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Abstract

Non-linear dynamical systems (DS) have been used extép$drebuilding gen-
erative models of human behavior. Their applications rdrma modeling brain
dynamics to encoding motor commands. Many schemes havepbepased for
encoding robot motions using dynamical systems with a siagfractor placed
at a predefined target in state space. Although these er@abli®lbots to react
against sudden perturbations without any re-planningptbgons are always di-
rected towards a single target. In this work, we focus on doimg several such
DS with distinct attractors, resulting in a multi-stable . V% show its applicabil-
ity in reach-to-grasp tasks where the attractors repressvgral grasping points
on the target object. While exploiting multiple attractprevides more flexibil-
ity in recovering from unseen perturbations, it also insemathe complexity of
the underlying learning problem. Here we presentAbgmented-SVM (A-SVM)
model which inherits region partitioning ability of the wkhown SVM classifier
and is augmented with novel constraints derived from thviddal DS. The new
constraints modify the original SVM dual whose optimal sinn then results in a
new class of support vectors (SV). These new SV ensure teaegulting multi-
stable DS incurs minimum deviation from the original dynesmnd is stable at
each of the attractors within a finite region of attractiore $tiow, via implemen-
tations on a simulated 10 degrees of freedom mobile robdaigom, that the
model is capable of real-time motion generation and is ab&apt on-the-fly to
perturbations.

1 Introduction

Dynamical systems (DS) have proved to be a promising frame¥ay encoding and generating
complex motions. A major advantage of representing mot&ngiDS based model&,[2, 3, 4] is

the ability to counter perturbations by virtue of the fadtthe-planning of trajectories is instanta-
neous. These are generative schemes that define the flovjeatdrées in state space € RV by
means of a non-linear dynamical functien= f(x). DS with single stable attractors have been used
in pick and place tasks to control for both the motion of thd-effector b, 6, 7] and the placement
of the fingers on an objec8]. Assuming a single attractor, and hence a single graspitegibn on
the object, constrains considerably the applicabilityhelste methods to realistic grasping problems.
A DS composed of multiple stable attractors provides an dppdy to encode different ways to
reach and grasp an object. Recent neuro-physiologicdtsg¢Spihave shown that a DS based mod-
eling best explains the trajectories followed by humandeviivitching between several reaching
targets. From a robotics viewpoint, a robot controlled gaanDS with multiple attractors would



+ Training data
— Streamlines
% Attractors

.

N +
05 1 15 2 05 1 15 2 05 1 15 2 05 1 15 2

(a) Motion 1 (b) Motion2  (c) Crossing over (d) Fast switching

Figure 2: Combining motions using naive SVM classificatiasdd switching.

be able to switch online across grasping strategies. Thisheauseful, e.g., when one grasping
point becomes no longer accessible due to a sudden chanlge ariéntation of the object or the
appearance of an obstacle along the current trajectorys gdgper presents a method by which
one can learn multiple dynamics directed toward differd¢tmaiators in a single dynamical system.
The dynamical functionf(x) is usually estimated us- 2 :

ing non-linear regression functions such as Gaussian Prox
cess Regression (GPR)({], Gaussian Mixture Regres-~
sion (GMR) [7], Locally Weighted Projection Regression ?
(LWPR) [11] or Dynamical Movement Primitives (DMP) 5 .
[1]. However, all of these works modeled DS with a sin-
gle attractor. WhileT, 12] ensure global stability at the
attractor, other approaches resultin unstable DS with spuit :;
rious attractors.
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Stability at multiple targets has been addressed to da :
largely through neural networks approaches. The Hop-
field network and variants offered a powerful means to
encode several stable attractors in the same system to pro- ~ Figure 1: 8 attractor DS

vide a form of content-addressable memdr§,[14]. The

dynamics to reach these attractors was however not caedrfidk, nor was the partitioning of the
state space that would send the trajectories to each attr&ctho-state networks provide alternative
ways to encode various complex dynamit§][ Although they have proved to be universal estima-
tors, their ability to generalize in untrained regions e@itstspace remains unverified. Also, the key
issue of global stability of the learned dynamics is achdev&ng heuristic rules. To our knowledge,
this is the first attempt at learning simultaneously a partihg of the state space and an embedding
of multiple dynamical systems with separate regions oéetions and distinct attractors.

2 Preliminaries

A naive approach to building a multi-attractor DS would béist partition the space and then learn
a DS in each patrtition separately. This would unfortunatahgly result in the desired compound
system. Consider, for instance, two DS with distinct atves; as shown in Fig2(a)}(b). First, we
build a SVM classifier to separate data points of the first BBeled+1, from data points of the
other DS, labeled-1. We then estimate each DS separately using any of the tagdsigviewed in
the previous section. Lét : RY — R denote the classifier function that separates the state spac
x € RY into two regions with labelg; € {+1,—1}. Also, let the two DS bex = f,,(x) with
stable attractors at; . The combined DS is then given By = fq.,(n(x)) (%). Figure2(c) shows
the trajectories resulting from this approach. Due to the-lmearity of the dynamics, trajectories
initialized in one region cross the boundary and convergidoattractor located in the opposite
region. In other words, each region partitioned by the SVIdrplane is not a region of attraction
for its attractor. In a real-world scenario where the attecrepresent grasping points on an object
and the trajectories are to be followed by robots, crossireyr may take the trajectories towards
kinematically unreachable regions. Also, as shown in R2gd), trajectories that encounter the
boundary may switch rapidly between different dynamicslileg to jittery motion.

To ensure that the trajectories do not cross the boundaryeamdin within the region of attrac-
tion of their respective attractors, one could adopt a moi@imed approach in which each of the



original DS is modulated such that the generated trajext@iways move away from the classifier
boundary. Recall that by construction, the absolute valtieeoclassifier functiom(x) increases as
one moves away from the classification hyperplane. The gnaliii.(x) is hence positive, respec-
tively negative, as one moves inside the region of the p@sitespectively negative, class. We can
exploit this observation to deflect selective componenthefvelocity signal from the original DS
along, respectively opposite to, the directign(x). Concretely, ifko = fqn(n(x))(x) denotes the
velocity obtained from the original DS and

R IR o @

the modulated dynamical system is given by
% = f(x) = A(x)Vh(x) + %1 @)
Here, € is a small positive scalar angt; = xo — (vuhv(;iziizo) Vh(x) is the compo-

nent of the original velocity perpendicular 8&h. This results in a vector field that flows
along increasing values of the classifier function in theiaeg of space wheré(x) > 0
and along decreasing values fafx) < 0. As a result, the trajectories move away from
the classification hyperplane and converge to a point ldcaiethe region where they were
initialized. Such modulated systems have been used exédpdior estimating stability re-
gions of interconnected power networks6] and are known agjuas gradient systems [17].

If h(x) is upper bounded all trajectories converge to one of the stationary poifis :
Vh(x) = 0} andh(x) is a Lyapunov function of the overall system (refé], proposition1).
Figure3 shows the result of applying the above modulation to our
pair of DS. As expected, it forces the trajectories to flonnglthe
gradient of the functio(x). Although this solves the problem of; 5
“crossing-over” the boundary, the trajectories obtaineddzficient

in two major ways. They depart heavily from the original dymes >
and do not terminate at the desired attractors. This is dtieetfact
that the functiork(x) used to modulate the DS was designed solely
for classification and contained no information about theaigics

of the two original DS. In other words, the vector field given b 1
Vh(x) was not aligned with the flow of the training trajectories and

L ——= ‘A"‘,“ ‘
the stationary points of the modulation function did notnoidle 0.5//%

with the desired attractors.

In subsequent sections, we show how we can learn a new modu- 05 1
lation function which takes into account the three issuesigb- . ]
lighted in this preliminary discussion. We will seek a systthat ~ Figure 3: Modulated trajs.

a) ensures strict classification across regions of attragfRiDA)

for each DSp) follows closely the dynamics of each DS in each ROA andnsures that all trajec-
tories in each ROA reach the desired attractor. Satisfyéggirements) andb) above is equivalent
to performing classification and regression simultangousle take advantage of the fact that the
optimization in support vector classification and suppettar regression have the same form to
phrase our problem in a single constrained optimizatioméaork. In next sections, we show that
in addition to the usual SVM support vectors (SVs), the riasgimodulation function is composed
of an additional class of SVs. We geometrically analyze ffeceof these new support vectors on
the resulting dynamics. While this preliminary discusstamsidered solely binary classification,
we will now extend the problem to multi-class classification

3 Problem Formulation

The N-dimensional state space of the system represented ByR” is partitioned intoA/ dif-
ferent classes, one for each of th& motions to be combined. We collect trajectories in the state
space, yielding a set dP data points{x;;x;;l;},—1..p Wherel, € {1,2,---, M} refers to the
class label of each potht To learn the set of modulation functiod,,, (x)},.—1...a7, We pro-
ceed recursively. We learn each modulation function in asiell classifier scheme and then

1SVM classifier function is bounded if the Radial Basis Fumetfrbf) is used as kernel.
%Bold faced fonts represent vectoss. denotes the-th vector andz; denotes thé-th element of vectox.



compute the final modulation functidn(x) = _max hm(x). In the multi-class setting, the be-

havior of avoiding boundaries is obtained if the traje@srimove alongncreasing values of the
function 2(x). To this effect, the deflection term(x) presented in the binary cadebecomes

A(x) = max (e, vﬁ(x)Txo) :vx € RY. Next, we describe the procedure for learning a single
h.m (x) function.

We follow classical SVM formulation and lift the data into &her dimensional feature space
through the mapping : RY — RF whereF denotes the dimension of the feature space. We
also assume that each functibp (x) is linear in feature space, i.é.,,(x) = w’ ¢(x) + b where

w € R, b € R. We label the currenti§ — th) motion class as positive and all others negative such
that the set of labels for the current sub-problem is given by

yi—{—l itl, #m =L

Also, the set indexing the positive class is then definefl.as- {i : i € [1, P];1; = m}. With this,
we formalize the three constraints explained in SecZias:

Region separation: Each point must be classified correctly yieldsonstraints:

yi (Wiep(x;) +b) >1 Vi=1..P. (3)
Lyapunov constraint: To ensure that the modulated flow is aligned with the trairtragectories,
the gradient of the modulation function must have a positm@ponent along the velocities at the

data points. Thatis,
Vhm(x:) % = wlI(x)x; >0 Viel, 4)

whereJ € RFXN js the Jacobian matrix given by = [ V1 (x)Va(x) - Vor(x) |* and
X; = %;/||%| is the normalized velocity at thie— ¢/ data point.

Stability: Lastly, the gradient of the modulation function must varasthe attractor of the positive
classx*. This constraint can be expressed as

Vhp(x*)'e; =wlJ(x*)e; =0 Vi=1..N (5)
where the set of vectok®:; };—;... v is the canonical basis & .

3.1 Primal & Dual forms

As in the standard SVM1[g], we optimize for maximal margin between the positive andaiiwe
class, subject to constrairss above. This can be formulated as:

yz(w $(x;)+b) =1  Vi=1.-P

mln—||W||2 +C > & subject to W (xi)%; +§1 i 8 gi g% . (6)
e wl](x*)e; =0 Vi=1---N

Here¢, € R are slack variables that relax the Lyapunov constraint in £gWe retain these in
our formulation to accommodate noise in the data represgitie dynamicsC' € R, is a penalty
parameter for the slack variables. The Lagrangian for tlwabroblem can be written as

L(w,b,,B,7) = —|\w|\2+02@ Zui@—z i (yi(w"p(x;) +b) — 1)

i€l €Ty i=1
- Z ﬁz (W J xz xz +§l) + 271 * ei (7)
i€l

wherea, §;, i, v are the Lagrange multipliers with;, 5;, u;, € Ry and~; € R. Employing a
similar analysis as in the standard SVM, it can be shown tletbrresponding dual is given by the
constrained quadratic program:

. K ¢ -G o 0< Vi=1.P
min [aT,@TyT} GT  H —H B |-a’T subjectto 0<B<C Viel,
Py —G’E —H’E H... Y Zil a;Yi = 0



wherel € R” is a vector with all entries equal to one. Liet RY x RY — R represents the kernel
function such thak(x;,x) = ¢ (x1)¢(x2). The matrice € RP*F G e RIF+IxP G, €
RPN H e RIZ+IXIZ+l H, e RIZ+IXN H,, € R¥*N can be expressed in terms of the kernel
function and its first and second order derivatives:

o . 92k (xi,
K(ZJ) :yiyjk(xuxj) ) H(z,]) X;F Bx(:(axtj) Xj
. Ok(x, o %k (xi,
Glig) = (2o) % o mg) =KZHeae L ()
A 2
. Ak(x, » O k(x",
Gi(i,7) =wi (%) ej 5 Ha(ij) =ef ax(fax}i €i

Due to space constraints, detailed development of the dagboof of the above relations are given
in appendiced andB of the supplement material.

Note that since the matricés, H andH,., are symmetri¢, the overall Hessian matrix for the re-
sulting quadratic program is also symmetric. However kathe standard SVM dual, it may not be
positive definite resulting in multiple solutions to the ab@roblem. In our implementation, we use
the interior point solvetPOPT [19] to find a local optimum. We initialize the iterations usirget
« found by running first a standard SVM classification problédhentries of 3 and~ are set td).
The solution to the above problem yields a modulation fuumc{see EgA.11 for proof) given by

N

Zazyz X, Xz _|_ Z ﬁz i M—Z%Q?M‘Fb (9)

ox*
i€Ty i=1

which can be further expanded depending on the choice of ekern Expan-
sions for the Radial Basis Function (rbf) kernel are given W#ppendix C.

The modulation functio® learned using the A- P P |
SVM has noticeable similarities with the stan-*° g AR
dard SVM classifier function. The first sum- ! NN

mation term is composed of the support vec-
tors (-SV) which act as support to the cIaSS|- J
fication hyperplane. The second term entails a|
new class of support vectors that perform a I|n-
ear combination of the normalized velocity

at the training data pointg;. Theses sup-
port vectors §-SVs) collectively contribute to
the fulfillment of the Lyapunov constraint by
introducing a positive slope in the modulat|0|l'|:Igure 4
function value along the directions. Figure4 Xi =[00]",%; = [J5—5]" for the rbf kernel.
shows the influence of 8-SV for the rbf kernel

k(x;,%;) = e/20°Ix:=x;1* with x; at the origin

andx; = [f f] It can be seen that the smaller the kernel widtlthe steeper the slope. The
third summation term is a non-linear bias, which does noeddmn the chosen support vectors, and
performs a local modification around the desired attraxtaio ensure that the modulation function
has a local maximum at that poiritis the constant bias which normalizes the classificatiorgiar
as—1 and+1. We calculate its value by making use of the fact that fortadl¢-SV x;, we must
havey;h,,(x;) = 1. We use average of the values obtained from the differemi@tpectors.

-2 -1 0 1

@o=1 (b) o0 =0.5

Isocurves off (x) = xIZOX) g5t

Figure5 illustrates the effects of the support vectors in a 2D exarbylprogressively adding them
and overlaying the resulting DS flow in each case. The valubefmodulation functioth,,, (x) is
shown by the color plot (white indicates high values). As th8Vs are added in Figss(b)-(d),
they push the flow of trajectories along their associated directidng:igs. 5(e)(f), adding the two

~ terms shifts the location of the maximum of the modulatiomciion to coincide with the desired
attractor. Once all the SVs have been taken into accounstteamlines of the resulting DS achieve
the desired criteria, i.e., they follow the training tragées and terminate at the desired attractor.

%K is the standaréternel matrix and hence is symmetric and positive definiteand.... are derived from
Hessian matrices of th&?-continuous kernel function and hence are symmetric.
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Figure 5: Progressively adding support vectors to highligkir effect on shaping the dynamics
of the motion. (a) «-SVs largely affect classificationb)-(d) 5-SVs guide the flow of trajectories
along their respective associated directighshown by arrows(e)-(f) The 2~ terms force the local
maximum of the modulation function to coincide with the dediattractor along th& andY axes
respectively.

4 Resaults

In this section, we validate the presented A-SVM model on &hihetic) data and on a robotic
simulated experiment using a 7 degrees of freedom (DOF) KUKAR arm mounted on a 3-DOF
Omnirob base to catch falling objects. A video of the robetiperiment - simulated and real -
is provided in Annexes. Next, we present a cross-validagioalysis of the error introduced by
the modulation in the original dynamics. A sensitivity arsdé of the region of attraction of the
resulting dynamical system with respect to the model patarnés also presented. We used the
rbf kernel for all the results presented in this section. Asassed in Sectio®, the RBF kernel is
advantageous as it ensures that the functipiix) is bounded. To generate an initial estimate of
each individual dynamical system, we used the techniquegsed in 7].

2D Example Figure 6(a) shows a synthetic example with 4 motion classes, each dgedera
from a different closed form dynamics and containiri§ data points. The color plot indicates the

value of the combined modulation functidrix) = mlaxMhm(x) where each of the functions
m=1..-

hm(x) are learned using the presented A-SVM technique. A totad stipport vectors were
obtained which is< 10% of the number of training data points. The trajectories iolei after
modulating the original dynamical systems flow along insileg.values of the modulation function,
thereby bifurcating towards different attractors at thgioe boundaries. Unlike the dynamical
system in Fig.3, the flow here is aligned with the training trajectories agmirtinates at the desired
attractors. To recall, this is made possible thanks to tliitiadal constraints (Eg4 and5) in our
formulation.

In a second example, we tested the ability of our model to mocodate a higher density of
attractors. We created 8 synthetic dynamics by capturingpmoata using a screen mouse. Figure
1 shows the resulting 8 attractor system.

Error Analysis As formulated in Eg. 6, the Lyapunov constraints admit some slack, which
allows the modulation to introduce slight deviations frohe toriginal dynamics. Here we
statistically analyze this error via 5-fold cross validati In the 4 attractor problem presented
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Figure 6: Synthetic 2D case with 4-attractors.

above, we generate a total of 10 trajectories per motiors @asl use 2:3 training to testing ratio
for cross validation. We calculate the average percentage between the original velocity
(read off from the data) and the modulated velocity (cakadausing?) for the m — th class as

em = <W X 100> where< . > denotes average over the indicated range. Figure

i:l;=m

6(b) shows the cross validation error (mean and standard dewiatier the 5 folds) for a range
of values of kernel width. The general trend revealed hetkasfor each class of motion, there
exists a band of optimum values of the kernel width for whiud testing error is the smallest. The
region covered by this band of optimal values may vary dejmgnadn the relative location of the
attractors and other data points. In F&g(a) motion classes 2 (upper left) and 4 (upper right) are
better fitted and show less sensitivity to the choice of Kewidth than classes 1 (lower left) and
3 (lower right). We will show later in this section that thi ¢orrelated to the distance between
the attractors. A comparison of testing and training erforgdhe least error case is shown in Fig.
6(c). We see that the testing errors for all the classes in thedasst scenario are less th#.

Sensitivity analysis The partitioning of space created by our 9°F
method results inV/ regions of attraction (ROA) for each of our
M attractors. To assess the size of these regions and theredst
of spurious attractors, we adopt an empirical approach. efoh
class, we compute the isosurfaces of the corresponding latomtu
function h,,,(x) in the range|0, h,,(x*)]. These hypersurfaces
incrementally span the volume of the — ¢h region around its |O#x) =const
attractor. We mesh each of these test surfaces and comajete-tr| " "
tories starting from the obtained mesh-points, lookingsfourious | # Actual atiractor
attractors.hro. is the isosurface of maximal value that enclosed ™ 5K =
no spurious attractor and marks the ROA of the correspondin ' '
motion dynamics. We use the example in Figto illustrate this rigyre 7: Test trajectories
process. Figurg shows a case where one spurious attractorggnerated from several points
detected using a larger test surface (dotted line) wheheaadtual on, an isocurve (dotted line) to
ROA (solid line) is smaller. Oncéro is calculated, we define yetermine spurious attractors.
the size of ROA asroa = (h(x*) — hroa)/h(x*). TROA = 0

when no trajectory except those originating at the attraitself, lead to the attracton:rpoa = 1
when the ROA is bounded by the isosurfdde:) = 0. The size of the'rp 4 is affected by both

the choice of kernel width and the distance across neartgctdts. This is illustrated in Fig9
using data points from class 1 of Fi§(a)and translating the attractors so that they are either very
far apart (left, distancé,:; = 1.0) or very close to one another (right,;; = 0.2). As expected,
rroa increases as we reach the optimal range of parameters.efudhe, when the attractors are
farther apart, high values o0 4 are obtained for a larger range of values of the kernel width,

the model is less sensitive to the chosen kernel width. Withller distance between the attractors
(Fig. 9(b)), only a small deviation from the optimum kernel width resuh a considerable loss in
rro A, €xhibiting high sensitivity to the model parameter.

3D Example We validated our method on a real world 3D problem. The dtirachere rep-
resent manually labeled grasping points on a pitcher. Then®idel of the object was taken
from the ROS IKEA object library. We use tfeDOF KUKA-LWR arm mounted on th8-DOF
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Figure 8: 3D Experimen{a) shows training trajectories for three manually chosengnaspoints.
(b) shows the isosurfacés,, (x) = 0; m = 1,2, 3 along with the locations of the corresponding at-
tractors. In(c) and(d), the robot executes the generated trajectories startimg diifferent positions
and hence converging to different grasping poit@$shows the complete flow of motion.

KUKA-Omnirob base for executing the modulated Cartesiajettories in simulation. We control
all 10 DOF of the robot using the damped least square invenssriatics. Training data for this
implementation was obtained by recording the end-effeptmitionsx; € R? from kinesthetic
demonstrations of reach-to-grasp motions directed toswdngse grasping points, yieldin@alass
problem (see Fig.8(a). Each class was represented Hydata points. Figur@&(b) shows the
isosurfaced,,,(x) = 0;m € {1,2,3} learned using the presented method. Fig@&(e$(d) show
the robot executing two trajectories when started from tifi@igint locations and converging to a
different attractor (grasping point). Figudée)shows the flow of motion around the object. Note
that the time required to generate each trajectory poif{ i) whereS denotes the total number of
support vectors in the model. In this particular exampléaitotal of18 SVs, the trajectory points
were generated &000 Hz which is well suited for real-time control. Such a fast gextive model
allows the robot to switch on-the-fly between the attractmd adapt to real-time perturbations
in the object or the end-effector pose, without any re-plagior re-learning. Results for another
object (champagne glass) are included in Appei{¥ig. D.1). A video illustrating how the robot
exploits multiple attractors to catch one of the graspinigpiscon the object as it falls down is also
provided in the supplementary material.

5 Conclusions

In this work, we presented the A-
SVM model for combining non- o
linear dynamical systems through a i
partitioning of the space. We refor- 1
mulated the optimization framework o #
of SVM to encapsulate constraints *
that ensure accurate reproduction of *
the dynamics of motion. The new

set of constraints result in a new class I S o tg 0

of support vectors that exploit partial (@) dars = 1.0 (b) dayr = 0.2

derivatives of the kernel function to

align the flow of trajectories with the = . g ; ;

tra?ning data Thé resulting modelFlgure 9: Variation of- zo 4 With varying model parameters.
behaves as a multi-stable DS with attractors at the desirestibns. Each of the classified re-
gions are forward invariant w.r.t the learned DS. This eestinat the trajectories do not cross over
region boundaries. We validated the presented method dhetyoxmotions in 2D and 3D grasping
motions on real objects. Results show that even though@mugttractors may occur, in practice
they can be avoided by a careful choice of model parameteyagh grid search. The applicability
of the method for real-time control ofl®-DOF robot was also demonstrated.
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