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Abstract

The aim of the present thesis is to investigate several aspects of: the proteins
mechanics, interprotein interactions and to study also new techniques, theoret-
ical and technical, to obtain and analyze the force spectroscopy experiments.

The first section is dedicated to the statistical properties of the unfolding
forces in a chain of homomeric multimodular proteins. The basic idea of this
kind of statistic is to divide the peaks observed in a force extension curve in
separate groups and then analyze these groups considering their position in the
force curves. In fact in a multimodular homomeric protein the unfolding force is
related to the number of not yet unfolded modules (we call it “N“). Such effect
yields to a linear dependence of the most probable unfolding force of a peak on
In(N). We demonstrate how such dependence can be used to extract the kinetic
parameters and how, ignoring it, could lead to significant errors. Following this
topic we continue with non kinetic methods that, using the resampling from the
rupture forces of any peak, could reconstruct the rupture forces for all the other
peaks in a chain.

Then a discussion about the Monte Carlo simulation for protein pulling
is present. In fact a theoretical framework for such methodology has to be
introduced to understand the various simulations done. In this chapter we
also introduce a methodology to study the ligand receptor interactions when
we directly functionalize the AFM tip and the substrate. In fact, in many of
our experiments, we see a “cloud of points” in the force vs loading rate graph.
We have modeled a system composed by “N” parallel springs, and studying
the distribution of forces obtained in the force vs loading rate graph we have
establish a procedure to restore the kinetic parameters used. Such procedure has
then been used to discuss real experiments similar to biotin-avidin interaction.

In the following chapter we discuss a first order approximation of the Bell-
Evans model where a more explicit form of the potential is considered. In
particular the dependence of the curvature of the potential on the applied force
at the minimum and at the metastable state is considered. In the well known
Bell-Evans model the prefactors of the transition rate are fixed at any force,
however this is not what happen in nature, where the prefactors (that are the
second local derivative of the interacting energy with respect to the reaction
coordinate in its minimum and maximum) depend on the force applied.

The results obtained with the force spectroscopy of the Laminin-binding-
protein are discussed, in particular this protein showed a phase transition when
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the pH was changed. The behavior of this protein changes, from a normal WLC
behavior to a plateau behavior. The analysis of the force spectroscopy curves
shows a distribution of length where the maximum of the first prominent peak
correspond to the full length of the protein. However, length that could be
associated with dimers and trymers are also present in this distribution.

Later a new approach to study the lock and key mechanism, using “han-
dles“ with a specific force extension pattern, is introduced. In particular han-
dles of (I27)3 and (127 — SNase); were biochemically attached to: strept-actin
molecules, biotin molecules, RNase and Angiogenin. The main idea is to have a
system composed by “handle-(molecule A)-(molecule B)-handle” where the han-
dles are covalently attached to the respective molecules and the two molecules
“A and B” are attached by secondary bonds. This approach allows a better
recognition of the protein-protein interaction enabling us to filter out spurious
events. Doing a statistic on the rupture forces and comparing this with the
statistic of the detachments of the system of the bare handles, we are able to
extract the informations of the interaction between the molecule A and B.

The two last chapters are of more preliminary character that the previous
part of the thesis. A section is dedicated to the estimation of effective mass
and viscous drag of the cantilevers studied by autocorrelation and noise power
spectrum. Usually the noise power spectrum method is the most used, however
the autocorrelation should give approximately the same information. The pa-
rameters obtained are important in high frequency modulation techniques. In
fact, they are needed to interpret the results. The results of these two methods
show a good agreement in the estimation of the mass and the viscous drag of
the various cantilever used.

Afterwards a chapter is dedicated to the discussion of the force spectroscopy
experiments using a low frequency modulation of the cantilever base. Such
experiments allows us to record the phase and the amplitude shift of the mod-
ulation signal used. Using the amplitude channel we managed to restore the
static force signal with a lower level of noise. Moreover these signals give us
direct information about the dynamic stiffness and the lose of energy in the
system, informations that, using the standard technique would be difficult (or
even impossible) to obtain.

Keywords : atomic force microscope (AFM), single molecule force spec-
trosopy, velocity clamp AFM, Monte carlo simulations, force modulation spec-
troscopy, energy barrier model, non kinetic methods for force spectroscopy.



Abstract

Lo scopo della presente tesi é di investigare diversi aspetti della meccanica delle
proteine e delle interazioni interproteina ed inoltre di studiare nuove tecniche,
teoriche e tecniche, per ottenere ed analizzare gli esperimenti di spettroscopia di
forza. La prima sezione é dedicata alle proprietd statistiche delle forze di unfold-
ing in una catena di di proteine omomeriche. L’idea di base di questa statistica
é quella di divivere i picchi osservati, in una curva di forza-estensione, in gruppi
sepatati e di analizzare questi gruppi considerando la loro posizione nella curva
di forza. In fatti in una proteina omomerica multimodulare la forza di unfolding
é legata al numero di moduli non ancora unfold (chiamimano questo numero N).
Questo effetto porta ad una dipendenza lineare della forza di rottura pii prob-
abile per un picco con il In(N). Dimostriamo quindi come tale dipendenza pud
essere usata per estrarre i parametri cinetici e come, ignorandola, pué condurre
ad errori significativi.

Seguendo questo tema continuiamo con un metodo non cinetico che, usando
il ricampionamento delle forze di rottura da un qualsiasi picco, permette di
ricostruire le forze di rottura per tutti gli altri picchi in una catena.

Successivamente una discussione sui metodi Monte Carlo per il tiraggio delle
proteine é presentata. In fatti un quadro teorico per tale metodologia deve essere
introdotto per capire meglio le varie simulazioni fatte. In questo capitolo intro-
duciamo anche una metodologia per studiare le interazioni ligando-recettore
quando si funzionalizza direttamente la punta dell’AFM e il substrato. In fatti,
in molti nostri esperimenti, vediamo una “nuvola di punti” nel grafico forza vs
loading rate. Abbiamo modellizzato un sistema composto da “N” molle in paral-
lelo e, studiando la distribuzione delle forze ottenute nel grafico forza vs loading
rate, abbiamo stabilito una procedura per riottenere i parametri cinetici usati.
Questa procedura é quindi stata usata per discutere esperimenti veri simili a
quelli di interazione di biotina-avidina.

Nel capitolo successivo discutiamo un’approssimazione al primo ordine del
modello di Bell-Evans, dove una forma esplicita del potenziale viene considerata.
In particolare la dipendenza della curvatura del potenziale al minimo e al punto
metastabile é considerata. Nel modello di Bell-Evans i prefattori del tasso di
transizione sono fissati rispetto alla forza, ma questo non é quello che succede in
natura, dove i prefattori (che sono la derivata seconda del potenziale rispetto alla
coordinata di reazione al minimo e al massimo) dipendono dalla forza applicata.

I risultati ottenuti con la spettroscopia di forza sulla Laminina (LBP) sono
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presentati. In particolare questa proteina presenta una transizione di fase al
cambio del pH. I1 comportamento di questa proteina cambia, da un comporta-
mento che segue la WLC ad un comportamento di tipo plateau. L’analisi delle
curve di forza mostra una distribuzione di lunghezza dove il massimo del picco
pid prominente corrisponde alla lunghezza totale della proteina. Sono anche
presenti ulteriori picchi associabili a dimeri e trimeri.

Successivamente un nuovo approcio per studiare i meccanismi ligando-recettore,
usando delle “maniglie” con uno specifico pattern nella curva di forza, é in-
trodotto. In particolare queste “maniglie” proteiche di (127)3 e (127 —SNase)s
sono state biochimicamente attaccate a: molecole di strept-attina, molecole di
biotina, RNase e Angiogenina.

L’idea é di avere dei sistemi composti da “maniglia-(molecola A)-(molecola
B)-maniglia”, dove le maniglie sono covalentemente attaccate alle rispettive
molecole e dove le molecole “A e B” sono attaccate da legami secondari.

Questo approcio ci permette un migliore riconoscimento delle interazioni
proteina-proteina permettendoci di filtrare gli eventi spuri. Facendo la statistica
delle forze di rottura e comparando questa con la statistica delle forze di rotture
dei sistemi composti da “maniglie” senza altre molecole, siamo capaci di estrarre
informazione sulle interazioni tra le molecole A e B.

Gli ultimi due capitoli sono piu preliminari dei precedenti. Una sezione
¢é dedicata alla stima della massa effettiva e del parametro di attrito viscoso
dei cantilevers studiati con ’autocorrelazione e la densita spettrale del rumore.
Generalmente la densitd spettrale del rumore é il metodo preferenziale, ma
I’autocorrelazione dovrebbe dare, approssimativamente, le stesse informazioni.
I parametri ottenuti sono importanti negli sperimenti di modulazione ad alta
frequenza. In fatti sono necessari per interpretare i risultati. I risultati ottenuti,
tramite densitd spettrale e autocorrelazione, mostrano un buon accordo nella
stima di massa e attrito viscoso dei vari cantilever utilizzati.

In fine un capitolo é dedicato alla discussione degli esperimenti di spettro-
scopia di forza utilizzando una modulazione a bassa frequenza della base del
cantilever. Questi esperimenti ci permettoni di registrare i cambiamenti di fase
e ampiezza della modulazione usata. Usando il canale di ampiezza siamo riusciti
a ristorare il segnale di forza con un rumore piu basso. Inoltre questi segnali ci
danno direttamente informazioni sull’elasticit dinamica e sulle perdite di energia
del sistema, informazioni che, usando le tecniche standard sarebbero difficili (o
addirittura impossibili) da ottenere.

Parole chiave: Miscroscopio a forza atomica (AFM), spettroscopia di forza
a singola molecola, velocity clamp, simulazioni Monte Carlo, modellizazione
barriera di energia, metodi non cinetici per spettroscopia di forza.
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Chapter 1

Introduction

The work that I am going to present here is related to the properties of the
biopolymers. The general idea of my project, and in general of force spec-
troscopy, applied in polymers pulling and in ligand receptor characterization, is
simple and can be formulated with a question, how does a string behave under
tensional stress? We could imagine this string, attached at the very end to a
surface. Moreover, the string has the property to create bonds between one or
more section of itself. To answer to the initial question we can pull this ideal
string with a spring and measure the force vs the extension.

If we do such an experiment many times, with similar strings, we could infer
the average properties of these strings, like: the strength of the various bonds,
the stiffness of the strings, their average lengths and more, depending on what
we want to study.

However to do such an experiment at the nanometer scale we need an ap-
propriate instrument. The Atomic Force Microscope, also called AFM, was
developed around 1980 by Gerd Binnig, Calvin F. Quate and Heinrich Rohrer
at the IBM Research in Zurich. The AFM is an instrument that allows to touch
a sample with a small probe with nanometer precision. The probe, depend-
ing on the experiment that we want to perform, is in general composed by a
cantilever with a small tip at the very end.

This cantilever is elastic and has a corresponding elastic constant. To explain
its behavior we can make a quick parallel with a spring attacched to a string. If
we put under stress this latter string also the spring will elongate allowing us to
measure the force applied to the system. The cantilever, similarly to a spring,
if attached to a string and if put under stress, will change its position. From
this we can measure the force applied.

The probe is then used to touch the sample with controlled displacements.

The displacements, in the instrument, are controlled by piezoelectric ele-
ments that allow to achieve nanometer precision.

The upper surface of the cantilever is reflecting. The bending of the can-
tilever is measured by focusing a laser on the top of such cantilever. The laser
beam will change trajectory as a function of the bending.
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Figure 1.1: Diagram of an AFM.

An idealized scheme of a typical AFM can be seen in Fig.1.1.

This instrument is also extremely versatile, it allows to pull single molecules
but it has been used for many other applications. In fact the original idea (that
has been successfully applied since its invention) was to image samples (at the
nanometer scale) by ”touching“ (e.g. [1, 2, 3] ). However this argument goes
beyond the scope of this thesis.

1.1 The study of the biopolymers

The biophysicists apply the quantitative and scientific methods to living matter.
Of course, as in any other field, we often use simplifications. This approach
allows us to obtain fundamental informations about the system that we are
studying.

The main objective of this thesis is to study the inter- and intra-molecular
forces involved, respectively, into the formation of complexes and in the structure
of the biopolymers involved.

Moreover we did not only study the properties and the forces in the biopoly-
mers but we have also tried to improve the experimental techinique for the
obtaining of the data.

First we have to note that the biopolymers are omnipresent in each living
organism (we can also include viruses here): DNA, protein, polysaccharides all
have a role (often also more than one). It has been recognized that 70% of
the proteins (and recently RNA) carry a structure that is deeply related to
the sequence [4][5] (of course unstructured proteins carry a biological function,
however the structure-function relationship of these proteins is more involved).
For small globular proteins this is also know as ” Anfinsen’s dogma* a postulate
first made by Christian B. Anfinsen, for which experimental demonstration he
obained the Nobel Prize. The "dogma‘ says that, in physiological conditions
(the conditions in which that protein is supposed to work) the native structure
is determined by the amino acid sequence of the protein itself. This structure
is unique, it is stable and it correspond to a kinetically accessible minimum of
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Figure 1.2: The two secondary structures.

the energy landscape.

Also if the structure is unique there are a number of common feature between
the proteins. In fact, recurring structural motifs can be observed in different
proteins.

The sequence of the aminoacids is simply called primary structure. Partic-
ular sequences of aminoacids give rise to a local structure that is called ”sec-
ondary structure“. These structures are three-dimensional motifs stabilized by
hydrogen bonds.

The a—helix is an helical conformation where, every "NH” group of each
aminoacid at position n creates a hydrogen bond with the “CO” group of the
residue n—4. The S—sheet is instead made by strands connected laterally by dif-
ferent hydrogen bonds. The various strands are made by stretched polypeptide
chains, usually from three to ten aminoacids long.

The problem of the determination of the secondary structure, starting from
the amminoacids sequence, is solved with an accuracy of 80% [6] using neural
networks.

An example of the two secondary structures can be seen in Fig. 1.2.

The following level of organization is called tertiary structure and it is the
spatial organization of the secondary motifs. Such organization is driven by
different forces like hydrogen bonding, Van der Waals forces, electrostatics, hy-
drophobic/hydrophilic interactions (a protein in water tends to have an hy-
drophobic core, but proteins that are embedded in the hydrophobic cell mem-
brane can behave differently).

Several methods exist to attempt predictions of the so called tertiary struc-
ture, in particular we have: ab-initio, by homology, side chain energy minimiza-
tion, human pattern recognition ([7]), however, even if the landscape is dotted
with successes, we are still unable to predict the native conformation of all the
proteins.

The importance of the protein structure prediction resides in the fact that, if



4 CHAPTER 1. INTRODUCTION

we have the structure, we can better understand the function (and then possibly
design a drug that “hits“ a particular protein).

There is also another level of organization of the proteins that is called qua-
ternary structure. In this organization a protein can interact with other proteins
(also of the same type) to form a complex. However we should consider also the
fact that RNA and protein can form complexes. An impressive RNA-protein
complex is the ribosome (for which structural determination Venkatraman Ra-
makrishnan, Thomas A. Steitz and Ada E. Yonath got the Nobel Prize in 2009).

The function of most proteins is strictly related to the structure: it is the
structure that regulates the chemical activity between a protein and a substrate.
This structure recognition resembles, to a first approximation, the fit of key
within a lock, where the mechanism works only if the contour of one fits the
surface of its correspondent.

This process of recognition holds also for ligand-receptor interactions, and
this process can be studied too with the AFM technique. The interactions
within a ligand-receptor pair can be characterized by several parameters and
can also have different pathways of formation.

The process of recognition shares a basic thermodynamic principle with the
folding of a protein. In both cases the structures involved look for an energy
minimum. This allows us to model both systems, again to a first approximation,
with a simple two state model. Moreover, using the same model means also that
we can use the same mathematics and obtain analogous parameters.

Many problems are related to the structure, or to the binding and the ligand-
receptor interaction. For instance it is known that in pathogenic conditions a
protein can misfold and form aggregates that may be toxic or pathogenic.

Understanding the conditions in which such processes occur, the kinetics
and dynamics of the complex formation turn out to be a challenging task.

The formation of aggregates is just one of many examples: another is, for
instance, the process of binding of virus to the cell membrane. As it is possible
to imagine, this process is based on a lock-key mechanism. For example in the
influenza virus, the virus uses a protein (the hemoagglutinin) to bind particular
moiety on the cell surface (the lactosamyne). This is the first step of the infection
mechanism and its characterization is important to study the virus and to design
protection mechanisms.

The advantage of the technique that we are using is that it is possible to
follow a single molecule at time. This allows us to have the information about
the populations of conformers and the geometry of the molecules. Moreover we
can also measure the kinetics of individual processes.

1.2 Possible applications

Why study the materials at the nanoscale?

One of the answers to this question comes directly from the mechanics of
the muscular fibers. If we look at the composition of the vertebrate muscles
we can see that titin is one of most abundant proteins. This protein plays a
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role in the mechanical response. Some years ago it has been proposed that
modules in titin could unfold reversibly in vivo to provide a mechanism for
extension and entropical tensional resistance. Moreover the observations made
with the AFM in velocity clamp and force clamp mode demonstrated that 127
(and similar modules) can refold in few seconds at zero or relatively low forces
[8][9]. Minajeva et Al. [10] have shown that only few titin domains unfold at a
time if force is applied. We can see that some ideas are arising to explain these
observation, but the mechanics of this protein has yet to be fully understood.

Moreover we know that the evolution works by random mutations and nat-
ural selection, and therefore there are a number of open questions related to
the evolution of titin in the muscles. Why natural selection has chosen this
structure for the titin? Which advantages does it give? Why is titin composed
by a sequence of similar, but not identical, protein modules with different me-
chanical resistances? To answer to these and other questions we need to study
the properties of the components at the nanometer scale.

One can also try to look at the possible applications of the knowledge that
came out from force spectroscopy. Recently it has been tried to create a ma-
terial at the macroscopical scale carrying the properties of its components at
nanometer scale.

Lv et Al. [11] created a material made of multimodular GB1 and resilin.
This material showed elastic properties that mimicked the properties of the com-
ponents. However, probably due to the particular “net like“ structure of the
crosslinks, the material was unable to stretch as much as the individual GB1 pro-
tein. Nevertheless this approach has shown the potential of force spectroscopy in
material design and the need of a better understanding of the nanoscale physics,
that could drive us to the production of new materials starting from a molecular
level.
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Chapter 2

Details of the AFM and of
the experiments

2.1 AFM details

An AFM is composed by several parts: a piezoelectric actuator, an optic sys-
tem, a photodetector and a cell or a holder to keep an external chip. In the chip
we can find the “sensor” that allows us to measure the forces of our interac-
tions. This “sensor” is a small flexible cantilever (a triangular cantilever can be
approximatively 200x100 pum when a rectangular can be 200x20 pm, however
dimensions are highly variable) at the side of the chip. At the very end of the
cantilever we have a tip which usually, for force spectroscopy measurements, is
pyramidal. The sharpness is an important parameter of the tip, in fact we want
the tip to touch a really small area of our sample to interact, ideally, with a
single molecule at a time. The common radius of an AFM tip is 30 nm, however
the exact shape and the aperture depends on the specification.

The general scheme of an AFM was showed in Fig.1.1. When we approach
a surface with a cantilever, the interaction forces bend the cantilever. The
common way to detect the bending is to look at the laser beam reflected by
the cantilever. This beam is sent to a four quadrant photodetector [12] that
amplifies the signal and converts it in to a voltage, allowing not only to measure
the vertical displacement but also the lateral (torsional) bending. In the first
stage of an experiment we need to correlate the deflection of the cantilever with
the signal obtained at the detector.

This is done by approaching the cantilever to the surface with the piezo and
correlating the piezoelectric displacement (that is assumed to be correct, and
can be calibrated independently) with the change of voltage. Now, when we
know how much the cantilever bends as a function of distance, we can calculate
its spring constant.

This is in general done using the equipartition theorem [13] considering the
cantilever as an oscillator with one degree of freedom:

7
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%kc (z?) (2.1)

Where k. is the spring constant of the cantilever and (z?) the time average
square thermal fluctuation of the cantilever.

To distinguish the different contributions to the fluctuation we use the power
spectrum density (PSD) of the signal. Looking at the PSD we can skim the
spurious contribution to the deflection and limit our analysis at the region in
which we have the peak of the resonance frequency of the cantilever.

The Parseval theorem allows us to write eq. 2.2.

1
“kpT =
2]5’

/\x(t)|2dt:/\:%(w)|2dw (2.2)

The major contribution to the power spectrum of the cantilever (if no exter-
nal sources excite it with a different frequency) is due to the resonance frequency
of the cantilever. This procedure can be used in air or in liquid. During this
procedure there are also other corrections that have to be taken into account
(see also [14]).

2.1.1 Force curves

The force distance curve is the signal that we obtain from an AFM during a
force pulling experiment. This signal show the force measured in function of
the displacement of the base of the cantilever.

In the velocity clamp technique it is important to know exactly how the
piezo moves, also the interpretation of the curves is easier if the displacement
is linear with the time. For this purpose the AFM exploits a so-called “Close-
loop”, where a sensor control the position and a feedback make it linear with
the voltage applied.

In this way we can obtain a constant velocity during the approach of the
surface and a constant velocity during the retraction. Often this is required
because we want the same pulling speed in different regions of the curve.

The drawing of a force curve can be seen in Fig. 2.2.

There are several protocols to obtain a force spectroscopy curve. Usually the
starting position of the cantilever is far from the surface, then we approach the
surface applying a voltage to the piezo that increases with time until it reaches
a setpoint, after that we decrease the voltage until we get the initial value. This
procedure can be modified: we can use different speeds for approaching and
retracting, we can also keep the cantilever in contact at a given force for a given
period and then retract back from the surface. Another interesting strategy is
to revert the ramp starting from a contact position then do an extension and
finally return to the contact. The ramp could be also more exotic, in fact it is
possible to modulate the ramp [15] to observe mechanisms that would be hidden
in a standard pulling sequence.

The "non contact“ part contains the events that we study. In general these
events resemble an asymmetrical peak (or a sawtooth pattern made of multiple,
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consecutive peaks if, for example, we are pulling multimodular proteins) however
the obtained signal depends on the structure and on the precise nature of the
interactions. For instance the DNA molecule shows a long and very flat plateau
around 70 pN ([16]) and only at the very end there is again an increase of the
force.

The force curves are usually ”corrected“ changing the coordinate from the
cantilever base into the extension of the molecule. This correction is done in
the following way: E(t) = D(t) — (F(t)/k.) where ”E* is the extension, ?D* the
coordinate of the base of the cantilever, F(t) is the force at the time ”t*“ and k.
the spring constant of the cantilever.

2.1.2 Force extension models

The Freeely-Jointed Chain (FJC) is the simplest model to describe the behavior
of a polymer. This model considers a polymer composed by consecutive iden-
tical rigid segments with random (uniform distributed) orientation in space.
Substantially it corresponds to a three dimensional random walk with a fixed
step size. Another aspect of this model is that the excluded volume effects are
neglected. The total length of an ideal polymer, in this kind of model, is given
by L = NI, where "N “ is the number of modules and ”1“ the length of a module.
This kind of polymer fluctuates in time and so, if we take the average distance
between two ends averaged over the time or if we take an ensemble of polymers
we get: (R) =N (/) =0

Each segment of the chain can be seen as a vector r, and all of them are
independent one from anoter. This tells us that, according to the central limit
theorem, Ris normally distributed. So all the 3D component of "R * are nor-
mally distributed with a mean of ”0“ and a variance given by eq. 2.3

0 = (R3) — (Ry)* = (R7) - 0 (2.3)

Due to the isotropy we have: (R7) = (RZ) = (R2) = N%, this is due to the
fact that (R?) = NI? = LI and applying the Pythagoras theorem we can easily
see that the average end to end distan(;e is V/LI. The end to end distance is
distributed as: P(R) = (ﬁ)‘g/2 e Nz,

As aforementioned, the stretching of a polymer can be represented by a
force extension curve. During the stretching we have two concurrent forces that
oppose to the stretching. At small forces, when the protein is near the natural
conformation, the entropy dominates the chain. So, elongating the chain means
a decrease in the number of possible configurations of it, and to do it we need
to overcome the entropy of the chain. At any temperature this entropy effect
is reflected as a force. In an ideal process we need to give the energy T'AS to
elongate the chain.

At higher forces the contribution of the molecular bonds becomes significant,
so in such case we are changing the enthalpy of the system and we speak about
enthalpic elasticity. High forces can change the internal arrangement of the
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molecule, leading to a change of conformation of one or more elements that
compose the chain.

The relation between the extension of an ideal polymer and an applied force
was first obtained by Kuhn [17] and it is given in eq. 2.4.

2(F)=1L [coth (Z;ﬂ) - ’E’z] (2.4)

Freely jointed chain describes quite well the systems where each segment is
independent from the previous, like in polysaccharides, however there are other
systems that are better described by a model where we have continuous elements
correlated each other. The most important of them is the Worm Like Chain
(WLC). For a certain string of length ”1“ we can parametrize the path as ”s*
€ (0,1). We can then define the tangent "t“ to the string at a point ”s* as t(s).

In such kind of string the correlation between the tangents decay exponentially.
(t(s) - £(s")) = eap(=|s — &'|/1p) (2.5)

In this decay we have introduced the length 71, “ called ”persistence length .
The persistence length measure the distance at which the correlations are lost,
however this parameter can be related to the bending stiffness (“noted as “B;“)
and the temperature as {, = B,/kgT.

The WLC model gives the eq. 2.6 for the force response:

 kgT

ly

F(x)

1 T 1
Lz 2.
PRSI 4] (2:6)

In an article of Bustamante et al. [18] the authors show that, for A\-phage
DNA, the FJC and the WLC coincide at low (< 0.1 pN) and high forces (> 50
pN), however for intermediate forces the WLC fit better the data.

The two model can be improved taking into account the module stiffness
under force, this lead to the so called ”Extensible Freely Jointed Chain“ (EFJC)
and the ”Extensible Worm Like Chain“ (EWLC), where respectively the therm
"k and ”®” represent the stiffness of an element (more properly ® ~ kL).

The two equations for these models are given in eq. 2.7 and 2.8.

B Flc\ ksT F
x(F)=1L [coth (kBT> FZK} (1 + kL) (2.7)
kgT 1 zx 1 F
F(z) = b= 2.8
() poo[40-F+ 52 . 4 @ (28)

These two models turn to be useful to estimate the stiffness of the chain or
of the modules, for instance an interesting approach to estimate the stiffness of
the modules in a polysaccharide chain can be seen in [19].
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2.2 The Bell-Evans model

In this thesis we use an interaction model that considers two states at different
energy divided by a barrier at higher energy. This landscape describes the
energy profile of the units of our biopolymers. We can model our biopolymers
as composed by a series of two-states springs.

The model can be schematized as in fig. 2.4.

This model has been applied for chemistry systems for a long time and it has
been first mathematically formalized by Kramers [20]. The model was refined
by Bell[21] and then by Evans, who introduced a loading rate dependence of
the lifetime of the bond in presence of a force. As Evans states in [22]: ” These
bonds will fail under any level of pulling force if help for a sufficient time. Thus,
when tested with ultrasensitive force probes, we expect cohesive material strength
and strength of adhesion at interfaces to be time- and loading-rate dependent
properties. .

In the following passages we will introduce some basics mathematics about
the Bell-Evans theory. More details on how to derive the model can be found
in the article of Kramer [20].

The first theoretical description of a transition or reaction rate was intro-
duced by Arrhenius. Thanks to him we can write the dissociation rate A as eq.

2.9.
AG
A =vexp <_kBT> (2.9)

This was later extended by Kramers, and v become the natural vibration
frequency of the bond determined by the frequency at the stable and metastable
state divided by the damping (as written in eq.2.10). More precisely the two

frequency are W, /i, = U (@) /d2®oms, /i
WininW AG

)\ = YminWmax _aG 2.10

oy CeP ( kBT) (2.10)

When we apply a force the eq. 2.10 changes and we have:

_ WminWmaz (AG — FAz)\ FAzx
)\(F) = Wemp ( M) = koffexp (M) (211)

In eq. 2.11 we have grouped the vibration rates with the energy term to the
koyrs leaving the exponential term that depends on F'Az. Using such notation
however change the meaning of the formula, passing from the Kramer theory,
where we explicitly express the dependence of w on the force, to the Bell-Evans
theory, where this dependence is neglected.

Using the rate of dissociation we can write the number of molecules that
dissociate at a time "t¢ (eq. 2.12).

dNp

Mo _ AN (212)



12 CHAPTER 2. DETAILS OF THE AFM AND OF THE EXPERIMENTS

The eq. 2.12 gives eq. 2.13

Ni(t) = exp (— /O t dt’A(t’)) (2.13)

Correspondingly we can calculate the number of dissociated bonds with eq.
2.14.

Np(t) = 1— Np(t) = 1— exp (- /Ot dt’/\(t’)) (2.14)

This latter equation can be written as function of the loading rate if we
assume that the force is a continuous and monotonous function of the time,
thus we have eq. 2.15

f
Np(f) =1 - eap (—; / df’Mf’)) (2.15)

The probability distribution of bond breakages as a function of the force is
given by the derivative of eq. 2.15 and (with some substitutions) give eq. 2.16.

- ko AzF korrksT AzF
P(F) = MF)s(F) = == exp < kBT> o {f'Ax <1 o ( kT >>]

Deriving the probability distribution and putting it to zero we can find the
most probable force as a function of the loading rate F' as written in eq. 2.17.
This latter equation has been used in many different papers to get the kinetic
parameters of a protein or a complex using the dependence on the loading rate.

d (dPD (F)) =0 (2.16)

af \ df
- kgT AzF
F(F) =~ —In (kofkaT> (2.17)

The equation 2.17 correlates the rupture/unfolding forces with the loading
rate and the kinetic parameters of a particular interaction. This correlation can
be exploited to obtain the kinetic parameters changing the speed at which a
bond is pulled (as example: [23],[24],[25],[26]).

The model that we have introduced is really useful for our work, however it is
an extreme simplification and many other factors have to be taken into account
to estimate the kinetic parameters. For instance we have investigated how the
multiplicity of modules in a multimodular protein change the rate, also other
effects like the polymer length and the temperature may play an important role.
Moreover the vibrational terms and the position of the barrier change when a
force is applied. Such effects have been investigated and results are reported in
the following chapters.
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2.2.1 Functionalization procedure to study ligand-receptor
interactions

The procedure to functionalize the surface and the tip of a AFM cantilever
depends mostly on the type of experiment that we want to perform.

The basic idea for protein-protein (or ligand-receptor) interaction AFM stud-
ies is to have one or more ligands on the AFM tip and the corresponding receptor
on a flat surface. Both molecules have to be strongly attached to their own sub-
strate, this is because the bond that keeps the proteins attached to the substrate
does not have to compete with the ligand-receptor interaction.

The aim is to have a clear statistics based on only one kind of interaction.

To do so we use a protocol for surface functionalization. The first step is
to use a silanization process on the mica surface (mica is chosen because it is
easy to get atomically flat surfaces apt to SMFS experiments). The process we
used is based on 3-Aminopropyl-triethoxysilane (APTES) and glutaraldehyde.
APTES allows us to have amino groups on the surface of the mica, while the
glutaraldehyde has two highly reactive aldehyde groups that react with NH,
groups. The idea is in fact to lay a carpet of amino groups on the surface, then
add glutaraldehyde that binds, with one of the two groups, the NH> on the
surface. After this, adding a protein solution, the remaining aldehyde group
binds the N H, exposed on the protein surface. In this way we have covalent
bonds between the molecules and the surface.

It is important to notice that APTES polymerizes in presence of water. It
is possible to use the APTES using also a wet strategy (a solution 0.1% v/v of
APTES in water) but, for pulling, a good precaution is to use a solution freshly
prepared, to avoid APTES polymers that would interfere with the experiment.
With the wet strategy we deposit the aforementioned solution on mica for one
minute and then we can wash with ultrapure water.

Another strategy is to use a vapour method, which consists in putting under
vacuum: a Petri dish with the mica surface that we want to functionalize and in
another Petri dish some droplet of APTES. Under vacuum, the APTES vapour
saturates the environment and reacts with the mica surface, functionalizing it
with amino groups. This strategy is more time consuming: experience shows
that two hours are required for a good functionalization.

After the silanization we add a solution of glutaraldehyde (1% v/v) for 15
minutes. The surface is then rinsed with deionized water and then a solution of
protein is put on the surface for 15 minutes. The surface is finally rinsed with
PBS (phosphate buffer saline, pH 7.4, P4417 Sigma ) to remove the unreacted
protein. Following this procedure we have a sample ready to be used for the
experiments, however we have to stress that the solution on the surface (after
the deposition of the protein) should not be allowed to dry, because it would
denature the proteins. In general also the protein solution should be treated
gently, avoiding contact with air and violent shaking (a gentle shake can be
performed with a pipette).

The same strategy could be used for the cantilever tip, where we use the
corresponding protein for the interaction that we want to study.
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2.2.2 Physisorption on gold surfaces

Physical absorption (physisorption) is a mechanism that can be exploited to
attach proteins and polysaccharides on a substrate. This kind of interaction
relies on secondary bonds (e.g. van der Waals) and it is unspecific. We have to
precise that the exact nature of the bond that keep the molecules attached to
the surface is unknown. In this case, we assume that the bonds are non-covalent
because we did not use any other substance than the molecules of interest. For
this reason we speak about physisorption,however, a small chance to create
covalent bond is still present. In some of our experiments, we have absorbed
proteins on gold surfaces. These gold surfaces, called Template Stripped Gold
(TSG), are composed by a thin film of gold obtained by evaporating the metal
on clean mica surface. Next the upper part of this layer is glued to a glass
coverslip. In this way we have a flat face attached to the mica and the bottom
face attached to a coverslip. With a simple mechanical operation it is possible
to remove the mica from the TSG leaving the flat layer of gold on the glass.
Physisorption is obtained simply by depositing a solution of protein on the
surface. The quantity of protein adsorbed depends on the concentration and to
the deposition time, however this process is highly stochastic and it cannot be
easily predicted.

2.2.3 Plasma functionalization procedure

To obtain force distance curves with dextran and with multimodular proteins we
found a really inexpensive method. Based on empirical observation we saw that
a glass coverslip treated with a Bunsen flame acquires an hydrophilic character.
We tried to use this procedure in some experiments, depositing a solution of
multimodular protein on a treated coverslip and comparing the results obtained
with untreated glass coverslip. The initial results were promising under the point
of view of binding efficiency, but they were unfortunately ”dirty“ regarding
the molecule pattern. We then tried to use a plasma cleaner for the glass
coverslip, however the plasma may introduces residues and particles that create
problems to the proteins deposited. After some attempts we found the best
conditions to treat the coverslip. We washed the coverslips with a strong flux of
water. Then we dried them with compress air and then they were treated using
(Harrik Plasma cleaner PDC-32G) in a plasma of air at a pressure of 10004100
mTorr at low-medium intensity for 5 minutes. We notice that proteins and
polysaccharides like dextran were able to stick on the surface giving also a
clean, good SMFS signal.

A possible explanation for this behavior is that the plasma removes almost all
the substances that were previously adsorbed on the surface. When we deposit
the substance of interest we have a physical absorption but now, because the
surface is really clean, we have many active sites that attract the substance of
interest.

For long expositions (> 1 min) also the roughtness of the surface can change,
this factor can contribute too to the probability of absorption of a substance.



2.2. THE BELL-EVANS MODEL 15

(Despite its utility we did not have time to study all the detail of the plasma
functionalization. It is the opinion of the author that for biomolecular interac-
tion study this topic would deserve more attention.)

For the dextran, and in general for the polysaccharides that can be dissolved
in water, it is sufficient to deposit around 50 ul of solution at 5% v/v on a
freshly treated coverslip and leave it dry overnight. The solution forms a thick
and visible layer that has to be removed. Such layer is not usable for the force
measurements, in fact, we want to pull a single molecule at time, but this would
be impossible with the aforementioned layer.

Therefore the coverslip is extensively washed with a strong flux of ultrapure
water (approx 200 ml) to remove the dessicated layer of polysaccharides from
the surface. The sample is then dried again and it is ready for an experiment.

The procedure to prepare a sample with multimodular protein is similar. In
this case we deposit 30-40 ul of a solution with a concentration of about 30
pg/ml of protein for 20 minutes. The deposition is made inside a closed Petri
dish where we also have put some droplet of water at a side of it, this is to create
a humid environment and prevent the drying of the protein solution deposited.

After 20 minutes we can wash the unreacted protein adding and removing
for two or three times 50 ul of the buffer solution that we use in the experiment
(usually PBS). Here, in any case, we should prevent the drying of the surface.
This is again because dry proteins exposed to air denature.
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Figure 2.1: We can see two cantilevers of different geometry. At the very end of
each one is possible to notice the tip. The different geometries correspond to different
correction factors when determining the spring constant of the cantilever.
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Figure 2.2: In this figure we can see an ideal force curve. At the beginning (blue curve)
we have the approach, when the piezo moves the chip close to the sample. Until we are
in the light yellow region we are “out of contact”: the cantilever does not interact with
the surface (just the fluid and the long range interaction if in air). At the contact point
the cantilever touches the sample/surface and it starts to bend, increasing linearly the
force signal with the displacement. At the end of the blue curve the retractions, now
we are pulling away the chip from the surface. If the cantilever has ”fished “ something
we will see the force event in the out of contact region. In this case we have depicted
only a simple, unique peak event, however the type of events that can happen are
diverse and they depend on the nature of the interaction.
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Figure 2.3
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Figure 2.4: Here we can see an hypotetical potential that takes into account two states
only: a bound state and an unbound state. In normal conditions, like in the common
velocity clamp experiments, we cannot determine the parameters of the unbound state.
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Figure 2.5: The energy barrier in the Evans model. The energy barrier is decreased
by a factor FAxz when a force is applied. We also notice that the z position of the
maximum does not change.



Chapter 3

Multimodular proteins
mechanics

In this chapter we will focus on the behavior under pulling of multimodular
homomeric proteins. We will analyze their behavior by two different strategies.
The first one is theoretical, where we will explain the effect of the domain
multiplicity on the force statistics of the multimodular proteins, in particular
we will focus on how to get the kinetic parameters by exploiting this effect. The
second strategy is instead phenomenological and it will show how, under some
assumptions, it is possible to predict the average rupture force for each module
in a chain of “N” modules based on the knowledge of the properties of just one
of them.

The two methods have been applied to two different data sets, nevertheless
they give consistent results.

The methods have been applied to a multimodular construct of eight sequen-
tially linked GB1 protein domains, that is, the streptococcal Bl immunoglobulin-
binding domain of protein G [27].

3.1 A kinetic point of view

The section is dedicated to the methodology that we have developed to obtain
the kinetic parameters of a protein module that builds a multimodular (homo-
meric) construct.

The main reason for it was the recognition of the fact that the probability
to unfold of a module, independently, is the same for all the modules. However
when modules are linked in a chain we have to take into account the fact that,
at the same time, multiple modules withstand force -and therefore are subject
to a non-negligible probability to unfold. This leads to an hierarchical behavior
where the most probable unfolding force increases from the unfolding peak closer
to the contact point to the last peak, just before the detachment.

19
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Moreover, in the literature it is possible to find several statements about the
difference in the forces of the peaks in a multimodular chain, however few have
ever taken into account how this variable can be used to obtain information
about the kinetic of the process.

Most published work in the field either used some global statistics of the
unfolding peaks in the force-extension curves deduced from a linear regression
method [28] or estimated the kinetic parameters from the distribution of the
forces [29]. Only recently have some studies focused on the hierarchical behavior
in multimodular systems [30, 31, 32, 33], see also [34].

A similar method can be seen in a work by Brockwell [30]; but in our analysis,
we do not need a characteristic length scale (Axz) for the molecule and we do
not calculate the loading rate to model the protein at every peak (for which
these authors used the elasticity function of the Worm-Like Chain).

The main idea is that, when multimodular proteins composed of a num-
ber of identical modules are unfolded in the course of a single-molecule force-
spectroscopy experiment, both the probability distribution of the unfolding force
and the most probable unfolding force depend on the number of not-yet-unfolded
modules in the protein.

The unfolding process can be described in the framework of a generalized
Bell-Evans model, based on certain minimal assumptions concerning the force
loading conditions.

In particular, the equations that we propose for the unfolding force predict,
for a multimodular protein containing N not-yet-unfolded modules, a linear
dependence of the most probable unfolding force on In(N). This conclusion has
been confirmed in experiments with GBI proteins, which verify in addition
further consequences of the proposed model, including a modified probability
distribution of the unfolding force.

In this work, multimodular proteins are stretched and the most probable
force, F , at which the modules unfold, known as the unfolding or rupture force,
is determined.

When the rate of unfolding as a function of the applied stretching force, f,
can be expressed by a known monotonic function A(f) (see eq.2.11 in chapter
2). The probability of module survival (i.e. the probability that a module has
not yet unfolded during force loading from f = 0 to f = F) is given by the

expression
_ N
s(F) = exp <_/o /\(f)f-> (3.1)

Correspondingly, the probability that the module unfolds in the force interval
[F,F + dF)] is given by eq.3.2.

F
dp = p(F)dF = A(F)s(F)dF = A(F) exp (—/0 A(f)‘?) dF (3.2)

If the force loading rate f is constant, differentiation of Eq. (3.2) with respect
to f gives immediately the most probable unfolding or rupture force as written
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in 3.3.

.dA

— =\ 3.3

=N (33)
As said in the chapter 1, the rate of unfolding A(f) is given by eq. 2.11.
However, when we deal with multimodular proteins the situation is more

complex.
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Figure 3.1: A typical force curve for velocity clamp GB1g stretching. In red is shown
the approach curve and in blue the retraction curve with the unfolding peaks. The
latter contains 6 unfolding events and the detachment event, where the molecule de-
taches from the AFM tip. In the hierarchy of forces, the unfolding force increases
statistically as the number of intact modules on the molecule decreases. The dark-
green line represents a linear fit near the unfolding peak, which is used to determine
the approximate spring constant of the stretched molecule, and can be combined with
the spring constant of the cantilever to calculate the effective loading rate.

Fig. 3.1 shows an example of typical single-molecule force-spectroscopy data
for a multimodular protein. To deal with this type of system, we introduce
the following generalization. In the presence of N identical modules connected
in series, which are subject to the same stretching force F', we require instead
of Eq. (3.2) an equation reflecting 1) that now not one but N modules must
survive during force loading from f = 0 to f = F (leading to a factor sV (F)),
and 2) that any one of these N modules (whence a further factor V) may unfold
in the infinitesimal force interval [F, F 4+ dF]. Thus

dpn = p(N, F)dF = NA(F)s(F)NdF (3.4)

differentiation of which yields, in this case, a most probable unfolding force
of
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_ kgT fAz

If now we suppose that, after one module has unfolded, (a) the force loading
conditions are exactly the same for the next module, namely the force returns
rapidly to zero and (b) force loading begins anew with the same constant rate
f as before!, we may apply Eq. (3.5) again, but now with N —1 modules. Thus
we can compare the unfolding force Fr,,:(n) of the nth module with that of
the mth module, and we will show that this comparison delivers essential new
information about the system.

3.1.1 Materials and methods

Our experiments were performed on multimeric constructs consisting of eight
GB1 modules [9, 35, 36] dissolved in Tris/HCI buffer (10 mM, pH 7.5) at a
concentration of approximately 20 pg/ml and deposited on gold as described in
“Introduction”.

The lever used was an NP (Veeco) which, for the data set presented, was
measured to have an elastic constant of 0.112 N/m. We have performed several
series of experiments to study the unfolding of (GB1)s proteins under different
pulling speed and with different cantilevers. To avoid possible uncertainties in
the data, all of the experiments described here were recorded on the same sample
under constant conditions and with a single cantilever. The construct was picked
up by the tip at random positions. The constructs were pulled at a speed of Z =
2180 nm/s. The curves obtained were analyzed using “Hooke”[37], an open-
source software package designed to extract information from AFM curves. For
our data analysis, we have selected only curves presenting a detaching peak,
because otherwise it is impossible to determine the total number of domains
picked up between the surface and the tip. In the following, we indexed the
last unfolded module in a stretching curve as peak 1, where we assume that
only one intact module was present during the last extension of the molecule,
while peak N in an unfolding sequence is an unfolding event on a complex with
N intact modules. The unfolding forces for all peaks of each order (from 1 to
N) were then treated together: this ordering ensures that we are merging data
about unfolding events which are mutually consistent concerning the number
of intact modules. The force loading rate for each group is the average of the
slopes of the peaks belonging to that group combined with the spring constant
of the cantilever,

f = Zkem (36)

IThe first condition is of only minor importance because the effect of force loading on the
probability of another bond breaking in the range between zero and some low force is rather
small, except when using very soft cantilevers. The second condition is much more important,
because the effective force-loading rate depends on the molecular compliance and therefore
will be altered by the breaking of a bond; we return to this question later.
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where kqg is defined as

-1
1 1
ket = [ — 3.7
& (kc * kmol) ( )

with k. the spring constant of the lever and k1 that one measured with the
slope of the peaks for the group.

To obtain the probability distribution (PD) of the unfolding forces, we have
used the Kernel Density Estimation (KDE) method [38] (a discussion to this
method can be found in “Appendix”). This technique is equivalent to a his-
togram but is more precise, giving a smooth representation and converging faster
than the histogram towards the real probability distribution function p(N, F').

The different groups of peaks which have to be fitted are labelled by their
order N. The values of and uncertainties in the kinetic parameters for each
group are deduced from the bootstrap method [39], which requires creating
subgroups of the main groups by using the same amount of data with resampling
(a representation of the method is shown in Fig. 3.2). For every main group of
order N, we have created 500 subgroups, and for each of these we have used the
KDE to create a PD which we have fitted with Eq. (3.4) by setting N equal to
the main-group index. From the fit of each subgroup, we obtain values for k.g
and Ax; the final values of these two quantities for each original group is their
average over all the subgroups, with their uncertainty taken from the standard
deviation.

3.1.2 Experimental results

A total of 190 force curves with at least three clear unfolding events were ob-
tained in the experiment. The distribution of the number of unfolding events
on one curve is represented in Fig. 3.3, where curves with six unfolding events
are the largest set. To prevent any additional uncertainties, we have thus lim-
ited our data analysis to the set of 27 curves with exactly six unfolding peaks
and that present a clear and strong detachment peak (clearly stronger than the
unfolding peaks).

It is also clear from Fig. 3.3 that our sample is not monodisperse in the
number of modules, and that a significant number of molecules have more than
10 modules. This is probably due to the fact that the protein is dimerized.
Additionally, the broad distribution of the number of unfolding peaks is a con-
sequence of the circumstance that the molecule is picked up by the tip at random
positions along its length.

For a given regime of load, where the conditions of local loading rate are
not too different from peak to peak?, it is possible to linearize the system and
consider it like a string made by two springs of different nature. This can be
express in theoretical way, by the equation 3.8 with which we interpret k.
This approach allows us to give an estimation on the total stiffness of the folded

2This condition has a major importance. In fact, when the load is different from peak to
peak it is possible to observe a non-monotonic dependence on the position. This is due mainly
to the change of stiffness in the chain rater than the change on the statistics.
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Figure 3.2: Schematic representation of the bootstrap method used to obtain the
values of kog and Ax for each set of peaks. This example is for peaks at position 1,
meaning that a fit of the distributions requires the use of Eq. (3.5) with N = 1.

modules and of the unfolded segments. However this approximation has its
limitations: it is known that the stiffness near a peak depends on the kinetic
parameters of the proteins itself and on the contour length of the chain. We also
know, however, that the stiffness of a long rod can be obtained by the derivative
of the WLC model.

z N—x)l (3.8)

kmOI(x) - (kmodule * kunf

where “x” represents the peak order, kpyoqule represents the spring constant of
a single monomer and kyy¢ is the spring constant of a module after the unfolding.
If we now plot the average slopes for each group of peaks versus the peak order
we obtain the graph 3.4 that gives, when applying the equation 3.8, values of:
kmodule(0.121 £ 0.006) N/m and kyupne(0.0676 =+ 0.003) N/m.

We have to underline that these values are correct only for the forces near
the rupture point because all the components behave like a non linear springs
where the “k” is a function of “F”.

The average values of the most probable unfolding forces and of their stan-
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Figure 3.3: Histogram of the number of observed unfolding peaks per curve.

dard deviations, extracted separately for each N, allow a direct test of Eq. (3.5),
which predicts a linear dependence of the most probable unfolding force F(N)
on In(N).

Rewriting eq. 3.5 we obtain eq. 3.9.

kBT fAl' kBT
Fru N - 1 — 1 N =
pt(N) Ax . <k0ﬁ:k3T> Az n(N)

(3.9)
kT

= Frupt(l) - Az

In(N)

which is the quantity represented in Fig.3.5. Their relationship is indeed very
well described by a single straight line, and from the fitted linear dependence
we extract the values kog = (2.2 4+ 0.3)s7! and Az = 1.154+0.12 A.

We have also studied further characteristics of the multimodular protein
unfolding process by applying two different options to process the data. The first
option is to find the values of Az and kg separately for each peak N =1,2,...6
by fitting the experimental unfolding force probability distribution to the N-
dependent theoretical probability distribution given by Eq. (3.4),to calculate the
corresponding weighted averages; by “weighted” is meant that the uncertainties
in the values obtained during the fit are accounted for properly during the
averaging. This leads to

kog = (0.3740.14) 571, Az = (1.5+0.1) A,
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Figure 3.4: Measured average stiffness for different groups of peaks. The elasticity
follow the eq.3.8.

and thus to a value of Az rather close to that extracted from the analysis
of the data with Eq. (3.9), as shown in Fig. 3.5.

The second, and conventionally used, option proceeds from an “indiscrimi-
nate” fit (one which ignores the order of the peaks) of the experimental unfolding
force probability distribution with the form given in Eq. (2.16). This approach,
which can be referred to as “single-peak interpretation,” results in noticeably
different value for K,z s

kosr = (47+£0.14) s7', Az = (1.1940.08) A.

The values of kog and Az for each N are plotted respectively in Figs. 3.6
and 3.7. The weighted-average approach is clearly compatible with the values of
both quantities for each individual peak, whereas the single-peak interpretation
clearly overestimates kog. Figure 3.9 compares the measured dependence of the
average unfolding force on N with the theoretical prediction: the values of k.g
and Az obtained by the above two data-processing methods were substituted
into Eq. (3.5) to calculate the most probable unfolding force as a function of
N. Here the error bars for the “weighted-average” and for the “single-peak-
interpretation” approaches represent the extremes of the forces obtained using
the parameters (kog + Okosr, Az + 0Ax) and (kog - Okosr, Az — §Ax). For the
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Figure 3.5: Unfolding force versus logarithm of the peak order. The straight line is a
fit using Eq. 3.9. The horizontal axis is logarithmic.

experimental data, the error bars represent the standard deviation of the aver-
age. From Fig. 3.9, it is clear again that the “weighted-average” interpretation
provides a qualitatively better description of the experimental results.

3.1.3 Further comparison with Monte Carlo simulation

Another interesting detail, that arises from this fit, concerns the spring constant
of the Monte Carlo simulations that have to be used to reproduce the data.
We have compared the experimental data with three different Monte Carlo
simulations. The simulations used the same kinetic parameters obtained from
the weighted method introduced in the previous section, the only difference
was the spring constant of the cantilever. In the first simulation we took the
spring constant equal to the average of the spring constants plot in Fig.3.4,
in the second we set the spring constant equal to the spring constant of the
cantilever, and in the last one we have dynamically change the spring constant
of the cantilever to take into account the folded modules according to eq. 3.10,
where 0.112 is the spring constant of the cantilever and 0.162 is the estimated
stiffness of a folded module.

k. = ((1/0.112) + (N/0.162))~* (3.10)

The results of these three Monte Carlo simulations are show in Fig.3.8.
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Figure 3.6: Fit of kog for the different peaks. Green triangles are the single peak
interpretation. Blue diamonds are the experimental values for each group. Violet
squares are the weighted averages.

Here we introduce the following notation that is useful for the following
discussion. We define “MC-LL” (Monte Carlo Low Load) the Monte Carlo
simulation done with the average loading rate obtained from the slope of the
peaks combined with the stiffness of the cantilever. “MC-HL” (Monte Carlo
High Load) the simulation done with the stiffness equal to the stiffness of the
cantilever. “MC-DY” (Monte Carlo Dynamic) the simulation done with the
stiffness that change after the unfolding of each folded module.

In Fig.3.8 we can clearly see that the MC-HL is coherent with the values of
the real data for low peak order, however the general behavior is not monotonic.
MC-LL is instead coherent with the central and high peak order values and its
behavior is monotonic.

This can be justified considering the object that the Monte Carlo simulates.
For a certain peak we have the following: the stiffness before the rupture point is
given by the WLC function derivative (where the contour length is given by the
sum of the contour length of the unfolded modules) composed with the stiffness
of the cantilever and, the peak force is given by the statistics of not-yet unfolded
modules.

In a real experiment the stiffness before a peak rupture is given by the
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Figure 3.7: Fit of Az for the different peaks. The black line is obtained from a linear
fit, which with y = bz + a yields a = 1.4 A and b = 0.03 A/module with x? = 2.11.
Violet squares are the weighted average. Blue diamonds are the experimental value
for each group. Green triangles are the single peak interpretation.

stiffness of the polymer unfolded composed with the stiffness of the not-yet
unfolded modules composed with the stiffness of the cantilever. Assuming that
the WLC derivative mimic the stiffness of the unfolded modules we see that we
are still neglecting the contribution of the stiffness of the folded modules.

This justifies the results obtained inf Fig.3.8, in fact in the MC-HL the load
at the low value peak order is correctly approximated by the composition of
the spring constant of the cantilever and the derivative of the WLC where the
contour length is given by the sum of the contour length of the unfolded modules.
At high peak order the MC-HL fails because in such region the contribution of
the folded modules is neglected.

The MC-LL is not precise for low peak order, in fact for this region the
WLC already decrease the loading rate (due to an high contour length) and,
substantially, it is like if we are using a much compliant cantilever.

The MC-DY is instead is in good agreement with the data, in fact all the
ingredient are present in this kind of simulation. At high peak order the loading
rate is moderated by the stiffness of the folded modules, instead at low peak
order the compliance is correctly given by the WLC. Differently from the MC-
LL, at low peak order, we do not underestimate the loading because the most
important contribution is given just by the WLC.
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Figure 3.8: A comparison between different Monte Carlo simulation and the real
data. Violet square represent the data caming from GB1. Blue diamond came from
the simulation with the spring constant equal to the average spring constant of the
system. Yellow triangles came from the simulation with the spring constant equal at
the spring constant of the cantilever. Red diamond came from the simulation where
the stiffness of the cantilever have been dynamically change.

These results make clear that, during a Monte Carlo simulation, it is impor-
tant to control the current stiffness of the object that is pulled, correcting the
spring constant of the cantilever “on-the-run” after each unfolding.

3.2 Conclusion on the kinetic model

The analysis that we have introduced in this section shows how the mechanical
unfolding of multimodular homomeric proteins composed by “N” modules can
be better studied focusing on the hierarchical behavior in the force curve.

This hierarchical behavior has been explained using the combined statistic
of the modules.

We have extended the Bell-Evans theory to interpret the data and consider
the effect of the presence of multiple identical modules on the unfolding forces.

The model works under the assumption that, after a module unfolds, the
force loading begins again from zero. Such a modification results in a new form
for the unfolding force probability distribution [Eq.3.4], which for a multimodu-
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lar protein containing N not-yet-unfolded modules predicts most notably a lin-
ear dependence of the most probable unfolding force, F(N), on In(N) [Eq. (3.5)].

In the previous sections we showed how the model proposed can be applied
to the unfolding of GB1 multimodular proteins with N = 1,2,...6, and can be
used to extract the kinetic unfolding parameters.

We demonstrate that results based on the fit of an experimental unfolding
force probability distribution with the new theoretical one, and thus on graphs
of F(N) as a function of In(V), are in good agreement.

Moreover we found that the elastic behavior of the modules and of the linkers
near the rupture points follow the behavior of a chain of springs of different
nature.

Of course some approximations have been done. In this approach we ne-
glect the combined probability for multiple simultaneous unfolding, as well as a
refolding probability which may be important in some cases (especially for ex-
periments with proteins having larger number of modules). However we found
no evidence for their relevance in our data set. In a similar vein, the use of
Bell-Evans theory may in some instances not be as well justified as it is here.
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Figure 3.9: Measured unfolding force compared with the force calculated from Eq. (3.5)
using values of kog and Ax from Figs. 3.6 and 3.7, shown as a function of the peak
order. Blue diamonds are the experimental values (the errors are the omean). Violet
squares are the distribution method that take in account the “N” dependence. Full red
circles are the linear fit with eq. 3.9. Green triangles are the single peak interpretation.
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3.3 A phenomenological point of view

As we have seen in the previous section, due to the identity of the modules it is
not expected that the forces associated with the unfolding event are drawn from
the same statistical distribution (eq. 3.4 clearly define the relations between
different distributions), however a relation between the distribution of different
events should exist. Furthermore, one may envisage to use only the limited
information contained in the experimental distribution of one single group of
unfolding forces to predict with high accuracy the average unfolding forces of
all other groups. To the best of our knowledge, this last issue has not been
addressed before and therefore we sought to investigate it.

The problem is here attacked at two levels. First we adopt a simplified
analytical scheme, which implicitly relies on a standard kinetic model for the
unfolding of the protein moduli (Evans’ theory).

This method, which builds on the results of the previous section, combines
a transparent analytical formulation with simplicity of implementation and use.
Yet, the simplifying assumptions which allow for the exact analytical treatment
of the model come as a disadvantage, since the predicted probability distribu-
tions for the unfolding forces of the various peaks can be significantly different
from the measured ones.

This limitation can be overcome by using a novel alternative, and more
general phenomenological approach which is introduced and discussed later.
This scheme, based on the bootstrap statistic and termed backcalculation, is
parameter-free and does not rely on any specific kinetic model. The method
merely uses the probability distribution of forces associated to one of the un-
folding events (the first, or the second etc.) and predicts the distribution of
forces of all other events. The method is validated against data obtained from
stochastic simulations (both Langevin and Monte Carlo) and from AFM exper-
iments carried out on multimodular GB1 constructs. In all cases the average
forces associated to any unfolding event are well predicted by the backcalcu-
lation and the deviations from the experimental measured values are of only
5pN. This quantity is smaller than the uncertainty typically associated with
experimental estimates for protein unfolding forces.

3.3.1 Experiment

The experimental procedure that we have applied is exactly the same as for the
kinetic study and can be read in the previous section. The curves have been
again selected choosing only those that presented a clear detachment peak. Also
in this case the most prominent group was that of the curves with six unfolding
peaks. All the curves have been analyzed with “Hooke” and, like in the previous
protocol, each peak has been put in a separate group depending on its position
in the force curve.
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3.3.2 Numerical simulations

Two different computational approaches, namely Monte Carlo and Langevin
simulations, were used to study the mechanical unfolding of multimodular pro-
tein constructs. In both cases, the pulled construct is assumed to be anchored
at one end while the other is pulled at a fixed speed. The end-to-end distance
of each protein module projected along the pulling direction, x, is used as an
effective order parameter to describe the module state. This corresponds to
considering the system as being effectively one-dimensional, as in the sketch of
Fig.3.10a. This is a good approximation since, for the typical unfolding forces at
play in our experiments, the end to end distance of our construct, as obtained
from a worm-like-chain model, is expected to be almost equal to its contour
length, so that fluctuations in the y and z directions can be neglected.

Depending on the value of the end-to-end separation, each module is con-
sidered as being folded (F) or unfolded (U); these two states are separated by
a barrier of potential energy, whose height is modulated by the applied tensile
force. The effective potential energy, U(x), is modeled explicitly in the Langevin
scheme, where one integrates the stochastic equation of motion for each of the
tethered modules in the construct that is being pulled. By contrast, no explicit
representation of the construct is considered in the Monte Carlo approach. The
latter, in fact is employed to model the succession of discrete unfolding events
occurring at force-dependent rates.

The two methods clearly embody rather different strategies for simulating
the stretching experiments and, also in view of the different parameters used in
the corresponding stochastic simulations, are useful to probe the generality and
transferability of the “backcalculation method” (BC) proposed here.

Langevin simulations

With reference to the sketch in the inset of Fig. 3.10a, the anchored end of the
construct is located at o = 0, while the other end (x4 in the sketch) is attached
to the moving AFM tip. The latter is modeled as a Hookean spring (z4—x5 in
the sketch) with spring constant k£.=0.01 N/m. Each protein module behaves
as an anharmonic spring; the associated free energy profile, U(z), is shown in
Fig. 3.10a and described by the following expression

A %KF(I’*{EF)Q ifz <z
Uz) = i3 +<{ Ux)=AGpr — SKp(x —xp)?if oy <z <29 (3.11)
e U(z) = AGrpy + 3Ky (x — zy)? otherwise

The model parameters are chosen consistently with the overall shape of the
potential energy landscapes typically found in proteins [40] and are provided
in the caption to Fig.3.10. In particular, the contour length of each module is
equal to the nominal contour length of GB1, L. =18 nm, the reference end-to-
end separation of the folded state is x =4 nm and its distance to the transition
state is Az = 0.5 nm.
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In multimodular protein constructs, each protein module is connected to
the next via a short peptidic linker of length 1.5nm. To keep at a minimum
the number of parameters in the model, we described these linkers, — which
clearly do not undergo any transition upon stretching — by unfolded protein
moduli. To do so we initially prepare the pristine construct as a succession
of folded modules, with initial end-to-end separation equal to z, intercalated
with unfolded modules, with initial end-to-end separation equal to xy .

The potential energy barrier separating the F' and U states is sufficiently
high that an initially unfolded module will not spontaneously refold over the
short timespan of the model stretching experiment.

The total potential energy of the homomeric module chain composed by n
protein modules, m linkers and the AFM tip is given by

n+m
1
H(J)l, T2,y .. T, -Tn-l-m-i-l) = Z U(xz - mi—l) + §kc(xn+m+l - xn+m)2
i=1
(3.12)
The time evolution of the key construct positions, x;—1, . ntm follows the
overdamped Langevin dynamics:

. oOH
V=g +1(t) (3.13)

where v = 4.4-107° pN s/nm is the friction coefficient appropriate to yield
(according to Kramers’ theory) a spontaneous unfolding rate (at zero applied
force) equal to k,rp = 1072 s71. p(t) is a Gaussian white noise term with
zero mean and variance equal to 2kpTy (kp is the Boltzmann constant and
T = 300 K being the temperature). Notice that the derivative of the potential
U (entailed by the derivative of H) is not continuous in 5.

The stochastic equations of motions were integrated numerically with a time
step of 1ns. After an initial equilibration the position of the AFM tip, &, 4m+t1
is moved at constant velocity, Z,,4m+1(t) = vt, with v =500 nm/s. This velocity
value is commonly employed in stretching simulations and falls in the typical
range of pulling velocities used in experiments[8]. The typical time-span required
to unfold all the n = 6 moduli in the constant-velocity simulation was 0.25 s.

The force/extension curve of the system is obtained by recording the restor-
ing force experienced by the AFM tip, f = kc(Tntm+1 — Tntm), as a function
of the AFM tip position, z, 1,41, as shown in Fig. 3.10b. Several hundred
such curves were collected and analysed with “Hooke” after performing a time
average over windows of duration 0.15 ms to mimick the finite time-resolution
of a typical experiment.

Monte Carlo simulations

As anticipated at the beginning of the section, the Monte Carlo approach (here
implemented as in refs.[8, 41] and explained in the chapter 4) provides as phe-
nomenological approach to the kinetics of mechanical unfolding. The advantage
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Figure 3.10: (a) Insert: The protein model used in Langevin simulations. (b) Illustra-
tion the anharmonic spring potential for one module of the construct in the Langevin
simulation, see Eq. 3.11. A large value of A, equal to 100 pN - nm?, was used in Eq.
3.11 to enforce the constraint that the modules cannot be stretched beyond the nom-
inal contour length, L. = 18nm. The reference end-to-end separation of the folded
state, xr is set equal to 4 nm and the the end-to-end separation between the folded
state and the transition (T) state, Az = 7 — xr is 0.5nm. The reference end-to-end
separation of the unfolded state, zy, is equal to (L. — z7)/2. Consistently with what
established in previous studies, the barrier separating the folded and transition state
is set equal to AGpr = 20kp T while the one between the folded and unfolded state
has the value AGry = 5kp T, with the temperature T being equal to 300K (i.e.
kg T 4.2pNnm). For simplicity, the curvature, Kr is set equal to Kr. The value of
Kr was, in turn set equal to 4AGrr /(X1 — XF)2 = 1344pN/nm so to ensure the
continuity of the potential and its derivative at the midpoint 1 = (Xr + X7)/2 where
the first two parabolas in Eq. 3.11 meet. The value of ki was set to be much smaller
than Kr, Ky = Kr/500 = 2.69 pN/nm. The value of z2 was finally obtained by the
requirement of continuity of the potential. To avoid an excessive parametrization of
the model, flexible linkers in the construct are described as unfolded protein modules.
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Figure 3.11: A curve obtained with the Langevin simulation with the configuaration:
UFUFUFUFUFUFU.

of its transparent formulation is balanced by the highly simplified nature of the
model. In particular, by contrast with the Langevin modeling of biopolymers
stretching employed here and in other approaches [42], no explicit representa-
tion of the module constructs is considered and the linkers are not accounted
for. In addition the pulling action is assumed to act equally on all the n modules
causing the same steady increase of the end-to-end separation for each of them.
Notice that because of the limited sound velocity in the chain this condition is
only approximately realized in Langevin schemes and experiments (where other
effects such as viscosity can be at play). In any case, the lower the pulling rate
the better the approximation is expected to be.

Within the above assumptions, the end-to-end distance (equal to zero at
the initial time ¢ = 0) of each one of the n modules at time ¢ is equal to
(vt — %)/n In this study we considered n = 6 and v =500 nm/s and the
effective spring constant of the AFM tip is set to k.=0.01 N/m, as for the
Langevin simulation. The instantaneous force experienced by each module is
computed from the theoretical force-extension curve, fy o (x) of an equilibrated
WLC with contour length L. = 18 nm (appropriate for GB1) and a persistence
length [,=0.4 nm. The progressive loading of the modules is followed at time
increments of duration At = 1.6x107° s. At the (discrete) time ¢ the probability
that one of the modules yields and becomes unfolded is computed within the
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Evans’s approximation[22]:

fWLC (Ut) . AIE

A (3.14)

p(t) = kopyexp(

where kp is the Boltzmann constant, 7' = 300K is the system temperature.
The effective values kosf = 0.115~! and Az = 1.44 A are obtained from a fit of
the experimental data using Evans’ theory as in ref. [43]. The fitting procedure
ensures that the unfolding forces fall in a range similar to the experimental
ones, although a precise match is neither expected nor sought. The associated
unfolding force is recorded and the calculation is next repeated with the n — 1
modules. The statistical distribution of the unfolding forces for each value of n
was obtained from 1000 repeats of the MC unfolding simulations.

0.014

pdf
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Unfolding force (pN)

Figure 3.12: Probability distribution of the forces for the peaks near the detachment
obtained by Monte Carlo simulation.

3.3.3 Analytically solvable model

Simple analytical expressions for the probability distributions of the unfolding
forces, and the associated mean values and variance, as a function of the number
of domains, n, can be obtained by introducing a further simplification besides
the ones introduced for the Monte Carlo scheme. Specifically, each protein
module is treated as an harmonic spring (as in the Langevin approach) rather
than a worm-like chain. This solution is equivalent to that shown in Ref. [43], but
it is here extended to the analytical calculation of the variance of the unfolding
forces.

Let us consider a model construct consisting of N harmonic springs. n of
them represent folded moduli and have spring constant equal to Kz while the
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remaining N —n have a smaller spring constant, K, as appropriate for unfolded
moduli. The model construct is subject to the AFM pulling force (the AFM
tip is again modeled as a harmonic spring with constant k.). Because the tip
is pulled at constant velocity, v, the tensile force experienced at time ¢t by each
construct is equal to:

vt

I = R T (N —n) Ko T 17k

= Keffvt (3.15)

where K.y is the effective spring constant of the construct in series with the
AFM tip and its inverse decreases with n as Ke_flf = NK;' + k7' — (Kt -
Kz')yn = K~'(1 — An). Here K~ is the inverse spring constant of the com-
pletely unfolded construct, and A a correction term which describes the depen-
dence of the spring constant on the number of folded modules.

Accordingly, the “survival” probability that any one module has remained
folded up to time ¢ is equal to [44]:

0 " bogge (3.16)
S1(t) = exp —/ 2 qaf . 3.16
' [ 0 vKess ]

The probability that all the n modules have remained folded up to time ¢, or
equivalently up to the loading force f(t) = vtK,y, is simply obtained by raising
the above expression to the power n,

Sp(t) = Sy ()" . (3.17)

By differentiating S,, with respect to f one obtains the probability distribution,
p(f), for the force at which the first unfolding event occurs in a chain of n
modules.

The sought expression is

Az n(l—-An)k, fAz
p(f) x exp (iBT _n Axkv) ffe’CBT> . (3.18)
kpT

where the proportionality factor, containing the normalization of the probability
distribution was omitted.

Since the function above is typically non-negligible only for positive f, we
can compute its average and variance integrating over [—oo, +00], which leads
to the analytical result:

kgT ko
(fin = 7%96 v + log Axgv + log(n — An?) (3.19)
kpT
2
9 T
2= (3.20)
6(757)°

where v ~ 0.577 is the Euler-Mascheroni constant.
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We remark here that the variance is independent from the number of folded
moduli, n, in the construct. This result is related to the empirical observation
that, in typical stretching experiments of a single protein construct, the variance
of the unfolding force is largely independent from the loading rate [44].

If the dependence of the spring constant on the number of folded modules
can be neglected, the average unfolding force acquires a particularly simple
expression:

log[bn]

(fhn=—1 - =22 (3.21)

where the parameters a and b are obtained from the average force and variance
for a single, generic n = ng: a = 7/vV602 and b = exp[—y — a{f)1]/no-

Finally, we notice that the expression of eq. 3.18 corresponds to a Gumbel
extremal distribution[45] with the “fat” tail extending towards low values of
the force, f. Accordingly, the viability of the analytical model to capture the
statistical properties of the unfolding forces measured for a given value of n, can
be ascertained by checking whether the forces follow the Gumbel distribution.
To address this point we employed the Anderson-Darling test and computed
the significance level to which one can support the null hypothesis that the
data originate from a Gumbel distribution. As customarily, the threshold of 5%
statistical significance was used to accept or reject the null hypothesis.

3.3.4 Backcalculation

The previous analytical results rely on a definite kinetic model (Evans’ theory)
and on the harmonic modeling of the elastic response of the AFM tip and the
protein modules. These effects could be included in a more general theoretical
framework which, however, would not yield simple analytical calculations.

This difficulty can be circumvented using a simple and physically appealing
phenomenological approach, which we term “backcalculation” method and de-
scribe hereafter. The method is parameter-free as it relies on the knowledge of
the empirical probability distribution of the unfolding forces at one particular
value of ng. This reference distribution can be used straightforwardly to predict
the average value of the force and its variance for all other values of n.

The scheme is best illustrated assuming that the reference distribution is
the one for n = 1, p,,—1(f). This distribution is directly obtained from the data
gathered in the stretching experiments or from the stochastic simulations, see
Fig. 3.12.

In the same spirit of the Monte Carlo simulation and the analytically-soluble
model, we assume that the loading rate is sufficiently low so that, at any given
time, all modules experience the same instantaneous tensile force applied at
their ends, f, and that each of them can unfold independently from the others.
We also assume that the stiffness of the construct, defined as the derivative of f
with respect to its length, is not dependent on the number of folded constructs
n. This is equivalent to considering A = 0 in the analytical model, and it’s
realistic for investigated cases.
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Under these assumptions, without resorting to any kinetic model or lengthy
stochastic simulations the average unfolding force associated to the nth peak,
(f)n, is computed by drawing n random numbers distributed according to
pn=1(f) and taking the smallest of them as the force at which one of the n
modules first unfolds. The average value of the unfolding force (f), (and its
variance) is clearly obtained by repeating the batch force sampling process sev-
eral times.

At the simplest level, this method is implemented as follows. First one
collects N independent experimental (or computational) measurements of the
unfolding force at n = 1. Then, one draws n elements (with replacement) with
equal probability from the sample, retaining the smallest one. This second step
is then repeated, and allows to generate a large number of forces which are
representative of the n peak distribution. Alternatively, one may use the or-
dered list of N measurements to construct a cumulative probability distribution
interpolated linearly between consecutive measured values. The cumulative dis-
tribution is next straightforwardly used (see Chapter 7.3 in [46]) to sample, with
the correct weight, the n force values. Describing the process in terms of the
cumulative distribution has also the following important advantage. It is possi-
ble to exploit the simple relationship of 3.17 (which is based on the assumption
of independence and hence valid regardless of the specific underlying kinetic
process) to generate data for unfolding forces of the nth peak starting from the
data obtained for a peak with a different order, nyg.

In fact, indicating with

f
Quo(f) = [ df pus ()

the cumulative distribution for the unfolding forces of the mth peak, one has
that the corresponding cumulative distribution for the nth peak is:

Qn(f) =1 = (1= Quo ()™ . (3.22)

It is important to stress that the above relationships are of high conceptual
and practical interest for recovering the distribution of unfolding forces of one
peak, say n = 1, starting from a peak of higher order, say ng = 2. A detailed
description of this backward extrapolation can be practically implemented in a
numerical scheme is provided in the Appendix.

The results discussed hereafter are produced with a more refined method
where the probability p,,—1(f) is obtained from fitting the histogram of the “raw”
force measurements with a convolution of Gaussians using the kernel density
estimation (KDE) [38], as shown in Fig. 3.12. Data are sampled according
to this distribution using either the cumulative distribution, or the rejection
scheme, (see Chapter 7.3 in [46]).

3.3.5 Comparison of the methods

For all the three systems of interest (the GB1 experiment, the Monte Carlo
and Langevin simulations) we analysed the data of the force vs extension (or
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equivalently force vs time) curves. In all three cases the data pertained to the
stretching of constructs of n = 6 modules and therefore the few curves which
did not display 6 force peaks were discarded.

The peak force data for each value of n were considered and used to compute
the histograms reflecting the force distribution.

The probability distribution is obtained with a convolution of Gaussians
using the KDE method. The resulting normalized distribution of the forces
pn(f) at which a single module unfolds in the Monte Carlo scheme and GB1
experiments are shown in Fig. 3.12. The best-fit Gaussian convolutions were
used to obtain a robust estimate of the average unfolding force and its standard
deviation at each value of n. The results are provided in Tables and Figs. 3.13,
3.14 and 3.15.

The best-fit distribution for the “last surviving” peak, ng = 1, was typically
used as input for the backtracking and the analytically-soluble methods, so to
obtain predictions for the average unfolding forces at all values of n. For the
case of highest practical interest, namely the GB1 experiment, the unfolding
forces of all other peaks, n = 2,3,4,5,6 were also used (see Appendix).

3.3.6 Monte Carlo simulation data

We start by discussing the application of the method to data generated using
the Monte Carlo procedure. Of the three sets of data (experimental, Langevin
simulations and Monte Carlo) this set is the one that is expected to be most
appropriately captured by the backcalculation. The Monte Carlo scheme indeed
builds on the identical kinetic status of all the modules and during this process
only the total contour length changes with very mild effect on the loading rate.

By using the ng = 1 data it is indeed seen in Table 3.1 that the mean
values of the predicted and measured unfolding forces are in good agreement
for all peaks n = 2...6, with differences always below 5 pN. The agreement is
readily perceived in Fig. 3.13 where it is seen that the BC data up to n = 4 fall
within the statistical uncertainty of the MC data and only the forces predicted
at n = 5 and n = 6 present deviations of about 2.5 standard deviations from
the MC data.

A more challenging quantity to compare is the second moment of the dis-
tribution, that is the variance or, equivalently, the standard deviation. For the
latter the agreement is still good. The deviation of the Monte Carlo simulation
and backcalculated values, |0pc — 0datal/(0BC + Tdata) is typically within 10%
and is worst for the last peak, n = 6, for which it is 16%.

The results of the analytical model agree with the MC data, that is in turn
comparable with the BC one. This is illustrated by the dashed line in Fig. 3.13
which reports the analytical predictions based on the MC data for n = 1 (data
for this case and other values of n are provided in Appendix). This good agree-
ment is non trivial in view of the fact that the simplified analytical treatment
describes the folded protein domains as harmonic springs while the MC data
were generated employing a WLC model for each domain. We carried out the
Anderson-Darling statistical test for described in the Methods section and es-
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tablished that the MC data for n = 1 (and higher values too) are compatible
with an underlying Gumbel distribution. This reinforces the applicability of the
simplified analytical scheme in the model MC context.
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Figure 3.13: Force vs peak order for the Monte Carlo simulation and the BC. In red
we can see the Monte Carlo values. In blue the values obtained with the BC.

3.3.7 Langevin data

The same analysis was repeated for the data generated using the Langevin
scheme, which contains several differences compared to the Monte Carlo scheme.
Specifically, the Langevin scheme does not enforce neither Evans’ kinetics, nor
the same precise behaviour of all folded moduli in the chain. In addition, it
accountes for the presence of model linkers between the folded moduli and finally
values of Az and kof¢ are appreciably different from the Monte Carlo case are
used.

As it is visible from Table 3.2 and Fig. 3.13 also for the Langevin context,
the performance of the backcalculation method is good and, with the exception
of the point for the fourth peak (which compared to the trend of the other data
points appears to be an outlier) the average predicted values of unfolding forces
are all within about one standard deviation of the Langevin data. As for the MC
data, the predicted standard deviations are also consistent with the measured
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ones, and the largest relative error, again found for the peak with the largest
extrapolation, n = 6, is 14%.

As shown in Fig. 3.13 the performance of the analytical model based on the
no = 1 data is not dissimilar from the one of the backcalculation (the detailed
results are again reported in the Appendix). Indeed, also in this context, the
Anderson-Darling test indicates that distributions of the unfolding forces are
compatible with a Gumbel distribution.
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Figure 3.14: Force vs peak order for the Langevin and the BC. In red we can see the
Langevin values. In blue the values obtained with the BC.

3.3.8 Experimental data on multimodular GB1

Finally, we turned to the experimental data, which clearly represent the chal-
lenge with the highest difficulty. Because of the complex interplay of the several
factors that impact on the stretching process and because the pulling rate is
not particularly low, it may not be expected a priori that the system unfolding
response might be well captured by the backcalculation. Moreover, given the
small number of experimental samples, which is equal to 47 per peak, it is not
simple to obtain a reference histogram from the experiment or to pin a distribu-
tion, even when using the KDE interpolation scheme. Thus, any defect in the
starting distribution is consequently amplified by the backcalculation method.
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Despite these caveats, the predictive capability of the backcalculation method
for the average unfolding forces was found to be very good also in this case. The
level of agreement can be appreciated examining Table 3.3 and Fig. 3.15. The
increasing underestimation, as a function of n, of the sample standard deviation
(predicted from the ny = 1 peak) can be ascribed probably to the fewer than
expected measurements at low forces. This is readily demonstrated by starting
the backcalculation from the second peak, n = 2, which covering lower values
of unfolding forces, can reproduce very well not only the mean unfolding forces
at all other values of n, but also the corresponding standard deviations.

In the light of this consideration, the very good consistency of the backcal-
culation data with the measured distribution is very remarkable, and testifies
the robust applicability of the method.

It is particularly instructive to discuss the performance of the analytical
method too. Both the average unfolding forces and their standard deviations
are not dissimilar from the experimental ones (see Fig. 3.15). However, unlike
the cases for the MC and Langevin data, this agreement does not stand a closer
statistical scrutiny.

In fact, the Anderson-Darling statistical test indicates that the experimen-
tal data do not follow the Gumbel extremal statistics entailed by the analytical
model. In fact, the null hypothesis for the n = 1 peak supported with a con-
fidence level smaller than 1%. The same applies for the n = 2 peak as well
(in spite of the fact that a more and more pronounced Gumbel-like character is
expected as n increases).

The above observation demonstrate the utility of the backcalculation ap-
proach in contexts of practical interest. Indeed, the phenomenology of systems
such as multimodular constructs of GB1 can be too rich to be well-accounted for
by Evans’ theory. In such contexts, a good control/prediction of the unfolding
forces for varying number of surviving moduli can be made only starting from
the phenomenological distribution.

3.4 Conclusions on the phenomenological model

The previous section have presented a systematic investigation of the statistical
properties of the forces associated to the first, second etc. unfolding event in
a multimodular construct. The phenomenological scheme that we have intro-
duced, named “Backcalculation”, use as input the distribution of forces asso-
ciated to a certain unfolding event to predict the force distribution of all the
other events.

As already demonstrated by the kinetic method, it is shown that the stan-
dard procedure of analysing experimental protein forced unfolding data by
grouping together forces associated to all unfolding events should be replaced
by considering separately the events with equal order of appearance.

Secondly, the comparison of the experimental distributions of unfolding
forces with the one predicted by standard kinetic models reveals appreciable
discrepancies, thus preventing their use as reliable descriptors of the mechanical
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Figure 3.15: Force vs peak order for the experimental data. In red we can see the
experimental values. In blue the values obtained with the BC. The BC values have a
small horizontal shift to make the graph more readable.

unfolding process. This fact is consistent with previous independent investiga-
tions [40].

In addition, the approach has several implications for the design/analysis of
stretching experiments of multimodular constructs. First, its simplicity makes
the backcalculation particularly appealing as a simple and transparent scheme
for the interpretation of experimental data. In this aspect, an interesting ap-
plication is offered by heterogeneous multimodular constructs, for which the
backcalculation can offer a term of reference apt for highlighting composition-
dependent modulations of the mechanical response. Second, it offers a simple,
parameter-free phenomenological approach to predict the distributions of the
various unfolding peaks using a negligible computational effort. In this respect
it presents major advantages compared to the more computationally intensive
stochastic (Monte Carlo or Langevin) numerical approaches. Finally, it can be
applied to design of bio-materials starting from their molecular modular com-
ponents (e.g. choosing an appropriate number of repeats) with unfolding forces
falling in a desired range, or to pre-condition a pulling experiment (choice of
pulling speed, stiffness of the AFM tip) so that the mechanical response is pro-
filed with a desired resolution.
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Monte Carlo simulation
n (6 [5 [[4 [[3 [[2 [1
Average - MC data 142 | 146 || 150 || 157 || 166 || 187
Average - ng = 1 backcalculation | 138 | 142 || 148 || 156 || 168 || 188
std.dev - MC data 40 | 35 35 35 37 35
std.dev - ng = 1 backcalculation | 29 31 32 31 33 36

Table 3.1: Average and standard deviations of the unfolding forces as obtained from
Monte Carlo simulations and from the backcalculation using data from n = 1.

Langevin simulation
n (6 [5 1[4 [[3 2 ]!
Average - Langevin simulation 84 | 85 || 87 || 90 || 97 || 104
Average - ng = 1 backcalculation | 83 | 84 || 87 || 90 || 95 || 104
std.dev - Langevin simulation 14 | 14 || 13 || 13 || 14 || 15
std.dev - ng = 1 backcalculation | 11 | 12 || 12 || 13 || 14 || 16

Table 3.2: Average and standard deviations of the unfolding forces as obtained from
Langevin simulations and from the backcalculation using data from n = 1.

3.5 Further comparisons

An interesting test of our procedure could also be done using the data published
in other works where the authors divided the force statistic by peak order of
appearance. This have been done to prove that the BC works also for other
systems even where the protein studied was not omomeric. Looking at the
article of Oberhauser et al. [25] at the Fig. 1 E we can try to apply the BC to
the (I27)g data (open circle). We tried to apply the BC to the data using the
peak at highest force (using the Oberhauser notation it is the peak in position
“8” for our notation is the peak in position “1”). We have then generated
100 values with Gaussian distribution with g = 227 pN and o = 27 pN (the o
have been taken as large as half of the width of the error bar). The results are
reported in Tab. 3.4. As it is possible to see, the difference is at most of 9 pN
for the peak near the contact point that is the furthest from the peak that we
used for the simulation.

Another interesting article where we can try to apply the BC is Karsai et al.
[47], where they analyze the properties of the Cardiacmyosin-bindingprotein-
C. This protein is made of eight Ig-like domains and three FnlIIl-like domains.
It is interesting to apply the BC because the protein that Karsai study is not
homomeric, still eight of the thirteen modules should show a behavior that could
satisfy the BC requirements. Also in this case we obtained the data from the
graph in Fig.3 C. As written in the same graph, the data came from four curves.
Here it important to see that it is an extremely limited set of data where we
are trying to apply our method. Looking at the different sizes of the error
bars it is arguable that these bars are the standard deviation of the average.
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Unfolding forces for GB1

n (6 [5 [[4 [[3 [[2 [
Average - experiment 124 | 128 || 129 || 137 || 146 || 162
Average - ng = 1 backcalculation | 121 | 125 || 128 || 134 || 143 || 162
Average - ng = 2 backcalculation | 123 | 127 || 131 || 137 || 146 || 160
std.dev - experiment 25 30 31 31 30 31
std.dev - ng = 1 backcalculation 17 18 19 21 25 35
std.dev - ng = 2 backcalculation 21 21 22 24 28 36

Table 3.3: Average and standard deviations of the unfolding forces as obtained from
experiments on GB1 and from the backcalculation using data from n =1 and n = 2.
The accuracy in the prediction of the standard deviation is improved when data from
n = 2 are used.

Comparison

n (8 [7 6 1[5 4 |3 |2

[

1

Average - experiment 186 | 192 || 201 || 197 || 210 || 214 || 218
Average - ng = 1 backcalculation | 195 | 196 || 198 || 200 || 202 || 206 || 212

227
224

Table 3.4: Data obtained from the graph 1 E in [25]. The BC was obtained estimating
the average and o from the peak at highest force.

Looking at value “10” (for Karsai notation) we obtain as average force 129 pN
and sigma 48 pN. From the theory we also know that the o is independent
from the position and the values of the error bars close to 50 pN are present in
the majority of graphs. We can then simulate eight peaks of the eleven peaks
present: In fact three peaks belong to the Fnlll-like domain and then it is not
possible to simulate them with the BC.

Comparison

n \8\ H5 [4 [[3 ]2

[

1

Average - experiment
Average - ng = 1 backcalculation

113 132 || 116 || 129
102 || 113 || 130

152
163

Table 3.5: Data obtained from the graph 1 E in [25]. The BC was obtained estimating
the average and o from the peak at highest force.

In this case we have an error of, at most 30 pN, for the peaks in position
4 (it correspond to the peaks in position 8 for Karsai) but, also looking at the
graph, it is possible to say that it could be an outlier. The prediction for the
other peaks is quite good and it does not exceed 9 pN. So even in this latter
case, where we have a multimeric construct, we have a good prediction of the
force peaks. This is a strong evidence that the BC method could be applied to
many (even if not all) multimodular construct.
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Chapter 4

Monte Carlo for the AFM

4.1 Monte Carlo for multimodular proteins

In a typical AFM pulling experiment a single molecule, fixed to a surface at one
end, is pulled by a cantilever tip at other end. What we usually measure is the
force as a function of the distance of one end of the molecule from the surface.
In the case of proteins (simple or multimodular) we can observe peaks on the
force-distance graph, where the force follows closely the well known Worm Like
Chain (WLC) model eq.2.6 [48] where the [. is the characteristic contour length
of the molecule and [, is the persistence length.

Also several kind of polysaccharides molecules (e.g. dextran, cellulose, amy-
lose and others [49, 50, 51]) have been pulled, in these cases we can use the WLC
or the FJC model to follow the force extension curve (excluding the non-entropic
transition regions).

The theory of Evans [22] has been used to interpret force spectroscopy exper-
iments of protein-protein interaction or protein unfolding to obtain the kinetic
parameters that characterize the energy landscape. However we have to remem-
ber that, due to the geometry of pulling, the kinetic parameters represent the
energy landscape only along the coordinate given by the direction of pulling, so
they can take into account only a single, peculiar unfolding pathaway.

This theory can be used for the inverse problem, to generate a force spec-
troscopy pattern based on the properties of a polymer[41, 52, 53] and its kinetic
parameters. This kind of simulations can provide useful informations to the
experimentalists and it may turn useful as a test for hypothesis. Moreover the
Monte Carlo can be used to fit the force extension curves to find the kinetic
parameters, this has been done before with different methods [35].

The main idea of the Monte Carlo simulation for protein pulling is to apply
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a force “F” to a chain with a determined protocol. For instance, we will assume
that the force follows the WLC function in the case of velocity clamp. But we
can also keep the force constant and, in such case, we will have a force clamp.
Using the kinetic parameters we can calculate the transition rate for a force “F”
as following:

AG — FAzx

MF) =k exp <— T

) = kogerp(FAx) (4.1)

For the simulations that we are presenting and for the fact that, in our lab
we use the velocity clamp techinique, we will present the case for which the force
at time “t” follows the WLC.

When we simulate such process we have a slight complication. The WLC
formula is a function of “x” and this latter is a function of time and of the
bending of the cantilever.

Looking at the Fig.4.1 we can see that we can write “x(t)” as eq.4.2.

z(t) = vt — cp(t) (4.2)

The bending of the cantilever depends also on the total force that is felt by
the system at the time “t” and can be written with the formula 4.3 where k. is
the spring constant of the cantilever.

eolt) = F(t)/ke (4.3)

surface

Figure 4.1: Schematic representation of the distances during an AFM experiment.

Inserting equations 4.2 and 4.3 in equation 2.6 we obtain an equation for the
force that explicitly depends on time.

kT 1 ot — F(t)/ke 1

F - = 4.4
(t) lp [4(1 o Ut—Fl'(t)/kc)Q + lc 4] ( )

The Eq. 4.4 is a third grade equation in F(t).
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In our simulations we did the following substitution: v=FO/ke _ (see also

the code in Appendix). Then writing F(t) = (vt — al.)k. we got (after some
rearrangements) the following equation:

klp 1

(4Ut - Cllc) kBT = m

+4a—1 (4.5)

Writing ik;éi’ = B and recasting we have:
a®(—4 — Bl.) + a*(Buvt — 2Bl + 9) + a(—2Bvt — Bl, — 6) + But =0  (4.6)

This equation, using the experimental parameters, can be solved for “a“ with
numerical methods (the Newton solver was applied in our work) and it gives
always a real result for "a“. Knowing "a“ we can easily calculate the "F(t)“.

The equation 4.4 is correct for most of the applications but we need to notice
some important details.

As we said in chapter 3, the stiffness of a protein composed by modules
under tension in an AFM setup results from the following components: the
spring constant of the linker, the spring constant of the folded modules and the
spring constant of the cantilever. All these components are connected in series
and the final value of the stiffness (near an unfolding point) is given by Eq. 4.7.

5o = (ke + 1/ky+m/k) ™" (4.7)

The WLC formula takes in account the change of contour length (that means
not only an increase of length but also a change in the stiffness of the polymer),
but it neglects the contribution of the folded modules to the total stiffness
(because they ”do not exist“ until one of them unfolds and increases the total
contour length). This problem can be circumvented by decreasing the spring
constant of the cantilever according to the Eq. 4.7 such that ks = k..

Once we know the force we can calculate the unfolding probability, but we
need to pay attention also to the temporal step of the simulation. At every
discrete increase of time, the molecule sustains a force F4+dF and an unfolding
probability p(F) (eq. 4.8); if we choose a coarse timestep, the MC simulation
will not have the sensitivity to explore the “detail” of the energy barrier and
for a simple barrier, we will have not enough “attempts” of crossing (or in
other words we will not have a good statistic and a good sampling of the WLC
function). As reported in [52] we should choose a timestep small enough to have
a good statistic - also taking in consideration, of course, that if we decrease the
timestep we will increase the duration of the simulation.

If we are pulling a multimodular protein, to simulate it correctly, we have to
take in consideration that in the eq.4.4, after one unfolding, the [, of the value
of the unfolded module and the number of the folded module “N” decrease by
one. Moreover, at the same time “t”, many modules sustain the force and the
unfolding probability. This involves a parallel process that has to be taken into
consideration. We can still run a sequential experiment, but to correctly express
the unfolding probability of the modules in a chain we have to use the eq. 4.8
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where “N” represent the number of folded modules. During the simulation, to
know if a module unfolds, we have to extract a random number between zero
and one at time “t” and we have to compare it with the value obtain by eq. 4.8
(where At is the timestep) with the force at time “t”.

When the random number extracted is lower than the probability we will
have a transition (it can be an unfolding or a shape change), if not the process
start again but now with a time “t+dt” ,and correspondingly a higher force.

After an unfolding event the parameters will change as follows:
the contour length become ((Ic)new = (Ic)ord + (Mmodule)l.) and the number of
folded module (Nyewp = Notg — 1 ).

p(F,N) = N % At x A\(F) (4.8)

With the correct parameters the aforementioned scheme can be easily applied
to generate force extension curves or to collect a statistics of unfolding forces
for multimodular protein.

4.2 Polysaccharides simulation

The scheme that we have presented can be applied to the polysaccharides with
some changes. It is known that, under the condition of load of a typical AFM
pulling experiment, the stretching process for polysaccharides is at equilibrium.
This fact has a series of implications: the stretching curve exactly corresponds
to the relaxation curve and the process is speed independent[54] (see also Rief
et Al.[52] where they simulate the extension of a polysaccharide chain). The
scheme can be used to understand the similarities between the this kind of chain
and a multimodular protein.

One of the main differences between the unfolding of multimodular protein
and polysaccharides is that, to simulate an equilibrium process, we have to use
a really large ko, rate (in Rief[52] a value of ko /koss ~ 10° was used).

This rate represents the probability to have a reversed transition.

This can be done by introducing in the simulation (see the details in ap-
pendix 10) a probability similar to eq. 4.8 but that depends on the number
of transitioned monomers and on different kinetic parameters. In particular, to
have some effect on the force curve, the k,,, should be several order of magnitude
bigger that the kofs. The process of refolding/reverse transition is similar to
unfolding. Also in this case a random number is extracted, if this value is lower
that the reverse probability we will have a transition. In this case the number
of folded modules increases and the contour length is decreased (so this time we
will have: (I0)new = (Ie)ota — (Module)l.).

4.3 Parallel bond breaking

Another interesting system that can be modelized with the Monte Carlo is the
protein-protein interaction. Several studies have been done on this topic [55][56]
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Figure 4.2: A simulation of a force distance curves. The parameters for the two
curves were similar, a number of modules of 600, speed 1.33 pm/s, k. 0.1 N/m, initial
module length 0.44 nm, module [, 0.1 nm, temperature 300 K, Az = 0.042 nm, k. f f =
2.5 % 107" s7'. The difference in the two is only in the value of the I,, the red curve
has a [, of 0.1 nm the blue of 0.5 nm.

[67][58]. In a typical ligand-receptor experiment the experimentalist function-
alizes the AFM tip with the ligand and the surface with the corresponding
receptor (or viceversa). This functionalization is performed with various chem-
ical techniques (see also the capther 2) . These procedures allow to study the
ligand-receptor interaction using the AFM. However the number of bonds that
are formed during the interaction is not controlled.

We can easily affirm that the ligand-receptor interaction is a more challenging
subject than the study of multimodular protein. The main reason is the lack
of a reference pattern that makes it difficult to discriminate the various event
types: one, two or multiple ruptures.

One of the main consequent problem is still how to identify a genuine ligand-
receptor interaction in a force spectroscopy experiment. In fact, also in well
controlled conditions, the force peaks may be different in term of force/length-
/slope. This may be due to the fact that, during the experiment, the probe,
functionalized with a ligand /receptor, interacts with more than one receptor /li-
gand on the surface, resulting in many different types of force peaks.

In some studies it has been tried to classify the force peaks observed with
different number of interactions [55], in order to show, with a probability distri-
bution representation, a quantization in the maximum rupture force.

Following a theoretical approach, we found that it is possible to have a
quantization, but such effect can be only interpreted with a generalization of
the Bell-Evans theory for multiple bonds. Such quantization does not follow a
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simple rule where two bonds have just twice the force of a single bond but it
is more complicated and can be explained with the model that we are going to
expose.

For this reason we are going to introduce two models, simulate several points
with a Monte Carlo scheme and then fit the results to see if the theoretical model
can recover the values used in the simulation.

4.3.1 Theory for parallel bonds

In a common Monte Carlo simulation for protein pulling we consider a system
that is similar to a series of springs that can undergo a short to long transition.
However we can think of different models that could be useful to interpret force
spectroscopy experiments.

During the studies of the avidin-biotin system we had the necessity to develop
an interpretation method that could deal with a large spread in the force wvs
loading rate graph. We have imagined that, during an experiment, when a ligand
(or receptor) is on the AFM tip and a receptor (or ligand) on the substrate, we
could have multiple parallel interactions (as illustrated in Fig. 4.3).

Force

Cantilever

Molecules

Surface

Figure 4.3: In the figure we can see a schematic representation of a system with parallel
bonds. The bonds are represented as black springs and the cantilever in red. In such
configuration, the bonds divide equally between themselves the force applied through
the AFM cantilever.

We have then modeled a system that is composed by a series of parallel
springs that can undergo a transition depending on the loading rate. In the
simulation, the force is distributed equally among these springs.

Compared to the previous Monte Carlo methods illustrated before, here we
do not have multiple peaks, and at the breaking of a bond we do not have any
increase in the contour length, however the breaking of a bond influences the
process, by decreasing by “1” the number “N*“ of not yet broken bonds.

When a system of parallel bonds is pulled, the transition rate A is given by
eq.4.9. The difference between eq.4.9 and eq.2.10 is due to the fact that the
force is now equally distributed between all intact bonds.
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Ax
Af) = ko exp <Z\LfkaT> , (4.9)

Exactly as for a series of bonds in chapter 3, also in this case we want that
during the force load from f = 0 to f = F "N“ bonds survive. Thus lead to
the equation 3.4 saw in chapter 3. Using the same procedure we can obtain the
probability distribution and the maximum of the force.

2
p(f) = Nk'offel‘p <IfBAT)](V> exrp <W <1 — exrp (];ZfBAT)jV)>> (4.10)

Deriving this equation to find the maximum force with dp(F')/dF = 0 easily
leads to eq.4.11 that express the most probable force (Fy,).

Fmp(N,f):kBTNln< [z ) (4.11)

AX kT N2kog

Now if we take in consideration the loading rate, and if we are using a stiff
cantilever, we have eq.4.12.

1 I\N' Nknk.
by = (e b — ) = fmfc 412
(Nkm * k) Nlom + e (412)

Where k. is the spring constant of the cantilever and k,, is the spring con-
stant of a molecule. Now we can say that k. >> Nk,, and thus we can simplify
eq. 4.12 and write f = Nk,,v. If we put this latter equation in 4.11 we obtain:

kTN kmvAx
Fop = 4.13
P Az (kBTNkoff) ( )
When instead k,,, > k. we have that f = k.v that lead to eq.4.14.
KgTN k.vAzx
F= l 4.14
Ax (KBTNZkOff> ( )

4.3.2 Implementation

The transition rate is given by 4.9, taking into account the time step. The pro-
cedure to increase the force is similar to the multimodular protein Monte Carlo
simulation, however here we can think to two different schemes to increase the
force:

e In the first scheme we can directly use the WLC equation that is indepen-
dent on the number of ligands receptors. At each time step we can check
how many bonds will break. This mean that, during the pulling, if one
bond breaks, the function to increase the force (the WLC) will not change
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and the cantilever will not feel any relaxation. On the other way around
we can also think that the elongation of the cantilever is much bigger than
the elongation of the molecules. We call this scheme “stiff bonds”.

e In the second scheme a prefactor “N” appear at the beginning of the
WLC equation so we have Fiy(t) = NF(t). This latter has been obtained
from the consideration of the fact that for a system of parallel bonds the
derivative of Fi(t) should give the stiffness of the bonds like Nk,,. So
with this last scheme, after the breaking of a bond we should observe
a relaxation on the cantilever. This scheme was called “soft bonds” or
“springlike”.

4.3.3 Study of a set of systems with different number of
bonds

Here we are going to show the behavior of different systems composed by a
different number of bonds. The bond parameters of the various systems are
the same in terms of Az and kg, the difference between the systems relies on
the number of parallel bonds. For each system we have simulated 10 thousands
points using the “hard bonds“ scheme. Each point represent the rupture force
of the last surviving bond. The parameters for the simulations were:

e speed 100 nm/s,

k. =0.05 N/m,

l. 20 nm,
e [, 0.3 nm,

e temperature 300 K,

Az 0.15 nm,
kog 0.01 571,

The first result that we want to show is the Fig.4.4. The results show that
all the systems stay on the same curve and, as expected, increasing the number
of parallel bonds the rupture force increases.

However, when we deal with a real system we observe a large spread of data
that do not stay on a line. Can we take a section of points on a range of loading
rate and see if there is any quantization? To answer to the question we took all
the rupture forces of our simulation from 3.5 nN/s to 20 nN/s and we create
the correspondent KDE.

In Fig.4.5 it is possible to see that in the KDE of all the events there is
a quantization -however, when we approach the higher forces, we start to lose
sensitivity. This latter effect is probably due to the fact that the width of the
distributions increase with the number of parallel bonds, making the process
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Figure 4.4: Here we can see the results of the Monte Carlo simulations using the hard
bond scheme for systems with a different number of parallel bonds. All the points
stay on the same curve, an offset was put to better distinguish the various systems.
Red cross represent the system with one bond, blue square 2 bonds, yellow triangles 3
bonds, green diamonds 4 bonds and azure circles 5 bonds. The violet stars represent
the average values (for rupture force and loading rate) for the various systems. They
have been plotted to show the centrality of the distributions of points.



58 CHAPTER 4. MONTE CARLO FOR THE AFM

0.014

0.012

0.01 R

0.008 - [

pdf

0.006 - ;
0.004 | [ ]

0.002 - N

0 — I ‘ ‘ ‘ :
0 200 400 600 800 1000 1200 1400
Force, pN

Figure 4.5: In the figure we can see the KDE for various systems. Violet for the system
with one bond, yellow 2 bonds, azure 3 bonds, violet 4 bonds, brown 5 bonds. The
blue is the KDE of all the points of the aforementioned systems. All the KDE have an
area of one, for this reason the KDE of all points has a lower height, compared to the
other KDEs. The black vertical lines represent the integer multiples of the maximum
force of the system with one bonds. These lines were made to show that the maximum
force of the distributions does not have just "n“ times the force of the system with
one bond. An interesting feature that we can see is the increase of the width of the
distributions.
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of restoration of the central value of the distribution for highly parallel bonds
difficult. It is the opinion of the author that it could be possible to deconvolve
such distribution of forces with a numerical/analytical method, however such a
method would require much more effort and it has not been developed yet.

4.3.4 Application to ideal MC system

In this section we will try to apply the theory that we have developed to fit
simulated data, obtained from a Monte Carlo simulation of a parallel bonds
system. The general idea of the procedure is that a set of data follows the
equation 4.13, however in this equation we have to stress that k,, is a function
of “F”. In fact in the simulation we are using the WLC function to increase the
force and, using this function, higher forces mean a different slope. A different
slope means also a different k,,. The assumption that we use in this fitting is
that k., (F(N)) = kn,,(F(1)), that is that the slope of a force peak, for this kind
of interaction, does not strongly depend on the number of bonds. Using this
approximation we should see a quantization of the forces in a small region of
the force vs loading rate graph.

The data were generated using the “stiff bonds” scheme.

In a real experiment, also using the same pulling speed, we get a large spread
in the loading rate vs force scatter plot. This may be due to different interaction
geometries of the ligand/receptor complex, in fact we cannot expect that the
interaction between the ligand/receptor on the tip and on the surface to be
perfectly vertical.

To model these different geometries, that give rise to different loads on the
complex, we have used a random velocity in a range between 5 and 105 nm/s
(with a uniform distribution). We have then run 10 thousands simulations where
the number of bonds for each one was randomly chosen between 1 and 10 (with
a uniform distribution). Each point in the graph correspond to the maximum
value for the system generated. The values generated can bee seen in Fig. 4.6.
The parameters used were:

e spring constant cantilever 0.050 N/m,
e contour length 20 nm
e persistence length 0.3 nm

Ar=15A

ko = 0.01 s71

To analyze the results we need to obtain a distribution of probability of
rupture forces for 1 to N bonds.

We have assumed that the loading rate at the rupture point of “N” bonds is
not “N” times bigger than a single one and we also know that this dependence
is logarithmic; as an approximation we can select a relatively small slice in the
force vs loading rate graph to capture the different behavior of the systems with
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Figure 4.6: Scatter plot for the Monte Carlo simulation of “stiff bonds* with different
loading rate and different number of bonds. The parameters of the simulation were:
ke 0.05 N/m, l. 20 nm, Az 0.15 nm, kog 0.01 s~'. The number of bonds were chosen,
randomly, from one to ten and the velocity from 5 to 105 nm/s.
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1 to “N” bonds (however this point needs more investigation). Looking at the
scatter plot of the data obtained from the MC we have selected the points in the
range of loading rate between 16.5 to 17.5. With these points we have created
a KDE and to find the maximum we have done a double differential, the KDE
and the differential can bee seen in Fig. 4.7.
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Figure 4.7: KDE of the points in range of loading rate between -16.5 to -17.5 (of the
graph 4.6). The maximum of the sub-populations has been identified using the double
differential.

Using the graph 4.7 we can now plot the maximums of the various distribu-
tions versus the number of bonds that we suppose for each distributions. The
correlation between the maximum of the distributions and the bonds has been
studied assuming that the maximums depend linearly from the bonds number.

The fit in graph 4.8 give Az = 1.8 A and kofr = 0.0015 s~'. The Az value
obtained is quite close to the value used in the simulation (1.5 A, the k, ff may
seem not so good instead (in the simulation k,¢r = 0.01 s~'), but we have to
remember that this value is always strongly influenced by the error. In fact if
we look at the formula for most probable force (eq. 2.17) we can see that the
ko appear inside the logarithm when Ax also as multiplicative factor. This
mean that even a large change in the kg is diminished by the logarithm. So,
obtain a value that is just one order of magnitude different from the k. used
is still reasonable.

4.3.5 Application to the Hemmagglutinin New Caledonia
vs 6’SLN or 3’SLN

The model that we have introduced was then applied to a real system to extract
the kinetic parameters. We have analyzed the data coming from the interaction
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Figure 4.8: Most probable value of the distribution vs number of bonds. The points
have been obtained from the KDE inf Fig.4.7 and then fitted with eq. 4.13.
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of Hemmaglutinin (HA) New Caledonia vs 6’SLN (6’-Sialyl-N-acetyllactosamine)
and HA wvs 3’SLN (3-sialyl-N-acetyllactosamine). The first step of the analysis
is to create a scatter plot of for the peaks in the logarithm of loading rate wvs
force graph. Using this scatter plot we can then choose a range of loading rates
to analyze (depending on the density of data).
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Figure 4.9: Scatter plot for the peaks coming from the experiment with HA New
Caledonia vs 6’SLN.

In Fig. 4.9 we have chosen a range of loading rate from -20 to -19, the points
in this range have been plotted in a KDE reported in Fig. 4.10.

If we try now to plot the maximum that we can obtain from the second
derivative of the KDE versus the hypothetical number of parallel bond we get
the Fig. 4.11.

The fit in graph 4.11 gives: Az = 3.3 A and kopr = 2.7%1075 s71, in the
fit we have used an average value for the loading rate of -19.25.

We have tried the same approach for the system HA New Caledonia vs
3’SLN, the distribution of the points are reported in graph 4.12, the KDE in
the range of loading rate -19 to -18 In(N/s) can be seen in Fig. 4.13 and the
graph for the maximum forces vs number of bonds is in Fig. 4.14. This latter
fit yields the following kinetic parameters: Az = 6.9 A and kopr =1%107° 57!

4.3.6 Conclusion

The derivation of the maximum force for a system with parallel bonds was ob-
tained using the Bell-Evans theory. This derivation uses a minimal number of
hypothesis and give predictions that are well validated by Monte Carlo simula-
tions. The most probable force for system with 1 to “N“ bonds was calculated
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Figure 4.10: Probability distribution of the forces in the range of loading rate between
-20 to -19.0 for the peaks coming from the experiment with the HA New Caledonia
vs 6’SLN. The continuous curve is the KDE for the ruptures forces. The dashed line
is the double differential of the KDE. The total number of events used for the KDE
were 780.

from Monte Carlo data. These values were then fitted with the model, and we
were able to get back the kinetic parameters used in the simulation. However
a difference of an order of magnitude is observed in the ko,f¢ - this is still the
most challenging parameter to estimate. Following the multiple parallel bonds
model we have supposed that a particular distribution in the force vs loading
rate graph should exist. Such distribution should reflect the eq. 4.13 (the equa-
tion gives the maximum of a distribution for "N* parallel bonds) and so, for
a determined range of loading rates we should be able to distinguish different
maximums. We have then tried to apply this idea to simulated systems and real
systems. For the distribution of maximum values obtained from the simulation
we can say that the results are in good agreement with the parameters used to
generate the points. For the real data we get reasonable results but there are
no others estimations with which we can compare. Moreover this interpretation
gives an answer to the distribution of data and to the apparently different force
peaks that an experimentalist might see during the experiments.
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Figure 4.11: Maximum of the distributions vs number of bonds for the system HA
New Caledonia vs 6’SLN obtained from the KDE in Fig. 4.10. The values have been
fitted with eq. 4.13.
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Figure 4.12: Scatter plot for the experimental results of the system HA New Caledonia
vs 3’SLN.
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Figure 4.13: KDE of the points in the range of loading rate -19 to -18 (In(N/s)) for
the system HA New Caledonia vs 3’SLN.
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Chapter 5

An insight on the energy
barrier

As we discuss in the “Introduction” the Bell-Evans model, which predicts the
linear dependence of the most probable bond rupture force on the logarithm of
force loading rate, is usually used to interpret the dynamic force spectroscopy
experiment data. This model is consistent with the Kramers theory of the bond
dissociation rate only if one assumes 1)an independence of the pre-exponential
factors in the Kramers relation on the acting force and 2)a linear decrease of
the dissociation barrier height on this same force. For this to be true a rather
special shape of the interaction landscape is required.

In this chapter we are going to discuss a first order correction of the Bell-
Evans model (first terms of corresponding Taylor expansions are taken into
account), its implication for the interpretation of dynamic force spectroscopy
experiment data and compare our model with the Monte Carlo simulation of a
specially designed single molecule dynamic force spectroscopy experiment. In
addition to the most probable bond rupture force, average rupture force values
are also calculated. All approximations made and the range of applicability of
the obtained results are carefully described and compared with those for some
other models in the field.

5.1 First order approximation of Bell-Evans the-
ory

We know that single molecule force spectroscopy is a versatile tool, which can
often yield unique information concerning the energy landscape of individual
ligand-receptor pairs; see e.g. [59, 60, 61, 62].

As we have discussed before the experiments consist in the stretching of
the single molecule complex, whose two ends are fixed onto the AFM tip and
appropriate substratum surfaces, with a force with a known time dependence,

69
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Figure 5.1: The red curve represent a possible energy landscape at zero force. The
blue curve is the landscape when a force of approximately 250 pN is applied.

and measuring the dependence of the specific interaction rupture force F .

This is exactly the processing and interpretation of the data (either an av-
erage or the most probable rupture force can be used) which yields the infor-
mations about the interaction energy landscape: hence the details of its inter-
pretation are very important.

From the very beginning of the force spectroscopy experiments, the Bell (also
known as Bell-Evans) model for the dependence of the complex dissociation
rate A on the applied force [21, 22] has been used for the interpretation of
experimental data, and up to now it remains the main approach in the field
(although a number of refinements have been proposed during a few previous
years[63]) The Bell model derives from the classical Arrhenius dissociation law
with the assumed independence of the pre-exponential factor on the applied
force and linear decrease of the free enthalpy on the same force. The transition
rate obtained has been shown in the “Introduction®.

The problem which immediately appears with this interpretation is that
Bells model is only a zero-order approximation to the Kramers dissociation rate
theory [20, 64]. The latter predicts that the dissociation rate is given by

A = CwiminWmazep(AE /kpT) (5.1)

Here AFE is the barrier height, that is the energy difference (for simplic-
ity, from now on we will not distinguish energy, free energy or enthalpy and
will always use the word "energy” as a generic term) between the maximum
Umnaz and minimum U,,;, of the interaction potential U(x) which are attained
respectively at the distances 4, and x4, (X is an appropriate reaction coor-
dinate): AE = Unaz (Tmaz) — Umin(Tmin ), while Winaz, Wmen are the oscillation

frequencies corresponding to the potential minimum and maximum. We can
2 U 2 U

take simply w0 = |57 lo=2man » Winin = |37 le=2m:, thus incorporating the
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mass of interacting pocket and all other relevant constants like the diffusion co-
efficient, etc. into the constant C. When an external constant force F is applied
on the complex, the interaction energy changes from U(x) to U(x) - Fx (see
Fig.5.1 for an illustration) which leads to the change of parameters wiin, Wmaz
and AE but does not influence the constant C. Thus, instead of eq.2.17(in “In-
troduction“) the dependence of the dissociation rate on the applied force in the
form A(F) = Cwmin(F)wmaz (F)exp(—AE(F)/kgT) should be used as a start-
ing point for the interpretation of the single molecule force spectroscopy data.
Unfortunately, concrete dependencies wyin (F'), Wmaz (F), AE(F) are rather sen-
sitive to the details of the interaction potential which makes the search of such
a starting point a difficult task.

Recently, in a number of publications [63, 65, 66] the functions wy,, (F) =
a1, Wmaz(Faze'’* | AE(F) = aze’/?, where ¢ = 1 — F/F,. and ai 23, Fe
are appropriate constant parameters of the problem, were attempted, leading
to the dissociation rate law

AMF) = Ce'2exp(—Ae%/?) (5.2)

(again, A, C are appropriate constants), and the subsequent use of this
law resulted in a rather different interpretation than the one given by simply
applying the Bells model on the force spectroscopy data. Essentially the authors
used the results of earlier works of Garg [67] and Kurkijérvi [68] where intrinsic
fluctuations in the superconducting ring closed with a Josephson junction are
studied and analytical results concerning different average values for such a
model are established. It was possible to borrow these results for discussion of
a new problem.

Such an approach definitely deepens our understanding of the dynamical
force spectroscopy but, in our opinion, it is still not fully satisfactory. The
main reason is that the use of the dissociation law in the form given by eq.
5.2, at least as this follows from the aforementioned papers, is justified only
if the most probable rupture force does not differ much from the critical force
F, corresponding to the case when an applied force completely “smears out”
the dissociation barrier (potential U(x) — Fa does not contain a maximum
any more). In many real experimental situations we are far from this, the most
probable rupture force is much smaller than the F, value, so one needs a different
approximation going beyond that of Bell while being still consistent with the
Kramers dissociation theory. Such an approximation is derived here for both the
most probable and average rupture forces. The obtained equations are simple
and the limit of validity of the proposed approach is very clear.

Dissociation law

In the vicinity of the minimum or maximum of any interaction potential it
can be approximated by two first terms of the Taylor expansion: U, =
minT? + binz® + o(2*) and Upazr = —maz (2 — 20)? + bmaz (2 — 20)> + o(2?).
Here we put the minimum of the potential at point x=0 while its maximum
is located at xg; constants amin, Gmaz are definitely positive while the signs of
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Figure 5.2: In the figures we can see different potential at zero force (red line) for: a
where the "B” value is 3.3, b where “B“ value is 10 and ¢ where the B value is 400.
The blue lines are the correspondat potential where a force of 150 pN was applied.
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bimin, bmaz are arbitrary. If we apply the constant force F onto the system,
potentials are deformed by —F'z value and the positions of both minima and

. . 7amin+\/afnm+3bminF Amaz — a?”aw"!‘?)bnzamF
maxima shift on 0z, = h y 0Tmaz = 3 )
F

which, for small enough forces, F' << g—z is simply :I:m. Thus, ignoring
the quadratic and higher order terms on the force, the barrier height diminishes
of the value AU = —Fx( while the second derivatives of the potential at the po-
sitions of new maximum and minimum become |w,2nm = 20min + 3bmin0Tmin =
20min + 3bminF/amin and, quite similarly,|w?, .| = 2¢maz + 3bmazF/Amaz -
Correspondingly, in the first approximation when SF << 1, for any one dimen-
sional interaction potential we obtain the dissociation law following 5.1:

A(F) = koi(1 + BF)eap(Fao /ksT) (5.3)

where ko and § are appropriate constants (ko is, as usual, the dissociation
rate at zero force conditions) and the parameter

3bmzn 3bma;ﬂ
4a? 4a2

min max

5= (5.4)

may be negative or positive.

The most probable rupture force

Let us first calculate the most probable rupture force corresponding to the
dissociation law 5.1. Our starting point is the expression

F
p(F)dF = @e;ﬁp (-/0 A(f)if) dF (5.5)

which describes the probability that the bond dissociates when the time-
dependent applied force F(t) changes between the values of F and F+dF; here
A(F) is the dissociation rate law and F' = dF/dLt.

(Evidently, 5.5 is a product of the exponential factor which is the probability
that the bond has survived during the force loading from zero to F and the
factor A(F)dF that is dissociated when the force loading changes between F and
F+dF; see [68] for general derivation). Expression 5.5 is valid for any arbitrary
monotonic F(t). Now we will suppose that F' = const. For such a case the
integration in 5.5 is elementary but the resulting expression is cumbersome and
we will not present it here. The most probable force is given by the condition
that derivative of 5.5 is equal to zero, which for this case gives:

AN,
P =) (5.6)

In the introduction we have shown how it is possible to obtain the common
used law of dissociation F' = F(F') from the rate A\(F') = kogeaxp(FAx/kgT).
Let us use instead the dissociation law 5.3 to find the values of the most probable

rupture force. Substituting 5.3 into 5.6 we get
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1 +6F koﬂ"

B8+ T o= (1+ BF)%exp(Fxo/kpT) (5.7)

From now on, let us introduce the dimensionless parameter B = mng which,
again, may be positive or negative and define also the always positive parameter
b = |B|. The first important peculiarity of 5.7 is that for negative values of
B there exists some limiting value of the force Fy, such that if FF > Fy =

%(B — 1), this equation has no solutions due to its left part being negative,

8+ 1];; 8 YF zg < 0. For the case B >> 1 this is of no physical interest because
for such large forces our approximation in any case becomes inapplicable (see
below). If B < 1, this equation has no solution for any applied force, but, again
this is of no physical interest, because for any sign of B, in the case B < 1
the presented approach may be applied only in a very narrow range of forces
(see below) and will not be considered here. After taking the logarithm and
rearranging 5.7 we obtain eq. 5.8.

Zo BF k'off F.’I?O
— — = - 1 F — .
ln(kBT—l—ﬁ-i-kBTxo) ln(F>+2ln( +8 )+kBT (5.8)

First, we would like to note that this equation as well as eq. 5.7 can be
easily rewritten as an explicit dependence F' = F(F, 3, z¢, ko), where the most
probable rupture force F is an argument and f, xg, kog are parameters of the
complex under the study, and then the inverse function F' = F(F, B, xo, kofr)
can be plotted and used for comparison with the experiment without further
additional simplifications presented below. In the range of the validity of our ap-
proximation, when SF << 1 (see below what this condition physically means),
we have that 2in(1 + SF) = 25F and that the term B—I;:ro in the Lh.s. of 5.8

kB
is a small correction to %7 thus 5.8 is reasonably approximated eq.5.9.

Zo kot Faxg
In(—= =In(—)+26F + —; 5.9
n(kBTJrﬂ) n(F)+ B T (5.9)
If | 8] is much smaller than z¢/kpT (large B case) we have in the first order
of the Taylor expansion eq. 5.10.

kT BkpT Fzo  BkgT
F=—(1- l 1
i) ( o ) n(k‘offk‘BT + i) ) (5 0)
Eq.5.10 can be rewritten as 5.11.
kBT 1 . ]{}BT ZTo 1
F=—(00-=)InF+ —(In—F>—+ = 5.11
Zo ( B) Zo ( kogk T B) (5.11)

This gives the required correction to the Bell dissociation law; clearly 5.10
coincides with eq. 2.17 (in “Introduction“) when 8 = 0. Of course, as usual

in single molecule force spectroscopy, it should be that kgf; ,f;T > 1, i.e. that

F> % (negative values of the force have no sense). Physically it means
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that the force loading should be fast enough to overcome the dissociation dynam-
ics dominated simply by kog when the measured ”"most probable rupture force”
is around F /Ko, just the value attained at a moment of “natural® thermal
fluctuations-induced force-free bond breaking. What the condition SF << 1
actually means? It means simply F' << BkBT, which for B = 10 , say, ef-
fective barrier thickness zy around 0.1 nm (Wthh was often reported in force
spectroscopy experiments) [59, 60, 61, 62, 57, 69], and the room temperature
case kT = 4 -10721 J, gives that the most probable rupture force should be
smaller than ca. 400 pN which is not so restrictive. At the same time, only very
small forces are admissible for the inverse case B << 1 and this is the reason
why we do not analyze it here.

The average rupture force

In many cases the use of average rupture force value rather than the most
probable rupture force value might be useful. In fact, when the loading rate
condition are not to low (and this happen in the majority of the experiments),
these two values are in good agreement. Moreover the average force can be
obtained rapidly from the data, when instead, the most probable require a
more accurate procedure.

For this reason here we present the corresponding derivation pertinent to
the dissociation law 5.3. This same law is not exactly of Gargs form \(e) =
At~ lexp(—Be®) and one needs some efforts to adopt his approach, especially
for the case of positive 5. The corresponding consideration (whose details and
all the approximations used are given in the Appendix) brings the following
results: for negative 8 with the precision up to In|inX| we have for e =1+ SF
< e>= (X +1nX +7)/B, < &2 >=< ¢ > 4 where v = 0.5772... is
the Euler-Mascheroni constant, X = ln(wﬁ = lnk;f:% + B, B = wﬁﬁﬁ
, A = kogexp(B) . For positive § we have < ¢ >= (=X — In(—X) —v)/B,
<e?>=<e>? +6§2. In terms of the force the results read:

kBT . kJBT o k‘offk‘BT
< F>=—"In —(In—F—+4+In(ln—=—"—+B)—InB— 5.12
2L (F)+ 22 (i n(in P ) —inB 1) (5.12)
for negative [,
kBT . k‘BT ZTo kofkaT
< F >= InF+ In In(—in———+B)—InB— 5.13
Zo xo ( kogrkpT ( BFz ) ) (5:13)

for positive 8, and

(F?) —(F)?* = % <kff> (5.14)

for both cases. Eq. 5.14 also shows that, in contrast with the simplest Bell
case, the difference between < F? > and < F >? is now present. If, what is the
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most typical case, Taylor expansion In(B =+ ln%w =~ [nB+ L ln%w can

be used, we get

k‘BT 1 k‘BT 1 i) k‘BT InB
F>= "Bl FiiBl g _ o kel By ey
<F>=—=(tp)nk+= =1+ p)n For kBT | o (=v="5) (15)

for negative 3, and

kBT . kBT 1 ZTo kBT InB
< F>= 1-=)inF+—(1—-=)in-—7—+— —) (5.16
B (1 i P It e () (510
for positive 8 cases. These are almost the same as the expressions for the
most probable rupture forces given by eq. 5.10.

When can it be applied?

We would like to end this section with a short discussion on the usage of a
dissociation law in the form A\(F) = Ce'/2exp(—Ae3/?) to describe the dynamic
force spectroscopy data. Suppose that the interaction potential is such that
a single Taylor expansion U = ax? — bz can be used to describe both the
minimum and maximum of the interaction energy landscape (hence the term

—ba3 is certainly negative as written). Then the positions of maximum and
ai\/a2—3bF a:l:\/?)bAF
)

minimum when the force is applied are Tmin,maz =

where AF = F.—F, F. = §;. Substituting this into U = ax? —bx3 — Fx we see
that the barrier height when the force F is applied is given by Upaz(Tmaz) —

Unmin(Tmin) = % and that w2, = w2, = V12bAF'/?, hence the
dissociation law 5.2 follows. ,

What B corresponds to this case? One has x¢p = 3b’ AEy = 27‘11)2, so that
b = 2@2 = SAE : for the case at hand § is negative and B = \BlgliOBT >>
1 whenever AEy >> 3kgT. The latter always holds for real experimental
situation. From this consideration, we easily see how restrictive the conditions
of the validity of the dissociation law 5.2 are. It can be applied reasonably
only when the acting force is really close to the critical force F, for which
the interaction well disappears completely. Therefore it makes no sense to use
the conclusions obtained when using 5.2 to discuss the force spectroscopy data
pertinent for small forces, and it is completely meaningless to attempt such a

use to interpret the value of ks, [63], which is a limit for zero applied force.

Application of the results to analyze dynamic force spectroscopy data

In this Section we consider how the presented approach can be used to analyze
the dynamic force spectroscopy data; viz. we first attempted some refinement
of the interpretation of real experimental data pertinent to avidin—biotin and
streptavidin—biotin pairs, and then also compare our analytical formulae with
the results of Monte Carlo simulation of specially designed dynamic force spec-
troscopy experiment.
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For such a consideration it seems quite natural to select the (strept)avidin—biotin
system which is one of the most profoundly studied in the field, despite the cir-
cumstance that even for this protein pair a number of contradictory results
persist, see e.g. [70] for a discussion. Having in mind that our results are best
applicable to relatively small forces and small force loading ranges, it looks natu-
ral to use the results presented by Merkel et al. [71] and de Obrowaz Piramowicz
et al. [57]. Unfortunately, the estimated barrier width zy = 0.5 nm given for
small force loading rates in [71] makes the range of applicability of our approach
too narrow (see above) hence we will concentrate only on the latter paper where
the estimated barrier widths, force loading rates used and the smallest measured
specific interaction forces apparently enable us to apply the proposed method.

For the force loading rates in the range of ca. 300-1700 pN/s, de Obrowaz
Piramowicz et al. [57] reported different dissociation barrier parameters for
avidin—biotin and streptavidin—biotin (simple Bell model was used in both cases
to process the data): respectively o = 0.07 nm k75 0.25 57! and z¢ = 0.08 nm,
kogr = 0.56 s~ [57]. At the same time, for both protein pairs they obtained
quite similar results for larger force loading rates, ca. 1700—9600 pN/s, and
these observations are used by the authors to discuss the difference in outer
activation barriers for these pairs equal to 0.86 kT simultaneously with the
equivalence of their inner activation barriers. However, it is instructive to see if
it is possible or not to associate the observed difference with the different shapes
of corresponding interaction landscape (i.e. different B or § in our terminology)
rather than with the difference in barrier heights and width. Let us (arbitrary)
put 8 = 0 for avidin—biotin energy landscape. Then from the formula 5.11 it
is quite easy to see that a rather moderate B = B:;T = —7 value may quite
well explain the larger barrier width measured for the streptavidin—biotin pair.
Other way around, putting 8 = 0 for streptavidin—biotin energy landscape one
needs to use B = 8 for avidin—biotin to obtain the same value of the barrier
width. To illustrate our approach further, in Fig.5.3 we show how well the
green straight line B = oo corresponding to the Bell model-based interpretation
of the avidin—biotin dynamic force spectroscopy data (parameters of Ref. [57])
can be approximated varying B, xo, koyy parameters of our model. Taking
"by hand” for the avidin—biotin protein pair at question the value k.py =
0.56 s71, that is the value reported in [57] as characterizing the dissociation of
strepavidin—biotin pair at low force loading rates (remember that exactly this
same value of k. is a starting point for the determination of the barrier height),
we obtain a sufficiently reasonable correspondence for B =5 and 7o = 0.04 nm
(dashed line). For a typical precision of real single molecule dynamic force
spectroscopy experiment (of which the aforementioned de Obrowaz Piramowicz
et al. work [57] is fairly good example), this would be not at all easy to select
which curve is to be used for an approximation of an actual experimental data,
and, correspondingly, to extract the values of the barrier width and height.

By no means above example should be understood as a criticism of an in-
teresting research presented in [57]. In our opinion, this situation is quite com-
mon in the force spectroscopy field: always neglected correction factor consid-
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Figure 5.3: Showing an approximation of the dynamic force spectroscopy data for
avidin—bioting pair. Green curve: zo = 0.07 nm, kory = 0.25 s B = o0 (Bell
model, parameters taken from Ref. [57]). Blue curve: equation 5.11 with zo = 0.04
nm,kof; = 0.56 s~ 1, B=5.

ered in the paper, coefficient 8 (or B), does matter in the interpretation of
the force spectroscopy data, especially in the region of relatively small loading
rates, and it should be taken into account to obtain correct interaction land-
scape parameters. Very little is known about this coefficient (energy landscape
shape beyond the simplest parabolic approximation) up to now, but still we
believe the following example, where we borrow the data from the Table 1 of
the paper [70], will be interesting to demonstrate how important the term /3
might be. In this paper the authors, using essentially the molecular dynamics
calculations of Merkel et al. [71] and Izrailev et al. [56], give the values of
energies and curvatures at corresponding minimums and maximums for three
neighboring wells and barriers of the interaction energy landscape pertaining
for streptavidin—biotin interaction. Applying this data and requiring that the
Taylor expansion Uaz = —Gmaz (T — 20)? + bmaz(r — 20)? of the interaction
potential in the vicinity of the first interaction potential maximum (located at
7o = 0.31 nm with the energy 32 kT and the curvature 26,4, = 750 kT /nm?
[70]) gives also the position of a second interaction potential minimum (located
at g = 0.39 nm and with the energy 5 kpT'), we get an estimation and thus
8= i’ZzT‘:C >~ —0.3 nm/kpT. No data for the deepest energy well and hence for

the term % in expression 5.4 is available, and this is an additional complica-

tion, but this example apparently demonstrates that the value of the parameter
B (negative in the case) may be quite comparable with the xo/kpT (equal to
>~ 0.3 nm/kpT for the same system).
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Monte Carlo simulation of dynamic force spectroscopy experiment
and its comparison with the model

Additionally, we test our model using the Monte Carlo simulation of the dynamic
force spectroscopy data. To describe the interaction potential, the simplest non-
trivial case of a trinomial U = az? + b3 + cz* having a maximum at the point
2o = 0.1 nm and barrier height (at zero force) of AU = 13 — 15 kgT was
used. For the potential given above it turned out quite easy to simulate any
value of B, including even very small B << 1, for positive 8 (taking positive
a and b and negative ¢ coeflicients) while only sufficiently large values of B,
B > 35, can be simulated for negative 5. More complex polynomials modeling
the case of relatively small B for negative 8 are needed; this situation will
be considered elsewhere. When the force F is applied, the potential evidently
takes the form U = aa? + ba® + cz* — Fz. The position of minimum and
Maximum Zy,n, Tmaz fOr this potential were determined numerically by solving
a cubic equation 2ax + 3bx? + 4cax® — F = 0 (Cardano formula was applied),
and then the energy barrier AU = U(xmm) — U(xmaz) as well as the values
of w2, = 2a 4 6bTpmin + 12¢22,,,,, w2 = —(2a + 6bTyaq + 12c22,,,) were
calculated.

These values were utilized to calculate the force-dependent dissociation rate
AF) = Cwmin(Fwmaz (F)exp(—AU(F)/kgT). Constant “C* was selected to
get the desirable value of ko = A(0); for our modeling we use kor¢r = 0.01
571, The procedure exploited for Monte Carlo simulation of the dynamic force
spectroscopy experiment using the so obtained parameters of the interaction
potential was similar to the protocol reported in literature [8, 41]. Earlier this
same procedure has been tested in our work devoted to the prediction of the
unfolding forces of multi-modular proteins|[72]. For simulations, the pulling
speed in the range of 0.02 to 10 nm/s and a spring constant of the cantilever
of 0.05 N/m were used. Worm-like chain dependence of the end-to-end protein
complex distance on the applied force ([73]) with the total contour length of 27.5
nm, persistence length of 0.3 nm and room temperature (300 K) was assumed.
The time step of the simulation procedure was set in such a way that for each
increase of the complex end-to-end distance equal to 5 pm (at any loading rate)
we control the probability to dissociate. In Fig.5.4 we present a data of the
Monte Carlo simulation of the most probable rupture force together with the
theoretical curve given by eq.5.11 of our model. We have to stress that the “C”
factor of the eq.5.1 used for the generation of the data was set in such way that
for every simulation with a different “B” we have A(0) = 0.01, this is equivalent
to changing the viscous drag in the Bell-Evans theory.

This Figure well illustrates the applicability of our model (as corresponds to
its validity range, for B = 10 case the model ceases to work properly for forces
larger than ca. 300 pN), and also gives an idea where and when the very concept
of the most probable rupture force is appropriate: for the lowest force loading
rates presented here, this concept does not work because the force loading is so
slow that dynamics given by the factor F /kofr, see above, dominates. The data
obtained for the average data forces is, not surprisingly, quite similar (compare
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Figure 5.4: Here we have plot the most probable rupture force for three different
simulations. The parameter “B” of the barriers were respectively: 3.3 for the red
diamonds, 10 for the blue square and 400 for the black cross. The similarity of the
results can be abscribed to the fact that the “C” value of the equation 5.1 was selected
in such way that the A(0) was the same for all the simulations.
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equations 5.11 and 5.12 5.13 ) and by this reason not presented here. We would
like only to note that systematically smaller rupture forces (of around 30-50 pN
on average) when compared with the most probable rupture forces (compare
equations 5.11 and 5.12 5.13 again) were observed in simulations.

Conclusion

In this section we derived a refinement to the well known Bell-Evans law of
the dependence of the most probable bond rupture force F as a function of
the force loading rate . This refinement could be called “a first order ap-
proximation F = F(InF) law® in the following sense. Kramers’ dissocia-
tion theory predicts that the bond dissociation rate is given by an expres-
sion A(F) = Cwpmin(F)wmaz (F)exp(—AE(F)/kpT), where all the parameters
Wmin(F), Wmaz(F), AE(F) depend on the applied force. If one ignores the
force dependence of the pre-factors wynin,maz(F) and puts a linear dependence
AE(F) = AEy—Fz, they obtain the famous Bell-Evans F' = F(InF) law which,
according to the aforementioned derivation procedure, can be called “a zero or-
der approximation law*“: it has the serious advantage of being very simple and
clear, but evidently it is not always sufficient. The natural next approximation
is to take the first Taylor-expansion terms for both wyin mas(F) and AE(F)
dependencies and, using corresponding dissociation law as a starting point, to
derive ”a first order approximation F = F (lnF‘ ) law”, and this is exactly what
is has been presented in this chapter. We also analyze the applicability range of
the obtained results and show that albeit this range is not very broad, there is
definitely enough room for the application of our results in practice. An exam-
ple given in Section 3 shows that for quite ordinary protein pairs the parameter
B may be well comparable with the zo/kpT. If so, the effect considered in the
paper is of utmost importance for dynamic force spectroscopy data interpreta-
tion. In any case, all corresponding aspects deserve a deeper study and further
investigations, both of them currently under way.
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Chapter 6

Laminin binding protein
pulling

6.1 The laminin binding protein

One of the subjects of this thesis was the study of the ligand receptor inter-
action. This mechanism, of which we spoke in the “Introduction”, is present
also when a virus attaches to the cell surface to start the infection process. The
Laminin binding protein (LBP) [74] is a protein that mediates the interaction
with laminin, a glycoprotein that resides on the cell surface. It is known that
the LPB is used by many viruses as the first step of the infection process. The
initial aim of our experiments was to deepen the knowledge of the flaviviral
penetration into the cell membrane by force spectroscopy measurements, and
to understand if this interaction changes when modifying the pH. For such pur-
pose we used the LBP and the protein “E11%. E11 is is a recombinant protein
of around 200 amminoacid length, which contains a sequence responsible for
the specific interaction with LBP. Preliminary results has been obtained on this
topic and they have been used as starting point for further studies in Russia,
however their scope goes beyond this thesis.

Moreover it has been observed that the expression of LPB increases consid-
erably in the metastatic tissues and it is also known that the pH decreases in
metastatic tissues [75]. However, data coming from NMR [76] showed that the
pH change is due to the extracellular matrix environment that becomes more
acid. The change in the behavior of the LPB and the decrease of the pH in
metastasis could be then correlated.

Here we present the results obtained by single molecule force spectroscopy
of this protein/ligand complex. Unexpected results arose from our experiments
at low pH.
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Figure 6.1: In the image we can see the typical force curve obtained with the LBP
with the disodium phosphate buffer.

6.1.1 Experiments and results

Originally the experiments between E11 and LBP where performed as described
in “Introduction”, attaching covalently E11 on AFM tip and LPB on the sur-
face with the APTES/glutaraldehyde procedure. The data obtained with this
methodology were interesting and these experiment have been continued by B.
N. Zaitsev !, however they go beyond the scope of this thesis.

Experiments at low pH were performed in disodium phosphate buffer (NayH POy-
12H50) 50 mM plus citric acid 25 mM. 50 ml of Nas HPO, - 12H50 at 0.2 M
was mixed with 50 ml of citric acid 0.1 M, then 100 ml of distilled water was
added. The final pH of the buffer was 5.11.

One of the most interesting result obtained with the LBP protein regarded
its behavior at low pH, where almost all the curves present a plateau signal.
Control experiments made with LBP at pH 7 proved that the plateau effect
could be abscribed only to the LBP.

In the Fig.6.1 we can see that the LBP gives rise to a region at constant
force. This behavior, at the beginning unexpected, can be explained with an
unzipping process of the LBP. At the moment however, there are no structural
data that can tell us from which configuration this unzipping occur. We could
hypothesize that the LPB lose its structure and create a series of bonds with
the substrate.

This change in the behavior of this protein could correspond to a phase tran-
sition. In fact, experiments performed at pH 7 did not result in any “plateau“

IState Research Center of Virology and Biotechnology “Vector“, Ministry of public health
and social development, Novosibirsk, Russia
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Figure 6.2: In the top graph “1“ we can see the KDE for the experiment A (429
events). On the graph ”2” it is possible to see the deconvolution obtained.

effect.

We have analyzed the distribution of lengths for the constant force transition.
We measured the plateau length starting right after the drop in the force due
to the aspecific interaction. Several curves presented also a different pattern
where we had multiple plateaux in series, each at a different force. The two
experiments performed contain, respectively, 429 measures (experiment A) and
1322 measures (experiment B).

We performed a KDE to recover the distribution of plateau lengths, and
then we have analyzed them using Igor with the multipeak analysis. This last
tool allows to deconvolve the KDE with sub-gaussian probability distributions.

The two experiments performed showed a really good agreement on a plateau
length value corresponding to the fully unfolded length of the molecule. In fact,
in both experiments we get a value close to 100 nm. Considering that the LPB
is composed by 295 ammino acids and that the length for one of them is between
0.3 and 0.35 nm we can estimate a fully unfolded protein length between 88 nm
and 103 nm.

However, looking at the following peak maximum the situation is more com-
plex. For the experiment “A” we can say that the peaks at higher lengths
correspond to the dimers and trimers of the LBP, in fact the length seem to be,
respectively, two and three times the length of the fully extended protein.

Instead for the experiment “B” we obtained two peaks which are difficult to
interpret, one situated at 174 nm and the other at 221 nm. Both these peaks are
close to 200 nm, so it is possible that both correspond to dimers. The difference
in the two experiments could possibly be ascribed to the different deposition
times, that were not completely controlled.
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Figure 6.3: In the top graph “1“ we can see the KDE for the experiment B (1322
events). On the graph ”2” it is possible to see the deconvolution obtained.

Probability peaks characteristics
Type \ Location \ Local Sigma H Amplitude H Area H FWHM \

Gauss | 39.4 0.6 0.0021 0.14 3.1
Gauss | 102.8 1.0 0.0053 0.62 108.2
Gauss | 204.8 1.8 0.0020 0.20 92.5
Gauss | 319.2 2.2 0.00035 0.03 83.1

Table 6.1: Paramters of the fit obtained with Igor for the experiment A (429 events).

6.1.2 Conclusion on LBP

The experiments at pH 5 demonstrate a change in the behavior of the LBP. The
force plateau is compatible with an unzipping mechanism (a similar behavior
has been observed in amyloids proteins by Karsai et Al.[77] where they were un-
zipping S—sheets from amyloid proteins observing plateau). The deconvolution
of the lengths’ distributions estimated by KDE demonstrate how the prominent
peak is in good agreement with the full contour length of the LBP. This fact
suggests that the plateau is indeed due to the protein undergoing a phase tran-
sition. Other peaks appear in the distributions, they may be due to the di- and
tri- merization of the LBP.

Shorter peaks appear too in the distribution: this fact is also expected,
because we cannot expect to pick the LBP always at the very end with our tip.
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Probability peaks characteristics

Type \ Location \ Local Sigma H Amplitude H Area H FWHM
Gauss | 54.3 0.41 0.00061 0.025772 || 39.1
Gauss | 104.3 0.24 0.00678 0.69 95.7
Gauss | 174.1 0.57 0.00231 0.12 49.3
Gauss | 221.6 0.76 0.00208 0.12 55.9
Gauss | 294.7 3.52 0.000385 0.044 108.2
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Table 6.2: Parameters of the fit obtained with Igor for the experiment B (1322 events).
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Chapter 7

Nano construct for
protein-protein interaction

In this chapter we will discuss the development of a new methodology to study
“lock and key” interactions and, on the other side, a possible strategy to make a
material that assembles from the constituents with a particular designed struc-
ture.

For this purpose we used a multimodular 127 protein and another multimod-
ular construct composed by staphylococcal nuclease and 127. These molecules
are used as “handles“ to study the molecules that form the ”lock and key “ bond.
The general idea is to have two different constructs, an ”Handle-Lock” and an
”Handle-key“ that can then bind and assemble in a ”Handle-lock-key-Handle“
construct.

To obtain such a construct the plasmid coding for the handles has been
concatenated with the plasmid of the lock/key molecules and then the proteins
have been expressed (separately) in E.coli.

This strategy and the corresponding detailed experimental procedures have
been discussed in the work of Kim et al. [78] [79] (see their supporting material).
The present chapter will be more focused on the analysis of the data obtained.

A similar technology has been used before to study the properties of the
a—synuclein inserted in a multimodular construct [80]. The idea of use the han-
dles is similar, nevertheless the interactions that we are going to study present
some complication that we are going to discuss.

7.1 Streptavidin tetramers

We start our study with the investigation of the streptavidin tetramer. For this
purpose we used two different constructs composed by:

e 127 and a streptavidin monomer,

e 127, sthapylococcal nuclease (SNase) and a streptavidin monomer (SM).

89
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Figure 7.1: In the figure we can see a representation of the [(/27 — SNase)sSM]4
tetramer. If we pull such construct (from just two ends) with the AFM, to be sure
that we are pulling also the streptavidin, we need to see at least 4 peaks of SNase. 127
is represented in green, Snase in red.

The SNase have been studied by Wang et al. [81] and its SMF'S force curve
pattern is characterized by peaks of 46 nm of contour length at low unfolding
force (around 25 pN at 500 nm/s of pulling speed).

The SM has the capacity to form tetramers[82] and this property could be
exploited to create biologically inspired materials and structures. In particular
this protein, if bound with a determined chain, could be used as “hub” for a
material. The basic idea is in fact to append a construct of a known nature to
the SM and allow it to self-assemble. We however must remember that not any
kind of polymer could be attached, because, depending on the attached moiety,
the capacity of SM to self-assemble could be seriously inhibited.

There are severals papers that studied the bond between the biotin and
the streptavidin [57] [70] [83]. Most of these studies used a direct interaction
between these two molecules, attaching one of them on the cantilever tip and
the other on a flat surface. Intringuingly, there are no studies that investigate
the properties of the streptavidin tetramers by AFM.

The construct used were then, respectively (12765M )4 and[(I27-SNase)3SM]4.
Both these constructs give us a reference pattern, where the equally spaced peaks
(in terms of WLC/FJC-fitted contour length) allow us to correctly classify the
interaction and be sure that only a single molecule is pulled.

In particular we know that 127 modules give a sawtooth pattern of around
200 pN force at 500 nm/s of pulling speed, when SNase, at the same conditions,
yields peaks of at most 20-30 pN. These constructs give us some advantages
in force spectroscopy. In the case of the (I1276SM)y, if we see at least seven
unfolding force peaks, we are sure that also the SM tetramer have been pulled.
For the case of [(I27 — SNase)3SM]4, due to the different nature of the SNase
and 127 we are sure that the SM tetramer is pulled when we see four SNase
peaks.
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Figure 7.2: In the figure we can see the comparison between the KDE of the construct
with 1277 (violet line) with the construct 127¢SM (blue line). The KDE was obtained
with a uniform kernel [38].

However, another complication arises from this approach. The rupture of
the avidin tetramer does not give a reference pattern. In fact, if we look at
a force extension curve, when there is the rupture of the avidin tetramer or
when a detachment happen we have exactly the same effect that consist in the
relaxation of the cantilever with no other successive events. The chain, in both
case, do not connect anymore the cantilever to the surface.

Then, to correctly characterize the behavior of the SM, it is mandatory to
compare the statistic of the “rupture force” !, with the statistic of the detach-
ment in the “non-SM” construct.

For this purpose two kinds of experiments has been performed:

e collecting the rupture forces in the SM construct,

e collecting the statistic of the detachment forces of the correspondent “non-
SM” construct.

In Fig.7.2 we can see the comparison of the PDF (obtained with the KDE
method) between I27; and I276SM. It is possible to notice that the PDF for
the 1277 has a long tail that reaches 700 pN, while the one for the the construct
1276SM ends at 500 pN and has an hump at 400 pN. It is arguable that the
difference in the tails is due to the presence of the SM that stops the pulling
before the forces higher than 500 pN are reached, moreover the hump at 400 pN
could be also an effect of the SM. However, a basic objection can be done to this

IWe define “rupture force” as the characteristic force for the last event of a force curve
before return to the baseline in the construct that contain SM. The group of this kind of
events, in the construct that contain SM, contains the rupture of the avidin tetramer and also
the classical detachment of the polymer from the tip or the surface.
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Figure 7.3: In the figure we can see the comparison between the KDE of the construct
with 127 — (Snase — 127)3 (violet line) with the construct (127 — SNase)3SM (blue
line). The KDE was obtained with a uniform kernel [38].

method. Using 127 modules, we need to see their peaks to be sure we pull the
construct. The peaks, in this construct, appear at 200 pN and this means that
all the rupture forces that appear below 200 pN are ignored. Substantially this
particular system behave like a high pass filter. It is then clear that, to improve
the analysis of the rupture forces, a construct like (127 — SNase)3SM should
be used. As aforementioned, at 500 nm/s, the SNase unfolds at 25 pN and, to
be sure that we are also pulling the SM tetramers, with this construct we need
to see at least four unfolding peaks of SNase. In the results we have that about
70% of the force extension curves that contain from 4 to up to 6 characteristic
unfolding peaks of SNase and that end before reaching the 127 unfolding force.
The remaining 30% show 127 peaks and, only 5% of the total unfolding force
curves present a force greater than 300 pN, but never higher than 500 pN. Again,
as comparison we collect the detachment forces of the 127 — (Snase — I27)3.

It is possible to appreciate in Fig.7.3 that in the construct with SM (blue
line) there is a prominence of ruptures at 100 pN that cannot be observed with
the 127¢SM construct.

7.1.1 Discussion

How can we interpret the results from the (I27)g and (127 — SNase)s han-
dles? Actually the structural studies of streptavidin tetramers reveal a partic-
ular conformation of this object. For the clarity of our exposure we will name
the monomers: A,B,C,D.

The studies [84] [83] showed that the monomers associate as dimers with
a strong interaction (AB, CD) with a large contact area (approximatively 16
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Figure 7.4: In the sketch we can see how four molecules of streptavidin assemble.
The strongest interaction is between the monomers AB and CD, then we have weaker
interaction (cross and lateral) that appear between the two dimers.

nm?) that involves seventeen hydrogen bonds and other secondary interactions.

The difference in the PDF between the 127¢65M and (127 — SNase)3SM
can be now be explained. The results in fact suggest that when we are using the
127 handles, we are mainly observing the stronger interaction (between AB or
CD) composed by seventeen hydrogen bonds, with an unfolding force between
300 and 500 pN. When we use the (127 — SNase)3SM, all possibles interaction
in the tetramer are explored and, in this case, we also observe the dimer-dimer
interaction that consists of 4 hydrogen bonds. In this case we have a much
lower rupture force that is consistent with a force of 100 pN. Moreover the PDF
suggests that the rupture of the dimers occur more frequently than the strong
interaction ruptures (AB, CD).

7.2 Strep-tag Strep-Tactin

Another system that has been studied using the multimodular protein as handles
is the Strep-Tactin (an engineered streptavidin) vs Strep-tag II (a particular
peptide, the detail of this molecule can be found [85]). This construct have
some similarity with the (127 — SNase)3SM, in this case Strep-Tactin forms
tetramers of the same kind of the streptavidin. We can then refer to the Fig.
7.4 to understand the dimer-dimer interactions.

In this case the Strep-tag was fused with (127 — SNase)s construct at the C
terminus. We then make react this last molecule with the tetramer and, at the
adequate concentration, we obtain a structure composed by four handles that
bind the four different molecules of the tetramer.

The idea in this case is to have a self assembled tetramer of Strep-Tactin
where four different (127 —SNase)s—Strep—tag can bind. Similarly to the case
(I27 — SNase)3SM tetramer, also in this case, to be sure that we are pulling
the Strep-tag Strep-Tactin bond we need to see, at least, four SNase unfolding
peaks. Experimental results showed that when stretching the Strep-tag and
the Strep-Tactin complex, no 127 unfolding force peaks were recorded, this is
a strong evidence of the fact that the compplex broke before the 127 rupture
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Figure 7.5: In the figure we can see the results for the different loading rate. Each

couple of points, at the same loading rate, come from the deconvolution of a single
distribution of probability.

force. However, when we tested the handles (without the complex) the peaks
of 127 were recorded. Also in this case the PDF of (127 — SNase)s and of
(127 — SNase)s — Strep-tag — Strep-Tactin — (127 — SNase)s where compared.
The results showed that in presence of the complex we have a distribution of
rupture forces that is much wider compared to the distribution of detachment
forces of the (just) handles. This rupture forces distribution can be deconvolved
in two other distributions, one centered at 48 pN and another at 78 pN (at
1000 nm/s speed). To characterize these interactions we have performed the
experiment at different loading rate (from 50 pN/s to 7000 pN/s). These two
kinds of interactions can be interpreted by two different linear regimes, however
they show always a difference that become more pronounced at higher load (as
it is possible to see in Fig. 7.5).

The two interactions can be explained supposing different pulling geometries.

In the case where the interaction is stronger, we can say that we are measur-
ing the interaction of a single Strep-Tactin dimer (similarly to the streptavidin
tetramers we are pulling the dimer AB or CD). On the other case, when the
interaction is weaker, we are pulling the complex from two different dimers (in
this case, using again the sketch of the streptavidin, we are pulling AB and CD
and we are feeling the force between these two dimers).

7.3 Angiogenin RNase inhibitor

The handle has been used also to study the Angiogenin vs RNase Inhibitor
interaction. In this case (I27—SNase)s was fused at the C terminus with RNase
and, 127 — (127 — SNase)s was fused at the C terminus with Angiogenin. The
KDE of the events obtained at the speed of 500 nm/s ranges from few pN to 300
pN. Two humps can be observed in the distribution, one at 78 pN and another at
158 pN. Also in this case the KDE of the Angiogenin vs RNase experiment was
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compared with the KDE of the detachment of the handles. The detachment
events show a wider distribution of forces, ranging from few pN to 800 pN.
The two humps of the Angiogenin vs RNase interaction can be explained by
a two-step binding mechanism[86]. It has been reported that RNase inhibitor
and angiogenin may undergo conformational selection by first forming a loosely
bound complex with Kp of 0.5 pM and then forming a tight complex with a
dissociation constant Kp of 0.7 fM. Therefore, the two distributions that we
observed possibly reflect the rupture forces of the weak and tight complexes
with different binding affinities of the RNase inhibitor/angiogenin complexes.
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Chapter 8

Cantilever properties

8.1 Autocorrelation and convolution

In this chapter we are going to show the result of two mathematical analysis done
on several cantilevers by two mathematical methods: Fast Fourier Transform
(FFT) and autocorrelation. These two methods has been used, concurrently
with a theoretical model that describe the cantilever as a overdamped oscillator,
to obtain the cantilever mass and the viscous drag.

This have been done to confirm the previous results on this topic regarding
the properties of a system under external modulation. Several experiments have
also been performed to study this topic more in depth, however the results are
still extremely challenging to interpret and, for such reason, they will be not
shown here.

Before introducing the autocorrelation analysis results it is worth to intro-
duce some aspect of this mathematical operation.

Most importantly, autocorrelation is a mathematical operation based on the
another operation, namely convolution. If the convolution between two signals
is defined as eq. 8.1 (also called cross-correlation):

ct) = [ ols)uie—s)ds (8.1)

for 0 <t < o0.
For discrete signal we have eq. 8.2.

no+m

C(r)= > d(n)ip(n—7) (8.2)

n=ngo

Convolution has been used by the author as an algorithm in [37], where an
“L”-shaped vector was convolved with the signal obtained from the AFM to
localize the peaks of the force spectroscopy signal of the unfolding of multimod-
ular proteins. In such case, when an unfolding and the successive relaxation
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Figure 8.1: In red we have a signal of a multimodular protein (in particular it is a
fragment of (127)s). The blue signal is instead the result of the convolution of the
original signal with the “L” shape vector.

occur, the shape of the relaxation signal looks like an “L” (see Fig. 8.1). Con-
volving this region with an “L” vector yields a sharp spike in the convolved
signal. The convolved signal is relatively flat but it show spikes in the regions
where we have unfolding signals. This characteristic allows us to analyze the
signal just by looking at the evident spikes corresponding to the occurrence of
the “L” shape, allowing their recognition to be much easier than by directly
looking at the original instrumental signal.

Finally, the convolved signal can be analyzed to localize the peaks with
statistical methods.

8.2 Autocorrelation

We can imagine to convolve a (smaller) section of a signal with a larger section
of itself, this operation is called autocorrelation. The procedure consist in taking
a signal of length “N* and calculate the convolution for ”1“ value (called also
lag).

The mathematical definition of discrete and unitary convolution is given in
equation 8.3.

N—1
R() = =7 2 (X = )Xo = 1) (33)

The autocorrelation function is a mathematical tool similar to the Fourier
Transform (FT), however FT investigates the signal in the frequency domain,
instead the autocorrelation is a representation of the time domain. These two
tools are bounded together by the Wiener-Khinchin theorem that states that:
”the power spectral density of a wide sense stationary random process is the
Fourier transform of the corresponding autocorrelation function.“
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8.2.1 Spectrum of a cantilever

A cantilever in liquid can be modeled as a 1-d underdamped oscillator satisfing
the following Langevin equation:

mi(t) = —Ka(t) - yi(t) - £(t) (8.4)

Where: "K* is the spring constant, v is the damping coefficient and the
therm ¢ is a brownian white noise that satisfing the following conditions:

{€) =0

8.5
(EDE) = 2myKpTo(t —t') (8:5)

If we use the Fourier Transform we have:
(—mw? +iwy + k)z(w) = F(w) (8.6)

Where F(w) is the Fourier Transform of the noise. We can rearrange eq.8.6
to express the power spectrum:

|[F(w)[?/m?

2 _
lz(w)]* = (wg — w?)? + B2

(8.7)

Where we have introduced the following notation: k/m = w2 and v/m = .
Using a corrolary of the Parseval theorem we can write:
1 2|F(w)]?/m?

PSD(z,w) = tTthOO tr (W2 — w?)? + f2u? (8.8)

The thermal noise in this kind of oscillator is assumed to be white, so we
can write one part as Dy = limy, o0 7| F(w)[?/m?, and plugging it into eq. 8.8
we can write:

Dy
(w§ — w?)? + fPw?

We can express Dy but to do this we need to go further, first we integrate
the eq.8.9.

PSD(z,w) = (8.9)

e DO e 1 D()?T
PSD dw = dw = 8.10
/0 (@, w)dw 2m2/0 (W — w?)? 4 p2w? “ 2m?Bw3 (8.10)
Using the definition of wy we can write Q%Jgk.
As a corollary of the Parsevel theorem [13] we have (z(t)?) = 3 ’rT?QO[‘;Tw?' By
0

using the equipartition theorem we have %(:172> = %kBT . Using the previous

definitions 559> = kpT and thus Dy = 22meeL,
0

Finally, putting Dy in eq. 8.9 we have:

28kpT
(] — W22+ PR

PSD(z,w) = (8.11)
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Eq. 8.11 is a Lorentzian function in w and it has been used as fitting func-
tion to obtain the physical parameters of several cantilevers from the power
spectrum.

8.2.2 Autocorrelation of cantilever oscillation: theory

Multipying eq. 8.4 by x(0) and taking the time average we have:
mC(t) = —KC(t) — yC(t) (8.12)

where C(t) = (z(t)z(0)).
To solve this equation we use the following ansatz:

C(t) = Acos(wt + (b)exp(—;) (8.13)

Inserting eq.8.13 in eq.8.12 we obtain:

C(t) = Acos(wt + qb)exp(—f)

C’(t) = L Acos(wt + ¢)exp(—L) — wAsin(wte)exp(—L) (8.14)
C(t) = L Acos(wt + ¢p)exp(—L) — w?Acos(wt + ¢p)exp(—1L) '
+2% Asin(wt + ¢)exp(—L)

Using the expression for C(¢) it is possible to simplify the set of eq.8.14.

C(t) = 1C(t) — wAsin(wt + ¢)exp(—1L) (8.15)
C(t) = HCO(t) — w2C(t) + 22 Asin(wt + ¢)exp(—1L) '
Equation 8.12 become:
1 2) 2w, . t
— —w’ | CO(t) + —Asin(wt + ¢)exp(——)+
(72 T T (8.16)

—lC’(t) — wAsin(wt + qb)ea:p(—;) + %C’(t) =0

™m

Grouping the terms with C(t) and Asin(wt+¢)exp(—L) we obtain two terms
which must be zero:

(-t~ g+ K) Clt) =0 o
(% — %) Asin(wt +¢) =0 ’
leading to the following equations:
1 2 Y K _
{2 2 _0 (8.18)

Solving the system we get:
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r—im
N e (8.19)

In order to fix the phase ¢ we resort to the virial theorem. So we have:

(p(0)z(0)) = —KpT (8.20)
Substituting p(0) with mi(0) and resorting we have:
.. KT
(#(0)(0)) = — WB; (8.21)

Since C(t) = (i(0)z(0)), we also have C(t) = (&(t)z(0)) and therefore (using
eq.8.13):

G0) = ((0)2(0)) = Acos(d) | = — w? + Ztan(s) (8.22)

T2 T

Now, by equipartition we have:

KgT
(2(0)2(0)) = (2%) = Acos(9) = —2 (8.23)
and therefore:
s KpT [1 9 2w
c(0) = e L’Z w + = tan(qb)] (8.24)
Using eq. 8.21 and eq.8.24 we have:
1 1 Kr 0%
tan(¢) = 5 {m - mw} = (8.25)

Now we can take these results and put them in the ansatz:

2

E — mt + atan(—

C(t) = Acos ( K_2 m)) exp (—;TZ) (8.26)

Eq. 8.26 have been used to fit the autocorrelation spectrum obtained from
different cantilever.

8.2.3 Autocorrelation of cantilever oscillation: results

Triangular Veeco cantilever (DNP) with a nominal spring constant of 0.06 N/m
and rectangular MikroMasch cantilever (CSC38) have been used. The exper-
iments have been performed in a Veeco AFM (Picoforce-Nanoscope III) with
a fluid cell chamber using the “o-ring”. In the experiments that we have per-
formed we have recorded the deflection signal coming from the cantilever placed
in water at several um of distance from a surface of mica. Signal Access Module
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IIT (Veeco National Instruments) has been used to acquire the deflection signal,
the signal have then been recorded in a home-made software and then analyzed
with “Xmgrace”.

The typical deflection signal versus time can be seen in Fig. 8.2.

2¢e-09¢ T T T T

.d
P
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D
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M

-1e-09 H

1 | 1 I 1 | 1
2e-001 L
0 5000 10000 15000 20000x10”

Time (Seconds)

Figure 8.2: Deflection signal of a triangular cantilever in water. The sampling rate
was 100 kHz, this mean that the timescale, in this case, is (1/100)kHz"*. In this case
the duration of the signal was 0.2 seconds (20000 points).

In Fig. 8.3 we can see the autocorrelation function for the deflection signal
of the Fig. 8.2 that lasts 0.2 seconds.

In the first attempts to get the autocorrelation plots we have noticed that a
periodic correlation appears at high lag value, like in Fig.8.3 and Fig. 8.4 (this
latter autocorrelation plot does not came from the same cantilever as before, but
the periodic correlations are present in all the autocorrelation plots where the
signal duration is in the order of few seconds). We found that the sources of the
correlations at high lag are due to the small recording time of the signal and to
investigate it better we have acquired signal of different duration from the same
cantilever. Using these latter signals we have then generated the autocorrelation
plots.

We found that to eliminate the correlation at high lag we have to use a signal
that is, at least, 60 seconds long.

In such case the average value of the correlation increases (from “0” to values
near 0.9) and the amplitude of the oscillations decrease. This is due to the fact
that to correctly average the noise we need a longer time, however in such case
the low frequency noise appear. Nevertheless this low frequency noise does not
disturb the fitting, in fact the results of the fitting using the model 8.26 (where
we have put a constant Dy) did not change.

We can try to obtain the values of v and the effective mass from the power
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Figure 8.3: The green line represent the autocorrelation function for the signal in
Fig.8.2. The black line is the fit using eq.8.26, the results of this fit gave a mass of 66
pg and a v of 8.9¥10~7 Ns/m.
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Figure 8.4: Graph for the autocorrelation function on 600 points. Here the signal
length was 200 ms, the sampling rate was 100 kHz.
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Figure 8.5: The same signal from Fig.8.4 was used but here the time length was 68
s, the sampling rate was 100 kHz. It is possible to see that the value of baseline of
the autocorrelation function increase compared to the baseline in Fig.8.4 and that the
oscillation at high lag disappear.



8.2. AUTOCORRELATION 105

spectrum of the cantilever. The power spectrum can be approximated by eq.
8.27.

QV*kBT

2
< >—
P (W) (Kcantilever - m*w2)2 + (’Y*w)2

(8.27)

However this model is not precise enough to describe the entire spectrum
and it has to be restricted to the resonance peak. Moreover a three parameter
fit can be used to better fit the spectrum, the equation for this is eq.8.28.

1E-23 I T T T T T T T T T T T
———— cantilever_experimental
Two parameters fit
Tree parameters fit
1E-24 1
1E-25 N |
0] 10000 20000 30000
Hz

Figure 8.6: Fit of the power spectrum of a cantilever in water with eq. 8.27 (vio-
let line) and 8.28 (yellow line). The parameters are, respectively mass 28 pg and ~y
8.241077 Ns/m for the two parameter fit and 31 pg and v 6.0¥1077 Ns/m for the
three parameters fit.

A

2
< >=
P (w) (Kcantilever - m*w2)2 + (’y*w)Q

(8.28)

Here we can see the results of the various fits done with different cantilevers
and different methods. It is possible to see that the values obtained are in good
agreement, this demonstrates the reliability and the consistency of the methods
used to obtain such parameters.
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Cantilever 3 parameter fit | 2 parameter fit || Autocorrelation fit
A0=1.48e-26 ind A0=0.75
20100309 (1) m=6.92E-11 m=7.89E-11 m=8.38E-11
vy=108F—-6 | y=T707TE-T7 v=945F -7
A0=1.79e-26 ind A0=0.73
20100323 (2) m=7.50E-11 m=8.72E-11 m=8.93E-11
y=120E—6 | ~y=926E—7 || v=104E—6
A0=1.57e-26 ind A0=0.83
20100324 (3) m=6.85E-11 m=7.88E-11 m=7.16E-11
vy=12E—6 v=8.93F -7 vy=161F —6
A0=1.23e-26 ind A0=0.75
20100412 (4) | m=4.45E-11 m=>5.47E-11 m=>5.44E-11
y=890F -7 | y=643E -7 v=09.52F -7
A0=1.48e-26 ind A0=0.79
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v=850F -7 | y=588E -7 v=101F -6
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A0=1.84e-26 ind A0=0.82
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Figure 8.7: The values for the v estimated with the three different methods is represent

in figure.
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Figure 8.8: The values for the mass estimated with the three different methods is
represent in figure.

8.3 Conclusions

According to the Fig.8.7 the fits performed with the power spectrum with three
parameters and the autocorrelation are more close compared to the 2 variable
fit.

We can also notice that the mass estimated with the autocorrelation is al-
ways larger that the mass estimated with the three variable fit, moreover this
parameter is really close to the mass estimated with the two variable fit.

Speaking about the estimation of v (Fig.8.7) we can see that, in the set
of measurements, the autocorrelation function gives most often larger values,
however it is not always true. In the two graphs we can see that the values are
compatible with a range of 2+ 107 Ns/m for v and 10~!! kg for the mass. This
kind of results are fundamental for the interpretation of the experiments where
a small modulation at high frequency is used when a polymer is pulled (see in
particular Favre et Al. [69] and Chtcheglova et Al. [87]).
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Chapter 9

Dithering technique

The elastic properties of the biomolecules have been investigated deeply with the
use of standard AFM methods. The main protocol has been the velocity clamp
on one hand because of technological simplicity but most importantly because,
in contrast with the force clamp, it allows to measure directly the force response
of a biomolecule in function of its extension.

It is exactly the force extension profile that allows us to calculate the stiffness
as the derivative of the force as a function of the elongation: this is impossible
if we use the force clamp (or force ramp) techniques.

The velocity clamp allows us, as saw in the chapter 3, after some analysis,
to measure different properties of a polymer, like the stiffness of a polymer and
also of the folded modules in a multimodular protein.

However the simple velocity clamp consists of the measurement of the static
force extension profile of a polymer. For a better understanding of the process
that are involved in the polymer mechanics it is important to have an estimation
of the dynamic parameters like the dynamic stiffness and damping behavior.

Such parameters could be mathematically obtained from the static force
extension curve measuring the slope of a curve in a determine point, however
the methodology that we are going to introduce is able to direct obtain this
value.

These measurements can be performed applying a modulation signal to the
cantilever base. The signal is then processed by a lock-in to get the changes of
the amplitude and phase of the response.

This kind of measurement are still at the beginning even important works
like [15] have been already published. Here we would like to continue the work
started with Chtcheglova [87] and Favre [69], however in our case we have decide
to modulate the cantilever base at low frequency.

109
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Figure 9.1: Several curves of dextran have been analyzed. We we have measured the
force of the transition region taking a point in the middle of the transition region, before
the detachment (violet square). The blu diamonds instead represent the detachment
force.

9.1 Preliminary results

Before introduce the modulation technique we want to illustrate some prelimi-
nary results that we have obtained. In fact, at that time, we needed a molecule
that was easy to store, cheap and easy to obtain. Thanks to the suggestion of
Prof. Marszalek we decided to use the dextran. The dextran can be stored as a
powdered and, at the usual purity that we need it is not expensive. We did not
have any experience with this molecule and we had to develop our technique of
deposition. We then tried to use a glass coverslip cleaned with the plasma to
prepare the samples. The functionalization of the coverlisp, using the dextran,
is also discuss in “Introduction”.

During the preliminary tests we were able to record several force curves. To
check the conditions we have also measured the force at which the transition
region occur, such result can be seen in Fig. 10.1. These firsts results were in
agreement with the values obtained in literature and allowed us to continue the
work to test the modulation technique.

9.2 Lock-in modulation and signals

To start we have to introduce the Lock-in and the signal processing that this
instrument is capable to do. A lock-in measure require an instrument with a
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precise internal reference. In general such reference is a periodic function at
a fixed frequency (and in our case it is). In the lock-in, in practice, we can
measure the response of a setup excited at the reference frequency. Let assume
that we have a reference signal with a frequency w, and let denote the amplitude
of such signal V;. We can use this signal to excite the base of the cantilever, the
response can be think as a waveform. The response signal is Vy;gsin(w,t +8s)
where V4 is the value of the amplitude. The lock-in generate the following
reference Vpsin(wpt + 6rcf).

The lock-in amplifies the signal and then multiply it by the reference. The
output signal V,,; is a product of two sine waves:

Vout = (1/2)ViigVicos([wy — wi]t + Osig — Orep)— (0.1)
(1/2)ViigVicos([wr + wilt 4+ Osig + Orey) '

The V,,; is a signal composed by two waves, one at the frequency (w, —wr,)
and the other at the frequency (w, + wr). If we pass Vi in a low pass filter
the time dependent part of the signal disappear and, if we have w; = w, we will
have: Vour = (1/2)ViigVicos(8sig — Orey)-

This signal is now independent from the time and proportional to the signal
amplitude.

Now let assume that the input is composed by signal and noise. The PSD
and the low pass filter will detect the signals that have a frequency very close
the the reference frequency. The other signals, with a frequency far from the
reference, are attenuate by the low pass filter. Noise at a frequency very close
to the reference frequency will result in a low frequency signal. Their atten-
uation depends upon the low pass filter bandwidth and roll-off. A narrower
bandwidth will remove noise sources very close to the reference frequency, a
wider bandwidth allows these signals to pass.

9.2.1 Amplitude and phase

The Vo, signal is proportional to 0 = (6si9 — Oref). 6 is the phase difference
between the signal and the lock-in internal reference. By controlling 6,.¢ we
can make 6 equal to zero and in that case we can directly measure Vy;,. On the
other hand, if 6 is 90°there will be not output at all.

This phase dependency can be eliminated multiplying the V,,; by another
wave shifted by 90°and the low pass filtered output will be:
Vpsaz = (1/2)VsigVisin(0sig — Ores), and Vpgao ~ Vsigsind. These two outputs,
that we are going to call “X* and “Y*, are: X = V4cos0 and Y = V;4sin0.

The magnitude (or amplitude) "R¢ is R = (X2 + Y?)V/2 = Vsig- R then
measure the signal amplitude and does not depend on the phase between the
signal and the reference.

In addition we can measure also the phase between the signal and the refer-
ence and so we have 0 = tan™1(Y/X).
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9.3 Theory

For an analysis of the experimental data obtained at low frequencies we tried
to use the approach of Burhman et al. [88], the case “displacement modulation
via tip” fits to our experimental set up. Using the notation “z”, “d” to describe
respectively the position of the cantilever base and tip relative to the immovable
support (the latter is at the same time the end-to-end distance for the stretched
molecule), we write the equation of the motion as

md 4 2mpBe(d — 2) + ke(d — 2) + 2mB;d + g(d) = 0 (9.2)

Here “m” is an effective mass of the cantilever while §.; and k. ; are dissipa-
tion and spring constants characterizing respectively cantilever and molecular
complex under the study and g(d) is just the force experienced by the stretched
molecule. Further, in this equation,z = zg + dze’* with zg = vt is the initial
condition which reflects the imposed slow constant velocity motion of the can-
tilever base (force loading) and its dithering at frequency w with an amplitude
§z while the solution is searched in the form d = do(t) + dde®*.

During the procedure of restoration of the static signal we have used equation
9.3 that provided a good approximation of the static signal.

Set(t) = %U/o (Sayn(T) + c)dr (9.3)

9.4 Experimental conditions

Before introducing the results we need to speak about the correct conditions
to perform the experiment. The dithering technique require to integrate one or
more periods of the exciting signal to correctly obtain the local amplitude and
phase. We are substantially play with the following parameters:

e resolution in therm of “integrated periods for nm”
e frequency used,
e pulling speed.

It is easy to understand that an really high frequency require a short inte-
gration time in rapport of the time that we need to do a ramp, but how all these
parameters are related and how do we fix them before perform an experiment?

The following procedure should be used to obtain the right values of fre-
quency and speed once we have decided the resolution desired.

Let fix the resolution as “a” period/nm. We want also that the frequency
is not bigger that “k” Hz. It is straightforward, then, that the maximum speed
that we could apply to the experiment is given by: v = k/a. That simple equa-
tion and this simple reasoning can be reversely used to find the other conditions
starting from the speed.
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Figure 9.2: In the figure we can observe the amplitude channel (red line) and the phase
(blue line). The amplitude correctly reproduce the stiffness of the polymer during the
pulling process.

9.4.1 Results

If we respect the conditions for the correct sampling rate we can obtain signals
that describe well the force curves. It is possible to see in Fig.9.2 how, with a
speed of 25 nm/s, a modulation of 80 Hz of frequency and (considering that the
cantilever spring constant was 0.1 N/m) a modulation amplitude of 0.2 nm, we
can obtain the signal of amplitude and phase. In this case we proceed to the
integration of the amplitude signal with the eq. 9.3, however the integration was
done iteratively until a good agreement between the static and the integrated
signal was found.

The phase signal also contain information about the molecule, however the
noise of this channel is also large. It is possible that, due to the modulation of the
base of the chip, the cantilever feel a continuous interaction with the liquid giving
rise to the noise recorded in the phase. Other experiments, where the piezo is
modulate should be done to confirm this latter hypothesis. Moreover, now that
all conditions to perform the experiments are clear it would be interesting to
slow down even more the speed to increase the resolution and see if it will be
possible to capture more details of the pulling process.
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Figure 9.3: In the figure we can see the deflection signal (in red) and the reconstruction
with the eq.9.3 (black line).
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Appendix

10.1 Monte Carlo code

Hereafter we can see the Monte Carlo code to generate force unfolding profiles.
The code read the parameters of the simulation from a file and then simulate
the force extension curve. This code is also highly customizable, the kinetic
parameters and the characteristics of the modules can be changed in the “pa-
rameters.txt” file. The main difficult is just the cast of the WLC function in a
third grade equation, such cast was discuss in chapter 4. When the WLC is in a
third grade equation form it can be solved for each “t” to get the current force
acting on the system. The current force can then be used to calculate the tran-
sition rates to increase, or decrease, the countour length. After have calculate
the force and the transition rate we increase the time of the simulation by the
timestep, in such way we obtain a new position for the base of the cantilever
that mean also a new solution for the WLC.

#include <stdlib.h>
#include <iostream>
#include <fstream>
#include <time.h>
#include <cmath>
#include <vector>
#include <sys/time.h>

using namespace std;
// our function is a third grade equation U3 4+ bU"2 + cU + d = f(x),
// it represent the WLC(t)

double f(double b, double ¢, double d, double x){
return d + xx*(c + xx(b + x) );
}
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// first derivative of the function 3U"2 4 2bU + ¢

double fprime (double b, double ¢, double x) {
return ¢ + x*(2xb + 3xx);

}

// it calculate the solutions for the polinomial WLC(t)
bool nr_pol3(double b, double ¢, double d, double x0, double epsilon,
double& x){

const int maxIteration = 500;

x = x0;

double fx = f(b,c,d,x);
int numlterations = 0;

while (fabs(fx) > epsilon) {

double fpx = fprime(b,c,x);

++numlterations;

if (fabs(fpx)<epsilon)

return false;

if (numlterations>maxIteration) { //|| fabs(fpx)<epsilon

// cout<<”’Too many iterations”’<<endl;
return false;

}

x —= fx / fpx;

fx = f(b,c,d,x);
}
//cout<< ”Number of iterations:” << numlterations <<endl;
return true;

}

//if needed we can also calculate the derivative of thw WLC at each
// value of force

double wlcprime (double v,double time,double temp,double kc,double cl,
double pl,double present_force){

//first derivative of the WLC function respect to x

//kbt/px( (1/(2xclx(1— x/cl)"2)) + 1/cl )

double x=vxtime—(present_force /kc);

double kbt=1.3806e—23%temp;

return (kbt/pl)x(
1.0/( 2.0xcl*(1.0—(x/cl))*(1.0—(x/cl)) ) 4+ (1.0/cl) |
} )

// here we simply calculate the coefficient a,b,c of the equation
//U"3 +aU"2 +bU +c¢ =0 from the parameters
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void coeff(double v,double time,double temp,double kc,double cl,
double pl, double *sol)

{

double kbol, s, vt, SL, den, svt, b, ¢, d;
kbol=1.3806¢e —23;

s=kcxpl/(kbolxtemp );

vt=v*time;

SL=sxcl;

den=—4xSL—4;

svt=s*xvt;

b=(9.0+4.0%xsvt+8.0%xSL)/den;
c=(—6.0—8.0xsvt —4.0%xSL) /den;

d=4.0xsvt /den;

sol[0]=D;
sol[l]=c;
sol[2]=d;

}

double getFt(double a,double v,double time,double cl,double kc)
{return (vxtime—axcl)xkc;}

// give the probability to unfold/(have a transition) of an
// element given the kinetic parameters

double prob_of_unf_t (double koff,double deltax ,double temp,
double timestep ,double mod, double F){

double kbol=1.3806e—23;

return modxtimestepskoffxexp((deltax/(kbolxtemp))*F);

}

// give the probability to fold/(have a transition) of an
// element given the kinetic parameters

double prob_of_fold_t (double koff double deltax ,double temp,
double timestep ,double mod, double F){

double kbol=1.3806e —23;

return modxtimestepxkoffxexp ((deltax /(kbolxtemp))x (=F));

}

void sim_unf_wlc(double vel, double kel, double modclength ,
double firstclength , double plength ,

double deltax, double koff, double kon,

double temp, double timestep, const int nummod,
vector<double> xdev_a, vector<double> xlength)

{
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// here we assigne the inizial contour length given by the length of
// the FOLDED molecule

double rval, clength, tplgth, sim_time, phys_sol.U, abc[3];
clength=firstclength ;

sim_time=0.0;

phys_sol_U=le—12;

// C requires ”struct timval” instead of just ”timeval”
struct timeval tv;

gettimeofday (&tv, 0);

// use BOTH microsecond precision AND pid as seed

long int n = tv.tv_usec x getpid ();

srand (n);

double last_ft;

int numbmod=nummod;
int numfold=0;

while (numbmod>0)

{

//using the tplgth we can also implement a function of
//(numbmod) for the persistence

tplgth=plength ;

//find the coefficients a,b,c of the equation

//u"3 +aU"24+bU+c=0 that are function of the parameters
coeff(vel ,sim_time ,temp, kel ,clength , tplgth ,abc);

//find the solutions with Newton solver

nr_pol3 (abc[0],abc[1],abc[2],phys_sol .U, ,le—12,phys_sol_U);

// from the solution we found the force applied at the system,
// this passage is due to the formalism that

// we have used to solve (and to express the coefficient)

// of the equation of the third grade

last _ft= getFt(phys_sol U, vel ,sim_time ,clength , kel);

//now here we compare a random number with the probability to unfold
rval= rand ()/((double ) RANDMAX + 1.0);

if ( rval <=

prob_of_unf_t (koff ,deltax ,temp, timestep ,numbmod, last _ft) )
{

clength4+=modclength;

numbmod—=1;

}
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rval= rand ()/((double ) RANDMAX + 1.0);
//same for the probability to fold
if ( ((nummod — numbmod) >0) &&
(rval <=
prob_of_fold_t (kon, deltax ,temp, timestep ,nummod—numbmod, last _ft)) )
{
clength—=modclength;
numbmod+=1;
numfold++;
cout<<’fold: 7"<<numfold<<endl;

}

//we store the datas in the arrays each 100 steps (or more)
if ( int(sim_time/timestep)%100==0)

{

dev_a—>push_back (last_ft );

length—>push_back (sim_timexvel );

}

//we increase the time
sim_time+=timestep ;

}

clock_t t1
tl=clock ();

int main (){
, 125

vector<double> force;
vector<double> length ;

//we read the parameters from a file
ifstream rfile (” parameters.txt”);

int num_modules;

double vel, kel, modclength, modflength, plength 6 dx,
koff , kon, temp, timestep, add_clenth;

string buff;

//we read the paramters from a file and we jump the header
for (int 1=0; i<12;++1)
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getline (rfile ,buff ,’\n’);

rfile >>dx; //1
rfile >>koff; //2
rfile >>kon; //3
rfile >>vel; //4
rfile >>kel; //5

rfile >modclength; //6
rfile >modflength; //7

rfile >>plength; //8
rfile >>temp; //9
rfile >>timestep; //10

rfile >num_modules; //11
rfile >add_clenth; //12

cout<<’Delta x nm: "<<dx<<endl;
cout<<”’Speed nm/s: "<<vel<<endl;
cout<<’Module Contour length nm: "<<modclength<<endl;
dxx=1e—9;

velx=1le—9;

modclengthx=1e —09;
modflength+=1e —09;

plengthx=1le—9;

timestepx=1le—9;

timestep/=vel;

add_clenthx=1e—9;

cout<<"timestep: "<<timestep<<endl;

//initial contour length
double firstclength=add_clenth+num_modules*(modflength );

cout<<firstclength <<endl;

sim_unf_wle(vel, kel, modclength, firstclength , plength,
dx, koff, kon,

temp, timestep, num_modules,

&force , &length);

t2=clock ();
float diff = ((float)t2 — (float)tl)/(double)CLOCKSPERSEC;
cout<<’Execution time: "<<diff <<” seconds”’<<endl;

ofstream file ;
file .open(” dataout.txt”);
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file <<’Parameters:”<<endl;

file <<”Speed nm/s: "<<le9xvel<<endl

<<”Spring constant cantilever N/m: "<<kel<<endl<<
"Temperature K: "<<temp<<endl<<”Delta nm: "<<
le9xdx<<endl<<”Koff s”—1: "<<koff<<endl<<

"Number of modules: "<<num_modules<<endl<<
"Persistence length nm: "<<le9xplength<<endl<<endl;

file <<’pN  nm’<<endl<<endl<<endl;
for (int i=0; i< force.size();++1){

file <<force [1]<<” "<<length [i]<<endl;
}

file . close ();

10.2 Back calculation

The Back calculation scheme is based on the bootstrap statistic. In case where
the loading rate is low enough and the system behave like harmonic springs it
is possible to use the forces for a peak to simulate all the others. The following
code read a set of data from a file and the sort them in ascendent order.

As input parameters it require the peak order of the data imput (the total
number of peaks is fixed to 6).

To extract a single value of a peak in position “n” using the values of a peak
in position “ng” it is sufficient to follow the following procedure.

First we extract a random number “r = (N — 1) % (1.0 — (1 — f)(ng)), where
"N* is the number of data points and ”f” is a random number in the domain
[0,1]. This value “r” is then rounded to an integer “j” and again it is used to
calculate the value “x =r —j5”7. “j” is then used to find the correspondent force
value in the sorted data and “x” is used to calcolate the linear interpolation
between the value “j+1¢ and the value ”j“.

We repeat it "n“ times and we take the minimum of the results obtained.

The aforementioned procedured generate a single value for a peak in position
"n“ however to have a statistic (as in the code) we have to repeat it several
times and calculate the average.

#include <stdio.h>
#include <stdlib .h>
#include <math.h>
#include <vector>
#include <iostream>
#include <fstream>
#include <time.h>
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#include <algorithm>
using namespace std;
int main(){

vector <double> f;
double y; // here we store some temporaney data

double r, x, min, avg, avg2, sigma;
int j;
srand (time (NULL));

//Get input, it have
ifstream infile (” datain.txt”);
while (!infile .eof())

{

infile >> r;
f.push_back(r);

}

sort (f.begin(),f.end()); //sort the vector in a growing way
infile.close ();

int n0; // peak order of the data
int ndat; // number of data points

cout<<”Peak number of data? (considering 1 near the detachment)’<<endl;
cin>>n0;

ndat=f.size ();

int num_trials=10000;
for (int n=1; n <=6 ; n++)
{ // cycle on the peak position
avg=0.0;
avg2=0.0;
for (int k=1; k <= num_trials; k++)
{ //set a num_trials to calculate average and sigma

min=10000.0;
for (int 1=0; 1 < n; 144
{ // we take the minimum on n extraction

r = (ndat —1.0)%(1.0—pow( 1.0—rand()/float (RANDMAX) ,n0));
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j = (int) (r);
X = 1=j;
// the value of the extracted force is calculated using a linear
// interpolation between the values of the force
y=t[j]+ xx(F[J+1=1[]]);

// we take the minimum of the ”"n” extraction

if (y < min) min=y;

avg+=min;
avg2+= minx*xmin;

avg=avg/num_trials;
avg2=avg2/num_trials;
sigma = sqrt (avg2 — avgxavg);

printf(” N_peaks: %3d avg_-f: %8.31f sigma_f: %8.31f\n”,n,avg,sigma);
}

10.3 Energy barrier details

Introducing e = 1+6F,i. e. F = , we converts (eq. 5.3) into A = Acexp(Be)

with B = ﬂkBT; of course, A = koffemp(—é). Let us first consider the case
when § is negative so always € < 1. Then it is instructive to introduce the posi-
tive constant B = \ﬁ’lfzﬁ and write a dissociation law as A = Aeexp(—Be) which

is exactly the particular case a=b=1 of Gargs law \(¢) = Ae***~lexp(—Beb).
His consideration briefly goes on as follows[67]. First we calculate the probabil-
ity function 5.5 which in terms of ¢ is equal to

1 LA
p(e)de = )\(s)fexp(—/ (5/ ))ds (10.1)
é < el
For the value of s = Gl f A(e")de’ Garg notes that for large B (i.e. for our

case when 3 << 70 ) one can extend the limit of integration from 1 to infinity
to get s = IE.‘%ea:p(—BE)(Be + 1) and thus

A 1
Ins = lnw — Be +In(Be) + In(1 + B—E) (10.2)

(The calculation of s is, of course, the main hint of Garg he noted that, due
to dexp(—s) = e:cp( S) % ds, de , the averages fo £2p(e)de, is nothing else
than (e") = [ ° "d(exp ~ [Fe exp s)ds hence all one needs is to

e=0
express € as a function of s. Note also the ‘automatic“ normalization appearing
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here: fooo exp(—z)dz = 1. The next step is the use of Taylor expansion for an
analysis of 10.2 in the following approximation:

e 1) important values of s are of the order of unity,
2) Be >> 1,

e 3) ‘Ele >> 1 (note that when s is around 1, In == ‘BQ must be positive due

1e1B?

to negativity of —Be).

The first condition is evident simply because otherwise the factor exp(-s) is
too small to contribute essentially to the average values. The third condition can
be rewritten as F' << ko B~2exp(B)/|| hence its validity depends first of all
on the value of k5. Remind that we also have an opposite "natural” dynamic
force spectroscopy limit discussed above. For large B we have exp(B)/B >> 1
hence evidently there is a sufficient room for the validity of this condition.
Taking as an example the same B=10, effective barrier thickness zy around
0.1 nm and the room temperature case kT = 4 - 1072 J, we have that it
should be F' << 1077 - k. (F is measured in N/s and ks in s~') which
can be sometimes problematic for k,¢s of the order of a few s~! and less but
definitely holds for k,s¢ or the order of 100 s~! and larger. The most stringent
criterion is the second one which for our case means F' << %. The range
of its validity has been discussed above. With such approximations, Taylor
expansion goes on as follows: we introduce ¢ = €B and rewrite 10.2 as ¢ =
Z+In(g)+in(1+ 1) where Z = Zn|s|32 Requiring additionally X = ln‘sl% >>

Ins (a natural requirement for s = 1 ‘ 5= >> 1), from here one obtains the

JE[B2
formulae to determine ¢ = ¢(X, Ins) and, correspondingly, e = (X, Ins) which,

when combined with the known definite integrals [° exp(—a)In(z)dz = —v ,
fooo exp(—x)inxdr = %2 + 72 [89] finally furnish the Garg results presented in
the text: (g) = (X +InX +7)/B, (62) = ()% + s -

Now let us consider the case of positlve ﬂ Here we simply take B = B and

get, instead of 10.1, p(e) = A(E)‘?l.le:cp( N ‘E, )da ) and

5= B / e'exp(Be')de' = E |ABQ (Beexp(eB) — exp(e B) — Bexp(B) + exp(B))

(10.3)

We again require Be >> 1, and now € = 1+ SF > 1. We will consider only

the case when the terms —Bexp(B) 4 exp(B) can be neglected. This is true

whenever F' >> kgT/xy which is, of course, exactly our region of interest. For

such a situation, we can approximate 10.3 with s = |6.‘%630;0(35)(B5 —1) and

thus )

| B 1

EIBY | Be 4 in(Be) + 1n(1 — ) (10.4)
A Be

Contrary to the above case of negative g, the condition

Ins = —In

B “3‘32 << 1is to
be fulfilled now. This means F' >> kB~ 2exp(—B)/|3| which is always true
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for all reasonable force loading rates when F' > kosrkpT/x0 = kop/(B|B]).
Rather cumbersome Taylor expansion with the same approximations as above,
viz. X = —lnM% >> [ns, and along the same lines, gives eq.10.5

X 1 1 2xX
Be= X—inx M, In

1 InX 1
el 1 — - = 26—
tox2 +in(s) < ¥~ X2 >+ln s <2X2)+O(

X X 2X2
(10.5)
Thus with the precision of InlnX we get:
(€) = (X —InX —7)/B ,(e)* + &
10.4 Tables of Backcalculations
Experimental data and backcalculation

n (6 [5 4 I3 [[2 1
Average - experiment 124 | 128 || 129 || 137 || 146 || 162
Average - ng = 1 backcalculation 127 | 129 || 132 || 137 || 144 || 162
Average - ng = 2 backcalculation 123 | 126 || 130 || 136 || 146 || 168
Average - ng = 3 backcalculation 120 | 124 || 129 || 137 || 149 || 170
Average - ng = 4 backcalculation 118 | 123 || 129 || 137 || 150 || 170
Average - ng = 5 backcalculation 123 | 128 || 134 || 142 || 153 || 170
Average - ng = 6 backcalculation 124 | 128 || 134 || 141 || 151 || 164
Average - experiment backcalculation | 25 | 30 31 31 30 31
Average - ny = 1 backcalculation 11 13 15 18 22 31
Average - ng = 2 backcalculation 22 23 24 25 30 40
Average - ny = 3 backcalculation 25 26 28 31 35 39
Average - ng = 4 backcalculation 27 | 29 31 34 37 38
Average - ng = 5 backcalculation 28 | 30 31 33 34 32
Average - ny = 6 backcalculation 25 27 28 30 30 28

Table 10.1: Average and standard deviations of the unfolding forces as obtained from
the experiment and from the backcalculation using data from n =1 to n = 6.

10.5 Kernel Density Estimation

The Kernel Density Estimation (KDE) is a non-parametric method to estimate
the distribution of probabilities of a certain set of values. The KDE is a function
“f(x)” express in eq.10.6.

r — X

f@) = oS K (10.)

Where “K* is the kernel of the function and the parameter “h” is called
“bandwidth” of the kernel.

In® X

x5
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Figure 10.1: In this image we can see the same set of data represented with: (left) an
histogram, (right) a gaussian KDE. The red dashed lines are the KDE for each data
point, instead the blue is the sum of them.

In particular f(x) has the following properties:

/_OO flz)de =1 (10.7)

The kernel “K* is often symmetric, however this is not always required. The
bandwith “h”, in case of gaussian kernel is selected with the “Scott factor“
or also so called “Rule of Thumb” expressed in eq. 10.8, where “d” is the
dimensionality of the sample, “n” the number of data points and ¢; the standard
deviation of the data in such dimension:

hj = n_l/(d+4)aj (108)

Usually, to show a probability distribution, histograms are used. Histogram
are particular case of the KDE where the kernel is defined as K (z) = { (ze(a;, ait1))
where the range z¢..x,, of data has been partitioned in a,4; sections. If we define
A = a;11 — a;, we can define the histogram as:

1
f@) = —K(2) (10.9)

Despite the simple and intiutive procedure to create an histogram this has
two problems. The first one is the correct selection of the range,in particular
the initial position of the data binning, the second problem is the selection of
the size of the partition A.

The KDE instead, can overcome these limitations, in fact there is not a
division of the range and a selection of the initial position for the binning,
moreover the bandwith “h” which is similar to the size of partition A has an
accurate derivation[90].



Bibliography

[1]

F. Valle, M. Favre, P. De Los Rios, A. Rosa, and G. Dietler. Scaling ex-
ponents and probability distributions of dna end-to-end distance. Physical
review letters, 95(15):158105, 2005.

E. Ercolini, F. Valle, J. Adamcik, G. Witz, R. Metzler, P. De Los Rios,
J. Roca, and G. Dietler. Fractal dimension and localization of dna knots.
Physical review letters, 98(5):58102, 2007.

J. Adamcik, D.V. Klinov, G. Witz, S.K. Sekatskii, and G. Dietler. Observa-
tion of single-stranded dna on mica and highly oriented pyrolytic graphite
by atomic force microscopy. FEBS letters, 580(24):5671-5675, 2006.

E. Westhof and P. Auffinger. Rna tertiary structure. FEncyclopedia of
analytical chemistry, 2000.

A.L. Fink. Natively unfolded proteins. Current opinion in structural biol-
ogy, 15(1):35-41, 2005.

T.N. Petersen, C. Lundegaard, M. Nielsen, H. Bohr, J. Bohr, S. Brunak,
G.P. Gippert, and O. Lund. Prediction of protein secondary structure
at 80% accuracy. Proteins: Structure, Function, and Bioinformatics,
41(1):17-20, 2000.

S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Beenen, A. Leaver-
Fay, D. Baker, Z. Popovié¢, et al. Predicting protein structures with a
multiplayer online game. Nature, 466(7307):756-760, 2010.

M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez, and H.E. Gaub. Re-
versible unfolding of individual titin immunoglobulin domains by AFM.
Science, 276(5315):1109, 1997.

Y. Cao and H. Li. Polyprotein of GB1 is an ideal artificial elastomeric
protein. Nature Materials, 6(2):109-114, 2007.

A. Minajeva, M. Kulke, J.M. Fernandez, and W.A. Linke. Unfolding of
titin domains explains the viscoelastic behavior of skeletal myofibrils. Bio-
physical Journal, 80(3):1442-1451, 2001.

127



128

[11]

[16]

[17]

[18]

[19]

[24]

BIBLIOGRAPHY

S. Lv, D.M. Dudek, Y. Cao, MM Balamurali, J. Gosline, and H. Li. De-
signed biomaterials to mimic the mechanical properties of muscles. Nature,
465(7294):69-73, 2010.

G. Meyer and N.M. Amer. Novel optical approach to atomic force mi-
croscopy. Applied Physics Letters, 53(12):1045-1047, 1988.

E.L. Florin, M. Rief, H. Lehmann, M. Ludwig, C. Dornmair, VT Moy, and
HE Gaub. Sensing specific molecular interactions with the atomic force
microscope. Biosensors and Bioelectronics, 10(9-10):895-901, 1995.

B. Ohler. Practical advice on the determination of cantilever spring con-
stants. Spring, pages 1-12, 2007.

M. Schlierf, F. Berkemeier, and M. Rief. Direct observation of active protein
folding using lock-in force spectroscopy. Biophysical journal, 93(11):3989—
3998, 2007.

M. Rief, H. Clausen-Schaumann, H.E. Gaub, et al. Sequence-dependent
mechanics of single dna molecules. nature structural biology, 6:346—350,
1999.

W. Kuhn and F. Grun. Relationships between elastic constants and stretch-
ing double refraction of highly elastic substances. Kolloid z, 101:248, 1942.

C. Bustamante, S.B. Smith, J. Liphardt, and D. Smith. Single-molecule
studies of dna mechanics. Current Opinion in Structural Biology,
10(3):279-285, 2000.

H. Li, M. Rief, F. Oesterhelt, H.E. Gaub, X. Zhang, and J. Shen. Single-
molecule force spectroscopy on polysaccharides by afm-nanomechanical fin-
gerprint of [alphal-(1, 4)-linked polysaccharides. Chemical physics letters,
305(3-4):197-201, 1999.

HA Kramers. Brownian motion in a field of force and the diffusion model
of chemical reactions. Physica, 7(4):284-304, 1940.

G.I. Bell. Models for the specific adhesion of cells to cells. Science,
200(4342):618, 1978.

E. Evans and K. Ritchie. Dynamic strength of molecular adhesion bonds.
Biophysical Journal, 72(4):1541-1555, 1997.

D.J. Brockwell, G.S. Beddard, J. Clarkson, R.C. Zinober, A.W. Blake,
J. Trinick, P.D. Olmsted, D.A. Smith, and S.E. Radford. The effect of core
destabilization on the mechanical resistance of i27. Biophysical journal,
83(1):458-472, 2002.

G. Hummer and A. Szabo. Kinetics from nonequilibrium single-molecule
pulling experiments. Biophysical journal, 85(1):5-15, 2003.



BIBLIOGRAPHY 129

[25]

[26]

[27]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

A.F. Oberhauser, C. Badilla-Fernandez, M. Carrion-Vazquez, and J.M. Fer-
nandez. The mechanical hierarchies of fibronectin observed with single-
molecule afm. Journal of molecular biology, 319(2):433-447, 2002.

A F. Oberhauser, P.E. Marszalek, H.P. Erickson, J.M. Fernandez, et al. The
molecular elasticity of the extracellular matrix protein tenascin. Nature,

393(6681):181-184, 1998.

A.M. Gronenborn, D.R. Filpula, N.Z. Essig, A. Achari, M. Whitlow, P.T.
Wingfield, and GM Clore. A novel, highly stable fold of the immunoglobulin
binding domain of streptococcal protein g. Science, 253(5020):657-661,
1991.

M. Carrion-Vazquez, A.F. Oberhauser, S.B. Fowler, P.E. Marszalek, S.E.
Broedel, J. Clarke, and J.M. Fernandez. Mechanical and chemical unfolding
of a single protein: A comparison. Proceedings of the National Academy of
Sciences, 96(7):3694-3699, 1999.

C. Friedsam, A.K. Wehle, F. Kuhner, and H.E. Gaub. Dynamic single-
molecule force spectroscopy: bond rupture analysis with variable spacer
length. JOURNAL OF PHYSICS CONDENSED MATTER, 15(18):1709—
1724, 2003.

D.J. Brockwell, G.S. Beddard, E. Paci, D.K. West, P.D. Olmsted, D.A.
Smith, and S.E. Radford. Mechanically unfolding the small, topologically
simple protein L. Biophysical journal, 89(1):506-519, 2005.

G. Yoon, H.J. Park, S. Na, and K. Eom. Mesoscopic model for mechanical
characterization of biological protein materials. Journal of Computational
Chemistry, 2008.

D.B. Staple, S.H. Payne, A.L.C. Reddin, and H.J. Kreuzer. Stretching and
unfolding of multidomain biopolymers: a statistical mechanics theory of
titin. Physical Biology, 6:025005, 2009.

R. Rounsevell, J.R. Forman, and J. Clarke. Atomic force microscopy: me-
chanical unfolding of proteins. Methods, 34(1):100-111, 2004.

H. Dietz and M. Rief. Elastic bond network model for protein unfolding
mechanics. Physical review letters, 100(9):98101, 2008.

Y. Cao, C. Lam, M. Wang, and H. Li. Nonmechanical Protein Can Have
Significant Mechanical Stability. Angew. Chem. Int. Ed, 45:642-645, 2006.

H. Li. Engineering proteins with tailored nanomechanical properties: a
single-molecule approach. Organic € Biomolecular Chemistry, 5(21):3399—
3406, 2007.

M. Sandal, F. Benedetti, M. Brucale, A. Gomez-Casado, and B. Samori.
Hooke: an open software platform for force spectroscopy. Bioinformatics,
25(11):1428, 2009.



130

[38]

[39]

[40]

[43]

[44]

[45]
[46]

BIBLIOGRAPHY

BW Silverman. Density Estimation for Statistics and Data Analysis. Chap-
man & Hall/CRC, 1986.

B. Efron and R.J. Tibshirani. An introduction to the bootstrap. Chapman
& Hall, 1997.

M. Schlierf and M. Rief. Single-molecule unfolding force distributions re-
veal a funnel-shaped energy landscape. Biophysical journal, 90(4):L33-L35,
2006.

R.C. Zinober, D.J. Brockwell, G.S. Beddard, A.W. Blake, P.D. Olmsted,
S.E. Radford, and D.A. Smith. Mechanically unfolding proteins: The effect
of unfolding history and the supramolecular scaffold, 2002.

R. Berkovich, S. Garcia-Manyes, M. Urbakh, J. Klafter, and J.M. Fernan-
dez. Collapse dynamics of single proteins extended by force. Biophysical
Journal, 98(11):2692, 2010.

S. Sekatskii F. Benedetti and G. Dietler. Single-molecule force spectroscopy
of multimodular proteins: a new method to extract kinetic unfolding pa-
rameters. Journal of Scanning Probe Microscopy, In press-2011.

E. Barkai and M. Orrit. Theory and evaluation of single-molecule signals.
World Scientific Pub Co Inc, 2008.

E.J. Gumbel. Statistics of extremes. Dover Pubns, 2004.

W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, et al. Numer-
ical recipes, volume 3. Cambridge university press Cambridge, 2007.

A. Karsai, M.S.Z. Kellermayer, and S.P. Harris. Mechanical unfolding of
cardiac myosin binding protein-c by atomic force microscopy. Biophysical
journal, 101(8):1968-1977, 2011.

C. Bouchiat, MD Wang, J.F. Allemand, T. Strick, SM Block, and V. Cro-
quette. Estimating the persistence length of a worm-like chain molecule
from force-extension measurements. Biophysical journal, 76(1):409-413,
1999.

C. Ke, Y. Jiang, M. Rivera, R.L. Clark, and P.E. Marszalek. Pulling
geometry-induced errors in single molecule force spectroscopy measure-
ments. Biophysical journal, 92(9):L76-L78, 2007.

Z. Lu, W. Nowak, G. Lee, P.E. Marszalek, and W. Yang. Elastic properties
of single amylose chains in water: A quantum mechanical and afm study.
Journal of the American Chemical Society, 126(29):9033-9041, 2004.

P.E. Marszalek, H. Li, J.M. Fernandez, et al. Fingerprinting polysaccha-
rides with single-molecule atomic force microscopy. Nature biotechnology,
19(3):258-262, 2001.



BIBLIOGRAPHY 131

[52]

M. Rief, J.M. Fernandez, and H.E. Gaub. Elastically Coupled Two-Level
Systems as a Model for Biopolymer Extensibility. Physical Review Letters,
81(21):4764-4767, 1998.

W.T. King, M. Su, and G. Yang. Monte carlo simulation of mechanical
unfolding of proteins based on a simple two-state model. International
journal of biological macromolecules, 46(2):159-166, 2010.

M. Rief, F. Oesterhelt, B. Heymann, and H.E. Gaub. Single molecule
force spectroscopy on polysaccharides by atomic force microscopy. Science,
275(5304):1295, 1997.

S. Allen, X. Chen, J. Davies, M.C. Davies, A.C. Dawkes, J.C. Edwards, C.J.
Roberts, J. Sefton, S.J.B. Tendler, and P.M. Williams. Detection of antigen-
antibody binding events with the atomic force microscope. Biochemistry,
36(24):7457-7463, 1997.

S. Izrailev, S. Stepaniants, M. Balsera, Y. Oono, and K. Schulten. Molecular
dynamics study of unbinding of the avidin-biotin complex. Biophysical
journal, 72(4):1568-1581, 1997.

M. DE ODROWAZ PIRAMOWICZ, P. CZUBA, M. TARGOSZ,
K. BURDA, and M. SZYMONSKI. Dynamic force measurements of avidin-
biotin and streptavdin-biotin interactions using afm. Acta Biochimica
Polonica, 53(1):93-100, 2006.

V.T. Moy, E.L. Florin, and H.E. Gaub. Adhesive forces between ligand
and receptor measured by afm. Colloids and Surfaces A: Physicochemical
and Engineering Aspects, 93:343-348, 1994.

J. Zlatanova, S.M. Lindsay, and S.H. Leuba. Single molecule force spec-
troscopy in biology using the atomic force microscope. Progress in bio-
physics and molecular biology, 74(1-2):37-61, 2000.

F. Schwesinger, R. Ros, T. Strunz, D. Anselmetti, H.J. Guntherodt,
A. Honegger, L. Jermutus, L. Tiefenauer, and A. Pliickthun. Unbind-
ing forces of single antibody-antigen complexes correlate with their ther-

mal dissociation rates. Proceedings of the National Academy of Sciences,
97(18):9972, 2000.

J.W. Weisel, H. Shuman, and R.I. Litvinov. Protein-protein unbinding
induced by force: single-molecule studies. Current opinion in structural
biology, 13(2):227-235, 2003.

C.K. Lee, Y.M. Wang, L.S. Huang, and S. Lin. Atomic force microscopy:
determination of unbinding force, off rate and energy barrier for protein-
ligand interaction. Micron, 38(5):446-461, 2007.



132

[63]

[64]

[65]

[66]

[67]

[71]

[72]

[75]

BIBLIOGRAPHY

0.K. Dudko, G. Hummer, and A. Szabo. Intrinsic rates and activation free
energies from single-molecule pulling experiments. Physical review letters,
96(10):108101, 2006.

P. Hanggi, P. Talkner, and M. Borkovec. Reaction-rate theory: fifty years
after kramers. Reviews of Modern Physics, 62(2):251, 1990.

0.K. Dudko, G. Hummer, and A. Szabo. Theory, analysis, and interpreta-
tion of single-molecule force spectroscopy experiments. Proceedings of the
National Academy of Sciences, 105(41):15755, 2008.

Y. Suzuki and O.K. Dudko. Single-molecule rupture dynamics on multidi-
mensional landscapes. Physical review letters, 104(4):48101, 2010.

A. Garg. Escape-field distribution for escape from a metastable poten-
tial well subject to a steadily increasing bias field. Physical Review B,
51(21):15592-15595, 1995.

J. Kurkijarvi. Intrinsic fluctuations in a superconducting ring closed with
a josephson junction. Physical Review B, 6(3):832, 1972.

M. Favre, LA Chtcheglova, DA Lapshin, SK Sekatskii, F. Valle, and G. Di-
etler. Force-clamp spectroscopy with a small dithering of afm tip, and its
application to explore the energy landscape of single avidin-biotin complex.
Ultramicroscopy, 107(10-11):882-886, 2007.

F. Pincet and J. Husson. The solution to the streptavidin-biotin para-
dox: the influence of history on the strength of single molecular bonds.
Biophysical journal, 89(6):4374-4381, 2005.

R. Merkel, P. Nassoy, A. Leung, K. Ritchie, and E. Evans. Energy land-
scapes of receptor—ligand bonds explored with dynamic force spectroscopy.
Nature, 397(6714):50-53, 1999.

F. Benedetti, C. Micheletti, G. Bussi, SK Sekatskii, and G. Dietler. Nonki-
netic modeling of the mechanical unfolding of multimodular proteins: The-
ory and experiments. Biophysical Journal, 101(6):1504-1512, 2011.

J.F. Marko and E.D. Siggia. Stretching dna. Macromolecules, 28(26):8759—
8770, 1995.

AV Sorokin, AM Mikhailov, AV Kachko, EV Protopopova, SN Konovalova,
ME Andrianova, SV Netesov, AN Kornev, VB Loktev, et al. Human recom-
binant laminin-binding protein: isolation, purification, and crystallization.
BIOCHEMISTRY C/C OF BIOKHIMIIA, 65(5):546-553, 2000.

G. Martin and R.K. Jain. Noninvasive measurement of interstitial ph pro-
files in normal and neoplastic tissue using fluorescence ratio imaging mi-
croscopy. Cancer research, 54(21):5670, 1994.



BIBLIOGRAPHY 133

[76]

[77]

(78]

[79]

[82]

[83]

[36]

[87]

JR Griffiths. Are cancer cells acidic? British journal of cancer, 64(3):425,
1991.

M.S.Z. Kellermayer, L. Grama, A. Karsai, A. Nagy, A. Kahn, Z.L. Datki,
and B. Penke. Reversible mechanical unzipping of amyloid g-fibrils. Journal
of Biological Chemistry, 280(9):8464-8470, 2005.

M. Kim, C.C. Wang, F. Benedetti, and P.E. Marszalek. A nanoscale
force probe for gauging intermolecular interactions. Angewandte Chemie,
124(8):1939-1942, 2012.

M. Kim, C.C. Wang, F. Benedetti, M. Rabbi, V. Bennett, and P.E. Marsza-
lek. Nanomechanics of streptavidin hubs for molecular materials. Advanced
Materials, 2011.

M. Sandal, F. Valle, I. Tessari, S. Mammi, E. Bergantino, F. Musiani,
M. Brucale, L. Bubacco, and B. Samori. Conformational Equilibria in
Monomeric a-Synuclein at the Single-Molecule Level. PLoS Biol, 6(1):e6,
2008.

C.C. Wang, T.Y. Tsong, Y.H. Hsu, and P.E. Marszalek. Inhibitor binding
increases the mechanical stability of staphylococcal nuclease. Biophysical
Journal, 100(4):1094, 2011.

A. Péahler, WA Hendrickson, MA Kolks, CE Argarana, and CR Cantor.
Characterization and crystallization of core streptavidin. Journal of Bio-
logical Chemistry, 262(29):13933-13937, 1987.

P.C. Weber, DH Ohlendorf, JJ Wendoloski, and FR Salemme. Struc-
tural origins of high-affinity biotin binding to streptavidin. Science,
243(4887):85-88, 1989.

W.A. Hendrickson, A. P&hler, J.L.. Smith, Y. Satow, E.A. Merritt, and R.P.
Phizackerley. Crystal structure of core streptavidin determined from mul-
tiwavelength anomalous diffraction of synchrotron radiation. Proceedings
of the National Academy of Sciences, 86(7):2190, 1989.

I.P. Korndérfer and A. Skerra. Improved affinity of engineered streptavidin
for the strep-tag ii peptide is due to a fixed open conformation of the lid-like
loop at the binding site. Protein science, 11(4):883-893, 2002.

K.A. Dickson, M.C. Haigis, and R.T. Raines. Ribonuclease inhibitor: struc-
ture and function. Progress in nucleic acid research and molecular biology,

80:349-374, 2005.

L.A. Chtcheglova, G.T. Shubeita, S.K. Sekatskii, and G. Dietler. Force
spectroscopy with a small dithering of afm tip: a method of direct and
continuous measurement of the spring constant of single molecules and
molecular complexes. Biophysical journal, 86(2):1177-1184, 2004.



134 BIBLIOGRAPHY

[88] NA Burnham, AJ Kulik, G. Gremaud, P.J. Gallo, and F. Oulevey. Scanning
local-acceleration microscopy. Journal of Vacuum Science & Technology B:
Microelectronics and Nanometer Structures, 14(2):794-799, 1996.

[89] Gradshtel. Table of integrals, series, and products.

[90] W. Héardle, A. Werwatz, M. Miiller, and S. Sperlich. Introduction. Non-
parametric and semiparametric models, pages 1-18, 2004.



Fabrizio BENEDETTI

Address: Personal informations:
Rue De la Mouline 6, 1022 12/06/1982
Chavannes-pres-renens, Single

Switzerland Italian

fabrizio.benedetti.82(@gmail.com
fabrizio.benedetti@epfl.ch
Mobile: “+41798647216”

SUMMARY

Motivated science graduate. Interested in modeling of physical systems, research in physics and signal
processing. Would like to widening his knowledge and find a challenging position to meet his
competencies, capabilities and skills. Good in problem solving.

WORK EXPERIENCE
PhD Student 01/08/08 to present
Ecole Polytechnique Fédérale de Lausanne (EPFL, Lausanne, Switzerland)

* Teaching assistant

* Research in biophysics

* Experimental study of the mechanical properties of the proteins and of organic chains

» Signal processing and data analysis

* Chemical functionalization of surfaces

* Develop of algorithm for signal processing

* Monte Carlo simulations of elastic chains with bonds breaking

Invited PhD student 11/01/11 to 30/4/11
Duke University (Durham, NC, USA)

* Experiment of protein pulling

* Biochemical synthesis of multimodular proteins

* Data analysis and statistics

Trainee 01/05/00 to 01/06/00
Valli Zabban SPA (Monterado, Italy)
* Quality control of the production with physical and chemical tests

EDUCATION
PhD student in Biophysics 01/08/08, estimated graduation 08/12
Ecole Polytechnique Fédérale de Lausanne (EPFL, Lausanne, Switzerland)



Master of Science in Applied Physics Graduation 20/06/08
Alma Mater Studiorum (Universita degli studi di Bologna)
Bachelor in Physics Graduation 14/10/05
Alma Mater Studiorum (Universita degli studi di Bologna)

Secondary school diploma in industrial chemical technique 2001
Istituto tecnico industriale “Vito Volterra” (Torrette, Italy)

LANGUAGES

Italian: mother tongue

English: good knowledge (B2 level certificate)
French: intermediate (A2 level certificate)

COMPUTER SKILLS

Operating systems: Windows (Good), Linux (Good), MacOS (poor).

Programming languages: Python (Good) , C++ (Good), LaTeX (Good), Java (elements), Matlab
(elements), Labview (elements), CUDA (elements).

Suite: MS-Office, OpenOffice.

LIST OF PUBLICATIONS

Hooke: an open software platform for force spectroscopy

Sandal, M. and Benedetti, F. and Brucale, M. and Gomez-Casado, A. and Samori, B.
Bioinformatics,

volume 25, number 11, pages 1428, year 2009

Single-Molecule Force Spectroscopy of Multimodular Proteins: A New Method to Extract Kinetic
Unfolding Parameters

Benedetti, F. and Sekatskii, S.K. and Dietler, G.

Journal of Advanced Microscopy Research,

volume 6, number 1, pages 1—6, year 2011

Nonkinetic Modeling of the Mechanical Unfolding of Multimodular Proteins: Theory and Experiments
F. Benedetti, C. Micheletti, G. Bussi, S.K. Sekatskii and G. Dietler

Biophysical Journal,

volume 101, number 6, pages 1504—1512, year 2011

Nanomechanics of Streptavidin Hubs for Molecular Materials

Kim, M. and Wang, C.C. and Benedetti, F. and Rabbi, M. and Bennett, V. and Marszalek, P.E.
Advanced Materials,

Volume 23, Issue 47, pages 5684-6688, year 2011

A Nanoscale force probe for gauging intermolecular interactions
Kim M., Wang, C.C. and Benedetti, F. and Marszalek, P.E.
Angewandte Chemie International Edition,

volume 124, issue 8, pages 1939-1942

DOI: 10.1002/anie.201107210, year 2012



Dependence of the most probable and average bond rupture force on the force loading rate: first order
correction to the Bell — Evans model
S. K. Sekatskii, F. Benedetti, and G. Dietler

(Article in preparation)

An extraction of dissipative properties of single receptor — ligand complex from the phase data
obtained exploring a small-amplitude dithering of AFM tip

S. K. Sekatskii, F. Benedetti, A. Kulik, P.E. Marszalek and G. Dietler

(Article in preparation)

OTHER

Wide experience in physical and chemical laboratory.
[talian driving license B (car).

Other work experiences far from the study.



	Title
	Abstract
	Contents
	List of figures
	List of symbols
	Introduction
	The study of the biopolymers
	Possible applications

	Details of the AFM and of the experiments
	AFM details
	Force curves
	Force extension models

	The Bell-Evans model
	Functionalization procedure to study ligand-receptor interactions
	Physisorption on gold surfaces
	Plasma functionalization procedure


	Multimodular proteins mechanics
	A kinetic point of view
	Materials and methods
	Experimental results
	Further comparison with Monte Carlo simulation

	Conclusion on the kinetic model
	A phenomenological point of view
	Experiment
	Numerical simulations
	Analytically solvable model
	Backcalculation
	Comparison of the methods
	Monte Carlo simulation data
	Langevin data
	Experimental data on multimodular GB1

	Conclusions on the phenomenological model
	Further comparisons

	Monte Carlo for the AFM
	Monte Carlo for multimodular proteins
	Polysaccharides simulation
	Parallel bond breaking
	Theory for parallel bonds
	Implementation
	Study of a set of systems with different number of bonds
	Application to ideal MC system
	Application to the Hemmagglutinin New Caledonia vs 6'SLN or 3'SLN
	Conclusion


	An insight on the energy barrier
	First order approximation of Bell-Evans theory

	Laminin binding protein pulling
	The laminin binding protein
	Experiments and results
	Conclusion on LBP


	Nano construct for protein-protein interaction
	Streptavidin tetramers
	Discussion

	Strep-tag Strep-Tactin
	Angiogenin RNase inhibitor

	Cantilever properties
	Autocorrelation and convolution
	Autocorrelation
	Spectrum of a cantilever
	Autocorrelation of cantilever oscillation: theory
	Autocorrelation of cantilever oscillation: results

	Conclusions

	Dithering technique
	Preliminary results
	Lock-in modulation and signals
	Amplitude and phase

	Theory
	Experimental conditions
	Results


	Appendix
	Monte Carlo code
	Back calculation
	Energy barrier details
	Tables of Backcalculations
	Kernel Density Estimation

	Bibliography
	Curriculum Vitae

