Stochastic Simulations for DREAM4

Thomas Schaffter & Daniel Marbach

June 18, 2009

1 ODE model (DREAM3)

\[
\begin{align*}
\frac{dx_i}{dt} &= F_{RNA}^i(x, y) = m_i \cdot f_i(y) - \lambda_{RNA}^i \cdot x_i \\
\frac{dy_i}{dt} &= F_{Prot}^i(x, y) = r_i \cdot x_i - \lambda_{Prot}^i \cdot y_i
\end{align*}
\]

where \(m_i \) is the maximum transcription rate, \(r_i \) the translation rate, \(\lambda_{RNA}^i \) and \(\lambda_{Prot}^i \) are the mRNA and protein degradation rates, and \(f_i(\cdot) \) is the so-called input function of gene \(i \). The input function computes the relative activation of the gene, which is between 0 (the gene is shut off) and 1 (the gene is maximally activated), given the transcription-factor (TF) concentrations \(y \).

2 SDE model (DREAM4)

\[
\begin{align*}
\frac{dx_i}{dt} &= F_{RNA}^i(x, y) + \sigma_{RNA}^i \cdot \eta_i \\
\frac{dy_i}{dt} &= F_{Prot}^i(x, y) + \sigma_{Prot}^i \cdot \zeta_i
\end{align*}
\]

where each \(\eta_i \) and \(\zeta_i \) is an independent Gaussian white noise with zero mean and unit variance. \(\sigma_{RNA}^i \) and \(\sigma_{Prot}^i \) represent the amplitude (standard deviation) of the noise.

3 Numerical simulation of SDEs

For notational simplicity, we consider here only a single equation and not a system of equations. Equations (3) and (4) are of the following, general form (note that we use the Stratonovich scheme)

\[
\begin{align*}
\frac{dX_t}{dt} &= F(X_t)dt + G(X_t)dW_t \\
\frac{dX_t}{dt} &= F(X_t)dt + G(X_t) \circ dW_t \\
F_t &= F - \frac{1}{2} G^t G
\end{align*}
\]

where \(dW_t \) is a Wiener process. The Itô scheme is defined by (5) and the equivalent Stratonovich scheme is given by (6) and (7). In (3) and (4) the amplitude of the noise \(G(X_t) \) is a constant \(\sigma_i \).
We propose to use the Milstein scheme for the numerical integration, which is better than the basic Euler-Marumaya method, but still easy to implement.1,3,5,6

Given \(X(n) = X_n \), the value at the next discrete time point \(X_{n+h} \) is approximated by

\[
X_{n+h} = X_n + F(X_n)h + G(X_n)\Delta W_n + \frac{1}{2} G'(X_n) G(X_n)[\Delta W_n]^2
\]

\(\Delta W_n = [W_{t+h} - W_t] \sim \sqrt{h}N(0,1) \)

where \(h \) is the step size.

References

