Fatigue strengthening of damaged metallic beams using prestressed unbonded and bonded CFRP plates

Bonded fiber reinforced polymers (FRPs) reinforcement systems have traditionally been found to be an efficient method for improving the lifespan of fatigued metallic structures and have attracted much research attention. Nevertheless, the performance of a bonded FRP reinforcement system under fatigue loading is basically dependent on the FRP-to-metal bond behavior. In this paper, a prestressed unbonded reinforcement (PUR) system was developed. The proposed PUR system can be used as an alternative to bonded FRP reinforcement, particularly when there is concern about the effects of high ambient temperatures, moisture, water and fatigue loading on the FRP-to-metal bond behavior. The performance of cracked beams strengthened by the PUR system was compared with that of cracked beams strengthened by the prestressed bonded reinforcement (PBR) system. A theoretical method was developed to estimate the level of prestressing sufficient to arrest fatigue crack growth (FCG). Furthermore, the method was used to examine different passive, semi-active and active crack modes with a loaded, strengthened beam. The mechanism by which a prestressed FRP plate forms a compressive stress field at the vicinity of the crack tip was also examined. Finite element (FE) modeling was conducted and the results were compared with experimental results.

Published in:
International Journal of Fatigue, 44, 303-315
Oxford, Elsevier

 Record created 2012-08-31, last modified 2018-01-28

Rate this document:

Rate this document:
(Not yet reviewed)