(
∑
i xi + α)

(D.18)

= Gamma(α∗, β∗) (D.19)

The predictive distribution for new data under this Gamma-Poisson model follows a Negative-
Binomial distribution.

Normal-normal model. Let D = {x1, x2, . . . , xN} be a set of observations that are independent
and identically distributed according to a normal distribution with mean µ and variance σ2. Then
the likelihood of the data is given by:
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p(D|µ, σ2) = ΠN
i=1p(xi|µ, σ2) (D.20)

∝ exp(− N

2σ2
(x̄− µ)2) (D.21)

where x̄ is the empirical mean obtained as x̄ =
∑
i xi/N . Now let us assume for simplicity that

the variance σ2 is known and kept fixed. We are interested in adding a prior distribution over the
parameter µ. The prior is a natural conjugate prior i.e., a normal distribution with mean µ0 and
variance σ2

0 . The the prior distribution is given by:

p(µ|µ0, σ
2
0) ∝ exp(− 1

2σ2
0

(µ− µ0)2) (D.22)

∝ N (µ|µ0, σ
2
0) (D.23)

The calculation of the posterior distribution entails a more involved derivation for which we
refer to (Murphy, 2007). The final for of the updated mean µn is then given as

µn = σ2
n

(
µ0

σ2
0

+
Nx̄

σ2

)
, where σ2

n =
σ2σ2

0

Nσ2
0 + σ2

(D.24)

The posterior predictive is then given by

p(x|D) =

∫
p(x|µ, σ2)p(µ|D)dµ (D.25)

=

∫
N (x|µ, σ2)N (µ|µn, σ2

n)dµ (D.26)

= N (x|µn, σ2
n + σ2) (D.27)
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