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École Polytechnique Fédérale de Lausanne (EPFL)

Lausanne, Switzerland - 1015

Abstract

Non-linear dynamical systems (DS) have been used extensively for building gen-
erative models of human behavior. Their applications rangefrom modeling brain
dynamics to encoding motor commands. Many schemes have beenproposed for
encoding robot motions using dynamical systems with a single attractor placed
at a predefined target in state space. Although these enable the robots to react
against sudden perturbations without any re-planning, themotions are always di-
rected towards a single target. In this work, we focus on combining several such
DS with distinct attractors, resulting in a multi-stable DS. We show its applicabil-
ity in reach-to-grasp tasks where the attractors representseveral grasping points
on the target object. While exploiting multiple attractorsprovides more flexibil-
ity in recovering from unseen perturbations, it also increases the complexity of
the underlying learning problem. Here we present theAugmented-SVM (A-SVM)
model which inherits region partitioning ability of the well known SVM classifier
and is augmented with novel constraints derived from the individual DS. The new
constraints modify the original SVM dual whose optimal solution then results in a
new class of support vectors (SV). These new SV ensure that the resulting multi-
stable DS incurs minimum deviation from the original dynamics and is stable at
each of the attractors within a finite region of attraction. We show, via implemen-
tations on a simulated 10 degrees of freedom mobile robotic platform, that the
model is capable of real-time motion generation and is able to adapt on-the-fly to
perturbations.

1 Introduction

Dynamical systems (DS) have proved to be a promising framework for encoding and generating
complex motions. A major advantage of representing motion using DS based models [1, 2, 3, 4] is
the ability to counter perturbations by virtue of the fact that re-planning of trajectories is instanta-
neous. These are generative schemes that define the flow of trajectories in state spacex ∈ R

N by
means of a non-linear dynamical functionẋ = f(x). DS with single stable attractors have been used
in pick and place tasks to control for both the motion of the end-effector [5, 6, 7] and the placement
of the fingers on an object [8]. Assuming a single attractor, and hence a single grasping location on
the object, constrains considerably the applicability of these methods to realistic grasping problems.
A DS composed of multiple stable attractors provides an opportunity to encode different ways to
reach and grasp an object. Recent neuro-physiological results [9] have shown that a DS based mod-
eling best explains the trajectories followed by humans while switching between several reaching
targets. From a robotics viewpoint, a robot controlled using a DS with multiple attractors would
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Figure 2: Combining motions using naive SVM classification based switching.

be able to switch online across grasping strategies. This may be useful, e.g., when one grasping
point becomes no longer accessible due to a sudden change in the orientation of the object or the
appearance of an obstacle along the current trajectory. This paper presents a method by which
one can learn multiple dynamics directed toward different attractors in a single dynamical system.
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Figure 1: 8 attractor DS

The dynamical functionf(x) is usually estimated us-
ing non-linear regression functions such as Gaussian Pro-
cess Regression (GPR) [10], Gaussian Mixture Regres-
sion (GMR) [7], Locally Weighted Projection Regression
(LWPR) [11] or Dynamical Movement Primitives (DMP)
[1]. However, all of these works modeled DS with a sin-
gle attractor. While [7, 12] ensure global stability at the
attractor, other approaches result in unstable DS with spu-
rious attractors.

Stability at multiple targets has been addressed to date
largely through neural networks approaches. The Hop-
field network and variants offered a powerful means to
encode several stable attractors in the same system to pro-
vide a form of content-addressable memory [13, 14]. The
dynamics to reach these attractors was however not controlled for, nor was the partitioning of the
state space that would send the trajectories to each attractor. Echo-state networks provide alternative
ways to encode various complex dynamics [15]. Although they have proved to be universal estima-
tors, their ability to generalize in untrained regions of state space remains unverified. Also, the key
issue of global stability of the learned dynamics is achieved using heuristic rules. To our knowledge,
this is the first attempt at learning simultaneously a partitioning of the state space and an embedding
of multiple dynamical systems with separate regions of attractions and distinct attractors.

2 Preliminaries

A naive approach to building a multi-attractor DS would be tofirst partition the space and then learn
a DS in each partition separately. This would unfortunatelyrarely result in the desired compound
system. Consider, for instance, two DS with distinct attractors, as shown in Fig.2(a)-(b). First, we
build a SVM classifier to separate data points of the first DS, labeled+1, from data points of the
other DS, labeled−1. We then estimate each DS separately using any of the techniques reviewed in
the previous section. Leth : RN 7→ R denote the classifier function that separates the state space
x ∈ R

N into two regions with labelsyi ∈ {+1,−1}. Also, let the two DS bėx = fyi
(x) with

stable attractors atx∗
yi

. The combined DS is then given byẋ = fsgn(h(x))(x). Figure2(c) shows
the trajectories resulting from this approach. Due to the non-linearity of the dynamics, trajectories
initialized in one region cross the boundary and converge tothe attractor located in the opposite
region. In other words, each region partitioned by the SVM hyperplane is not a region of attraction
for its attractor. In a real-world scenario where the attractors represent grasping points on an object
and the trajectories are to be followed by robots, crossing over may take the trajectories towards
kinematically unreachable regions. Also, as shown in Fig.2(d), trajectories that encounter the
boundary may switch rapidly between different dynamics leading to jittery motion.

To ensure that the trajectories do not cross the boundary andremain within the region of attrac-
tion of their respective attractors, one could adopt a more informed approach in which each of the
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original DS is modulated such that the generated trajectories always move away from the classifier
boundary. Recall that by construction, the absolute value of the classifier functionh(x) increases as
one moves away from the classification hyperplane. The gradient∇h(x) is hence positive, respec-
tively negative, as one moves inside the region of the positive, respectively negative, class. We can
exploit this observation to deflect selective components ofthe velocity signal from the original DS
along, respectively opposite to, the direction∇h(x). Concretely, ifẋO = fsgn(h(x))(x) denotes the
velocity obtained from the original DS and

λ(x) =

{

max
(

ǫ,∇h(x)T ẋO

)

if h(x) > 0
min

(

−ǫ,∇h(x)T ẋO

)

if h(x) < 0
, (1)

the modulated dynamical system is given by

ẋ = f̃(x) = λ(x)∇h(x) + ẋ⊥. (2)

Here, ǫ is a small positive scalar anḋx⊥ = ẋO −
(

∇h(x)T ẋO

‖∇h(x‖2

)

∇h(x) is the compo-

nent of the original velocity perpendicular to∇h. This results in a vector field that flows
along increasing values of the classifier function in the regions of space whereh(x) > 0
and along decreasing values forh(x) < 0. As a result, the trajectories move away from
the classification hyperplane and converge to a point located in the region where they were
initialized. Such modulated systems have been used extensively for estimating stability re-
gions of interconnected power networks [16] and are known asquasi gradient systems [17].
If h(x) is upper bounded1, all trajectories converge to one of the stationary points{x :
∇h(x) = 0} andh(x) is a Lyapunov function of the overall system (refer [17], proposition1).
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Figure 3: Modulated trajs.

Figure3 shows the result of applying the above modulation to our
pair of DS. As expected, it forces the trajectories to flow along the
gradient of the functionh(x). Although this solves the problem of
“crossing-over” the boundary, the trajectories obtained are deficient
in two major ways. They depart heavily from the original dynamics
and do not terminate at the desired attractors. This is due tothe fact
that the functionh(x) used to modulate the DS was designed solely
for classification and contained no information about the dynamics
of the two original DS. In other words, the vector field given by
∇h(x) was not aligned with the flow of the training trajectories and
the stationary points of the modulation function did not coincide
with the desired attractors.

In subsequent sections, we show how we can learn a new modu-
lation function which takes into account the three issues wehigh-
lighted in this preliminary discussion. We will seek a system that
a) ensures strict classification across regions of attraction(ROA)
for each DS,b) follows closely the dynamics of each DS in each ROA andc) ensures that all trajec-
tories in each ROA reach the desired attractor. Satisfying requirementsa) andb) above is equivalent
to performing classification and regression simultaneously. We take advantage of the fact that the
optimization in support vector classification and support vector regression have the same form to
phrase our problem in a single constrained optimization framework. In next sections, we show that
in addition to the usual SVM support vectors (SVs), the resulting modulation function is composed
of an additional class of SVs. We geometrically analyze the effect of these new support vectors on
the resulting dynamics. While this preliminary discussionconsidered solely binary classification,
we will now extend the problem to multi-class classification.

3 Problem Formulation

TheN -dimensional state space of the system represented byx ∈ R
N is partitioned intoM dif-

ferent classes, one for each of theM motions to be combined. We collect trajectories in the state
space, yielding a set ofP data points{xi; ẋi; li}i=1...P whereli ∈ {1, 2, · · · ,M} refers to the
class label of each point2. To learn the set of modulation functions{hm(x)}m=1...M , we pro-
ceed recursively. We learn each modulation function in a one-vs-all classifier scheme and then

1SVM classifier function is bounded if the Radial Basis Function (rbf) is used as kernel.
2Bold faced fonts represent vectors.xi denotes thei-th vector andxi denotes thei-th element of vectorx.
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compute the final modulation functioñh(x) = max
m=1···M

hm(x). In the multi-class setting, the be-

havior of avoiding boundaries is obtained if the trajectories move alongincreasing values of the
function h̃(x). To this effect, the deflection termλ(x) presented in the binary case1 becomes

λ(x) = max
(

ǫ,∇h̃(x)T ẋO

)

; ∀x ∈ R
N . Next, we describe the procedure for learning a single

hm(x) function.

We follow classical SVM formulation and lift the data into a higher dimensional feature space
through the mappingφ : RN 7→ R

F whereF denotes the dimension of the feature space. We
also assume that each functionhm(x) is linear in feature space, i.e.,hm(x) = w

Tφ(x) + b where
w ∈ R

F , b ∈ R. We label the current (m− th) motion class as positive and all others negative such
that the set of labels for the current sub-problem is given by

yi =

{

+1 if li = m
−1 if li 6= m

; i = 1 · · ·P.

Also, the set indexing the positive class is then defined asI+ = {i : i ∈ [1, P ]; li = m}. With this,
we formalize the three constraints explained in Section2 as:

Region separation: Each point must be classified correctly yieldsP constraints:

yi
(

w
Tφ(xi) + b

)

≥ 1 ∀i = 1...P. (3)

Lyapunov constraint: To ensure that the modulated flow is aligned with the trainingtrajectories,
the gradient of the modulation function must have a positivecomponent along the velocities at the
data points. That is,

∇hm(xi)
T ˆ̇xi = w

T J(xi)ˆ̇xi ≥ 0 ∀i ∈ I+ (4)

whereJ ∈ R
F×N is the Jacobian matrix given byJ = [ ∇φ1(x)∇φ2(x) · · · ∇φF (x) ]

T and
ˆ̇xi = ẋi/‖ẋi‖ is the normalized velocity at thei− th data point.

Stability: Lastly, the gradient of the modulation function must vanishat the attractor of the positive
classx∗. This constraint can be expressed as

∇hm(x∗)Tei = w
T J(x∗)ei = 0 ∀i = 1...N (5)

where the set of vectors{ei}i=1···N is the canonical basis ofRN .

3.1 Primal & Dual forms

As in the standard SVM [18], we optimize for maximal margin between the positive and negative
class, subject to constraints3-5 above. This can be formulated as:

min
w,ξi

1

2
‖w‖2 + C

∑

i∈I+

ξi subject to

yi
(

w
Tφ(xi) + b

)

≥ 1 ∀i = 1 · · ·P

w
T J(xi)ˆ̇xi + ξi > 0 ∀i ∈ I+

ξi > 0 ∀i ∈ I+
w

T J(x∗)ei = 0 ∀i = 1 · · ·N















. (6)

Hereξi ∈ R are slack variables that relax the Lyapunov constraint in Eq. 4. We retain these in
our formulation to accommodate noise in the data representing the dynamics.C ∈ R+ is a penalty
parameter for the slack variables. The Lagrangian for the above problem can be written as

L(w, b,α,β,γ) =
1

2
‖w‖2 + C

∑

i∈I+

ξi −
∑

i∈I+

µiξi −

P
∑

i=1

αi

(

yi(w
Tφ(xi) + b)− 1

)

−
∑

i∈I+

βi

(

w
T J(xi)ˆ̇xi + ξi

)

+

N
∑

i=1

γiw
T J(x∗)ei (7)

whereαi, βi, µi, γi are the Lagrange multipliers withαi, βi, µi ∈ R+ andγi ∈ R. Employing a
similar analysis as in the standard SVM, it can be shown that the corresponding dual is given by the
constrained quadratic program:

min
α,β,γ

1

2

[

α
T
β

T
γ

T
]





K G −G∗

GT H −H∗

−GT
∗

−HT
∗

H∗∗









α
β
γ



−α
T
1 subject to

0 ≤ αi ∀i = 1...P
0 ≤ βi ≤ C ∀i ∈ I+

∑P

i=1
αiyi = 0
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where1 ∈ R
P is a vector with all entries equal to one. Letk : RN ×R

N 7→ R represents the kernel
function such thatk(x1,x2) = φT (x1)φ(x2). The matricesK ∈ R

P×P ,G ∈ R
|I+|×P ,G∗ ∈

R
P×N ,H ∈ R

|I+|×|I+|,H∗ ∈ R
|I+|×N ,H∗∗ ∈ R

N×N can be expressed in terms of the kernel
function and its first and second order derivatives:

K(i, j) = yiyjk(xi,xj) ; H(i, j) = ˆ̇xT
i

∂2k(xi,xj)
∂xi∂xj

ˆ̇xj

G(i, j) = yi

(

∂k(xi,xj)
∂xj

)T
ˆ̇xj ; H∗(i, j) = ˆ̇xT

i
∂2k(xi,x

∗)
∂xi∂x∗

ej

G∗(i, j) = yi

(

∂k(xi,x
∗)

∂x∗

)T

ej ; H∗∗(i, j) = e
T
i

∂2k(x∗,x∗)
∂x∗∂x∗

ej



















. (8)

Due to space constraints, detailed development of the dual and proof of the above relations are given
in appendicesA andB of the supplement material.

Note that since the matricesK, H andH∗∗ are symmetric3, the overall Hessian matrix for the re-
sulting quadratic program is also symmetric. However, unlike the standard SVM dual, it may not be
positive definite resulting in multiple solutions to the above problem. In our implementation, we use
the interior point solverIPOPT [19] to find a local optimum. We initialize the iterations using the
α found by running first a standard SVM classification problem.All entries ofβ andγ are set to0.
The solution to the above problem yields a modulation function (see Eq.A.11 for proof) given by

hm(x) =

P
∑

i=1

αiyik(x, xi) +
∑

i∈I+

βi
ˆ̇xTi

∂k(x, xi)
∂xi

−

N
∑

i=1

γie
T
i

∂k(x,x∗)

∂x∗ + b (9)

which can be further expanded depending on the choice of kernel. Expan-
sions for the Radial Basis Function (rbf) kernel are given inAppendix C.
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Figure 4: Isocurves off (x) = ˆ̇xTi
∂k(x,xi)

∂xi
at

xi = [0 0]T , ˆ̇xi = [ 1√
2

1√
2
]T for the rbf kernel.

The modulation function9 learned using the A-
SVM has noticeable similarities with the stan-
dard SVM classifier function. The first sum-
mation term is composed of theα support vec-
tors (α-SV) which act as support to the classi-
fication hyperplane. The second term entails a
new class of support vectors that perform a lin-
ear combination of the normalized velocitŷẋi

at the training data pointsxi. Theseβ sup-
port vectors (β-SVs) collectively contribute to
the fulfillment of the Lyapunov constraint by
introducing a positive slope in the modulation
function value along the directionṡ̂xi. Figure4
shows the influence of aβ-SV for the rbf kernel
k(xi,xj) = e1/2σ

2‖xi−xj‖2

with xi at the origin
and ˆ̇xi = [ 1√

2
1√
2
]T . It can be seen that the smaller the kernel widthσ, the steeper the slope. The

third summation term is a non-linear bias, which does not depend on the chosen support vectors, and
performs a local modification around the desired attractorx

∗ to ensure that the modulation function
has a local maximum at that point.b is the constant bias which normalizes the classification margins
as−1 and+1. We calculate its value by making use of the fact that for all theα-SV xi, we must
haveyihm(xi) = 1. We use average of the values obtained from the different support vectors.

Figure5 illustrates the effects of the support vectors in a 2D example by progressively adding them
and overlaying the resulting DS flow in each case. The value ofthe modulation functionhm(x) is
shown by the color plot (white indicates high values). As theβ-SVs are added in Figs.5(b)-(d),
theypush the flow of trajectories along their associated directions.In Figs. 5(e)-(f), adding the two
γ terms shifts the location of the maximum of the modulation function to coincide with the desired
attractor. Once all the SVs have been taken into account, thestreamlines of the resulting DS achieve
the desired criteria, i.e., they follow the training trajectories and terminate at the desired attractor.

3K is the standardkernel matrix and hence is symmetric and positive definite.H andH∗∗ are derived from
Hessian matrices of theC2-continuous kernel function and hence are symmetric.
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Figure 5: Progressively adding support vectors to highlight their effect on shaping the dynamics
of the motion.(a)α-SVs largely affect classification.(b)-(d) β-SVs guide the flow of trajectories
along their respective associated directionsˆ̇xi shown by arrows.(e)-(f) The 2γ terms force the local
maximum of the modulation function to coincide with the desired attractor along theX andY axes
respectively.

4 Results

In this section, we validate the presented A-SVM model on 2D (synthetic) data and on a robotic
simulated experiment using a 7 degrees of freedom (DOF) KUKA-LWR arm mounted on a 3-DOF
Omnirob base to catch falling objects. A video of the roboticexperiment - simulated and real -
is provided in Annexes. Next, we present a cross-validationanalysis of the error introduced by
the modulation in the original dynamics. A sensitivity analysis of the region of attraction of the
resulting dynamical system with respect to the model parameters is also presented. We used the
rbf kernel for all the results presented in this section. As discussed in Section2, the RBF kernel is
advantageous as it ensures that the functionhm(x) is bounded. To generate an initial estimate of
each individual dynamical system, we used the technique proposed in [7].

2D Example Figure 6(a) shows a synthetic example with 4 motion classes, each generated
from a different closed form dynamics and containing160 data points. The color plot indicates the
value of the combined modulation functioñh(x) = max

m=1···M
hm(x) where each of the functions

hm(x) are learned using the presented A-SVM technique. A total of9 support vectors were
obtained which is< 10% of the number of training data points. The trajectories obtained after
modulating the original dynamical systems flow along increasing values of the modulation function,
thereby bifurcating towards different attractors at the region boundaries. Unlike the dynamical
system in Fig.3, the flow here is aligned with the training trajectories and terminates at the desired
attractors. To recall, this is made possible thanks to the additional constraints (Eq.4 and5) in our
formulation.

In a second example, we tested the ability of our model to accommodate a higher density of
attractors. We created 8 synthetic dynamics by capturing motion data using a screen mouse. Figure
1 shows the resulting 8 attractor system.

Error Analysis As formulated in Eq. 6, the Lyapunov constraints admit some slack, which
allows the modulation to introduce slight deviations from the original dynamics. Here we
statistically analyze this error via 5-fold cross validation. In the 4 attractor problem presented
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Figure 6: Synthetic 2D case with 4-attractors.

above, we generate a total of 10 trajectories per motion class and use 2:3 training to testing ratio
for cross validation. We calculate the average percentage error between the original velocity
(read off from the data) and the modulated velocity (calculated using2) for them − th class as

em =
〈

‖ẋi−f̃(xi)‖
‖ẋi‖ × 100

〉

i:li=m
where< . > denotes average over the indicated range. Figure

6(b) shows the cross validation error (mean and standard deviation over the 5 folds) for a range
of values of kernel width. The general trend revealed here isthat for each class of motion, there
exists a band of optimum values of the kernel width for which the testing error is the smallest. The
region covered by this band of optimal values may vary depending on the relative location of the
attractors and other data points. In Fig.6(a), motion classes 2 (upper left) and 4 (upper right) are
better fitted and show less sensitivity to the choice of kernel width than classes 1 (lower left) and
3 (lower right). We will show later in this section that this is correlated to the distance between
the attractors. A comparison of testing and training errorsfor the least error case is shown in Fig.
6(c). We see that the testing errors for all the classes in the bestcase scenario are less than1%.
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h(x) = const
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Figure 7: Test trajectories
generated from several points
on an isocurve (dotted line) to
determine spurious attractors.

Sensitivity analysis The partitioning of space created by our
method results inM regions of attraction (ROA) for each of our
M attractors. To assess the size of these regions and the existence
of spurious attractors, we adopt an empirical approach. Foreach
class, we compute the isosurfaces of the corresponding modulation
function hm(x) in the range[0, hm(x∗)]. These hypersurfaces
incrementally span the volume of them − th region around its
attractor. We mesh each of these test surfaces and compute trajec-
tories starting from the obtained mesh-points, looking forspurious
attractors.hROA is the isosurface of maximal value that encloses
no spurious attractor and marks the ROA of the corresponding
motion dynamics. We use the example in Fig.5 to illustrate this
process. Figure7 shows a case where one spurious attractor is
detected using a larger test surface (dotted line) whereas the actual
ROA (solid line) is smaller. OncehROA is calculated, we define
the size of ROA asrROA = (h(x∗) − hROA)/h(x

∗). rROA = 0
when no trajectory except those originating at the attractor itself, lead to the attractor.rROA = 1
when the ROA is bounded by the isosurfaceh(x) = 0. The size of therROA is affected by both
the choice of kernel width and the distance across nearby attractors. This is illustrated in Fig.9
using data points from class 1 of Fig.6(a)and translating the attractors so that they are either very
far apart (left, distancedatt = 1.0) or very close to one another (right,datt = 0.2). As expected,
rROA increases as we reach the optimal range of parameters. Furthermore, when the attractors are
farther apart, high values ofrROA are obtained for a larger range of values of the kernel width,i.e.,
the model is less sensitive to the chosen kernel width. With smaller distance between the attractors
(Fig. 9(b)), only a small deviation from the optimum kernel width results in a considerable loss in
rROA, exhibiting high sensitivity to the model parameter.

3D Example We validated our method on a real world 3D problem. The attractors here rep-
resent manually labeled grasping points on a pitcher. The 3Dmodel of the object was taken
from the ROS IKEA object library. We use the7-DOF KUKA-LWR arm mounted on the3-DOF
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Figure 8: 3D Experiment.(a)shows training trajectories for three manually chosen grasping points.
(b) shows the isosurfaceshm(x) = 0;m = 1, 2, 3 along with the locations of the corresponding at-
tractors. In(c) and(d), the robot executes the generated trajectories starting from different positions
and hence converging to different grasping points.(e)shows the complete flow of motion.

KUKA-Omnirob base for executing the modulated Cartesian trajectories in simulation. We control
all 10 DOF of the robot using the damped least square inverse kinematics. Training data for this
implementation was obtained by recording the end-effectorpositionsxi ∈ R

3 from kinesthetic
demonstrations of reach-to-grasp motions directed towards these grasping points, yielding a3-class
problem (see Fig.8(a)). Each class was represented by75 data points. Figure8(b) shows the
isosurfaceshm(x) = 0;m ∈ {1, 2, 3} learned using the presented method. Figures8(c)-(d) show
the robot executing two trajectories when started from two different locations and converging to a
different attractor (grasping point). Figure8(e)shows the flow of motion around the object. Note
that the time required to generate each trajectory point isO(S) whereS denotes the total number of
support vectors in the model. In this particular example with a total of18 SVs, the trajectory points
were generated at1000 Hz which is well suited for real-time control. Such a fast generative model
allows the robot to switch on-the-fly between the attractorsand adapt to real-time perturbations
in the object or the end-effector pose, without any re-planning or re-learning. Results for another
object (champagne glass) are included in AppendixD (Fig. D.1). A video illustrating how the robot
exploits multiple attractors to catch one of the grasping points on the object as it falls down is also
provided in the supplementary material.
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Figure 9: Variation ofrROA with varying model parameters.

In this work, we presented the A-
SVM model for combining non-
linear dynamical systems through a
partitioning of the space. We refor-
mulated the optimization framework
of SVM to encapsulate constraints
that ensure accurate reproduction of
the dynamics of motion. The new
set of constraints result in a new class
of support vectors that exploit partial
derivatives of the kernel function to
align the flow of trajectories with the
training data. The resulting model
behaves as a multi-stable DS with attractors at the desired locations. Each of the classified re-
gions are forward invariant w.r.t the learned DS. This ensures that the trajectories do not cross over
region boundaries. We validated the presented method on synthetic motions in 2D and 3D grasping
motions on real objects. Results show that even though spurious attractors may occur, in practice
they can be avoided by a careful choice of model parameters through grid search. The applicability
of the method for real-time control of a10-DOF robot was also demonstrated.
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