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Abstract

Deformation is one of the most important phenomena in environmental science and

engineering. Deformation of artificial and natural objects happens worldwide, such

as structural deformation, landslide, subsidence, erosion, and rockfall. Monitoring

and assessment of such deformation process is not only scientifically interesting, but

also beneficial to hazard/risk control and prediction. In addition, it is also useful for

regional planning and development.

Deformation monitoring was driven by geodetic observations in the field of tradi-

tional geodetic surveying, based on the measurement of sparse points in a control

network. Recently, with the rapid development of terrestrial LiDAR techniques, mil-

lions of points with associated three-dimensional coordinates (known as “3D point

clouds”) can be promptly captured in a few minutes. Compared to traditional sur-

veying, terrestrial LiDAR offers great potential for deformation monitoring, because

of various advantages such as fast data capture, high data density, and precise 3D

object representation. By analysing 3D point clouds, the objective of this thesis is

to provide an effective and efficient approach for deformation monitoring. Towards

this goal, this thesis designs a new concept of “deformation map” for deformation

representation and a novel “cell-based approach” for deformation computation. The

main outcome of this thesis is a novel and rich approach that is able to automatically

and incrementally compute a deformation map that enables a better understanding

of structural and natural hazards with heterogeneous deformation characteristics.

This work includes several dedicated contributions as follows.

• Hybrid Deformation Modelling. This thesis firstly provides a comprehen-

sive investigation on the modelling requirements of various deformation phe-

nomena. The requirements concern three main aspects, i.e., what has defor-

mation (deformation object), which type of deformation, and how to describe

deformation. Based on this detailed requirement analysis, we propose a rich and

hybrid deformation model. This model is composed of meta-deformation, sub-

deformation and deformation map, corresponding to deformation for a small

cell, for a partial area, and for the whole object, respectively.

• Cell-based Deformation Computation. In order to automatically and in-

crementally extract heterogeneous deformation of the whole monitored object,

we bring the “cell” concept into deformation monitoring. This thesis builds a

cell-based deformation computing framework, which consists of three key steps:

split, detect, and merge. Split is to divide the space of the object into many cells

(uniform or irregular); detect is to extract the meta-deformation for individual

cells by analysing the inside point clouds at two epochs; and merge is to group



adjacent cells with similar deformation together and to form a consistent sub-

deformation. As the final result, an informative deformation map is computed

for describing the deformation for the whole object.

• Evaluation of Cell-based Approach. To evaluate such hybrid modelling

and cell-based deformation computation, this thesis extensively studies both

synthetic and real-life point cloud datasets: (1) by imitating a landslide scenario,

we generate synthetic data using Matlab programming and practical settings,

and compare the cell-based approach with traditional non-cell based geodetic

methods; (2) by analysing two real-life cases of deformation in Switzerland, we

further validate our approach and compare the results with third party sources

(e.g., results provided by a surveying company, results computed by using a

commercial software like 3DReshaper).

• Extension of Cell-based Approach. At the last stages of this thesis work,

we particularly focus on providing several technical extensions to enhance this

cell-based deformation monitoring approach. The main extensions include: (1)

supporting dynamic cells instead of uniform cells when splitting the entire object

space, (2) finding cell correspondence for the deformation scenarios that have

large deformation like rockfalls, (3) movement tracking with data-driven cells

which have irregular cell shape that can be automatically determined by the

deformation boundary itself, (4) designing an adaptive modelling strategy that

is able to accordingly select a suitable model for detecting meta-deformation

of cells, and (5) computing deformation evolution for a monitored object with

more than two epochs of point cloud datasets.

Keywords: deformation monitoring, 3D point clouds, terrestrial LiDAR, hybrid de-

formation modelling, cell-based computation, split-detect-merge, meta-deformation,

deformation map
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Résumé

La déformation d’objets naturels et artificiels est l’un des phénomènes les plus im-

portants en sciences de l’environnement. De telles déformations se déroulent dans

le monde entier et provoquent différents types de dangers, tels que les déformations

structurelles, les glissements, les effondrements, l’érosion et les éboulements. Le suivi

et l’évaluation de tels processus de déformation ne sont pas seulement intéressants

scientifiquement, mais sont aussi bénéfiques pour la gestion et la prévision des dan-

gers et des risques, ainsi que pour le développement régional.

Traditionnellement, la surveillance de déformations a été conduite par l’utilisation

d’observations géodésiques, c’est-à-dire basée sur la mesure de points dispersés. Avec

le développement récent et rapide des techniques de LiDAR terrestre, la saisie de mil-

lions de points auxquels sont associées des coordonnées tridimensionnelles (connues

sous le nom de “nuage de points 3D”) en quelques minutes est devenue possible.

Comparé aux méthodes traditionnelles, le LiDAR terrestre constitue une approche

prometteuse pour la surveillance des déformations, en raison de ses divers avan-

tages tels que la rapidité de saisie des données, la haute densité des données, et la

représentation précise d’objets en 3D. Cette thèse examine la méthodologie et les

défis liés à la surveillance de déformations à l’aide de nuages de points 3D saisis par

le LiDAR terrestre. L’objectif principal de cette recherche doctorale est de proposer

une approche de calcul automatique des déformations à partir de nuages de points

3D. Dans ce but, un nouveau concept pour la représentation de la déformation est

proposé: celui de “carte de déformation”. De plus, on développe une nouvelle ap-

proche, basée sur des cellules pour le calcul de déformation. Le principal résultat

de ce travail est une méthodologie novatrice et riche pour la génération de cartes de

déformations permettant de mieux comprendre les dangers structurels et naturels à

différents niveaux. Ce travail apporte les quatre contributions suivantes.

• Modélisation hybride de déformations. Nous proposons une étude ap-

profondie des exigences de modélisation en fonction du phénomène lié à la

déformation. Ces exigences concernent trois aspects principaux, à savoir, la

présence ou non d’une déformation, le type de déformation, et la façon de

décrire la déformation. Sur la base de cette analyse détaillée, nous concevons

un modèle de déformation hybride, composé de méta-déformations, de sous-

déformations et d’une carte de déformation, correspondant respectivement à la

description de la déformation pour une cellule, une zone partielle et l’ensemble

de l’objet.

• Calcul de déformation basé sur des cellules. Afin d’extraire automa-

tiquement et progressivement les déformations hétérogènes de l’ensemble de



l’objet surveillé, nous introduisons le concept de “cellules” dans le calcul de la

déformation. Ce concept se décline en trois étapes principales: séparer, détecter

et fusionner. L’étape de séparation consiste en une division de l’espace de

l’objet en cellules uniformes; l’étape de détection extrait la “méta-déformation”

pour les cellules en utilisant les nuages de points encapsulés dans chaque cellule;

la fusion regroupe les cellules adjacentes ayant des déformations similaires et

construit une “sous-déformation” cohérente pour une zone partielle. Ceci mène

finalement à une carte de déformation de l’ensemble de l’objet.

• Evaluation de la détermination de déformations basée sur des cel-

lules. Nous évaluons l’approche basée sur des cellules en utilisant trois types

différents de nuages de points: (1) En imitant un scénario de glissement de

terrain, nous générons des données synthétiques et comparons l’approche basée

sur des cellules avec des méthodes géodésiques traditionnelles; (2) En analysant

deux cas réels de déformation en Suisse, nous validons notre approche et la com-

parons avec les résultats de méthodes standards (par exemple, fournis par une

entreprise de surveillance ou calculés à l’aide d’un logiciel commercial comme

3DReshaper).

• Extensions de l’approche basée sur des cellules. Au cours de la dernière

étape de ce travail de thèse, nous nous concentrons particulièrement sur la

conception d’applications techniques pour notre approche de surveillance des

déformations. Les principales applications comprennent: (1) la prise en charge

de cellules dynamiques et la détection de correspondances entre cellules dans le

calcul de la déformation, (2) le suivi de déformation à l’aide de cellules dont la

forme est détectée automatiquement à partir des contours arbitraires des ob-

jets soumis à des déformations, (3) la conception d’une stratégie de sélection

de modèles adaptatifs pour améliorer la performance de la méta-déformation,

et (4) le calcul de l’évolution de la déformation pour un objet surveillé, à

l’aide d’ensembles de données de nuages de points correspondant à plus de

deux époques.

Mots clés: surveillance de déformations, nuages de points 3D, LiDAR terrestre, modélisation

hybride de déformations, calcul de déformations basé sur des cellules, division-détection-

fusion, méta-déformation, carte de déformation
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Chapter 1
Introduction

Nothing endures but change.

Heraclitus (540 BC-480 BC)

This chapter introduces this thesis in general, including the background in Section 1.1, the

motivation and the main objective in Section 1.2, the core research issues, research assumptions

and design strategies in Section 1.3, the major contributions of this thesis in Section 1.4, and

this dissertation organisation in Section 1.5.

1.1 Background

Deformation monitoring is one of the important topics in environmental science and engineer-

ing. Based on the category of the monitored object, deformation monitoring can be divided

into structural deformation monitoring and natural hazard assessment. Structural deforma-

tion monitoring focuses on the human-made structures such as dams, bridges, and towers

[BHK98, FR00, NPS06, Sch06]; whilst natural hazard assessment analyses the natural surfaces

including glaciers, slope, regions of landslides [SKW+08, CFP09, ERH10]. The goal of moni-

toring deformation of such artificial and natural objects is to assess their deformation status,

to possibly predict the damage caused by the deformation of such unstable object, which can

ensure appropriate reactions in advance. Deformation can bring substantial damages to na-

ture and human life. Because of the intrinsic complexity and high impact of this phenomenon,

deformation monitoring is a challenging engineering task as well as a hot research topic.

As one type of the most frequent deformation scenarios in real-world environment, landslides

are the major natural hazards on Earth and result in a loss of life and great property damage.

Taking Switzerland for example, during the last 36 years (1972-2007), an average annual financial

damage of about 20 millions CHF and an average of 1 death per year are directly caused by

landslides [LHRB05, HBH09]. Not only in Switzerland, landslides occur widely in mountainous

and hilly regions in Europe, as well as all around the world. In addition, landslides have an

increasing trend due to the factors of population growth and expansion, and climate change

[FCB+08]. The impact of this dynamic process depends primarily on its size, speed, and location;
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and its impact grows significantly when it involves infrastructure and people in the context. For

example, deformation can bring a huge economic cost according to its location, e.g., a densely

populated area.

During the last decades, deformation measurement has been extensively performed by many

classical geodetic surveying techniques like theodolites, photogrammetry, levels and GNSS (Global

Navigation Satellite Systems) [KP93, MMP99, MDH+02]. These techniques primarily focus on

the monitoring of a small set of specific points (e.g., under a geodetic control network) with the

time series of coordinates. The density of these points is quite low, usually one or two points

per square kilometre to monitor the terrain surface. For example, Kalkan et al. study the defor-

mation on Atatäk dam embankment (height 169 m, length 1,819 m) in Turkey with 200 points

[KAB10]. As a result, these surveying techniques with low-density measurements cannot provide

an informative description of the changes for an unstable object under monitoring. Therefore,

a high density sampling technique like terrestrial LiDAR (Light Detection And Ranging) opens

a new potential to reach more informative deformation of the monitored object.

Terrestrial LiDAR is a relatively new and revolutionary surveying technology developed in

recent decades. As an advanced technique, LiDAR can provide a rich set of three dimensional

data including coordinates along X, Y and Z axis, as well as other information like intensity,

colour. Millions of data measurements, which can be acquired very promptly in a few minutes,

are commonly denoted as “3D Point Clouds”. Compared to traditional surveying techniques,

terrestrial LiDAR shows great potential for deformation monitoring and has been emerging as

an important and attractive research topic, because of its advantages of fast data capture, high

data density, 3D object representation, as well as user-friendly operation. In particular, the high-

density 3D points captured by LiDAR provide a chance for identifying detailed and distinctive

deformation characteristics in partial areas of a big monitored object. Furthermore, a large

amount of such 3D data induce new research challenges such as huge data management, outlier

filter, hole filling, extraction of useful information (e.g., deformation, interesting areas), and 3D

object reconstruction. In this thesis, we focus on studying huge point cloud data management,

and automatic deformation extraction from different epochs of point clouds.

1.2 Motivation

Resulting from the previous background discussion, we observe that: (1) Deformation moni-

toring of landslides alike natural hazards is a very important issue in environmental science

and engineering, and such monitoring is useful for reducing/preventing damages; (2) Classical

surveying techniques only provide data measurements with very low sampling, which can not

provide an informative or detailed deformation description, particularly for a large monitored

object; (3) Terrestrial LiDAR has alternative advantages in capturing high-density 3D point

cloud data that opens substantial potential for the applications of deformation monitoring.

Therefore, the motivation of this thesis work is to analyse the huge amount of 3D point cloud

datasets from terrestrial LiDAR and to compute deformation for the whole object monitored.

More concretely speaking, we aim at building “a novel and advanced deformation monitoring

method via 3D point clouds” that is able to generate an informative deformation description
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for a large monitored object, by analysing 3D point cloud data measured on this object using

terrestrial LiDAR. Our method is able to automatically identify deformation from point clouds.

This concerns with the whole monitored object and requires no needs of a priori knowledge of

selected regions. Towards this objective, this thesis provides a rich hybrid deformation modelling

(including meta-deformation for a cell, sub-deformation for a partial area, and deformation map

for the whole object) to comprehensively present different levels of deformation description. To

utilize this hybrid model, this thesis accordingly designs a cell-based deformation computation

framework to automatically and incrementally compute different levels of deformation that are

defined in the hybrid model. This computation process should be self-contained, and it includes

three main steps, i.e., “split”, “detect”, and “merge”.

1.3 Core Issues, Assumptions & Design Strategies

As described, the motivation and objective of this thesis is to study the research topic on defor-

mation monitoring via 3D point clouds. We analyse high density 3D point data to automatically

compute deformation information. This research topic is very challenging, as there are a couple

of research problems and fundamental issues that need to be explored and answered during this

thesis work. In this section, we identify the core issues of this thesis, discuss the assumptions of

our proposal, and provide the underlying design strategies.

Core Issues. The main research issues in this thesis is on understanding the problem of

“deformation modelling” as well as building the technique of “deformation computation”.

• Issue-1: What is deformation, and how to model deformation? – We first need to under-

stand the phenomena of deformation, and identify the main modelling requirements to

represent a deformation. In particular, we need to identify the deformation object (i.e.,

what has deformation), and the deformation type (i.e., which form of deformation and how

is the deformation granularity). The research focus here is on designing a rich model that is

able to comprehensively modelling deformation for a large area/object with heterogeneous

deformation characteristics.

• Issue-2: How to monitor (or automatically compute) deformation? – In this thesis, we want

to build a method that is able to extract the deformation information from dense point

clouds recorded at two different time instants. The fundamental question here is how to

build an automatic monitoring (or computing) procedure for extracting such deformation

information, without given any prior knowledge (e.g., which part should use which model).

Of course, this automatic computation process should be able to take good advantage of

the rich deformation model that has been mentioned in the Issue-1.

Assumptions. To answer the two core issues previously specified, this thesis is aiming at

providing a rich deformation model for a large monitored area, together with a supporting

computation process to automatically extract the deformation of this monitored area. We have

following assumptions (and research focuses) in this thesis.
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• No prior knowledge – One of the major assumption in this thesis is that we do not require

any prior knowledge about the deformation area - e.g., which deformation model for which

sub-area; there is no physical model given in advance. The objective is to automatically

identify sub-areas with distinctive deformation characteristics.

• Rigid deformation type – In modelling deformation, we will identify different types of

deformations, such as displacement, angle variation, and the combination of these rigid

deformation. In addition, there are non-rigid deformation types like pure shear and simple

shear. In this thesis, our research focus is on rigid deformation.

• “Smooth” deformation in general – Deformation in general is smooth, which means nearby

areas have similar deformations (somehow continuous). In such case, if one small area has

significantly different deformation from its neighbouring parts, we mainly consider this

is outlier that might be caused by a detection error. Of course, in a real-life case, this

might be not true and there is no guarantee to make such claim. Nevertheless, the main

objective in this thesis is to automatically discover the major deformation characteristics

in a smooth context.

• 3D and 2.5D model – In this thesis, we study on using 3D point clouds to extract deforma-

tion information. In principle, we should model the area in pure 3D space, e.g., using 3D

volume cells. However, most of real-life deformation / landslides scenarios (particularly for

our two datasets) are interested in analysing the deformation of the 2.5-dimensional sur-

face, e.g., displacement along Z dimension (i.e., subsidence). Therefore, this thesis mainly

analyses the model of 2.5D, not 3D, for simplicity.

Design Strategies. Based on the two core issues and relevant assumptions of this deformation

computation study using 3D point clouds, we conclude the following main design strategies of

this thesis work.

• Cell-based Approach – The fundamental design choice in this thesis is to provide a cell-

based deformation approach. We build a model to identify the deformation of a small area

(e.g., a cell); this is because the cell is reasonably small in general, so that the deformation

in a cell is somehow consistent and a single model can cover it. After detecting a cell

deformation, we can identify the total deformation of the whole area by using hierarchical

merging. The cell in this thesis is mainly about regular shapes, e.g., rectangles in 2.5D

and cubes in 3D. In addition, we also study the irregular cells that are determined by

deformation boundary (e.g., a non-cell based moving object like a falling stone).

• A Hybrid Deformation Model – To provide a rich deformation model for a large monitored

area (or a big object), we choose a hybrid method to model such big area. The “hybrid”

here has two meanings: (1) it supports different types of deformation in each individual

partial area, e.g., displacement, rotation, even non-rigid deformation; (2) it is three levels

of abstraction, from meta-model for cells, sub-model for partial areas, and a deformation

map for the whole area.
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• Automatic Deformation Computation – There is one more design strategy about automatic

deformation computation without prior knowledge. In some scenarios, geologists or domain

experts can provide some very useful prior information (e.g., which part has which type

of deformation). However, such manual detection is non-precise and not suitable for a

large area. Therefore, an automatic method needs to be designed for computing such

heterogeneous deformations at the “hybrid” levels.

1.4 Contributions

Towards the objective of deformation monitoring via 3D point clouds, the main research out-

comes of this thesis include the novel hybrid deformation modelling and the cell-based defor-

mation computation. The hybrid model consists of a meta-deformation that supports different

uniform deformation models for each cell, a sub-deformation model for describing distinctive

deformation in each partial area, and a complete deformation description (deformation map)

of the whole object. The cell-based deformation computation can incrementally and automat-

ically extract informative and different levels of deformation without a priori geomorphology

knowledge. More concretely speaking, this thesis is targeting at the following contributions.

1.4.1 Deformation modelling requirements

To propose a rich deformation model and a novel deformation computation method, we need

to first understand the intrinsic characteristics of deformation scenarios. Therefore, the first

contribution of this thesis is that we study various deformation scenarios and provide a com-

prehensive deformation modelling requirements analysis. This modelling requirement has three

main elements, i.e., “what object has deformation”, “which type of deformation”, and “how to

describe/quantify the deformation”.

Deformation object (“What”) – Deformation objects describe “what has deformed”, i.e.,

the monitored object under the measurement using relevant terrestrial LiDAR equipments.

There are two types of objects such as artificial objects and natural objects under investi-

gation. Artificial objects include the human-built constructions like building, structures,

bridges, dams, etc.; natural objects consist of some Earth environmental components in

nature such as mountain sides, slopes, and valleys. For most of deformation studies like

displacement, it is non-important to make the difference between artificial and natural

objects. In this thesis about detailed cell-based approach, we do not make distinguish

between artificial and natural objects like much literature.

Deformation type (“Which”) – Deformation types concerns with “which kind of deforma-

tion”. Deformation types have rigid deformation and non-rigid deformation. Rigid defor-

mation is used for describing the absolute change of a monitored object from the complete

object point of view. The basic elements of rigid deformation are translation (e.g., displace-

ment along X, Y and Z axis) and rotation (i.e., angle variation/displacement). Compared

to rigid deformation without changes on size or shape of the monitored object, non-rigid
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deformation concerns relative changes for the partial areas inside the object. Some de-

formation parameters such as scaling, shearing and stain are frequently used to represent

non-rigid deformation.

Deformation quantification (“How”) – After a clear investigation of “what” object has

“which” type of deformation, quantification is the next crucial aspect for deformation

modelling, and it comprises quantitative and qualitative methods. Quantitative method

is to represent the deformation in term of numeric values like quantifying displacement,

magnitude and direction; whilst, qualitative method provides more meaningful terms (e.g.,

“small”, “middle”, “big”) to indicate the deformation level, which can be determined by

domain experts based on empirical knowledge.

The details of our investigation on various deformation scenarios and our proposal on com-

prehensive deformation modelling requirements are presented in Section 3.2 of Chapter 3.

1.4.2 The hybrid deformation model

After analysing the detailed deformation modelling requirements, this thesis reviews traditional

deformation analysis using a small set of observation points from geodetic surveying techniques.

We identify that most of these traditional deformation analysis is using a global model, i.e., (1)

focusing on a single deformation type (e.g., displacement, rotation, scaling), and more impor-

tantly (2) utilising a single model for the whole monitored object. To provide a richer model

for deformation analysis using high-density 3D point clouds, we develop a comprehensive and

hybrid model including meta-deformation for each cell, sub-deformation for a partial area and

deformation map for the whole object to identify and demonstrate informative deformation for

a large monitored object.

Meta-deformation – To provide an automatic deformation computation, we firstly divide the

space of the monitored object into 3D cells. The meta-deformation is defined to model the

deformation of individual cells. Meta-deformation is the building blocks of the complete

deformation description for the whole object.

Sub-deformation – Following up the results of meta-deformation, we can merge the adjacent

cells together to compose a partial area of the monitored object; of course, the cells merged

together should have consistent (similar or even the same) meta-deformation, and share

one sub-deformation description.

Deformation map – Finally, combing all of the sub-deformations together, we can generate

a complete deformation description of the whole object, like a map indicates detailed

deformation in each partial area; therefore, we call this final result “deformation map”.

From meta-deformation, to sub-deformation, and finally to the deformation map, we can

incrementally achieve an informative deformation description of the monitored object. We can

apply this hybrid model in deformation computation, and gradually generate different levels of

deformation abstraction. The details of this hybrid deformation modelling approach is discussed

in Section 3.4 of Chapter 3.
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1.4.3 Automatic deformation computation

Based on a priori knowledge of geomorphology, most of existing deformation analysis in the

literature preliminarily select some partial areas in the monitored object, and apply a single

deformation estimation model to extract the deformation information – namely, these methods

focus on global modelling and analysing. Based on our hybrid model, we design a novel cell-

based approach to automatically compute the informative deformation description of the whole

monitored object, without the need of any given prior knowledge. This cell-based computation

has three main steps, i.e., split, detect, and merge (see Figure 1.1).

Split
3D uniform cells
• R-tree index
• 1D index

OutputInput

Meta-deformation

Deformation map of Scanned point clouds  
(Epoch I & II)

Detect
Meta deformation 
• Displacement
• Angle variation
• Rigid transformation

the whole object(Epoch I & II)

Deformation map
• Merge by assigning

Merge
Merge by assigning 

deformation level
• Merge directly by 
deformation parameters

21Figure 1.1: Framework of cell-based deformation computation

Split – The first step is to split the 3D point cloud of the whole object into many uniform

cells, which provides a primary input to detect the meta-deformation. Another benefit of

splitting the space into cells is that we can efficiently and easily manage the point cloud

data and compute deformation incrementally, as the complete point cloud is usually very

huge which cannot be directly processed at one time. In the split step, we can apply

efficient space fast accessing techniques to improve our performance, such as the R-tree

spatial indexing structure.

Detect – The second step is to detect the meta-deformation of cells, based on comparing the

subset of point clouds in the cell at two different epochs (i.e., Epoch I and Epoch II cor-

responding to the time before and after the happened deformation event like a landslide).

In this step, we focus on studying a couple of uniform deformation analysis models, such

as vertical displacement, angle variation, and rigid transformation. This is because the

cell is usually reasonably small and uniform deformation is applicable in a small cell.
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Merge – After detecting the meta-deformation of cells, we need to merge adjacent cells with

similar deformation characteristics together and generate sub-deformation for a partial

area. Finally, the complete deformation map can be achieved after combining all of the

sub-deformations. In contrast to the top-down split that divides the whole region into

small cells, the merge is a bottom-up method that incrementally group cells together to

formulate a sub-deformation, and to reach the deformation map finally.

The major advantage of this split-detect-merge procedure of deformation computation is its

automation and completeness. There is no prior knowledge needed for selecting partial areas

in advance. In addition, we can adopt and test various traditional geodetic surveying methods

in detecting the meta-deformations. The details of this contribution of proposing the cell-based

deformation computation are presented in Chapter 4.

1.4.4 Evaluation and benchmark

To evaluate our cell-based approach for deformation modelling (i.e., the hybrid model) and

computation (i.e., the cell-based computation), we test it using both synthetic and real-life

point cloud datasets from terrestrial LiDAR. Additionally, we provide exhaustive experiments

in sensitivity analysis on some important parameters (e.g., cell size) during such deformation

computation procedure.

Data simulation – We generate a point cloud dataset by a computing program implemented

in Matlab to imitate a typical deformation scenario, i.e., landslides of a slope. In this

synthetic scenario, a single surface (e.g., a mountain slope) subsides into two surfaces

(sub-slopes), where the top-right one is sharper and the bottom-left one is flatter. We

introduce the necessity of the cell-based approach, and perform the comparison between the

cell-based approach and traditional non-cell based global method. Based on the ground-

truth deformation we know from the simulation, we identify better performance from

our cell-based approach. We apply three meta-deformation detection methods, including

displacement, angle variation and rigid transformation to detect deformation of this slope.

Additionally, we add extra noises to the data and analyse their influence in the final results

of the computed deformation map, which shows the robustness of our approach.

Practical experiment – In addition to simulate point clouds using Matlab coding, we also

design practical experiments to simulate relevant deformation scenarios. The practical

experiments are performed under the collaboration with UNIL (University of Lausanne)

using their “sandbox” and 3D digitizer. We design two practical simulation scenarios: one

is for simulating the rockfalls on a slope; and the other is the erosion/movement of the

slope itself. Particularly, the rockfall scenario is later used in our experiment in finding

cell correspondence.

Landslides in Flamatt – We study a real-life landslide in Flamatt, Switzerland to evaluate

the cell-based approach. This landslide has affected a major railway line. The size of

this unstable slope is approximately 200 m × 25 m; and two dense point cloud datasets
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from this slope are captured before and after the landslide, respectively. We perform

the cell-based approach on this unstable slope and analyse deformation of this region by

computing its deformation map. Compared to the results provided by BBHN (a Swiss

surveying company), our result are consistent with their results in general. In addition,

we perform sensitivity analysis of different cell sizes, and identify the optimal cell size for

deformation detection.

Erosion on a concrete slope in Valais – We study another real-life erosion case of a con-

crete slope. This concrete slope locates between a dam and a natural riverbed; and its

erosion is mainly caused by water flows. Four point cloud datasets are provided by Haute

Ecole d’Ingenierie et de Gestion du Canton de Vaud (HEIG-VD). We compute the defor-

mation maps of this region, and compare our deformation map with the results built by

traditional surface-based approach (e.g., a point cloud processing software “3DReshaper”

that we apply in this dissertation). Not only from the graphic view but also from the

deformation distributions, we identify consistent results from our cell-based approach and

from the 3DReshaper, this surface-based approach.

The details of experiments and evaluations of the hybrid modelling and the cell-based defor-

mation computation are provided in Chapter 5.

1.4.5 Extensions of cell-based approach

After modelling deformation and computing it from real-life 3D dense point clouds, we further

identify a couple of research directions and challenges to improve this cell-based deformation

monitoring approach. At the last period of this thesis work, we provide several extended contri-

butions, such as splitting object with “dynamic cells”, finding “cell correspondence” in complex

scenarios, tracking “data-driven cells” in movement scenario, supporting “adaptive model” selec-

tion in computing meta-deformation, and identify “deformation evolution” with multiple epochs

of point cloud measurements.

Dynamic cell split – In the previous contributions, we have tested many sensitivity analysis

on applying different cell size. However, the cell size is still uniform and static in the

experiments. It is non-trivial to find an optimal cell size: (1) if it is too big, only a few cell

exist, and all cells have huge points inside; this is under-splitting, and meta-deformation

might be not very accurate. (2) if cell size is too small, there will be too many cells; this is

over-splitting, computing meta-deformations for so many cells would be time-consuming.

Therefore, as the first major extension, the enhanced cell-based approach is able to design

a strategy of using dynamic cells for detecting meta-deformation. We design a top-down

split strategy that is able to use an initial model to judge whether the current cell needs

to be further split into two sub-cells or not.

Cell correspondence – The previous detecting methods are suitable for small deformation.

This is because small deformation can guarantee the assumption that most points in on

cell after deformation still stay in the same cell; therefore, we can apply the direct cell
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correspondence. However, some real cases can not satisfy this assumption because of their

large deformation. Therefore, we propose a matching method to find cell correspondence,

based on local search optimisation. In addition, we apply this method on a rockfall scenario

with our practical experimental datasets, i.e., finding the corresponding cells with the rock

at different epochs.

Movement tracking with data-driven cell – We have discussed about “regular 3D cell”

and “direct cell correspondence”. In these cases, the deformation is restricted to an exact

multiple of the cell size (e.g., inside one cell or deformation from one cell to neighbouring

cells). However, real-life cases are much more complex. For example, the cell cannot be

always regular. Deformation has its own boundary. In addition, deformation could happen

from one cell to another cell with overlapping part. Therefore, the exact multiple of the

cell size is not always appropriate. To solve this problem, we introduce the “meta-cell”

concept into the “movement tracking” extension and utilise the meta-cell to form “a data-

driven cell with arbitrary boundary”. Furthermore, the meta-cell can assist in finding a

better cell correspondence. Now, the moving distance of a searching cell can be not only

an exact multiple of the cell size, but also be some non-integer-multiple cell sizes. We

apply this algorithm on a rockfall scenario with our experimental datasets, i.e., tracking

the deformed parts like a rock with a series of epochs.

Adaptive modelling – In the earlier work of this thesis, only one detection method was ap-

plied for deformation computation from each cell. However, the real case is that a mon-

itored object has heterogeneous deformation, which means several deformation models

might exist simultaneously in this object. Therefore, we design adaptive model selec-

tion to pick the most suitable model for each cell, based on the geometric features of the

point clouds inside the cell at two epochs. The algorithm can support the model selection

between 1-order linear model and 2-order polynomial model.

Deformation Evolution – Two-epoch deformation analysis is the most general case study in

many applications. In addition, multi-epoch point cloud datasets provide the possibility

to analyse deformation evolution. In our erosion case, there are four-epoch point cloud

datasets. In terms of analysing deformation evolution on this scenario, we recognise that

the deformation on this slope mainly happened between Epoch 1 and Epoch 2; afterwards,

the deformation is quite non-obvious (from Epoch 2 to Epoch 4).

The detailed contributions of these four main extensions to our cell-based deformation mon-

itoring approach are presented in Chapter 6.

1.5 Thesis Organisation

This dissertation is organised in 7 chapters as follows,

• Chapter 1 introduces the main background, motivation, and contributions of the “cell-

based deformation monitoring via 3D point clouds” research in this thesis.
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• Chapter 2 presents the related work on deformation monitoring and terrestrial LiDAR.

It demonstrates the advantages and disadvantages of the geodetic techniques for deforma-

tion measurement, as well as the classical deformation parameters/types of deformation

analysis. It then introduces the research status and challenges that exist in 3D point cloud

processing to identify deformation.

• Chapter 3 focuses on identifying important modelling requirements of deformation. It

provides the formal problem statement of our research challenges and proposes a com-

prehensive and hybrid model for deformation monitoring (including meta-deformation,

sub-deformation, and deformation map), in contrast to traditional global modelling.

• Chapter 4 explores deformation detection based on the hybrid model. Cell-based ap-

proach, a novel deformation computation method, is presented. This method provides a

split-detect-merge procedure to automatically and incrementally identify rich deformation

information from 3D point clouds of a large monitored region.

• Chapter 5 describes experimental results with both synthetic data and real-life 3D point

cloud data, and provides a benchmark system for testing our algorithms. We compare

our cell-based deformation computation results with non-cell based results, ground-truth

deformation from simulation, third party results provided by a surveying company, and

results computed by a commercial software.

• Chapter 6 investigates the extensions to enhance our cell-based deformation monitoring.

There are four main extensions, including splitting the region with dynamic cells, finding

cell correspondence, movement tracking with data-driven cell, building adaptive modelling,

and computing deformation evolution.

• Chapter 7 concludes the main findings of this thesis and points out the limitations of our

work. Some interesting directions towards this topic for future work are also discussed.
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Chapter 2
State of the Art

In the present state of the art

this is all that can be done.

Henry H. Suplee (1856-1943)

2.1 Introduction

In this chapter, we present state-of-the-art about the methodology and technology of deformation

monitoring, and describe their advantages and drawbacks. For a better understanding and a

clearer organisation, we group these approaches in the literature into the following three main

perspectives: Deformation Measurement, Deformation Analysis, and Deformation Monitoring

via Terrestrial LiDAR.

This chapter is organised as follows: Section 2.2 provides some basic definitions of deforma-

tion; Section 2.3 discusses the techniques of deformation measurement, identifying the geodetic

methods and non-geodetic ones; Section 2.4 describes the deformation analysis, focusing on

existing statistical methods of estimating deformation parameters; Section 2.5 and Section 2.6

present the application of terrestrial LiDAR – where Section 2.5 describes the LiDAR technique

whilst Section 2.6 discusses 3D point clouds processing techniques. Finally, Section 2.7 presents

the related work of deformation monitoring in both computer vision/graphics and environmental

fields and focuses on its applications in deformation monitoring via 3D point clouds.

2.2 Basics of Deformation Monitoring

This section introduces the fundamental concepts of deformation monitoring. We firstly provide

general definitions of deformation and identify different types of monitored objects. Subsequently,

we focus on explaining deformation monitoring process, and classify deformation monitoring

based on the scale of monitored object or the type of deformation modelling.
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2.2.1 What is deformation?

There are a lot of definitions about deformation. It is technically difficult and perhaps impossible

to provide a universal definition which will be accepted in all relevant research domains. Here,

we only summarise the most well-known and widely cited definitions.

• Deformation is a conception which is original from the theory of elasticity and continuum

mechanics and can be defined as the alteration of form and shape in a term loosely [DL83].

• The deformation of an object is the result of a process, including not only the geometrical

changes of an object but also the incorporation of the causative forces and the physical

properties of the object [WH01].

• In materials science, deformation is a change in the shape or size of an object due to

an applied force (the deformation energy in this case is transferred through work) or a

change in temperature (the deformation energy in this case is transferred through heat)

[Dav79, Zar91].

Although these definitions have distinct focuses and application scenarios, they have a com-

mon knowledge that deformation is a change of an object, and such change is caused by some

intrinsic or external forces. Deformation describes the variation between two different states. For

the detailed information about “what” is deformed (i.e., the monitored object) and in “which”

sense (i.e., the deformation types generated by intrinsic or external force), different definitions

provide different explanations.

The monitored object can be any object affected by natural or man-induced movements.

Therefore, the monitored objects are typically classified into two categories: natural structures

such as ground, slope, valley or mountain sides, and artificial structures like dams, bridges and

buildings. The detailed deformation process can be presented in different ways, like landslides,

rockfall, ground subsidence, erosion, etc. These different types of deformation can result in a

huge property damage and even lost of life in real-world scenarios. The impact/damage of a

deformation scenario depends primarily on its size, speed and location, especially when crossing

infrastructures and involving people.

2.2.2 Deformation monitoring process

Deformation monitoring is the procedure to estimate the deformation of the monitored object,

and further provides the qualitative or quantitative description of this natural phenomena. Due

to the hazards caused by this phenomenon [LHRB05, HBH09], deformation monitoring has been

becoming an active and important research field for many years, and still is a dominant topic

in geodetic surveying. According to the force type, deformation monitoring can be categorised

into structural deformation monitoring and natural hazard assessment. Monitoring deformation

of artificial and natural objects should be capable of predicting the damage caused by the

deformation of an unstable object; such deformation prediction can ensure the appropriate

reaction in advance, and reduce the damages. There are several ways to expatiate on and
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classify deformation monitoring, e.g., depending on the scale of monitored object or the type of

deformation modelling.

• Scale of Deformed Object. Deformation monitoring of different scales such as local, regional,

continental and global are categorised according to the scale of the object under control.

Deformation monitoring of a local scale is the estimation of the deformation of some arti-

ficial structure (e.g., a dam, a bridge and a slope along a highway or a railway line) and

natural sites (like a ground subsidence or a bank erosion along a river) [Hud98, TLP06].

Deformation monitoring of a regional scale is the investigation of the stability of objects

such as a valley and a mountain side [Kaa02, Riz02]. Deformation monitoring of a conti-

nental scale is the achievement of the deformation from the observations of national and

continental geodetic network [RS05]. Deformation monitoring of a global scale is the study

of the deformation of the earth as a whole like polar motion, variation of the earth’s rota-

tion, etc.; monitoring such global deformation typically applies data from geodetic space

techniques, including Satellite Laser Ranging (SLR), Very Long Baseline Interferometry

(VLBI), and Interferometric Synthetic Aperture Radar (InSAR), and so on [Nat81].

Global (Earth)Global (Earth)

Continental

Regional (Valleys)

Local (Artificial(

Objects) 

Figure 2.1: Categorisation based on deformation object scale

• Type of Deformation Modelling. Deformation modelling needs to consider space (where is

the deformation), time (when is the deformation) and causative forces (by which and how

is the deformation caused). Accordingly, the type of deformation modelling can be clas-

sified into static model, kinematic model and dynamic model [WH01]. Static model is the

identification of the geometrical deformation (e.g., displacement, rigid transformation and

volume deformation, etc.) of an object at two epochs or multi-epochs [Cas88]. Kinematic

model is the description of the trend of the geometrical changes with a time series (e.g,

velocity and accelerations, etc.) [PP83]. Dynamic model is the complete investigation
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on deformation process of an object including not only geometrical changes of the object

in space and time domain, but also the causative factors of deformation and even the

materials of the object [CF65].

Deformation monitoring is an interdisciplinary topic across the sciences of geomatics, geology

and mechanics, as well as computer science. It contains studies from distinctive perspectives

because of the complicated nature of this phenomenon. For example, (1) the scale of the moni-

tored object can vary from global (e.g., earth) to local (e.g., an unstable slope along a railway

line); and (2) the complicated state of deformation can be in different domains, including space,

time and causative forces. In this thesis, from a perspective of geomatics, we focus on defor-

mation computation from the geodetic observations (i.e., 3D point clouds) on the monitored

object in spatial and temporal domains; we focus on identifying “what” objects have “which”

types of deformation happened at “when”, but not the “why” this happens by “which” forces.

In addition, we analyse the local and regional scale deformation, and deformation of objects at

the continental or global scales is out of the scope of this thesis.

The process of deformation monitoring consists of measurement and analysis phases [AOA+06].

Deformation measurement is the acquisition of the relevant observations of the changes that are

collected by several surveying techniques at a time series (including at least two epochs); and

deformation analysis investigates the geometrical changes of the object from the multi-temporal

measurements, and provides statistical assessment of the derived deformation model and char-

acteristics. The explicit concepts of these two parts are presented in Section 2.3 and Section 2.4,

respectively. Recently, with the rapid terrestrial LiDAR techniques, 3D point clouds datasets

can be easily captured and effectively used for deformation monitoring; and relevant techniques

are summarised in Section 2.5 and Section 2.6.

2.3 Deformation Measurement

Deformation measurement is an essential prerequisite procedure to acquire the periodic obser-

vations of the monitored object. These observations offer the possibility for the subsequent

deformation analysis such as deformation modelling, computation and statistical assessment.

There are a numerous amount of techniques employed in deformation measurement, which can

be mainly grouped into geodetic and non-geodetic methods [Chr86]. The geodetic methods of

deformation monitoring capture the observations (e.g., angle and distance measurement) of the

sampled points on the monitored object [Tor01]. Based on these observations, this method

describes a global deformation of the monitored object. Non-geodetic methods apply some

specialised equipments (like tiltmetres, strainmeters, extensometers, join-meters, plumb lines,

micrometers) to measure the changes automatically and continuously [EEA04, KAB10]. Com-

pared to geodetic methods giving the absolute changes on some points, non-geodetic methods

provide the relative deformation inside the object under control. Detailed comparison between

the geodetic and non-geodetic measurement is summarised in Table 2.1.

There are a numerous amount of geodetic techniques being applied for deformation mea-

surement. We divide these geodetic techniques into two groups, i.e., classical geodetic methods,
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Table 2.1: Comparison of geodetic and non-geodetic measurement

Geodetic method Non-Geodetic Method

Global information on the behaviour of the
monitored object

Local information inside the object

Intensive labour and requirement of skilled
observers

Automatic and continuous monitoring

The absolute displacement determination
of the selected points

Relative deformation identification within
the monitored object and its surroundings

and recent measurement methods like remote sensing. Many classical surveying techniques

for angle and distance measurements have been used to detect the movements. These meth-

ods include levels [CCRS86], theodolites [MMC02], Electronic Distance Measurement (EDM)

[RRSJACBG02], total station and recent Global Navigation Satellite System (GNSS) techniques

[BHK98, SDA05, BCK08]. Additionally, remote sensing techniques provide numerous kinds of

datasets (e.g., satellite images, SAR and InSAR images, Photogrammetric and LiDAR datasets)

for deformation measurement. Recently, advanced measurement technique like Light Detection

And Ranging (LiDAR) shows great potential to track the geometrical changes of the moni-

tored object [FM04, TGZG07, Lem10]. As a relatively new and even revolutionary surveying

method, LiDAR technique can perform “surface measurement” on the monitored object, which

is different from the former “single point measurement” using classical geodetic methods. The

appearance of this technique provides a better understanding of the monitored object and offers

the possibility of more detailed deformation computation or extraction [GSC+06, JOA+10]. For

real-life deformation monitoring, the choice of the surveying techniques depends on a couple of

deformation aspects, such as the condition of the monitored object (e.g, location of the object,

safety considering of the operators), the requirement of the deformation (like accuracy, the scale

of the object), the frequency of measurement and the economical factor, and so on.

2.3.1 Classical geodetic methods

Traditional surveying techniques such as theodolite, EDM and total station are mainly ap-

plied for angle or distance measurement of the sampled points marked in the monitored objects

[GW08]; GNSS (Global Navigation Satellite System) techniques can directly achieve the posi-

tions (〈longitude, latitude, altitude〉, or simply noted as the 〈X, Y, Z〉 coordinates) of the

control points on the object [GCR00]. These traditional surveying techniques and GNSS can be

entitled “single point measurement” technique. For such technique, low sampling density points

are deployed on the object for investigation, and need to be measured by these classical geodetic

methods. These sampling points can form a geodetic network inside or around the object. The

observations of this control network represent the object under investigation. Therefore, choos-

ing the sampling points to design a geodetic control network is a crucial step in these classical

geodetic methods for deformation measurement.

Design of Geodetic Network - Design of the geodetic network is the exploration of the net-

work’s structure and the determination of the connection between the observations by different
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types of measurements (e.g., direction measurement and distance measurement) [KF88]. The

objectives of optimising deformation geodetic network are: (1) to achieve the required accuracy

level of detected deformation; (2) to develop a reliable mathematical model; (3) to produce ad-

equate sensitivity with regard to the testability of deformation; and (4) to design the practical

observation program under a limited financial constraint [Kua96].

As a consequence, designing geodetic network needs to consider several aspects, such as

accuracy, reliability, sensitivity and cost [Cas88]. Accuracy is usually expressed by the variance-

covariance matrix of the estimated deformation parameters, and is a representation of random

error propagation (one aspect of the geodetic network). Reliability of the geodetic network can

describe the influence of the random and systematic errors on the deformation results [See01]

and can be increased by additional observations and repeated measurements between the neigh-

bouring points. Sensitivity is an indication of the deformation detection ability from the geodetic

network. Cost is the financial constraint which cannot be overlooked as the designed network

should be economically feasible.

Geodetic Control Network - For all of these classical geodetic methods used for deformation

monitoring (e.g., levels, theodolites, GPS and GNSS), we can identify two fundamental types of

control networks in the geodetic methods, i.e., absolute network and relative network [Cas88].

• Absolute Network. All of the points (or at least some of the points) of the network are

assumed to be outside the monitored object, e.g., in the foundation or surrounding terrain

beyond the area [Chr81, BHK98]. These points are defined as “reference points” and are

not affected by the deformation on the object, as shown in Figure 2.2(a). These points

need subsequently periodic observations to assess the absolute data for detecting long-term

deformation [EEA04]. From these observations, we determine the absolute movement of

the object. The following analysis of this network is to confirm the stability of the reference

points and to identify the external force that caused the single point displacement.
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(b) Relative network (object points)

Figure 2.2: Relative network and absolute network [KAB10]

• Relative Network. All of the points in relative network are assumed to be located inside the

monitored object [Che83]. These points are entitled “object points” and usually need to

be monitored frequently to assess the behaviour of the monitored object in a short term,

as shown in Figure 2.2(b). Compared to applying the absolute network, the distortion

assessment using a relative network is more complicated, because all of the points are

influenced by strains in the object and by the geometric changes of distinctive parts in
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the object with rigid translations and rotations [NMV+03]. The consecutive analysis of

these object points is to generate the deformation model for identifying the cause of the

deformation, for example, extension or shearing strains.

Absolute network and relative network can be combined together to offer both global and

local information for detecting the geometric changes of the object under investigation. Figure

2.3 shows an absolute network (red line) and a relative network (blue line) on on a simulated

deforming-embankment along a railway line. In order to build these two networks, reference

points (red triangles) and object points (blue triangles) are settled separately outside and inside

the monitored parts. These networks need to be designed and located before the deformation

measurement; and points deployment is a labour intensive work with high cost [CRH09], es-

pecially for the deployment of reference points. For example, reference points placed on the

earth are better installed on the solid rocks underground. The reference points should be above

ground for certain height (e.g., 1.5 m) [WS09b].

Railway

Deformed slope 
along railwayalong railway 

Reference point Absolute networkp

Object point

Absolute network

Relative network

Figure 2.3: Absolute and relative network in a monitored region

Classical Geodetic Methods Summary - After the monitoring networks have been designed

and set up, classical geodetic methods are applied to acquire the observations of the monitoring

networks; such observations can be angle and distance measurement, and point coordinates, etc.

Based on the comparison of the observations and the statistical evaluation of their quality, the

geometrical changes can be estimated. With the development of the geodetic techniques, there

are different types of instruments available for deformation measurement. We present a short

summary for each geodetic method.

• Theodolites and Electronic Distance Measurements (EDM). Theodolites and EDM were

frequently used as the primary surveying methods. Theodolites are specially designed

for measuring angles in the horizontal and the vertical planes [WP97], while EDM can
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measure distance with relatively high accuracy [R9̈6]. Theodolites and EDM have been

widely used in slope measurement [RRSJACBG02]. These methods can identify the mag-

nitude and the direction of distance changes for each point in the geodetic control network;

and additionally they plot these displacement vectors on maps to locate the deformation

[HW86, Rob79]. A three-dimensional coordinate system can be built by two or more elec-

tronic theodolites with a computer together; and such system can be used to calculate the

coordinates in real time. This system can be applied for the highest precision positioning

and deformation monitoring surveys over small areas [SF90, Sav03].

• Total Station. Total station can be considered as an electronic theodolite combined with an

EDD, to provide more convenient angle and distance measurement for operators [Fie04].

With the advantage of combining angle and distance measurement, electronic total sta-

tions have been largely applied in many surveying applications. Therefore, total station

became a quite efficient alternative of theodolites and EDM instruments. For the measure-

ment with theodolite and total station, the high-quality visibility are required between the

stations on the monitoring points [SM86]. Of course, such restrict visibility requirement

affects the location of the reference or object points, which in turn limits the geometry of

the geodetic control network.

• Global Navigation Satellite System (GNSS ). GNSS is a satellite system for providing

geo-spatial positioning in a global coverage [GGE09]. Current GNSS systems include GPS

(“Global Positioning System”) from the United States [ER02], GLONASS (“Globalnaya

navigatsionnaya sputnikovaya sistema or Global Navigation Satellite System”) from Rus-

sian [MVM09], Galileo positioning system from the European Union [NLSH12] and Com-

pass navigation system (extended from Beidou navigation system) from China [Bha10].

GNSS surveying technique can perform automatic and continuous measurement (7 days a

week, 24 hours per day), under various weather conditions. The accuracy and reliability

of GNSS positioning mainly depend on the number and geometric distribution of visible

satellites [Wan02]. Compared to classical geodetic methods, GNSS technique does not re-

quire high inter-visibility between the points of the network; therefore, GNSS allows more

flexibility in the optimisation and design of the monitoring network [Ver02, EEA04]. In

addition, the development of various efficient real-life GNSS products (e.g., modern re-

ceivers with the ability to use GPS and GLONASS satellite) further extends the flexibility

of geodetic network design.

Accuracy Analysis of Different Geodetic Techniques - For different geodetic measurement

methods, the observation accuracy offered by these techniques is one of the most important

aspects for evaluation of the quality in deformation monitoring.

• Accuracy of Theodolites and EDM. In the last thirty years, the development of angle mea-

surement by theodolites depends on the automation of the readout systems, particularly

on the horizontal and the vertical circles. From the accuracy point of view, the electronic

theodolites have no significant improvement compared to optical theodolites. Regarding
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the distance measurement by using EDM instruments, the accuracy can be expressed in

terms of standard deviation in a general form (see Equation 2.1).

σEDM = a+ b ∗ S (2.1)

where “a” consists of zero correction (including errors of the phase measurement and

calibration errors), and the additive constant of the EDM instrument and the reflector;

“b” is a scale factor, due to the uncertainty in the determination of the refractive index and

errors in the calibration of the modulation frequency. Typically the value of “a” ranges

from 3 mm to 5 mm. For the most precise EDM instruments with a high modulation

frequency and high resolution (excluding the more recent laser trackers), the value of “a”

can reach from 0.2 mm to 0.5 mm [U.S02].

• Accuracy of Total Station. Total stations with different models can have different accuracy,

range, capability to support automatic data collection and online processing [Lut02]. The

combination of a digital theodolite, an EDM and a microprocessor records angle and

distance measurements directly, which can reduce many reading errors. These reading

errors exist in the operation procedure of optical theodolites and traditional EDM. Modern

total stations (e.g., Trimble S8 total station) can obtain 1′′ angle accuracy and 2500 m

distance measurement with 1 cm accuracy assisted by long-range functionality [Tri12].

• Accuracy of Global Navigation Satellite System (GNSS). GNSS can have different types

of errors. For example, the GPS accuracy can be affected by many sources, such as

signal propagation errors, receiver related errors, receiver system noise, and satellite related

errors. The accuracy of GPS positioning can be expressed by using the variance of the

horizontal components and the vertical components. Usually, the accuracy of the vertical

components is 1.5 or 2.5 times worse than the horizontal components [Sav03].

To summarise, many classical geodetic techniques for high precision measurement are avail-

able for deformation measurement alone or combined together. Several advantages of these

classical geodetic techniques can be concluded as follows: (a) offering high accuracy positioning

of discrete monitoring points; (b) supplying redundant observations to evaluate the quality of

measurement; and (c) providing a global information of the status of the deformation.

On the other hand, these classical geodetic methods also have some obvious drawbacks.

For example, (a) they require a lot of redundant works and hereinafter they are expensive

for continuous monitoring; (b) the location and condition of the monitored object limit the

application of these techniques. These related instruments are deployed on the object with

possible deformation, and the deformation could induce potential safety hazards to the operators.

In some cases, the objects under control are even inaccessible because of the high risk level of

these sites; (c) these methods are based on the “single point measurement” technique. They

only provide low-density sampling data (e.g., discrete points) of the object under investigation.
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2.3.2 Remote sensing techniques

Besides classical geodetic methods, remote sensing techniques also play an important role in

deformation monitoring. The remote sensing source datasets used for deformation monitoring

can be classified into satellite images, SAR/InSAR images (Synthetic Aperture Radar/Interfero-

metric Synthetic Aperture Radar), photogrammetry datasets, and LiDAR datasets, according to

remote sensor types [MHG05]. The following subsection discusses the remote sensing techniques

for deformation measurement from four perspectives based on this sensor type.

Satellite Images - Satellite images are the datasets collected by optical or infrared sensors,

which have become one kind of important datasets to determine Earth surface changes. With

the development of high resolution geometric sensors and even very high resolution geometric

sensors panchromatic images, there are increasing studies on satellite imagery for deformation

monitoring. These studies are typically for some concrete applications such as landslide moni-

toring and natural hazard assessment.

• Optical/infrared sensors. At the beginning, satellite images did not work successfully in

landslide monitoring because of the insufficient spatial resolution imaged from spaceborne

earth observation systems [SVW96, MSVW96]. For example, satellite images with a spatial

resolution from 10 m to 30 m can only be used for determination and identification of some

terrain information related to landslides, e.g., vegetation types, land use and soil humidity

[CWC04, HC91, LLHY02, MSVW96, ZLLX02]. Afterwards, the development of sensors

on satellites can produce high resolution images. Some earth observation satellite such as

Ikonos, Quickbird, SPOT-5, IRS CartoSat-1, WorldView can provide good quality images

with spatial resolution less than 1 m. Some examples are listed as follows: (1) Accurate

digital surface models are generated using IKONOS stereo imagery and are applied in

tectonic deformation modelling [ZCF07]; (2) Several large landslide cases, located in the

North Island of New Zealand, are mapped from Quickbird images with 0.6 m spatial

resolution [VLL09]; and (3) Identification of landslides during 2005 northern Pakistan

earthquake in the northwestern part of the Himalayas is studied using SPOT 5 stereo

images with a spatial resolution of 2.5 m [SHF+06].

• Deformation Measurement by Satellite Imagery. Multi-temporal and high resolution satel-

lite imagery have been widely considered as an effective complementary dataset to tradi-

tional observations [Her03]. Many researchers have studied a large amount of applications

of satellite images for deformation monitoring. Nagarajan et al. presented a method to

integrate spatial and temporal multi-layered information for landslide hazard assessment

[NMRK98]. In this study, temporal data from Indian Remote Sensing Satellite (IRS) are

used to interpret land coverage and land use information. In addition, Delacourt et al.

demonstrated a method that combines aerial photographs and Quickbird images for de-

formation measurement [DACV04]. This investigation is mainly used to monitor landslide

displacement.

SAR and InSAR Images - SAR & InSAR Images are another kind of datasets acquired by

active remote sensing techniques. In the following paragraphs, we firstly introduce the SAR
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technique to capture images; then present the applications of SAR and InSAR techniques for

deformation monitoring. Finally, we summarise the pros and cons of SAR and InSAR.

• Introduction of SAR/InSAR. SAR is a form of radar device for recording the phase (time

delay) and amplitude (energy intensity) of radio waves reflected by the Earth’s surface

[GVG96]. SAR can be implemented as follows: an antenna is mounted on a moving

platform such as a spacecraft or an aircraft, which transmits periodically radio waves at

wavelengths from a metre down to millimetres. A part of the radio waves are backscattered

from the surface of the Earth and received successively at the different antenna positions.

These waveforms echoes are coherently detected and recorded to construct the SAR images

[Hei04]. Traditional SAR remote sensing only utilises the amplitude information of a

single SAR image [KM98]. Interferometric SAR is a technique for measuring phases from

successive SAR images to infer range changes of the same surface. This technique can be

used for subtle changes detection with reasonable scale, accuracy and reliability [CFN+03].

Therefore, InSAR provides the chances to displacement detection of the Earth’s surface. It

is worth noting that short-baseline (zero to tens of metres) interferograms are suitable for

displacement detection, while long-baseline (up to several hundred metres) interferograms

are utilised for constructing Digital Elevation Models. More explicit explanations are

presented in [Smi02].

• Deformation Measurement by SAR/InSAR. InSAR technique has the advantage of detect-

ing large areas with centimetre-scale displacement. Such areas can be tens of kilometres.

Therefore, InSAR technique has been demonstrated successfully in a lot of applications

of deformation monitoring such as subsidence, landslides and erosion. For subsidence de-

tection, InSAR has been successfully applied in many cases like flat and dry terrains. For

example, a map of subsidence in the Belridge and Lost Hills oil fields (100 km west of

Bakersfield, California) is generated from InSAR pairs [DK97]. Similar results such as

subsidence rate as high as 400+ mm/year is also detected in the same area [FBG98]. More

examples of subsidence detection are presented in [AGB+99, CCDMW+08, AZGK09].

For landslide monitoring, the La Clapière landslide, located in Southern France on the left

bank of the Tinée river, is monitored by six different interferograms driven from ERS-1

SAR images. This study demonstrats a downhill movement from the top to the bottom

of the landslide up to 30 mm/day [FAD96]. The same area is also studied using the same

ERS-1 datasets in [CMK96]. Another case study of Itaya landslide in Japan is analysed

by three interferograms constructed from JERS-1 SAR images [KY00]. These SAR data

are collected from June to October, 1995 and are processed to show the extension of the

displacement field. However, good geometrical features in this case can not be recovered.

In addition, the La Valette landslide, located in the Ubaye valley (southern French Alps),

is analysed by 15 differential interferograms realized from ERS-1 and ERS-2 satellite radar

images. Investigation using SAR interferograms indicated that a sector in the eastern part

of the landslide had small velocity (< 10 mm/day ) [SDA03]. More case studies of land-

slide monitoring are introduced in [CW04, CCB+05, GMA+09, CSR10, COCC+12]. The

limit of InSAR technique is that it can observe a phase difference caused by the ground
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motion parallel to the satellite line of sight vector, which means that the components of

vertical motion and horizontal motion parallel to the plane of the line of sight cannot be

separately resolved.

• The Pros and Cons. As a promising deformation technique, SAR and InSAR have advan-

tages as follows [Rot04, Pag04, Sin02]: (1)High resolution images (e.g., less than three me-

tre resolution stereo imaged from C-band SAR) can provide more geomorphologic informa-

tion on the slope. This can produce higher quality landslide maps. (2) The usage of tech-

niques such as Permanent Scatterers (PS), DInSAR and InSAR can increase the accuracy

of slope stability detection. (3) Long term access of SAR data can assist in temporal analy-

sis of slope movement. Nevertheless, the disadvantages of this remote sensing technique are

also quite obvious, as listed in the following paragraph [CMK96, CEO01, CCE+04, Rot04]:

(1) Limit types of displacement can be measured, e.g., InSAR only detects displacement

in direction of the radar illumination (in the satellite’s line of sight). (2) Interferometry

can be affected by vegetation situation on the surface, especially with dense vegetation.

(3) Rapid landslide deformation can cause loss of radar coherence, especially during suc-

cessive data collection. (4) Detection ability of InSAR is constrained by the location and

speed of landslide. For instance, rapid slope movement like rock/debris fall on a steep

slope or narrow valleys can not be detected. (5) SAR sensor technique issues can cause

the problems of data unavailability.

Photogrammetric Datasets - Photogrammetric methods have been extensively used for de-

formation monitoring of terrain surface and structures during the past three decades [Coo84,

Maa98, K0̈0, MH06]. Generally speaking, photogrammetry is one kind of methods for measur-

ing an object from two or more known points by a camera with known interior and exterior

orientations. Coordinates of some points on this object are calculated according to the geo-

metrical relationships between the optical rays from the image to the object points [KHK07].

Based on the platform where cameras are mounted, photogrammetry can be classified into

aerial photogrammetry and terrestrial photogrammetry. In the following paragraphs, we present

photogrammetry for deformation measurement from these two aspects:

• Aerial Photogrammetry. Aerial photographs for topographic mapping was considered as a

standard technique in land surveying; and became a proper approach for the measurement

of Earth surface mass movement [CC88, MG03, CDBA03, DGK12]. The possibility of

high-precision and multi-temporal image analysis for the prediction of glacial hazards

is shown by real case studies in the Swiss Alps, e.g., detection of the increasing risk

of late-outbursts and related debris-flows from a 25-year monitoring observation series

[KHG97, K0̈0]. Additionally, aerial photogrammetry has been applied into the studies

of ground movements in large areas [MBC+03, ZBB+06]. For example, the evolution

of a deep-seated gravitational slope deformation, located in the Northern Apennine range

(Italy), is investigated by photogrammetry combined with GPS observations, for detecting

the displacement vectors of 293 points in the landslide [BCFZ08].
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• Terrestrial Photogrammetry. Terrestrial photogrammetry shows great potential to solve

measurement tasks in structural deformation monitoring [Maa98, SPT+03, MH06]. Four

different photogrammetric methods are identified and compared respectively; they are a

single camera, controlled stereomodels, resection/intersection procedures, and the bun-

dle adjustment approach [Coo84]. The first three methods are used when the detected

deformation is larger compared to the photogrammetry accuracy; the last one is appli-

cable when the deformation to be measured are of the same magnitude as the accuracy

of the photogrammetric observation. Many case studies of deformation monitoring using

terrestrial photogrammetry are conducted and some examples are listed as follows: (1) a

pilot study of dam monitoring is performed by a photogrammetric method with a digital

high-resolution still video camera Kodak DCS200 and with a metric camera Wild P31

[KM95]; (2) a case study in monitoring slope displacements is applied in an open lignite

mine, and a series of products such as maps, orthoimages and volume calculations are

presented [SPT+03]; (3) a case study of deformation measurement during construction

material testing is illustrated, and the image-based algorithms can integrate and even

replace traditional sensors currently used in several laboratories [BS11].

There are several advantages in using photogrammetry for deformation measurement. For

example, this technique can significantly reduce the time of fieldwork, and becomes a good

candidate for urgent monitoring work. Moreover, this technique provides three-dimensional co-

ordinates simultaneously with an unlimited number of points on the monitored object. Some

digital products such as Digital Terrain Models, vertical terrain changes, and orthoimages can

be created by photogrammetry. With the progress of photogrammetric techniques, the accu-

racy improvement in determining point positions can enhance their capability in deformation

measurement.

LiDAR Datasets - LiDAR data is yet another kind of important datasets that provide potential

for deformation monitoring. Its applications recently become a hot research and engineering

topic. From image point of view, LiDAR data can be considered as an extension of 2D images,

i.e., the depth images. Compared with two-dimensional images, points of the LiDAR data have

three components of positional information such as 〈x, y, z〉 in the coordinate framework. From

the remote sensing perspective, LiDAR can be considered as an active remote sensing technique

that uses laser lights at different frequency. It measures the temporal difference between emitted

pulses and their received reflections, and reconstructs the location, height, speed and direction

for an object [Pop09]. The history of using laser for remote sensing can trace back to the 1960s.

After LiDAR becomes an effective geodetic mapping tool, applications of LiDAR for deformation

measurement attract increasing interests recently. According to the mounted platform of LiDAR

sensors, we present LiDAR technique from the following two aspects:

• Airborne LiDAR. In the initial sate, many LiDAR sensors are mounted on airborne plat-

forms. LiDAR system can be categorised into two types: waveform LiDAR systems and

discrete-return systems [She08]. Waveform LiDAR systems continuously acquire the re-

turned waveform periodically in a large footprint (e.g., 10-25 m), while discrete-return
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LiDAR systems collect only one or a few discrete echoes from a small footprint (e.g., 5-30

cm) [MHG05, She08]. LiDAR footprint is a crucial parameter to describe the size of laser

sampling area, which is influenced by the scanning geometry and the scanned local topo-

graphic surface. LiDAR systems with large footprint, recording an average value to approx-

imate a larger region, can be applied for forest mapping [MAH+99, LCPH02, LTW+03].

Whereas, LiDAR systems with small footprints can be used for high-resolution terrain sur-

face mapping [ZEC+03, WHBD08]. Airborne LiDAR can provide digital elevation models

or digital surface models of large regions; and this is a revolutionary change for terrain

analysis. However, for some specific area, Airborne LiDAR technique can not provide very

high resolution data like millimetre level.

• Terrestrial LiDAR. Compared to airborne LiDAR, terrestrial LiDAR is a relatively new

technique for geodetic mapping and measurement. Terrestrial LiDAR is initially used for

detailed surveying of complex objects, e.g., design and manufacture of automobiles in in-

dustrial engineering [BVT92, CBS00, BR02]. During the last decade, terrestrial LiDAR is

applied successfully in cultural heritage documentation which is essential for the protec-

tion and restoration of cultural heritage status [BHM01, KTL+04, GVEHG04, PKA+07,

Yas07]. The advantages of terrestrial LiDAR (such as huge datasets with high accuracy and

resolution) can assist in completing the recording of cultural heritage in three dimensions.

It also affects the aspects in terms of new digital datasets management, representation and

reproduction. Afterwards, applications in heritage digital recording attract attentions of

researchers and specialists such as geologists and surveyors. Considering recent studies,

applications of terrestrial LiDAR have expanded to many new areas and topics, such as 3D

city modelling [Lem08], analysis of traffic accidents and road safety [Lem11], deformation

monitoring [GS04, TGZG07, MC08, LB09, JOA+10] and civil engineering setting [Mur08].

Development of terrestrial LiDAR, driven by resolution, accuracy, speed and operational

requirement, shows great potential for deformation monitoring.

Complementary to traditional geodetic methods like EDM and total stations, remote sensing

is new effective techniques for deformation measurement. Traditional geodetic methods can be

considered as “single point measurement” whilst LiDAR is “surface measurement”. Addition-

ally, photogrammetry can also produce 3D object surface measurement. From a point of view of

hardware, novel digital large format aerial cameras produce high quality and overlapping images.

From a point of view of software, computer vision has developed innovative algorithms in multi-

image matching and can also utilise Graphics Processing Unit (GPU) to make the complex image

matching algorithms more practical. Driven by both kinds of innovations, 3D photogrammetric

point clouds are produced at sub-pixel accuracy at very dense intervals [LIP+10]. Compared to

these remote sensing techniques (e.g., space-borne sensors), LiDAR can be used for extra scenar-

ios such as corridor mapping and precise measurement of concrete structures (e.g., steep cliffs).

These measurements are quite complicated and are hard to be collected by other remote sensing

techniques. The density of LiDAR points is quite high and good for deformation monitoring.

In this thesis, we propose a novel approach for deformation monitoring using point clouds

theoretically, which can be photogrammetric or LiDAR point cloud datasets; whilst in the
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following experiments, we utilise terrestrial LiDAR for deformation measurement and focus on

analysing the point clouds captured by terrestrial laser scanner. We provide more detailed

explanations of terrestrial laser scanner in Section 2.5.

2.4 Deformation Analysis

Geometrical analysis of the datasets resulting from deformation measurement has been a hot

research topic for a long time [Chr81, Cas88, HR01]; such geometrical analysis to estimate

deformation is called “deformation analysis”. The deformation analysis of an unstable object

in essence is to estimate geometrical changes of this object during a given time period. These

changes can be estimated by comparing the datasets sampled on this object between different

epochs and identifying the differences of this object between two epochs. In terms of deformation

measurement, the representation of the object is mainly the observations of the discrete data

points (very low sampling data) captured by classical geodetic methods. Classical geodetic

methods like GNSS set up some limited control points on/around this monitored object. The

observations of these control points are considered as the sampling datasets; each sampling

dataset is corresponding to one complete observation at one epoch; and these datasets are used

to estimate the deformation of this object from one epoch to another. Therefore, geodetic

network design consisting of the discrete points is a preliminary and important work to fulfil the

requirements of the anticipated deformation, as already discussed in Section 2.3.1 of deformation

measurement.

To give a concrete example, Figure 2.4 shows an unstable object Obj under monitored. To

estimate the deformation of Obj between Epoch I and Epoch II, we build n control points

(black triangles, i.e., from L1 to Ln) which form a relative network on this object; based on this

network, we can acquire the sets of observations, i.e., LI at Epoch I and LII at Epoch II.

Obj
L1 L2

L3

•A global model for 
the whole object
• Discrete pointsLn‐1 Lnp

7

Figure 2.4: One unstable terrain object under monitoring using discrete points

Deformation analysis based on these discrete points can be summarised as follows: (1)

Analysis of the discrete points is the examination of the observations in the geodetic network

at each epoch; therefore this is also an essential step that can void illustrating the undetected

errors which might cause error propagation in the subsequent procedures. (2) With the prior

step of error cleaning via discrete point analysis, deformation estimation is the next step and

the main focus in deformation analysis. Deformation estimation is to determine the geometrical

changes from the geodetic network with global or local coverage at different epochs, and even
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develops a unified theoretical system for the geometrical analysis of the observations [Chr81].

2.4.1 Analysis of discrete points

Analysis of discrete points at each epoch is the adjustment of the geodetic network formed by

the discrete points, including network adjustment and statistical test of adjustment. Based on

the raw observations, the objective is to estimate the required information for the subsequent

deformation detection and to identify the stochastic model of the adjusted observations.

Network Adjustment - The raw observations from geodetic methods might include different

kinds of measurements such as distances, directions, azimuths and coordinates. In addition,

these observations contain measurement errors including systematic errors, random errors and

mistakes. The three types of errors are mixed together and affected the residuals in deformation

estimation. In order to check the outliers in the measurement and assess the precision of the

adjusted quantities, redundant observations are usually designed and obtained during the sur-

veying procedure. Analysis of discrete points from the redundant measurements at each epoch

is the preliminary task to remove the gross errors or outliers in the observations and to build

the stochastic model of the adjusted quantities.

Statistical Test of Adjustment - After the adjustment of the geodetic network, the statistical

test is performed to analyse the quality of the observations. The estimation residuals are a

mixture of all error types, including systematic errors, random errors and mistakes [CCS90].

Therefore, a global model test is required to avoid the possibility that these undetected errors

are interpreted as deformations in the subsequent procedures. Additionally, this global test can

also evaluate the model assumption and to check whether the model confirms with reality.

2.4.2 Deformation estimation

After statistical test of geodetic network adjustment, the adjusted observations of the discrete

points (e.g., usually the coordinates of these points) are obtained from the raw deformation

measurements. Based on the adjusted observations L̂I at Epoch I and L̂II at Epoch II, a global

deformation model M(X) can be built to estimate the deformation for the whole object

L̂I − L̂II = M(X) + V (2.2)

where L̂I = (l̂I1, · · · , l̂In) is the adjusted coordinates of these discrete points at Epoch I, L̂II =

(l̂II1 , · · · , l̂IIn ) is the adjusted coordinates at Epoch II, X is u unknown deformation parameters

X = (x1, · · · , xu), and V is the residuals V = (v1, · · · , vn). M(X) is the global model of this

whole object to estimate the unknown parameters X, which offers a global picture of this object

under monitoring and provides a global and uniform estimation.

In order to get the optimal estimation of parameters X, this can be reformulated as the

28



2.4 Deformation Analysis

following optimisation problem,

argmin
x1,··· ,xu

f(V )

subject to L̂I − L̂II = M(X) + V (2.3)

where V is residuals between the real deformation (L̂I − L̂II) and the deformation estimated by

the model M(X) with the parameters X; the cost function f(V ) is determined by residuals.

• The cost function f(V ) can be defined by several estimation methods. Least-squares

estimator is one of the well known estimators and defines cost as the sum of squared resid-

uals, i.e., f(V ) =
∑n

i=1 v
2
i [Cas88]. For least-square estimation, a Gaussian distribution

is assumed for the observation errors. Outlier are not considered in this distribution, so

least-square estimation method is very sensitive to gross errors. Re-weighting functions

Wi+1 = Wi f(V ) is one way to reduce the effects of outliers by computing new weights from

the residuals of the previous iteration. Modification of weights in each iteration is different

from conventional lest-squares estimation. More residuals models are introduced to refor-

mulate the cost function. For instance, the cost function f(v) = ρ(vi) is an M-estimator

that reduce the influence of outliers such as Tukey estimator and Huber estimator [LF05].

• The deformation model M(X) can be defined based on the observation differences or based

on displacement approach. There are three general deformation models of M(X) such as

polynomial approach, rigid transformation, and strain model. Polynomial approach is a

well-applied displacement function and provides the approximation of the displacement

field [HR01]. Rigid transformation model is another widely-used representation of the

whole object’s displacement. Strain model is also applied in numerous applications of

deformation analysis, especially in crustal movement studies. In strain model, deformation

is assumed to be continuous over the entire object. Detailed formal descriptions of these

global models are presented in Section 3.3.

Traditional deformation analysis is mainly limited to low sampling datasets such as discrete

points scatted on the monitored region. Based on such sparse data, it is possible to detect

the deformation parameters of the whole monitored object approximately using a global model.

However, this is not sufficient to obey the real nature that the monitored object usually has a

homogeneous mixture of deformation. In real-life cases, different partial areas of the object under

investigation have distinctive deformation. Driven by the development of equipments, terrestrial

LiDAR provides the high density datasets, entitled 3D point clouds, for the monitored object.

Compared to deformation analysis based on discrete points (e.g., around 20 points on the whole

object), 3D point clouds with the high spatial resolution as several millimetres provide new

directions and challenges for deformation analysis.
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2.5 Terrestrial Laser Scanner

Compared to “single point measurement” techniques, LiDAR (Light Detection And Ranging)

technique initiates a new spatial dimension for data acquisition by surveying technique. By

acquiring a large number of points (entitled “point clouds”) on the surface of an object, laser

scanning technique provides the abundant geometrical information of the surface, which offers

the powerful ability in the application of architecture and archaeology [Lev99]. With the devel-

opment of LiDAR technology driven by hardware resolution, it becomes one of the promising

surveying techniques for field measurement and monitoring [AJOV09]

2.5.1 Working principle

Terrestrial laser scanner (TLS) incorporates a range measurement system, which requires de-

flection mechanism for pointing the laser beam in two directions [KHK07]. This is because a

TLS is usually stationary during one scan of the object. To better understand working principle

of terrestrial LiDAR, we take one kind of Riegl TLS as a concrete example. This equipment

contains two main components, i.e., “a range finder electronics unit” and “a polygonal mirror

element”, marked as 1© and 3© in Figure 2.5. Firstly, the range finder electronics unit emits

a pulsed laser beam to the polygonal mirror element. Secondly, this laser beam is reflected off

the mirror surfaces and scan through a vertical angle ζ, because the mirror element rotates at a

relatively high speed. These two steps compose a scan with a vertical angle ζ, called one profile.

Afterwards, the upper part of the laser scanner, marked as 4© in Figure 2.5, rotates through a

small angle ∆α in order to sample the neighbouring ζ profile, until a full horizontal circle has

been covered. An external Laptop (or PC) with specific software is usually connected with the

TLS for its operation and data storage.

Coordinates of all of the points in a point cloud are calculated by the measuring the deflection

of the rotating mirrors. Intensity of each point is achieved by recording the strength of the return

signal, which is the reflectance measure and the spectral characteristic of the object. Colour

information of the object can be acquired and registered automatically by the laser scanner with

a camera embedded inside. For a laser scanner with a camera mounted outside, the registration

between the images and the point clouds is performed additionally.

Usually, the coordinate frame of the point clouds is a relative frame based on the terrestrial

laser scanner shown by Figure 2.6. The origin of this frame is the centre of laser scanner and the

coordinate frame is a right-hand coordinate system. The point clouds of one object, captured

at different stations, need to be registered together to represent this object. Some referenced

points can be used to transform the relative coordinate frame into a local coordinate system or

a user-defined coordinate system.

2.5.2 Classification of TLS

Various terrestrial laser scanners are available in current market. However, categorisation of

TLS is non-trivial. Until now, there is no general criterion to classify TLS. Basically, there is

no one laser scanner suitable for all applications. Different TLS have distinctive characters and
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Figure 2.5: Working principle of a Riegl TLS [KHK07]
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Figure 2.6: Coordinate system of point clouds

have their specific utilisation in different domains. A summary of the classification of TLS is

concluded as below, according to the former work done in [FM04, SI04, Sta03, Lic10].

Classification Based on Working Principle - Based on the principles of distance measure-

ment system, terrestrial laser scanners can be classified into three types - based on time of flight,

phase measurement and optical triangulation, respectively [SI04].

• Time of flight. This is the most popular measurement system of TLS. Based on this
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technique, TLS can achieve the maximum range up to several hundred metres, even beyond

one kilometre.

• Phase measurement. This is another common technique for measuring medium range.

Using this technique, the maximum range achieved by TLS is about one hundred metres.

• Optical triangulation. This is the complementary technique used for close range laser

scanners. This kind of instruments can range up to several metres, which are mainly used

indoor like reverse engineering and archaeology.

Classification Based on the Technical Specifications - Besides the classification based on

the measurement principle, the technical specifications of individual systems are also interesting.

For instance, the field of view is chosen as a criterion for TLS categorisation[Sta03]:

• Camera scanner. Both the vertical and horizontal view of camera scanner are limited, e.g.

60◦(horizontal) × 60◦(vertical). This type is suitable for a view from outside onto the

object.

• Hybrid scanner. Only the vertical view of hybrid scanner is restricted for the use of mirrors,

e.g. 60◦(vertical). The horizontal view has no limitation and can achieve 360◦.

• Panorama scanner. The tripod of the instrument bounds the field of view of panorama

scanner. This type can be used for indoor applications, like the digitisation of chemical

plant.

In addition to the field of view, TLS can be classified according to several other important

technical performances, such as the range of TLS, the deflection system, spacial resolution and

the combination with other devices [FM04].

2.5.3 Calibration of TLS

Terrestrial laser scanner calibration is an important procedure to guarantee quality of data

captured by a TLS. Therefore, a TLS needs to undergo a strict calibration schedule prior to

operation. Self-calibration of TLS is investigated recently by many researchers [Lic07, CTL08,

Sch09, MPR+09, Lic10, Res10]. It is to identify the systematic errors inherent to modern TLS

instruments which can be modelled mathematically to improve both the precision and the accu-

racy of the acquired point clouds [Sch09, Lic10]. This procedure is a user self-calibration routine,

which can avoid the laboratory calibration by manufacturer, without high-cost and long-time

consumption. Self-calibration of TLS demands a large set of observations of a TLS from differ-

ent positions and various orientations. Depending on these observations, calibration parameters

are estimated, including the scanner position/angular/orientation elements and the target pa-

rameters. Based on the type of target used, self-calibration approaches can be categorised into

signalised point based method and planar feature based method [CLG11].

• Calibration Parameters. The calibration parameters can be categorised into two groups -

physical parameters and empirical parameters [Lic07]. The physical parameters includes
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the zero and scale errors of the laser rangefinder, the collimation and horizontal axis errors,

and the vertical circle index errors caused when the TLS can not get the theoretical state.

The physical parameters have a physical interpretation based on the properties of TLS, and

this is similar to total stations. For example, TLS systems have three fundamental axes

comprising trunnion axis, vertical axis and collimation axis. Theoretically, these three axes

should intersect at a unique point and be orthogonal with each other. Therefore, physical

parameters (as systematic errors) can be removed. For empirical parameters, they may

stay in the observational residuals, as they do not have such properties in the physical

parameters.

• Single Point Based Approach For single point based TLS self-calibration, the underlying

mathematical model is the rigid object transformation from the object coordinate space

to the scanner coordinate space [Lic07, Res10, Sch09]. In this model, exterior orientation

parameters (EOPs) are used to describe the orientation of scanner in object space. Lichti

presents a free network adjustment method to estimate the exterior orientation param-

eters, object point coordinates and calibration parameters simultaneously [Lic07]. This

method is applied to calibrate several TLSes including Faro 880 [Lic07], Trimble GS200

[CTL08], Trimble GX [CLT10]. The results show the significant improvement achieved by

this method. To further improve the quality of TLS self-calibration, a unified method is

proposed to decrease the parameter correlation in least-squares adjustment [Res10].

• Planar Target Based Approach. Compared to single point based TLS self-calibration which

needs to measure a large number of single points, planar target based approach is less

labour intensive. By using planar targets, extraction of these features can be highly au-

tomated. Similar as point based approach, exterior parameters, plane and calibration

parameters are estimated by a combined least-squares method that minimise the distance

between points and their corresponding planes with a constraint condition [BL07]. This

approach has been used to test FARO 880 with simulated and real data, and demonstrates

the improvement of observational precision of the self-calibration residuals’ standard devi-

ation. A continuous piecewise linear correction function is suggested by Molnár to replace

the harmonic and polynomial functions [MPR+09]. This correction function does not re-

quire assumptions on the shape of the calibraiton However, it requires more parameters in

the formulation. More experiments of planar based approach are in [GRG04, DNPM08].

2.5.4 Data acquisition via TLS

There is no standard rule for data acquisition using TLS, especially in the environmental field.

Different procedures of data acquisition are established according to the situation of the site

under control [GS04]. Nevertheless, the general workflow of data acquisition via TLS includes

the following main technical aspects: accuracy requirement, preliminary site investigation, posi-

tioning of TLS and data collection.

• Accuracy requirement . The original point clouds collected by TLS with certain accuracy

and resolution are required to monitor a given environmental site. In experiences, the
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resolution of the original data is much higher than the resolution of the final derived topo-

graphic product. The data redundancy is frequently used to guarantee the proper quality

as user expected. The defined accuracy and resolutions decide the setting of sampling

parameters for TLS in data collection.

• Preliminary site investigation. The collection of related documents about the monitored

site is a priori knowledge. Field exploration is yet another basic step to design the survey

plan and process some preliminary operational issues. For example, some ground control

points are designed and set up either inside or outside the monitored site according to its

underlying environmental condition.

• Positioning of TLS . After the investigation of accuracy requirement and the investigation

of the monitored site, we need to explore and fixe several issues about TLS positioning,

e.g., where to set up TLS and how many scans for each station. Several issues need

to be concerned here. For example, the distance between TLS and the monitored object

affects the sampling resolution in data capture, and the scan region needs to be specifically

selected for the following data registration from different stations.

• Data collection. Based on the previous design hypotheses (e.g., accuracy requirements,

TLS positioning), some pre-scans can be applied to check the scanning coverage and reso-

lution of point clouds. This can be further used to validate the previous design hypotheses,

and maybe hypotheses need to be further re-designed. Based on a set of practical tests,

we find the most suitable design hypotheses, and collect the final point cloud dataset.

2.6 Point Cloud Processing

After point cloud datasets collection, point could processing is the fundamental procedure to

extract useful geo-information as well as deformation. Point cloud processing has recently be-

come a hot research topic in many domains, not only in environmental fields such as geomatics,

structural engineering and civil engineering, but also in in computer science like computer vi-

sion, and computer graphics and geometry. In this section, we firstly provide related works

about point cloud processing such as point cloud registration, point cloud segmentation, and 3D

object reconstruction via point clouds; secondly, we present the application of point clouds in

deformation monitoring.

2.6.1 Point cloud registration

For one environmental site under control, one station of TLS is usually not sufficient to cover

the whole monitored region. Therefore, several stations are used frequently to capture the whole

region. In such case, registration of 3D point clouds is a fundamental and preliminary process

to put the point clouds from different stations with different coordinate frames into the same

frame [GS04]. To speed up registration, relevant point cloud indexing methods can be used.

• Coordinate frames. Like the coordinate frame in traditional photogrammetric approach

[STH80, Bro92], the coordinate frame of point clouds is a basic and fundamental aspect to
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represent and understand point cloud datasets. There are two types of coordinate frames

(or called “coordinate systems”), i.e., a scanner coordinate system and a local coordinate

system (see Figure 2.6). The point clouds captured by each scan are usually calculated

based on a coordinate system defined by a TLS station, and this is a scan coordinate

system. Different TLS stations have their own scan coordinate systems. These coordinate

systems need to be registered into the same coordinate system, e.g., a local coordinate

system, which is usually pre-defined according to the monitored object or is the particular

coordinate system requested for the monitoring objective. In the literatures like [GS04],

three kinds of coordinate/reference systems are explicitly defined, i.e, the intrinsic reference

system (IRS) of each scan, the project reference system (PRS) that is shared between more

than one scan, and the ground reference system (GRS) for sharing all scans. Therefore, IRS

is a scanner coordinate system, PRS can be the shared local coordinate system between

two scans, while GRS is the local coordinate system for all scans.

• Data registration methods. Data registration is to match different coordinate frames, or

to transfer one scan frame to a local/global frame. Data registration methods mainly

have two types, i.e., registration based on ground control points and registration based on

overlap points. The first type of methods need some fixed points on the monitored site

and these points are called “ground control points”. For registration of point clouds from

two scans, four common ground control points in two scans are required to compute the

transformation parameters like translation and rotation. These control points are usually

pre-designed in the procedure of TLS positioning. The second type of registration methods

are based on the point clouds of the overlap areas from two scans. Well-known second type

registration methods include Iterative Closest Point (ICP) and Least Squares 3D Surface

Matching (LS3D). ICP is based on the search for pairs of nearest points in two datasets

and estimates the rigid object transformation that aligns the data [BM92, Zha94]. LS3D

is also used to calculate the transformation parameters of one search surface with respect

to a template surface by minimising the sum of squares of Euclidean distances between

the surfaces [Akc07]. Both ICP and LS3D methods belong to the automatic registration

methods of point clouds.

• Point cloud indexing. In point cloud registration using ICP, it optimises the mean-square

distance objective function and finds the minimum solution. Such process requires expen-

sive computation and leads to slow convergence, especially for nearest neighbour search-

ing in each iteration. Therefore, some point cloud indexing techniques are requested

to improve the nearest point searching between two point cloud datasets. K-d tree (k-

dimensional tree) is a special case of binary space partitioning tree [Ben75] and has been

well applied in ICP method to improve searching efficiency [BM92, GG01, NLH07]. K-d

tree can be used to accelerate searching computation by searching binary tree, instead

of closest point linear search [Sim96]. Many enhanced k-d tree methods are developed.

For example, approximated k-d tree is presented using depth-first search of the k-d tree

structure, replacing a backtracking searching [GY03]. This extended method improves

the computation efficiency but with the cost of reducing the accuracy of correspondence
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searching. Another modified method is cached k-d tree, which applies caching techniques

to contain most temporarily nearest tree nodes [NLH07]. Octree is another tree structure

frequently used to partition a three dimensional space by recursively splitting this space

into eight elements [JT80, Sze96, SED07, RKR+08]. R-tree is yet another spatial access

technique and is a tree data structure for indexing multi-dimensional spatial information

[BKSS90, MNT05, SSV07, GZZ+12].

2.6.2 Point cloud segmentation

After point cloud registration, all of the point cloud datasets are aligned in the same coordinate

system. Then, point cloud segmentation can be used to assist in extracting 3D interesting

spatial features from point clouds. Usually, a scanned object has several components with

different geometrical features. Generally speaking, point cloud segmentation is the classification

of point clouds with different geometrical features, by grouping adjacent points with uniform

characteristics together [Wan11]. There are a large amount of point cloud segmentation methods

been developed recently, and can be categorised into three groups: edge-based methods, region

growing methods and hybrid methods [WKW+02, LX08, Sam10].

• Edge-based methods. The objective of edge-based point cloud segmentation is to detect the

boundaries of components from the scanned point clouds and to form partial regions us-

ing detected edges [WB94, HM01]. This can be achieved by distinguishing discontinuities

of the object using geometric properties, e.g., normals and curvatures [FMN87, YL99].

Yang and Lee present an automatic edge-based method to identify edge points from the

estimated local surface curvatures, based on a parametric surface approximation [YL99].

Sappa and Devy introduce a fast edge-based segmentation method with two steps: firstly, a

binary edge map is generated only considering two orthogonal scan lines; secondly, bound-

aries are obtained from the built binary edge map using a strategy of contour detection

[SD01]. Ding et al. use RHT (Randomised Hough Transform) based plane detection which

is robust to noise [DPHW05]. Wang and Shan segment point clouds directly based on sim-

ilarity measures, supported by fast nearest neighbourhood search. This method is utilised

to segment the building boundary and roof planes [WS09a].

• Region growing methods. Region growing methods are mainly used for grouping neigh-

bourhood points with similar geometric features together. The general procedure of region

growing methods can be summarised as follows: (1) start from a selected point; (2) calcu-

late the geometric features of this point; (3) compare these features with adjacent points;

(4) form regions by grouping points around the seed point based on similarity measures,

e.g., proximity, slope, curvature, and surface normals [Sam10]. Rabbani et al. segment

point clouds using a smoothness constraint by searching smoothly connected areas from

point clouds [RVDHV06]. In this method, however, few parameters are required to find

a suitable segmentation, balancing under-segmentation and over-segmentation. Chen and

Chen cluster point cloud datasets based on normals and point locations [CC08]. Confi-

dence rates of points are used to enforce fast clustering and to identify planar regions,
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which are affected by point location. Confidence rate might be low when points locate at

the discontinuity of surfaces, but high for points in a smooth surface. Ning et al. use the

residual of plane fitting to separate a building from architectural point clouds, as well as

concrete architectural elements like walls and windows [NZWJ09]. In summary, the main

challenges in region growing are (1) how to choose seed points, (2) how to control grow

process, and (3) how is the algorithm robustness to noise and parameters.

• Hybrid methods. Hybrid segmentation methods are the combination of edge-based and

region growing approaches [YL89]. Ghosal et al. present an approach consisting of two

stages: range growing and edge-based method [Gho93]. Firstly, region growing segmen-

tation is obtained by a surface feature-based clustering of point clouds. For the over-

segmented areas produced in the first stage, the second stage is to use edge information to

merge neighbourhood areas together as the final results. Checchin et al. propose a simi-

lar dual-step segmentation approach [CTA97]. This approach includes over-segmentation

based on RAG (Region Adjacent Graph) and the refinement of over-segmented regions us-

ing a surface-based merging technique. Compared to previous methods in [Gho93, CTA97],

Zhao and Zhang present an inverse segmentation procedure [ZZ97]. As an integration of

edge and region information, this method firstly detects edges and critical points to ap-

proximate the curves. Triangulation procedure is subsequently used to connect pairs of

edge points. Afterwards, small triangular surfaces are extended into large ones to form

segmentation, based on the normal of the surface.

2.6.3 3D object reconstruction via point clouds

3D object reconstruction is very challenging task to build a computer or mathematical model to

best fit the reality [Rem06]. This has been widely applied in different domains such as geomatics

[Sam10], heritage digital documentation [KKOF04, EhBPG04], manufacturing [Sar07], reverse

engineering [Zen12] and architecture [LN03].

Based on whether the source datasets are available or not, 3D object reconstruction can be

categorised into two types: reconstruction without object measurement and reconstruction based

on object observation [Rem03]. Reconstruction without object measurement is usually performed

by animation software for artificial graphics and objects, which are mainly used in movies, video

games, and object design (e.g., architecture, automobiles, etc.)1. Reconstruction based on object

observation is to generate 3D models for real-life objects, from datasets collected by observation

techniques. These datasets can be images and point cloud datasets. Object reconstruction from

3D point clouds could be quite challenging because: (1) the point cloud datasets are usually

unorganised and very noisy, and (2) the surfaces of the object can be arbitrary (any kind of

topological or irregular shape).

Remondino claims that polygons are usually the most flexible representation of 3D point

clouds, which can describe the surface accurately and optimally [Rem06]. A good representation

of surface have sparse polygons in regular areas, but dense polygons in explicit & irregular

areas. The procedure of polygonal surface reconstruction is concluded as follows: (1) prepare

1http://www.3DLinks.com/
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datasets including noise removal, hole filling, and point cloud resampling; (2) determine the

global topology of this surface (e.g., adjacent areas) considering breaklines, to keep the principle

spatial features; (3) create the polygonal surface to fulfil some quality requirements (e.g., size of

mesh elements, no intersection of breaklines, etc.); (4) refine polygonal surface by edit-operations,

like edge corrections, polygon editing, hole filling, and so on. Linsen also presents a similar

process of point cloud representation [Lin01]. In addition, a multi-resolution strategy is applied

to eliminate redundancy and handle huge datasets. Triangular irregular network (TIN) is used

for reconstructing polygonal surface [Ede01]. Surface is described as a set of continuous and

non-overlapping triangles.

2.7 Deformation Monitoring via Point Clouds

In this thesis, deformation monitoring can utilise very dense and high resolution points sam-

pling on the whole object, rather than only discrete points scattered on/around this object by

traditional geodetic surveying techniques. Such point clouds provide rich geometric information

of the object under monitored. In the meanwhile, point clouds also bring new challenges in

processing such huge datasets for extracting meaningful deformation information. Deformation

monitoring via 3D point clouds is a complex process that involves various point cloud processing

techniques, such as object representation to model point cloud, object detection to identify key

element from point cloud, and object tacking to check deformation/movement. Before the stud-

ies of deformation monitoring via point clouds in geomatics domain, relevant techniques have

been investigated in the fields of computer vision and computer graphics. In this section, we

firstly introduce related works of deformation analysis in computer vision and computer graph-

ics; afterwards, we discuss the development of this topic in the geomatic and geological fields;

and finally, we make some comparison between the two different types of field.

2.7.1 Related work in computer vision and graphics

Deformation monitoring is the detection of the changed parts of a monitored object over time

from a set of data at different epochs, and the analysis of their movement behaviours. The most

related topic in computer vision and computer graphics is object tracking, which is analysing

movement/deformation of the physical object with deforming geometry or texture in multiple

frames of image (or multiple epochs of point cloud). Regarding the point cloud context, this

question can be further formalised as follows: the detection of deforming geometry from a

time series of unstructured, noisy point clouds. There are several crucial techniques like object

representation, detection and tracking (or correspondence searching).

Object Representation - In computer vision/graphics, an object can be represented as any-

thing whose geometry or texture changing with ongoing frames or epochs [YJS06]. Objects are

associated with specific topics in different domains, like football players and football tracking

in a match, neuronal stacks registration in medical images analysis, prototype shape design in

reverse engineering, a spinnaker tracking during the sailing and performance capture in cartoon

animation, etc. The tracked objects can be modelled by following three representations:
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• Point-based representation. The tracking object can be simply modelled using the centroid

of the object or a set of sampling points. Compared to the whole monitored region, such

point-based object representation is quite sparse as a small subset [VRB01, SKMG04].

• Boundary-based representation. The tracking object can be modelled using a simple or

complex boundary. Simple boundary can be some regular shapes like rectangles or ellipses

containing the tacking object inside, which is suitable for both rigid and non-rigid objects

tracking [NSC06, LHN09]. Complex boundary can be the edge contour of the tracking

object or the silhouette inside the contour. This complex boundary attempts to simulate

the real irregular shape of the object, e.g., hand and body shape, which is more suitable

for complex non-rigid shapes in real life [GMV06].

• Skeletal-based representation. In addition, the tracking object can be modelled using the

skeletal of the object, which is also suitable for complex non-rigid shapes [BWL+09].

Object Detection - The main objective of object detection is to recognise the object that is

of interest from each frame or the initial frame with the object’s appearance. In addition to the

geometric information of the object, other rich description models such as colour and texture

are also utilised for object detection. Some well-known methods such as point detectors and

segmentation are highlighted here.

• Point detectors. Two main point detectors are using local features, i.e., Harris and KLT

detectors. Both use the same matrix, i.e., the second moment matrix. The difference is

that Harris detector selects an interest point by using the determinant and the trace of

the second moment matrix; while KLT detector selects an interest point by the minimum

eigenvalue of this matrix [HS88, ST94]. Different from using the second moment ma-

trix, the Scale Invariant Feature Transform (SIFT) method is developed by constructing

scale space [Low04]. SIFT detector selects interest points at different scales and different

resolutions based on the difference-of-Gaussians images. Compared to Harris and KLT

detectors, the number of interest points generated by SIFT detector are larger. SIFT de-

tector is robust, not only to basic deformation (scale, rotation and translation), but also

to affine transformations (changes in scale, rotation, shear, and position) and changes in

illumination [MS05].

• Segmentation. In past, several segmentation techniques related to object detection are

designed. (1) Mean shift clustering is an iterative procedure to locate density modes (i.e.,

the local maxima of its density) of a given distribution [CMM02]. This method does not

require the number of clusters but the kernel bandwidth. The iteration procedure contains

four steps: firstly, generate seed points and areas of interest around local maximum in

difference image; secondly, determine a vector point towards the highest density point

called ‘mean shift vector’; thirdly, move area of interest to the point that the mean shift

vector pointed to, and iterate these procedures until reaching the convergence; fourthly,

group the paths that converge to the same mode together [SRPR08]. The drawback
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of segmentation using mean shift clustering is the further calculations and parameters

tuning to get better performance. (2) Graph cut based segmentation is an image partition

problem to minimise an energy function [BP07]. In this approach, each pixel in the image

is regarded as a node in the graph. Nodes have two types, i.e., “object” or “background”.

Boundary between the object and the background is achieved using min cut (or max

cut) algorithms [SFTA08, LLN11]. (3) Active contour model or snake is a framework to

find a tight contour depicting the object boundary from an image [CKS97, PD00]. This

is a minimisation problem of the sum of an internal and external energy of a contour

[KC09, JK11].

Object Tracking - Object tracking is to continuously estimate the position of the object that

is of interest from a series of datasets (e.g., images or point clouds) at multiple epochs. This

can be achieved by detecting the object at each epoch and generating the trajectory of the

object over time. However, such method is inefficient as a couple of reasons, e.g., the dynam-

ics of object, learning of scene priors, and evaluation of different hypotheses [NT01, CRM03].

Another strategy of object tracking is maintaining the estimation of the object over time and

predicting its location in forthcoming epochs [ARS06]. Compared to trajectory-based method,

this approach is more efficient by updating object information estimated from previous epoch.

The disadvantage of this method is the requirement of the priori knowledge about the object

behaviour, e.g., the object information at the initial epoch. For both kinds of object tracking

methods, correspondence searching is the crucial problem to build the association between neigh-

bourhood epochs. We summarise object tracking techniques into three types based on its object

representation, i.e., point-based tracking, kernel-based tracking and contour-based tracking.

• Point-based tracking. This kind of tracking is to track the object with point-based repre-

sentation by finding the correspondence between the points over time. The motion model

is frequently in the form of translation model. In order to predict the status of the moving

object (e.g., its position) in the subsequent epoch/frame, the motion constraints can be

formulated using object features like location, velocity, and rigidity [SJ87]. There are two

main categories for point-based tracking, i.e., deterministic and statistical methods. (1)

Deterministic point correspondence searching can be formalised as a combinatorial opti-

misation problem to minimise the correspondence cost of object association between the

neighbouring epochs using multiple motion constraints. The selection of the one-to-one

correspondence from all possible associations can be achieved by using greedy search meth-

ods [RS91, IDB97]. (2) Statistical correspondence searching method not only considers

the object location in an image, but also takes the model uncertainty into account dur-

ing object tracking. The widely-used estimation methods for statistical correspondence

searching are Kalman filter [BC86, BK99] and particle filter [Rei79, GSS93, AMGC02].

Point-based tracking techniques can be applied to tracking a single point (e.g., a very small

object in a image) or multiple points (e.g., larger object).

• Kernel-based tracking. Kernel-based tracking method represents the object using a re-

gion contained by regular shapes (e.g., rectangles, eclipses) over time from a set of images
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[CRM03]. It uses motion models like affine or projective transformations. Template match-

ing technique has been widely used for Kernel-based tracking. The features of the region

inside rectangles or eclipses, such as image intensity, colour and gradients information,

are used to form templates [Bir98, SBW02]. Additionally, colour histogram and mixture

information of the image inside the rectangle or eclipse also can be used [PHVG02]. For

example, template matching technique and mean-shift method can be integrated to track

the object with a global motion efficiently [MCXL11]. During this procedure, the size of

template is accordingly updated, not just fixed. Additionally, stable object feature can be

selected from the dense field of displacement vectors computed by the translation of each

pixel [HS81, ST94, YD96]. Optical flow information has been empirically demonstrated

as hard constraints with benefits in efficiency and robustness. By combining with Kalman

filter, such hard constraints can be softened while keeping the beneficial parts [DM00].

• Contour-based tracking. Contour-based tracking method is suitable for tracking an object

with complex components like human body, hand, etc., which can be accurately described

by contour or silhouette inside. Similar as template matching techniques with simplified

boundary (e.g., rectangles), silhouette matching method is to find the object silhouette

(i.e., a region with a complex boundary) from the images at current epoch. In addi-

tion to using the colour information by template matching, the object model can also

use the object contour. For example, Hausdorff distance is used to identify the most

mismatched edges and emphasise the edges which are not dramatically affected by ob-

ject motion [HNR93, LCZD01]. Another approach is to find the corresponding object

silhouette across the images at multiple epochs. Compared to the point matching, silhou-

ette matching methods use the region inside and the object appearance features, not just

location-based features [KCM04]. Besides tracking the silhouette inside, the active con-

tour can be employed to track the complete object [KWT88]. This approach is to achieve

a tight contour enclosing the tracking object by minimising the contour energy function.

Colour and contour information can be integrated for contour tracking to handle occlusions

[YLS04]. Contour-based object representation is suitable for a non-rigid object tracking

with the motion model (parametric or nonparametric models).

Based on previous discussions of object tracking from the computer vision and graphics

perspective, we identified a couple of rich techniques that related to deformation and movement

analysis. From the images, rich information can be employed for object tracking, such as colour

and texture information. For 3D shapes like point clouds and triangle meshes, these informative

features are lost, while explicit geometry information can be used. Similar as tracking based

on images, descriptors (e.g., few sparse points characterising parts of surface) are detected; and

modelled by a Hidden Markov model to generate an invariant point signature; then, the similarity

matching is performed on point clouds from multiple views [CCFM08]. Another related work is

the 3D shape alignment. For example, rigid point clouds alignment is to find the corresponding

point from different views. A concrete algorithm like ICP method is presented in Section 2.6.1.

In cases of non-rigid alignment when the 3D shapes undergoing deformation, the quantification

of estimated transformation needs to be integrated. The object under deformation over time
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can be aligned by a single global rigid motion. In addition to the correspondence between the

overlapped parts, a wrapping function is required to match the deformed parts [LSP08].

2.7.2 Related work in geomatics and geological fields

Compared with the related work in computer vision and graphics, deformation monitoring via

point clouds is still in the initial stage. The early studies of deformation monitoring via point

clouds are typically based on commercial software to produce simple topographic information

[FSC+07]; and such information can help environmental scientists (or domain experts) in as-

sessing the deformation like natural hazards. Recently, the literature start to build deformation

models from 3D point clouds. The main research includes geometrical model and deformation

extraction.

Geometrical Model - The rich point clouds of the monitored object provide the possibility to

identify the geometrical properties of the object and to build a geometrical model for analysing

the deformation. Two types of geometrical models, regular shape based model and irregular

shape based model, are largely applied to extract the deformation.

• Regular shape based model. The first group of geometrical models are based on the shape

of the monitored object, e.g., plane, cylinder, etc. Therefore, we call them “regular shape

based model”. Lindenbergh et al. apply segmentation and reconstruction methods in de-

formation analysis of a tunnel [LPR05]. This tunnel is divided into a series of segments and

is represented as a cylindric model. After the model is built, the stability of this cylindric

model is analysed. Schneider uses a “bending line” model to determine deformation of a

television tower by the following steps: (1) cut point clouds of this tower into 15 layers

with incremental height; (2) project points of each layer onto 2D planes to form a circle;

(3) calculate the centre and the radius of each circle by a circle-fit algorithm; (4) link all

centres at different layers to represent the bending line; (5) determine the deformation

based on the bending line [Sch06]. The advantage of this kind of shape-based geometric

model is using the object’s geometric descriptions that can better understand the objects

(e.g., tunnels, dams, planar walls of some buildings, etc.) with regular shapes.

• Irregular shape based model. In contrast to regular shape based models, the second geomet-

rical models are built as the irregular surfaces such as triangle meshes. For example, DSM

(Digital Surface Model) is used to convert 3D point clouds into a continuous surface and

then induce comprehensive visualisation of the monitored region. Based on DSM, addi-

tional topographic products are derived, such as cross-sections, contour lines, orthophoria

and topographic maps; and these products can be used to analyse the deformation [GS04].

Another irregular shape based modelling method is to resample the point clouds to build

an two dimensional grid network; and this grid network is used to formalise a reference for

point clouds comparison to extract deformation [SWKZ04]. Alba et al. propose a similar

surface-based comparison method to extract deformation as well as to locally filter mea-

surement noise [AFP+06]. In this study, two types of meshes such as a triangular mesh
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and a regular polynomial 3D surface are interpolated and compared using the shortest

distance with resampled point clouds.

Deformation Extraction - Based on the geometric models, we can extract deformation in-

formation (e.g., parameters like displacement) by comparing the difference between the models

at two epochs of point clouds. Displacement is an important parameter in the assessment of

natural hazards like subsidence, rockfall and landslide, etc. It is frequently used to represent

the deformation on an object. For example, after building the irregular shape model using grid-

network in [SWKZ04], the displacement along Y -axis at different epochs is used to describe the

deformation of the gate scenario. In [AJOV09], a simple “nearest neighbour averaging” model

is built to enhance the accuracy of displacement detection. In the shape based modelling of

the bending line in [Sch06], the deformation is represented by the two parameters, i.e., the dis-

placement between the circle’s centre, and the difference between the circle’s radius at different

epochs.

In addition to extract deformation parameters using the models separately built on the point

cloud datasets at different epochs, another kind of approaches directly extract deformation from

two epochs of point clouds, without using individual geometric model on each epoch. The

well-known methods are the ICP (Iterative Closest Point) and the LS3D (Squares 3D Surface

Matching) for extracting rigid-transformation. The two methods directly apply a combined

model that covers both epochs of point clouds, and extract deformation parameters like “rota-

tion” and “translation”. Monserrat and Crosetto apply LS3D for estimating these deformation

parameters by local surface matching [MC08]. Similarly, Teza et al. propose a piecewise appli-

cation of the ICP algorithm to calculate a displacement field of a landslide [TGZG07].

2.7.3 Comparison between two different types of field

In Section 2.7.1, we present the related research topics such as object representation, detection

and tracking from the point of view of computer vision and graphics. In Section 2.7.2, we in-

troduce the current state of the same topic in geomatics and geological fields. We can observe

that this topic has been studied deeper in computer vision and graphics than in environmental

field. A large amount of theoretical and fundamental works have been proposed and developed

for various applications like reverse engineering and animation. Nevertheless, deformation mon-

itoring via 3D point clouds is still a relatively new topic in environmental domain, compared

with its development in computer vision and computer graphics. Its applications either depend

on the commercial softwares, or are based on some basic processing techniques from computer

vision and computer graphics.

There are some features of deformation monitoring via point clouds in environmental fields:

1) The frequency of point clouds collection in environmental domain mainly depends on the

requirements of natural hazard monitoring. For some monitoring scenarios like a sudden and

quick landslide, point data is collected frequently in a short time; while for other monitoring

scenarios such as a structure quality control, the frequency of point data acquisition is much

lower, e.g., once per year. In the second cases, the datasets might not be considered as continuous

as the datasets in the first scenarios. 2) In many case studies, point clouds provide only the
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geometry information of the object, not including other rich descriptions based on colour and

texture, which is the same as in computer graphics. Therefore, deformed parts of the monitored

object need to be detected and tracked based on the distinctive geometric features. 3) Another

advantage of point clouds is their the precise scale of the object, not like the camera images.

The distance between the camera and the object may cause scale difference and illumination

changes of the object.

From the literature on deformation monitoring using LiDAR, we identify the main advantage

is the high-density and resolution 3D point clouds, in contrast to the sparse/limited data points

in traditional deformation analysis [Ste06]. 3D point clouds provide great potential to build

rich deformation for the whole monitored object. Existing works on deformation monitoring

using point clouds in environmental fields have built a couple of nice geometrical models and

deformation parameters to identify the deformation. The main problem is that the whole area

is based on a single model (e.g., surface, or cylinder) or the same parameters (e.g., displacement

or rotation). In this thesis, we provide an automatic cell-based deformation computation that

support hybrid modelling, in which different cells can apply distinct and the most suitable model

separately.

2.8 Summary

This chapter provided a comprehensive overview of the related works of this thesis. We iden-

tified that deformation monitoring via 3D point clouds has become an attractive topic in the

environmental field, and investigated five main technical aspects. The former three aspects (i.e.,

basics of deformation monitoring, deformation measurement and deformation analysis) focused

on traditional deformation monitoring techniques using geodetic surveying, while the latter two

aspects (i.e., terrestrial laser scanning and point cloud processing) presented terrestrial LiDAR

techniques and deformation analysis using point clouds. Traditional deformation analysis meth-

ods based on discrete points are neither sufficient nor suitable for directly processing high-density

point clouds. Existing methods on deformation monitoring via point clouds are still on the very

initial stage. Point cloud datasets contain detailed geometric information of the monitored ob-

ject. This enables researchers and engineers to build informative deformation modelling and

computation. Therefore, the main objectives of this thesis are firstly to build a hybrid model

for achieving rich and explicit deformation description, and secondly to automatically compute

deformation from 3D point clouds utilising the hybrid model.
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Chapter 3
Deformation Modelling

A model should be as simple as

possible but no simpler.

Albert Einstein (1879-1955)

3.1 Introduction

In this chapter, we investigate the problems of deformation modelling, focusing on the fundamen-

tal modelling issues as well as the modelling approaches provided in this thesis. In particular, we

analyse the modelling requirements for describing deformation and design a novel hybrid model

to provide a rich deformation for a monitored region. Such hybrid deformation model is able to

model a big region with diverse deformation characteristics inside.

This chapter is organised as follows: Section 3.2 discusses the detailed modelling require-

ments to represent a rich model for deformation monitoring, which includes deformation ob-

ject (“what”), deformation type (“which”), and deformation level (“how”). Section 3.3 briefly

overviews the traditional deformation models, which are typically global models, and point out

the limitations of global modelling. In Section 3.4, we design a novel hybrid model that is

able to support diverse deformation characteristics for detecting the deformation of a given ob-

ject. Our hybrid model provides different levels of modelling, from “meta-deformation” for a

small area (e.g., cells in our context), to “sub-deformation” for a partial area, and finally to

“deformation-map” for the whole region. Section 3.5 summarises this chapter.

3.2 Medelling Requirements

This section presents the detailed requirements of deformation modelling. Based on our investi-

gation in Section 2.2 on deformation scenarios, deformation can be generally defined as a change

of an object caused by external forces. To provide a detailed deformation modelling, we need

to analyse the three main components: (1) identifying “what” has deformation under a given

monitoring scenario, i.e., deformation object; (2) detecting “which” kind of changes happened
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on the object, i.e., deformation type; and (3) investigating “how” to describe the volume of the

changes, i.e., deformation level.

3.2.1 Deformation object - “What”

As already briefly mentioned in Section 2.2, deformation objects can be at different scales, e.g.,

the local level, or the regional level, or even the worldwide global level. Deformation objects

belong to the “what” requirement in modelling deformation. We now discuss deformation objects

in terms of their two main types, i.e., artificial objects and natural objects.

Artificial Objects – In deformation monitoring, artificial objects typically are human-made

structures. Artificial objects can be structures in laboratory for the behaviour analysis of some

basic elements used for construction (e.g., beams) under load test [GLFS04]. Additionally, a

huge amount of real-life structures are monitored continuously or periodically. Some real-life

structures are in a large scale. For example, a dam of Cancano lake (Valtellina, Italy) is an arc

gravity structure with a height of 136 m and a width of 381 m at the top, which generates a basin

of about 124 million m3 of water [AFP+06]. The security of these big structures is a serious

problem, regarding to their significant impacts on the region where they are located. Therefore,

detection and tracking real-life structures are required for the conservation of the structure itself

and the surroundings. In addition, researchers also pay a lot of attention on other types of civil

structures such as bridges (e.g., the Cernadela Bridge in Spain with five arches), towers (e.g.,

the Dresden television tower in Germany with the height 252 m and the diameter 9.4 m at the

bottom), lock gates at hydropower station, tunnels (e.g., Zaventem, Belgium) and so on.

For the engineering structures discussed above, we summarises their characteristics as fol-

lows: (1) Materials of artificial structures are relatively uniform; (2) Artificial structures usually

contain some regular shapes. For instance, construction elements are normally following a stan-

dard form, dams are frequently in arches shape, bridges also comprise arches, towers can be in

a cone shape, tunnels are similar as a cylinder. Some basic geometrical characteristics can be

applied to simply describe these objects and easily find their common features.

Natural objects - Compared to artificial structures, natural objects are more complicated.

Natural objects like mountain valley and road-side slopes are typically arbitrary and unique,

and they frequently locate in complex geological condition areas, especially in hilly and moun-

tainous regions. Their stability is affected by many aspects such as geology (e.g., structural rock

properties), geomorphology (e.g., slope gradients), hydrology (e.g., water content) and vegetative

factors (e.g., vegetation cover).

We identify the common features of natural objects as follows: (1) natural structures might

contain different materials in a test site; (2) surface of a natural object is frequently irregular

and is difficult to summarise geometrical features; (3) conditions of natural objects are complex,

affected by geological, hydrologic and vegetative factors. Table 3.1 provides a summary of

deformation objects mentioned before.
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Table 3.1: Summary of deformation objects

Object Types Examples Features

Artificial objects Construction elements in laboratory a. Relatively uniform material

Real-life engineering structures b. Regular surface
e.g.,dams, bridges, towers, hydro-
stations

Natural objects Mountain valley a. Different materials
Road-slide slopes b. Irregular surface

c. Complex condition

3.2.2 Deformation type - “Which”

Deformation of an object is a complicated natural phenomenon that could be driven by environ-

mental changes (e.g., temperature, erosion, subsidence, etc.) or external forces (e.g., rainfall and

snowfall, earthquakes, vegetation change, etc.). To provide a meaningful deformation descrip-

tion, we need to identify a suitable deformation type, which is one of the three most important

requirements in modelling deformation. Deformation type can be an atomic geometric change,

e.g.,displacement, rotation, pure shear, simple shear, or a complicated deformation that is com-

posed of several different atomic changes. In this section, we investigate the most frequently

used deformation types.

We firstly study the atomic deformation types that are widely used in deformation monitor-

ing, for example, displacement, rotation, translation, strain, pure shear, simple shear. According

to the literatures and the deformation characteristics, we can divide these atomic deformation

types into two categories, i.e., rigid deformation and non-rigid deformation.

Rigid Deformation - Rigid deformation is widely used for analysing the change of an object,

which can be measured by using displacement. Such displacement has no change in terms of

shape or size of the object, i.e., the object keeps identical and the points insides the object are

relatively stable. Displacement is one of the most general concepts for describing deformation

in different domains such as physics, structural engineering and geology. Typically, displace-

ment is defined as the movement of an object due to some external forces, i.e., measuring the

difference from the initial position to its final position. To analyse the displacement of a given

object under monitoring, researchers and engineers frequently apply the Euclidian distance to

measure the change, from specific dimensions (e.g, 1D, 2D, or 3D). For example, distances along

the longitude/latitude direction (i.e., X and Y axis) is typically used for analysing horizontal

displacement; whilst the distance along the altitude direction (i.e., Z axis) is used for analysing

vertical displacement. The vertical displacement is widely used for analysing the deformation

of subsidence for natural environment. In addition, some literatures and scenarios focus on

analysing another type of displacement along non-fixed directions, i.e, angle displacement. In

some deformation terminologies, horizontal displacement and vertical displacement are grouped

together and entitled as translation; whilst angle displacement is called rotation. Figure 3.1

illustrates these rigid transformation types in terms of three aspects, i.e., semantic description,

graphic description and examples. More detailed explanation of these examples are listed in the
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following paragraphs.

Semantic Description Graphic Description Examples 

Vertical displacement 
(along z axis) 

 

 Vertical deflection of 
construction 
elements under 
incremental loads  

 Displacement 
between structure‐
surface model at 
different epochs 

 Subsidence, erosion 
 Translational 

movement 
 Elevation difference 

Horizontal displacement 
(along x or y axis) 

  Horizontal 
displacement of a 
dam caused by water 
level change in a 
basin 

  Horizontal surface 
displacement 
between the 
reference and 
template 

Angle displacement 
(Rotation) 

  Rotation of rock 
movements in a 
landslide 

 Approximation of 
rotational motion of 
a landslide  

 Angle variation of 
partial area inside a 
slope 

 

 

 

   

Figure 3.1: Rigid deformation types

There are a lot of application scenarios using these types of rigid deformation to represent the

deformation of artificial structures and natural objects. Vertical displacement is a most general

change description applied for construction elements under loading test, real-life engineering

structures and unstable slopes. Some examples are lists in the following aspects:

• Construction elements. Many construction elements including a timber beam (5.0 m ×
0.2 m × 0.1 m), L-shaped concrete beam (7.0 m × 0.5 m × 0.5 m) and timber stringers

(a horizontal beam with a cylindrical shape) are tested with incremental loads [GLFS04].

Vertical displacement is frequently chosen as the major deformation feature in these case

studies. Such displacement can be extracted from both terrestrial LiDAR datasets and

photogrammetric targets and compared. More examples can be seen in [OKCH10].

• Dams. Dams are one kind of most common real-life structures. Displacement has been
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frequently used to describe the deformation of dams, for example, Pacoima Dam (Califor-

nia, U.S.) [BHK98], Alibey Dam in Turkey [GKHMA06], the Cancano Lake (Valtellina,

Italy)[AFP+06], Mornos dam in Greece [GS08], Ataurk Dam (Turkey) [KAB10], etc.

• Bridges. Vertical displacement also plays an important role in deformation analysis for

bridge safety monitoring. One-dimensional displacement is taken from several positions

on the bridge and used to estimate the maximum displacement in the centre [MH06].

Moreover, deformation of the bridge displacement between two epochs is extracted in

static load test and dynamic test. More case studies of bridge displacement are presented

in [SBT93, Nak00, NPS06, Tan09].

• Other structures. For other kinds of structures, displacement is also applied for defor-

mation representation. For example, displacement of cooling tower (via surface model)

at two epochs [IVGT06], surface displacement of the lock gates of a hydropower station

[SWKZ04], a tunnel surface displacement [NDWB+10], and so on.

• Unstable slopes. Vertical displacement is also widely used in analysing deformation for

slope movement. As a worldwide natural phenomenon, slope movement has several types,

such as falls, topple, slide, spread, and flow [WS09b]. From geometrical change perspec-

tive, all these slope movements include vertical displacement. For instance, a displacement

is identified in the central part of La Valette landslide located in French Alps [SDA05]. In

Galierm landslide case study, slope movement rate was modelled by displacement vectors

[PP09]. Elevation difference of a highway embankment (an earthwork slope in Northumber-

land, U.K.) is tested and this displacement is coincidence with known changes [MMB+08].

More examples are given in [K0̈0, SPT+03, KYS08, JOA+10, CSR10, LDHH11].

In addition to vertical displacement, horizontal displacement is another frequently-used de-

formation indicator in various scenarios. The dam deformation can be caused by water level

difference in the basin, and this is modelled by horizontal displacement on the middle of dam

crest [AFP+06]. Horizontal surface displacement is extracted by using Euclidian distance be-

tween the reference surface and the matching templates [DGK12].

Besides vertical and horizontal displacement, rotation (angle displacement) of monitored

object is yet another kind of deformation model which is interest to researchers and engineers.

For example, three rocks movements in the landslide located in the Central Pyrenees (Spain) were

represented by using rotation [MC08]. A displacement vector map is generated to approximate

the rotational motion of the landslide at Perarolo di Cadore (Italy) [TPGG08]. The stability of

a slope is described by angle variation of partial area inside [WGM12].

Non-Rigid Deformation - In contrast to rigid-deformation that analyses the displacement

without change on size or shape of the monitored object, non-rigid deformation can analyse

changes in terms of shape and size (inside). In other words, rigid deformation is about absolute

change according to a reference coordinate; whilst non-rigid deformation studies the relative

change for the partial points on the object under monitoring. Non-rigid deformation has three

main types, i.e., pure shear, simple shear, and strain. Pure shear is to measure the expand
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(enlarging) or contract (diminishing) of an object along one or more axis (X, Y , or Z), corre-

sponding to the change of the size. Simple shear is to measure the local angle change; as shown

in Figure 3.2, an object to simple shear does not change in length but undergoes a change in

shape. Strain is to further describe the unit relative displacement of particles on the object,

and it typically uses the gradient to quantify the tensor. Figure 3.2 illustrates these non-rigid

deformation.

Semantic Description Graphic Description Examples 

Pure shear 

 Compression motion 
(volume decreasing) 

 Extension motion 
(volume increasing) 

 Non‐rigid deformed 
object matching 

 Elongation of an 
object along x or y axis

 Volumetric change in 
rock glacier 

Simple shear 

  High shear caused by 
significant change in 
flow direction and 
speed 

 Relative rotation 
trend of partial area in 
landslide 

Strain 
(ratio) 

  Normal  strain  (the 
change  in  length  of 
lines inside an object) 

 Shear  strain  (the 
change  in  angle 
between  intersecting 
lines inside an object) 

 Characterization  of 
the  kinematics  of  the  
landslide surface  
 

 

Figure 3.2: Non-rigid deformation types

These non-rigid deformation types have been largely used in many application scenarios.

Pure shear is a factor related to the size of the object and is usually categorised into compression

and extension. These two motions show the volume decreasing or increasing of the object. If the

pure shear factor is greater than 1, the object becomes bigger, which is in the state of extension.

On the contrary, if the pure shear factor is less than 1, the object becomes smaller, which is in

the state of compression. Volumetric changes are explicated presented in rock glacier [HHA+06].

Pure shear parameter is included as one element in a 7-parameter 3D similarity transformation
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method; such 7 parameters include 3 translation (along X, Y , Z axis), 3 rotation (for the 3 axis),

and 1 pure shear. This method has the ability of handling multi-scale datasets [GA05]. Similarly,

pure shear is also employed in least squares matching algorithm to represent the elongation of

an object along X or Y axis [DGK12].

Simple shear is an indicator of relative rotational movement of an object. For example, a

high simple shear rate is detected from partial areas in the rock glacier located in the Muragl

valley of the Upper Engadine area in the Swiss Alps, which caused by the significant changes in

the flow direction and speed. Moreover, the Nigardsbreen Glacier and the La Clapiere Landslide

is also demonstrated by using simple shear pattern [DGK12].

As a normalised value for describing deformation, Strain can be divided into normal strain

and shear strain. Normal strain is to represent the change in length of lines inside an object;

whilst, shear strain is to describe the change in angle between intersecting lines inside an object.

Normalised shear pattern has been shown in the contour map for analysing the change at

Lamosano village in the northeastern Italian Alps, which indicates the complex kinematics of

the landslide happened there [TPGG08].

Complex deformation - In real-life deformation scenarios, different deformation types usu-

ally happen in parallel, and compose a more complicated deformation situation. Rigid (like

displacement, rotation) and non-rigid deformation (like pure shear, simple shear and strain) are

mixed together in a real-life case study. Therefore, we need to combine these atomic deformation

types together to demonstrate the real change and movement of an object. Recently, researchers

start to build mixed models for analysing real-life deformation phenomena. For example, the

deformation analysis of the Perarolo di Cadore landslide (in Italy) has applied the strain model

on the field, as well as the displacement model [TPG08].

3.2.3 Deformation description - “How”

After the summarisation of various deformation types, how to describe deformation is another

important issue to assist in the understanding of the deformation phenomena. Generally speak-

ing, there are two kinds of strategies for deformation description: quantitative and qualitative.

Quantitative description. Quantitative description is a numeric representation of one spe-

cific deformation including magnitude and direction. For each deformation, we can calculate

a quantitative value through post-processing. Based on the physical meanings of these values,

quantitative description can be categorised into absolute value and relative value. Absolute val-

ues, such as displacement and rotation, are the movement of a rigid object, which means that

the initial positions inside the object keep the same. Relative values, like normal strain and

shear strain, are the the change inside the object, which means that the size or the shape of

the object could change in this procedure. The description of these deformation types has al-

ready been mentioned in Section 3.2.2. In this section, we provide a more detailed quantitative

measurement of these deformation types.

Translation displacement — We assume that there is an object with the spatial changes driven

by the action of external force. A point P is assumed to be on the object surface and is moved
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from the initial position P I = (xI , yI , zI) at Epoch I to the final position P II = (xII , yII , zII)

at Epoch II, shown by Figure 3.3. P II can be expressed by vector as Equation 3.1 and by

coordinate as Equation 3.2:

P II = P I +D (3.1)

x
II

yII

zII

 =

x
I

yI

zI

+


Dx

Dy

Dz

 (3.2)

where D is the translation displacement vector; Dx and Dy are the horizontal displacement

along X− and Y− axis, respectively; Dz is the vertical displacement along Z− axis.

I 

II

PD D

IIP

Z
D

zD

yD
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Y

X
Dp

O

r’ PD

Figure 3.3: Vertical and horizontal displacement of a point from Epoch I to Epoch II

Rotation displacement — We assume that an area is rotated from the initial position at Epoch

I to the final position at Epoch II, shown by Figure 3.4. This area can be a whole object or

a sub-area of an object. Points on this area are PI = {P I1 , · · · , P In} at Epoch I and PII =

{P II1 , · · · , P IIn } at Epoch II. PII can be written as

PII = R×PI (3.3)

[P II1 , · · · , P IIn ] =


R11 R12 R13

R21 R22 R23

R31 R32 R33

× [P I1 , · · · , P In ] (3.4)

where R is the rotation matrix of this rigid area and is regarded as rotation displacement;

Rij is the element of this rotation matrix.

Pure shear — We assume that an object is extended or compressed from Epoch I to Epoch II

(see Figure 3.5). Pure shear is the change in size between the final object and the initial object,
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Figure 3.4: Rotation of an area from Epoch I to Epoch II

which be expressed as follows,

S =
l + ∆l

l
(3.5)

where S is the anisotropic scaling change between two epochs; l is the original distance at Epoch

I; ∆l is the changed distance at Epoch II, as shown in Figure 3.5.

II l

Z I 

l

Y

XO

Figure 3.5: Anisotropic scaling change of an object from Epoch I to Epoch II

Simple shear — We assume that the shape of an object is changed under an external force. The

force direction is shown by an arrow in Figure 3.6. Simple shear is the change in angle between

two lines that are initially perpendicular and is expressed as:

γ = θ (3.6)
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where θ is the angle at the corner of an initial rectangular element.
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Figure 3.6: Simple shear of a line from Epoch I to Epoch II

Strain — Strain is the ratio of deformation (e.g., the change of the length) and the original

length. Normal strain is about the length change, whilst shear strain is more related to the

angle change. Normal strain and shear strain can be expressed by Equation 3.7 and Equation

3.8, respectively.

εn =
∆l

l
(3.7)

εs =
∆u

l
= tan θ (3.8)

where ∆l and l are the same as the previous definitions in Equation 3.5; ∆u is the movement of a

changed corner under the force. Table 3.2 summarises the quantitative deformation description.

Deformation type Deformation parameter Geometric meaning

Rigid
deformation

Translation
displacement

D = {Dx, Dy, Dz} Displacement along along
X−, Y−, and Z− axis, re-
spectively

Rotation dis-
placement

R Rotation of an object from
the initial position to the
final position

Non-rigid
deformation

Pure shear S The change in length be-
tween the final position
and the initial position

Simple shear γ The change in angle be-
tween two lines that are
initially perpendicular

Strain εn, εs The ratio of deformation
and the original length

Table 3.2: Summary of deformation parameters
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Qualitative description - The quantitative deformation description is largely used in the

literature by researchers and domain experts in the environmental scientists. However, such

quantitative deformation values are hard to be directly understood by non-expert people in

most cases. Therefore, from the semantic point of view, we need related qualitative description

to provide a more meaningful representation of the associated numeric deformation. Usually,

these semantic description is defined by empirical knowledge.

For example, to monitor the deformation of a slope condition, there are two numeric mea-

sures, i.e., the factor of stability and the topographic wetness index. However, even with

such two values, people are still hard to know the real underlying meanings. In order to help

users to easily understand current safety situation of the slope, a three-level semantic descrip-

tion 〈Low, Medium, High〉 are classified for risk grading according to the defined threshold

[MMB11]. Similarly, the geometric significance of relevant deformation results is also cate-

gorised into the same three categories, i.e., 〈Low, Medium, High〉, and finally such qualitative

description is used to generate a significance map [TPGG08].

3.3 Global Model

In the previous section, we have already expressly discussed the deformation modelling require-

ments, which include the problem of “what+which+how”. Based on this modelling requirement,

the objective of deformation modelling is to concretely identify these components for a given

deformation scenario that needs to be analysed, especially deformation type and description.

The deformation monitoring of an unstable object in essence is to estimate geometrical

changes of this object during a time period. For a given deformation scenario, researchers

and engineers set up an experimental platform that can capture observations (measurements,

or datasets). Based on the measurements, the deformation (or changes) can be estimated in

terms of comparing the observations sampled on this object between different epochs; and we

can consider the differences of this object at different epochs as the deformation. Technically

speaking, the main concern of deformation modelling is to formalise the input and the output

of the deformation monitoring, where the input is the observation datasets, and the output is

the modelling three components (i.e., the “what + which + how”). The detailed procedure of

“how to get the output from the input” is the focus of deformation computation, discussing our

cell-based computing framework that will be the main content of Chapter 4.

Low-sampling datasets collected by classical geodetic methods such as total station or GNSS

technique are one kind of standard inputs for deformation analysis. This is largely used in

traditional deformation analysis literatures. Figure 3.7 shows the sparse points on an object

under monitoring. In this scenario, the coordinates of these control points {L1, · · · , Ln} are

the observations with low-sampling density (typically less than 20 observation points for most

scenarios). For deformation analysis, measurements at two epochs are at least required such as

LI = {LI1, · · · , LIn} at Epoch I and LII = {LII1 , · · · , LIIn } at Epoch II.

To estimate the deformation based on these observations at two epochs, researchers and

engineers typically build a global model (see Equation 2.2 in Section 2.4.2) using these discrete

point datasets. The modelling outputs are the deformation parameters that can be extract-
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Figure 3.7: Low-sampling datasets of a monitored object

ed/estimated by relevant optimisation method. In this section, we present some general global

models that frequently used in deformation estimation, and explain the geometric meanings of

the parameters in these models.

Displacement vector - Displacement vectors D are associated with a set of common control

points at two epochs and are formalised as

D = LII − LI (3.9)

Usually, these control points have two groups: stable points (i.e., LStable) and unstable points

(i.e., LUnstable). Stable points are used to compute the coordinate frame; whilst, unstable points

are applied for extracting the difference (e.g., displacement). Therefore, the displacement vector

is restricted to the stable common points and their related coordinate system.

Polynomial Approach - As a well-applied displacement function, polynomial approach pro-

vides the approximation of the displacement field. A polynomial function in 2D dimensions can

be formalised as

(
dx

dy

)
=

(
a0 + a1x+ a2y + a3xy + a4x

2 + · · ·
b0 + b1x+ b2y + b3xy + b4x

2 + · · ·

)
(3.10)

where x and y are the coordinates of the discrete points; dx and dy are the displacement along

the x and y axes.

S-transformation - Based on the displacement vectors of a deformation field, we assume that

deformation of points between two epochs follows a relative rotation, translation and a scale

adjustment. Therefore, a s-transformation (similarity or Helmert transformation) model is built

[Che83, SS01]:

D = H × TS + V (3.11)

where D is displacement vector in deformation field; V is residual vector; TS is S-transformation
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matrix expressed in Equation 3.12; H is a design matrix given by Equation 3.13

H =
[
tx ty rz s

]′
(3.12)

where tx and ty are the translation along X− and Y− axis, respectively; rz is the rotation

around Z− axis; s is the scale of the network.

H =


1 0 1 0 · · · 1 0

0 1 0 1 · · · 0 1

yc1 −xc1 yc2 −xc2 · · · ycn −xcn
xc1 yc1 xc2 yc2 · · · xcn ycn



′

(3.13)

where xci and yci are the coordinates of point Li = {xi, yi} which are reduced to the centre of

gravity of geodetic network formed by all the control points, i.e.,

xci = xi −
∑n

i=1 xi
n

(3.14)

yci = yi −
∑n

i=1 yi
n

(3.15)

where xi and yi are the coordinates of point li; n is the number of common points in the geodetic

network. This S-transformation model is suitable for two-dimensional geodetic network. The

last row of H can be omitted, when there is no scale change.

3.4 Hybrid Model

In the previous section, we discussed the global models, which are largely used in traditional

deformation monitoring. For a given object under monitoring, the global model typically applies

only one type of deformation, e.g., displacement. However, for a large area (e.g., a big mountain

slope) being monitored, we may need to apply different models for specific partial areas; there-

fore, this impulses us to build a richer and hybrid model, where different models can be applied

to selected regions in the monitoring object.

Traditional geodetic data collection has limited data points, which are suitable for applying

the global model (as the observation points are quite sparse like only 20 points for a large

region) but not for the hybrid model. Recently, high density point cloud datasets (e.g., a point

cloud has one point per 5mm) offer us the possibility to utilise the geometrical features of the

monitored object. The geometrical features include the basic shapes of monitored objects, e.g.,

plane, cube, cylinder and so on, which can not be used in the classical analysis methods with low

sampling density data (discrete points). Based on these geometrical features, a global model of

the monitored object is applied to fit the point clouds on the surface of this monitored object at

different epochs. For example, this method is performed in the deformation analysis of a bored

tunnel by means of terrestrial LiDAR [GLP06]. In this work, A cylinder - the main geometrical

features of tunnel - is used to parameterise and fit the actual tunnel point clouds; the existence
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of the deformation occurred between two epochs of tunnel measurements is verified. In addition,

the Cartesian coordinate system is adjusted into a cylindrical coordinate system to reduce the

observation space and build more efficient estimation.

Point clouds (see the dense points in Figure 3.8) provide the capability to detect detailed

surface information of the monitored object, especially for the partial areas of this object. In

Figure 3.8, D1, D2 and D3 are the three important partial areas in this object; and there

three partial areas have distinctive deformation characteristics that need to be independently

identified. Therefore, we need a richer and hybrid model for such real-life scenarios. Now, the

problem of deformation analysis can be formulated as follows: given two sets of point clouds

sampling on a monitored object Obj at the two different epochs (i.e. PI = {P I1 , P I2 , · · · , P InI
}

and PII = {P II1 , P II2 , · · · , P IInII
} both in Ω ⊆ R3, where each Point PIi = [xIi , y

I
i , z

I
i ]
> and

PIIi = [xIIi , y
II
i , z

II
i ]>), we want to compute informative deformation description of Obj.

Now, we want to further identify the limitation of global modelling on the rich point clouds

dataset, and claim that the global model based on discrete points (see Equation 2.2) is not

an appropriate solution for our proposed problem. Two main reasons can be summarised as

computational ability and distinctive deformations of the object.

• From the point of view of the computational ability, the global model based on discrete

points can not satisfy the requirements of modelling high density point clouds. With

millions of point cloud observations P, the number of observations NP is too much larger

than the number of parameters NX (NP � NX), if applying a global model (e.g., rigid-

deformation like displacement). Therefore, it is ineffective to solve this overdetermined

system. A global deformation model can not be estimated for the whole object using the

point cloud datasets. Therefore, instead of using a global model for all of the big region

under monitored, we propose cell-based method that only a small cell applies a single

model. In Chapter 4, we will further discuss why we need the cells to split the problem.

• For traditional geodetic observations, the global model works well for an object with

similar/uniform deformation in the whole object M(X), but not an object with distinctive

deformations in different partial areas. Because the deformations on an object in nature is

heterogeneous, which means the change direction, change orientation and deformed volume

Figure 3.8: Point cloud datasets of a unstable object
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are not necessary to be consistent in the whole deformed object. For example, Figure 3.8

has three specific areas (D1, D2 and D3) with distinctive deformation characteristics, then

a complete global model cannot provide a correct model for all partial areas.

Therefore, with the high density point clouds, we develop a hybrid model for analysing

deformation:

PI −PII = F (M1(X1),M2(X2), · · · ,Mu(Xu)) + V (3.16)

where P is the point clouds at two epochs (PI and PII), and V is the modelling residual

that also used in global modelling in Equation 2.2; F (M1(X1),M2(X2), · · · ,Mu(Xu)) is the

hybrid model, and this hybrid model includes u sub-models for comprehensively modelling the

deformations of this object; Mi(Xi) is deformation models of partial areas on this object. This

hybrid model can offer more precise information on the partial areas and also an informative

description of the whole object.

In order to provide better explanations and understandings of this hybrid model, we sub-

sequently define three main concepts in this hybrid modelling approach. These three concepts

are: meta-deformation, sub-deformation, and deformation map.

3.4.1 Meta-deformation

The hybrid model (Equation 3.16) is designed to give a comprehensive description including

different distinctive sub-models for partial areas of the monitored object. In some cases, the

priori information of the interested/partial areas are given to analyse the deformation. But, in

many real scenarios, we cannot get such a priori knowledge of the partial areas in advance. To

automatically identify such partial areas, we split this object into many 3D cells and each cell

has two corresponding point cloud datasets inside – at Epoch I and Epoch II respectively, e.g.,

CI and CII in Figure 3.9. Meta-deformation is proposed to describe the deformation of each

pair of corresponding cells at two epochs.

IC IIC

Epoch I Epoch II

Figure 3.9: Two corresponding point cloud datasets at Epoch I and Epoch II respectively (to
simply the draw, this is shown in 2D)

Definition 3.1 (Meta-deformation). Let CI and CII be two correspondent split 3D cells at

Epoch I and Epoch II, CI ∈ PI and CII ∈ PII . The meta deformation DC is the geometrical
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change between two correspondent parts CI and CII :

DC = CII − CI = DC(CI , CII) (3.17)

DC can apply different parameters to describe the geometrical changes, such as vertical dis-

placement, angle variation, rotation, translation and pure deformation [Che83].

• Vertical displacement DC(V ) : V = Z(CII)−Z(CI) are the classical description of defor-

mation and are widely used in geodetic engineering.

• Angle variation DC(δ) : V = δ(CII) − δ(CI) is to identify the rotation of the object and

can be described as the angle between the two normals of initial and deformed surfaces.

• Translation and rotation DC(R, t) : CII = [R|t]CI is the rigid transformation of one cell.

• Pure deformation is the stress-induced change in the shape or scale of the body.

Those geometrical changes (including vertical displacement and angle variation) are applied

in this study for meta-deformation estimation. This is because the cell size is reasonably small,

and we can achieve a uniform geometrical change in a small cell.

3.4.2 Sub-deformation

Based on the estimation of meta-deformation for each cell by a uniform model, the adjacent

cells with similar deformations are merged together as a partial area of the monitored object.

We can then achieve the second level of deformation, i.e., sub-deformation.

Definition 3.2 (Sub-deformation). A sub-deformation is dedicated to the ith partial area of

the object and describes the deformation property of this partial area, i.e., DA
i = Mi(Xi). Sub-

deformation is typically computed by merging the adjacent cells (Ci, · · · , Cj) based on their

similar meta-deformations DC
i .
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Figure 3.10: Deformation map of one monitored object (with u partial areas of sub-deformation)

Taking Figure 3.10 for example, cells are merged with their neighbourhood cells according

to their meta-deformation. For Mi(Xi), we can compute integrated deformation values based on

meta-deformations of the cells (Ci, · · · , Cj) inside this partial area. In this figure, we compute

u partial areas’ sub-deformation, i.e., from DA
1 to DA

u .
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3.4.3 Deformation map

Based on the meta-deformation for small cells and the sub-deformation for partial areas, we are

able to generate a complete deformation description to represent the whole monitored object,

i.e., deformation map.

Definition 3.3 (Deformation map). D = {DA
1 , D

A
2 , · · · , DA

µ } is the description of distinctive

deformations for all of the partial areas in the complete monitored object, i.e., DA
i = Mi(Xi).

Each Mi(Xi) is a sub-deformation model of the partial area that is composed of a group of

cells (Ci, · · · , Cj). F (M1(X1),M2(X2), · · · ,Mu(Xu)) is the hybrid model with sub-deformation

models for all of the partial areas on the monitored object.

Regarding building the deformation map of the monitored objects, there are two kinds of

deformation map:

1. All of the partial areas in the monitored object have the same deformation type but with

different deformation parameters defined in Equation 3.18.

PI −PII = F (M(X1),M(X2), · · · ,M(Xu)) + V (3.18)

where

• PI and PII are two point cloud observations of the monitored object at Epoch I and

Epoch II, respectively;

• M(Xi) is a sub-deformation model of a partial area inside this monitored object;

• F (M(X1),M(X2), · · · ,M(Xu)) is the hybrid model including the same deformation

type M(X) with distinctive parameters Xi at different partial areas;

• V is the residuals between the hybrid model F () and the deformation of the monitored

object.

2. All the partial areas in the object have different types of deformations (e.g., subsidence,

slope angle, translation and rotation) defined in Equation 3.19.

PI −PII = F (M1(X1),M2(X2), · · · ,Mu(Xu)) + V (3.19)

where

• PI , PII , V are the same symbols as in Equation 3.18;

• Mi(Xi) are sub-deformation models of partial areas inside this monitored object;

• F (M1(X1),M2(X2), · · · ,Mu(Xu)) is the hybrid model including different deformation

types Mi(X) with distinctive parameters Xi at different partial areas.

Table 3.3 summaries all of the important symbols in this chapter.
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Symbol Description

PI , PII Two point cloud datasets of the monitored object sam-
pled at Epoch I and Epoch II

Pi: [xi, yi, zi] One point including three coordinate components inside
a point clouds data set

CI , CII One cell with two corresponding point cloud datasets
inside – respectively at Epoch I and Epoch II

DC
i,j,k Meta deformation of the 〈i, j, k〉cell

DA
i Sub-deformation of the ith partial area

D Deformation map of the monitored object

M(Xi) A global model for all partial areas

Mi(Xi) A uniform model for the i-th partial area

F Hybrid model of the monitored object

Table 3.3: Notations of symbols

3.4.4 Discussion

Previously, we proposed the hybrid model including meta-deformation, sub-deformation and de-

formation map. The meta-deformation is a uniform deformation for a single “rectangle”/“cube”

cell by regularly split. The simple strategy can be applied to any shape kind of object. There

is a limitation about using such regular cells for meta-deformation and deformation tracking.

In real-life, object has arbitrary shape and deformation analysis should consider these irregular

shapes. Therefore, we additionally introduce the “meta-cell” concept to increase the continuous

attribute of deformed parts inside the monitored object and extend the hybrid model to support

data-driven cells with arbitrary boundary (see Figure 3.11). This meta-cell is similar to “pixel”

in image analysis, and this meta-cell will be detailedly designed in building arbitrary data-driven

cells. It will be used in movement tracking as one important extension in Section 6.4.

Meta 
cell

yN Cell

xN

Big font

12

(a) Regular cell

Meta 
cell

yN Cell

xN

Big font

12

(b) Arbitrary cell

Figure 3.11: Data-driven cell

The red cell in Figure 3.11(a) depicts the first assumption that one cell contains the deformed

object. This red cell cannot accurately describe the boundary of the irregular deformed parts.

There exists large empty space at the corners of this red cell. Compared with Figure 3.11(a),
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the red cell in Figure 3.11(b) can provide the deformed object boundary more accurately. This

cell is not a regular shape (a single rectangle or cube), which is composed of multiple small

cells. This kind of small cell is defined as meta-cell. Now, one cell composes of several meta-cells

and can be any arbitrary boundary. Besides supporting arbitrary boundary, this irregular cell

can also keep continuous deformation of this deformed part, i.e., movement tracking in terms of

small meta-cells as the unit not a big cell. Additionally, the arbitrary boundary of the deformed

part can help us to better understand its geometrical features.

3.5 Summary

This chapter presented a detailed explanation about deformation modelling. Specifically, we

provided an explicit and comprehensive overview of deformation modelling requirements, in-

cluding three main parts, i.e., what has deformation, which kind of deformation type, and how

to describe deformation. For deformation objects, we presented two main kinds of objects such

as artificial structure and natural objects, and studied their common geometrical features. For

deformation types, we illustrated geometric changes of an object in terms of atomic deformation

type (e.g., rigid and non-rigid deformation) and complex deformation. Regarding deformation

parameters, we demonstrated general deformation representation methods, in terms of both

quantitative numeric values and qualitative based semantic description.

After investigating a comprehensive modelling description, we analysed the global model

based on low-sampling datasets (i.e., discrete/sparse points) collected by classical geodetic meth-

ods (e.g., GNSS) and observed that the global model can not satisfy the requirements driven

by high density point cloud datasets. Therefore, we developed a hybrid model including meta-

deformation, sub-deformation, and deformation map to describe deformation from cell to the

whole object. Meta-deformation is the geometrical change of small cells between two epochs;

sub-deformation is the deformation description of partial areas inside the object; deformation

map is the composed deformation description for the whole region. Additionally, we extend this

hybrid model to support the arbitrary boundary cell with continuous deformation and geometric

features.
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Chapter 4
Cell-based Deformation Computation

A journey of a thousand miles

begins with a single step.

Laozi (∼571 BC-471 BC)

4.1 Introduction

In Chapter 3, we discussed the deformation modelling, with a specific focus on the “input” and

the “output” of deformation monitoring. In this chapter, we present a supportive computing

solution to transfer the input (i.e., high density point cloud datasets) to the output (i.e., the

informative deformation map). In particular, we design a novel cell-based deformation computing

framework that is able to extract hybrid deformation in a large monitored region. This is a novel

approach for deformation monitoring in Earth environment using LiDAR and can generate an

informative deformation description automatically. Distinctive deformation characteristics for

different partial areas are extracted, without given a priori knowledge.

This chapter is organised as follows: Section 4.2 provides a generic problem statement of

deformation computation, and introduces our cell-based approach that has three main steps, i.e.,

“split”, “detect”, and “merge”. Section 4.3 concretely presents the “split” step, which divides

the whole region into uniform cells using the R-tree indexing technique. Section 4.4 focuses on

the detailed deformation detection algorithms for individual cells, where the deformation can

be extracted via a single uniform model. Section 4.5 discusses the final “merge” step that is

able to group the cells into partial areas according to the deformation status, for generating

the final deformation map. Finally, Section 4.6 gives a summary of this cell-based deformation

computation approach.

4.2 Deformation Computation

In this section, we firstly present the problem statement of deformation computation, secondly

discuss the motivation of designing a cell-based approach, and finally explains our cell-based
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deformation computation framework.

4.2.1 Problem statement

Deformation computation is the process of designing relevant algorithms to automatically extract

the deformation description for a given monitored region with two epochs of points clouds

from LiDAR. During the deformation computing process, relevant deformation description can

be represented as the models defined in Chapter 3, particularly the final deformation map.

Therefore, this “deformation computation” problem has the following input and output:

• Input: the two epochs of scanned point clouds by LiDAR and each epoch contains a large

set of 3-dimensional data points, i.e., PI = {P I1 , P I2 , · · · , P InI
}, PII = {P II1 , P II2 , · · · , P IInII

},
where Pi is a single point [xi, yi, zi] .

• Output: the complete “deformation map” for this area, i.e., D = {DA
1 , · · · , DA

m}, where

DA
i is the ith partial area Ai with a uniform deformation description. Therefore, this

output “deformation map” (D) supports hybrid and distinctive deformation description

in the complete area.

4.2.2 Why cells for deformation computation?

We now discuss the motivation of designing a cell-based approach for deformation computation,

as well as the benefits from using cells.

Potentiality of Point Clouds - Recently, the development of the terrestrial LiDAR technology

provides ability to efficiently capture a huge amount of point clouds on the monitored object, as

shown in Figure 4.1(b). This is in contrast to traditional geodetic surveying techniques that only

capture a small set of discrete points as shown in Figure 4.1(a). The new point cloud observations

of the monitored object become highly-dense 3D points at Epoch I (PI = {P I1 , P I2 , · · · , P InI
})

and Epoch II (PII = {P II1 , P II2 , · · · , P IInII
}). These point clouds can capture a very high coverage

on all of the partial areas of this object. Point clouds with high redundancy in spacial dimensions

show the great potentiality for richer deformation detection. Point clouds provide the possibility

to expand the description of deformation of this region from the displacement of selected discrete

points to the displacement of the whole surface.

Challenges of Detection via Point Clouds - Given two point clouds of the same region

collected at two epochs (PI and PII) in Figure 4.1(b), the traditional method for extracting the

displacement of this surface is to find each pair of corresponding points at two epochs (i.e., P Ii
and P IIi ) and then compare these two points directly. However, this method is impractical for

such huge mount point cloud data because of the following aspects:

• Point-to-point correspondence searching - For traditional displacement-based approaches,

it is hard to find the corresponding pairs of points for two huge point cloud data sets, i.e.,

point P Ii = [xI , yI , zI ] in Epoch I corresponds to point P IIi = [xII , yII , zII ] in Epoch II.

Even for a stable object without any deformation that was scanned twice by a terrestrial
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Figure 4.1: Displacement detection. Sub-figure 4.1(a) is detection with geodetic network; sub-
figure 4.1(b) is detection with point clouds.

laser scanner located at the same position, point clouds captured at two epochs cannot

be completely uniform; therefore, it is impossible to find all point correspondence from

two different epochs. Actually, such one-to-one correspondence between P Ii and P IIi does

not exist for all data points. In addition, it is also hard to validate such correspondence

because the data points are very close to each other as the high density in both PI

and PII . Nevertheless, the surface registration techniques does not necessarily require

searching point-to-point correspondence.

• Time consuming - Point-to-point correspondence searching is a time-consuming procedure

for such a huge dataset. By using a non-index searching algorithm (i.e., exhaustive search-

ing), the time complexity of searching a corresponding point P IIi from the dataset PII at

Epoch II is O(nII), where nII is the size of PII . For finding all of the correspondence

between PI and PII , we need to have a complexity of O(nI × nII), where nI and nII are

the point number of PI and PII , respectively. By using an indexing technique (e.g., a

r-tree, or a k-d tree structure), we can achieve better performance, i.e., O(log nI × log nII)

for finding all point-to-point pairs; however, this is still very time consuming. But fir

• Less support of using specific point characteristics - In real-life data sets, there exist a

couple of meaningful information like intensity, colour, etc. Such information can be

used to improve or guarantee the accuracy of correspondence between two points at two

epochs. Positions of these specific points are quite useful and important, especially in

tracking the single point from the datasets in future epochs. However, as the data point

density is so large in point cloud, tracking these specific point characteristics for finding

point correspondence is still quite inflexible and expensive.

Benefits of Cell-based Approach - We introduce the “cell” concept into our approach to meet

the potentialities and the challenges brought by point clouds. Cell is a well-divided geometric

shape in space, e.g., a rectangle in 2D space and a cube in 3D space. We divide the space that

comprises the monitored object into cells, which can have uniform or varying size. By analysing
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the cells rather than the points directly, the cell-based approach can provide effective solutions

to deal with the challenges mentioned previously:

• Cell-to-cell correspondence - Different from the direct point-to-point correspondence search-

ing, this approach focuses on finding the cell pair in two epochs, i.e., cell-to-cell correspon-

dence searching. Due to the high density of points, correspondence searching for all points

is impracticable; on the contrary, there is non-overlap between cells; therefore, it is easier

to find cell-to-cell correspondence. There are three kinds of cell-to-cell correspondence

searching: (1) Direct correspondence – this is for some deformation scenarios with micro

deformation, where the deformation is small and the points/object keep inside one cell at

different epochs. In Chapter 5, the experiment will be focusing on the direct cell corre-

spondence. (2) Non-direct correspondence – this can work for large deformation scenarios,

which is suitable for the cases when the physical deformed object materials move across cell

boundaries (e.g., from one cell to another). Section 6.3 will present the non-direction cell

correspondence searching method. (3) Overlapping cell correspondence – Furthermore, cell

correspondence can have overlap, e.g., cell1 at Epoch 1 is deformed to the boundary part

of both cell1 and cell2 with overlap (or the boundary of any celli and celli+1) at Epoch 2.

In such case, richer cell correspondence needs to be designed. In such case, data-driven cell

is developed to support deformed parts boundary detection and its movement tracking.

The data-driven cell is composed of multiple meta-cells that can form an irregular cell with

arbitrary shape. The details of such data-driven cell will be discussed in Section 6.5.

• Efficiency of detection - The space of the monitored object is divided into many cells.

Obviously, the number of these cells is significantly less than the number of points. N I
c

and N II
c are the number of the cells in this space at Epoch I and Epoch II, respectively;

and nI and nII are the number of the points in the same space at Epoch I and Epoch II,

respectively. Due to the high density of point clouds, of course N I
c << nI and N II

c << nII ;

in other words, the cell number in both epochs is significantly less than the point number.

Therefore, the time complexity of cell-to-cell correspondence searching is O(N I
c × N II

c )

without index (or O(logN I
c × logN II

c ) with index like k-d tree) is significantly less than

the time complexity of point-to-point correspondence searching, i.e., O(nI × nII) without

index (or O(log nI × log nII) with index).

• Cell characteristics for supporting correspondence searching - The characteristics of cells

can be calculated using the points inside. The group of points in two cells can formulate

certain characteristics, e.g., similar normal, distinct curvature, etc. To identify cell char-

acteristics, in Section 4.4, we will focus on modelling individual cells via a uniform model

like a surface regression to find common displacement, a ICP (Iterative Closet Point) to

find rigid transformation. These computed cell characteristics can be used to support the

cell-correspondence searching. In Chapter 6, we will discuss applying the ICP-based rigid

transformation to search cell correspondence in a rockfall deformation scenario.
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4.2.3 Computing framework

So far, we have already identified the importance of using “cells” to compute a comprehensive

deformation map for describing the deformation of a large monitored region. Hereby, we design

the complementary technical framework of such “cell-based deformation monitoring”. This

framework is designed for computing deformation description with regards to the hybrid model

of the monitored object. The input of our approach is the point cloud datasets of the monitored

object captured by terrestrial LIDAR at Epoch I and Epoch II. The output of this approach is the

computed deformation map comprising distinctive sub-deformations for all of the partial areas

of the monitored object. The framework of the proposed cell-baesd deformation computation is

sketched in Figure 1.1. Between the input and the output, there are three main steps, i.e., split,

detect, and merge.

• Split - This step is to divide the space of the monitored object into 3D uniform cells and

capture their corresponding point clouds in Epoch I and Epoch II, respectively. We apply

the R-tree spatial indexing technique to enable fast access of the point clouds in individual

cells. In addition, we can transfer the three dimensional index to one dimensional index.

Section 4.3 will provide the detailed algorithms for the split part.

• Detect - This step is to estimate the meta-deformation for each cell in the monitored

object by comparing the corresponding point clouds in the cell at two epochs. Such

meta-deformation can be vertical displacement, angle variation, and rigid transformation.

Section 4.4 will provide the detailed estimation algorithms for the detect part.

• Merge - This step is to group the adjacent cells with consistent deformation behaviours

(i.e., the meta-deformations between neighbouring cells are similar) together as a partial

area, and additionally compute the sub-deformation for each partial area. Finally, the

sub-deformation of partial areas compose the complete deformation map. Section 4.5 will

provide the detailed merging algorithms.

4.3 Step I - Split

In the real-life experiment using point cloud data from LiDAR to monitor deformation, the

number of 3D points captured by LiDAR is typically huge. For example, in our Flamatt dataset

about a landslide region of size 200 m× 25 m, there are about 20 millions 3D points at Epoch

I and about 10 million 3D points at Epoch II. It is non-trivial to handle such a big amount

of point cloud data in an very efficient way. Deformation analysis should be able to quickly

identify interesting parts of the object, i.e., the subset of the complete point clouds. In our

cell based approach, we design the “split ” step to divide the space of the whole object into 3D

uniform cells. With cells, detection algorithms are able to deal with a small part of the points.

To efficiently access the data points inside a cell, we apply relevant acceleration strategy. This

is called the indexing technique from the computer science field.

In this step, we apply the R-tree indexing technique [MNT05] to efficiently manage the point

cloud data. R-tree is the tree data structure that is widely used for indexing multi-dimensional
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spatial data such as geographical coordinates, rectangles or polygons. R-tree can be considered

as a hierarchical data structure based on B+-tree in multi-dimensional spaces. Figure 4.2 shows

an example of R-tree structure. The point clouds in the whole object are built into two subspaces

R1-1 and R1-2, based on the data density. Subsequently, the point clouds in these subspaces

can be split into more detailed levels of subspaces subsequently, i.e.: R1-1 is further divided

into R1-1-1 and R1-1-2, R1-2 is further divided into R1-2-1 and R1-2-2. As shown in Figure

4.2(b), to access the cell, we can search starting from the root of the tree in Figure 4.2(a).

Compared with non-index methods that access the point clouds directly via coordinates of these

data points, it is much faster to access one given cell by using this R-tree structure. In addition,

there are largely available open-sources that can be reused or easily adapted for building the

R-tree structure on our point cloud datasets. As we do not need to update the point cloud

data, the only focus here is on efficiently accessing the point clouds in the cells for computing

deformation. R-tree has good performance in such cell-based spatial data query [MNT05].

1‐21‐1

1 1 1 1 1 2 1 2 21 2 11‐1‐1 1‐1‐2 1‐2‐21‐2‐1

(a)

1

1‐1

1‐1‐1
1‐1‐2

1‐2

1‐2‐1
1‐2‐2Cell

(b)

Figure 4.2: R-tree structure for spatial access. (a) is a R-tree structure; (b) is the visualization
of this R-tree by 3D cubes.

Split Object Space into Cells - We apply the R-tree spatial access technique to manage the

point cloud data. After loading a mass point cloud dataset P, a R-tree structure of P is built

(like 4.2). According to all of the coordinates of P in the R-tree, the maximum and minimum

along x-, y- and z- axes (i.e., minx,miny,minz,maxx,maxy,maxz) can be quickly extracted

and a bounding box that includes all of the point cloud is created. The size of the cells are

user-defined (length, width, height); and then the number of the cells along x-, y- and z- axes

(Nx, Ny, Nz) can be calculated (see Equation 4.1).

 Nx

Ny

Nz

←
 (maxx −minx)/length

(maxy −miny)/width
(maxz −minz)/height

 (4.1)

According to {minx,miny,minz,maxx,maxy,maxz} and {Nx, Ny, Nz}, we can now com-
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pute the bound of all cells: the cell cellijk’s bound Boxijk is defined as follows,

Boxijk ←

 minx + i ∗ length,minx + (i+ 1) ∗ length
miny + j ∗ width,miny + (j + 1) ∗ width
minz + k ∗ height,minz + (k + 1) ∗ height

 (4.2)

With such bound, the point clouds in Boxijk can be efficiently accessed by using R-tree

index from the complete data set of P. The cells can be numbered by the 3D index along X,

Y and Z axes as Cell
(3)
ID(id) = 〈i, j, k〉, i.e. the cell identity (id). Such three dimensional (3D)

identity can be refined into 1D identity Cell
(1)
ID(id) by Equation 4.3.

Cell
(1)
ID(id) = i+ j ∗ (Nx + 1) + k ∗ (Ny + 1) ∗ (Nz + 1) (4.3)

The detailed procedure of 3D cell splitting is shown in Algorithm 4.1: firstly, we load all of

the 3D data points in the point cloud dataset; secondly, we build the R-Tree index for the data

points that are previously loaded, and compute the bounding boxes (min, max values for each

dimension); afterward, based on the min,max values as well as the cell size given, we compute

the number of cells (Nx, Ny, Nz); finally, for each cell Cid, we can efficiently output the split

data points based on the indexing structures of the R-Tree. For the sake of searching time by

R-tree, we output the point clouds for each cell, and these points for each cell can be directly

used in the later detection step in Section 4.4. In such case, we do not need to re-access the

data every time when run the detection algorithms for computing meta-deformation.

Algorithm 4.1: Split

Input: a file of original point cloud data set (filename), cell size (length, width, height)
Output: 3D split cells {CidMin, · · · , CidMax}

1 begin
2 /* load all the points into P */
3 P = {P1, · · · , PN} ← loadFile(filename);
4 /* build index based on R-tree */
5 pointRtree ← buildRTreeindex(P);
6 /* find the bound of point cloud */
7 boundP ← {minx,miny,minz,maxx,maxy,maxz};
8 /* calculate cell numbers */
9 (Nx, Ny, Nz)← getCellNumber(boundP, cellSize); // by Equation 4.1

10 /* group point w.r.t the bound of each cell by R-tree */
11 forall the ([i, j, k] ∈ [0 : Nx, 0 : Ny, 0 : Nz]) do
12 Boxijk ← getCellBound(); //by Equation 4.2
13 Cijk ← getPointInBox(pointRtree,Boxijk);
14 /* give the identity for each cell */
15 switch the dimension of index do
16 case 3D identity
17 id← get3DIdentiy(i, j, k);

18 case 1D identity
19 id← get1DIdentiy(i, j, k) by Equation 4.3;

20 return 3D split cells {CidMin, · · · , CidMax}
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4.4 Step II - Detect

In the previous “split” step, we have already divided the point clouds sampled on the whole

object into 3D cells, for both data sampling at Epoch I and Epoch II. Figure 4.3 sketches the

two point cloud datasets at two epochs. Black points are captured from a unstable slope at

Epoch I before deformation happened; while, red points are collected from the same slope at

Epoch II after the deformation. To simplify the explanation, we divide these areas into only

four cells, from Cell 1 to Cell 4, by using the previous “split” algorithm.

Epoch I

Stage 1-
dispacement Epoch I

Epoch II

p

z

x
Cell 1 Cell 2 Cell 3 Cell 4

x
y

Figure 4.3: Point clouds in cells after splitting

Based on the 3D points in each cell, the objective of the “detect” step is to compute the

meta-deformation for each cell. Such meta-deformation indicates the deformation magnitude

for each cell. In this section, we present the detailed estimation methods of computing both

atomic deformation (such as displacement and angle variation) and complex deformations (such

as rigid transformation). Some detailed formula description of these deformation types have

already been introduced in Section 3.2. In this section, we focus on technical process to extract

these values from 3D points in the cell.

Vertical displacement – In traditional discrete point-to-point deformation analysis, we usually

compute vertical displacement by comparing the Z-coordinate values of the points at two epochs.

Therefore, for each cell, we need to calculate a statistical parameter to represent its altitude

information (i.e., the Z-axis), for the subsequent estimation of vertical displacement. There are

several ways to approximate this parameter, using features such as min, max, mean, median and

centre of each cell’s Z value.

The first four methods use standard statistical properties (i.e., min, max, mean, median). We

apply these baseline methods to approximate the vertical information of each cell. In Figure 4.4,

vertical approximation of each cell is shown by black stars, which are chosen by the estimation

methods to represent the cells. In Cell 1 of Figure 4.4(a), two star points, Zmin(CI) and

Zmin(CII), are selected by the minimum method, which picks up the minimum values along

Z-direction amongst all of the data points in the two point sets at Epoch I and Epoch II,
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respectively. Similarly for other methods like max, mean, median, they pick up relevant data

point corresponding to the max, mean, median values of the Z coordinate of all data points in

the cell. As shown in Figure 4.4(a), the star points in Cell 2, Cell 3, Cell 4 are calculated by

the max, mean, median methods, respectively. Compared to other methods, the min method is

robuster with good performance, as it can avoid the noisy data (outliers) above the slope, e.g.,

vegetation on the ground such as bush or grass.
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(a) Baseline methods
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(b) Estimation displacement

Figure 4.4: Vertical information representation for cells. Sub-figure 4.4(a) is attitude approxi-
mation by baseline methods; sub-figure 4.4(b) is the estimation of displacement for each cell.

After determining the estimation of cell altitude (by the min, max, mean, median methods),

we can easily identify the displacement between two epochs for each cells. Taking the min

method for instance, we compare the minimum approximation value at Epoch II (i.e. Zmin(CII))

and the minimum value at Epoch I in the same cell (i.e. Zmin(CI)). The vertical displacement

DC
id{Vmin} can be calculated by Equation 4.4. As shown in Figure 4.4(b), the cell displacement

can be estimated using the “altitude” (calculated by the four methods in Figure 4.4(a)) difference

between the corresponding cells at Epoch 1 and Epoch 2.

DC
id{Vmin} = Zmin(CIIid )− Zmin(CIid) (4.4)

In addition to standard methods like min, max, mean, median, we also design another altitude

estimation using the “centre” point estimated from all point clouds in the cell. To compute such

centre, we need to do surface regression first; therefore, we design the planeFit function in

Algorithm 4.2, which aims to find an optimal fit plane that can minimise the sum of squared

errors of all points in the cell. The solid lines in Figure 4.5(a) are planes fitted to the points at

two epochs, by using the “plane fit” function. On these planes, the Z-value at the centre of cells

(i.e., Zcentre(C)) are considered as the vertical information to represent these cells; therefore,

this estimation method is entitled “centre”. When the cell size is reasonably small, we can build

a better fitting plane of the points in cells. Algorithm 4.2 illustrates the procedure of fitting a

plane to the points inside a cell. Output of this algorithm are centre approximated coordinates

of the cell Centre{Ci} and the normal of the best fit plane. We can apply polynomial hyperplane

rather than 1-order plane fitting, and calculate the deformation with the centre on the plane or
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regression coefficients. In Chapter 6, we will discuss higher-order polynomial regression.
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(a) Centre with plane fit
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Figure 4.5: Vertical displacement detection for cells using centre. Sub-figure 4.5(a) show the
fitting plane and the centre point for each cell at two epochs; sub-figure 4.5(b) is the displacement
estimated by the centre method.

Algorithm 4.2: planeFit

Input: One cell Cid
Output: Statistical magnitude at the centre of the cell Centre{Cid}; Normal of the best-fit plane.

1 begin
2 /* get all points inside this cell by R-tree */
3 P← lengthofPointsInCell(Cid);
4 /* get the length of points in this cell */
5 n← lengthofPointsInCell(P);
6 if n < 3 then
7 Error(Less than three points for plane fitting!);

8 /* Calculate the centroid of points in this cell */
9 Centroid← mean(P);

10 /* Translate points in this cell to the centroid frame; */
11 PCentroid ← P− Centroid;
12 /* Singular value decomposition of PCentroid */
13 [u, s, v]← svd(PCentroid, 0) ;
14 /* Find the smallest singular value in s */
15 [S, i]←min(diag(s)) ;
16 /* Get the normal to the best-fitting plane (the corresponding singular vector) */
17 Normal← v(i) ;
18 /* Return the approximation of the cell and the normal of the best fitting plane */
19 return 〈Centre{Ci}, Normal〉

Similar to the standard methods (min, max, mean, median), the centre method calculates the

vertical displacement using the distance between the approximation of the centre from the fitting

plane at Epoch 1 and the centre from the fitting plane at Epoch 2, as shown in Figure 4.5(b).

The total least squares method via SVD can not work well on the point clouds with too many

outliers. Therefore, we additionally apply a robuster plane fitting method RANSACplaneFit.

The RANSAC (Random Sample Consensus) algorithm is an iterative method to fit a model

[FB81], which is reliable even for the point clouds with a high proportion of outliers. The
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Algorithm 4.3: RANSACplaneFit

Input: One cell Cid
Output: The best fitting plane for the points inside this cell

1 begin
2 /* get all points inside this cell by R-tree */
3 P← getPointsInCell(Cid);
4 /* get the length of points in this cell */
5 n← lengthofPointsInCell(P);
6 /* estimate the maximum iteration number k */

7 k ← round log(1−α)
log(1−(1−w)n) ; // α is the probability of success; w is the outlier percent number; n

is the inlier sample number;
8 bestErrorplane ←∞; // initialise the error of this plane
9 while i < k do

10 /* randomly select n points from P */
11 inliersP← randomSelectPoints(P);
12 /* compute a plane to fit inliersP */
13 Planecurrent ← planeFit(inliersP);
14 consensusSet← inliersP;
15 forall the point Q ∈ (P− inliersP) do
16 /* compute the distance from the point Q to the current plane */
17 disQ ← dis2plane(Q);
18 /* t is the threshold to determine the point belonging to the fitting plane */
19 if disQ < t then
20 consensusSet← consensusSet ∪Q;

21 /* d is the minimum point number to decide the current plane is good enough */
22 if |consensusSet| > d then
23 if Errorplane < bestErrorplane then
24 BestPlane ← Planecurrent;
25 bestErrorplane ← Errorplane;

26 /* Return the best fitting plane */
27 return BestP lane

objective of RANSAC method is to find the best plane in a dataset of point cloud. The detailed

procedure is shown by Algorithm 4.3. Firstly, it randomly selects n points and calculates a plane

to fit these n points (line 10 - 14). Secondly, it judges whether the rest of the points belong to

this plane, according to a given threshold (line 15 - 20). The two steps are iteratively performed;

and in each iteration, the obtained plane is compared with the last best one. If the current plane

is better than the last best one, the current plane will replace it as the new best plane (line 21

- 25). Besides plane fitting, the RANSAC method can also detect other basic geometric shapes

from point clouds, like spheres, cylinders and cones [SWK07].

With the plane-fitting algorithm (either the SVD-based method or the RANSAC one), the

detailed algorithm of computing meta-deformation using vertical displacement is summarised in

Algorithm 4.4: firstly, points inside the cell at Epoch I and Epoch II are retrieved by the associate

index (based on the R-tree structure and the output of the “split” step in Section 4.3); secondly,

according to the chosen method (min, max, mean, median, or centre), vertical displacement is

calculated by dedicated estimation method; finally, the output is vertical displacement for each

cell between two epochs.
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Algorithm 4.4: getVerticalDisplacement

Input: Two corresponding cells CIid and CIIid at two epochs,
A chosen approximation method md ∈ {min,max,mean,median, centre}

Output: Vertical displacement for the corresponding cells {CIid, CIIid , DC
id(V )}

1 begin
2 /* get the points of correspondent cells */;

3 P Iid ← PointsInCells(CIid);

4 P IIid ← PointsInCells(CIIid );
5 /* calculate the statistical parameter to approximate this pair of cells */;
6 switch md do
7 case min
8 DC

i {Vmin} ← min(P IIid ) - min(P Iid) ;

9 case max
10 DC

i {Vmax} ← max(P IIid ) - max(P Iid) ;

11 case mean
12 DC

i {Vmean} ← mean(P IIid ) - mean(P Iid) ;

13 case median
14 DC

i {Vmedian} ← median(P IIid ) - median(P Iid) ;

15 case centre
16 /* Find a best fitting plane for the points in each cell*/;

17 CentreI{Cid} ← planeFit(P Iid);

18 CentreII{Cid} ← planeFit(P IIid );

19 DC
i {Vcentre} ← CentreII{Cid} - CentreI{Cid} ;

20 return Vertical displacement {CIid, CIIid , DC
id(V )}
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Figure 4.6: Angle representation for cells

Angle variation – To detect the angle variation, a plane is fitted based on the point cloud

at each epoch in a cell (i.e., using the planFit function in Algorithm 4.2), like the vertical

displacement using the centre of the cell. Different from the centre method using a centre value

of Z-axis to approximate the statues of each cell, the angle variation method computes the

angles between the fitted plane and the horizontal surface. Based on the normal returned by

Algorithm 4.2 for the cell at two epochs, we can calculate the difference of such angles, and

apply this as the meta deformation for this cell. As shown in Figure 4.6, the 8 solid lines are the
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best fitting planes for 3D points (for 4 cells at 2 epochs). δI and δII are the angle between the

fitting plane and the horizontal surface at Epoch I and Epoch II. Calculating angle difference

between δI and δII is the objective of this angle variation detection.

Equation 4.5 shows two fitting plane for 3D points in the cell Cid at Epoch I and Epoch II. For

simplicity, we can use the vector of four coefficients to indicate such surface, i.e., 〈aIid, bIid, cIid, dIid〉
and 〈aIIid , bIIid , cIIid , dIIid 〉 for the two epochs, respectively.

CIid : aIidx+ bIidy + cIidz + dIid = 0

CIIid : aIIidx+ bIIid y + cIIid z + dIIid = 0 (4.5)

Based on the two planes best fitted to the point clouds in one cell, we calculate the normals

of these two planes at Epoch I (i.e., normalI = (nIx, n
I
y, n

I
z)) and Epoch II (i.e., normalII =

(nIIx , n
II
y , n

II
z )). Meta-deformation DC

id{δ} is designed as the angle δ̂ between the normals of two

planes at two epochs and calculated by Equation 4.6.

DC
id(δ) : δ̂ = δ(CII)− δ(CI) = arccos(normalI · normalII) (4.6)

The detailed procedure of computing angle variation is presented in Algorithm 4.5. After

receiving the points in this cell at two epochs from the “split” outputs, “planeFit” function is

used to approximate the surfaces at two epochs and calculate the normal of the surface. Finally,

the angle difference between the two normals is extracted as the meta-deformation.

Algorithm 4.5: getAngleDifference

Input: Two corresponding cells CIi and CIIi at Epoch I and Epoch II, respectively
Output: Angle variation for correspondent split cells {CIid, CIIid , DC

id(δ)}
1 begin
2 /* get the points of correspondent cells */;

3 PI
id ← pointsInCells(CIid);

4 PII
id ← pointsInCells(CIIid );

5 /* get the normals of the best-fit planes for two epochs */;

6 normalI ← planeFit(PI
id);

7 normalII ← planeFit(PII
id );

8 /* calculate the angle between the two normals for two epochs */;

9 DC
id(δ)← arccos normalI ·normalII

|normalI ||normalII | ;

10 return Angle difference for correspondent split cells {CIid, CIIid , DC
id(δ)}

Rigid Transformation - Vertical displacement and angle variation are the two most representa-

tive for detecting the meta-deformation. They stand for detecting “translation” and “rotation”,

the two widely-used atomic deformation types. In this paragraph, we discuss a complicated

deformation type, i.e., the rigid transformation that consists of both translation and rotation

during the deformation procedure. We apply the well-known ICP (Iterative Closest Point)

method to extract the rigid transformation parameters for each cell. ICP is initially developed

for shape registration in a 3-D space such as free-from curves and surfaces [BM92]. These objects
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4. CELL-BASED DEFORMATION COMPUTATION

with the common parts, even containing some noises and small differences, still can be matched

together in a short time. The ICP method can utilise the 3D geometry of the object, without

priori assumption of surface model (e.g., a plane in displacement detection). Furthermore, this

method can extract the complex deformation such as translational and rotational displacement

at the same time, which is suitable for our problem. Therefore, we combine ICP method with

our cell-based approach and name it as the “Cell-based ICP” method. We apply the cell-based

ICP method to match point sets in each pair of corresponding cells and extract the suitable

rigid transformation parameters for this cell.

The main procedure of cell-based ICP method is summarised in Algorithm 4.6. The input

of this algorithm is a pair of correspondent cells CIi and CIIi at two epochs; and the output is

rigid transformation DC
i {Rt} for this cell. This algorithm include two main stages: the first

stage (line 2-8) is “data preparation”, which is used to get two point sets PI and PII and preset

the initial transformation parameters and error threshold; and the second stage is “iteration”

(line 9-17), which is the crucial part of this algorithm. After getting the closest points between

two point sets PI
k and PII , rigid transformation parameters (R, t) is computed and is used to

transform PI
k at Epoch I. The “iteration” process will be terminated until the updated mean

square error between two point sets is less than a given error threshold τ , or the iteration time

reaches the up bound. Figure 4.7 provides a simple explanation of this procedure.

To give an illustrative example, the projection between the closest points of two point sets is

sketched in Figure 4.7(a); after ICP registration, point sets at Epoch I are transformed to close

point sets at Epoch II, as shown in Figure 4.7(b).

In summary, the process of meta-deformation estimation is shown in Algorithm 4.7 with two

main parts: firstly, the point clouds of each pair of corresponding cells are loaded; secondly,

Algorithm 4.6: getRigidTransformation

Input: Two corresponding cells CIi and CIIi at Epoch I and Epoch II, respectively
Output: Rigid transformation for corresponding cell {CIid, CIIid , DC

i {Rt}}
1 begin
2 /* get the points of correspondent cells */;

3 PI ← pointsInCells(CIid);

4 PII ← pointsInCells(CIIid );
5 /* give the initial transformation matrix [Rinitial, tinitial] */;
6 [R, t]← initialise[Rinitial, tinitial];
7 /* set an error threshold τ */;
8 τ ← errorThreshold;
9 while dk − dk+1 < τ do

10 /* calculate correspondence between two point sets */;

11 PIclosest
k ← getClosest (PI

k,P
II);

12 /* compute the transformation matrix (R, t) based on the correspondence */;

13 (R, t)← extractRt (PI ,PIclosest
k );

14 /* transform the points at Epoch I */;

15 P Ik+1 ← R ∗ (P Ik ) + t;

16 /* update the mean square error between two point sets */;

17 dk ← 1
np

∑np

i=1 ‖P
Iclosest
k −PI

k+1‖;

18 return Angle difference for correspondent split cells {CIid, CIIid , DC
i {Rt}}
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Figure 4.7: Rigid transformation detection. Sub-figure 4.7(a) is detection by ICP method;
sub-figure 4.7(b) is the point clouds after registration.

meta-deformation of each pair is computed by using the selected estimation method, including

vertical displacement, angle variation, and rigid transformation.

Algorithm 4.7: Detect

Input: 3D split cells {CIidMin, · · · , CIidMax} at Epoch I and {CIIidMin, · · · , CIIidMax} at Epoch II,
the type of meta deformation metaDetectMethod

Output: Deformation model for correspondent split cells

 {CIidMin, C
II
idMin, D

C
idMin}

...
{CIidMax, C

II
idMax, D

C
idMax}


1 begin
2 /* get the length of correspondent cells */;

3 n← lengthCells(CIidMin, · · · , CIidMax);
4 forall the (i ∈ [1 : n]) do
5 /* load two cells separately into CIi and CIIi */;

6 CIi ← loadCell(CIi );

7 CIIi ← loadCell(CIIi );
8 /* according to the chosen meta deformation such as vertical displacement and angle

variation, get the difference of this value between CIi and CIIi */;
9 switch metaDetectMethod do

10 case Vertical displacement
11 DC

i {V } ← getVerticalDisplacement(Z(CIi ), Z(CIIi )) ;

12 case Angle variation
13 DC

i {δ} ← getAngleDifference(δ(CIi ), δ(CIIi )) ;

14 case Rigid transformation
15 DC

i {Rt} ← getRigidTransformation(Rt(CIi ), Rt(CIIi )) ;

16 return Meta-deformation model

 {CIidMin, C
II
idMin, D

C
idMin}

...
{CIidMax, C

II
idMax, D

C
idMax}


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4.5 Step III - Merge

In the previous “detect” step, the meta-deformations of cells are computed by comparing the

point clouds in the corresponding cells at Epoch I and Epoch II. Now, we need to check whether

neighbouring cells have consistent deformation behaviour, and merge the neighbouring cells

together if the deformation is similar. For example, in Figure 4.8(a), arrows with difference

colour and length are various meta-deformation of cells after “detect”. This kind of description

can present the deformation for each cell separately. To have a more abstract view on the

deformation for this region, the objective of “merge” is to compute deformation map for the

whole monitored object with sub-deformations for different partial areas. From Figure 4.8(b),

we can see that neighbouring cells with similar meta-deformation are grouped together to form a

partial area with one type of sub-deformation. This deformation map can present the consistent

behaviour inside each partial area. The deformation map is easier to be understand and useful

from a global point of view.

Cell

(a) Cells with meta-deformation

Cell

Cell

(b) Partial areas with sub-deformation

Figure 4.8: Deformation map generation. Sub-figure 4.8(a) is cells with meta-deformation after
“detect”; sub-figure 4.8(b) is deformation map consisting partial areas with sub-deformation.

In a deformation map, one partial area of this object should have consistent and even uniform

deformation. Based on the characteristics of meta-deformation, clustering methods based on

one meta-deformation parameter (e.g., vertical displacement and angle variation) are used to

compute the deformation map from the meta-deformation, in terms of the following sub-steps:

1. Define deformation degree - We divide the meta-deformation values into a set of non-

overlapping degrees. For instance, with the displacement between -1 m to 1 m to be

detected, we segment it by intervals of 0.1 m, i.e., [−1 : 0.1 : 1] and then achieve 20

degrees. In addition to such quantitative labels, we can also define qualitative labels, e.g.,

{Small,Middle, Stable, Big,Huge} to the deformation.

2. Assign deformation degree - For each cell, we assign predefined deformation degree (“la-

bel”) according to the raw meta-deformation value computed in the detect step (Section

4.4). Figure 4.9 shows an illustrative example: each cell is assigned a deformation label,

from 1 to 3, corresponding to the “small”, “middle”, and “big” deformation.

3. Merge neighbouring ells with the same degree - All of the meta-deformation of the adjacent

cells are compared. If the values are the same, the cells can be grouped together. This

procedure is repeated until all cells have been processed and possibly merged with their

adjacent cells. After this step, the cells in Figure 4.9 are somehow merged together and

generate some partial areas, as shown in Figure 4.10.
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Figure 4.9: Initial deformation map (with assigned labels)
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Figure 4.10: Intermediate deformation
map (after merging)
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Figure 4.11: Final deformation map (after
removing outlier)

4. Generate the deformation map - A cell may show particular deformation characteristics

significantly different from all of its neighbouring cells. For example, cells with red labels

in Figure 4.10 are not the same as their neighbours. The meta-deformation of these

cells is considered as the “outlier”; therefore, these cells’ meta-deformation will be refined

and replaced with their neighbouring cells’ status. After this step, we can get the final

deformation map shown in Figure 4.11.

Algorithm 4.8 summarises the “merge” step, based on the previously mentioned four sub-

steps. The main challenging part in this algorithm is designing a recursive function (see Algo-

rithm 4.9) to expand the area with adjacent cells that have the same deformation degree. In this

the expandArea function, a candidate area (DA) is checked with a cell Ci: if Ci has the same

deformation degree with DA, the algorithm recursively checks its 6 neighbouring cells (i.e., top,

down, left, right, front, back) and add these cells if the deformation is the same as this area,

until there is no more neighbourhoods can be added in.
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Algorithm 4.8: Merge

Input: Meta deformation model for correspondent split cells

 {CIidMin, C
II
idMin, D

C
idMin}

...
{CIidMax, C

II
idMax, D

C
idMax}


Output: Deformation map D = {DA

1 , · · · , DA
n }, DA

i = G(DC
i , · · · , DC

j )

1 begin
2 D← ∅ ; // initial an empty deformation map
3 /* get the number of cells with meta deformations */;

4 n← lengthDeformModels

 {CIidMin, C
II
idMin, D

C
idMin}

...
{CIidMax, C

II
idMax, D

C
idMax}

;

5 /* assign the label of deformation degree */;
6 forall the (i ∈ [1 : n]) do
7 degreei ← degreeLable (DC

i );

8 /* merge the cells into partial areas */;
9 forall the (i ∈ [1 : n]) do

10 if Ci is unprocessed then
11 mark Ci as processed;

12 DA
k ← {Ci}; // a new DA

k is created;
13 degree← degreei; // get the deformation degree;

14 DA
k ← expandArea (DA

k , Ci, degree); // expand with adjacent cells

15 D← D ∪ DA
k ; // a new partial area added to the map;

16 return Deformation map D = {DA
1 , · · · , DA

n }, DA
i = G(DC

i , · · · , DC
j );

Algorithm 4.9: expandArea

Input: Rough partial areas with given degrees (DA, Ci, degree)
Output: Expanded partial areas DA

begin
/* the recursive function of expanding area: to merge neighboring cells that belong to the
same deformation degree. */
if degree! = currDegree(Ci) then

return DA;

foreach point Cj in adjectCells do
if Cj is unprocessed then

mark Cj as processed;
neighbor ← {6 adjacent cells}; // top, down, left, right, front, back
foreach adjacent Ck in neighbor do

if degree == currDegree(Ck) then
DA = DA∪ expandArea (DA, Ck, degree)

return Expanded partial areas DA;

It is worth noting that the merge step is not mandatary for all applications. We can keep all

cells’ meta-deformation as the final output, or merge neighbouring cells together according to

the similarity of meta-deformation. By using the merge step, the meta-deformation is smoothed

with its neighbouring cells, and a more abstract-level deformation description will be created,

and some detailed information will be lost. Therefore, this is a tradeoff: “more abstract with

the lost of details” vs. “higher accuracy with too much information”. Whether we need to do
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merging depends on the application requirement: focusing on the high-level view or focusing

on the details. In addition, we have to admit that there are two main technical challenges

in merge: (1) The threshold (or called “smoothing parameter”) to determine whether the two

neighbouring cells have similar deformation (to group or not). This needs to be tuned according

to the application knowledge; in such case, the clustering technique can be applied to determine

the configuration of the smoothing parameter. (2) Dealing with outliers – We simply consider

the cell with significantly different meta-deformation with its all neighbouring cells as the outlier.

In most cases, this is true. However, some applications are more interested in finding abrupt

changes; in such case, the outliers might be important message to the application. The merge

step is more sensitive and might be not suitable for this scenario. In this thesis, the work is

focusing on the “smooth deformation” cases; therefore, the merge is utilised to generate an

abstraction of the deformation, e.g., some main parts with semantic descriptions.

4.6 Summary

This chapter presented a novel “cell-based” deformation computation. Based on the hybrid

model (including meta-deformation, sub-deformation and deformation map) discussed in Chap-

ter 3, we developed this complementary computation framework to automatically generate inter-

esting deformation parameters and finally formalised the deformation map for the whole object.

There are three crucial steps in this framework, i.e., “split”, “detect”, and “merge”.

Through the procedure of “split”, we can build uniform cells to divide the point clouds at

two epochs, and by using relevant indexing techniques like R-Tree we can quickly access the

data points in each cell. Afterwards, meta-deformation parameters such as atomic and complex

deformation are detected for the cell by comparing the 3D points in the corresponding cells at

the two epochs (by the “detect” step). We particularly focused on atomic meta-deformation like

displacement and angle variation. Furthermore, we designed cell-based ICP to detect complex

rigid-deformation that includes both rotation and translation. Finally, by the “merge” step,

we can group adjacent cells with similar/same meta-deformation together as a partial area.

All of the partial areas with their distinctive sub-deformation constitute a deformation map of

the whole monitored object. Without given any prior knowledge, our cell-based deformation

computation is able to automatically and incrementally generate an informative deformation

description of this object from the initial 3D point clouds.
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Chapter 5
Evaluation of Cell-based Approach

An ounce of practice is worth

more than tons of preaching.

Mohandas Gandhi (1869-1948)

5.1 Introduction

In this chapter, we present the evaluation of our “cell-based deformation computation” approach.

We test the approach using various types of datasets, including both synthetic point clouds and

point cloud datasets from real-life natural deformation cases.

Section 5.2 provides our synthetic scenarios that imitate the subsidence of a surface by

programming in Matlab, analyses this dataset using our cell-based approach, and compares the

results with the ground truth as well as with traditional methods. Section 5.3 presents a real-

life case study on the landslides in Flamatt. Section 5.4 analyses the deformation of another

real-life case happened in Valais. Section 5.5 provides the comparison between our approach

and the available results from BBHN1; and additionally compares our cell-based approach with

a commercial software (i.e., 3DReshaper). Finally, Section 5.6 summarises and concludes this

chapter.

5.2 Evaluation by Synthetic Data

We first evaluate our cell-based approach based on a dataset that generated by a computing

program implemented in Matlab. This dataset is designed to imitate a subsidence of a surface,

a typical deformation scenario. Three traditional deformation analysis methods (i.e., displace-

ment, angle variation and rigid transformation) are performed on this dataset to detect relevant

deformation characteristics. We apply cell-based method to analyse this imitated dataset, apply

the three traditional methods as the meta deformation model on cells, and computes the defor-

1BBHN is a Swiss private surveying company who provided us with the landslide data of Flamatt.
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mation map. This is compared to both the results from traditional non-cell based methods and

the ground truth from simulation.

5.2.1 Data from synthetic scenario

By coding in Matlab, we build synthetic point cloud datasets in terms of imitating a surface

subsidence from Epoch I to Epoch II for deformation monitoring. Figure 5.1 shows the imitated

subsidence: at Epoch I, the monitored surface is one single plane that is drawn in the solid

line (the angle between the plane and the horizontal surface is α = 22.9114◦); at Epoch II, the

surface slides into two surfaces after subsidence, which are drawn in the dashed lines. Such

subsidence could be caused by the movement of surface materials (e.g., debris, mud, rock, etc.).

For the two new planes in Epoch II, the top-right surface is steeper ( α1 = 30◦ to the horizontal

surface) and the bottom-left surface is flatter ( α2 = 15◦ to the horizontal surface).

22 9114 


Epoch I

Epoch II

1

2

22.9114

30

15
















1

22

Figure 5.1: Subsidence a synthetic surface

We imitate and sample two sets of point cloud data, i.e., PI and PII , corresponding to the

two epochs, before and after the subsidence. To simulate the detailed information captured using

LiDAR to monitor the surface, we choose reasonably high density to sample 3D points (as about

one point per 5mm×5mm alongX and Y axes) and generate 8.0802×104 points sampled on this

surface for Epoch I and Epoch II, respectively. In order to imitate real-life data, we consider the

random errors of terrestrial LiDAR, and add Gaussian noise to the synthetic data. Five groups of

noises with zero mean and different standard deviation σ = (1 mm, 3 mm, 5 mm, 7 mm, 10 mm)

are generated and added to the synthetic point clouds. Figure 5.2 shows two point cloud datasets

of the imitated surface at two epochs containing the Gaussian noises with σ = 3 mm. In the

experiments, we additionally analyse the effects of using different noise levels on the performance

of estimating deformation parameters.

This subsidence situation can be modelled using three different deformation methods, i.e.,

displacement, angle variation, and rigid transformation. Displacement of the surface is the

change of one point on the surface from Epoch I to Epoch II along a pre-defined direction,

e.g., X, Y , or Z axis. Especially the vertical displacement along Z axis is frequently used by

civil engineers and geologists [MMB+08, TOD+08]. Angle variation is the change of the surface

normals between two epochs; therefore it can simply illustrate the “direction” deformation of the

surface. Rigid transformation is rotation and translation of the monitored surface from Epoch

I to Epoch II and can explicitly formalise the movement of this surface. For monitoring the

deformation of this synthetic dataset, we apply the three models as the meta-deformation in our
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Figure 5.2: Two point cloud datasets of the simulated subsidence at Epoch I and Epoch II
(sampling density: 5 mm * 5 mm, standard deviation σ = 3 mm)

cell-based approach. We also compare the “cell” approach with traditional “non-cell” approach.

1. Detection of displacement - We estimate displacement of each cell using several detection

methods such as min, max, mean and median, and utilise two metrics like false positive

ratio and false negative ratio to analyse the error of estimation results. In addition, we

perform sensitivity analysis to evaluate the influence brought by different splitting cell sizes

and varying noises of point clouds.

2. Detection of angle variation - We detect angle variation of this synthetic scenario using the

“plane fitting” regression method and compare our results with the ground truth. Similar

to the sensitivity analysis in displacement, we eventually analyse the effects caused by

different cell sizes and noises.

3. Detection of rigid transformation - We present cell-based ICP method to extract rota-

tion and translation of each individual cell. Afterwards, we describe the comparison of

estimated results by traditional ICP method with the results by cell-based ICP approach.

5.2.2 Detection of displacement

Displacement is a generic and important parameter for detecting deformation. In traditional

methods, unstable points are extracted from the geodetic control network [Cas88, HR01]. Dis-

placement of these discrete unstable points describe the changes of this region. To give a

concrete example that uses a small set of monitoring points for deformation detection, Figure

4.1(a) shows n discrete points on the monitored object; then we get two n observations at Epoch

I (LI = {LI1, LI2, · · · , LIn}) and Epoch II (LII = {LII1 , LII2 , · · · , LIIn }), respectively. The change

between two corresponding points (i.e., LIi and LIIi ), which can be calculated in terms of the

distance (dist(LIi , L
II
i )), approximates the displacement of this region from Epoch I to Epoch

II. This is drawn as the dashed lines in Figure 4.1(a). Thanks to high-density point cloud
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data capture by the terrestrial LiDAR technology, we are able to develop a cell-based approach

to estimate displacement of the whole monitored object from point clouds (m1 >> n points

PI = {P I1 , P I2 , · · · , P Im1} at Epoch I, and m2 >> n points PI = {P I1 , P I2 , · · · , P Im2} at Epoch

II), instead of some sparse points (L) on this object.

Estimation Methods of Displacement - We detect the displacement using the point clouds

in the corresponding cells. For each pair of corresponding cells, they contain point clouds at

Epoch I and II, respectively. We select one representative point in this cell for each epoch.

Afterwards, we compare this pair of points and calculate the distance/difference to approximate

the displacement of this cell.

Several estimation methods such as min, max, mean and median are applied to represent

the points inside a cell. Figure 5.3 indicates the displacement of our imitated subsidence using

the representative points generated by these methods. The areas with green-dashed-slash (/)

texture are the displacement detected by our methods; while the areas with black-vertical (|)
texture are the ground truth of displacement. We can observe that our results are not exactly

the same as ground truth from Figure 5.3(a), 5.3(c), and 5.3(d). Therefore, we need to quantify

the errors of deformation detection. Figure 5.3(b) shows errors of one cell estimated by the min

Mi
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Cell 1 Cell 2 Cell 3 Cell 4

(a) Displacement detected by min

Missing detection

Correct detection

Cell
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(d) Displacement detected by mean

Figure 5.3: Displacement of the synthetic subsidence between Epoch I and Epoch II via different
detection methods
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method. The detection error comprises two parts, i.e., missing detection and wrong detection.

Missing detection is the real displacement but not extracted by the estimation methods; wrong

detection is the displacement extracted by our methods, but in fact, such displacement does not

exist. Therefore, we use two metrics (falsePositiveRatio and falseNegativeRatio) to quantify the

errors of these estimation methods as:

falsePositiveRatio =

∑
i(Detectioni

⋂
¬GroundTruthi)∑

iDetectioni
(5.1)

falseNegativeRatio =

∑
i(¬Detectioni

⋂
GroundTruthi)∑

iGroundTruthi
(5.2)

where falsePositiveRatio is the ratio of wrong detection (i.e.,
∑

i(Detectioni
⋂
¬GroundTruthi))

to the whole detected displacement; and falseNegativeRatio is the ratio of missing detection to

the ground truth of displacement. falsePositiveRatio describes how much detection is wrong and

falseNegativeRatio indicates how much ground truth has not been detected.

We apply these methods to detect the displacement of the imitated subsidence; and analyse

the results in terms of two perspectives, i.e, deformation map and distribution of the displace-

ment. In addition, we evaluate the detection results compared to the ground truth.
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Figure 5.4: Displacement of the imitated subsidence between Epoch I and Epoch II via different
detection methods (cell size: 5 cm)
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Deformation Map - For the cell size of 5 cm, Figure 5.4 shows displacement of this subsidence

(i.e., the deformation map) detected by the four estimation methods, i.e., min, max, mean and

median, respectively. From the deformation maps of Figures 5.4(a), 5.4(b), 5.4(c) and 5.4(d), we

observe that the results by different estimations methods such as min, max, mean and median

are similar in general. At the top of the slope (i.e., the right side of the deformation map),

the displacement is the minimum; from the top of the slope to the down side (i.e., the right to

the left in the figure), the displacement first increases and reaches the maximum at the middle

of the slope/map, then decreases until reach the bottom of the slope (i.e., the left side of the

deformation map). Such results are consistent with the imitated displacement that we set up in

the simulation program. The range of whole displacement is from -16 mm to 0 mm, which is same

as the ground truth. To further check the detailed difference between these four deformation

maps in Figure 5.4, we analyse the distribution of displacement.

Distribution of Displacement - Figure 5.5 shows the distribution of the displacement detected

by several estimation methods such as min, max, mean and median. The distributions are

calculated using histograms at the same intervals. From Figure 5.5, we observe the range of the

displacement (from - 16 mm to 0 mm) is coincident with the graphic description (see Figure 5.4).

Moreover, Figure 5.5(c) and Figure 5.5(d) are the same. This is because mean and median has

the same value for our synthetic data without adding noise. The detailed definitions of mean

and median are as follows,

Zmean(C) = mean(zpm , · · · , zpn)

DC
id = Zmean(CII)− Zmean(CI) (5.3)

Zmean(C) = median(zpm , · · · , zpn)

DC
id = Zmedian(CII)− Zmedian(CI) (5.4)

where {Pm, · · · , Pn} are the points inside this cell.

Figure 5.5(a) and Figure 5.5(b) are more different compared with the other two distributions,

because the min method chooses the minimum value to represent this cell, while the max method

selects the maximum value to approximate this cell. Therefore, the results detected by the min

method are smaller than the results detected by the max method for each interval.

By now, we have analysed the displacement detection results using both (1) from the graphic

viewpoint by deformation map and (2) from the perspective of distribution using histograms

of displacement. Furthermore, we check the error by the two metrics (false positive ratio and

false negative ratio) we defined previously. Table 5.1 shows the detected results by min, max and

mean methods; we ignore median here as it has the same results with mean. We can observe that

these three methods are quite similar in terms of the detection of displacement. As this slope

has slid into two parts, we observe that the mean method has better performance compared to

other methods.

Sensitivity Analysis - To check the robustness of this cell-based deformation analysis using

displacement, we perform sensitivity analysis and investigates the influence of cell sizes and
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Figure 5.5: Distribution of displacement detected by min, max, mean and median with the same
cell size as 5 cm

Methods False positive ratio False negative ratio

(%) (%)

Min 12.42 8.3

Max 12.42 8.29

Mean 6.22 1.77

Table 5.1: Error analysis of deformation estimation methods

noises on the final displacement detection results: (1) error analysis of using varying cell sizes,

and (2) error analysis of adding different noises.

Error Analysis of Different Cell Sizes. Cell size is an important parameter that influences the

detection results. Smaller cell size increases the time of computation, but the detection accuracy

is higher; and vice versa for using bigger cell size. Therefore, it is an important issue to find the

most suitable cell size that can optimally balance between computing efficiency and detection
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5. EVALUATION OF CELL-BASED APPROACH

accuracy for our cell-based approach.

We extract the displacement with the same estimation method (min), but using different

cell sizes (i.e., 5 cm, 10 cm, 15 cm, 20 cm). The point cloud of this slope contains 80 802

points at each epoch and has Gaussian noises with standard deviation as 3 mm. Obviously,

when the cell size increased from 5 cm to 20 cm, the number of cells for this dataset decreased

from 861 to 66; and the average point number in one cell increased from 94 to 1243 (see Figure

5.2). Additionally, Table 5.2 shows the false positive ratio and false negative ratio achieved from

different cell sizes. From Table 5.2, both false positive ratio and false negative ratio increase with

the decline of cell size. As the estimation method is based on the points inside a cell, smaller

cell can approximate the details of a surface more explicitly.

Cell sizes Cell Average point number False positive ratio False negative ratio

(cm) number in one cell (%) (%)

5 861 94 12.29 7.91

10 231 351 25.95 18.55

15 98 824 39.68 36.78

20 66 1243 53.25 43.91

Table 5.2: Error analysis of deformation detection with different cell sizes

Error Analysis of Varying Noises. We also analyse the sensitivity of adding different levels of

noises during the generation of the synthetic data. We test five noise levels: all have zero means,

but different standard deviation (i.e., 1 mm, 3 mm, 5 mm, 7 mm, 10 mm). The same point

cloud dataset of this slope containing 80 802 points at each epoch was split into cells with the

size as 5 cm. For each noise level, the cell number is 861 and each cell has about 94 points

inside. From Table 5.3, we observe the approach is quite robust for all noisy data in general,

even for point clouds containing noises with standard deviation as 10 mm. Of course, the two

error metrics rise with the increase of the noise level.

Noises False positive ratio False negative ratio

(mm) (%) (%)

1 12.32 7.94

3 12.39 8.01

5 12.41 8.03

7 12.45 8.08

10 12.54 8.17

Table 5.3: Error analysis of deformation detection from datasets with different noises

5.2.3 Detection of angle variation

In addition to displacement, angle variation is another typical way to describe the change of a

slope caused by subsidence or landslides. Angle variation represents the change of the normal
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5.2 Evaluation by Synthetic Data

of a surface. This can be modelled as meta-deformation for cells in deformation detection via

3D point clouds.

Estimation Method of Angle Variation - In Figure 5.6, a slope (solid line) at Epoch I

changes to another slope (dashed line) at Epoch II. Taking Cell3 as an example, δ1 and δ2 are

the two angles of this slope inside the cell at Epoch I and II, respectively. Difference between δ1

and δ2 describes the direction change of the plane in cell three and is entitled angle variation.

To get angle variation in all cells, we fit a plane to the points in each cell, respectively (see bold

lines in Figure 5.6), and then analyse the difference of these two planes via their normals.

δ1 Epoch I
z

δ2 Epoch II
z δ2 p

x
Cell 1 Cell 2 Cell 3 Cell 4

Figure 5.6: Angle variation of the slope between two Epochs

Split and Detection – In order to compute the deformation parameters, we split the space

containing the monitored surfaces into 1.4636× 104 uniform cells according to user-defined cell

size in terms of length, width, height = 〈5 cm, 5 cm, 5 cm〉. For each cell including two point

cloud datasets at two epochs, we calculate the meta-deformation of each cell DC
id(δ) : δ̂. More

details of this formula/notation can be referred to Chapter 4 and Equation 4.6.

To evaluate the estimated meta-deformation, we compare δ̂ to the ground-truth value δ

by ∆δ = δ̂ − δ and take ∆δ (the average of ∆δ for all cells) as the evaluation criteria. For

the synthetic dataset, the average of the errors ∆δ between δ̂ and δ is 3.69◦ × 10−4 (i.e., 1.33

seconds of arc) and the standard deviation is 6.69◦ × 10−4 (i.e., 2.41 seconds of arc) calculated

by Equation 5.5. The selected estimated meta-deformation are shown in Table 5.4. In this table,

the results of Cell
(1)
ID = {822 & 12909} are quite bad, because these cells contain so few points

to estimate meta-deformation, e.g., cell 822 has 4 points at Epoch I and 10 points at epoch II.

∆δ =

∑N
i=1 |δ̂i − δi|

N

σ2 =

∑N
i=1(δ̂i − δi)2

N − 1
(5.5)

where N is the number of the cells containing the corresponding point cloud to fit the plane at

Epoch I and Epoch II.

To avoid such completely wrong estimations, these cells contain so few points need to be

rejected. We derived the rejection bound from the histogram of the number of the points in the
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5. EVALUATION OF CELL-BASED APPROACH

cells, shown by Figure 5.7. Nearly 10% of cells with few points were rejected to estimate the

meta-deformation for our imitated data.
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Figure 5.7: Histogram of the number of the points in each cell at Epoch I (sampling density:
5 mm * 5 mm)

Analysis of the Noise Level and the Cell Size – Figure 5.8 shows the influence of important

parameters: (1) the noise levels (σ) when generating the synthetic data, and (2) the cell size

(w) when building the cells for meta-deformation estimation. When the standard deviation of

the noises σ in the point cloud dataset increases, the error of the estimation also increases. For

detecting meta-deformation, the estimation result becomes better with the cell size increases;

the reason is that big cells can have more data points to fit the plane and have better quality of

fitting for this synthetic dataset.

Epoch I Epoch II δ̂ δ ∆δ

Cell1ID N I
p nIx nIy nIz N II

p nIIx nIIy nIIz (◦) (◦) (◦)

1 100 -0.3893 0.0003 0.9211 100 -0.2588 0.0003 0.9659 7.9091 7.9114 -0.0023

2 40 -0.3903 -0.0003 0.9207 100 -0.2587 -0.0001 0.9659 7.9754 7.9114 0.0640

41 90 -0.3893 -0.0002 0.9211 90 -0.2588 -0.0003 0.9659 7.9116 7.9114 -0.0002

822 4 0.0000 -1.0000 0.0000 10 0.0000 -1.0000 0.0000 0.0000 7.9114 reject

1643 100 -0.3895 0.0001 0.9210 30 0.2579 0.0001 -0.9662 7.9740 7.9114 0.0626

1644 80 0.3892 0.0002 -0.9212 100 -0.2588 -0.0001 0.9659 7.9055 7.9114 -0.0059

11226 20 -0.3914 0.0006 0.9202 70 0.5006 -0.0001 -0.8657 7.0025 7.0886 -0.0861

11267 20 -0.3910 0.0002 0.9204 70 0.4998 -0.0002 -0.8661 6.9712 7.0886 -0.1174

12909 5 0.0000 -1.0000 0.0000 10 0.0000 -1.0000 0.0000 0.0000 7.0886 reject

14594 100 -0.3893 -0.0002 0.9211 20 -0.5000 -0.0003 0.8660 7.0885 7.0886 -0.0001

14595 100 -0.3907 -0.0006 0.9205 20 -0.5008 -0.0007 0.8656 7.0528 7.0886 -0.0358

Table 5.4: Selected results of the estimated parameters, grey parts are rejected estimation
examples. The average of the errors ∆δ between δ̂ and δ is 1.328′′.
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Figure 5.8: Estimation error with regard to noise level (σ) and cell size (w)

5.2.4 Detection of rigid transformation

In previous subsections, we applied “displacement” and “angle variation” to compute meta-

deformation, representing “translation” and “rotation”, respectively. Both belong to rigid trans-

formation, which is a transformation from a Euclidean space to itself that preserves distances

between every pair of points (i.e., there is only absolute change for the whole object/cell no

relative change inside the object/cell). Rigid transformations include rotations, translations,

reflections, or their combination. Like detecting rotation and translation of the whole object by

analysing discrete points sampled sparsely on this object [Che83, EKB10], the combined rigid

transformation is also largely used in deformation detection [TGZG07, MC08]. The high density

point clouds can be used to identify the combined rigid transformation of the object. Now, we

study cell-based detection of rigid transformation, not only for the whole monitored object, but

also for partial areas inside. In this section, we present the cell-based ICP (Iterative Closest

Point) method to detect rigid transformation, and then compare our results with the results

directly computed using classical ICP method on the whole synthetic object without using cells.

Estimation Method of Rigid Transformation - Similar to cell-based displacement and angle

variation detection, we apply the Iterative Closest Point (ICP) method as the meta-deformation

in our cell-based deformation approach to extract rigid transformation of the monitored object.

To better understand the cell-based ICP method, we firstly introduce the classical ICP method.

Classical ICP. ICP method is a well-known algorithm developed for solving registration of 3D

shapes, especially in the field of Computer Vision [BM92, Zha94]. Given two point clouds PI

and PII , classical ICP method attempts to minimise the mean squared distance between the

points in PII and the transformed points from PI . This can be formulated as an optimization

problem. The objective function is written as follows:

f(R, T ) =
1

NP

NP∑
i=1

(P IIi −R(P Ii )− T )2 (5.6)
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5. EVALUATION OF CELL-BASED APPROACH

where R and T are two fundemental components of rigid transformation matrix, corresponding

to rotation and translation, respectively; R and T are performed on PI . NP is the number of

the corresponding points in these two datasets.

Beginning with the initial transformation matrix, this algorithm seeks to search each corre-

sponding closest point P IIi in PII for P Ij , expressed by

d(P Ij , P
II
i ) =

√
(xIIi − xIi )2 + (yIIi − yIi )2 + (zIIi − zIi )2 (5.7)

d(P Ij ,P
II) = min

i∈{1,··· ,n}
d(P IIj , P Ii ) (5.8)

where d(P Ij , P
II
i ) is the distance between two points P Ij and P IIi ; d(P Ij ,P

II) is the minimum

distance between the point P Ij and all points in the dataset PII .

The ICP algorithm has four steps: (1) build the matching based on Equation 5.7 for finding

the closest point in P IIj for each point in P Ii ; (2) based on the matching, compute the rigid

transformation parameters, i.e., R and T ; (3) apply the transformation to compute the mean

distance between two point sets; (4) if the mean distance is below a given threshold (δICP ), then

the algorithm stops and we reach the final R and T ; otherwise, iteratively rebuild the matching

and compute a new transformation. This procedure is performed iteratively until reach the

convergence threshold or the maximum iteration number.

Cell-based ICP. From technical point of view, cell-based ICP is quite similar to ICP, by using

the iterative procedure to build the matching and the transformation parameters. Assuming

that two point clouds are sampled on the monitored object at two epochs I and II, i.e., PI =

{PI1, · · · ,PIm} and PII = {PII1 , · · · ,PIIn } both in Ω ⊆ R3, where each Point PIi = [xIi , y
I
i , z

I
i ]
> and

PIIi = [xIIi , y
II
i , z

II
i ]>. We divide the data into some cells, and focus on ICP rigid transformation

independently for each cell. As shown in Figure 5.9, we apply the cell-based approach on the

same imitated subsidence scenario in Section 5.2.1. This experiment is to test the possibility of

application of cell-based approach on subsidence detection. Firstly, the imitated surface is split

into two cells. Secondly, we use ICP method to detect the transformation parameters of cell

1 and cell 2 independently. To compare the performance between non-cell ICP and cell-based

ICP, we additionally apply ICP method for the detection of transformation of the whole object.

In order to compare the classical ICP method and cell-based ICP approach, the results via

these two methods are evaluated by two metrics mean squared distance, expressed as Equation

5.9 and mean distance, expressed as Equation 5.10.

dissquare =

√√√√ 1

NP

NP∑
i=1

(P IIi −R(P Ii )− T )2 (5.9)

dismean =
1

NP

NP∑
i=1

|P IIi −R(P Ii )− T | (5.10)

where dissquare is the mean squared distance between P IIi and transformed P Ii . When the

alignment of P IIi and transformed P Ii is better, dissquare is smaller.
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Cell 1 Cell 2

23

Figure 5.9: Cell-based ICP approach

Estimation Results - Figure 5.10 shows the performance comparing the classical ICP and our

cell-based ICP on the simulated subsidence, based on the metric of mean squared distance. The

solid line is the mean square distance of traditional ICP at each iteration; while the dotted line

and dashed line are the mean square distance of cell-based ICP for cell1 and cell2, respectively.

For the whole object, traditional ICP method converges at 5.5 mm; while cell-based ICP method

converges around 2 mm for both cells. Therefore, we can claim that the cell-based ICP has better

results in terms of estimating rigid transformation. In addition, Figure 5.11 shows the second

metric, i.e., the mean distance; and we also observe that cell-based ICP has much less errors

compared to the non-cell one, when the point cloud is split into suitable cells. We have to admit

a coincidence about the deformation slope in Figure 5.9, which is likely aligned with the cell

boundary when using two cells. Nevertheless, if without such coincidence, cell-based ICP is still

able to provide better performance compared to the non-cell one. In general, the more cells the

experiment uses, the better results it can achieve.
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Figure 5.10: Mean squared distance via traditional and cell-based ICP
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Figure 5.11: Mean distance via traditional and cell-based ICP

5.3 Case Study I - Landslides in Flamatt

The synthetic data only simulate the deformation scenarios. To further evaluate our cell-based

approach, we apply this approach on point cloud datasets from real-life scenarios. We need

to compare our results with the results from traditional methods/softwares or provided by the

third party. We obtain two real-life datasets with typical deformation. One is about a landslide

on a slope along a Swiss major railway line, and the other is erosion on a concrete slope in

Switzerland as well. More explicit descriptions of these two cases are offered in Section 5.3.1

and Section 5.4.1, respectively.

5.3.1 Data description

We test our approach for analysing a landslide in Switzerland, which has affected a major

railway line. The size of this unstable slope is approximately 200 m × 25 m (see Figure 5.12).

The landslide slope is the region inside red lines in the figure. Two dense point cloud datasets

are collected by TLS separately at August 14, 2007 and October 5, 2007, with 20,280,793 and

10,741,995 points, respectively. The first measurement was done before the landslide, whilst the

second measurement was made just after the landslide happened.

5.3.2 Results by cell-based approach

The main results of our approach are presented in terms of the following two main aspects:

(1) the deformation map computed by cell-based deformation analysis, and (2) the sensitivity

analysis of cell size when testing our cell-based approach.

Deformation Map – The deformation map of this landslide (computed by using the vertical

displacement as the meta-deformation) is sketched in Figure 5.13. This map is produced by the

“min” method to extract the meta-deformation model (i.e., vertical displacement) of each cell.

This deformation map illustrates: (a) most subsidence values of this region are centred around
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Figure 5.12: Monitored slope at Flamatt

0 m; (b) the lower edge of this region has slightly increased: about 0.4 m; (c) two spots of this

region have larger increment: more than 1 m. While (a) and (b) have a predominantly natural

cause, (c) is due to earthworks realised to allow construction vehicles to access the site.

The corresponding deformation distribution is shown in Figure 5.14, which is the histogram

of vertical displacement for all cells. We observe that (1) the histogram is centred around zero;

(2) the sinking (i.e., negative values) is between 0.5 and 0 – many cells have small sinking (close

to zero) but a few go to 0.5; and (3) the floating (i.e., positive values) is almost uniformly

distributed between 0 and 1m. In summary, the most different deformation are in subsidence,

which is quite consistent with this landslide scenario.

Sensitivity Analysis of Cell Size – A suitable cell size is the guarantee to obtain the defor-

mation description of the whole region efficiently and accurately. If the cell size is too small, it

will cost more computation time; if the cell size is too big, it will lose the accuracy of the defor-

mation. Therefore, how to optimize the cell size is a crucial step in 3D cell splitting. According
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Figure 5.13: Deformation map of the whole slope
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to the value of displacement, 1 m, 0.5 m, 0.3 m and 0.2 m are chosen as the hierarchy of cell

size. Figure 5.15 shows the detecting stability of different cell size. In a generic view, the results

are quite similar amongst different cell sizes; however, small cell size gives more stable ability

to detect displacement in details. For example, the cell size of 0.2 m provides more results on

small changes in [-0.2 m ∼ -0.1 m] and [-0.1 m ∼ 0 m], while quite less in [0 m ∼ 0.1 m] and

[0.1 m ∼ 0.2 m] when using cell sizes of 1 m or 0.5 m.
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Figure 5.15: Deformation distribution with regard to different cell size

Deformation Model Estimation – Similar to the displacement detection using various meth-

ods in analysing the synthetic data in Section 5.2.2, we can also apply other methods to estimate

meta-deformation of the point cloud in each cell between two epochs, besides the “min” method.

Figure 5.16 shows the vertical displacement of this unstable slope detected by the “median”,

“max” and “mean” methods. Compared to the deformation map by the “min” method in Figure

5.13, we observe noises from the deformation maps by these three methods in Figure5.16(a),

5.16(b) and 5.16(c). In particular, the “max” and “mean” methods (Figure 5.16(b) and 5.16(c))
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Figure 5.16: Displacement extracted by different
deformation estimation

-1 -0.5 0 0.5 1100

101

102

103

104

Displacement Scale

N
um

be
r o

f C
el

ls

Median

(a) median

-1 -0.5 0 0.5 1 1.5100

101

102

103

104

Displacement Scale

N
um

be
r o

f C
el

ls
Max

(b) max

-0.5 0 0.5 1100

101

102

103

104

Displacement Scale

N
um

be
r o

f C
el

ls

Mean

(c) mean

Figure 5.17: Deformation distribution (his-
togram) of vertical displacement result
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show more noises that are scattered on this slope.

Similar to presenting the detailed displacement of the “min” method in Figure 5.14, the

displacement distributions by these methods are given in Figure 5.17. This figure shows that

the vertical displacement achieved by the “median”, “max” and “mean” methods have similar

histograms with the “min” method in general, where most vertical displacement are centred at 0

m. However, the detailed distribution in Figure 5.17(a) looks more reasonable compared to the

distribution in Figure 5.14, which is consistent with the deformation map plots: the “median”

method has closer results to the “min” method.

5.4 Case Study II - Erosion on a Concrete Slope

In the previous section, we applied our cell-based approach on real-life case study I, a slope

landslides along a railway line in Switzerland. We detected the displacement of this slope is

from -0.6 m up to more than 1 m. In this section, we further test our approach in another

real-life deformation case in Switzerland, i.e., erosion on a concrete slope with slight changes.

5.4.1 Data description

The point cloud datasets were captured by Haute Ecole d’Ingenierie et de Gestion du Canton de

Vaud (HEIG-Vd)2 on a concrete slope. This concrete slope connects a big dam with a natural

riverbed, as shown in Figure 5.18. The monitored slop is at the bottom of a dam (see Figure

5.18(a)); and there is a riverbed at the end of this slope, as shown in Figure 5.18(b).

(a) At the bottom of the dam (b) At the start of the riverbed

Figure 5.18: A concrete slope

The main deformation on this slope is erosion caused by the water flow. The size of this

slope is approximately 40 m × 18 m. This concrete slope has been monitored since 2009. At

the beginning, the data acquisition was quite frequent, one measurement during two months;

while the acquisition frequency was later decreased to once per year; because it was found that

the erosion of this slope is quite small. This reason might be (1) the material of the slope is

concrete, and (2) the external force to change this slope is small like water flow. In total, we

2http://www.heig-vd.ch/
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acquire four dense datasets captured by terrestrial LiDAR at four different epochs. Table 5.5

provides the details of these four point cloud datasets.

Epoch 0 1 2 3

Date of Collection May 8, 2009 July 2, 2009 June 8, 2010 July 1, 2011

Number of Points 9 791 034 4 456 905 4 247 106 7 617 623

Number of Stations 4 3 2 2

Table 5.5: Details of the point cloud datasets at four epochs

5.4.2 Results by cell-based approach

Cell size is a significant parameter of the detection in cell-based approach. In the investigation of

the cell-based approach, the cell size is set to 0.02m, 0.04m, 0.06m, 0.08m and 0.1m, respectively.

Table 5.6 indicates the cell number with different cell sizes after split. We observe that the

number of the cells is quite different according to the cell size, from 1,305 (with cell size as 0.1

m) to 31,802 (with cell size as 0.02 m). Obviously, with the increase of cell size, there will be

less cells after split.

Cell size 0.02 m 0.04 m 0.06 m 0.08 m 0.1 m

Number of cells 31802 8034 3596 2016 1305

Table 5.6: Number of cells in cell-based approach with different cell sizes

Firstly, we compute deformation map by applying the cell-based approach on the point clouds

from this concrete slope where the erosion existed. We test the five different cell sizes mentioned

in Table 5.6. Figure 5.19 shows the five deformation map that we computed using the “min”

method of Z axis as the meta-deformation of displacement. In general, the five sub-figures of

deformation map all show similar deformation information. With the increase of cell size (from

0.02 m to 0.1 m), we observe the deformation map becomes smoother.

Additionally, we also compute the displacement distributions for these five deformation maps.

Figure 5.20 shows the histograms of displacement between Epoch 0 and Epoch 2, corresponding

to the five choice of cell size (0.02 m, 0.04 m, 0.06 m, 0.08 m and 0.1 m). The partial area with

displacement from -0.06 m to -0.05 m is about 59% in this whole region. On the other hand,

this region contains 5% area with some big displacement as -0.1 m. These subfigures show the

high coincidence on the distribution of the displacement of this region.

We also tested different meta-deformation methods for detecting the displacement, such as

“min”, “max”, “median”, and “mean”. From Figure 5.21, there is no significant difference

between different methods. Displacement achieved by different detection methods show the

analogous distribution; and the reason might be the surface is quite flat and regular in general.

103



5. EVALUATION OF CELL-BASED APPROACH

(a) 0.02 m (b) 0.04 m

(c) 0.06 m (d) 0.08 m

(e) 0.1 m

Figure 5.19: Deformation map of the point cloud between Epoch 0 and Epoch 2 (cell sizes are
0.02 m, 0.04 m, 0.06 m, 0.08 m and 0.1 m).
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(b) 0.04 m
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(c) 0.06 m
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(d) 0.08 m
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(e) 0.1 m

Figure 5.20: Distribution of displacement between Epoch 0 and Epoch 2 (cell sizes are 0.02 m,
0.04 m, 0.06 m, 0.08 m and 0.1 m).
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Figure 5.21: Distribution of displacement with different detection methods

5.5 Comparison

To further evaluate the deformation results by the cell-based approach, we compare our cell-based

outputs with the results generated by 3rd parties, e.g., a commercial software (e.g., 3DReshaper),

or a Swiss surveying company (e.g., BBHN SA). In this section, we provide the detailed com-

parison: we firstly introduce the 3DReshaper software and investigate its inspection function

for displacement detection (Section 5.5.1); afterwards, we present the comparison based on the

test of the same datasets used in previous sections, including the synthetic data with the ground

truth (Section 5.5.2), and real-life datasets (Section 5.5.3 and Section 5.5.4) with other results.

5.5.1 Introduction of 3DReshaper

Before providing the comparison results, we introduce a commercial software – 3DReshaper,

which is a well-known software for point cloud processing such as surface reconstruction, and

calculation of geometric shapes. Afterwards, we provide the sensitivity analysis of data inspec-

tion to tune the important parameter in 3DReshaper (i.e., the average length of the triangle).

3DReshaper is a 3D scanner software dedicated to point cloud processing, 3D meshing, CAD

surface reconstruction and three dimensional comparisons 3. The working principle of inspection

using 3DReshaper is to project the data points onto the base mesh. The main steps of using

3DReshaper to compare two point cloud datasets include: (1) generate a mesh based on the

point cloud of the first epoch as a base geometry, (2) project the point cloud at the second epoch

onto this base mesh and identify the difference.

Inspection Procedure – The inspection function is the core part of 3DReshaper, which is per-

formed on two related objects, and one of the two objects is considered as a reference geometry.

According to the types of the object, we have: (1) two surfaces or contours (e.g., a CAD model

with the corresponding “as-built” model); (2) a surface and a point cloud. This function can not

perform direct comparison on the two point clouds captured at different epochs. Therefore, we

3http : //www.3dreshaper.com/en1/En software.htm
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create a 3D mesh based on one point cloud (chosen as a reference geometry) and then compare

this mesh with the other point cloud. In order to guarantee the direct comparison of the two

objects, the reference geometry and the object must be registered in the same coordinate system

as a preliminary step. This step includes rough registration and fine registration.

The comparison between the reference geometry and the other object is performed by pro-

jecting the object on the reference geometry. In the case of “erosion on a dam”, the reference

geometry is an arbitrary triangle mesh built on a point cloud at a chosen epoch; the other object

is a point cloud at the other epoch. Figure 5.22 is a subset of point cloud data on the dam at

Epoch I; and Figure 5.23 is the triangle mesh generated based on the points in Figure 5.22.

Afterwards, the point clouds at later epochs (Epoch II, III an IV) are compared with Epoch I

to analyse deformation.

Figure 5.22: A point cloud at a chosen epoch (Epoch I)

Figure 5.23: A mesh at a chosen epoch (Epoch I)

Investigation of inspection by 3DReshaper - To evaluate the quality of 3DResahper, we

compare a point cloud with the mesh created on the same dataset, by testing different mash

triangle length. The comparison result between this mesh and its original point cloud is theo-
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retically zero but is experimentally in Gaussian distribution. When this mesh is closer to this

point cloud, the inspected displacement is more accurate. In this case, the essential parameter

to create 3D mesh is the average length of the triangles constructing the 3D mesh. Therefore,

we focus on testing the same area and creating 3D mesh with different parameter setting. In

the experiments, the average length of the triangles (Ltriangle) is set to 0.02 m, 0.04 m, 0.06 m,

0.08 m and 0.1 m, respectively. Figure 5.24 is the inspection results corresponding to the four

triangle length, i.e., 0.02 m, 0.04 m, 0.06 m, 0.08 m and 0.1 m respectively. The analysis of

these four sub-figures is as below:

(a) 0.02 m (b) 0.04 m

(c) 0.06 m (d) 0.08 m

Figure 5.24: Inspection of the point cloud and its mesh at epoch 0 (the average length of the
triangle Ltriangle are 0.02 m, 0.04 m, 0.06 m and 0.08 m, respectively).

• Capability of Detection. From the intuitive view of the figures, the detection capability

becomes weaker and even unreliable with the increase of Ltriangle. From Figure 5.24(a)
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to Figure 5.24(d), more errors appear with regard to increasing Ltriangle. This worse

situation is obviously described in Figure 5.24(c) and 5.24(d). When Ltriangle is 0.06 m,

we can observe some empty spots in the comparison results, which are caused by the

created mesh with the holes. The sizes of these holes are diverse from 0.1 m to 0.2 m.

Furthermore, when this triangle length raises to 0.08 m, a mesh with substandard quality

is created and leads to unreliable displacement shown by Figure 5.24(d). Finally, when

Ltriangle is set to 0.1 m, 3DReshaper is unable to create the mesh.

• Distribution of Displacement. In the bar at the left side of each sub-figure in Figure

5.24, we observe the distribution of the displacement inspected by 3DReshaper. These

distributions demonstrate the experimental hypothesis, i.e., Gaussian distribution. All

distributions are almost symmetrical around 0 m, which is the theoretical displacement

value. We have some detailed observations: (1) The maximum of the displacement grows

dramatically with the rise of Ltriangle from 0.007 m to 0.0177 m; and even very unreliable

like 0.06 m, and the minimum indicates the same growth to the minus direction. (2) The

displacement with smaller length is more centralised than the displacement with larger

length. For example, 95.9% and 96.3% displacement are between -0.00125 m and 0.00125

m, when the average triangle length are 0.02 m and 0.04 m, respectively; but, only 37.6%

displacement are between -0.005 m and 0.005 m, when the length is 0.08 m. (3) The errors

of the displacement ascend widely with the increase of Ltriangle.

In addition to analysing Figure 5.24 produced by 3DReshaper, we explore the numeric output

from 3DReshaper. We compute additional statistical properties including minimum, maximum,

average of the displacement and standard deviation are summarised in Table 5.7. Firstly, com-

pared with the minimum and maximum value from the figures, we can see that the displacement

shown by Figure 5.24 are the subset of the numeric output. In fact, the trend of the minimum

and maximum indicate the same change situation as shown in Figure 5.24, which is a dramatic

increase as the rise of Ltriangle. Secondly, the average value of the displacement are quite close

to 0 and the standard deviation of the displacement is very small, e.g., around 0.001 m when

the average length of the triangles are 0.02 m and 0.04 m; 0.003 m when Ltriangle is 0.06 m.

Average length of triangles (Ltriangle) 0.02 m 0.04 m 0.06 m 0.08 m 0.1 m

Minimum -0.019 -0.021 -0.053 -0.1 Error

Maximum 0.021 0.021 0.052 0.1 Error

Average 1.28134E-05 -4.31836E-08 -1.22745E-05 0.003291 Error

Standard Deviation 0.001138615 0.001404663 0.003017065 0.056921 Error

Table 5.7: Minimum and maximum of the inspection result by 3DReshaper

Investigation of detection by Cell-based approach - We also investigate the results

achieved by our cell-based approach. In order to keep the consistency with the detection of

3DReshaper, we use the same dataset to evaluate our cell-based approach. In the previous

investigation of 3DReshaper, the average length of triangles (Ltriangle) can affect the detection
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of displacement. Similarly, cell size is a significant parameter of the detection in cell-based ap-

proach. To make a fair comparison, the same set of parameter setting (from 0.02 m to 0.1 m)

is chosen for the investigation of the cell-based approach.

As described in Chapter 4, the cell-based approach has three main steps, i.e., split, detect,

and merge. We first split the space into uniform cells, then the point cloud in each cell at Epoch

I is compared with the point cloud in its corresponding cell at Epoch II. Like the inspection

in 3DReshaper, we can do the same inspection that the point cloud in each cell is compared

with itself. We get all zero differences – all displacement of the cells between the points in the

same cells are 0, which is in contrast to the non-zero values in Table 5.7 from the inspection of

3DReshaper. This is because the cell-based approach is directly performed on the point cloud;

but in 3DReshaper, the software builds an intermediate step (i.e., the mash created from the

point cloud), which could bring additional noises/errors in analysing deformation. Therefore,

we can call our cell-based approach is a kind of “point-to-point” comparison, while 3DReshaper

is a “surface-based comparison” method.

5.5.2 Synthetic data - comparison with ground-truth

In Section 5.2.2, we have already presented the deformation map generated by the cell-based

approach. For comparison, we first apply 3DReshaper on synthetic data to produce the dis-

placement map. Therefore, we compare the results from both methods, surface-based approach

(e.g., 3DReshaper) and the cell-based approach. Additionally, we compare the estimated results

with ground truth using several statistical values.

Figure 5.25 is the displacement inspected by 3DReshaper. From the perspective of graphic

view, Figure 5.25 shows a similar changing trend as Figure 5.4(c). From the left side of this

figure, the displacement began to decrease from 0.07 mm to -14.2 mm until the middle of the

slope; afterwards, the displacement continuously increased, until reaching 0.07 mm at the top

of this slope.

‐

‐

‐

‐

‐

‐

‐

‐

BBHN

Figure 5.25: Displacement inspected by surface-based approach (3DReshaper)

In addition, we know the ground truth of the synthetic data, which can be used to evaluate
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the results from both 3DReshaper (surface-based) and our cell-based method. Table 5.8 shows

some basic statistic values (e.g., maximum, minimum, mean and standard deviation) detected

from both cell-based and surface-based method. From Table 5.8, we observed that for the first

three values including maximum, minimum and mean, the results by the cell-based approach

are closer to the ground truth, compared to the surface-based approach. Especially for the

maximum value, the cell-based approach achieved the same value as the ground truth (0 mm),

but the surfaced-based approach got 0.225 mm. We further checked the detailed detection

results by the surface-based approach: 0.2% displacement (204 points out of the total points)

are more than 0 mm. However, for the standard deviation, the surface-based approach is better

than cell-based approach, like 3.81 mm < 4.46 mm. Therefore,the surface-based method is

smoother compared to our cell-based method, which exactly shows one limitation of this cell-

based approach: possibly losing some continuous due to the split of area into cells.

Methods Cell-based Method Surface-based Method Ground Truth

maximum 0 0.225 0

minimum -15.39 -14.2 -15.47

mean -7.55 -6.56 -7.74

standard deviation 4.46 3.81 0

Table 5.8: Statistical analysis of deformation detection from the same datasets by cell-based
and surface-based approach (unit: mm)

5.5.3 Case study I - comparison with the Results from BBHN SA

Different from the synthetic data, the real-life case studies (both the landslides in Flamatt

presented in Section 5.3 and the erosion on a concrete slope presented in Section 5.4) do not

have the ground-truth data. To further evaluate our results on these real-life data, we compare

our results with the results provided by 3rd party sources.

For the landslides in Flamatt, BBHN SA (a private surveying company in Switzerland) also

analysed this point cloud dataset. By analysing the vertical displacement of the terrain surface

between Epoch I and Epoch II, they generated a contour map of the slope by using AutoCAD,

as shown in Figure 5.26. The red lines are the intermediate contour lines. Each intermediate

contour line represents an equal displacement and each pair of neighbouring intermediate contour

lines have the same change of displacement. To better understand this map, additional yellow

lines are the index contour lines that represent the displacement with the values of 0.5 m. The

figure shows the whole contour map of the slope near the railway at Flamatt. To provide a more

detailed view, Figure 5.27 is a zoom-in view of a small selected part of the whole contour map

in Figure 5.26; and it highlights the bottom-left part of this slope (i.e., inside the ellipse).

Besides this contour map, we do not have any additional detailed information of the BBHN

results. Nevertheless, we are able to provide a graphic comparison between this contour map

with the deformation map computed by our cell-based method. We observe that the deformation

map (Figure 5.13) shows similar displacement to Figure 5.26: firstly, the main subsidence of this

slope is around 0 m; secondly, two hotspots in the middle have obvious increase, both of which
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Figure 5.26: Contour map of the whole slope at Flamatt

BBHN

Figure 5.27: Contour map of the deformation for the zone marked in Figure 5.26 – inside the
ellipse, which is enlarged by 15 times

are shown in our deformation map and the contour map from BBHN-SA; and thirdly, the lower

edge of this embankment raise by 0.4 m. Without the ground-truth results, it is impossible to

claim which results are better. Nevertheless, these similar features show the consistency between

our approach and the BBHN results.

5.5.4 Case study II - comparison with surface-based approach

Now, we provide the deformation analysis results when the average length of triangles is set by

0.04 m, which is the best parameter studied in the previous section (from Table 5.7). We focus

on two types of results from deformation detection: one is about the erosion visualisation, and

the other is about deformation distribution.
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Figure 5.28: Erosion map of one area in the concrete slope by 3DReshaper

Erosion Analysis - Figure 5.28 is the final result generated by the surface-based method

(3DReshaper), where the erosion changes from -0.105 m to -0.0222 m. The partial area

with displacement between -0.0428 m and -0.0738 m is about 79.6% of this region.

Deformation Distribution - We analyse the displacement distributions of 3DReshaper for

more statistical properties. Figure 5.29 is the histogram of all displacement in this region.

The major displacement are centred around -0.06 m.
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Figure 5.29: Deformation histogram by surface-based approach

With Section 5.4.2, we present the deformation (in terms of the displacement) of the same

region obtained by 3DReshaper and the cell-based approach. From conceptual point of view,

3DReshaper is a surface-based method by building mesh surface to matching the points. Now, we

compare the cell-based method with the surface-based method. Cell-based approach is directly

performed on the point cloud and is aided by cells to detect deformation. In 3DReshaper, a
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surface-base method, a point cloud at Epoch I is firstly used to create a mesh as reference

and then the second point cloud at Epoch II is used to match this surface. In this following

paragraphs, we compare these displacement results of these two methods from two perspectives:

one is the intuitive graphic view (comparing the erosion plot by 3DReshaper and the deformation

map by cell-based approach), and the other the displacement distributions from the two methods.

Erosion Comparison - From the global visualisation, the erosion map in Figure 5.28 and the

deformation maps in Figure 5.19 show very consistent results: similar areas with more or

less the same displacement. The main erosion of this area (in green colour) is between

-0.07 m and -0.05 m; the spot with the displacement between -0.09 m and -0.11 m (in blue

colour) is described in Figure 5.28 and Figure 5.19(b).
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Figure 5.30: Histogram by cell-based and surface-based approach

Distribution Comparison - To further compare the erosion characteristics inside this area

more precisely, we analyse the displacement distributions of our cell-based approach and

the surface-based method (i.e., 3DReshaper). Figure 5.30 shows the two erosion histograms

computed by our cell-based approach (dark) and by the surface-based method (grey),

respectively. We can observe that the general deformation distribution is very similar.

Firstly, the displacement achieved by two methods are ranging from -0.11 m to -0.02 m;

secondly, the partial area with displacement between -0.07 m and -0.05 m accounts for

75.17% (cell-based approach) and 78.15% (3DReshaper) of this region. Such distribution

similarity is consistent with the graphic one (erosion map vs. deformation map). The

slight difference between these two results is that: in the results of our cell-based method,

the most frequent magnitude of the erosion level is -0.05 m, while it is -0.06 m by using

the surface-based method.
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5.6 Summary

This chapter presented the third major contribution of this thesis, i.e., evaluation of cell-based

approach. The cell-based approach was tested and evaluated by three point cloud datasets in-

cluding (1) synthetic data generated by computer program; (2) real-life LiDAR data of landslide

in Flamatt; and (3) real-life LiDAR data of erosion on a concrete slope. In addition, we also

built some practical experiments, and collected point cloud data of the rockfall scenarios, which

will be used in Chapter 6 for finding cell correspondence.

Through the synthetic point clouds, we compared the cell-based approach with non-cell

based traditional method. We presented its advantages in deformation detection of distinct

partial areas of the object. It is worth noting that we showed better accuracy using cell-based

detection compared to non-cell based detection, based on the ground truth from the simulated

data. Our cell-based method supports meta-deformation like displacement, angle variation and

rigid transformation. Besides the synthetic data, we considered two real-life deformation cases.

For the first case – landslide in Flamatt, we applied our cell-based approach and compared it

with the results from a surveying company. For the second case – erosion on a concrete slope in

Valais, we performed analysis by the cell-based approach and demonstrated a comparison with

surface-based method (e.g., 3DReshaper, a commercial software for point cloud processing).

For both real-life cases, the cell-based approach showed the consistent results with the analysis

from this surveying company and commercial software. From the evaluation of various datasets,

we concluded that the cell-based approach can be a complementary method of traditional and

current processing techniques.
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Chapter 6
Extension of Cell-based Approach

Stay hungry, Stay foolish.

Steve Jobs (1955-2011)

6.1 Introduction

This chapter presents some important extensions to our cell-based approach, providing more rich

functionalities for deformation monitoring via 3D point clouds. The extensions are corresponding

to different steps in the cell-based deformation computation framework presented in Chapter 4,

particularly on the steps of split and detection.

This chapter is organised as follows: Section 6.2 discusses the strategy of designing dynamic

cell sizes for building meta-deformation, as an extended split method. Section 6.3 additionally

discusses another research issue about “finding cell correspondence” when large deformation

causes most points in one cell move to another cell. Section 6.4 proposes a further research

issue about “movement tracking with data-driven cell” when deformed parts have an arbitrary

boundary that cannot use a regular cell shape. Section 6.5 presents a rich detection method

that is able to adaptively select a suitable model for each cell. We also provide the extension

of computing deformation evolution in Section 6.6 where more than two epochs of point cloud

datasets are available. Finally, Section 6.7 summarises this chapter.

6.2 Dynamic Cells

In Section 4.3 about the split step in the cell-based deformation computing framework, we have

already presented a method that divides the space of the monitored object into uniform cells.

This is a simple static method since all cells are fixed before detecting meta-deformation, based

on a given cell size 〈length, width, height〉 in advance. All cells have a uniform size. This method

has some obvious disadvantages, e.g., (1) All cells have the same size, while they do not have

the same number of point cloud data points inside, e.g., some are quite sparse while others may

be very dense. In such case, the quality of meta-deformation built for a cell largely depends
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on how many points inside the cell. (2) In particular, the data points in the corresponding

cell at two different epochs maybe have very different status, which could also affect the final

meta-deformation results. (3) Additionally, although we have studied on the sensitivity of using

different cell size, it is challenging to find the best cell size. If the cell size is too small, there

could be a huge amount of cells, which could cause large computation cost for building meta-

deformation for so many cells (i.e., overestimated-split); on the contrary, if the cell size is too

large, there might be too many points in one cell, then one single meta-deformation model will

be difficult to capture complete deformation information (i.e., underestimated-split). Therefore,

the first major extension on previous works is to provide an enhanced split strategy that is able

to support dynamic cells. Compared with simply split using uniform cells, the strategy of using

dynamic cells can provide various suitable sizes for different cells, to avoid both problems of

overestimated-split and underestimated-split.

To generate dynamic cells, we design a top-down split strategy to incrementally divide the

space into cells with different sizes, considering the geometric features of points inside the cell.

In this thesis, we apply the modelling errors (e.g., a surface regression on the points in a given

cell – the same model used in Chapter 4 to determine the cell centre) to determine whether the

cell needs to be further split or not. If the cell modelling has big errors at one of the two epochs

(see Equation 6.1), this cell will be divided into two cells; otherwise, we do not split this cell.

For the detailed procedure of splitting a cell, this is built on the cell characteristics, e.g.,: (1)

If cell length is longer than cell width, the cell is split into the left and right sub-cells, namely

Ci → (CiL, CiR), as shown in Figure 6.1(a). (2) If cell width is longer than length, the cell is

split into the up and down sub-cells, namely Ci → (CiU , CiD), as shown in Figure 6.1(b).

error(M(cell
(I)
i )) > ∆ or

error(M(cell
(II)
i )) > ∆ (6.1)

1iC iLC iRC

iDC

1iC

iUC

12

(a) length > width

1iC iLC iRC

iUC

1iC

iDC

12

(b) length < width

Figure 6.1: Split strategy

Algorithm 6.1 summarises the detailed procedure of generating dynamic cells. This is com-

prised of two main parts, i.e., “initialisation” and “iteration”:

Step 1. Initialisation (line 2 - 14) – We firstly initialise the split process and set up a couple of

important variables. We use finalCellSet to save the final output, i.e., all cells without
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6.2 Dynamic Cells

any needs to be further split, use cellQueue to manage the candidate cells that might

require further split, use ∆ as the model error threshold to determine whether we should

split the candidate cell or not. We load all data points into P1 and P2, corresponding

to two epochs, respectively. Afterwards, we detect the max bound of all points in

Epoch 1 and Epoch 2. Based on this bound, we build the first candidate cell (cell)

containing all points, and put cell into cellQueue.

Step 2. Iteration (line 15 - 32) – At each iteration step, we take the first candidate cell from

the cellQueue, modelling the point cloud dataset in the cell using a surface model

(e.g., building a fitting plane via SVD or RANSAC) for both epochs, and receive the

fitting error of the two fitted surfaces at two epochs (i.e., error1 and error2). If one

of the two errors is larger than the pre-defined threshold ∆, the cell needs to be split

Algorithm 6.1: dynamicCells

Input: Two files of original point cloud datasets (filename1, filename2 )
Output: Dynamic cells finalCellSet

1 begin
2 finalCellSet ← ∅; // initialise the output cellset
3 /* load all points of each file into P1 and P2, respectively */
4 P1 = {p11, · · · , p1N} ← loadFile(filename1 );
5 P2 = {p21, · · · , p2N} ← loadFile(filename2 );
6 /* find the bound of two point clouds P1 and P2 */
7 boundP ← {minx,miny,maxx,maxy};
8 /* create one cell for containing all of the points in P1 and P2 */
9 cell ← createCell(P1,P2);

10 /* Initialise a cell queue*/
11 cellQueue ← ∅;
12 cellQueue.add(cell);
13 /* define the error threshold for accepting the current cell size */
14 ∆ ← define(threshold);
15 while cellQueue 6= ∅ do
16 cell ← cellQueue.poll( ); // take the first cell from the queue
17 /* build two models to represent P1 and P2, respectively */
18 error1 ← model(P1, cell);
19 error2 ← model(P2, cell);
20 if error1 > ∆ || error2 > ∆ then
21 length ← maxx −minx; // get length of cell Ci
22 width ← maxy −miny; // get width of cell Ci
23 if length > width then
24 {cellL, cellR} ← split(cell); // divide cell into two parts (left and right)
25 cellQueue.add(cellL); // add the split cells into cellQueue
26 cellQueue.add(cellR);

27 else
28 {cellU , cellD} ← split(cell) ; // divide cell into two parts (up and down)
29 cellQueue.add(cellU ); // add the split cells into cellQueue
30 cellQueue.add(cellD);

31 else
32 finalCellSet.add(cell); // add non-split cell into final cellset

33 return finalCellSet // cells with dynamically generated sizes
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6. EXTENSION OF CELL-BASED APPROACH

using the strategy in Figure 6.1, i.e., either left-right split or up-down split based on

the comparison of cell length and width; then the two sub-cells will be put into the

cell queue cellQueue as the candidate cells for future check. If the two errors are both

not larger than ∆, current cell is not necessary to be split, and will be added to the

final result finalCellSet. The iteration step will be terminated until all of the cells in

cellQueue are detected, i.e., the cellQueue becomes empty.

To further explain this algorithm, we provide an illustrative example in Figure 6.2. Initially,

the whole space coving the entire monitored object at both epochs is considered as the first

and biggest cell (cell0, numbering as “0”). The modelling of point clouds in cell0 does not

contain small errors at both epochs, therefore cell0 is split into cell1 and cell2 (a left-right

split). Afterwards cell1 and cell2 are similarly split into two groups of sub-cells (cell3, cell4) and

(cell5, cell6), respectively; cell1 and cell2 both apply up-down split. At this level, the modelling

of cell3 and cell6 have small errors for both epochs (i.e., not satisfying the condition of Equation

6.1), therefore cell3 and cell6 do not need to be further split. On the contrary, cell4 and cell5

still need to be split to get smaller modelling errors on new split cells. We continue this iterative

procedure. Finally, we reach the last state of Figure 6.2(a). In total, the space is divided into

28 final cells with 7-levels (i.e., the 7 different sizes), as summarised in Figure 6.2(b).
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(a) Split cells (the first and biggest cell is entitled 0)
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2 1 7
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4 4 17, 20, 22, 23

5 2 32, 34
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7 10 47, 48, 49, 50, 51, 52, 53, 54, 55, 56

12

(b) Final cellset

Figure 6.2: An example of dynamic cell split

It is worth noting that the threshold (∆) in Algorithm 6.1 is a very important parameter to

determine whether a cell needs to be further split or not. Like many parametric setting issues,

this is a challenging task. In practise, the threshold (∆) typically depends on the application

scenario, and needs to be tuned accordingly. Nevertheless, the objective of using dynamic cells

can guarantee that all cells have similar and reasonable data points inside, such that a single

model for the cell is optimised.
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6.3 Cell Correspondence

Up to now, we have presented techniques about using static cell split (uniform cell size) or

building dynamic cells (various cell size) in our cell-based deformation computation. There is

a common assumption that there exists a fixed cell correspondence for point clouds between

Epoch I and Epoch II, i.e., cell
(I)
i → cell

(II)
i with the same ID i. The meta-deformation of celli

is computed based on comparing the two data clouds inside the cell at the two epochs. This

kind of detection is suitable for small changes, which means that the points in the cell after

deformation mainly stay in the same cell in general; namely, points in cell
(I)
i largely stay in

cell
(II)
i as well after deformation. However, some deformation might be large for some cells,

the deformable points moved from one cell to another cell (maybe neighbouring cell or maybe

a cell far away). Therefore, our next extension is to develop a flexible searching method to

automatically find the cell correspondence, not simply using a fixed i→ i′ correspondence.

To better understand this problem and explicitly explain the research challenge, Figure 6.3

provides an illustrative example. The bold curve represents the slope that has deformation

from Epoch I to Epoch II. The slope is covered by a large area that is divided into 9 cells at

both epochs using a simple uniform cell split strategy; thus, we generate 9 cells in total, i.e.,

from cell11, cell12 to cell33. There are three main valid cells that cover the slope at Epoch I,

i.e., cell11, cell22, and cell33, which are also denoted as cella, cellb, and cellc, respectively. In

terms of building meta-deformation using corresponding cells, we cannot build a simple direct

i → i′ correspondence like “cell
(I)
11 → cell

(II)
11 ”, “cell

(I)
22 → cell

(II)
22 ”, “cell

(I)
33 → cell

(II)
33 ”. Such

direct i→ i′ correspondence in this scenario is wrong: slope in cella (i.e., cell11) at two epochs

keeps the right correspondent points (see blue rectangles); however, different from cella, the

two other cells (cellb and cellc) do not have such direct correspondence relationship. Points in

cellb move to the down cell cell
′
b in red rectangle; and points in cellc also change to the down

cell cell
′
c in green rectangle. Therefore, the correct cell correspondence is “cell

(I)
11 → cell

(II)
11 ”,

“cell
(I)
22 → cell

(II)
21 ”, “cell

(I)
33 → cell

(II)
32 ”. In summary, we observe that some cells have the direct

cell correspondences, while others change the correspondence. This is quite normal in many real-

life scenarios. Therefore, for a complex deformation scenario like this, the research challenge is

to find the correct cell correspondence and to get the right meta-deformation parameters.

To solve this problem, we develop a greedy algorithm to find such cell correspondences,

which is a local matching problem. The detailed algorithm is presented in Algorithm 6.2. This

algorithm has two main steps:

Step 1. Identify important cells in Epoch I that cover the deformation object, e.g., cella, cellb,

and cellc in Figure 6.3. By this step, we can extract key cells, and only focus on

finding cell correspondence of these important cells. This could significantly reduce

our searching time. For example, the scenario in Figure 6.3(a) only has 3 important

cells out of 9 cells.

Step 2. For each key cell (cellIi ) at Epoch I, identify a set of candidate cells ({cellIIj }) in Epoch

II that might be the corresponding cells. Afterwards, we build a matching function

F. As shown in Equation 6.3, F could be a joint meta-model like ICP to find out the
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(a) Epoch I

13 23 33 13 23 33

ccell

13 23 33 13 23 33

32

bcell '
ccell

12 22 32 12 22 32

acell
'
acell

'
bcell

11 21 31 11 21 31

12

(b) Epoch II

Figure 6.3: Cell correspondence between Epoch I and Epoch II

Algorithm 6.2: cellCorrespondence

Input: Two point cloud datasets in cells (CELLI = {cellIm, · · · , cellIn},
CELLII = {cellIIp , · · · , cellIIq })

Output: cell correspondence pairs 〈cellIi , cellIIj 〉
1 begin
2 CELLdeform ← getMainCells(CELLI); // get the main cells including deformation

3 foreach cellIi ∈ CELLdeform do
4 /* find a set of candidate corresponding cells at Epoch II */

5 candidateCells = subSet(CELLII);
6 /* build meta-model for each cell in cell */

7 metaModel({cellIIp , · · · , cellIIq });
8 /* perform comparison to search the correspondent cell in candidateCells */

9 cellIIj ← argmin
cellIIj ∈candidateCells

F(cellIi , cell
II
j ) ;

10 get one cell correspondence 〈cellIi , cellIIj 〉
11 return all corresponding cell pairs

transformation parameters between cellIi and cellIIj , or an independent meta-model

(M) for both cells, e.g., the point cloud surface regression that we used a lot in the

previous chapters and sections for computing meta-deformation. After checking all

candidate cellIIj , we pick cellIIj that can achieve the most similar modelling parameters

from F(cellIi , cell
II
j ); we claim such cellIIj as the corresponding cell of cellIi .

correspondence(cellIi ) ← argmin
cell
′
j∈candidateCells

F(cellIi , cell
II
j ) (6.2)

F =

metaModel(cellIi , cell
II
j )

||metaModel(cellIi )−metaModel(cellIIj )||
(6.3)
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6.3.1 Practical data collection

We test the proposed algorithm on a dataset collected by practical settings in an experimental

environment. We design practical experiments to simulate typical deformation scenarios, and

use terrestrial LiDAR to capture the point cloud datasets. Our practical experiments focus

on the scenarios of slope movement. Slope movement is a typical and complicated deforma-

tion process, which can be affected by geomorphic factor (such as slope gradients, overburden

depth, and structural rock properties), hydrologic factor (like water content and soil pore water

pressure) and vegetative factor. Landslide processes can be classified into six dominant types

including falls, creep, slumps and earthflows, debris avalanches and debris flows, debris torrents,

and bedrock failures [Var78]. However, these landslides descriptions do not provide precise geo-

metrical changes of the materials on the slope. In fact, each type of landslides is not one kind

of single geometrical change, but a combination of some micro geometrical changes including

displacement, translation and rotation, change of scale, etc. According to the location of the

changing object, we can divide the complete monitored area into two parts: (1) an object on

the slope and (2) the slope itself. Therefore, we design two experiments: (1) simulating the

movement of a specific object on the slope, where the deformation focus is on the object not the

slope; and (2) simulating the movement of a slope itself, which is caused by extra forces such as

water or fallen materials designed in our practical experiments to imitate real-life deformation.

Movements of an object on the slope – Movements such as displacement, rotation and

translation are the general deformation types in many real-life cases, e.g., landslide process. It

is a fundamental step to simulate these basic deformation types and obtain point clouds for

subsequent analysis. The objective of this experiment is to simulate movements of an object on

the slope from Epoch I to Epoch II. In this situation, position of an object is changed in terms

of a specific movement at different epochs.

Experiment design – We use an object Obj (e.g., a rock) to simulate its movement on the slope

S as shown in Figure 6.4. To better describe the movements of this object, we built a suitable

coordinate system of this object: Z-axis is the same as the the normal of this slope to the up

direction; Y -axis is the perpendicular to Z-axis and is the same as the up direction of the slope;

X-axis is perpendicular to Y - and Z- axis and horizontal to the slope. This coordinate system

is depicted in Figure 6.4.

xy
z

S Obj

1

n

Figure 6.4: An object on a slope

The rotation of this object is designed as below. This object starts to rotate around its

origin and Y -axis with small angle (30◦). Figure 6.5(a) show the object’s rotation on the slope
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and Figure 6.6(a) show the rotation of this object from the top-down view. After three times

rotation with small angle, the position of this object is described in Figure 6.5(b) as well as the

top-down view shown in Figure 6.6(b). Afterwards, the object is rotated with big angle (90◦)

three times until it is returned to the initial position.

Obj
S

(a) The position of this object after rotated 30◦

Obj
S

1

n

(b) The position of this object after rotated 90◦

Figure 6.5: Rotation of an object on a slope. Figure 6.5(a) is the position of this object on the
slope after rotating 30◦; Figure 6.5(b) is the position of this object after rotated 90◦.
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(a) Rotation with small angle 30◦
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(b) Rotation with big angle 90◦

Figure 6.6: Rotation of an object on a slope (Top view). Figure 6.6(a) is the position of this
object on the slope after rotating 30◦; Figure 6.6(b) is the position of this object after rotated
90◦.

Additionally, we simulate the translation of this object on the slope. The object translates

from the initial position to the bottom of the slope (see Figure 6.7).

Experiment Setup - We perform this experiment under the support of and collaboration with

the Institute of Geomatics and Risk Analysis (IGRA), University of Lausanne (UNIL)1. During

the experiment of this rockfall simulation, the point cloud datasets of the monitored object are

captured by VIVID 9i (see Figure 6.8), a terrestrial laser scanner produced by Konica Minolta

company2. This Vivid 9i laser scanner applies the triangulation light block method, and its scan

range is [0.6 − 1.0m] in standard mode and [0.5 − 2.5m] in in extended mode. The precision

1http://www.unil.ch/igar
2http://www.konicaminolta.com/instruments/products/3d/non-contact/vivid9i/index.html
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xy
z

S Obj

1

n

Figure 6.7: Translation of an object on a slope

of x-, y-, and z- coordinates is ±0.05 mm (using TELE lens at distance of 0.6 m, with field

calibration system, Konica Minolta’s standard, at 20◦C). It takes 2.5 seconds for a scan and

approximately 1.5 seconds to transfer the data to the host computer.

Figure 6.8: KONICA MINOLTA VIVID 9i laser scanner

Another equipment is called “Sandbox”, which is chosen to set up the designed experiments.

Figure 6.9(a) shows the components of Sandbox. It is a box with three sides made of wood and

one side made of glasses to support easy observation. There is sand inside this box which can

form different shapes as needed, e.g., a sand slope with different angles, which are marked in

red line at the right side of the board.

We select one stone as the monitored object and put it on the sand slope inside the sandbox,

as shown in Figure 6.9(b). The initial position of this object and the slope is scanned, and we

get the first epoch of point cloud data. Afterwards, we give forces to the object and let it rotate

along it’s own Y -axis and slide along the slope until it moves to the bottom of this slope. During

this period, we capture four epochs of point cloud datasets.

Movements of a slope – In another practical experiment, we simulate the movement of the

slope itself. In such case, the outer force is not performed on an object (like the stone in the

previous experiment), but on the whole slope. Such force would be water (e.g., storm) and big

rock-fall, for simulating the scenarios of landslides.

Experiment design - Figure 6.10 is a box containing sand at the left side. The size of this box

is 1 m × 0.5 m × 0.5 m. Sand is settled to form a slope and angle between this slope and the

bottom of the box can be adjusted as a pre-defined angle, e.g., 45◦ in Figure 6.10.
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(a) Sandbox (b) An object added in Sandbox

Figure 6.9: Sandbox. Figure 6.9(a) is the Sandbox; Figure 6.9(b) is the Sandbox with an added
object – a stone.

1 m

Box

0.5 m

0.5 m
Sand slope

Figure 6.10: A sand slope in a box

We give some artificial forces from upside of this slope and cause changes of the surface of

this slope. Considering various environmental phenomena in nature, two sorts of forces caused

by water and fallen stones are applied on this slope. The strength of external forces is controlled

by the volume of water/stones and the pressure given to these material. The profile of this slope

along the long side of outside box (shown by dashed rectangle in Figure 6.10) are given by Figure

6.11. Artificial forces are given to the designed slope between two LiDAR scan measurements

(i.e., Epoch I and Epoch II). Figure 6.11(a) is the profile of the original surface at Epoch I; solid

line is the shape of the surface before giving forces. Figure 6.11(b) is the profile of the deformed

surface at Epoch II. Solid curve is the shape of the surface after giving forces; and the dashed

line is the original shape at Epoch I.
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(a) Profile of sand slope at Epoch I
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(b) Profile of sand slope at Epoch II

Figure 6.11: Changes of the slope surface at Epoch I and Epoch II

6.3.2 Finding cell correspondence

After collecting our practical datasets collected in the previous experimental setting, we design

relevant algorithms and provide the detailed implementations for finding such cell correspon-

dence in this dataset. As shown in Figure 6.12, we projected the four epochs of point cloud

datasets in one picture (in order to have a global view about deformation), and obviously we ob-

served that the four rock positions at the four epochs (from Epoch 1 to Epoch 4) are in different

cells. Therefore, we need to apply the method (i.e., Algorithm 6.2) to find the corresponding

cells that contain the rock in each epoch, i.e., cell
(1)
a → cell

(2)
b → cell

(3)
c → cell

(4)
d .

Figure 6.12: Practical experiment of a rockfall deformation on a slope (front view)

We choose point cloud datasets of this moving stone at Epoch 1 and Epoch 3 to test our cell-

correspondence algorithm. The objective is to find the right cell position of this stone at Epoch

1 and Epoch 3. Firstly, we need to fix the initial position (i.e., the main cell) of the interesting

target (i.e., the stone in this case) in Epoch 1; afterwards, based on the points inside each key

cell, we search the corresponding candidate cells at Epoch 3; finally, we find the most suitable

cell in the candidate cell as the final corresponding cell. There are two important experimental

issues in Algorithm 6.2, i.e., (1) choosing the candidate cells (candidateCells) and (2) the meta

model function (metaModel) to test the similarity of cells.

1. For the candidateCells in Algorithm 6.2, we divide the area into uniform cells (6 rows
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× 3 columns = 18 cells in total), as shown in Figure 6.13. Yellow points in the middle

cell of the first row and the purple points in the middle of the fourth row are the two

corresponding cells that contain the data points covering this stone. For the detailed

candidate corresponding cells, we consider all of the 18 cells. Of course, when checking

a large area with a large number of cells, we can build a searching area contains possible

candidate cells, rather than searching all cells. In practise, we typically only consider the

direct corresponding cell and its neighbouring cells as the candidate cells.

2. For the meta-model in Algorithm 6.2, we apply the ICP method to model the data points

in two cells (i.e., the ||ICP (cellIi , cell
II
j )||), and use two important outputs in ICP to check

the similarity of the two cells in terms of data points inside. The two outputs of ICP

are the number of ICP iteration (N) and the final root mean squared distance (MSD).

Of course, the smaller of these two values, the two cells are more close and have higher

probability to be the corresponding cells.

Figure 6.13: Split cells of a monitored slope at Epoch 1 and Epoch 3

For each cell at Epoch 1, we compare this cell with all 18 cells in Epoch 3. In this case, we

apply ICP method to estimate the rigid transformation between the points at two cells. In order

to find the initial and subsequent position of the stone at two epochs, we extract the iteration

number of ICP (N) and the MSD (Mean Squared Distance) of points between ‘before’ and

‘after’ the transformation. The matrix in Table 6.1 shows the N values for two cells, i.e., valueij

means building ICP from celli at Epoch 1 to cellj at Epoch 3 requires valueij times to terminate.

We observe that the iteration numbers of ICP in the diagonal of the table are significantly lower

compared to other numbers in this table. For example, all the diagonal values are less than 10,

and only two values is bigger than five; while, 99.4% of other non-diagonal values are bigger

than 10. This means most cells have direct cell correspondence, i.e., “cellIi → cellIIi ”, which is

true as there is only one non-direct cell difference that contains the stone, and other parts kept
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stable during this movement. These two cells are cell2 at Epoch I and cell11 at Epoch 3, which

is consistent with the plot in Figure 6.13. This is consistent with the ground truth that we have

cell correspondence: cellI2 → cellII11.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 17 21 16 18 22 18 18 23 20 15 20 19 18 24 16 23 22
2 11 10 12 15 11 18 15 15 22 19 10 24 18 15 30 20 15 23
3 20 21 2 31 19 21 19 17 20 20 14 19 31 17 17 28 22 17
4 26 20 26 3 16 20 24 19 31 23 15 22 23 19 24 22 26 26
5 31 15 20 16 4 18 21 29 31 22 12 28 31 22 25 22 24 25
6 27 20 21 22 15 3 20 30 15 22 14 21 24 16 20 20 18 17
7 21 26 22 17 18 17 5 17 24 19 14 26 20 19 23 22 25 23
8 21 20 26 29 14 29 16 4 18 29 11 23 25 15 23 26 19 21
9 27 24 17 30 17 20 23 18 5 21 15 19 21 14 19 20 21 17
10 19 18 18 25 16 21 25 20 26 3 14 18 18 20 25 17 24 30
11 24 16 22 19 16 24 31 28 23 18 10 21 22 14 31 30 18 30
12 30 19 20 24 21 17 18 23 18 16 10 4 19 17 17 19 21 19
13 22 23 24 19 18 17 19 18 20 23 15 22 3 15 22 18 27 24
14 18 20 19 24 19 27 23 20 18 20 11 31 21 4 18 27 20 31
15 25 18 18 25 21 17 23 23 22 25 13 21 20 13 2 22 23 23
16 19 19 20 20 19 26 23 21 28 19 14 25 18 23 31 2 22 28
17 28 15 19 21 17 22 24 15 22 24 12 23 31 14 23 21 2 21
18 21 18 15 22 20 20 23 25 17 23 15 20 24 15 23 21 18 2

Table 6.1: Iteration number of ICP (N) between two cells at Epoch 1 and Epoch 3
(Index1cell vs Index

3
cell)

In addition, Table 6.2 provides the MSD matrix between cells at two epochs. Similar to

Table 6.1, the index i and j mean the ICP meta-model from celli at Epoch 1 to cellj at Epoch

3, while the valueij means the mean squared error (MSD) for such ICP rigid transformation.

The average value of all MSD in the matrix is 2.82 mm. For row 2 (cell2 at Epoch 1), the

average MSD in this row is 5.4 mm; similarly, we found column 11 (cell11 at Epoch 3) has

average MSD 6.35 mm. Compared to other cells with smaller average MSD, we can claim

that cell2 and cell11 are mostly likely the cells containing the stone. value2,11 is a small value

in column 11 but not for row 2; ideally, value2,11 should be the smallest value for both cases.

But in our practical experiment, the stone has a very regular shape (like a cube), which is

easy to be wrongly matched to the slope (other cells) by using ICP. Nevertheless, based on the

average MSD, we are still able to find the cells containing the stones and identify such cell

correspondence, i.e., cellI2 → cellII11. The meta-deformation of cell is rigid transformation of this

stone as below:

[R|t] =

−0.511 −0.558 −0.654 −1980.472

−0.217 0.820 −0.530 −527.690

−0.831 0.129 0.540 −1011.324

.

It is worth noting that this solution is based on a local optimisation: we independently find

out the most suitable corresponding cell for the given cell at Epoch I (cellIi ) – from the cells

at Epoch II (cellIIj ) , see Equation 6.2. As a complex deformation scenario, the independent

local optimisation cannot guarantee we find the best cell correspondences for all cells at Epoch

I. For example, both cellIa and cellIb at Epoch I are corresponding to cellIIj at Epoch II as
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1.81 2.88 2.10 2.04 3.77 2.21 2.26 2.62 2.08 2.28 6.60 2.14 2.01 4.77 2.01 1.91 2.13 1.99
2 6.34 9.09 5.02 5.85 4.96 5.25 6.28 4.70 4.89 4.85 6.09 4.56 4.90 5.65 4.48 4.92 4.89 4.50
3 2.21 2.65 1.80 2.45 2.74 2.11 2.36 3.50 2.12 2.42 5.93 2.16 2.44 4.03 2.21 2.62 2.41 2.12
4 1.93 2.85 2.06 2.06 2.91 2.17 2.14 2.59 2.22 2.35 6.35 2.49 2.01 3.99 2.13 2.02 2.24 1.97
5 2.46 5.14 2.47 2.38 2.64 2.12 2.22 2.15 2.38 2.25 6.09 2.15 2.05 2.07 2.12 2.12 2.16 2.10
6 2.10 3.01 2.21 2.27 3.22 2.09 2.59 2.93 2.38 2.59 6.39 1.96 2.17 3.92 1.92 2.90 2.37 1.92
7 2.02 2.88 2.16 2.40 3.39 2.54 2.15 2.49 2.15 2.36 6.41 2.48 2.08 3.98 2.64 1.86 2.57 2.03
8 2.23 3.03 2.24 2.23 3.30 2.10 2.42 2.53 2.33 2.66 6.44 2.20 2.09 3.94 1.99 2.06 2.18 2.09
9 1.94 3.10 2.28 2.14 3.26 2.11 2.30 2.72 2.03 2.76 6.71 1.98 2.18 4.20 1.86 2.66 2.59 1.86
10 2.03 2.85 2.75 2.13 2.93 2.12 1.95 2.49 2.21 2.12 6.25 2.05 2.01 4.25 2.07 2.14 2.32 1.92
11 2.00 2.95 2.33 2.47 3.09 2.64 2.36 2.63 2.31 2.45 5.99 1.99 2.38 4.01 2.04 1.96 2.19 1.93
12 2.28 3.19 2.14 2.33 3.39 2.20 2.48 3.09 2.28 2.46 6.34 2.03 2.31 4.20 2.15 2.51 2.51 2.05
13 1.84 2.96 2.02 2.24 3.07 2.70 2.18 2.32 2.38 2.13 6.44 2.06 1.77 4.28 1.89 1.82 2.02 1.97
14 2.08 2.94 2.32 2.01 3.06 2.42 2.22 2.53 2.39 3.12 6.29 2.01 2.09 4.00 2.02 1.83 2.08 2.09
15 2.33 2.96 2.21 2.40 3.12 2.16 2.39 2.97 2.02 2.62 6.70 1.98 2.17 4.34 1.75 2.10 2.19 1.81
16 2.01 2.91 2.33 2.11 3.12 2.24 2.14 2.52 2.16 2.31 6.64 1.99 1.97 3.96 2.03 1.73 2.05 1.89
17 1.93 3.19 2.90 2.54 3.25 2.22 2.53 2.79 2.30 2.60 6.32 2.82 2.58 4.19 2.10 2.00 1.85 1.96
18 2.66 3.15 2.33 2.42 3.28 2.14 2.51 2.99 2.26 2.52 6.32 2.07 2.18 4.25 1.94 2.07 2.11 1.68

Table 6.2: Mean squared distance between two cells at Epoch 1 and Epoch 3
(Index1cell vs Index

3
cell)

the most suitable cell based on local optimisation; however, there might be a constraint that

cellIa and cellIb cannot be matched to one single cell at Epoch II (like the scenario in Figure

6.3). In addition, for most deformation scenarios, neighbouring cells at Epoch I should be also

neighbourhood cells at Epoch II. These constraints request a global optimisation strategy for

finding cell correspondence. In addition, real-life scenarios can be even more complex: e.g., (1) in

contrast to the previous assumption, multiple cells at Epoch I can be deformed to a single cell at

Epoch II; and vice versa, one single cell at Epoch I can be deformed into multiple cells at Epoch

II; (2) neighbouring cells at Epoch I are not neighbouring any more after deformation at Epoch

II. These complicated scenarios require more advanced cell-corresponding search methods rather

than a single cell matching. In this thesis, we focus on finding cell correspondence using local

optimisation and test it with a practical point cloud dataset, and global optimisation considering

more complicated real-life constraints is the outlook of this thesis work.

6.4 Movement Tracking with Data-driven Cell

In Section 6.3, we have already enhanced the cell correspondence searching method, from direct

correspondence (i.e., cell
(I)
i → cell

(II)
i with the same ID i) to the non-direct correspondence (i.e.,

cell
(I)
i → cell

(II)
j with different ID i and j). During this searching procedure, the space containing

the object is still split into the same cell structure, i.e. the uniform cells with regular shape.

This is a restriction of this method, based on an important assumption that the deformed parts

are in a single cell (i.e., 0 cell movement), or an exact multiple of cells (i.e., N cells movement,

where N is a natural number). However, this assumption is quite difficult to be satisfied in the

real cases. Firstly, the deformed parts are usually not regular (non-rectangle, irregular shape

of moving object, like an irregular stone); Secondly, the deformed parts may move into several
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6.4 Movement Tracking with Data-driven Cell

different cells or many cells move to one cell, which increases the difficulty of deformed part

detection. Thirdly, the movement distance of this deformed part may not exactly N times of

the cell size, which might be smaller than a single cell (e.g., 0.3 cell size) or bigger than N cells

but less than N+1 cells (e.g., 3.4 cell size). Therefore, we develop a data-driven cell to track

object movement with deformation, in order to automatically detect the boundary and position

of the deformed object; such data-driven cell also supports irregular cell shape.

In Section 3.4.4 about hybrid modelling of deformation, we have already introduced the

“meta-cell” to better describe the boundary of the deformed object and to automatically detect

the boundary of the deformed object with an irregular cell. The detailed procedure of movement

tracking of an irregular object is summarised in Algorithm 6.3. The algorithm has the following

three main steps:

Step 1. Deformed parts (deformation boundary) identification (line 2 - 7) – We firstly split

the space into meta-cells (meta-cells here are much smaller than previous rectangle

cells, and they are in analogy with pixels in image analysis). Secondly, we identify the

meta-cells containing the points of the deformed parts (e.g., the stone in our previous

practical experiment data collection) at the initial epoch. These meta-cells are grouped

together as the deformed parts, which could be an arbitrary boundary (irregular shape

like the rectangle in previous cells), see Figure 3.11 in Section 3.4.4.

Step 2. Movement tracking (line 8 - 10) – For point clouds at the subsequent epochs, we track

the deformed parts and detect its position and boundary at each epoch continuously.

There is an important sub-function, i.e., “findCellBound”. This function is designed

to identify the deformation boundary and to build an irregular cell (see Algorithm 6.4).

In movement tracking, the previous-epoch deformed parts boundary is regarded as an

irregular cell and used to find the boundary of the deformed part at current epoch.

We firstly get the points in this irregular cell at current epoch. Afterwards, we move

this cell along different direction via the unit of a meta-cell size, until finding the new

boundary of the deformed part (i.e., the most suitable matching). In this step, we

apply angle variation to determine the deformed parts at current epoch. Finally, we

achieve the position and the boundary of the deformed parts at current epoch.

Step 3. Deformation computation (line 11 - 14) – After we obtain the position and boundary of

deformed parts at each epoch, we compute the deformation parameters of these parts.

The deformation parameter can be the rotation and translation of the moving mass.

For the neighbouring epochs, we calculate the centres of two masses, connect them,

and form a vector. Based on this vector, we can further calculate the rotation angle

around X-, Y - and Z- axis and translation along these three axes as well.

The utilisation of “meta-cell ” can improve the accuracy and efficiency of searching deformed

part position. From the point of view of accuracy, the moving distance is not a multiple of “cell”

sizes but a multiple of “meta-cell” size, when searching the correct position of the deformed parts.

In general, meta-cell is much smaller than the cell size in previous sections; therefore, it can

improve the accuracy of correspondence searching. From the point of view of efficiency, the
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6. EXTENSION OF CELL-BASED APPROACH

Algorithm 6.3: MovementTracking

Input: Multiple files of original point cloud datasets (filename1,· · · ,filenameN )
Output: Deformed part at all epochs (CELL1

i , · · · , CELLNj ); Deformation parameters for
deformed part at all epochs (D1,2, · · · , DN−1,N )

1 begin
2 /* load the points of the first file into P1 */
3 P1 = {p11, · · · , p1N} ← loadFile(filename1 );
4 /* get the meta cells for the whole space at Epoch 1 */
5 metaCell ← getMetaCells(P1);
6 /* get the deformed part boundary at Epoch 1 */
7 CELL1 = {metaCell1j,m, · · · ,metaCell1k,n} ← getDeformationBound(metaCell);

8 foreach filenamei do
9 /* get the deformation boundary CELLij at Epoch i*/

10 CELLij ← findCellBound(filenamei,CELLi−1j );

11 /* get the deformed part centre at all epochs */

12 (centreMass1, · · · , centreMassN ) ← mean(CELL1
i , · · · , CELLNj ) ;

13 /* calculate the deformation parameters based on the deformation boundary at all epochs */

14 (D1,2, · · · , DN−1,N ) ← deformation(centreMass1, · · · , centreMassN ) ;

15 return Deformed part at all epochs (CELL1
i , · · · , CELLNj ); Deformation parameters for

deformed part at all epochs (D1,2, · · · , DN−1,N )

Algorithm 6.4: findCellBound

Input: A file of original point cloud datasets at Epoch i (filenamei), former deformed part
boundary (CELLi−1j = {metaCelli−1j,m , · · · ,metaCell

i−1
k,n })

Output: Deformed part boundary at Epoch i (CELLi)
1 begin
2 /* load the points of the file filenamei into Pi */
3 Pi = {pi1, · · · , piN} ← loadFile(filenamei);
4 /* get the points at Epoch i with the same bound as CELLi−1 */

5 CELLij = {metaCellij,m, · · · ,metaCellik,n} ← getFormerBound(CELLi−1j );

6 while j < Ny & angleV ariation < threshold do
7 /* build the newCELL by moving CELLij on the space Pi, with one meta-cell size as

each moving distance*/
8 newCELL ← CELLi +metaCell;
9 /* calculate the angle variation between newCELL and CELLi */

10 angleV ariation ← detectCELL(CELLi, newCELL);
11 CELLij ← newCELL;

12 return find the cell boundary CELLij at Epoch i

object space does not need to be split again in different cell structure, when loading the points

at the subsequent epoch. Alternatively, this space is just divided once into meta-cells at the

initial epoch and is kept as same for the point cloud at the subsequent epoch. The position of

the changed part is detected based on the meta-cell adjustment.

In addition, this data-driven cell is able to support irregular cell shape, not only the regular

rectangle/cube cells in previous sections. Furthermore, this strategy can utilise other advanced

properties of the point clouds besides the spatial positions of the points, like the roughness of

the slope, RGB colour information of the points, etc. For instance, angle variation, as a graphic

feature, is used to decide the correct position of the cell.
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6.4 Movement Tracking with Data-driven Cell

Concrete Experiments of Movement Tracking – In Section 6.3, we have already presented

the experimental results of finding cell correspondence using the practical experiment datasets

at two epochs. In fact, we have four point cloud datasets collected by this practical experiment.

Now, we want to utilise this four-epoch datasets to test the movement tracking algorithm using

the data-driven cell. In this scenario, there is a stone moving on the slope. The main objective

of this experiment is to track the movement of this stone on four-epoch point clouds. This

process consists of three crucial steps, i.e., deformed parts identification, movement tracking and

deformation computation. The detailed experimental results are presented as follows.

Deformed parts identification. This is the initialisation procedure to detect the position and

boundary of the tracking object from the point cloud at Epoch 1. Figure 6.14(a) shows the

point cloud dataset at Epoch 1 with space split into meta-cells. Therefore, we need to determine

which meta-cells contain the points of the tracking object (e.g., the stone with irregular shape,

not pure cube or rectangle), based on its features like geographic property, colour information,

etc. Here, according to the feature variation in the bound, we are able to find the irregular cell

(i.e., a group of meta-cells) that contains this stone. From Figure 6.14(b), we can observe that

the green part of this point cloud is the slope at Epoch 1; while the red part is the moving stone

at Epoch 1.
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(a) Meta cells of point cloud at Epoch 1
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(b) Deformed parts detected at Epoch 1

Figure 6.14: Object detection at Epoch 1

Movement tracking. After achieving the initial position of this stone (as an irregular cell) at

Epoch 1, we start to determine its position at subsequent epochs using the point clouds. In

general, the position of this stone (i.e., the initial irregular cell) at Epoch K provides a starting

point to search this stone at Epoch K+1; the algorithm moves the cell step by step, until

reaching the best matching between two corresponding cells. The step unit is the size of meta-

cell. Considering the rock fall scenario, the stone usually moves up-down along the slope. In

this experiment, we just move the cell along the down direction (e.g., Y−axis), not along the

horizontal direction (e.g., X−axis).

We apply the angle variation metric to decide whether the object is matched or not. Angle
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(a) Detection at Epoch 2
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(b) Detection at Epoch 3
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(c) Detection at Epoch 4

Figure 6.15: Object detection using angle variation

variation is the difference between the normals of two point sets. One set is the point cloud found

at the previous epoch; another one is the points inside the cell at current epoch. Figure 6.15

shows the angle variation plots, when detecting the irregular cell from the point cloud at Epoch

to the point cloud at Epoch 2, 3 and 4, respectively. We can observe that, (1) in general, the

three sub-figures have large angle variations - which means the cells are not correspondent each

other; (2) with the cell movement (i.e., moving along how many meta-cells), there is a minimum

valueof angle variation, which indicates that the two cells are correspondent. Figure 6.15-(a)

indicates that from Epoch 1 to Epoch 2 it requires about 7 steps, Figure 6.15-(b) indicates that

from Epoch 1 to Epoch 3 it requires about 18 steps, and Figure 6.15-(c) indicates that from

Epoch 1 to Epoch 4 it requires about 24 steps. In addition, Figure 6.16 provides the detailed

plot of these four cells at the four epochs, respectively. In other words, these four cells are the

position of the stone at each individual epoch – this is the detailed information of tracking such

stone movement.
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Figure 6.16: Object movements from Epoch 1 to Epoch 4 (only show the moving object)

Deformation computation. After tracking the stone from Epoch 1 to Epoch 4, we can calculate

the detailed deformation parameters of each movement. As shown in Figure 6.17, Ci and Cj are

the centre of deformed parts (i.e., irregular cell) at Epoch i and Epoch j, respectively. Vector
−−−→
CiCj is the deformation vector of this mass between Epoch i and Epoch j. In order to better

compare the rotation angle in the same reference plane, we project the
−−−→
CiCj vector into the xy

plane as
−−−→
C
′
iC
′
j (see Figure 6.17(a)); and also project the

−−−→
CiCj vector into the xz plane as

−−−→
C
′
iC
′
j

(see Figure 6.17(b)). Therefore, θx, θy and θz are the rotation angle of vector
−−−→
CiCj rotating

around the X-, Y-, Z- axis, respectively. We can utilise these three angle θx, θy and θz to describe

the rotation of the
−−−→
CiCj vector from Epoch i to Epoch j.
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Figure 6.17: Rotation of deformation vector around the X-, Y- and Z- axis between Epoch i and
Epoch j

Table 6.3 shows the rotation angles of this stone (i.e., the irregular cell) around the X-, Y-

and Z- axis from Epoch 1 to Epoch 4. We can see that the rotation of the stone around the
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X- and Y- axis changed slightly (less than 0.3◦); and the rotation around the Z- axis changed

larger (about 2◦). In addition, Table 6.4 shows the translation of this stone along the X-, Y-

and Z- axis from Epoch 1 to Epoch 4. It had a big movement along the X- and Z- axis and a

small movement (less than 1 cm) along the Y- axis.

θ(◦) E1→ E2 E2→ E3 E3→ E4 E1E2→ E2E3 E2E3→ E3E4

θx 0.0498 0.2463 0.4679 -0.1965 0.2216

θy 89.9502 89.7537 89.5321 -0.1965 -0.2216

θz 115.5162 116.2956 114.2666 0.7794 -2.02900

Table 6.3: Rotation angle of deformation vector around the X-, Y- and Z- axis between two
neighbouring epochs (from Epoch 1 to Epoch 4)

∆(cm) E1→ E2 E2→ E3 E3→ E4 E1E2→ E2E3 E2E3→ E3E4

∆x 76.2332 77.4393 96.8693 1.2061 19.43

∆y -0.0662 -0.3329 -0.7912 -0.2667 -0.4583

∆z -36.3879 -38.2655 -43.6702 -1.8776 -5.4047

Table 6.4: Translation of the stone (i.e., irregular cell) along the X-, Y- and Z- axis between two
neighbouring epochs (from Epoch 1 to Epoch 4)

6.5 Adaptive Model

In addition to the extension of using dynamic cells and building cell correspondence for the

split step in our cell-based deformation monitoring, we attempt to improve the step of “detect”

for achieving better meta-deformation. We have presented several meta-deformation estimation

methods in Section 4.4. However, after choosing a model for detecting meta-deformation, this

model is fixed and used for the whole “detect” step for all cells. There is no way to switch

to another model during the detection step. In this section, we develop adaptive model as

a flexible choice for the detection of meta-deformation, i.e., different cells can independently

choose different meta-model that is mostly suitable for this cell.

The main objective of building “adaptive model” is able to provide multi-model choice when

detecting meta-deformation, which means that we can select the best one from several model

candidates for each individual cell. This strategy can provide an on-the-fly way to choose the

most appropriate model in order to improve the detection quality of the meta-deformation for

each cell. The detailed procedure of applying adaptive model for the detection of cell meta-

deformation is as follows:

Step 1. Initialisation - identify some candidate models for building meta-deformation (e.g., a

simple linear model M1 – see Equation 6.4, a polynomial regression model M2 – see

Equation 6.5), and define the error threshold (δ) to determine how to choose from the

candidate models and find the most suitable one;
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Step 2. Test with a simple model - apply a model (e.g., a simple linear regression model) for the

points inside the cell and extract the modelling error (e.g., the mean squared distance

between the fit surface and the real points).

Step 3. Check whether a simple model is good enough - compare the modelling error with the

defined error threshold δ. If error for one of the epoch is larger than δ, then we select

an alternative better model (e.g., a polynomial regression model) to model this cell.

Step 4. Iteration for all cells - Step 2 and Step 3 are iterated until finding the suitable model

(between M1 and M2) for all cells. It is worth noting that we can provide more

alternative models (M3 · · · ) in real-life experiments.

z = m
(1)
1 x+m

(1)
2 y +m

(1)
3 (6.4)

z = m
(2)
1 x2 +m

(2)
2 xy +m

(2)
3 x+m

(2)
4 y2 +m

(2)
5 y +m

(2)
6 (6.5)

Concrete Experiments of using Adaptive Model – Now, we test our “adaptive model”

method on real-life point cloud datasets, i.e., the erosion case study in Section 5.4. To simplify

the experiment, we build adaptive modelling using two models - M1 and M2. M1 is a plane model

expressed by Equation 6.4; and M2 is a second-order polynomial model written as Equation 6.5.

M1 is a simpler model with less complexity compared to M2. Therefore, the selection strategy

in our adaptive modelling is to use a simpler model (M1) first if the error of simpler model can

satisfy the requirement, otherwise we apply a stronger model (M2) for the cell. The requirement

is: whether the mean squared distance between the approximation using the fitted surface and

the real points in the cell is smaller than a given error threshold δ. In our experiment, we study

the sensitivity of choosing different δ values, e.g., 0.004, 0.003, 0.002, 0.0012, 0.001, 0.0008,

0.0006 (m), as shown in Table 6.5.

Error threshold 0.004 0.003 0.002 0.0012 0.001 0.0008 0.0006

#Model1Cell 5058 5057 4917 2454 1249 219 2

#Model2Cell 0 1 141 2604 3809 4839 5056

Total error of all cells (Epoch 1) 4.6876 4.6873 4.6744 4.4653 4.3759 4.3142 4.3065

Total error of all cells (Epoch 2) 5.7634 5.7630 5.7216 5.1994 4.9673 4.7880 4.7534

Total error of all cells (Epoch 1+Epoch 2) 10.4510 10.4503 10.3960 9.6647 9.3432 9.1022 9.0599

Table 6.5: Statistical analysis of deformation map estimated by adaptive model (the unit in the
table is meter, cellsize : 0.05 m)

In this table, we provide detailed statistical analysis of deformation map that are computed

by the adaptive model selection. As shown in the second row (#Model1Cell – the number of cells

that choose M1) and the third row (#Model2Cell – the number of cells that choose M2), with the

decrease of error threshold δ, there are more cells using M2 to estimate meta-deformation; and

vice versa, many cells go for M1. Since the estimation model is used for points in cells at both

Epoch I and Epoch II, we sum up the total error of all the cells at two epochs. We compute
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three kinds of errors, i.e., (1) the total error of all the cells at Epoch 1, (2) the total error of all

the cells at Epoch 2, and (3) the sum of total errors both at Epoch 1 and Epoch 2; these three

errors are shown in the last three rows in Table 6.5. We observe that all errors decrease with the

reduction of error threshold δ. In addition, we compute the total errors of all cells at Epoch I

and Epoch II using a static model: for using M1, the errors at Epoch I and Epoch II are 4.6876

m and 5.7634 m, respectively (the sum is 10.4510 m); for using M2, the errors at Epoch I and

Epoch II are 4.3065 m and 4.7530 m, respectively (the sum is 9.0595 m). Obviously, the total

error is: error(M2) < error(adaptive model) < error(M1), because that a higher order model

can fit the surface more accurately and has a lower fitting residuals. The possible question here

is that why we do not choose M2 for all cells as the total modelling error could be less: the

reason is that building M2 is more time-consuming than building M2 (see Equation 6.4 and

Equation 6.5). For all cells, the good strategy is to choose the most suitable models rather than

the best fitting model. The choice of mode needs to balance the accuracy and the computation

(a) Model 1: linear (b) Model 2: 2nd order polynomial

(c) Adaptive model (δ = 0.002) (d) Adaptive model (δ = 0.0012)

Figure 6.18: Deformation map between Epoch 1 and 2 estimated by a uniform model (either
linear or order-2 polynomial) and adaptive models. (cellsize : 5 cm)
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cost, and identify the most suitable one for each individual cell.

To further show the illustrative results, we provide the final deformation maps using differ-

ent model strategies. Figure 6.18(a) shows the four deformation maps, which are individually

computed (a) using fixed M1, (b) using fixed M2, (c) using adaptive model with threshold

(δ = 0.002 m), and (d) using adaptive model with threshold (δ = 0.0012 m), respectively. Based

on these different regression models, we estimate the centre of point clouds in each cell, compute

the deformation in terms of centre displacement at two epochs, and get the final deformation

map. In general, the deformation map produced by these different meta-deformation modelling

strategy are quite similar (as shown in Table 6.5, the errors of using M1 and M2 are in a small

range between [9.0-10.5] with small difference); the reason could be linear and order-2 polyno-

mial did not provide much difference for this datasets. Nevertheless, we could observe that (1)

the results of M1 is smoother compared to M2; on the other word, M2 has more detailed and

different results in some parts; (2) the adaptive model is somehow between M1 and M2; (3) by

using larger threshold δ, the adaptive model becomes closer to M1.

In order to further identify the detailed selection between the two models (M1 and M2) for

each cell using the adaptive modelling strategy, Figure 6.19(a) provides an illustrative result

on the deformation map to highlight which cells using which model. In the figure, the black

rectangles indicate that the cell used the complex model (M2), while the write ones indicate

using the simple model (M1) for modelling the points in the cell. There are 141 cells (2.79%)

using M2 and the rest choosing M1. We observe that most of M2 selection is on the left side

of the object, where there are some larger deformations/subsidence. In addition, Figure 6.19(b)

shows the total error of cells with adaptive model at Epoch I and Epoch II, compared to using

a fix model, either M1 or M2.
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Figure 6.19: Statistical analysis of deformation map between Epoch 1 and 2 estimated by an
adaptive model (δ = 0.002 m, cellsize = 5 cm)

We have the similar plots that are using adaptive model using smaller threshold (δ =

0.0012 m). We observe that there are more cells using M2, as shown in Figure 6.20(a), where
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(b) Error statistics of deformation map estimated by
adaptive model

Figure 6.20: Statistical analysis of deformation map between Epoch 1 and 2 estimated by an
adaptive model (δ = 0.0012 m, cellsize = 5 cm)

2604 (51.48%) cells choose M2, which is significantly larger than 141 (2.79%) cells when adaptive

model threshold is δ = 0.002 m. Similarly, we plot the total modelling errors for the two epochs,

and observe that the adaptive model error becomes closer to M2.

In summary, the strategy of adaptive modelling can automatically select the most suit-

able model for detecting meta-deformation for each individual cell. A model can be complex

(with high accuracy) or simple (with low accuracy). To effectively analyse the tradeoff between

modelling accuracy and the model complexity (i.e., the time cost), adaptive modelling aims

at providing the best model for each individual cell dynamically. It is worth noting that like

many parametric setting tasks, the choice of threshold (“δ”) is also quite important in adap-

tive modelling. This parameter also depends on application knowledge and needs to be tuned

accordingly.

6.6 Evolution of Deformation Map

As the final extension of cell-based deformation monitoring via 3D point clouds, this section

focuses on detecting the deformation evolution, which means a long-term deformation analysis

based on several different times of point cloud measurements (i.e., at least more than two epochs).

In Section 3.4 as well as other relevant sections, we present the concept of “deformation map”

for describing the deformation between two epochs. This deformation map is computed from

two-epoch point cloud datasets. This section studies the evolution of deformation map, which

can be considered as the evolution of deformation for a long term deformation monitoring.

In Section 5.4, we have already discussed a real-life deformation scenario (i.e., erosion on a

concrete slope) with four epochs of LiDAR point cloud datasets. More detailed description of

such point cloud datasets can be referred to Section 5.4. To identify the evaluation of deformation

map, we can recursively compute the deformation map between two closest measurements, i.e.,
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(a) map12 (b) map23

(c) map34 (d) map13

(e) map14 (f) map24

Figure 6.21: Deformation map between Epochs 1, 2, 3 and 4 with cell size 5 cm
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the deformation maps of {Epoch1→ Epoch2}, {Epoch2→ Epoch3}, {Epoch3→ Epoch4}. To

simplify the notation, we call them map12, map23, and map34. By using cell size as 5 cm and

the meta-model of “using minimal Z to approximate vertical displacement for each cell” (see

Section 4.4 about detecting meta-deformation for more details), we compute the evolution of

deformation maps (see Figure 6.21(a), Figure 6.21(b), Figure 6.21(c), corresponding to map12,

map23, and map34, respectively). We observe that most of the changes are between Epoch I and

Epoch II, i.e., map12; whilst, map23 and map34 are relatively stable without any significant

deformation, and particularly map34 almost has no deformation in the last period between

Epoch 3 and Epoch 4.

To further check this, we additionally compute the deformation between several pairs of

epochs such as {Epoch1 → Epoch3}, {Epoch1 → Epoch4}, {Epoch2 → Epoch4} (see Figure

6.21(d) for map13, Figure 6.21(e) for map14, and Figure 6.21(f) for map24). We identified the

same observations: there are some significant changes in {Epoch1→ Epoch3} and {Epoch1→
Epoch4}, but very slight deformation after Epoch 2 (i.e., {Epoch2 → Epoch4}). From Figure

6.21(d) and Figure 6.21(e), we can see that the deformation map keeps similar to Figure 6.21(a):

the map12, map13, and map14 are similar as the main deformation is between Epoch 1 and Epoch

2. Figure 6.21(b) (i.e., map23), Figure 6.21(f) (i.e., map24) and Figure 6.21(c) (i.e., map34)

further prove that the erosion of this region between Epoch 2 and Epoch 4 is quite small.

In addition, we compute statistical characteristics (e.g., mean and standard deviation) of

the six deformation maps shown in Figure 6.21. Table 6.6 summarises these statistical mea-

surements. For the three continuous deformation maps (map12, map23, map34), the average

deformation between the two neighbouring epochs decreases from 0.0573 m to 0.0002 m, until

0 m. The standard deviation also decreases with the time proceeds. Additionally, we also have

relevant consistent statistical measurements for the other three deformation maps, i.e., map13,

map14 and map24.

Deformation map map12 map23 map34 map13 map14 map24

Mean -0.0573 -0.0002 -0.0000 -0.0586 -0.0589 -0.0005

Standard deviation 0.0157 0.0015 0.0013 0.0150 0.0154 0.0023

Table 6.6: Statistical results of deformation map with cell size 5 cm (unit : m)

To provide a further illustrative view on deformation evolution, we provide a new plot show-

ing the evolution of the erosion in the deformation map in Figure 6.22. Sub-figure 6.22(a) shows

the calculative deformation from Epoch 1 to three other epochs (Epoch 2, Epoch 3 and Epoch

4); and sub-figure 6.22(b) represents the direct deformation between two neighbouring epochs

like {Epoch1 → Epoch2}, {Epoch2 → Epoch3}, {Epoch3 → Epoch4}, which changed quickly

between the first two epochs and then kept almost stable in the following two periods.
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(b) Accumulated deformation

Figure 6.22: Deformation map between multi-epochs with cell size 5 cm

In addition to compute the deformation evolution using cell size of 5 cm, we additionally

establish another set of experiments that use the cell size of 10 cm. Figure 6.23 shows the

six deformation maps (i.e., map12, map23, map34, map13, map14, map24) between different

epochs when applying cell size of 10 cm. We observe the similar results with deformation map

using the cell size of 5 cm in Figure 6.21: a significant deformation happened between Epoch 1

and Epoch 2. After Epoch 2, there is only slight changes, e.g., map23 and map24 comparing

Epoch 2 with Epoch 3 and Epoch 4, respectively.

Similar to the experiments in building deformation evolution using cell size of 5 cm, we

also compute the statistical features (e.g., mean and standard deviation) for each deformation

map between any two epochs. Table 6.7 summarises this information. We observe the consis-

tent results with Table 6.6, where the deformation between continuous epochs decreases from

0.0573 m (at map12), to 0.0002 m (at map23), and to 0 m (at map34) finally. In addition,

we illustratively show the evolution of the erosion in the deformation map in Figure 6.24. Sub-

figure 6.24(a) shows the calculative deformation from Epoch 1 to three other epochs (Epoch 2,

Epoch 3 and Epoch 4); and sub-figure 6.24(b) represents the direct deformation between the

neighbouring epochs like {Epoch1 → Epoch2}, {Epoch2 → Epoch3}, {Epoch3 → Epoch4},
which changed quickly between the first two epochs and then kept almost stable in the following

two periods. The plots in general are quite consistent with Figure 6.22 using cell size of 5 cm.

Deformation map map12 map23 map34 map13 map14 map24

Mean -0.0583 -0.0002 -0.0000 -0.0592 -0.0596 -0.0004

Standard deviation 0.0147 0.0016 0.0014 0.0145 0.0145 0.0022

Table 6.7: Statistical results of deformation map with cell size 10 cm (unit : m)
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(a) map12 (b) map23

(c) map34 (d) map13

(e) map14 (f) map24

Figure 6.23: Deformation map between Epochs 1, 2, 3 and 4 with cell size 10 cm
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Figure 6.24: Deformation map between multi-epochs with cell size 10 cm

6.7 Summary

This chapter provided five main extensions of our cell-based deformation computation approach,

such as designing dynamic cells, finding cell correspondence, tracking deformed parts with data-

driven cell, movement tracking with data-driven cell, building adaptive model and computing

evolution of deformation map.

Dynamic cells is one kind of improvement from the “split” perspective, and offers a more

suitable way to automatically split the space into cells with different sizes. We designed a top-

down split strategy that is able to build dynamic cells on the fly, and it can take advantage

of geometric features of the monitored object. Finding cell correspondence is a very challeng-

ing task, particularly in the situation where some deformation causes the data points moving

from one cell to another cell. We designed a local optimisation strategy that is able to in-

dependently find the most suitable corresponding cell at Epoch II for a given cell at Epoch

I. Tracking deformed parts with data-driven cell is a further improvement of “dynamic cells”

and “finding cell correspondence”, which can support arbitrary cell boundary and non-direct

correspondence searching. We bring the meta-cell into this extension and propose an algorithm

to track object movement on a slope using irregular cell. From the modelling perspective to

build meta-deformation for cells, we additionally designed adaptive modelling strategy that can

adaptively choose suitable model for each cell. Our method can start from simpler model (like

1st-order linear regression) to complex ones (e.g., 2nd-order polynomial model). This can pro-

vide a good tradeoff between modelling accuracy and model complexity, and select the most

suitable model to calculate meta-deformation. The final extension is computing the evolution of

deformation map that could build a long-term deformation monitoring based on several epochs

of point clouds. In addition, such deformation evolution might be useful for further assessment

and prediction of future deformation trend.
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Chapter 7
Conclusion and Outlook

Climate change will mean more

landslides.

Almost 100 experts from 14

nations, 2006

7.1 Conclusion

Deformation phenomena like landslides are one of the most crucial natural hazards that bring

significant damages to Earth and human life, e.g., (1) the Rio de Janeiro landslide in Brazil on

January 11, 2011, which caused 610 deaths1, and (2) the Gansu mudslide in China on August 8,

2010, which led to 1, 471 deaths2. In Switzerland, landslides have resulted in enormous financial

damages and mainly affected pre- and central Alpine regions [HBH09]. Landslide disasters (like

ground movement, rockfall, and slope failures) along highway or railway lines become a serious

issue to public transportations in people’s daily life [DR08, KYS08].

Monitoring and possibly forecasting such deformation scenarios has become a tremendous

important research and engineering topic in the environmental field. Traditionally, deformation

monitoring techniques were mainly based on a small set of sparse monitoring points using the

conventional geodetic surveying techniques; only using a few points, such geodetic techniques

could hardly provide a prompt and informative deformation analysis. Recently, the increasing

techniques of terrestrial LiDAR can capture a large amount of high-density three-dimensional

point clouds easily and efficiently, both from the perspective of technical feasibility and financial

cost. To analyse deformation using such terrestrial LiDAR equipment, this thesis studied the

problem of “Deformation Monitoring via 3D Point Clouds”. The fundamental contribution here

is a novel hybrid model as well as a cell-based deformation computation approach that is able to

generate rich and informative deformation automatically and incrementally. We now summarise

the main research findings and technical contributions from this thesis study.

1http://en.wikipedia.org/wiki/January 2011 Rio de Janeiro floods and mudslides
2http://en.wikipedia.org/wiki/2010 Gansu mudslide
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Deformation Modelling Requirements. In this thesis, we first found out the complete

modelling requirements for representing deformation, based on the investigation of several dif-

ferent deformation scenarios such as landslide, subsidence, rockfall, and erosion. We identified

that a comprehensive deformation modelling approach should cover three main components, i.e.,

“what”, “which”, and “how”.

• What: This component is concerned with the deformation object, i.e., the monitored

object under the measurement using relevant terrestrial LiDAR equipments. We divide

the objects into two categories, i.e., (1) artificial objects like buildings, structures, bridges,

dams that are built by human, and (2) natural objects like mountains, slopes, valleys that

typically exist in Earth environment by nature. In many studies, both artificial objects and

natural objects can have similar deformation analysis methods, and the difference between

them is not extremely important.

• Which: This component focuses on the deformation types, e.g., rigid or non-rigid deforma-

tion. Rigid deformation is used for describing the absolute change of a monitored object

from the complete object point of view. Particularly, “displacement” is largely used when

modelling the rigid deformation, such as vertical displacement along Z axis, horizontal dis-

placement along X or Y axis, angle displacement (i.e., rotation). Non-rigid deformation

is more complex than a rigid one as it concerns relative changes inside the object. Typical

non-rigid deformation types include scaling, shearing, and strain. In this thesis, we mainly

focus on rigid deformation like displacement, angle variation, and their combinations.

• How: In addition to identify “what” object has “which” type of deformation, a complete

model should include a suitable description strategy. We identified two types of assess-

ments, namely the quantitative measurement and the qualitative measurement. The first

one uses numeric values to describe the deformation whilst the second one applies meaning-

ful terms (like “big”, “small” deformation). In this thesis, we mainly focus on computing

the quantitative deformation information by using 3D point cloud datasets captured by

LiDAR.

Global Deformation Modelling vs. Hybrid Modelling. After finding the three com-

ponents of deformation modelling, we identified that traditional deformation analysis methods

based on geodetic surveying typically focus on only one type of model (i.e., the same deformation

type - “which”, as well as the same deformation measurement - “how”). This is mainly because

of the limited points in traditional observation techniques. However, for monitoring real-life

large object like a big slope, deformation can be heterogeneous (e.g., with varying deformation

characteristics, with mixed deformation types for different partial areas). To solve this problem,

we designed a new hybrid modelling method besides traditional global modelling.

• Global Modelling: The global deformation modelling method utilises a single deformation

type for a whole monitoring area. In traditional geodetic surveying, such global modelling

methods are largely used, e.g., a uniform deformation type like displacement, angle vari-

ation, scaling, shearing based on a small set of data points. In addition, the model is

applied to the entire monitored object/region.
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• Hybrid Modelling: For point cloud data from LiDAR, global modelling cannot make

good use of such high-density 3D data points. Therefore, we designed a novel hybrid

model, which includes “meta-deformation” for a small area (e.g., cells in our case), “sub-

deformation” for a partial area where the deformation is more or less uniform or con-

sistent, and “deformation-map” for describing the complete region. With such a hybrid

deformation model, we are able to provide a more informative description of heterogeneous

deformation for a large monitored region. Furthermore, the deformation can be computed

incrementally according to this hybrid modelling.

Cell-based Deformation Computation. To effectively utilise the hybrid deformation mod-

elling for a large region and to efficiently compute the deformation map, we design a novel

and self-contained cell-based deformation computing framework. With this framework, we are

able to automatically and incrementally compute the deformation information, from the meta-

deformation for cells, to the sub-deformation for partial areas, and finally to the deformation

map for the complete region. This framework has three main steps (technical components),

namely, “split”, “detect”, and “merge”.

• Split: By using R-tree based spatial data indexing and access techniques, our framework

can split the large region into cells and access the data points in each cell very efficiently.

Instead of retrieving the complete data each time, we can reorganise the data in terms of

using cells. This can make our subsequent deformation computing process much easier,

faster and convenient.

• Detect: For each cell, we design several algorithms for detecting the uniform deformation

using the data points inside the cell at two epochs (Epoch I and Epoch II). We study both

single rigid deformation including displacement (with different types of parameters like

‘min’, ‘max’, ‘median’, ‘mean’, ‘centre’) and angle variation, and mixed rigid deformation

using the ICP (Iterative Closest Point) algorithm.

• Merge: This is designing a grouping algorithm to merge adjacent cells with consistent

deformation status into a uniform partial area, i.e., forming a sub-deformation. Finally,

all sub-deformation partial areas can compose a complete deformation map. It is worth

noting that merging can smooth the deformation in sub-area boundaries, which can bring

discontinuities in some scenarios. Nevertheless, the merging process can generate higher-

level abstraction about deformation description.

Multiple-aspect Evaluation. To evaluate our hybrid deformation modelling and our cell-

based deformation computation, we studied on three different types of point cloud datasets,

from simulated data using programming, to data captured in the practical experiments, and

finally to the real-life deformation data from LiDAR.

• Landslide Simulation: The first main experimental evaluation is based on a landslide

simulation using a computer program. We simulated a slope slid into two sub slopes, and

tested different models like displacement, angle variation, as well as rigid transformation.
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We compared cell-based hybrid deformation modelling with global modelling, and observed

better performance from our cell-based approach.

• Practical Experiment: We additionally performed a practical experiment, using the “Sand-

box” and the Konica Minolta VIVID 3D laser scanner from UNIL (University of Lausanne).

We designed two scenarios: one is focusing on the movement of an object (like a stone) on

the slope, and the other one is the movement of the slope itself (like erosion).

• Real-life Cases: More importantly, we tested our method using two real-life deformation

cases in Switzerland. One is the landslide in Flamatt, for which we compared the results

with the sources provided by the surveying company (BBHN-SA). The other real-life case

is the erosion on a slope under a big dam in Valais. We compared our cell-based approach

with 3DReshaper, a commercial software for point cloud processing.

Extension of the Cell-based Approach. To improve the capability of our cell-based approach

for deformation monitoring, we designed a couple of important extensions. For the split step,

we designed “dynamic cells” to automatically build different cell sizes and “cell correspondence”

to find the best matching cells between two epochs. To enhance the detection step, we proposed

a method of “adaptive model selection” for each cell. In addition, we considered “deformation

evolution” over a long period with multiple epoch point cloud datasets.

• Designing Dynamical Cells: Previously, the cell-based deformation monitoring approach

utilises uniform and static cells, which means that we build meta-deformation for each cell

with the same size. It is hard to find a very suitable fixed cell size: if it is too small, there

will be a lot of cells and building meta-deformation for so many cells is time-consuming

and not efficient; if it is too big, the meta-deformation of each cell may be not accurate.

Therefore, we provided a solution that can design dynamic cells, based on the top-down

split strategy according to model errors.

• Finding Cell Correspondence: In some cases, if the deformation is very large (e.g., the

horizontal displacement is bigger than a cell size), cells with the same ID at two epochs do

not have the same content and have no direct correspondence (see Figure 6.3). Therefore,

we designed a method to find the cell correspondence. In this thesis, we applied a matching

method to find such cell correspondence based on local search optimisation. Particularly,

we tested our method in the experimental rockfall scenario, to find the cells that contain

the same rock at different epochs.

• Movement tracking with data-driven cell: We focused on “regular 3D cell” and “direct cell

correspondence”, where deformation is restricted to an exact multiple of the cell size (e.g.,

inside one cell or deformation from one cell to neighbouring cells). However, real-life cases

are much more complex. For example, the cell cannot be always regular. Deformation has

its own boundary. In addition, deformation could happen from one cell to another cell

with overlapping part. Therefore, the exact multiple of the cell size is not always adequate.

To solve this problem, we introduce the “meta-cell” concept into the “movement tracking”
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extension and utilise the meta-cell to form “a data-driven cell with arbitrary boundary”.

Furthermore, the meta-cell can assist in finding a better cell correspondence. Now, the

moving distance of a searching cell can not only be an exact multiple of the cell size, but

also be non-integer-multiple. We applied this algorithm on a rockfall scenario with our

experimental datasets, i.e., tracking the moving parts like a rock with a series of epochs.

• Building Adaptive Modelling: In the early stage of this thesis, each cell was built with the

same model, e.g., finding point cloud centre to calculate the displacement using a uniform

linear regression model for each cell. However, an advanced method should be able to

pick the most suitable model for each cell automatically. In such a case, we adaptively

select a suitable model to build regression on points in each cell. The algorithm is able to

choose between 1st-order linear model and 2nd-order polynomial model according to the

characteristics of point clouds in the two corresponding cells.

• Computing Deformation Evolution: Finally, we studied the deformation evolution based on

multiple epochs of point cloud datasets captured by LiDAR. With regards to our erosion

case study in Valais, there are four epochs of point cloud datasets. We identified that

the main deformation happened between the first and the second epochs. There was only

some slight deformation between Epoch 2, Epoch 3, and Epoch 4.

In summary, the major novel contributions of this thesis is to provide hybrid rich deforma-

tion modelling as well as designing a cell-based deformation computation approach. The hybrid

model can capture heterogeneous deformation characteristics and generate an informative de-

formation map for representing the deformation of a large area. The cell-based computation

process can automatically and incrementally generate the deformation map from raw 3D point

cloud data sets. This novel model and computing approach can be applied to many real-life

deformation scenarios using LiDAR data. More importantly, the cell-model can support various

deformation types, and real-life irregular cells can also be applied.

7.2 Limitations and Outlook

As an interdisciplinary study, this thesis proposed a cell-based approach on deformation monitor-

ing in the environmental scenarios. This work combined a couple of computer science methods

(e.g., cell-based conceptual modelling, splitting and merging, point cloud regression, ICP mod-

elling) with traditional geodetic engineering for deformation analysis (e.g., landslides, erosion,

subsidence) using LiDAR datasets. From a high-level and methodology perspective, this thesis

has a valuable contribution to this deformation monitoring field, in terms of providing an in-

terdisciplinary approach, i.e., our cell-based deformation monitoring via 3D point clouds. We

also provided many supporting detailed algorithmic solutions, for example: different types of

cell splitting (uniform cells vs. dynamic cells), different types of meta-deformation detection

(e.g., rigid deformation like displacement, angle variation, and ICP), adaptive modelling, and

deformation evolution. Nevertheless, we identify following limitations and possible future works

as the outlook of this thesis.
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Supporting Rich Meta-Deformation Modelling . For current meta-deformation detection

for cells, the thesis primarily focused on rigid deformation like displacement, angle variation, and

ICP. In future, this work could consider more advanced models in traditional geodetic surveying

techniques. For example, we can apply non-rigid models (like scaling, shearing, strain) to build

meta-deformation based on point clouds in a cell. This could be quite challenging as these

traditional non-rigid models are largely based on a small set of data observations, but not for

point clouds directly. In addition, advanced graphic-based model (like mesh) can be applied for

each cell to build meta-deformation.

Enhanced Method in Finding Cell-Correspondence . In this thesis, both splitting the ob-

ject space into cells and merging the cells into a deformation map are based on some hierarchical

methods, either top-down or bottom-up. To enhance our cell strategy, we designed extensions

using “dynamic cells” and building “cell correspondence”. However, for real-life deformation

datasets, it is even more difficult to find the correct cell correspondence for a complex scenario

(e.g., different cells mix up between two epochs, cell
(I)
1 → cell

(II)
2 ,cell

(I)
2 → cell

(II)
3 ,cell

(I)
3 →

cell
(II)
1 ). The current solution to find cell correspondence is based on a local optimisation, i.e.,

finding cell
(I)
i ’s corresponding cell at Epoch II does not consider other cells at Epoch I. As an

outlook, it is useful to design a global optimisation solution to find best correspondences for all

cells between two epochs.

Post-processing & Statistical-tests of Deformation Map. In the current merge step that

generates a deformation map from the meta-deformation of the cells, we have already designed

a post-processing sub-step that deals with the outliers, where the meta deformation of one cell is

significantly different from that of neighbouring cells. For example, the vegetation on the ground

such as bush or grass could bring such outliers. In this thesis, the intuitive method consists in

replacing the meta-deformation of the discrepant cell with the value of its neighbours. In real-

life, it is non-trivial to judge whether a discrepant point is an outlier or a distinguishing valuable

point. Future work should put more efforts on dealing with noisy data in the point clouds. In

addition, statistical tests can be applied to validate the results of the final deformation map.

Long-term Deformation Monitoring and Forecasting . In current experiments on defor-

mation evolution, we only tested a displacement model for detecting deformation evolution for

our Valais scenario with four epochs of point cloud datasets. Future work could analyse long

terms deformation evolution using advanced meta-deformation models with datasets for more

epochs. In addition, a trend model can be established, which can provide valuable feedbacks

for future data capture in the field. For example, if the deformation is huge, we can advise field

engineers to capture data more frequently; on the contrary, if the deformation is quite small,

we can spread the data collection. In such case, we can build adaptive scheduling for the field

investigation, which will save cost for field data capture using LiDAR. In addition, the trend

model can be used to forecast future deformation.
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