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ABSTRACT

Paradigm-free mapping enables to map the h&emodynamic response
in space and time without prior knowledge of the timing of the under-
lying neuronal events (i.e., no stimulation paradigm). Such decon-
volution approach can take advantage of modern sparsity-promoting
regularization. Here we extend this concept using structured sparsity
approaches in order to gain robustnesss against model mismatch.
Specifically, we extend the hemodynamic dictionary with the in-
formed basis set (i.e., canonical HRF, and its temporal and dispersion
derivatives) and we deploy state-of-the art structured sparsity func-
tionals. In addition, we propose the group-weighted fusion penalty.
We demonstrate the feasibility of the proposed approach for both
synthetic and experimental data, showing superior abilities to char-
acterize the single-trial BOLD response with no timing information.

Index Terms— Structured sparsity, brain imaging, functional
MRI, paradigm free mapping.

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) enables to noninva-
sively map in space and time the h&@modynamic response following
neuronal activations through the blood-oxygenation level dependent
(BOLD) effect. Typical fMRI data analysis is performed with either
confirmatory approaches to reveal voxels whose time series shows
statistical evidence for a hypothetical task-related BOLD response,
or exploratory methods, such as independent component analysis or
clustering techniques, which explore fMRI data with no (or partial)
information regarding the experimental conditions or the shape of
the hemodynamic response (see [1] for review).

There is an increasing interest in model-based methods that aim
to identify neuronal events in BOLD fMRI time courses, but when no
or insufficient information is available regarding the events’ timings.
Such approach becomes relevant, for instance, for the identification
of interictal epileptic discharges or transient h&emodynamic events in
resting state data. In essence, these methods attempt to deconvolve
the neuronal-related signal underlying the BOLD response either as-
suming a linear model [2—6] or formulating a more complex, nonlin-
ear dynamic representation of the BOLD effect [7-9]. This work is
in line with the first group of linear deconvolution methods, where an
inverse and ill-posed problem is formulated using a dictionary with
shifted hemodynamic response functions. Initially, deconvolution
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was done via Ly-norm regularization, such as ridge regression [3]
or empirical bayesian estimators with Gaussian priors [6]. Recently,
sparse-promoting regularization techniques were evaluated in sparse
paradigm free mapping [2,4], using majorization-minimization tech-
niques [5] or building new wavelet bases, termed activelets, that
sparsify the neuronal-related heemodynamic signal [10].

These methods make linear-system assumptions with a fixed
ha@modynamic response function (HRF). Hence, any mismatch be-
tween the actual and modelled HRF could deteriorate the perfor-
mance both in terms of prediction error and localization of the timing
of the events [2]. Yet, the hemodynamic response is known to vary
across subjects, cortical regions and events [11], and this is compen-
sated in model-based fMRI data analysis by explaining the BOLD
response as a linear combination of temporal basis functions (e.g.,
the canonical HRF, and its temporal derivative and partial derivative
towards the “dispersion” parameter [12]).

The aim of this work is to evaluate the use of structured sparsity
to gain robustness against HRF mismatches in the deconvolution of
the fMRI signal. To that end, we evaluate the performance of sev-
eral recently proposed group-structured sparsity regularization func-
tionals [13—15], which we solve using fast proximal gradient-based
methods [16—-18]. Note that the use of structured sparsity has already
been proposed for voxel classification in fMRI brain decoding (e.g.,
see [19,20]). The novelty of this work is to propose “structured
paradigm free mapping”; i.e., to deconvolve the neuronal-related
components of the fMRI signal without prior timing information.

The paper is organized as follows: In Section 2 we introduce the
signal model and problem setting. Then, in Section 3 we describe
the different algorithms investigated to solve our problem, whereas
the results of our evaluations in synthetic and experimental data are
presented in Section 4. Finally, we draw some conclusions.

2. PROBLEM FORMULATION

Let us consider that the fMRI signal of a voxel can be decomposed
as y(t) = x(t) + e(t), where x(t) and e(t) represent the neuronal-
related hemodynamic and noise components of the signal, respec-
tively. The hemodynamic signal 2(¢) is commonly modelled with
a linear time invariant system, z(t) = h(t) = s(t), characterized by
the HRF h(¢) and whose input signal s(t) is related (but not equal)
to the underlying neuronal signal. Here, we further assume that s(t)
can be modelled as a train of Dirac impulses at the fMRI timescale
such that z(t) = Y, sih(t — ti) = >, sihi(t), where s; is the
amplitude of the ha&emodynamic response with onset ¢; earlier, and
we define h;(t) = h(t — t;). This event-related model is commonly
adopted in fMRI experiments [12]. Sampling every TR seconds, the
continuous-domain model can be written asy = x + e = Hs + e,
where NN is the number of observations of the fMRI signal; y, s, e
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€ R"Y; and H € RV*Y is the convolution matrix (dictionary) with
shifted HRFs. Note that the support of s (i.e., the set of non-zero
coefficients) corresponds to those time points where the neuronal-
related signal s(¢) exhibits non-zero amplitude at the fMRI resolu-
tion. Subsampling rates could be easily adopted with this formula-
tion so that events can take place between two sampling times.

Contrary to previous deconvolution approaches that only con-
sider a particular HRF to define H [2—-6], we propose to describe the
HREF as a linear combination of three temporal basis functions: the
canonical HRF h.(t), its temporal derivative h.(¢) and its dispersion
derivative hq(t) [12], such that h;(t) = ac,ihe,i(t) + ar,ihe,i(t) +
aq,iha,;(t). The expanded model can be formulated as

y=Hs+e, (1

where H = [I:Il7 ... 7I:IN] € RV*3N and each submatrix H; €
RN*3 i = 1,..., N, is defined as H; = [he; he hgy; de., its
columns are shifted replications of the canonical HRF, the temporal
and dispersion derivatives. Equivalently, § € R*" can be partitioned
into N sub-vectors § = (§1,...,8n~), and each of the sub-vectors
S; = (8c,i 8t,i 8a,;) includes coefficients defined as 5.; = a. ;s;.
Finally, we consider that each IEL is orthonormalized; i.e., ﬁfﬁl =
Is,i = 1,..., N, however, H?Hj is not the identity matrix for
i # j (sub-matrices at different time lags are not orthogonal to each
other).

3. STRUCTURED SPARSE DECONVOLUTION

We will simplify our notation and remove the tilde from now on, but
always refering to the expanded model in (1). Specifically, our aim
is to deconvolve s by solving the following optimization problem
* . 1
s* = argmin J(s) = 5“3’—HS||§+Q(S), (2)

where €(s) is a regularization or penalty term that helps to reduce
multicollinearity problems of the dictionary H.

Our first choice for (s) is the I;-norm or LASSO penalty to
encourage sparse estimates with few non-zero coefficients [21]:

3N
LASSO:  Q(s) = Aalslli = M Y [sil, A3)
1=1

where the regularization parameter \; provides a tradeoff between
data fidelity and sparsity. The LASSO tends to select only a few vari-
ables among a group of highly correlated variables, and disregards
structural information in the signal model. Clearly, when a h&emody-
namic event occurs at time 7, the coefficients within the subvector s;
can be non-zero; otherwise, all of them should vanish. Motivated by
this fact, the l2,1 mixed-norm or Group LASSO penalty (G-LASSO)
makes a reasonable choice:

N
G-LASSO:  Q(s) = Mi[sll2,0 = A Y _ [Isilla, “)

i=1

and ||s;||2 is the l3-norm of each subvector s;. The G-LASSO
penalty tends to promote sparsity across groups, while retaining
l>-norm regularization between the group coefficients [13]. Yet,
one can also consider to penalize pairwise differences between
highly correlated coefficients via correlation-driven weights. Let
pi; = hlh; be the pairwise correlation between the columns of H,
then the Weighted Fusion (W-FUSION) penalty is defined as [14,15]

W-FUSION: Q(s) = Mi[s|l1 + X2 > wij(si — cuijs;)?, (5)

i<j
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where w;; are non-negative weights non-decreasing in |p;;|; and
a;j = sgn(pi;) is the sign of p;;. Note that when w;; = 0, for all
1, 7, this penalty term reduces to the LASSO penalty in (3), and be-
comes the smooth LASSO [22] if only positive successive pairwise
correlations are considered; i.e., w;; = 1, for j = i+1, and w;; = 0,
otherwise. The use of weighted fusion encourages highly correlated
variables to be jointly selected together, which is relevant in our case
to deconvolve prolonged activations. Furthermore, the sign weight
a5 coordinates the direction in which correlated coefficients influ-
ence the fitted signal [14,15]. Yet, the original weighted fusion prob-
lem does not consider the grouped structure of our model. Therefore,
in this work we propose the Group Weighted Fusion (GW-FUSION)
penalty as

GW-FUSION: Q(S) = >\1||S||2,1 + A2 Zwi_,-(si — Oéiij):), (6)

i<j

which tends to form groups of highly correlated coefficients, but re-
duces them to zero when they are irrelevant to fit the fMRI signal.
Note that the common term of the weighted fusion penalties (5)
and (6) admits a simple quadratic representation as s” Qs where the
entries of the matrix Q € R*N*3¥ are given by [14, 15]
otherwise.

7
Qi Wij, @

The matrix Q is positive semi-definite and it admits a Cholesky de-

composition Q = D”'D. Hence, the functionals to solve are

* . 1 _ —
s :argmsan(S) = §HY—HS||§+)\1HSH1, (8.1)

* . 1 — .
s :argmsan(S) = §||y—HSH§—i—)\1||s\|2,17 (8.2)

where (8.1) corresponds to W-FUSION and LASSO for A>=0; (8.2)
corresponds to the GW-FUSION and G-LASSO for A\2=0; and we
defined the augmented variables

y:(g), H:(\/)%D). ©)

3.1. Forward-backward splitting and monotone FISTA

We employ a forward-backward splitting approach [16] along with
the fast monotone iterative shrinkage thresholding algorithm (M-
FISTA) [17]. Forward-backward splitting allows the optimization
of functionals with the sum of two convex functions, J(s) = f(s) +
g(s), where f is smooth and g can be non-smooth (see, e.g., [16—
18]). In our case, f(s) = ||y — Hs||3/2 and g(s) = Q(s), ei-
ther the LASSO or G-LASSO penalties, so the functional J(s) is
convex. In the special case of f being the least squares term, the
solution can be found with the popular Iterative Shrinkage Thresh-
olding algorithm (ISTA) with two steps: 1) the forward step: z, =
s +tHT (y —Hsy,), where ¢ must be larger than the Lipschitz con-
stant of f (i.e. L = p(HTH), the spectral norm of H); 2) the back-
ward step: sy+1 = prox,(g)(zx), where where prox, (g)(s) denotes
the proximal map of g [16]. The proximal maps for the /;-norm and
the l2,1-norm are the following thresholding operators [16, 18]

(10.2)
(10.1)

prox, (Al - [|1)(s) = s max(0,1 — tA/|si|),
prox, (All - [[2,1)(s) = si max(0, 1 — tA/[[si]l2)-

Besides, we employ the M-FISTA algorithm to achieve faster and
non-increasing convergence to the solution [17] instead of the simple
ISTA algorithm. Algorithm 1 shows the pseudo-code of M-FISTA
used in our approach.



Algorithm 1: Monotone FISTA algorithm
Input: A =H"H,v=H"y,t>1/p(H 'H);
Initialization: so = 0,ug =0,k =0,t0 = 1;
repeat
zi < prox, (9)(ux + y(v — Aug))) ;
Ly (14 /14 4t3)/2;
if J(Zk) < J(Zk+1) then
Sk+1 < Zk;
‘ Uk41 < Sk +

tp—1
iy (ue —sk);

else
L Sk+4+1 < Sk;

tr
Ugt1 < Sk + TL (ur —sk)

until stopping criterion ;
Output: sy,

4. EXPERIMENTAL RESULTS

We assess the feasibility of using structured sparsity for the decon-
volution of the hemodynamic response in BOLD fMRI with both
synthetic and experimental data. In all experiments, we used the
canonical HRF, and its temporal and dispersion derivative with stan-
dard parameters in SPM8 [12]. For the weighted fusion penalties,
the weights are defined as w; ; = |pi,;|®®/(1 — |pi.;]), which tends
to equate the magnitudes of highly correlated variables as w; ; — 00
when |pi,j‘ — 1[14].

4.1. Synthetic data

One hundred fMRI simulated time series were created with a dura-
tion of 256 s at a temporal resolution (TR) of 1 s (/V =256). The hz-
modynamic component x(¢) was created as a neuronal-related signal
s(t) including 6 ON periods of duration 0.2 s, 3 s or 6 s with onsets
10, 40, 100, 120, 190, and 230 s, convolved with a h&modynamic
response function h(t) created by the weighted sum of the canonical
HRF (a. = 1), the temporal derivative (a; = 1.5), and the dis-
persion derivative (a. = 0.5). The amplitude of the h&emodynamic
signal was then normalized for a maximum signal change of 6%. Fi-
nally, these time courses were corrupted with additive white gaussian
noise with standard deviation o = 1/SNR according to three differ-
ent temporal SNR conditions: low SNR = 30, middle SNR =55, and
high SNR = 80. These SNR values are typically observed at 3T and
7T fMRI experiments [2]. In case of correlated noise, morphologi-
cal component analysis approaches for paradigm free mapping can
be easily incorporated in our formulation [4].

The evaluation is done in terms of the mean squared error
(MSE) of the estimates of the neuronal related signal s (MSEy)
and the neuronal-related heemodynamic signal x (MSEx). We eval-
uated two dictionaries with the LASSO: a dictionary based only
on the canonical HRF (LASSO-1) and considering the three basis
functions (LASSO-3). The regularization parameters were cho-
sen according to an Oracle procedure minimizing MSE;. For that,
we defined a logarithmic grid with 128 values and range between
[0.16maD, 500Map], where Gumap is the median absolute deviance of
the noise standard deviation after decomposing the fMRI time series
with the Daubechies wavelets with 4 vanishing moments.

It can be seen in Table 1 that GW-FUSION outperforms the rest
of penalty terms in all scenarios, except for the estimation of the
ha@modynamic signal at SNR = 80 and event duration of 6 s where
W-FUSION results in improved performance. LASSO-1 yields un-
satisfactory operation proving its lack of sufficient degrees of free-
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SNR =30 SNR =55 SNR = 80
MSE, | MSE || MSE; | MSE, || MSE, | MSE,
LA1 |1.003 | 0.982 || 1.003 | 0.981 || 1.003 | 0.973
LA3 |1.000 | 0.980 || 1.000 | 0.988 || 1.252 | 0.210
0.2s | GLA | 1.000 | 0.911 || 0.853 | 0.422 || 0.720 | 0.199
WEU | 1.000 | 0.980 || 1.000 | 0.986 || 1.160 | 0.193
GWF | 0.977 | 0.803 || 0.827 | 0.361 || 0.706 | 0.192
LA1 ]0.987 | 0.965 || 0.958 | 0.938 || 0.960 | 0.844
LA3 ]0.981 | 0.896 || 0.939 | 0.701 || 0.918 | 0.585
3s |GLA | 0.946 | 0.781 || 0.730 | 0.356 || 0.598 | 0.172
WEFU | 0.973 | 0.845 || 0.927 | 0.672 || 0.906 | 0.549
GWF | 0.882 | 0.688 || 0.641 | 0.305 || 0.523 | 0.169
LA1 | 0.965 | 0.938 || 0.942 | 0.888 || 0.943 | 0.690
LA3 10.987 | 0.938 || 0.960 | 0.706 || 0.975 | 0.343
6s | GLA | 0.975]0.904 || 0.909 | 0.581 || 0.826 | 0.334
WEFU | 0.974 | 0.793 || 0.934 | 0.631 || 0.944 | 0.132
GWF | 0.942 | 0.720 || 0.845 | 0.404 || 0.771 | 0.291

Table 1. Mean square error of the neuronal-related signal (MSE;)
and neural-related hemodynamic signal (MSEy). LAl: LASSO-
1; LA3: LASSO-3; GLA: Group LASSO; WFU: Weighted Fusion;
GWF: Group Weighted Fusion. Highest values per row in bold.

dom (provided here by the temporal and dispersion derivatives) to
fit the shape of the HRF. Comparing LASSO-3 with G-LASSO, it is
clear that these extra degrees of freedom must be included in a struc-
tured way as groups of coefficients. In general, incorporating addi-
tional structural information via the weighted fusion penalty further
improves the deconvolution.

4.2. Experimental data

To evaluate our work in real conditions, we used fMRI data acquired
from one subject performing a visual task in a Siemens Trio 3T MR
scanner with a 32-channel head coil. The task involved 10 events of
visual flickering checkerboard (duration 1 s, random onsets). At rest
(no stimulus projected), the subject fixated eyes on a cross in the cen-
ter of the screen. The fMRI data comprised N = 140 T2*-weighted
gradient echo-planar images (TR/TE/FA= 2s/30ms/85°, voxel size
=3.25x3.25x3.5 mm?®). As for preprocessing, fMRI data were cor-
rected for head motion, high pass filtered with a cutoff period of 128
s, and finally smoothed spatially with a 3D isotropic Gaussian filter
(FWHM= 5 mm). Based on the results with synthetic data, we de-
scribe the results of GW-FUSION, GLASSO and LASSO-1. In the
absence of Oracle information, the regularization parameters were
set to A1 = 46wmap for the three methods to achieve high specificity
in the detection of the BOLD events, whereas A2 = 56map for GW-
FUSION to promote the grouping of correlated coefficients.

Figure 1 illustrates the results of the deconvolution in a voxel lo-
cated in the primary visual cortex (see activation map). Interestingly,
the fitted hemodynamic signal obtained by the three methods are
nearly identical (top). However, we can see that the GW-FUSION
estimates of the neuronal-related coefficients (middle) delimit the
onset of the heemodynamic events (or stimuli) better than those ob-
tained by LASSO-1 (bottom). The GLASSO coefficients, not shown
in Figure 1, were nearly identical to those of GW-FUSION due to
the high contrast to noise ratio of the BOLD events in the primary
visual cortex and the use of a high value for A\;. However, we ob-
served that the specificity obtained with GLASSO rapidly deteri-
orates with lower values of A\; which is relevant to detect BOLD
events in cortical areas with lower contrast-to-noise ratios. Note that
the GW-FUSION coefficients of the temporal derivative are negative
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for most of the events, suggesting that the actual h&modynamic re-
sponse is slower (i.e., longer time-to-peak) than the canonical HRF.
This type of characterization is not available if the model only in-
cludes the canonical HRF, and thus causes the LASSO-1 estimates
to be slightly delayed with respect to the onset of the stimuli. Access
to this type of information enables a more accurate characterization
of the single-trial BOLD response, even without information about
the timing of the events.

5. CONCLUSION

We showed that structured sparsity is a promising regularization for
paradigm free mapping deconvolution of the fMRI signal. Structural
information was defined in terms of groups of coefficients corre-
sponding to basis functions (canonical HRF, temporal and dispersion
derivatives) describing the BOLD response via the group LASSO,
and their pairwise correlation via a weighted fusion. We proposed
the group-weighted fusion, which resulted into the best performance
among the functionals investigated in simulated data. Our results in
real fMRI data demonstrated that structured sparsity enables better
single-trial fMRI modelling. Future work will focus on developing
efficient, data-driven algorithms to choose the regularization param-
eters and on investigating alternative structured sparsity penalties for
paradigm free mapping.
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