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Abstract—Future high performance computing systems will need
to use novel techniques to allow scientific applications to progress
despite frequent failures. Checkpoint-Restart is currently the most
popular way to mitigate the impact of failures during long-
running executions. Different techniques try to reduce the cost
of Checkpoint-Restart, some of them such as local checkpointing
and erasure codes aim to reduce the time to checkpoint while
others such as uncoordinated checkpoint and message-logging aim
to decrease the cost of recovery. In this paper, we study how to
combine all these techniques together in order to optimize both:
checkpointing and recovery. We present several clustering and
topology challenges that lead us to an optimization problem in
a four-dimensional space: reliability level, recovery cost, encoding
time and message logging overhead. We propose a novel clustering
method inspired from brain topology studies in neuroscience and
evaluate it with a Tsunami simulation application in TSUBAME2.
Our evaluation with 1024 processes shows that our novel clustering
method can guarantee good performance for all of the four
mentioned dimensions of our optimization problem.

I. INTRODUCTION

In high performance computing (HPC), application ex-

ecutions can last several days and in some cases several

weeks. Such executions need to be protected against possible

failures using fault tolerance (FT) techniques. In this work

we focus on tightly-coupled parallel applications based on

the message passing programing model, e.g. MPI (Message

Passing Interface [18]) applications. Checkpoint-Restart (CR)

is usually used to provide FT for these applications because it

is much less resource consuming than replication techniques.

However, CR suffers from several issues that need to be

addressed in order to be efficient at large scale. The first issue

is the checkpointing overhead. Indeed, future systems with

hundreds of thousands of sockets will fail at a higher frequency

than current systems and at the same time the amount of

data to save will be bigger. Thus, storing the state of a large

execution reliably will be increasingly challenging. Another

issue is the cost of recovery. In the standard CR technique, all

the processes restart from the last checkpoint in the event of

a failure. This is not always necessary and so, it is a waste

of resources. In systems where applications can easily spawn

millions of processes, confining the failure to a single node,

or a small set of nodes, and forcing only these nodes to restart

can represent a substantial gain in resources.

Several works [20], [22], [3], [2] reduce the checkpointing

overhead by using local storage in combination with erasure

codes. While using these techniques, the system is partitioned

in groups or clusters of processes and each cluster can toler-

ate a given number of failures. On the other hand, hybrid

CR protocols [6], [13], [17], [27] try to reduce the cost

of recovery by using group-coordinated checkpointing plus

message logging. In these protocols, the system is partitioned

in clusters. Checkpoints are coordinated within clusters, but

are not coordinated between clusters. This is combined with

message logging to provide failure containment. Only inter-

cluster messages are logged, decreasing the amount of data to

be logged compared to full message logging.

In this paper, we combine all these techniques in order to

create a framework that reduces the checkpoint overhead and

simultaneously reduces the recovery cost. To reach this goal,

we start by combining all these techniques in a naı̈ve approach

and study how our framework performs for different aspects.

During our study several challenges are raised and lead us

to an optimization problem in a four-dimensional space. We

propose a solution for this optimization problem and evaluate

it using a tsunami simulation application in TSUBAME2.

A. Contributions

This paper is, to the best of our knowledge, the first study to

combine fast checkpointing and failure containment techniques

together in order to reduce the checkpoint overhead and the

recovery cost for large scale HPC systems. Our contributions

are summarized as follows.

• We study the fast checkpointing and failure containment

clustering requirements, which raise several clustering

challenges. We explain how combining the previously

mentioned techniques lead us to an optimization problem

in a four dimensions space.

• We propose a novel hierarchical clustering as solution to

our optimization problem. Our solution allows systems to

couple fast checkpointing and failure containment.

• We evaluate our hierarchical clustering in TSUBAME2

using a tsunami simulation application on 1024 processes.

We analyze the implemented technique and we show that

our solution scores high in all four dimensions of the

presented optimization problem.

The rest of this paper is organized as follows. In Section

II we explain the background and motivations for this work.

Section III details our study and the optimization problem.



Section IV describes our hierarchical clustering solution and

Section V shows the results of our evaluation on TSUBAME2.

Finally, Section VI reviews the related work and Section VII

presents our conclusions.

II. BACKGROUND AND MOTIVATIONS

In this section we first present the main issues related

to fault tolerance in large scale HPC systems. Then, we

describe the state-of-the-art solutions proposed to improve

either checkpointing or recovery performance, and discuss the

advantages of combining the approaches. Finally, we point out

that both approaches are based on clustering, but that their

clustering strategy are very different.

A. Challenges for Fault Tolerance at Extreme Scale

To provide fault tolerance for parallel HPC applications, the

usual approach is to use a coordinated checkpointing protocol

implemented at application or system level. All processes are

coordinated at checkpoint time to ensure that the recorded

state is consistent, and the checkpoints are transferred to the

parallel file system (PFS), which is assumed to be highly

reliable. In the event of a failure, all processes rollback to

the last coordinated checkpoint available on the PFS. Studies

show that such an approach is not suitable at extreme scale

because a large part of the execution time would be spent

saving checkpoints or recovering from a failure [21], [10].

Indeed future Exascale systems raise new challenges for

fault tolerance. The mean time between failures (MTBF)

of such systems is expected to be low, requiring a high

checkpointing frequency to allow applications to progress.

At the same time, the amount of data to save as part of

the application state is increasing much faster than the I/O

bandwidth provided by the PFS, leading to a longer checkpoint

time. To mitigate the cost of fault tolerance at extreme scale,

two main research directions are investigated: i) improving

the techniques used to save checkpoints data to reduce the

checkpointing time; ii) designing more efficient checkpointing

protocols to reduce the cost of handling failures. In the next

section, we discuss these two aspects.

B. Advanced Fault Tolerant Solutions

1) Fast Checkpointing and Erasure Codes: To sustain

high checkpointing frequency, the time required to save a

checkpoint needs to be reduced. Several solutions have been

designed to circumvent the I/O bottleneck [20], [3], [2].

First, models with several levels of reliability have been

proposed [20], [3]. Multi-level checkpointing takes advantage

of nodes local storage devices to avoid saving all checkpoints

on the PFS. Since local storage devices provide better perfor-

mance than the PFS, the application can be checkpointed much

more frequently. Such techniques are based on an important

observation: Most failures in current supercomputers affect

only a small fraction of the system, where the affected part is

often one single node or a small set of nodes [3].

By checkpointing in local storage, an application is able to

tolerate transient failures affecting the data integrity of the

application. Soft-errors are expected to become one of the

main source of failures in future systems [5]. Using classic

CR to tolerate soft-errors is a waste of resources since saving

the checkpoint data on the PFS is not necessary to restart

the execution. To deal with node failures, local checkpointing

solutions need to be complemented with erasure codes [20],

[3]. Such techniques can improve resiliency by several order

of magnitude. Parity data are generated through distributed

encoding performed after the checkpoints have been stored

locally. Upon a failure, the lost data is rebuild using the parity

data saved on other nodes. Several encoding techniques, such

as bit-wise XOR or Reed-Solomon, exist and provide different

encoding complexities and different reliability levels [7], [20].

2) Failure Containment: To get a scalable CR protocol,

hybrid protocols combining coordinated checkpointing and

message logging have gain attention [6], [13], [17], [27]

because they can limit the consequence of a failure to a small

subset of the processes, i.e., they provide failure containment.

One of the main drawback of coordinated checkpoints is that

a single failure makes all processes rollback to the last coor-

dinated checkpoint. By providing failure containment, hybrid

protocols i) reduce the amount of rolled back computation, and

so reduces the amount of wasted energy, and ii) can speed up

the recovery [23], [12].

Contrary to coordinated checkpointing protocols, message

logging protocols can efficiently limit the consequences of

a process failure. Using a causal or a pessimistic message

logging protocol, only the failed processes have to rollback

after a failure [11]. However, message logging protocols

require to log all messages payload in the nodes memory

during failure free execution [14]. This logging can impair

communication performance. More importantly, it imposes a

high memory footprint that increases with the communication

rate of the application. Thus, such a protocol is not suitable

at very large scale. Hybrid protocols aim at providing failure

containment without the drawbacks of pure message logging

protocols. Coordinated checkpointing is used within clusters

of processes. Message logging is only used for inter-cluster

communication to ensure that if a process in one cluster fails,

only the processes in this cluster have to rollback. Thus, the

consequences of a failure are limited to a small subset of the

processes while logging only a small fraction of the messages.

C. Combining the Approaches

In this paper, we study how hybrid CR protocols can be

combined with multi-level checkpointing and erasure codes

for fault tolerance at extreme scale. We focus on our previous

works: FTI [3], a checkpointing library based on multi-level

checkpointing and erasure codes, and HydEE [13], an hybrid

CR protocol implemented in the MPICH2 library. Considering

the features they provide, the two approaches are comple-

mentary. If HydEE only relies on the PFS to save check-

points, checkpoint scheduling strategies, i.e., checkpointing

the clusters of processes at different time, have to be used

to avoid the I/O bottleneck. Implementing such strategies has

two main drawbacks. First it prevents from taking advantage of



application-level checkpointing since system-level checkpoint-

ing has to be used to be able to control when a checkpoint is

taken. Second, tightly-coupled MPI applications performance

might be significantly affected by the noise introduced by non-

coordinated checkpoints.

Combining HydEE with FTI will allow to checkpoint all

application processes “at the same time”1 at a high frequency,

and so, avoid the need to implement scheduling strategies.

Also, this solution will provide failure containment whereas

FTI combined with coordinated checkpointing requires all

processes to rollback in the event of a failure. However,

combining the two approaches is not straightforward. As men-

tioned above, HydEE relies on process clustering for failure

containment. But FTI also relies on clustering to decrease

the encoding time in erasure codes [3]. As we will see, the

clustering techniques used in FTI and HydEE are different.

1) Clustering for Erasure Codes: Encoding is done using

mathematical operators on a distributed set of data, in our

case, multiple checkpoint files distributed among the compute

nodes. Its complexity is directly proportional to the amount

of data to encode. Clusters are defined to independently use

erasure codes within each cluster. It is important to keep the

clusters size small enough to guarantee fast encoding [3]. Us-

ing small clusters that can be encoded in parallel significantly

improve the checkpointing performance [2].

Erasure codes can only work if data and parity data are

distributed among multiple different physical locations (i.e.

multiple compute nodes). If all the data and parity data is

stored in the same physical container, the failure of one

container leads to an unrecoverable failure, and the time

spent encoding is wasted. It is then necessary to use clusters

with a good distribution through multiple physically distant

containers. The efficiency of erasure codes for FT in HPC is

directly linked to the distribution of the checkpoint and parity

data among multiple physical compute nodes. As we can see

in Figure 1, in the case of FTI [3], the clusters are created in

such a way that all the processes of a cluster belong to different

physical nodes and all the processes in a same physical node

belong to different virtual clusters.

2) Clustering for Failure Containment: Processes cluster-

ing for a hybrid coordinated checkpointing/message logging

protocol should satisfy two requirements: i) minimizing the

number of processes to rollback after a failure; ii) limiting

the amount of data to log. To minimize the amount of data

to log, the amount of inter-cluster communication should be

minimized. The simplest solution is to choose large clusters.

However, it would imply that a large a number of processes

would rollback in the event of a failure. To solve this issue,

the communication pattern of the application has to be taken

into account. Indeed, the communication graph of most HPC

applications shows a low degree of connectivity [15]. It has

been shown that a good trade-off can be found between the

size of the clusters and amount of data to log for most MPI

1It does not imply that a coordinated checkpointing protocol is executed
between all processes in the application.

Fig. 1. Erasure codes clustering

HPC applications [24].

In addition to the communication pattern of the application,

the probability that multiple processes fail simultaneously can

be taken into account. When a process fails, all processes be-

longing to the same cluster have to rollback, since coordinated

checkpointing is used within clusters. If two processes have a

very high probability to fail simultaneously, they should be put

in the same cluster to ensure that their failures impact only one

cluster. In [6], all processes running on the same node belong

to the same cluster. This solution could be extended to deal

with correlated node failures. For instance, two nodes sharing

a power supply should be located in the same cluster, so that

only one cluster restarts after a power supply failure.

Fig. 2. Failure containment protocol clustering

To optimize communication performance, processes com-

municating frequently together should be located as physical

neighbors in the machine [26]. In this case, optimizing cluster-

ing based on the application communication pattern provides

also a good solution with respect to correlated failures, as

illustrated by Figure 2.



Combining FTI and HydEE raises a non trivial problem

since the optimal clustering for the two techniques are con-

flicting. This paper explores techniques and proposes a novel

approach to solve this multi-criteria optimization problem.

III. TOPOLOGY STUDY AND CLUSTERING CHALLENGES

To couple the FT techniques presented in the previous

section, a suitable clustering strategy has to be found. We study

and evaluate several clustering solutions in this section.

In order to evaluate the hybrid CR protocol, we use the com-

munication graph obtained by executing a tsunami simulation

application [1] with 1024 processes in TSUBAME2. Details on

the platform and the technique used to get the communication

graph are provided in Section V. This tsunami simulation is

a good example of stencil applications which are widely used

in HPC [16]. It performs a 2-dimensional decomposition of a

sea region and each process computes the fluid dynamics of

its segment. Processes communicate with their neighbors to

share ghosts regions. To maximize intra-node communications,

and so performance, consecutive process ranks are placed on

the same node. Each node hosts 16 processes. The data was

collected for a short execution of 100 iterations.

We start by defining a baseline of requirements that a

clustering should reach in order to be efficiently used for large

scale HPC systems. These requirements are established using

the cost function, reliability model and performance model

proposed in our previous studies [3], [24]. They can be used

to model different configurations. First, the system should not

log more than 20% of the messages. We consider that 20%

of the communications is already a large amount of data and

since future systems are expected to have less memory space

per process it is important to reduce the memory overhead

generated by message logging. Second, the system should be

capable of encoding 1GB of data in less than one minute. One

minute per GB is already a slow encoding and as the amount

of memory per node is increasing with time, it is mandatory

to encode data as fast as possible in order to decrease the

checkpoint overhead. Our third requirement is to have a system

where only one in several thousand failures is unrecoverable.

Since failures will be more frequent in large systems it is

important to have a very low probability of unrecoverable

failure. Finally, the system should avoid restarting more than

20% of processes after a failure. Since most failures affect

only one or a small set of nodes, restarting 20% of nodes

after a failure is already a significant waste of resources.

As described in the previous section, a hybrid CR proto-

col uses coordinated checkpointing within clusters. When a

process fails, it forces all processes in the same cluster to

rollback. On the other hand, the encoding technique requires

that the processes in the same encoding cluster coordinate

after the checkpoint data is saved locally because the encoding

algorithm itself requires coordination. Furthermore, the de-

coding algorithm also requires coordination before restarting

the execution. Encoding checkpoint files of processes that do

not checkpoint at the same time would be highly inefficient.

Thus, the processes of the encoding clusters must checkpoint

in a coordinated fashion and restart together after a failure.

This observation lead us to use the same clustering for both,

the failure containment protocol and the encoding algorithm,

guaranteeing that the processes of a same cluster will check-

point and encode in a coordinated fashion. In this section,

we explore and evaluate several clustering, comparing their

overhead with the baseline introduced above.

A. Naı̈ve Clustering

The first clustering challenge comes while choosing the

optimal cluster size for the failure containment protocol. As

we explained in Section II-C2, it is necessary to make clusters

in such a way that we limit the number of messages logged

but at the same time we limit the number of processes to

restart in the event of a failure. We study the impact of the

clusters size on message logging and recovery cost using the

communication graph of the tsunami simulation. The influence

of the communication patterns of different applications on the

results of the failure containment protocol has already been

studied [24] and it is out of the scope of this paper.

Figure 3a shows the trade-off between message logging

overhead and recovery cost. In this evaluation, each cluster

gathers a set of consecutive process ranks. The message

logging overhead is shown using the left-handed axis while the

restart cost is shown using the right-handed axis. This figure

presents results for a short execution, but for long executions

each process will communicate many GBs of data, making

logging prohibitively expensive for small clusters. However,

the message logging overhead can be reduced using larger

clusters. As we can see, there is a sweet spot for clusters of

32 processes where less than 4% of the messages are logged

and only 3% of the processes needs to restart after a failure.

Thus, we use clusters of 32 processes in order to optimize

the message logging vs. recovery cost trade-off. We call this

naı̈ve clustering. However, experiments using the naı̈ve clus-

tering produced a very poor encoding performance. Indeed,

naı̈ve clustering does not take into account the impact of the

cluster size on the encoding speed. In fact, such large clusters

will produce a highly time consuming encoding that becomes

prohibitively expensive at high checkpointing frequency.

B. Size-guided Clustering

In order to solve the issue mentioned above we study the

impact of the cluster size on the encoding time and compare

it with the message logging overhead. Figure 3b shows this

comparison, using the left-handed axis for the message logging

overhead, and the right-handed axis for the encoding time.

Please notice that the right-handed axis uses a logarithmic

scale. The encoding time measure starts at clusters of size 4

since it does not make sense to use erasure codes to tolerate

multiple failures in clusters of one or two processes. As we

can see, while increasing the cluster size from 4 processes to

32 processes, the encoding time increases by almost one order

of magnitude. In clusters of 32 processes, encoding 1GB of

checkpoint data takes more than three minutes while it could

take less than half-minute with clusters of 4 processes. In other



(a) Recovery cost VS. message logging overhead (b) Encoding time VS. message logging overhead

Fig. 3. Cluster size study

(a) Reliability level (b) Message logging overhead (c) Restart cost

Fig. 4. Distribution study

words, encoding 20GBs of data will take more than one hour

while it could take less than five minutes. Because of this

inadmissible loss in performance, we search for a trade-off

between all three: encoding time, message logging overhead

and recovery cost. We call this strategy size-guided clustering.

Clusters of size 8 comply with the first two requirements (See

Section III-A) by logging only 13% of messages and encoding

at a 1GB/50s rate. In comparison, clusters of size 4 would

result in 25% of logged communications and clusters of size

16 would take almost 2 minutes to encode 1GB of data.

However, this configuration lacks reliability. In some cases

one node failure could lead to an unrecoverable failure. Indeed,

while using the failure containment protocol, one want to

create clusters in such way that the number of intra-cluster

communications is maximized and the inter-cluster commu-

nications get minimized. In parallel, users usually implement

topology-aware positioning techniques [4], [26] that maximize

data locality and intra-node communication in order to opti-

mize the use of resources and get better performance. In the

tsunami simulation application, most of the communications

done during the execution are boundary exchanges between

neighbor regions. Thus, intra-node communications are max-

imized by placing neighbor processes in the same compute

node. As a result, clusters of 8 consecutive processes are

grouping processes located on the same compute node. This is

the worst scenario for erasure codes. As explained in Section

II-C1, erasures codes work by distributing data and parity

data among distant physical nodes. Instead, by grouping all

the data and parity data in the same node, the erasure codes

cannot tolerate hard node failures, losing all their benefits and

making the encoding useless. In other words, locality enhances

performance, while distribution enhances reliability. As we can

see, in the context of this topology study, performance and

reliability are conflicting.

C. Distributed Clustering

It is necessary to find a configuration where the erasure

codes allow the system to tolerate multiple simultaneous node

failures. Evidently, by grouping all the processes of the same

node in a cluster the system cannot guarantee this, so we test

a clustering where all the processes of a cluster belong to

different nodes, we call this technique distributed clustering.

We perform a reliability study comparing distributed and non-

distributed clustering methods. We use our catastrophic failure

model presented in [3]. We assume a system of 128 nodes

with 8 processes per node (1024 processes in total). We study

the reliability for clusters of 4, 8 and 16 processes. In the



distributed clustering all the processes of a cluster belong to

different nodes while in the non-distributed clustering all the

processes of a cluster are hosted by one or two nodes. As

we can see in Figure 4a, non-distributed clustering is several

orders of magnitude less reliable than distributed clustering.

For non-distributed clusters of 4 or 8 processes, one single

node failure could lead to an unrecoverable failure.

Unfortunately, distributed clustering also raises new issues.

The first one is the message logging overhead. Indeed, since

the clusters are composed of processes belonging to different

nodes and since the processes are located in order to maximize

the intra-node communications, it is expected to see a high

percentage of messages logged even while using large clusters.

Figure 4b shows a comparison between distributed and non-

distributed clustering. Combining distributed clustering and

topology-aware process positioning results in a very high

number of messages logged. This configuration impacts so

badly the message logging technique that the size of the

clusters lose all their influence in the performance trade-off.

This is not the only issue of distributed clustering. The

recovery cost also grows faster while using distributed cluster-

ing. The reason is that one single process failure in a cluster

forces all the processes in the cluster to restart. For instance,

when a node with 16 processes fails and the 16 processes of

the node belong to different clusters of 16 processes, each

one of the 16 failed processes will force other 15 to restart;

as a result one single node failure forces 16 nodes to restart.

Figure 4c shows a comparison between distributed clustering

and non-distributed clustering for a system with 64 nodes of

16 processes (1024 processes). As we can see, the impact

of distributed clustering on recovery cost is so large that for

clusters of 32 processes the recovery cost grows from 3% with

non-distribution to 50% with distribution.

In summary, two factors (cluster size and process distribu-

tion) are affecting four different parameters: encoding time,

recovery cost, reliability level and message-logging overhead.

All these four parameters are correlated, going sometimes

in opposite directions. At this stage, none of the proposed

clustering was able to reach our four requirements. All of

our previously mentioned clustering techniques perform very

poorly in at least one of these four dimensions.

IV. HIERARCHICAL CLUSTERING FOR HPC

As previously presented, physical distance between pro-

cesses of the same cluster enhances reliability and decreases

performance. In contrast, proximity enhances performance and

decreases reliability. These conflicting goals lead us to design

more elaborated clustering schemes capable of ensuring both

performance and reliability. In this section, we start with a

very short overview of clustering techniques developed in

neuroscience, as this was the inspiration for our proposed

solution. Then, we present and develop our proposal.

A. Brain Segregation, Distribution and Modularity

Systems with highly computational tasks and high reliability

exist across different domains. A clear example is the brain

itself. Brain networks are known to share multiple properties

with other complex non-biological networks and they have

important characteristics. One of these characteristics is called

functional segregation. Indeed, it has been found that densely

interconnected clusters of regions exist in the brain network.

Such clusters are capable of specialized processing indicating

statistical dependencies between regions. These community

structures are revealed by partitioning the brain network into

clusters that maximize the number of intra-cluster links and

minimize the number of inter-cluster links [19], [28]. As we

can see, this is exactly the same strategy we use to create

highly efficient message logging clusters.

Another important characteristic of brain networks is the

degree distribution [25]. The degree of a single node can

be measured counting its number of links or neighbors. The

degree distribution in a brain network is obtained by adding

the degree of all the nodes in the network. The degree

distribution is an important marker of network evolution and

resilience. In addition to these brain network characteristics,

other works have studied the hierarchical optimization on

human brain networks using functional magnetic resonance

imaging (fMRI) [19], [8]. It has been established that there

is a clear evidence of hierarchical modularity in human

brains. Hierarchical modularity allows systems to combine

densely interconnected regions with resilient distribution for

faster adaptation or evolution in rapidly changing external

conditions. Based on the presented evidence of the robustness

of hierarchical modularity in brain networks, we propose a

clustering approach with a hierarchical scheme, aiming to

optimize the four dimensions of our optimization problem.

B. Hierarchical Clustering implementation

We propose a hierarchical clustering composed of two

levels. The first level (L1) aims to reduce the message logging

overhead vs. restart cost. The second level (L2) aims to ensures

fast encoding and high reliability. Building the hierarchical

clustering includes the following steps. First, it is required

to obtain the application’s communication matrix. From the

obtained process communication graph, it is simple to con-

struct a node-based communication graph. Then, we apply the

partitioning algorithm and cost function presented in [24] over

the node-based communication graph. By using node-based

instead of process-based communication graphs we guarantee

that all the processes of each node belong to the same cluster,

so that at most one cluster needs to restart after a node failure.

Once the L1 clustering is done, we apply the L2 clustering

inside the L1 clusters, using the following criteria: Larger

L2 clusters lead to more reliability, but smaller L2 clusters

improve encoding speed. However, clusters of 4 or 8 processes

are already highly reliable if the processes are distributed in

different compute nodes, as presented in figure 4a. In order

to apply failure distribution techniques inside L1 clusters,

we need L1 clusters large enough to implement such failure

distribution scheme. Therefore, we set the minimum number

of nodes per L1 cluster to 4 in the partitioning algorithm. This

guarantees that the systems will be able to apply erasure codes
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Fig. 5. Hierarchical clustering study and comparison

inside each L1 cluster. In systems with thousands of nodes,

message logging overhead decreases by grouping multiple

nodes in a cluster, thus the partitioning algorithm for L1

clusters is very likely to produce L1 clusters of more than

4 nodes, even if the minimum was not a requirement.

Fig. 6. Hierarchical clustering

Now that we have guaranteed that failure distribution is

possible inside L1 clusters, we just need to keep the size of

the L2 clusters as low and homogeneous as possible: low to

have fast encoding and homogeneous to have all the clusters

spending about the same time in encoding. Thus, we divide

the L1 clusters in groups of 4 nodes (or more), and then we

group the ith process of each node in the group in a L2 cluster,

leading to x L2 clusters inside the group, where x is the number

of processes per node. Figure 6 shows a simple scenario

where hierarchical clustering has been applied to a 8-node

cluster. The reliability and performance models presented in

our previous work [3] can be used to guide the L2 clustering by

predicting the probability of catastrophic failure and encoding

time for a given cluster size.

V. EVALUATION

We evaluate our proposed hierarchical clustering on TSUB-

AME2 using the tsunami simulation application described in

section III, launching from 64 to 1024 processes. In this

section we study the case of 1024 processes. The experimental

platform is given in Table I. The application is run with a

modified version of the MPICH2 library including HydEE

CR protocol. We made a minor modification to the library

to collect data on communications.

Nodes 1408 High BW Compute Nodes

CPU 2 Intel Westmere-EP 2.93GHz 12Cores/node

Mem 55.8GB or 103GB (Total: 80.55TB)

GPU NVIDIA M2050 515GFlops, 3GPUs/node
(Total: 4224 NVIDIA Fermi GPUs)

SSD 60GB x 2 = 120GB (55.8GB node)
120GB x 2 = 240GB (103GB node)

(Total : 173.88TB)
Write speed : 360MB/s (RAID0)

Network Dual rail QDR IB (4GB/s x 2)

File system 5 DDN DFA10000 units (3 Lustre and 2 GPFS)
with 600 2TB HDDs each

Measured Lustre write troughput (10GB/s)

OS Suse Linux Enterprise + Windows HPC

TABLE I
TSUBAME2 ARCHITECTURE

TSUBAME2 nodes have 12 cores and it uses hyperthread-

ing, so it allows a maximum of 24 processes to be launched per

node. Since the application requires a power-of-two number

of processes, we launch the application on 64 nodes with

16 application processes per node. The extra 8 processes

available per node could not be used for the application, so

they can be used for other purposes, such as fault tolerance.

We link the application with FTI and we use FTI for multi-

level checkpointing using the solid-state drives (SSDs) in the

compute nodes and the Reed-Solomon encoding algorithm

implemented in FTI. As explained in section IV-B, FTI uses

one extra process per node for fast encoding, so we launch 17

processes per node for a total of 1088 MPI processes.

This raises a technical issue. The encoding process is a MPI

process that communicates with the application processes in

the same node at every checkpoint and with other encoding

processes during the encoding. FTI guarantees the correctness

of the application by replacing the global communicator with a

new communicator during the initialization. However, HydEE



is not able to make the difference between encoding processes

and application processes. Thus, all the encoding processes

are grouped in a single L1 cluster to avoid logging the

communications related to encoding. Then, we divide the

rest of the system in L1 clusters of 4 or more nodes using

the approach presented in Section IV-B. Since the processes

of the tsunami simulation exchange boundary regions with

their neighbors, communications get optimized by placing

consecutive MPI ranks in the same physical node. As a result,

the L1 clusters of 4 nodes correspond to 64 consecutive MPI

processes. Following the introduced technique, we create 16

L2 clusters of 4 processes, where all the processes of a L2

cluster belong to different compute nodes of the same L1

cluster. We then launch the execution, logging inter-cluster

communications, checkpointing several times using SSDs and

encoding the application checkpoints with FTI.

Figure 5a shows the communication graph produced by the

execution, where dark blue means a high amount of data com-

municated. In order to analyze these results in detail, Figure

5b zooms in the first 4 nodes (i.e. 64 application processes

and 4 encoding processes). The first pattern we notice is

the blue double diagonal in the middle which corresponds

exactly to the communication pattern of the tsunami simulation

(i.e., exchange of boundary regions). We also notice that the

diagonals get interrupted for ranks 0, 17, 34 and 51 which

are the four encoding processes. It is important to notice that

most data communicated between these groups of processes is

located in these two diagonals (dark blue) and none of these

communications are logged because the first 64 processes of

the application belong to the same L1 cluster.

We also notice four short horizontal lines in light blue again

at 0, 17, 34 and 51 (y axis) which correspond to the few

communications done between the application processes and

the encoding process of the respective node. There are also

some isolated points at the intersections of processes 0, 17, 34

and 51 which correspond to the communications done between

the encoding processes during the encoding phase. Finally, we

can observe other diagonals in light blue starting in the x axis

from processes with a power-of-two rank . These diagonals

correspond to the communication pattern of theMPI Allgather

implementation in MPICH2. Indeed, FTI uses MPI Allgather

during its initialization.

Clustering
method

Msg.Log.
overhead

Recovery
cost

Encoding
time(1GB)

Prob.cat.
failure

Naı̈ve (32 pr.) 3.5% 3.1% 204 s 1−4

Size-guided
(8 pr.)

12.9% 0.7% 51 s 0.95

Distributed
(16 pr.)

100% 25% 102 s 1−15

Hierarchical
(64-4 pr.)

1.9% 6.25% 25 s 1−6

TABLE II
CLUSTERING COMPARISON

We measure the performance of our proposed hierarchical

clustering in all four dimensions and compare to the clustering

strategies proposed in Section III. A detailed comparison of

all the studied clustering techniques is presented in table

II. As we can see, the hierarchical clustering logs less than

2% of the messages, restarts less than 7% of the processes

after a failure, encodes checkpoints at 25s/GB and its failure

distribution guarantees a very high reliability level. Let us

remember that none of the other studied clustering could

be efficiently used for large scale HPC systems. Figure 5c

presents a comparison between all the clustering strategies

and the baseline. The baseline is the normalized maximum

overhead in all four dimensions that a clustering can have in

order to be used at large scale (See Section III). Any clustering

going outside the area delimited by the baseline is not suitable

for FT in future large scale HPC systems. The hierarchical

clustering complies with all the requirements and performs

well in the four studied dimensions, providing a complete CR

solution for large HPC systems. The same results are expected

for other HPC applications, except in the case of all-to-all

communications, applications using collective communication

patterns, can also be correctly partitioned [24].

VI. RELATED WORK

Several works have achieved high checkpointing perfor-

mance by using local checkpointing in combination with

erasure codes or checkpoint replication [20], [3], [7], [22], [9].

These works propose various techniques achieving different

levels of reliability and performance, but all of them require

data distribution on the compute nodes as the main strategy

to guarantee reliability and performance at high checkpoint

frequency. However, none of these techniques limit the cost of

restart after failures. We complement these works by present-

ing how to combine such techniques with failure containment

techniques that reduce the cost of restart.

On the other hand, several works [6], [13], [17], [27] aim

to reduce the cost of restart by using hybrid protocols for

failure containment. These studies do not limit the time spent

in checkpointing which is crucial to limit the overhead on

the application executions. Although hybrid protocols often

use uncoordinated checkpoint between different clusters and

coordinated checkpoint inside clusters, it is necessary to reduce

as much as possible the checkpoint time spent for each

cluster checkpoint. Indeed, while a cluster is checkpointing,

processes from other clusters may depend on data from the

checkpointing cluster. In particular, HPC application processes

are tightly coupled and any slowdown in one single process

will have an important negative impact on the overall execution

performance. In this work, we complement such approaches by

coupling hybrid protocols with fast checkpointing techniques.

Some works have studied the performance impact of

topology-aware process positioning on different architectures

such as 3D torus or fat tree networks [4], [26]. Although these

works provide clever solutions for enhancing performance in

multiple topologies, they do not study the clustering issues for

fault tolerance. In this work, we partially use such approaches

by implementing a topology-aware positioning strategy that

optimizes resources usage in TSUBAME2 and increases the



performance of the tested tsunami application. Also, we study

the clustering challenges for fault tolerance and we propose a

hierarchical clustering that guarantees performance and relia-

bility even while using topology-aware positioning techniques.

This work is, to the best of our knowledge, the first attempt

to combine fast checkpointing techniques using local storage

and erasure codes with hybrid protocols using partially coordi-

nated checkpoint and message logging for failure containment.

Furthermore, this is, (again) to the best of our knowledge, the

first time that all these techniques have been implemented and

evaluated together with a scientific HPC application on a large

HPC system, such as TSUBAME2.

VII. CONCLUSIONS

In this work we have introduced several existing techniques

that partially solve known issues of CR at large scale. In order

to combine all the introduced techniques together, we have

analyzed the clustering approaches that they implement. We

show clustering challenges that lead us to an optimization

problem in a 4-dimensional space and we propose a hier-

archical clustering inspired from studies of brain networks

in neuroscience. We implement our hierarchical clustering

strategy and we evaluate it using a tsunami simulation on 1024

processes on TSUBAME2. We perform a detailed analyze of

the implemented solution and we demonstrate its feasibility.

Our results show that our proposal highly optimizes the four

dimensions of the presented optimization problem and is the

only technique that reaches all the requirements needed for

large systems. The hierarchical clustering proposed in this

paper allows us to combine all the previously mentioned

techniques in order to build, for the first time, a complete

CR solution that minimize both, the checkpointing overhead

and the recovery cost, for future large scale HPC systems.
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