
Learning to Play Minigolf: A Dynamical System-based Approach

S.M. Khansari-Zadeh Klas Kronander Aude Billard

Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland

{mohammad.khansari,klas.kronander,Aude.Billard}@epfl.ch

Abstract

A current trend in robotics is to define robot motions so that they can be easily adopted to

situations beyond those for which the motion was originally designed. In this work, we show how the

challenging task of playing minigolf can be efficiently tackled by first learning a basic hitting motion

model, and then learning to adapt it to different situations. We model the basic hitting motion with

an autonomous Dynamical Systems (DS), and solve the problem of learning the parameters of the

model from a set of demonstrations through a constrained optimization. To hit the ball with the

appropriate hitting angle and speed, a nonlinear model of the hitting parameters is estimated based

on a set of examples of good hitting parameters. We compare two statistical methods, Gaussian

Process Regression (GPR) and Gaussian Mixture Regression (GMR) in the context of inferring the

hitting parameters for the minigolf task. We demonstrate the generalization ability of the model

in various situations. We validate our approach on the 7 Degrees of Freedom (DoF) Barrett WAM

arm and 6-DoF Katana arm in both simulated and real environments.

keywords: Hitting motions, Imitation Learning, Nonlinear dynamical systems, Playing minigolf

1 Introduction

The traditional approaches to controlling robots, by explicitly defining tasks by hand-coding them, is

ill-suited for bringing robots into unstructured environments. Consequently, different approaches to

transferring skills to robots have been proposed. One such approach is imitation learning (also known

as programming by demonstration) [1], where tasks are demonstrated to a robot by an expert.

An important concept in imitation learning is the ability to generalize the task and to adapt it

to a new situation. This concerns the problem of performing the task under different circumstances

than those present during demonstrations, which is desirable mainly for two reasons: 1) The number of

demonstrations can be kept small, and 2) Given appropriate adaptation, an acquired skill can be used

to carry out a more complex task than the teacher is capable of demonstrating. Dynamical Systems

(DS) provide a powerful tool for robust control of robot motions from a small set of demonstrations [2].

They ensure high precision in reaching a desired target, yet can be easily modulated to generate new

motions in areas not seen before [2–4].

1

The minigolf1 task is a typical case covered by the motivations of the adaptation presented above.

In [5], it is shown that human players in ball games such as minigolf usually follow the same pattern

of motion when approaching the ball, even if circumstances such as ball position change. The goal in

minigolf is to sink2 the ball into a hole located on the field. There are often obstacles and curved surfaces

between the ball and the hole, to make the task more complex for the player. To play this game, a player

needs first and foremost to learn how to swing the golf club so as to hit the ball precisely. Additionally,

depending on the situation, the ball may have to be hit at a particular angle and speed. Human players

can achieve this by rotating their body prior to hitting the ball, and adapting the hitting speed. In this

work, we follow a similar two-steps approach for teaching minigolf to a robot in which: a) We first learn

the basic motion for hitting the ball, and 2) we then learn to use the correct hitting angle and speed for

the given location of the ball.

For the first subtask, we consider a hitting motion that is modeled with autonomous (i.e. time-

invariant) DS. We model an estimation of this DS with a Gaussian Mixture Model (GMM), and propose

a constrained optimization problem to learn the parameters of the model from a set of demonstrations.

Specifically, we extend the previous formulation of our nonlinear autonomous DS [2] to model robot

motions with a desired velocity at the target. This extension allows to learn a considerably wider set

of motions ranging from pick-and-place movements to agile robot tasks that require reaching/hitting a

given target with a specific speed and direction. For the second subtask, the hitting parameters (angle

and speed with which to hit the ball) are learned from a training set collected with the aid of a teacher

specifying good values for some different hitting locations. We use two statistical methods (GMR [6]

and GPR [7]) to infer hitting parameters for unseen hitting locations. The performance of the proposed

approach is evaluated in robot experiments of playing minigolf on different challenging fields using the

7-DoF Barrett WAM arm and 6-DoF Katana arm, both equipped with a golf club tool.

2 Related Work

In imitation learning, robots are taught to perform a task by observing a set of demonstrations provided

by a teacher (human or robot). Demonstrations to a robot may be performed in different ways; back-

driving the robot, teleoperating it using motion sensors, or capturing a task via vision sensors. The

learning process consists of extracting the relevant information from the demonstrations and encoding

this information in a motion model that can be used to reproduce the task. Using a set of basic motion

models (also commonly referred to as motion primitives) learned in this way, more advanced robot

motions can be achieved by combining and adapting the different motion models.

Different motion models and subsequently different learning techniques have been proposed, including

but not limited to: polynomial and spline-based methods [8–10], nonlinear regression techniques [11,

12], time-dependent DS [13, 14], and autonomous DS [2, 3, 15]. These methods have been successfully

developed to learn motion primitives such as discrete (point-to-point) motions [2–4, 10–15] and their

1Also commonly referred to as mini-golf, miniature golf, midget golf, crazy golf and Putt-Putt.
2Sinking means hitting the ball such that it goes into the hole.

2

extensions to obstacle avoidance [14,16], rhythmic motions [4,13], hitting motions [15,17,18], etc. This

paper focuses on two problems: 1) the learning of hitting motions (i.e. robot trajectories with non-zero

velocity at the target), and 2) their adaptation to different situations. Next, we review approaches that

tackle either of these problems with an emphasis on those that exploit machine learning algorithms.

One of the preliminary works on learning a DS model of human-like motions through imitation

learning is presented in [4]. There, the authors used a Dynamic Movement Primitive (DMP) model

to lightly touch a ball in a tennis swing motion. In [17], a modification to the original formulation of

DMP is proposed to generate striking motions in table-tennis. In this approach, the desired hitting

speed and direction are obtained by considering a moving virtual target. In our previous work [15], we

considered an alternative DS approach based on Hidden Markov Model (HMM) and GMR. The method

presented there is used to generate two different strokes in table tennis. Besides the approach using

imitation learning, there are other approaches that focus on generation of feasible trajectories based

on an estimation of ball’s position [8, 9, 19]. In these works, given a robot arm’s initial position and a

desired final point, the hitting motion is modeled either as a fifth order polynomial of time [8,9] or the

shortest path that is determined by optimizing the task-based directional manipulability measure [19].

The adaption of the learned motion models to different situations has previously been studied taking

a Reinforcement Learning (RL) approach in [20]. The authors propose the Cost Regularized Kernel Re-

gression (CRKR) algorithm which learns task-appropriate parameters for motion primitives. Impressive

results from learning dart and table-tennis hitting with the 7-DoF Barrett WAM are presented. The

robot autonomously explores the parameter space and learns how to adapt to new situations through

trial and error. In [21], they use reinforcement learning with function approximation to learn when to

start tilting the bottle in a pouring task, depending on the glass location. Another interesting work

is [22], which presents an integrated approach to teach the skill of archery to a humanoid. Assuming

that the basic elements of the task are known (i.e. shooting an arrow) the robot autonomously adapts

this basic policy so that the center of the target is hit. In [23] an algorithm to optimize the whole robot

trajectory for each new situation based on a set of demonstrations is proposed.

Our work differs from all of these in that we take an imitation learning approach to model both

the basic hitting motion and its adaptation to different situations. While this frees us from having to

define a task-specific cost function, it requires the availability of a teacher that can provide the training

data. Furthermore, we consider a time-invariant approach to model the hitting motion which provides

us with an inherent robustness to perturbations. In addition, this formulation does not require planning

in advance or re-planning in the face of perturbations, and is suited for real-time implementation.

Regarding the adaptability to different situations, we contrast the generalization abilities of GMR and

GPR, two techniques widely used in robotics. The work presented here was published in a preliminary

form in [18]. The present paper expands on our previous work in three ways: a) it provides a more

detailed description of the hitting motion, b) it proposes an optimization problem to efficiently build an

estimate of the hitting motion from demonstrations, and c) it presents more robot experiments, verifying

the generalization ability of the presented approach and its robustness to perturbations.

3

3 Problem Statement

In the minigolf task considered in this work, the player only gets one chance to sink the ball. To achieve

this, first of all, the player must know how to swing the golf club to hit the ball. This requires having

general knowledge about how to hit the ball in various situations depending on the position of the player,

the ball, and the hole. For example consider Fig. 1a. In this example, there are several initial positions

where the robot is required to start a swing motion and hit the ball along a desired direction. This is

a non-trivial task, which cannot be simply fulfilled by just playing recorded trajectories. Additionally,

playing in dynamic environments where the ball or the hole could be displaced during the swing phase

requires an online and smooth adaptation of the swing motion in order to fulfill the task and to sink the

ball. In this paper we consider a DS approach to model the hitting motion. When encoding the hitting

motion with an autonomous DS, this problem reduces to estimating a smooth first order differential

equation fh(x):

ẋ = fh(x) fh : R3 7→ R3 (1)

When controlled through a Dynamical System (DS), a robot motion unfolds in time. Given an initial

point x0, the robot motion along time can be computed by integrating fh(x) through time. The main

challenge in estimating fh(x) is to ensure that starting from any initial point x0 ∈ R3, the temporal

evolution of the motion passes through the target point (i.e. hits the ball) at a desired speed and

direction, while retaining the main features presented in demonstrations. We will address this problem

in Section 4.

Now assume the player has learned a planar hitting motion and can hit the ball in a direction

specified by the unit vector ψ∗ ∈ R2 in the hitting plane and with hitting speed v∗ ∈ R+ (see Fig. 1b).

For each new situation, a hitting angle α and hitting speed gain κ must be chosen such that hitting

with speed κv∗ in direction ψ∗
α = Rαψ

∗ (where R denotes a counterclockwise rotation by α in the

hitting plane) leads to sinking the ball. Estimating these parameters is a potentially very hard task for

advanced fields.

Consider the simplest possible minigolf field: a flat field without obstacles. Such a field is depicted

in Fig. 1b. In this case the choice of hitting angle is trivial - the ball should simply be hit in a straight

line towards the hole. The vector s ∈ R2 denotes the relative position of the hole to the ball projected

in the hitting plane. This vector represents the situation that the player has to adapt to when choosing

the hitting parameters. As can be seen in Fig. 1b, to play the flat field, the player simply has to align

the hitting direction ψ∗
α with this vector. With the correct hitting angle, the player can use a wide

range of speeds that result in sinking the ball.

Now consider the more advanced field such as the arctan field3 (see Fig. 1c). The vector describing

the situation, s, is identical in both figures. If the player chooses to hit the ball along s as on the flat

field, the ball will not be sunk. To compensate for the slope, a hitting angle larger than the one used for

3The shape is a scaled evaluation of the arctan function over a grid.

4

−0.6
−0.4

−0.2
0

−0.3
−0.2

−0.1
0

0

0.1

0.2

0.3

x(m)y(m)

z
(m

)

 Ball Starting points Hitting Trajectories

(a)

0

0. 1

0. 2

−0.300. 3

−1.2

−0.8

−0.4

0

0. 4

A
A

s

(b)

0

0. 1

0. 2

−1.2

−0.8

−0.4

0

0. 4

−0.300. 3

A
A

s

(c)

Figure 1: (a): For mastering in minigolf, the player needs to know how to swing the golf club to hit the ball in various

situations. (b) & (c): Situation on a flat and an advanced fields. The ball trajectory of a successful attempt is indicated

by the red line. For the flat field, the hitting direction should be aligned with the input vector s. For the advanced field

a larger hitting angle must be chosen so as to compensate for the slope of the field.

the flat field must be chosen, resulting in a curved trajectory of the ball. Changing s means that a new

angle and speed must be selected accordingly. Thus, the player needs to be able to estimate the hitting

angle α and hitting speed gain κ given the situation on the field s. Furthermore there is generally more

than one valid combination of hitting parameters for each input point on advanced fields [18]. In this

paper, we refer to these different possibilities of choosing the hitting parameters as strategies. While

learning all the strategies for a field certainly gives the player more freedom to vary her game, mastering

one strategy should be sufficient for a successful game. By assuming that a strategy can be represented

by a continuous mapping from the relative position of the ball and the hole to the hitting parameters,

the problem is reduced to estimating this mapping:

g : s 7→ (α, κ) (2)

We will address this problem in Section 5. In conclusion, the minigolf task requires two skills: 1)

A default hitting motion fh(x) that can generate motions from different initial positions and that can

be altered in terms of hitting direction and hitting speed, and 2) A field-specific estimate of a mapping

from input space to the hitting parameters (α, κ) = g(s) that define what hitting parameters should be

used for each situation.

5

4 The Hitting Motion

As outlined in the previous section, one of the requirements for the minigolf task is a default hitting

motion. The hitting motion must be flexible so that the hitting direction and the hitting speed can be

changed without relearning the whole motion pattern. In this section we propose a novel approach to

model discrete robot hitting motions. We formalize robot motions with a target field and a strength

factor. The target field defines for each point x in task space a normalized vector specifying the direction

of motion, and can be viewed as a player’s different techniques (e.g. topspin and slice hits in tennis).

The speed of motion is defined for each point x by the scalar strength factor, and corresponds to a

modulation factor to produce different desired hitting speeds:

ẋ = fh(x) = v(x)h(x) (3)

where v(x) denotes the strength factor and h(x) denotes the target field. Each of these terms will be

described next. The structure of our formulation is inspired from many physical principles where the

motion of the system in space is entirely defined by a field (e.g. gravity, electrical field, etc.) and a

physical property (e.g. mass, electric charge, etc.).

4.1 The Target Field

To achieve our goal of having a target field that produces trajectories that always pass through the

target point with a non-zero velocity, we extend the original form of a globally stable time-independent

DS suggested in our previous work [2]. A brief summary of this work is given below:

4.1.1 Stable Estimator of Dynamical System (SEDS) [2]

Consider a d-dimensional state variable x ∈ Rd that can be used to unambiguously define a discrete

motion of a robotic system (e.g. x could be a robot’s joint angles, the position of an arm end-effector in

Cartesian space, etc). Let the set of N given demonstrations {xt,n, ẋt,n}T
n,N

t=0,n=1 be instances of a global

motion model governed by a first order autonomous ordinary differential equation:

ẋ = f(x;θ) + ϵ (4)

where f : Rd → Rd is a nonlinear continuous and continuously differentiable function with a single

equilibrium point ẋ∗ = f(x∗;θ) = 0, θ is the set of parameters of f , and ϵ represents zero mean Gaussian

noise. In [2], we proposed a statistical based method, called Stable Estimator of Dynamical Systems

(SEDS), that estimates parameters θ of a Gaussian Mixture Model (GMM) via an optimization under

stability constraints. Specifically, SEDS minimizes the model estimation error given the demonstrated

data while ensuring that the learned autonomous DS is globally stable at the target. The parameters

θ of a GMM are priors πk, means µk and covariance matrices Σk of k = 1..K Gaussian functions (i.e.

6

 Target Streamlines µx Σx

x
2

x1

(a)

Target Streamlines

0

1

2

x2

x1

k
f̂
(x

)k

0

1

2

k
h
(x

)k

x1

x2

(b)

Figure 2: (a): Illustration of streamlines of an arbitrary 2D model learned by SEDS. (b): Comparison of streamlines of

a SEDS model f̂(x;θ) with the target field h(x;θ). Though both functions have exactly the same streamlines, the value

of h(x;θ) does not vanish while approaching the target.

θk = {πk,µk,Σk} and θ = {θ1..θK}). The function f̂ , the noise-free estimate of the model, is given

by:

ẋ = f̂(x;θ) =

K∑
k=1

hk(x;θ)(µk
ẋ +Σk

ẋx(Σ
k
x)

−1(x− µk
x)) (5)

with

hk(x;θ) =
πkN (x;θk)∑K
i=1 π

iN (x;θi)
(6)

where µk
x, µ

k
ẋ, Σ

k
x and Σk

ẋx are parts of the mean and the covariance of a Gaussian function N (x;θk):

µk =

 µk
x

µk
ẋ

 , Σk =

 Σk
x Σk

xẋ

Σk
ẋx Σk

ẋ

 , N (x; θk) =
1√

(2π)d|Σk
x|
e−

1
2 (x−µk

x)
T (Σk

x)
−1(x−µk

x)

(7)

The resulting model from SEDS is globally asymptotically stable, i.e. starting from any point in the

space, all trajectories converge to the origin. Figure 2a illustrates an example of a 2D motion constructed

with K = 2 Gaussian functions using SEDS learning algorithm. In this model the convergence of all

trajectories to the target is guaranteed, but the final velocity at the target is always zero (i.e. the target

is an asymptotically stable point).

4.1.2 Target Field Formulation

To combine the stability property of SEDS with the possibility to reach the target with a non-zero

velocity we define the target field as a normalized flow of motion induced by the SEDS dynamics:

h(x;θ) =
f̂(x;θ)

∥f̂(x;θ)∥
∀x ∈ R3\x∗ (8)

Equation (8) corresponds to a field with a constant intensity (i.e. ∥h(x;θ)∥ = 1), and is defined for

any point in space except the target. Note that ∥f̂(x;θ)∥ ̸= 0 everywhere except at the target point x∗.

The value of the target field at x∗ is computed according to h(x;θ) = lim
x→x∗

h(x;θ). The flow induced

7

by h(x;θ) is of constant speed. In contrast, the SEDS flow varies according to the speed adopted during

the demonstrations. The vector field h(x;θ) conserves the convergence properties at the attractor of

the SEDS flow and follows strictly the same streamlines (see Fig. 2).

Considering Eq. (8), the problem of estimating the target field h(x;θ) is equivalent to find a glob-

ally stable DS f̂(x;θ). In this paper we propose a constrained optimization problem to compute an

estimation of f̂(x;θ):

Optimization problem: Given a set of N demonstrations {xt,n, ẋt,n}T
n,N

t=0,n=1, the optimal value of the

unknown parameters θ = {π1..πK ;µ1..µK ;Σ1..ΣK} of the function f̂(x;θ) are obtained by solving:

min
θ
J(θ) = −

N∑
n=1

Tn∑
t=0

ωt,n (ẋt,n)
T
ẋt,n(θ)

∥ẋt,n∥∥ẋt,n(θ)∥
(9)

subject to



(a) µk
ẋ +Σk

ẋx(Σ
k
x)

−1(x∗ − µk
x) = 0

(b) Σk
ẋx(Σ

k
x)

−1 + (Σk
x)

−1(Σk
ẋx)

T ≺ 0

(c) −Σk ≺ 0

(d) 0 < πk ≤ 1

(e)
∑K

k=1 π
k = 1

∀k ∈ 1..K (10)

where (.)T denotes the transpose, . ≺ 0 corresponds to the negative definiteness of a matrix, and

ẋt,n(θ) = f̂(xt,n;θ) are computed directly from Eq. (5). The positive weighting factors ωt,n determine

the relative importance of each point when computing the estimated error. In this paper, we give a

lower weight ωl and upper weight ωu to the initial and final point of each demonstration, respectively.

For intermediary points, the weighting factors are computed by linearly interpolating between these two

values:

ωt,n =
t

Tn
(ωu − ωl) + ωl (11)

Thus the optimization tries to fit the last parts of the movement better, when the effect of deviation

from a desired trajectory becomes more important. Throughout this paper we use an interior-point

algorithm to solve this optimization problem [24].

The optimization constraints given by Eq. (10) ensure the global asymptotic stability of the function

f̂(x;θ) (see [2]). The difference between the optimization problem above and the one that is presented

in [2] is in the objective function. In [2], the optimization penalizes the error in estimating both the

direction and speed of movements. Considering Eq. (8), the value of f̂(x;θ) does not affect h(x;θ), and

thus the error in estimating ∥f̂(x;θ)∥ should not be penalized. Equation (9), hence penalizes solely for

the error in estimating the direction of movement.

8

4.2 Strength Factor

In order to be able to generate robot motions with similar velocity profiles as the demonstrations, we

modulate the target field given by Eq. (8). The strength factor v is a positive scalar, and defines the

intensity of a motion which the robot should follow. To capture nonlinearities in the velocity profile, we

consider a varying strength factor that depends on position, i.e. v(x) : Rd → R.

An estimate of the strength factor v(x) can be learned using various existing regression techniques,

e.g. Gaussian Process Regression (GPR) [7], Locally Weighted Projection Regression (LWPR) [25],

or Gaussian Mixture Regression (GMR) [11]. In this work, we use GMR; however, one can expect

similar results using the other techniques4. In GMR, the parameters of the Gaussian Mixture Model

are optimized through Expectation Maximization (EM) [26]. EM finds an optimal model of v(x) by

maximizing the likelihood that the complete model represents the data well. Using GMR, the strength

factor is thus given:

v(x) =

KSF∑
k=1

hkSF (x)
(
µk

SF,v +Σk
SF,vx(Σ

k
SF,x)

−1(x− µk
SF,x)

)
(12)

where πk
SF , µ

k
SF , and Σk

SF are priors, means and covariance of component k in the GMM model of the

strength factor. The nonlinear weighting hkSF (x) is computed in the same way as described by Eq. (6).

The subscript SF for Strength Factor is used above to clarify that two different GMMs are involved in

the reproduction of the hitting motion.

4.3 Control of Hitting Direction

Equation (3) provides the trajectory dynamics of the end-effector with the hitting speed v∗ given by the

strength factor at the hitting point, and the hitting direction ψ∗ defined by the target field, i.e:

v∗ = lim
x→x∗

v(x) and ψ∗ = lim
x→x∗

h(x;θ) (13)

Thus, default hitting speed and hitting direction are given during the demonstrations, which – in

this work – were provided to the robot using kinesthetic teaching. To change the hitting direction and

hitting speed, we proceed as follows: 1) Hitting in a different direction can be seen as a rotation of

the coordinate frame in which the default DS is defined. If α is the angle between the desired and the

default hitting directions in the plane of the golf field, the first step is to transform the input to the

desired reference frame via the rotation matrix RT
α . 2) The output of the DS needs to be transformed

back to our desired hitting direction. Therefore, we rotate back through Rα, and 3) Finally, the hitting

speed can be changed by modulating the DS by some gain κ. In brief, the following DS models a hitting

motion in direction ψ∗
α and with speed κv(x∗):

ẋ = κRα fh(R
T
αx;θ) = κRα v(R

T
αx) h(R

T
αx;θ) (14)

4Note that irrespective of which method is used, the strength factor should not affect the direction of the motion. To

ensure this, the constraint v(x) > 0 should be taken into account either during learning or regression.

9

−0.4

−0.2

0

0.2−0.2
0

0.2

0

0.05

0.1

0.15

0.2

x(m)

y(m)

z
(m

)

 Ball Starting point Hitting Trajectories

x
0

x
∗

ψ
∗

ψ
∗

α1

ψ
∗

α2

Figure 3: Control of hitting direction by using the rotation scheme. The default hitting direction ψ∗ is rotated with

angles α1 and α2 to generate hitting motions with the direction ψ∗
α1

and ψ∗
α2

, respectively.

Figure 3 shows an example of using the rotation matrix to control the hitting direction at the target.

In this illustration, the default hitting direction ψ∗ is rotated with angles α1 and α2 to generate hitting

motions with the direction ψ∗
α1

and ψ∗
α2
, respectively.

5 The Hitting Parameters

After learning an adaptable hitting motion that can be used to hit with different speed and direction,

the robot needs to learn what speed and direction should be used for each situation, i.e. which κ and α

should be generated for each input vector s. As mentioned in Section 3, we take a supervised learning

approach here and provide a training set of good parameters for different inputs. Note that the training

data is field-specific, as each field requires different hitting parameters.

5.1 Training data

As mentioned in Section 3, the problem of estimating the hitting parameters based on the situation on

the field is a redundant problem. There are several different strategies a player can choose from when

deciding how to hit the ball. Note that within each strategy, there is a range of different angles and

speeds that leads to sinking the ball, due to the fact that the hole is larger than the ball. Strategies

are often represented by distinguishable separated sets of hitting parameters combinations (see Fig. 4a).

Consequently, using training samples from different strategies to infer hitting parameters for new inputs

will generally fail. This is illustrated in Fig. 4b. The acceptable error margins within each strategy vary

in a nonlinear manner across the input space, and it is therefore not useful to determine a bound for

the acceptable predictive error, as such a bound would have to be unnecessarily strict for most points

to comply with the demands of the points were the acceptable error margin is small.

Consider a set of M observations of good examples5 {sm, αm, κm}Mm=1. Following the assumption

that we are looking for a function (α, κ) = g(s), we assume that the training set consists of noisy

5Note that these examples are not the same as the demonstrations of the default hitting motion.

10

−5 0 5 10 15

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Hitting angle (deg)

H
it

ti
n

g
 s

p
e

e
d

 (
m

/s
)

(a)

0.10

0.15

0.20

−5

0

5

10

15

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Hitt
in

g a
ngle

 (d
eg)

Ball position on a line (m)

H
it

ti
n

g
 s

p
e

e
d

 (
m

/s
)

(b)

Figure 4: The left figure shows the successful (green) or unsuccessful (red) result when using the corresponding hitting

parameters for a particular ball position on the arctan field. Several strategies are clearly distinguishable. The right figure

illustrates the problem of picking training data from different strategies. The test point in the middle will average the two

encircled training points on the left and right ball positions, resulting in the dashed encircled hitting parameters and thus

failing to sink the ball.

observations of this function6:

{sm, αm, κm}Mm=1 = {sm, gα(sm) + ϵα, gκ(s
m) + ϵκ}Mm=1 (15)

with noise ϵα and ϵκ corrupting the angle and speed part respectively. For clarity, we introduce the

following notation used specifically for the training data:

{S,α,κ} = {sm, gα(sm) + ϵα, gκ(s
m) + ϵκ}Mm=1 (16)

5.2 Hitting Parameters Prediction

In this work, we use two different statistical methods to infer the hitting parameters for new inputs using

the training set specified above. In this section, we briefly review these methods. For a full derivation,

refer e.g. to [7] and [27].

Consider now the mapping in Eq. (2). We assume that this mapping is drawn from a distribution

over functions defined by a Gaussian Process (GP) fully specified by its covariance function. This

assumption implies any set of samples from this function have a joint Gaussian distribution. By choosing

the function values at the training points S with corresponding α and any test point s∗ and conditioning

the multivariate Gaussian distribution on the training data we obtain the GPR with estimate ĝα(s
∗)

and the predictive variance Σ∗
α(s

∗):

ĝα(s
∗) = Kα(s

∗,S)(Kα(S,S) + σnI)
−1α (17a)

Σ∗
α(s

∗) = Kα(s
∗, s∗)−Kα(s

∗,S)(Kα(S,S))
−1Kα(S, s

∗) (17b)

6The noise on the observations represents the small redundancies caused by the hole being larger than the ball.

11

The symmetric matrices K above represent the evaluation of the GP covariance function across the

specified variables. We use a squared exponential with different length scales for the different dimensions

in input space:

k(s, s′) = σe−(s−s′)TL(s−s′) with L =

 l1 0

0 l2


The scalars l1 and l2 are the length scales of the covariance function. The scalar σ is the signal

variance. We use a conjugate-gradient based search algorithm available in GPML7 for optimizing these

hyper-parameters for maximum likelihood of the training set. The above equations also apply to the

hitting speed gκ, with replacement of α and α with κ and κ respectively8.

Another way to infer the hitting parameters for new situations is to fit a GMM to the training

set. Then, by conditioning the GMM on new query points, the corresponding hitting parameters are

inferred. For a d-dimensional variable, the GMM is parameterized by K + dK + d(d+1)
2 K scalar values

corresponding to the priors πk, means µk and covariance matrices Σk of the K Gaussians in the model.

Given the number of Gaussian functions, or states in the model, the parameters can be optimized to

maximize the likelihood of the training set. In this work, we first cluster the data using k-means and

then apply the EM algorithm to optimize the parameters [26]. Then, GMR is used to find hitting

parameters for unseen inputs:

ĝ(s∗) =

KHP∑
k=1

hkHP (s)
(
µk

HP,ακ + Σk
HP,ακs(Σ

k
HP,s)

−1(s− µk
HP,s)

)
(18)

where the nonlinear weighting hkHP (s) is computed in the same way as described by Eq. (6). The

subscript HP for Hitting Parameters is used above to distinguish the above GMM from those that are

used in the reproduction of the hitting motion.

Note that here, we are predicting both the hitting speed and hitting angle by using a joint probability

distribution over the input data and both hitting parameters. Thus, in contrast to using GPR where each

parameter is predicted independently of the other, when using the GMM we take the dependency across

the hitting parameters into account. Similarly, separate GMM can be built encoding the demonstrated

{S,α} and {S,κ} to perform GMR where the hitting parameters are predicted independently.

While GPR and GMR are both powerful methods widely used in robotics, they have some important

differences in characteristics that affect how well they perform in the context of predicting hitting

parameters. Consider first a flat field, as in Fig. 1b. For this field, the mapping of hitting parameters

has low complexity, and a pattern observed from training data is likely valid outside the training range.

As GPR is based on correlation related to the distance in input space, it outputs zero far from the

training data. GMR on the other hand, has better generalization ability in that the model extends

further outside the training range. Low complexity fields typically also are not very sensitive to errors

in hitting parameters, i.e the precision is less important than for advanced fields. For more advanced

fields such as the arctan field in Fig. 1c, higher precision is required as well as greater flexibility to capture

7GPML is a Matlab toolbox for GPR, written by C.E. Rasmussen and H. Nickisch.
8The parameters of the covariance function are also different, since these are optimized for each data set.

12

local patterns. GPR has better local precision than GMR, which means that it should outperform GMR

for advanced fields where high precision is required when selecting the hitting parameters.

6 Minigolf Workflow

A conceptual workflow describing the learning and playing of minigolf is given in Fig. 5. The left side of

this workflow explains the training parts. Three nonlinear models are learned based on two sets of user

demonstrations. This procedure is performed offline. Trajectories of the hitting motions are collected

through kinesthetic teaching. With these trajectories, models of the target field and the strength factor

are built. These models are used to generate the hitting motion. Training data set of the hitting

parameters are then collected by using the hitting motion model, with hitting parameters specified by

the teacher. The teacher thus finds some examples of good hitting parameters for some situations, and

adds those to the hitting parameters adaptation data set. This data set is then used as described in the

previous section to estimate a mapping from the situation to the hitting parameters. Only once this

hitting parameters adaptation model has been learned, the robot can play minigolf autonomously.

The right side of Fig. 5 describes the execution procedure. At each iteration, the current position

of the ball, the hole, and the robot’s end-effector is updated from the sensors. The correct hitting

parameters are then computed using the relative position of the ball to the hole. Based on the value

of the hitting angle, the rotation matrix is determined. The target field and the strength factor are

then computed using the current position of the robot’s end-effector and the rotation matrix. Putting

together all these values, the commanded velocity to the robot is calculated using Eq. (14). This velocity

is then commanded to the robot. The algorithm iterates through the steps above until it hits the ball.

When the ball is hit, the motion dynamics are switched to a resting mode that smoothly stops the robot.

7 Experimental Results

As outlined in previous sections, the minigolf task requires two skills: learning the hitting motion and

the hitting parameters. In order to better evaluate the performance of our system, we conducted two

sets of robot experiments each of which was focused on either of the two subtasks. The first set of

experiments consisted of having a 6-DoF industrial robot Katana-T arm playing minigolf on a flat field.

When playing on a smooth flat field, learning the hitting parameters is unnecessary since the hitting

direction is aligned with the vector connecting the centers of the ball and the hole (see Fig. 1b). The

hitting speed can also be preset to a fixed value9. The second set of experiments focused on evaluating

our system for learning hitting parameters for different challenging fields using both GMR and GPR.

These experiments were performed on the 7-DoF Barrett arm manipulator. Recordings of the robot

experiments can be downloaded from: http://lasa.epfl.ch/videos/control.php

9Recall that a wide range of hitting speeds can be used to sink the ball in the flat field. In this paper, we set a hitting

speed of 1 m/s for the experiments on the flat field.

13

http://lasa.epfl.ch/videos/control.php

Demonstrations of the

hitting motion

Learning the target

 field

Solving the constrained

optimization problem

given by Eq. (9)

Learning the strength

 factor

Using the GMM modeling

that is learned via EM

Training data set of the

hitting parameters

Learning the mapping

function using

either GMM or GP

 : Current relative distance

between ball and the hole

 : Current position

of the end-effector

 : Velocity command to

the robot using Eq. (13)

Training (offline) Execution (realtime)

Ball is hit?
No Yes Execute the

resting motion

World World

Figure 5: A conceptual workflow describing how to play minigolf. For further information please refer to Section 6.

7.1 Evaluation of Hitting Motions

The first task consisted of having a 6-DoF industrial robot Katana-T arm playing minigolf, where the

robot was required to sink the golf ball into the hole on a flat field (see Fig. 6a). For this experiment,

we collected a set of demonstrations by passively moving the robot arm to strike the ball. For all

demonstrations, the relative position of the ball and the hole was fixed, and the user only showed the

robot different ways of hitting the ball starting from different initial positions. In total, seven successful

demonstrations were collected and used to learn the task (see Fig. 6b). In each demonstration, we

recorded the robot’s joints angles at 20Hz by directly reading them from each joint’s encoder. Forward

kinematics was used to compute the Cartesian position and velocity of the end-effector. This data was

then used to model the task (i.e. x = [x y z]T and ẋ = [ẋ ẏ ż]T). The location of the ball was detected

at the rate of 80 fps using two high-speed Mikrotron MK-1311 cameras.

We solved the optimization problem presented in Section 4.1.2 to learn the target field of the hitting

motion using K = 3 Gaussian functions. This number was selected manually based on a tradeoff

between the model’s accuracy and the number of parameters needed to encode the motion using the

Bayesian Information Criterion. Figure 6c illustrates the reproductions of the motion using the final

optimized model we obtained from the proposed extended version of SEDS. The strength factor was

learned using EM algorithm with 2 Gaussian functions. Figures 6d to 6f represents the velocity profile

of the reproductions versus demonstrations along the axes x, y, and z respectively.

Figure 6g shows the sequence of the motion for one of the reproductions. In our experiments, the

end-effector orientation was controlled so that to keep the golf club perpendicular to the direction of

14

 Ball Starting points Demonstrations Reproductions

(b) (c)(a)

z
(m

)

(a)

(a)

z
(m

)

0
0.2

0.4

−0.4

−0.2

0

0

0.1

0.2

y(m)
x(m)

z
(m

)

(b)

(b)

0
0.2

0.4

−0.4

−0.2

0

0

0.1

0.2

y(m)
x(m)

z
(m

)

(c)

(c)

0 0.2 0.4

−0.4

−0.2

0

−0.4

x(m)

ẋ
(m

 /
s
)

(d)

(d)

0 0.2 0.4

−0.4

−0.2

0

−0.4

y(m)

ẏ
(m

 /
s
)

(e)

(e)

0 0.2 0.4 0

−0.4

−0.2

0

−0.4

z(m)

ż
(m

 /
s
)

(f)

(f)

(g)

(1) (4)(2) (3)

(g)

Figure 6: (a) Kinesthetic demonstration of putting motion to the 6-DoF Katana-T robot. (b) Illustration of the collected

successful demonstrations. (c) Reproductions of the motion from the model learned with the extended version of SEDS.

(d)-(f) Evaluation of the model’s accuracy in estimating the desired velocity profile. The thick dashed lines locate the

position of the ball. (g) Illustration of one of the generated motions sequences.

approach. At each point, the robot’s joint angles were computed by solving the damped least squares

pseudo-inverse kinematics. For each reproduction, after hitting the ball, the dynamics were switched to

a stable dynamics guiding the arm into a resting position. For this experiment, we considered a simple

resting motion where the velocity of the arm end-effector gradually decreases along the direction of the

motion until it stops.

Generalization Ability: Figure 7 illustrates the generalization ability of the model to different

positions of the golf ball and the hole. In Fig. 7a, we changed the position of the ball along the y axis

from 0 to −0.18 m. We also changed the position of the hole so that the vector connecting the center

of the ball and the hole always remained along the x axis. In all cases, the robot successfully hit the

ball with the correct speed at the target. Figure 7b demonstrates the adaptation of the robot motion

to three different positions of the hole. Though the initial configuration of the robot’s arm and the ball

positions were fixed, the robot took three different paths to hit the ball in the correct direction.

15

 Ball Starting point Reproductions

0

0.1

0.2

0.3

0.4

−0.4
−0.3

−0.2
−0.1

0

0

0.02

0.04

0.06

y(m)

x(m)

z
(m

)

0 0.2 0.4

−0.3

−0.2

−0.1

0

x(m)

ẋ
(m

 /
s
)

−0.4 −0.2 0

0

0.05

0.1

0.15

y(m)

ẏ
(m

 /
s
)

0 0.02 0.04 0.06

−0.03

−0.02

−0.01

0

z(m)

ż
(m

 /
s
)

(a) Generalization to different ball positions

Ball Starting point 1

st
 Repro. 2

nd
 Repro. 3

rd
 Repro.

−0.6

−0.4

−0.2

0

0.2

0.4

−0.4−0.3−0.2−0.100.1

0

0.05

0.1

y(m)

x(m)

z
(m

)

0 0.2 0.4

−0.3

−0.2

−0.1

0

x(m)

ẋ
(m

 /
s
)

−0.4 −0.2 0

−0.05

0

0.05

0.1

0.15

y(m)

ẏ
(m

 /
s
)

0 0.02 0.04 0.06

−0.03

−0.02

−0.01

0

z(m)

ż
(m

 /
s
)

di"erent positions
of the hole

(b) Generalization to different hole positions

Figure 7: Evaluation of the model’s performance in generalization.

Adaptation to Perturbations: Similar to all autonomous DS, the proposed model is inherently

robust to external perturbations. Figures 8a and 8b illustrate the model’s behavior in the face of

perturbations. In these experiments, during the robot’s arm movement, the ball (Fig. 8a) and the

hole (Fig. 8b) were displaced along the negative direction of the y-axis. At each time step, the robot

successfully adapted its trajectory to the new position of the ball/hole until it hit the ball. In both

examples, the robot successfully managed to hit the ball in the correct direction as the adaptation to

the perturbation was done on-the-fly, i.e. without any re-planning. Note that despite the inherent

robustness of stable autonomous DS to perturbations, there is an upper bound for the maximum value

of perturbations that can be handled. This upper bound is due to the robot’s torque limit, which affects

the maximum acceleration the robot can achieve. Thus, if the robot faces a large perturbation when it

is close to the ball, it might not be able to react swiftly and hit the ball with the correct hitting direction

and speed.

7.2 Evaluation of Hitting Parameters

We evaluated the performance of our system to predict the different hitting parameters on a 7-DoF

Barrett arm manipulator. The experiments on the real robot were performed on two fields: a rough flat

field, and a field with two hills. The latter will be referred to as the double hill field. Model of these fields

were used for experiments in a simulated environment using RobotToolKit10, see Fig. 9. In addition to

these fields, the arctan field (see Fig. 1c) was used in the simulator. Kinesthetic demonstrations from

the real robot were used to learn a hitting motion model which was then used both in the simulator and

on the real robot.

The minigolf playing robot uses Eq. (14) with κ and α specified either 1) By the teacher during

collection of training set for hitting parameters adaptation, or 2) By the trained models presented in

10RobotToolKit is open-source software for simulation and real time control of robotic systems, developed by Eric Sauser

at LASA, EPFL

16

 Ball Starting point Original motion Adapted motion to perturbation

−0.6

−0.4

−0.2

0

0.2

0.4

−0.4−0.3−0.2−0.10

−0.02
0

0.02
0.04
0.06

y(m)

x(m)
z
(m

)

0 0.2 0.4

−0.3

−0.2

−0.1

0

x(m)

ẋ
(m

 /
s
)

−0.4 −0.2 0
0

0.05

0.1

0.15

y(m)

ẏ
(m

 /
s
)

0 0.02 0.04 0.06

−0.03

−0.02

−0.01

0

z(m)

ż
(m

 /
s
)

The arm’s position when the
ball started moving

 Ball Starting point Original motion Adapted motion to perturbation

−0.6

−0.4

−0.2

0

0.2

0.4

−0.4−0.3−0.2−0.10

−0.02
0

0.02
0.04
0.06

y(m)

x(m)

z
(m

)

0 0.2 0.4

−0.3

−0.2

−0.1

0

x(m)

ẋ
(m

 /
s
)

−0.4 −0.2 0
0

0.05

0.1

0.15

y(m)

ẏ
(m

 /
s
)

0 0.02 0.04 0.06

−0.03

−0.02

−0.01

0

z(m)

ż
(m

 /
s
)

The arm’s position when the
ball started moving

(a) Robustness to perturbations in the ball position

 Ball Starting point Original motion Adapted motion to perturbation

−0.6

−0.4

−0.2

0

0.2

0.4

−0.4−0.3−0.2−0.10

−0.02
0

0.02
0.04
0.06

y(m)

x(m)

z
(m

)

0 0.2 0.4

−0.3

−0.2

−0.1

0

x(m)

ẋ
(m

 /
s
)

−0.4 −0.2 0

−0.05

0

0.05

0.1

0.15

y(m)

ẏ
(m

 /
s
)

0 0.02 0.04 0.06

−0.03

−0.02

−0.01

0

z(m)

ż
(m

 /
s
)

The arm’s position when the
ball started moving

(b) Robustness to perturbations in the hole position

Figure 8: Performance evaluation of the model in the face of perturbations. In this example the ball (a) and the hole

(b) are pushed along the negative direction of the y-axis, as the robot approaches.

Figure 9: The double hill field in simulator (left) and with real robot (right).

Section 5 during autonomous task reproduction. In our experiments, the hitting motion was executed

by first transferring the output from Eq. (14) and the end-effector orientation to joint space using

the damped least squares pseudo-inverse kinematics. Then these values were converted into motor

commands using an inverse dynamics controller. Both steps were carried out in realtime at 500Hz.

7.2.1 Results from the Robot Simulation

In an initial experiment, data sets consisting of 20 points were collected along one dimension in input

space of the flat and the double hill fields. In practice, the input dimension was changed by moving

the hole sideways along the edge of the field (see Fig. 9). The strategy was selected by fixing the speed

to a constant value for all hitting attempts. A range of points around the center of the input range,

represented by black crosses in Fig. 10, were selected for training. The results confirm the hypothesis

that GMR has a better generalization performance outside the training set, as is clearly visible in Fig. 10.

Another experiment was centered on comparing the importance of structure when selecting training

data. This is an interesting point of comparison, as the teacher might find it non-intuitive to provide

training-data with some predefined structures in input-space, e.g. evenly spaced points. The data sets

from the preceding experiments were used here as well. For the arctan field, a data set consisting of

17

0.1 0.2 0.3 0.4
−8

−6

−4

−2

0

2

4

6

8

Hitting position on the line (m)

H
itt

in
g

an
gl

e
(d

eg
)

0.1 0.2 0.3 0.4
−8

−6

−4

−2

0

2

4

6

8

Hitting position on the line (m)

H
itt

in
g

an
gl

e
(d

eg
)

Conf. envelope Prediction Training data Validation data

Figure 10: Red and Black crosses represent a data set of successful hitting angles for the double hill field. The points

marked with black crosses were used for regression using GPR (left) and GMR (right). The gray area represents the

predictive confidence by two standard deviations (∼ 95 %).

Table 1: Results summary for hitting parameters learning on data from the robot simulator. In this table ēα, ēv , %, and

refers to RMSE in angle, RMSE in speed, success rate, and number of parameters, respectively.

Model ēα % #

T
h
e
r
o
u
g
h

fl
a
t
fi
e
ld

5 random training points

GPR 1.40 0.54 19

GMR 0.52 0.64 20

10 random training points

GPR 0.77 0.59 34

GMR 0.35 0.79 20

10 equally spaced training

GPR 0.15 0.96 34

GMR 0.23 0.94 20

Model ēα % #

T
h
e
D
o
u
b
le

h
il
l
fi
e
ld

5 random training points

GPR 1.60 0.36 19

GMR 0.80 0.43 20

10 random training points

GPR 1.41 0.42 34

GMR 0.35 0.52 20

10 equally spaced training

GPR 0.18 0.87 34

GMR 0.27 0.83 20

Model ēα ēv % #

T
h
e
a
r
c
ta

n
fi
e
ld

16 random training points

GPR 0.94 0.02 0.85 72

sep. GMR 1.01 0.02 0.86 60

GMR 1.01 0.02 0.87 45

28 equally spaced training

GPR 0.24 0.01 0.96 120

sep. GMR 0.52 0.02 0.88 60

GMR 0.95 0.02 0.93 45

56 points was collected. To ensure that all data points were sampled from the same strategy, we chose

hitting parameters so as to minimize the hitting speed. This strategy corresponds to the lower of the

three green fields representing the main strategies in Fig. 4. From the different data sets, training points

were selected according to Table 1. The remainder of the data sets were used for validation of the

trained models, resulting in the Root Mean Square Error (RMSE) in Table 1. The rates of success were

determined by comparing random predictions for 30 datapoints selected randomly in the ranges of input

used. As there are random elements both in the learning phase and more importantly in the training

data selection phase, the training data selection and training were carried out 100 times for each case.

The values for RMSE and rates of success are the averages of these rollouts.

The results in Table 1 clearly reveal the difference in sensitivity to the training data for the two

methods. Overall GMR performs better than GPR both in terms of precision and rate of success when

the training data is selected at random. However, for the evenly spaced training data, GPR clearly

takes the lead. This difference is most notable for the arctan field, where the highly complex data set is

handled much better by GPR. The advantage for GPR would likely be even bigger for more advanced

fields. The reason the algorithms perform worse with randomly selected data is mainly because some

18

Table 2: Results summary for hitting parameters learning on data from the Barrett WAM robotic arm

Model ēα % #

T
h
e
r
o
u
g
h

fl
a
t
fi
e
ld

5 random training points

GPR 1.20 0.57 19

GMR 0.68 0.63 20

10 random training points

GPR 0.78 0.77 34

GMR 0.55 0.77 20

10 equally spaced training

GPR 0.16 0.97 34

GMR 0.22 0.90 20

Model ēα % #

T
h
e
D
o
u
b
le

h
il
l
fi
e
ld

5 random training points

GPR 1.88 0.30 19

GMR 0.72 0.37 20

10 random training points

GPR 1.72 0.30 34

GMR 0.42 0.40 20

10 equally spaced training

GPR 0.23 0.70 34

GMR 0.32 0.73 20

regions in input space are likely to be poorly represented in the selected data set. Thus, there are simply

no examples to learn from in these regions.

Another interesting conclusion from the results of this experiment is the higher performance of the

joint GMMmodel versus the separate GMMs. By training one model for both hitting parameters, higher

performance was achieved while using fewer parameters. In contrast to the separate GMMs, the joint

GMM models the correlation between the hitting parameters. This additional information, available

when training the joint GMM but not when training the separate GMMs, could possibly explain the

increase in performance. The correlation is illustrated in Fig. 11. Even though we deal with very small

data sets here, GMR has an advantage compared to GPR in terms of the number of parameters for

all cases except when the smallest data sets are considered. Naturally, the difference in the number of

parameters grows with the size of the training set.

7.2.2 Results from the Real Robot

The promising results from the robot simulator were confirmed on the real robot, using the rough flat

and the double hill fields. Similarly to the simulator data sets, 20 points of successful input-parameter

combinations were collected. The speed was fixed. A higher complexity was expected from these data

set compared to their simulator counterparts, as a number of issues were not included in the simulator

models, e.g. the dimples on the golf ball and the structure of the artificial grass covering the fields.

Indeed, the data sets were more complex, which is reflected in Table 2, as the learning (with the same

methods and number of Gaussians etc) yielded models poorer than those that were learned from the

simulator data sets in almost all cases. When the models were trained, the hole was moved to a random

location along the slider on the edge of the field, see Fig. 12. The location of the hole was captured by

a stereo vision system operating at 80 fps, allowing the hitting parameters to continuously be updated

to the current position of the hole. 30 points were tested to determine the rate of success11.

11For the double hill we considered an upward circular shape resting motion to avoid hitting the field (as opposed to

linear flat field where the velocity gradually decreases along the direction of the motion).

19

−8 −6 −4 −2 0 2 4 6 8
 1.11

 1.13

 1.15

 1.17

 1.19

1.23

1.21

1.25

1.27

0. 4 0. 6 0. 8 1

Correlation coe�cient

H
it

ti
n

g
 s

p
e

e
d

 (
5

)

Hitting angle (,)

1

2

1

2

1 2

1

2

1 2

1 2 5

5

5

5

,

,

,

,

Figure 11: The figure shows the two output dimension

of a GMM with 3 components fitted to a data set from

the arctan field. It also illustrates the absolute correlation

matrices associated to each of the Gaussians.

Figure 12: The hitting motion on the WAM. The ball

and the hole are continuously tracked by a stereovision

system (hence the attached red ball to the hole).

8 Conclusion and Discussion

In this paper, we showed that the complex task of playing minigolf can be learned by separating it into

two subtasks 1) Learning how to hit the ball, and 2) Learning to predict the proper hitting parameters,

i.e. hitting angle and hitting speed. For the first subtask, we presented a novel approach to generating

robot motions with a desired velocity at the target. The new formulation has a similar structure to many

physical principles, in that it computes the output of a nonlinear time-independent DS by multiplying

the target field with a strength factor. For each point in space the target field indicates the correct

direction of the motion, while the strength factor defines the speed of the movement in that direction.

Hence it enables a robot to perform motions with similar forms but with different speeds at the target.

Similarly to a globally asymptotically stable DS, the proposed formulation is able to adapt on-the-fly

a new trajectory in the face of perturbations without any need to re-index, re-scale, or re-plan. This is

a critical property especially for performing agile motions. For example, in tennis, at the beginning of

the motion the estimation of the ball’s position is not accurate, but as the ball approaches the robot,

this estimation becomes more and more accurate and thus the robot should be able to continuously

adapt its motion to the new position of the ball. Note that despite the inherent robustness of stable

autonomous DS to perturbations, there is an upper bound for the maximum value of perturbations that

can be handled. If, for instance, the robot faces a large perturbation when it is close to the ball, due to

the robot’s hardware limitations the robot might not be able to react swiftly and hit the ball with the

correct hitting direction and speed.

For the second subtask, we assumed that despite the many options one typically has for hitting the

ball, learning one combination of hitting parameters for each input would be sufficient. In choosing this

approach, the goal was to build a high performance model using only a small set of training data. These

assumptions turned out reasonable, as very successful models were built from small sets of training data

collected in the simulator as well as on the real robot. We showed how two different statistical methods

20

can be used to learn the hitting parameters selection, and compared them in terms of performance to

predict hitting parameters for the task at hand. It is likely that simpler regression techniques (e.g. linear

regression) could be used to predict the parameters for simple fields such as the flat field. In using a

more flexible learning algorithm such as GPR or GMR, the system can handle a wider range of fields

without changing the learning algorithm. Also note that by using a nonlinear regression technique,

the learning of the hitting parameters can automatically compensate for errors arising from the hitting

motion and/or the robot controller12.

The proposed learning approach for the hitting parameters is able to generalize well from a small

set of training data on the field for which the training data was provided. Note that the system is based

on demonstrated data only, and does not use any physical model of the field. This has the advantage

that the learning problem becomes relatively simple, and the disadvantage that it is not possible to

generalize across different fields. A possible extension would be to reuse a basic learned model (e.g. a

GMM with one or two Gaussian functions) on new fields. In such a system, the robot could exhibit

very basic generalization to new fields, and the teacher could use the output from that model as a first

guess when searching for successful hitting parameters.

Throughout this paper, we have highlighted the importance of choosing training data from the same

strategy, as averaging samples taken from different strategies will generally lead to the selection of

inappropriate hitting parameters. This high level selection of training data is intuitive to humans. Most

of the previous works that deals with situation based adaptation of motions [20, 21] use reinforcement

learning for learning to adapt to new situations through trial and error. Applying such an approach to

hitting parameters selection in minigolf presents an interesting challenge, since the cost-function must

be designed to favor only one strategy.

As mentioned, a significant simplification of the problem was made in learning only one way to hit

the ball for each situation. An interesting approach would be to explore and store several successful

parameters for each situation, and to cluster them into different strategies. When trained with such a

data set, the robot could be programmed to use the strategy most likely to result in a successful attempt

at each hitting point.

Note that the presented approach is not restricted to playing minigolf, and can be used to generate

hitting motions in other tasks such as playing billiard, bowling, etc. These games may require additional

hitting parameters such as spin and/or the height of release of the ball to be learned. It should be noted

that our approach at its current form does not explicitly consider timely execution of the movement as

it encodes hitting motions with an autonomous DS. However, in tasks where timing becomes crucial

(for example in tennis), one can use an external mechanism to control the whole motion duration by

actively modulating the strength factor (see e.g. the method developed in [28]). Alternatively, one could

leverage on the notion of coupling across DS [29], and learn how to correctly couple the DS of the robot

to that of a secondary system, describing for example the ball movement, so that both DS meet at the

same location at the same time.

12Provided that these errors are repeatable and present during the hitting parameters demonstration phase.

21

Finally the proposed formulation can be used to define hitting motions in both Cartesian and Con-

figuration (Joints) coordinate systems. In this paper we have only used the former since it was easier to

work with in the context of playing minigolf. However, depending on the task at hand one can choose

either of these coordinate systems.

Acknowledgment

This work was supported by the European Commission through the EU Project AMARSI (FP7-ICT-248311)

and the Swiss National Science Foundation through the National Center of Competence in Research Robotics.

REFERENCES

[1] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, Handbook of Robotics, ch. Robot Programming by

Demonstration. MIT Press, 2008.

[2] S. M. Khansari-Zadeh and A. Billard, “Learning Stable Nonlinear Dynamical Systems With Gaussian

Mixture Models,” IEEE Trans. on Robotics, vol. 27, no. 5, pp. 943–957, 2011.

[3] E. Gribovskaya, S. M. Khansari-Zadeh, and A. Billard, “Learning Nonlinear Multivariate Dynamics of

Motion in Robotic Manipulators,” The International Journal of Robotics Research, vol. 30, pp. 1–37, 2010.

[4] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with nonlinear dynamical systems in

humanoid robots,” in Proc. of the Int. Conf. on Robotics and Automation (ICRA), pp. 1398–1403, 2002.

[5] M. Ramanantsoa and A. Durey, “Towards a stroke construction model,” International Journal of Table

Tennis Science, vol. 2, pp. 97–114, 1994.

[6] G. McLachlan and D. Peel, Finite Mixture Models. Wiley, 2000.

[7] C. Rasmussen and C. Williams, Gaussian processes for machine learning. Springer, 2006.

[8] M. Matsushima, T. Hashimoto, M. Takeuchi, and F. Miyazaki, “A Learning Approach to Robotic Table

Tennis,” IEEE Transactions on Robotics, vol. 21, pp. 767–771, 2005.

[9] T. Senoo, A. Namiki, and M. Ishikawa, “Ball Control in High-speed Batting Motion using Hybrid Trajectory

Generator,” in proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 1762–1767, 2006.

[10] R. Andersson, “Aggressive trajectory generator for a robot ping-pong player,” IEEE Control Systems Mag-

azine, vol. 9(2), pp. 15–21, 1989.

[11] S. Calinon, F. Guenter, and A. Billard, “On Learning, Representing and Generalizing a Task in a Humanoid

Robot,” IEEE transactions on systems, man and cybernetics, vol. 37, no. 2, pp. 286–298, 2007.

[12] D. Kulic, W. Takano, and Y. Nakamura, “Incremental learning, clustering and hierarchy formation of whole

body motion patterns using adaptive hidden markov chains,” The Int. Journal of Robotics Research, vol. 27,

no. 7, pp. 761–784, 2008.

[13] S. Schaal, J. Peters, J. Nakanishi, and A. J. Ijspeert, “Learning movement primitives,” in Int. symposium

on robotics research (ISRR2003), pp. 561–572, Springer, 2004.

22

[14] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and generalization of motor skills by learning

from demonstration,” in Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 1293–1298,

2009.

[15] S. Calinon, E. Sauser, A. Billard, and D. Caldwell, “Evaluation of a probabilistic approach to learn and

reproduce gestures by imitation,” in Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA),

pp. 2671–2676, 2010.

[16] S.-M. Khansari-Zadeh and A. Billard, “A dynamical system approach to realtime obstacle avoidance,”

Autonomous Robots, vol. 32, pp. 433–454, 2012.

[17] J. Kober, K. Mulling, O. Kromer, C. H. Lampert, B. Scholkopf, and J. Peters, “Movement Templates for

Learning of Hitting and Batting,” in Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA),

pp. 853–858, 2010.

[18] K. Kronander, S. M. Khansari Zadeh, and A. Billard, “Learning to Control Planar Hitting Motions in

a Monigolf-like Task,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),

pp. 710–717, 2011.

[19] P.-Y. Zhang and T.-S. L, “Real-Time Motion Planning for a Volleyball Robot Task Based on a Multi-Agent

Technique,” Journal of Intelligent and Robotic Systems, vol. 49, pp. 355–366, 2007.

[20] J. Kober, E. Oztop, and J. Peters, “Reinforcement Learning to adjust Robot Movements to New Situa-

tions,,” in Proc. of Robotics: Science and Systems (RSS), 2010.

[21] B. Nemec, M. Tamosiunaite, F. Worgotter, and A. Ude, “Task adaptation through exploration and action

sequencing,” in Humanoids 2009, pp. 610–616, 2009.

[22] P. Kormushev, S. Calinon, R. Saegusa, and G. Metta, “Learning the skill of archery by a humanoid robot

iCub,” in Proc. IEEE Int. Conf. on Humanoid Robots (Humanoids), pp. 417–423, 2010.

[23] N. Jetchev and M. Toussaint, “Trajectory prediction: learning to map situations to robot trajectories,” in

proceedings of the 26th Annual International Conference on Machine Learning, pp. 449–456, ACM, 2009.

[24] R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban, “An interior algorithm for nonlinear optimization

that combines line search and trust region steps,” Mathematical Programming, vol. 107, no. 3, pp. 391–408,

2006.

[25] S. Vijayakumar and S. Schaal, “Locally Weighted Projection Regression: An O(n) algorithm for incremental

real time learning in high dimensional space,” in Proc. of 17th Int. Conf. on Machine Learning (ICML),

pp. 1079–1086, 2000.

[26] A. Dempster and N. L. D. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,”

Journal of the Royal Statistical Society B, vol. 39, no. 1, pp. 1–38, 1977.

[27] C. Bishop, Pattern recognition and machine learning, vol. 4. Springer, 2006.

[28] S. Kim, E. Gribovskaya, and A. Billard, “Learning Motion Dynamics to Catch a Moving Object,” in the

10th IEEE-RAS International Conference on Humanoid Robots, pp. 106–111, 2010.

[29] A. Shukla and A. Billard, “Coupled dynamical system based arm-hand grasping model for learning fast

adaptation strategies,” Robotics and Autonomous Systems, vol. 60, no. 3, pp. 424–440, 2012.

23

	Introduction
	Related Work
	Problem Statement
	The Hitting Motion
	The Target Field
	Stable Estimator of Dynamical System (SEDS) KhansariBillardTRO11
	Target Field Formulation

	Strength Factor
	Control of Hitting Direction

	The Hitting Parameters
	Training data
	Hitting Parameters Prediction

	Minigolf Workflow
	Experimental Results
	Evaluation of Hitting Motions
	Evaluation of Hitting Parameters
	Results from the Robot Simulation
	Results from the Real Robot

	Conclusion and Discussion

