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Light Field

l The amount of light traveling in every direction through every point in space.
l Light field can be captured using many cameras having different view points.
l Light field rendering does not need any geometrical information.
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[1] S.J. Gortler et al., “The Lumigraph”, ACM SIGGRAPH 96,

      M. Levoy et al., “Light Field Rendering”, ACM SIGGRAPH 96
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[2] R. Ng et al., “Light Field Photography with a Hand-held Plenoptic Camera”,CSTR 05 
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l Generating a new view
l Digital refocusing
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Light Field Cameras

l Light field is captured by an array of cameras with
overlapping fields of view.

l Large amount of data.
l Highly correlated images.
l It is necessary to employ a compression scheme.
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Compressive Sensing

l A sparse signal can be reconstructed from a relatively small number of linear 
measurements.

l     : measurement matrix, for example Random Convolution.
l     : K-sparse in an orthobasis   
l Recovery takes explicit advantage of sparsity.

y = � x m ⌧ n

�

4

m = O(K log n/K)
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[1] J. Romberg, “Compressive Sensing by Random Convolution”, SIAM SIIMS, 09,

      L. Jacques, et al., “CMOS Compressed Imaging by Random Convolution”, ICASSP 09 
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l A 1D array of 40 cameras to capture the light fields.
l Each camera observes a part of the scene.
l Captured images are highly correlated.
l Using a dictionary to exploit the redundancy.

Problem Definition
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l Stack the images observed by each camera on top of each 
other to make an image volume     .

l Projection of scene objects has linear movement in images.
l Objects at different depth levels have different movement 

speeds.
l Slices of the image volume along moving direction have 

stair-like shapes, called Epipolar plane images (EPI).

Epipolar Plane Image
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l Each line represents the path a pixel travels in different 
cameras.

l Different line slopes are consequence of different depth 
levels.

Epipolar Plane Image
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l A synthetic scene with a single depth object. 
l The EPI consists of a line with slope relative to the object 

depth.

Oracle Dictionary Design
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Dictionary Design
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Dictionary Design

l Complex scenes consist of objects with different depth levels.
l EPI lines do not have any preferential orientation.

l Using a redundant dictionary composed of union of bases to benefit 
from different reordering directions for EPIs.

l Applying 1D wavelet transform along the remaining dimension on 
the image volume. 
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Dictionary Design

l The whole volume is sparse in the dictionary made of:
1.  The union of bases of 1D wavelet transforms on different 

reordering directions for EPIs.  
2. 1D wavelet transform along the 3rd direction of the volume.      

11
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l Random convolution measurement model for each camera.

Measurement Scheme
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Ai 1  i  k

k

xi 1  i  k

yi 1  i  k

: random convolution measurement matrix

: number of cameras in the array

: image vector of each camera

: measurement vector for each camera

[1] J. Romberg, “Compressive Sensing by Random Convolution”, SIAM SIIMS, 09,

      L. Jacques, et al., “CMOS Compressed Imaging by Random Convolution”, ICASSP 09 
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Recovery Model

• Redundant Dictionary:

• 2D wavelet:

13

Joint Recovery

argmin

⇥vec2R�nk

||⇥vec||1 subject to ||Y � bA⌦⇥vec||2  ✏

Separate Recovery

argmin

up2Rn
||up||1 subject to ||yp �Ap�up||2  ✏p

xp = �up

bXvec = ⌦⇥vec
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Results
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2D wavelet

Redundant Dictionary
about 3dB improvement in average
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sampling rate: 25% of image size
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Results
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Recovery Model

• TV + Redundant Dictionary:

• TV-denoising:
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argmin

⇥vec2R�nk

||⌦⇥vec||TV + �||⇥vec||1 subject to ||Y � bA⌦⇥vec||2  ✏

argmin

xp2Rn
||x

p

||TV subject to ||y
p

�A
p

x

p

||2  ✏

p

Separate-Joint Recovery

Separate Recovery

bXvec = ⌦⇥vec
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[1] P.L. Combettes et al., “Proximal Splitting Methods in Signal Processing”, in Fixed-Point 
Alg. for Inv. Prob., 10 

Proximal Splitting Methods
1
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Results
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TV+Redundant Dictionary
about 1.1 dB improvement in average 
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Results
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Conclusion & Future Work

l Conclusion
l Leveraging structure increases sparsity.
l Reordered EPIs are sparse in 1D wavelet transform.
l Recovery using TV and a redundant dictionary benefits from a separate 

and joint reconstruction scheme.
l Future Work

l Designing a dictionary with less redundancy.
l Considering joint low rank and sparsity scheme. 
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