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Light Field

* The amount of light traveling in every direction through every point in space.
* Light field can be captured using many cameras having different view points.

* Light field rendering does not need any geometrical information.

\/
@ Qi 2 ICASSP 2012




Light Field

* The amount of light traveling in every direction through every point in space.
* Light field can be captured using many cameras having different view points.
* Light field rendering does not need any geometrical information. '
* Applications:

 Generating a new view'

[1] S.J. Gortler et al., “The Lumigraph”, ACM SIGGRAPH 96,
M. Levoy et al., “Light Field Rendering”, ACM SIGGRAPH 96
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Light Field

* The amount of light traveling in every direction through every point in space.

Light field can be captured using many cameras having different view points.

Light field rendering does not need any geometrical information.

* Applications:
* Generating a new view

* Digital refocusing2

[2] R. Ng et al., “Light Field Photography with a Hand-held Plenoptic Camera” ,CSTR 05
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Light Field Cameras

* Light field 1s captured by an array of cameras with
overlapping fields of view.

 Large amount of data.
* Highly correlated images.

* [tis necessary to employ a compression scheme.
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Compressive Sensing

* A sparse signal can be reconstructed from a relatively small number of linear
measurements.

r = da y = Ad« m <<n

e A measurement matrix, for example Random Convolution'
e X :K-sparse in an orthobasis @ —» m = O(K logn/K)

* Recovery takes explicit advantage of sparsity.

argmin ||a||1  subject to ||y — APalls <€

[1] J. Romberg, “Compressive Sensing by Random Convolution”, SIAM SIIMS, 09,
L. Jacques, et al., “CMOS Compressed Imaging by Random Convolution”, ICASSP 09
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Problem Definition

* A 1D array of 40 cameras to capture the light fields.

* Each camera observes a part of the scene.
* Captured 1images are highly correlated.

* Using a dictionary to exploit the redundancy.
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Epipolar Plane Imasge

* Stack the images observed by each camera on top of each
other to make an image volume X

* Projection of scene objects has linear movement in images.

* Objects at different depth levels have different movement
speeds.

* Slices of the image volume along moving direction have [fr ,
stair-like shapes, called Epipolar plane images (EPI). ‘
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Epipolar Plane Image

* Stack the images observed by each camera on top of each
other to make an image volume X

* Projection of scene objects has linear movement in images.

* Objects at different depth levels have different movement
speeds.

* Slices of the image volume along moving direction have
stair-like shapes, called Epipolar plane images (EPI).

EP]
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Epipolar Plane Image

* Each line represents the path a pixel travels in different
cameras.

* Different line slopes are consequence of different depth
levels.
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Epipolar Plane Image

* Each line represents the path a pixel travels in different
cameras.

* Different line slopes are consequence of different depth
levels.
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Oracle Dictionary Design

* A synthetic scene with a single depth object.

* The EPI consists of a line with slope relative to the object
depth.

N
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Oracle Dictionary Design

* A synthetic scene with a single depth object.

* The EPI consists of a line with slope relative to the object
depth.

* Select a proper slope 7] for reordering lines L??'
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Oracle Dictionary Design

* A synthetic scene with a single depth object.

* The EPI consists of a line with slope relative to the object
depth.

* Select a proper slope 7] for reordering lines L??'

* The reordered image 1s piecewise constant.
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Oracle Dictionary Design

* A synthetic scene with a single depth object.

* The EPI consists of a line with slope relative to the object
depth.

* Select a proper slope 7] for reordering lines L??'
* The reordered image 1s piecewise constant.

e Sparse in 1D wavelet transform
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Dictionary Design
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Dictionary Design

* Complex scenes consist of objects with different depth levels.
* EPI lines do not have any preferential orientation.

e Using a redundant dictionary composed of union of bases to benefit
from different reordering directions for EPIs. T I .

T =[], @, 1] TR

 Applying 1D wavelet transform along the remaining dimension on
the image volume.

' c R
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Dictionary Design

* The whole volume is sparse 1n the dictionary made of:

1. The union of bases of 1D wavelet transforms on different
reordering directions for EPIs.

2. 1D wavelet transform along the 3rd direction of the volume. g
X € R™I%k: image volume X e R¥**J: reshaped image vo

© c RY"**J : sparse matrix of coefficients
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Dictionary Design

* The whole volume 1s sparse in the dictionary made of: f 5
1. The union of bases of 1D wavelet transforms on different z
reordering directions for EPIs. ;

2. 1D wavelet transform along the 3rd direction of the volume. [ _

X € R**I*k. image volume X e R?%*J: reshaped image volume

© c RY"**J : sparse matrix of coefficients

X = vOr7’
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Dictionary Design
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Measurement Scheme

e Random convolution measurement model for each camera.

K . number of cameras in the array

A, 1 <17 < k: random convolution measurement matrix!
x; 1 <1 < k:image vector of each camera

Yi 1 S l S k : measurement vector for each camera

Y =AX
_5131_ _yl_ -.Al 0 ce 0 |
X2 Y2 0O A, ... 0
X = , Y = . A=
_Cljk_ _yk:_ i 0 0 c e .Ak_

[1] J. Romberg, “Compressive Sensing by Random Convolution”, SIAM SIIMS, 09,
L. Jacques, et al., “CMOS Compressed Imaging by Random Convolution”, ICASSP 09
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Recovery Model

e Redundant Dictionary:

argmin ||Opec||r  subject to ||Y — AQ2O,ee|]2 < €
@’Ue(}ERWnk

)?vec — Q@fuec w‘)
e 2D wavelet:

argmin ||u,|[1  subject to ||y, — Ay Puylla <€,
Up €R™

r, = Pu, ——

Joint Recovery

Separate Recovery

ICASSP 2012
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Results

2D wavelet

Redundant Dictionary

~ about 3dB improvement in average

sampling rate: 25% of 1image size

ICASSP 2012
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Results

Redundant Dictionary vs 2D Wavelet
44 T T T T T T T T

—+— Redundant Dictionary i
—¥— 2D Wavelet

PSNR

28
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Measurement Percentage
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Recovery Model

e TV + Redundant Dictionary:

argmin ||QO,ec||Tv + A||Ovec||1  subject to ||V — AQOec|l2 < €
@’UeceR’ynk

AN

Xpee = 0O 0 ; Separate-Joint Recovery
1
Proximal Splitting Methods

e TV-denoising:

argmin ||x,||Tyv subject to ||y, — Apx,lle <€,
T, CER™

[1] P.L. Combettes et al., “Proximal Splitting Methods in Signal Processing”, in Fixed-Point
Alg. for Inv. Prob., 10
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Results

. TV+Redundant Dictionary
“about 1.1 dB improvement in average

sampling rate: 25% of 1image size
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Results

. TV+Redundant Dictionary
about 1.1 dB improvement in average
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Results

Original

w> TV+Redundant Dictionary

© "
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Conclusion & Future Work

* Conclusion
* Leveraging structure increases sparsity.
* Reordered EPIs are sparse in 1D wavelet transform.

* Recovery using TV and a redundant dictionary benefits from a separate
and joint reconstruction scheme.

* Future Work
* Designing a dictionary with less redundancy.

* Considering joint low rank and sparsity scheme.
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