
PHYSICAL REVIEW E 86, 011909 (2012)

Non-normal amplification in random balanced neuronal networks
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In dynamical models of cortical networks, the recurrent connectivity can amplify the input given to the network
in two distinct ways. One is induced by the presence of near-critical eigenvalues in the connectivity matrix W ,
producing large but slow activity fluctuations along the corresponding eigenvectors (dynamical slowing). The
other relies on W not being normal, which allows the network activity to make large but fast excursions along
specific directions. Here we investigate the trade-off between non-normal amplification and dynamical slowing
in the spontaneous activity of large random neuronal networks composed of excitatory and inhibitory neurons.
We use a Schur decomposition of W to separate the two amplification mechanisms. Assuming linear stochastic
dynamics, we derive an exact expression for the expected amount of purely non-normal amplification. We find
that amplification is very limited if dynamical slowing must be kept weak. We conclude that, to achieve strong
transient amplification with little slowing, the connectivity must be structured. We show that unidirectional
connections between neurons of the same type together with reciprocal connections between neurons of different
types, allow for amplification already in the fast dynamical regime. Finally, our results also shed light on the
differences between balanced networks in which inhibition exactly cancels excitation and those where inhibition
dominates.
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I. INTRODUCTION

A puzzling feature of cortical dynamics is the presence
of structure in spontaneously generated activity states. For
example, activity in cat primary visual cortex fluctuates
along some nonrandom spatial patterns even when recordings
are performed in complete darkness [1,2]. Similarly, spon-
taneously generated patterns of firing rates in rat sensory
cortices occupy only part of the total space of theoretically
possible patterns [3]. As the constraints that govern these
dynamics cannot be attributed to external stimuli, they are
thought to originate from the patterns of synaptic connectivity
within the network [4,5]. This phenomenon is called patterned
amplification.

Patterned amplification can also be observed in simulated
neuronal networks, in which spontaneous activity can be
modeled as the response to unspecific, noisy inputs delivered
to each neuron individually. Propagated through recurrent
connections, these noisy inputs may cause the activity of some
neurons to transiently deviate from their average more strongly
than could be expected from the variability of the external
inputs. We thus define amplification here as the strength of
these additional, connectivity-induced fluctuations.

Let us consider the following simple linear model for
stochastic network dynamics:

dx = dt

τ
(W − 1)x + σξdξ , (1)

where τ is the neuronal time constant, x ∈ RN is the deviation
of momentary network activity with respect to a constant mean
firing rate, W is an N × N synaptic connectivity matrix, 1 is
the identity matrix, and dξ is a noise term modeled as a unitary
Wiener process. The fluctuations of xi(t) around zero (i.e.,
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around the mean firing rate of neuron i) are caused by the noisy
input and the recurrent drive. Starting from arbitrary initial
conditions, the network activity x converges to a stationary
Gaussian process with covariance matrix � = {σij } (at zero
time lag), provided no eigenvalue of W has a real part greater
than unity. This covariance matrix has a baseline component
�unc. = σ 2

ξ τ1/2 that corresponds to the covariance matrix in
the absence of network connections (“unconnected”). Wiring
up the network yields additional correlations and potentially
gives rise to larger fluctuations of the activity of individual
units. We define this amplification A as the ratio [Tr(�) −
Tr(�unc.)]/Tr(�unc.). In other words, A measures the relative
gain in mean variance that can be attributed to the recurrent
connections. That is,

A(W )
def=

[
2

τσ 2
ξ N

N∑
i=1

σii

]
− 1. (2)

Under linear dynamics like that of Eq. (1), amplification can
originate from two separate mechanisms. A first, “normal”
type of amplification can arise from eigenvalues of W
with real parts close to (but smaller than) 1. The noise
accumulates along the associated eigenvectors more than in
other directions, giving rise to larger activity fluctuations
and substantial dynamical slowing along those axes. If the
synaptic connectivity is normal in the mathematical sense
(W W † = W †W ), it is the only mechanism through which the
network can amplify its input [5]. Indeed, if W is normal, its
eigenvectors form an orthonormal basis. The sum of variances
in this eigenbasis is therefore equal to the sum of variances of
the neuronal activities in the original equations. Since linear
stability imposes that every eigenvalue of W has a real part
less than one, the activity along the eigenvectors can only
decay following some initial perturbation. In other words, a
stable normal linear system is contractive: No initial condition
can transiently be amplified. If the matrix W is not normal
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(W W † �= W †W ), another, non-normal type of amplification
can also contribute [5–8]. The eigenvectors are no longer
orthogonal to each other, and the apparent decay of the activity
in the eigenbasis can hide a transient growth of activity in
the neurons themselves. Such growth can only be transient,
for stability requirements still demand that the activity decay
asymptotically in time.

Purely non-normal amplification that does not rely on
dynamical slowing may be ideally suited for sensory cortices
that need to track inputs varying on fast time scales (possibly
of order τ ). It has also been identified as a key mechanism for
short-term memory of past inputs, for in certain circumstances,
hidden feedforward dynamics enables the network to retain
information about a transient stimulus for a duration of order
Nτ [7]. The presence of noise, as in Eq. (1), could limit this
memory duration to

√
Nτ [6,9], but this is still much longer

than the time τ in which individual neurons forget their inputs.
The above considerations apply to purposely structured

networks [5–7]. It is not clear, however, how much of this
beneficial kind of amplification can be expected to arise in
randomly connected networks of excitatory and inhibitory
neurons, a ubiquitous model of cortical networks. Murphy and
Miller [5] convincingly argued that non-normal amplification
should generally be a key player in the dynamics of balanced
networks, that is, when strong excitation interacts with equally
strong inhibition and when neurons can be only excitatory or
inhibitory but not of a mixed type. When the connectivity is
dense, or at least locally dense, weak patterns of imbalance
between excitation and inhibition can indeed be quickly
converted into patterns in which neurons of both types
strongly deviate from their mean firing rates. Here, we revisit
non-normal amplification in the context of random balanced
networks. We derive an analytical expression for the purely
non-normal contribution to amplification in such networks.
The analysis reveals a strong tradeoff between amplification
and dynamical slowing, suggesting that the connectivity must
be appropriately shaped for a network to simultaneously
exhibit fast dynamics and patterned amplification.

II. SEPARATING THE EFFECTS OF NORMAL AND
NON-NORMAL AMPLIFICATION

In the Introduction, we distinguished normal from non-
normal amplification. The Schur decomposition (Fig. 1)—a
tool from linear algebra—offers a direct way to assess the
contributions of both mechanisms to the overall amount
of amplification A(W ). Any matrix W can be written as
U†(� + T )U , where U = {uij } is unitary, � is a diagonal
matrix that contains the eigenvalues λk of W , and T = {tij }
is strictly lower-triangular [10] [Figs. 1(a)–1(c)]. The lines
of U are called the Schur vectors (or Schur modes) and
are all orthogonal to each other. If this decomposition is to
avoid complex numbers, � is only block diagonal, with 2 × 2
blocks containing the real and imaginary parts of complex
conjugate pairs of eigenvalues and 1 × 1 blocks containing
the real eigenvalues. Importantly, because the Schur basis
U is orthonormal, the sum of variances in the basis of the
Schur vectors is equal to the sum of the single neuron activity
variances. Thus, in order to compute A(W ), one can instead
focus on the activity fluctuations in an abstract network whose

+(exc) -(inh)
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FIG. 1. (Color online) Teasing apart normal and non-normal
amplification in random networks of excitatory and inhibitory
neurons. (a) Example of sparse neural connectivity matrix W (left,
50 excitatory columns and 50 inhibitory columns, thinned out to
30 × 30 for better visibility), a schematics of an associated Schur
basis U (center), and the corresponding abstract network of Schur
modes, in which the interactions are feedforward from top to bottom
(right). The Schur vectors in U (center), orthogonal to one another,
represent patterns of neuronal activity in the original network. The
last Schur vector is explicitly chosen to be the uniform “DC” mode
v = (1,1, . . . ,1)/

√
N and is represented here in green at the bottom.

(b) Amplification via dynamical slowing (“normal” amplification) is
described by the set of eigenvalues � = (λ1, . . . ,λN ) of W , which
for a random network lie inside a disk centered around zero in the
complex plane. These eigenvalues determine the decay rates of the
Schur patterns. (c) Non-normal amplification arises from the strictly
lower-triangular matrix T which describes the purely feedforward
part of the interactions between the Schur patterns. The first nonzero
entry in the upper left corner of T is t21 and represents the “forward”
coupling from the first Schur mode onto the second. The last row
(tN1,tN2, . . . ,tN(N−1)), magnified at the bottom, is the coupling from
the first N − 1 Schur modes onto the last (uniform) Schur mode v.
(d) For a fixed large matrix W , the nonzero entries tij in matrix T
are approximately normally distributed with zero mean and variance
given by Eq. (9) [black (narrow) histogram, for j < i < N ]. The
entries in the last row have larger variance given by Eq. (8) [i = N ,
green (wider) histogram]. (e) Moreover, the variance 〈t2

ij 〉 across many
realizations of W is the same for all j < i < N (black histogram,
left). Similarly, 〈t2

Nj 〉 is the same for all j < N (green histogram,
right). (f) The correlations 〈tij tk�〉 (for i �= k or j �= �) are negligible,
as seen from a comparison of their empirical distribution (black)
with surrogate data from triangular matrices in which nonzero entries
are drawn independently from the same Gaussian distribution (gray,
barely visible under the black curve). The data for panels (d)–(f)
was acquired by Schur-transforming 5000 random weight matrices
of size N = 100, drawn as described in Sec. III with connection
density p = 0.1 and spectral radius R = 1.

units correspond to spatial patterns of neuronal activity (the
Schur vectors) and interact with a connectivity matrix � + T
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[Fig. 1(a), right]. This matrix is lower triangular, so the abstract
network is effectively feedforward. In the Schur network, unit
i receives its input from all previous units j < i according to
the ith row of T . Without input, the activity of unit i decays at
a speed governed by eigenvalue λi .

A network with a normal connectivity matrix would have
only self-feedbacks (T = 0), thus being equivalent to a set
of disconnected units with a variety of individual effective
time constants, reflecting dynamical slowing or acceleration.
Amplification by slowing therefore arises from � [Fig. 1(b)],
which summarizes all the “loopiness” found in the original
connectivity. Conversely, when � = 0, all units share a
common time constant τ (which is also the time constant
of the actual neurons) and interact in a purely feedforward
manner via matrix T [Fig. 1(c)]. We refer to this case
as “purely non-normal,” because the network is then free
of the unique dynamical consequence of normality, namely
a modification of the speed of the dynamics [11]. Purely
non-normal amplification therefore arises from matrix T that
reveals the functional feedforward connectivity hidden in W .

The latter situation (� = 0) is the focus of this paper. By
substituting W with T in Eq. (1) and subsequently calculating

A(T ) as defined in Eq. (2), we intend to reveal the fraction
of the total amplification A(W ) in the neuronal network
that cannot be attributed to dynamical slowing, but only to
transient growth. This constitutes a functional measure of
non-normality. We carry out this analysis in a statistical sense,
by calculating the expected amount of purely non-normal
amplification 〈A(T )〉 where the average 〈·〉 is over the random
matrix W . In Sec. III, the ensemble statistics of W are defined
and related to the statistics of the nonzero entries of T . In
Secs. IV and V, we perform the calculation of 〈A(T )〉.

III. SCHUR REPRESENTATION OF NEURAL
CONNECTIVITY MATRICES

Prior to calculating the non-normal contribution to amplifi-
cation in realistic neural connectivity matrices, we first analyze
the statistical properties of the Schur triangle T derived from
a neuronal network where every pair of neurons has a certain
probability of being connected in either direction. Specifically,
we consider networks of N/2 excitatory and N/2 inhibitory
neurons, with connectivity matrices W drawn as follows [12]
[Fig. 1(a)]:

wij = 1√
N

·
⎧⎨
⎩

+w0 if j � N/2

−w0 if j > N/2

]
with probability p,

0 with probability (1 − p).
(3)

Excitation and inhibition are thus globally balanced. The
1/

√
N scaling ensures that in the limit of large N , the

eigenvalues {λk} of W become uniformly distributed inside
the disk of radius

R = w0

√
p(1 − p) (4)

and centered around zero in the complex plane [Fig. 1(b)], with
the exception of a few outliers [13]. To push the outliers inside
the disk, we enforce that excitatory and inhibitory synapses
cancel each other precisely for each receiving neuron, that is,
Wv = 0 with v = (1,1, . . . ,1)/

√
N [13,14]. This constraint is

also essential to the identification of the ensemble statistics of
T as detailed below. Such a “global balance” can be achieved
by a Hebbian form of synaptic plasticity at inhibitory synapses
in random spiking networks [15]. Here we enforce it by
subtracting the row average (a small number) from every row
[which accounts for the barely visible horizontal stripes in W
of Fig. 1(a)].

The main point in relating the statistics of T to that of W
is to note that the Schur basis is unitary, so that the sum of
squares in W is also equal to the sum of squares in � + T .
Thus, ∑

1�i,j�N

w2
ij =

∑
1�k�N

|λk|2 +
∑
i>j

t2
ij . (5)

From our choice of the weights wij [Eq. (3)] and assuming
that N is large enough, we can derive

∑
w2

ij � Npw2
0.

Furthermore, knowing that the eigenvalues lie uniformly inside
the disk of radius R, we can write

∑ |λk|2 � NR2/2, which

is also valid for large N . We replace these sums in Eq. (5),
simplify the result using Eq. (4), and obtain the overall
empirical variance of the nonzero entries in T , to leading
order in N :

2

N (N − 1)

∑
i>j

t2
ij � R2

N
· 1 + p

1 − p
. (6)

Note that this empirical variance is not necessarily equal to
the ensemble variance 〈t2

ij 〉 − 〈tij 〉2 for fixed i and j . In fact,
we have observed that if the nonunique Schur basis is chosen
arbitrarily, 〈t2

ij 〉 computed over many realizations of W is not
uniform across rows, but rather tends to increase with row
index i. This heterogeneity is difficult to characterize and
undermines the calculation of amplification developed in the
next section. Fortunately, we can circumvent this problem
by choosing the uniform eigenvector v of W as the last
Schur vector: uNk = 1/

√
N for all k [16]. Coefficient tij then

becomes distributed with the same zero mean and variance ζ 2

for all j < i < N , with the exception of the tNj coefficients
which have higher variance ζ 2

0 [black and green lines in
Figs. 1(d) and 1(e), empirical observation]. Note also that the
ensemble pairwise correlations between coupling strengths tij
and tk� with i �= j or j �= � seem negligible [Fig. 1(f)].

We now proceed in two steps. First, we focus on the variance
of the elements in the last row of the Schur matrix T , and then
we turn to all the other nonzero components. To calculate
variance ζ 2

0 = 〈t2
Nj 〉 we use the definition of T and write for
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j < N

tNj =
N∑

�=1

N∑
k=1

uNkwk�uj� = 1√
N

N∑
�=1

(
N∑

k=1

wk�

)
uj�. (7)

To leading order in N we can write
∑

k wk� = ±pw0

√
N ,

where the ± sign depends on � being smaller than N/2
(+, excitatory) or greater (−, inhibitory) [see Fig. 1(a)]. For
j < N , the j th Schur vector U j is orthogonal to the last
Schur vector v ∝ (1,1, . . . ,1), so its components strictly sum
to zero:

∑
� uj� = 0. Moreover, because of the normalization,∑

� u2
j� = 1. We can therefore approximate uj� by a stochastic

process with zero mean and variance 1/N . Assuming the uj�

are uncorrelated, the variance of tNj is thus simply w2
0p

2 to
leading order, which according to Eq. (4) is also

〈
t2
Nj

〉 ≡ ζ 2
0 = R2p

1 − p
. (8)

Notably, the variance ζ 2
0 in the last row of coupling matrix T

is of order 1, and depends superlinearly on the connectivity
density p (Fig. 2, green lines).

We now turn to the other rows i < N of the Schur
matrix T . Because all components tij for j < i < N seem
to come from the same distribution and look uncorrelated
[Figs. 1(d)–1(f)], the empirical estimate of their variance
2
∑

j<i<N t2
ij /(N − 1)(N − 2) coincides with the ensemble

variance ζ 2 ≡ 〈t2
Nj 〉 so long as N is large enough. Similarly,

we can write
∑

j t2
Nj/(N − 1) = ζ 2

0 . Thus, the left-hand side
of Eq. (6) becomes ζ 2 + 2ζ 2

0 /N to leading order in N . Using
Eqs. (6) and (8) we conclude

〈
t2
ij

〉 ≡ ζ 2 = R2

N
. (9)

Figure 2 shows that Eqs. (8) and (9) provide a good match to
numerical results.

At this point we can already draw a few conclusions.
Suppose each unit in our Schur network receives external
input of variance 1. First, since the uniform mode v receives
network input from the remaining N − 1 Schur patterns with
coupling coefficients of order 1 [Eq. (8)], we expect the global
(“DC”) population activity x · v to fluctuate macroscopically,
that is, with a variance of order N . In contrast, the rest of the
Schur modes should display fluctuations of order 1. Second, we
directly see that making the network denser (i.e., increasing
p) can only result in larger DC fluctuations, but no further
amplification of the other (zero-mean) Schur patterns. This
is because ζ 2

0 , but not ζ 2, depends on p. Third, it is easy to
see where these large DC fluctuations would originate from.
Imagine breaking the overall excitatory-inhibitory balance in
the network activity by a small amount, for example, by
initializing the network state x to d = (1, . . . ,1, − 1, . . . , −
1)/

√
N , where we emphasize the scaling in 1/

√
N . According

to Eq. (1), the transient response to this perturbation is roughly
W d, which to leading order in N equals

W d � pw0(1,1, . . . ,1). (10)

We note that the 1/
√

N scaling is gone. Thus, the network
responds to a microscopic global balance disruption—a state
in which the deviation between the excitatory and inhibitory
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FIG. 2. (Color online) Linking the Schur triangle to the parame-
ters of the neural connectivity matrix. (a) The variance of the entries
in the strict lower triangle T scales linearly with the square of the
spectral radius R2 of the original weight matrix W. For the last row of
T, the slope of ζ 2

0 depends on the connection probability p (top plot).
For the rest of T, ζ 2 depends only on R2 (bottom plot). Each point
was obtained by empirically estimating ζ 2 and ζ 2

0 from 10 different
Schur-transformed random neural weight matrices of size N = 400.
Lines denote the analytical expressions in Eqs. (8) and (9). (b) ζ 2

0 in
the last row of T scales superlinearly with the connection density p

(top plot). In contrast, ζ 2 does not depend on p (bottom plot). (c) In
the last row of T, the variance is network size-independent [green
(upper) line]. In the rest of T, the variance is inversely proportional
to N [black (lower) line, note the log-log scale].

population firing rates is of order 1/
√

N—by an excursion
of order 1 in the combined firing rate of both populations
(see [5] for a more in-depth discussion of this effect). Finally,
it is instructive to see what happens when the functional
feedforward link from d to

√
N · v—expressed in Eq. (10)—is

removed from W . This can be achieved by transforming W
into W ′ given by

W ′ = W − pw0√
N

(1, . . . ,1)†(1, . . . ,1, − 1, . . . , − 1). (11)

It is easy to see that W ′d = 0. In this case, calculations
similar to Eqs. (5)–(8) yield ζ 2

0 = ζ 2 = R2/N so that the
DC fluctuations are back to order 1: The amplification along
the DC mode becomes comparable in magnitude to the
amplification that occurs along any other Schur direction.
Note that the operation in Eq. (11) effectively shifts the mean
excitatory (inhibitory) weight from pw0/

√
N (−pw0/

√
N )

to zero. We now substantiate these preliminary conclusions
through a direct calculation of non-normal amplification.
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IV. AMPLIFICATION IN RANDOM STRICTLY
TRIANGULAR NETWORKS

We have seen in the preceding two sections that a randomly
coupled network of excitatory and inhibitory neurons can
be transformed via a unitary Schur basis into a different
network where the couplings between units are given by a
lower triangular matrix [Fig. 1(a)]. Furthermore, the “purely
non-normal” part of the amplification of the external noisy
input in the original network of neurons corresponds to the
activity fluctuations in the new feedforward network where
all self-couplings are neglected [Fig. 1(c)]. Finally, we have
also seen that it is possible to constrain the Schur basis
such that the couplings between the first N − 1 units in the
feedforward network are independently distributed with the
same zero mean and a variance given by the parameters of
the original synaptic weights [Eq. (9)]. In this section, we
therefore study this “canonical” case, starting directly from
a strictly lower-triangular matrix T and ignoring—for the
moment—the transformation that gave rise to T .

We want to solve for the expected variances of N � 1
Ornstein-Uhlenbeck processes [as in Eq. (1)] coupled by a
strictly lower-triangular weight matrix T (therefore describing
a purely feedforward network; see inset in Fig. 3(a)]. We
assume all nonzero coupling strengths to be sampled indepen-
dently from some common distribution with zero mean and
variance α2/N . Due to the coupling matrix, the fluctuations
that the external input causes in the first unit feed and augment
those it causes in unit 2. The third unit, in turn, fluctuates due
to the external input and the activities of units 1 and 2, and so
on. We therefore expect the activity variance σii in unit i to
increase with index i. In Appendix A, we show that in the limit
of large N and for some fixed 0 � x � 1, the relative expected
variance of the activity in unit i = xN is g(i/N) ≡ 2〈σii〉/τσ 2

ξ

where the function g(x) is lower bounded in closed form by

gLB(x) = 1

3 + √
3

exp

(
1 − √

3

4
α2x

)

+ 2 + √
3

3 + √
3

exp

(
1 + √

3

4
α2x

)
(12)

(Fig. 3, dashed blue curves). We also derive the exact solution
as a power series

g(x) = lim
K→∞

K∑
k=0

βkx
k, (13)

with the βk coefficients defined recursively as

β0 = 1,
(14)

βk = α2

2k!

k−1∑
�=0

(2�)! (k − � − 1)!

�! (� + 1)!

(
α2

4

)�

βk−�−1.

The overall amplification A0(α2) in the network is subse-
quently obtained by integrating this variance profile g(x) from
0 to 1, which corresponds to taking Eq. (2) to its N → ∞
limit:

A0(α2) =
(

lim
K→∞

K∑
k=0

βk

k + 1

)
− 1. (15)

(a)

(b)

FIG. 3. (Color online) Analytical result for a feedforward network
of N Ornstein-Uhlenbeck processes coupled via a random strictly
lower-triangular matrix (inset). (a) The expected activity variance
〈σii〉 accumulates superlinearly from the first unit to the last down
the feedforward chain. Dashed blue lines depict the closed-form
lower-bound of Eq. (12). Solid red lines denote the exact solution
given in Eq. (13), truncated to K = 10. Open circles represent the
numerical solution of Eq. (1)—or more exactly, the numerical solution
of Eq. (A1) given in Appendix A—averaged over 20 randomly
generated matrices of size N = 500. Each matrix T is characterized
by the variance α2/N of the coupling coefficients tij with j < i. The
strength of the external noise driving each unit independently is set
to σ 2

ξ = 2/τ so that all activity variances in the network would be
1 should the couplings tij be set to 0. (b) The total amplification
[the area under the curves in (a), minus 1] explodes with increasing
variance α2/N in the triangular connectivity matrix. Points and lines
have the same meaning as in (a).

Figure 3 shows that Eqs. (13) and (15) indeed converge to
the empirical mean variance profile and mean amplification
as the cutoff parameter K of the power series becomes
large (red lines, K = 10). Figure 3(b) furthermore shows
how amplification explodes with the variance α2/N of the
feedforward couplings in the network.

V. AMPLIFICATION IN RANDOM BALANCED
NETWORKS

Using the canonical result of the previous section that is
restricted to homogeneous random lower-triangular matrices,
we now calculate A(R,p) ≡ 〈A(T )〉 with T originating from
the Schur decomposition of a neuronal connectivity matrix
as in Sec. III, with connection density p and spectral radius
R. Equation (13) can directly be applied with α2/N = ζ 2 =
R2/N [see Eq. (9)] to describe the activity fluctuations of
the first N − 1 Schur modes. The last Schur unit, however,
receives feedforward input with couplings of variance ζ 2

0 �=
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ζ 2 [Eq. (8)]. Consequently, the expected variance 〈σNN 〉
of its temporal fluctuations has to be treated separately. In
Appendix B, we show that

lim
N→∞

〈σNN 〉
N

= σ 2
ξ τ

2
· p

1 − p
[g(1) − 1], (16)

where g is given by Eqs. (13) and (14), here with α = R.
Gathering the contributions of all Schur modes, we obtain the
expected overall amount of purely non-normal amplification
in W :

A(R,p) = A0(R2) + p

1 − p
[g(1) − 1], (17)

with A0(R2) given by Eq. (15).
Figure 4(a) shows that the non-normal contribution to

amplification in the neuronal network explodes with the
spectral radius R of the connectivity matrix W . This is because
the amplification of the first N − 1 Schur units explodes with
the variance ζ 2 of their feedforward interactions [Fig. 3(b)]
and that ζ 2 is directly related to R [Eq. (9)]. Note that for
R > 1 [to the right of the dashed vertical line in Fig. 4(a)],
the network of neurons is unstable. Although the concept of
amplification in an unstable network is ill defined, the “purely
non-normal” part of the total (infinite) amplification remains
bounded. Indeed, the purely feedforward network T derived
from the Schur decomposition of W is itself always stable,
since zero is the only eigenvalue of T . The instability in W
arises from purely normal effects, when the real part of one
eigenvalue of W exceeds unity so that dynamical slowing
becomes infinite.

Equation (16) confirms what we had previously discussed
at the end of Sec. III: the last Schur unit has temporal
fluctuations v · x(t) of variance O(N ). Those fluctuations
thus make up for a finite fraction of the total non-normal
amplification [the last term in Eq. (17)] as N → ∞. Because
the last Schur vector is the normalized uniform spatial pattern
(1, . . . ,1)/

√
N , the variance of the overall population activity

μ(t) ≡ ∑
xi(t)/N = √

N (x · v(t)) is of order 1. As we had
foreseen in Sec. III, one can restore the 1/N scaling of the
these DC fluctuations 〈μ2(t)〉 by performing the operation of
Eq. (11) on the connectivity matrix W , that is, subtracting a
common constant from all excitatory weights (including zero
weights) to make sure that they average to zero, and adding the
same constant to all inhibitory weights with the same purpose.
This situation is depicted by the dashed gray curves in Fig. 4.
Figure 4(b) shows that only these DC fluctuations depend on
the connectivity density p.

Overall, Fig. 4(a) allows us to draw two important conclu-
sions. On the one hand, if the level of dynamical slowing is to
be kept low (R � 1), only modest levels of amplification can
be achieved (see the small amount of non-normal amplification
on the left-hand side of the dashed vertical line). For example,
if no mode is to decay with more than twice the single neuron
time constant [Re(λ) < 1/2], the average variance cannot
exceed that of a disconnected network by more than 10%. On
the other hand, the non-normal contribution to amplification
explodes with increasing R, that is, with increasing synaptic
strengths if the connection density is taken fixed. This suggests
that strong transient amplification without dynamical slowing
can only be achieved in structured, “less random” networks.
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FIG. 4. (Color online) Non-normal amplification in random
neuronal networks. (a) The mean amount of purely non-normal
amplification 〈A(T)〉 ≡ A(R,p) is reported as a function of the
spectral radius R of W. Open circles denote the numerical solution
of Eq. (A1) averaged over 20 randomly drawn connectivity matrices
with connection density p = 0.1 and size N = 500. Error bars denote
the standard deviation over all trials. The red (upper) curve depicts
the exact solution in Eq. (17). The dashed gray (lower) curve and
gray circles indicate the mean removal of Eq. (11) applied to W ,
which effectively removes the global macroscopic fluctuations of
the entire population (labeled “no DC”). The dashed vertical line
represents the limit of linear stability, beyond which the non-normal
part of amplification is still well defined. (b) Same as in (a), now as
a function of the connection density p for a fixed R = 1. In both (a)
and (b), parameters p and R fully determined the value ±w0/

√
N of

the nonzero synaptic weights as w0 = R/
√

p(1 − p) [cf. Eq. (4)].

The structure must allow the synaptic couplings to assume
larger values without causing the eigenvalue spectrum of W
to reach instability.

VI. DIFFERENT NUMBERS OF EXCITATORY AND
INHIBITORY NEURONS

We now consider the biologically more plausible case
of different numbers of excitatory and inhibitory neurons.
Typical models of cortex assume f N excitatory neurons and
(1 − f )N inhibitory neurons with f = 0.8 or similar. In this
case, the eigenvalues λ are no longer uniformly scattered
inside the disk of radius R in the complex plane [17],
but become more concentrated in the middle following a
radially symmetric density ρ(|λ|) known analytically from
[13] [Fig. 5(b), insets]. As before, we consider the case
where excitatory (inhibitory) synaptic couplings are 0 with
probability (1 − p) and +wE/

√
N (−wI/

√
N ) otherwise. The

global balance condition reads f wE = (1 − f )wI .
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FIG. 5. (Color online) Networks with different numbers of
excitatory and inhibitory neurons. (a) Non-normal amplification as a
function of the spectral radius R of W , in sparse random balanced
networks with f N excitatory and (1 − f )N inhibitory neurons, for
f = 0.5 (black, lower) and f = 0.8 (red, upper). The connection
density p was set to 0.1. The dashed vertical line represents the
limit of linear stability, beyond which the non-normal part of
amplification is still well defined. Solid circles were obtained by
averaging the numerical solution of Eq. (A1) for 20 random matrices
of size N = 500. Error bars denote standard deviation over all trials.
(b) Solid circles show the scaled variance N〈t2

ij 〉/R2 of the nonzero
Schur couplings in row i as a function of i/N and for three different
values of f . These variances were computed by Schur-transforming
100 matrices of size N = 200, with R = 1 and p = 0.1. Cyan lines
denote the density ρ of eigenvalues λ inside the unit disk [13] as a
function of (1 − |λ/R|)2. Insets show the eigenvalue spectra of three
example matrices of size N = 1000.

To impose a given spectral radius R, we set w2
E = w2

0(1 −
f )/f and w2

I = w2
0f/(1 − f ) with w2

0 = R2/p(1 − p).
The results of Sec. III regarding the variances in the

Schur triangle have to be adjusted to accommodate these
modifications. The derivation of ζ 2

0 is left unchanged, so that
the couplings tNj onto the uniform mode v still have the
variance given by Eq. (8), which notably does not depend
on f . Using Eq. (5), we can then write down the empirical
variance in the first N − 1 rows of T as

2

N (N − 1)

∑
j<i<N

t2
ij = 2

N

(
R2 −

∫ R

0
rρ(r)dr

)
. (18)

Unfortunately, the ensemble variance 〈t2
ij 〉 for fixed i and j is,

in general, different from the average across matrix elements
given by Eq. (18). Indeed, contrary to the case f = 0.5
considered in Sec. III, the nonzero elements of T no longer
have the same ensemble variance. Instead, 〈t2

ij 〉 grows with row
index i < N , and this profile interestingly matches the density

of eigenvalues ρ [18], according to

N

R2

〈
t2
ij

〉 = ρ

[
R

(
1 −

√
i

N

)]
for j < i < N. (19)

This is depicted in Fig. 5(b).
In a feedforward network like that of Schur units considered

here, a good strategy to generate greater amplification would be
to give comparatively more power to the couplings onto earlier
nodes. This is because amplification builds up superlinearly
along the feedforward chain (Fig. 3), so that boosting early
nodes exacerbates the avalanche effect (see also [6]). Setting
f to more than 0.5 does precisely the contrary: Couplings
onto early nodes become comparatively smaller in magnitude,
as shown by the filled circles in Fig. 5(b). Therefore, simply
replacing α2/N in Eq. (15) with the empirical variance of
Eq. (18) yields an overestimation of the true amplification in
the first N − 1 Schur units [compare the red line with the
red circles in Fig. 5(a)]. We found it difficult to incorporate
this variance profile 〈t2

ij 〉 into the derivation of Appendix A,
so we can only consider as accurate the results of numerical
simulations.

The conclusions reached at the end of Sec. V do not change
significantly under the more realistic assumption of f = 0.8.
Although amplification almost doubles relative to f = 0.5,
it remains very weak in the stable regime [to the left of the
dashed vertical line in Fig. 5(a)], confirming that amplification
can come only with substantial dynamical slowing when
connections are drawn at random.

VII. EXAMPLE OF NETWORK STRUCTURE FOR
NON-NORMAL AMPLIFICATION

Here we show that random networks can be minimally
structured in such a way that strong non-normal amplification
occurs already in the fast dynamical regime. We exploit the
fact that correlations in the connectivity matrix can modify
the shape of the eigenvalue spectrum. Symmetrizing (or
antisymmetrizing) W has been shown to generate elliptical (as
opposed to circular) eigenspectra, in the case of “centered” ma-
trices where the distinction between excitatory and inhibitory
neurons is not made [19]. Here we consider a modification of
the sparse neural matrices studied in Sec. III that achieves this
slimming effect in the case of balanced networks [see the insets
in Fig. 6(a)]. All nonzero entries assume a value ±w0/

√
N , the

sign depending on the excitatory versus inhibitory nature of
the presynaptic neuron. Whether a connection exists (nonzero
entry) is decided as follows. Connection wij with i � j exists
with probability p. If i �= j , the reciprocal connection wji

then exists with probability p + cij (1 − p) if wij exists too, or
with probability p(1 − cij ) if it does not. In comparison to the
random networks considered above [Eq. (3)], this connectivity
scheme preserves the mean weight w̄ ≡ 〈wij 〉 = ±pw0/

√
N

as well as the weight variance 〈(wij − w̄)2〉 = p(1 − p)w2
0/N

while giving full control over their normalized covariance
cij . Note that cij can assume positive values as high as
cmax = 1, in which case all connections are bidirectional.
However, c cannot go below cmin = −p/(1 − p), which stems
from the sparsity condition that imposes a certain degree of
symmetry in W : Because both wij and wji are zero with
high probability, they will often be null together, meaning that

011909-7



HENNEQUIN, VOGELS, AND GERSTNER PHYSICAL REVIEW E 86, 011909 (2012)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

sp
ec

tr
al

ab
sc

is
sa

R
′

degree of anticorrelation κ

p = 0.1

p = 0.2

p = 0.5

0

2

4

6

8

0 0.2 0.4 0.6 0.8 1 1.2

A
(R

′ ,
p

=
0
.1

)

spectral abscissa R ′

κ = 0

κ = 1

Re

Im

Re

Im

1 sec.

(a)

(b)

FIG. 6. (Color online) Example of a network structure that favors
non-normal amplification: unidirectional vs bidirectional synaptic
connections. (a) We varied the degree of anticorrelation between
reciprocal weights in the connectivity matrix, as the fraction κ of the
maximum value it can assume, which is dictated by the connection
sparsity (see text). This caused the eigenspectrum to stretch more
and more along the vertical axis (compare the two insets), effectively
decreasing the spectral abscissa R′ (black filled circles). Empirical
data was obtained from numerically computing the eigenvalues of
20 different matrices of size N = 500. Error bars denote standard
deviations over all trials. Gray lines are linear fits. (b) Non-normal
amplification as a function of the spectral abscissa R′. When all
connections between an excitatory (E) and an inhibitory (I) cell
are made reciprocal, while all E → E and I → I connections are
kept unidirectional [orange (upper) curve, corresponding to κ = 1 in
(a)], stronger amplification is obtained in the fast dynamical regime
(R′ � 1). The black (lower) curve is here reproduced from Fig. 4
(purely random case, κ = 0) for comparison. The inset displays
examples of 4-s snapshots of activity in a disconnected network
(left), a random network (middle, κ = 0), and a maximally (though
not fully) antisymmetric network (right, κ = 1). The spectral abscissa
was set to R′ = 0.9. Traces were obtained from a direct simulation of
Eq. (1), and are shown here only for two randomly chosen neurons.

they cannot be fully anticorrelated. The limit case c = cmin

corresponds to the complete absence of reciprocal connections.
Since we aim at tilting W toward antisymmetry, we choose
cij = κcmin when neurons i and j are of the same type, and
cij = κcmax when the two neurons have different types. Thus,
0 <= κ <= 1 parametrizes the degree of antisymmetry in W .
As can be seen in Fig. 6(a), increasing κ effectively decreases

the spectral abscissa R′ = maxλ Re(λ), although it is designed
not to affect the overall connectivity “power”

∑
w2

ij which
is the relevant quantity for amplification. Thus, for a fixed
level of dynamical slowing (i.e., fixed R′), antisymmetric
connectivity matrices can assume larger weight strengths
and thereby yield stronger non-normal amplification than
their random counterparts, as depicted in Fig. 6(b). Finally,
note that a matrix with κ = 1 is not purely antisymmetric
(W † �= −W ). In fact, neural connectivity matrices can never be
fully antisymmetric, because of the constraint that neurons can
be only excitatory or only inhibitory. This is an advantageous
restriction here, because a fully antisymmetric matrix—just
like a fully symmetric one—is, in fact, a normal operator that
cannot support transient amplification.

VIII. DISCUSSION

The non-normal nature of the neuronal connectivity could
play a major role in the functional dynamics of cortical
networks. It can allow fast transients to develop along well-
defined activity motifs stored in the pattern of synaptic
efficacies. In networks with locally dense connectivity, the
balance between excitation and inhibition has been shown
to generate amplification of this type, accordingly termed
“balanced amplification” [5]. We have revisited this feature
in sparse balanced networks in which any two neurons are
connected randomly with some probability. Random networks
had already been studied in terms of their pseudospectrum [8],
which only provides bounds on amplification. We have chosen
a more direct approach and assessed non-normality in terms of
its functional impact in networks driven by stochastic external
input. We have explicitly calculated the strength of the activity
fluctuations that can only be attributed to the non-normality of
the recurrent connectivity. We found non-normal amplification
to be very weak, concluding that the only way to obtain large
amplification in random networks is to allow for significant
dynamical slowing. If the dynamics are to be kept fast,
then the connectivity needs some structuring, so as to allow
synaptic weights to take up larger values and to discourage
the emergence of large positive eigenvalues. We have given
an example of minimal network structure, namely connection
antisymmetry, that achieves precisely this. More adaptive ways
of shaping the connectivity, such as synaptic plasticity, could
also be considered. In particular, inhibitory synaptic plasticity
has recently been shown to suppress the attractor dynamics of
a few activity motifs embedded in a spiking network, while
still permitting their transient recall [15].

Non-normal amplification could provide a mechanistic
account for the often reported transient nature of both
spontaneous and evoked activity in primary sensory cortices.
Moreover, from a functional viewpoint, amplification without
slowing could be a highly relevant feature in areas involved
in the processing of fast-changing signals. If transient ampli-
fication by the synaptic connectivity is meant to allow past
experience to be reflected in the responses to sensory stimuli
(see, e.g., [20]), then it is quite reassuring that random networks
are poor amplifiers, for it implies that nothing can be amplified
that has not been learned.

Here we have focused on spontaneous activity, that is, on the
fluctuations elicited by isotropic external noise that is totally
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uninformed of the frozen structure of the connectivity matrix.
The equivalent triangular form of a non-normal connectivity
matrix suggests that neuronal networks should be more
sensitive along some input directions than along others, so
they could still respond vigorously though transiently to some
carefully chosen input patterns (evoked activity). The first
Schur mode, for example, is indeed close to such a preferred
pattern [6]. This anisotropy prompts two important questions.
First, how many different (orthogonal?) directions of high sen-
sitivity does a network possess? Similarly, in how many distin-
guishable directions can the network amplify those preferred
input signals? These quantities taken together could define the
“non-normal information capacity” of a network, reminiscent
of the concept of memory capacity in attractor networks.

We have assumed here a simple network topology of the
Erdős-Rényi type, whereas brain networks are often more
heterogeneous [21], for example, small-world and/or scale-
free [22,23]. The graph topology is known to affect dynamical
properties such as correlations and network synchronization
[24] or performance in attractor tasks [25]. The width of
the out-degree distribution could prove particularly important
to the phenomenon we study here, since it modulates the
amount of shared input between cells, and therefore also
the magnitude of pairwise correlations [26] that can, in turn,
source amplification. Although more complicated topologies
fall outside the scope of our study, it would be interesting to see
how they affect the non-normal contribution to amplification,
as opposed to how they dictate the eigenvalue spectrum of the
adjacency matrix (see, e.g., [27,28] for spectral analyses).

Finally, our analysis has revealed that the non-normality of
balanced networks is to a large extent reflected in large “DC”
fluctuations. This seems to be a general feature of networks in
which neurons can either be excitatory or inhibitory, but not of
a mixed type [29]. It is somewhat disappointing that however
strong activity fluctuations are in individual neurons, they
always comprise a finite fraction of common variability. This is
because the variance of the overall population activity is of the
same order as the activity variance of the individual neurons
[Eq. (16)]. Should computations exploit the fluctuations along
the remaining N − 1 degrees of freedom of the network,
complications in decoding the current network state would
most certainly arise from a single dimension dominating the
dynamics. However, we wish to point out that these large
DC fluctuations are in fact a direct consequence of the exact
excitation-inhibition balance considered here. We show in
Appendix C that when inhibition dominates over excitation,
the variance of the population activity becomes suddenly
inversely proportional to the network size. Furthermore, the
mean pairwise correlation coefficient in the network scales
similarly, and thus vanishes in large networks unless the E-I
balance is exact. Note that this phenomenon is not mediated
by a destruction of the strong feedforward link from the global
balance disruption d onto the DC mode v, as described at the
end of Sec. III. Increasing the overall amount of inhibition
does preserve this strong link, but cancels its amplifying effect
by imposing an equally strong negative feedback from the DC
mode onto itself (see Appendix C). This dynamic cancellation
of fluctuations and correlations was already shown to arise
in balanced networks of spiking neurons [30]. Our results
obtained for linear networks therefore suggest it may be a very

general feature of inhibition-dominated balanced networks,
and that fine-tuning the balance until it becomes exact [15] may
strongly affect the dynamics of the network and the resulting
correlation structure.
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APPENDIX A: AMPLIFICATION IN RANDOM
TRIANGULAR NETWORKS

In this Appendix we derive an exact expression for
amplification in random strictly triangular networks with
linear stochastic dynamics as in Eq. (1), where the nonzero
elements of the coupling matrix T are drawn from an arbitrary
distribution with zero mean and variance α2/N where N is
the network size. Though no closed-form solution is known
for the zero time lag covariance matrix �, we know from
the theory of multidimensional Ornstein-Uhlenbeck processes
that it satisfies the so-called Lyapunov equation [31]

(T − 1)� + �(T † − 1) = −τσ 2
ξ 1. (A1)

Equating component (i,j < i) on both sides of Eq. (A1) yields

σij = 1

2

i−1∑
k=1

tikσjk + 1

2

j−1∑
k=1

tjkσik (A2)

and equating the diagonal term (i,i) on both sides gives the
variance of Schur mode i:

σii = τσ 2
ξ

2
+

i−1∑
j=1

tij σij . (A3)

Combining Eqs. (A2) and (A3) yields

σii = τσ 2
ξ

2
+ 1

2

i−1∑
j=1

tij

(
i−1∑
k=1

tikσjk +
j−1∑
k=1

tjkσik

)
, (A4)

in which σjk and σik are to be recursively obtained from
Eq. (A2) with proper replacement of indices. We would like
to calculate the expected value over the tij coefficients, that
is, over multiple realizations of random matrix T . Explicitly
expanding the sums will reveal cross-terms like 〈tij tk�〉. Those
vanish if i �= k or j �= �, because the coupling coefficients are
taken to be uncorrelated. The only remaining terms will be
powers of the variance α2/N . Here we seek a truncation to
order α4/N2. Let us calculate

〈σii〉 = τσ 2
ξ

2
+ 1

2

i−1∑
j=1

i−1∑
k=1

〈tij tikσjk〉 + 1

2

i−1∑
j=1

j−1∑
k=1

〈tij tjkσik〉.

(A5)
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Because the network of Schur modes is purely feedforward,
the cross-covariance σjk for (j,k) < i is independent of the
coupling coefficients tij and tik , thus 〈tij tikσjk〉 = 〈tij tik〉〈σjk〉.
The only nonvanishing term in the first double sum is therefore
obtained for k = j , giving

〈σii〉 = τσ 2
ξ

2
+ α2

2N

i−1∑
j=1

〈σjj 〉 + 1

2

i−1∑
j=1

j−1∑
k=1

〈tij tjkσik〉. (A6)

Let us expand the expression in the second double-sum using
Eq. (A2):

〈tij tjkσik〉 = 1

2

i−1∑
�=1

〈tij tjkti�σk�〉 + 1

2

k−1∑
�=1

〈tij tjktk�σi�〉. (A7)

As above, the first sum vanishes except for � = j . Should one
continue and expand the second sum, one would receive terms
of order α6/N3 and more which are discarded here (see above).
Hence,

〈tij tjkσik〉 = α2

2N
〈tjkσjk〉 + · · · . (A8)

Using similar arguments, we expand 〈tjkσjk〉 to order α2/N

and receive

〈tjkσjk〉 = α2

2N
〈σkk〉 + · · · . (A9)

From Eq. (A6) it therefore follows that

〈σii〉 = τσ 2
ξ

2
+ α2

2N

i−1∑
j=1

〈σjj 〉 + α4

8N2

i−1∑
j=1

j−1∑
k=1

〈σkk〉. (A10)

Defining fi = 2〈σii〉/(σ 2
ξ τ ), we end up with a recursive equa-

tion for the buildup of relative variance down the feedforward
network of Schur modes:

fi = 1 + α2

2N

i−1∑
j=1

fj + α4

8N2

i−1∑
j=1

j−1∑
k=1

fk. (A11)

Now we define x = i/N (thus, 0 < x � 1) and rewrite
Eq. (A11) as

fxN = 1 + α2x

2i

i−1∑
j=1

g

(
xj

i

)
+ α4x2

8i2

i−1∑
j=1

j−1∑
k=1

g

(
xk

i

)
. (A12)

In the limit N → ∞ with constant x = i/N ratio, the sums on
the right-hand side converge to their corresponding Riemann
integrals, endowing fxN with a proper limit g(x):

g(x) = 1 + α2x

2

∫ 1

0
g(xs)ds

+ α4x2

8

∫ 1

0
ds

∫ 1

0
ds ′
(s − s ′)g(xs ′), (A13)

where 
 is the Heaviside function. This convergence stems
from the 1/N scaling of the variance α2/N . Using straight-
forward changes of variables (s �→ s/x), we end up with an
integral equation for g, the continuous variance profile along

the (now infinitely large) network of Schur patterns:

g(x) = 1 + α2

2

∫ x

0
g(s)ds + α4

8

∫ x

0
ds

∫ s

0
ds ′g(s ′).

(A14)

Differentiating Eq. (A14) twice with respect to x yields a
second-order differential equation for g,

g′′(x) = α2

2
g′(x) + α4

8
g(x), (A15)

with initial conditions g(0) = 1, g′(0) = α2/2, and g′′(0) =
3α4/8. The solution is precisely gLB(x) given in Eq. (12)
of the main text. It is only a lower bound on the true
variance profile g(x) since all the higher-order terms in α2

that we have neglected are positive. This approximation proves
reasonable for α2 < 3 as shown in Fig. 3(b) (dashed blue lines).
Further integrating over x yields a lower bound on non-normal
amplification A0(α2) ≡ ∫ 1

0 g(x)dx − 1 [Fig. 3(b), dashed blue
line]:

ALB
0 (α2) = 2

α2
√

3
exp

(
− (

√
3 − 1)α2

4

)

×
[

exp

(√
3α2

2

)
− 1

]
− 1. (A16)

Instead of truncating 〈σii〉 to order α4, one can also decide
to start again from Eq. (A5) and keep all terms up to order
n. This requires careful counting, and results in a differential
equation of order n, reading

g(n)(x) = α2

2

n∑
k=0

Ck

(
α2

4

)k

g(n−k−1)(x), (A17)

where Ck = (2k)!/[k!(k + 1)!] is the kth Catalan number.
Assuming g(x) can be written for 0 < x � 1 as a convergent
power series

g(x) = lim
K→∞

K∑
k=0

βkx
k (A18)

and equating g(k)(0) in both Eqs. (A17) and (A18) yields the
results of Eqs. (13)–(15).

APPENDIX B: VARIANCE OF THE DC COMPONENT

The last Schur mode is fed by the activities of all previous
Schur vectors, weighted by couplings with variance ζ 2

0 /N . The
same calculation that led to Eq. (A11) in this case leads to

fN = 1 + ζ 2
0

2

N−1∑
j=1

fj + ζ 2
0 R2

8N

N−1∑
j=1

j−1∑
k=1

fk + · · · , (B1)

which can be rewritten as

fN

N
= 1

N
+ ζ 2

0

R2

⎛
⎝ R2

2N

N−1∑
j=1

fj + R4

8N2

N−1∑
j=1

j−1∑
k=1

fk + · · ·
⎞
⎠ ,

(B2)
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where the sums were previously calculated in the limit N →
∞ [Eqs. (A11)–(A18)]. We thus recover

lim
N→∞

fN

N
= ζ 2

0

R2
[g(1) − 1]. (B3)

With ζ 2
0 given by Eq. (8) we arrive at Eq. (16) of the main text.

APPENDIX C: EXACTLY BALANCED VS.
INHIBITION-DOMINATED NETWORKS

In this paper, we have considered connectivities in which
weights were either zero or ±w0/

√
N , the ± sign depending

on the excitatory vs inhibitory nature of the presynaptic neuron
[Eq. (3)]. Furthermore, the number of cells of both types was
identical. The total inhibitory synaptic strength thus exactly
matched its excitatory counterpart. In this appendix, we wish
to show that if the nonzero inhibitory weights are stronger,
that is, −γw0/

√
N with γ > 1, the dynamics of the overall

population activity is strongly affected.
We have seen that the DC mode v = (1, . . . ,1)/

√
N is an

eigenvector of W . Let λv denote the associated eigenvalue,
which quantifies the effective decay rate of the DC component
in the network of neurons. If the E-I balance is exact (γ = 1)
as assumed throughout the paper, then λv = 0. More generally,
however, one can calculate

λv = −pw0(γ − 1)

2
·
√

N. (C1)

We see there is an unexpected scaling that the exact balance
was hiding: −λv ∼ O(

√
N ). Note that all other eigenvalues

are now scattered inside the disk of radius

R = w0

√
(1 + γ 2)p(1 − p)

2
, (C2)

though no longer uniformly so since the variance of the
inhibitory and excitatory weights now differ by a factor of
γ 2 [13]. Having kept the focus of this paper on non-normal
effects, we have intentionally set aside the contributions of
the eigenvalues to the overall amplification in the network.
When λv = 0 (perfect balance), our prediction that the average
population activity μ(t) ≡ ∑

xi(t)/N should have a variance
of order O(1) was justified: The last Schur unit corresponding
to this DC indeed receives N − 1 contributions of order O(1),
and its decay time constant is simply τ ∼ O(1), yielding
var[μ(t)] ∼ O(1). When inhibition dominates (γ > 1), the
DC component suppresses itself via a negative feedback that
scales with

√
N , yielding a very short decay time constant

τ/(1 − λv) ∼ O(1/
√

N ) whose deviation from τ can no
longer be neglected. To see what the implications of this scaling
are for the variance of μ(t), let us reduce the dynamics of the
DC to the following set of N stochastic differential equations:

dyi = −dt

τ
yi +

√
2

τ
dξi for 1 � i < N,

(C3)

dyN = dt

τ

(
− (1 − λv)yN +

N−1∑
i=1

εiyi

)
+

√
2

τ
dξN .

Here y1, . . . ,yN−1 model the first N − 1 Schur units inde-
pendently, with the appropriate noise terms such that they
achieve a variance of one (corresponding to the limit of small

amplification). They feed yN—which models the activity of
the last Schur unit, that is, the DC component μ(t)

√
N—

with couplings εi such that
∑

ε2
i /N = ζ 2

0 . We calculate the
coupling variance ζ 2

0 the same way we did in Sec. III:

ζ 2
0 = p2w2

0(1 + γ 2)

2
. (C4)

The variance var[μ(t)] of the overall neuronal population
activity, here modeled by μ(t) ≈ yN (t)/

√
N , is given by

standard Ornstein-Uhlenbeck theory:

var(μ(t)) = 1

N (1 − λv)

[
1 + Nζ 2

0

2 − λv

]
. (C5)

Although we have neglected amplification and correlations
in the first N − 1 Schur units, Eq. (C5) does provides a
good intuition for how the mean population activity μ(t) =
yN (t)/

√
N scales with the network size N , and provides a good

qualitative match to numerical results even for a non-negligible
spectral radius R = 0.5 (Fig. 7).
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FIG. 7. Temporal fluctuations of the overall population firing
rate in a balanced neuronal network. The variance of the average
population activity μ(t) = ∑

xi(t)/N is reported as a function of the
network size N in logarithmic scale. When inhibition perfectly bal-
ances excitation (γ = 1), the variance is asymptotically independent
of the network size (gray). When inhibition dominates (γ > 1), it
scales with 1/N (black). The solid lines denote the approximation
in Eq. (C5). The dashed lines indicate the asymptotics [Eq. (C6)].
Points denote the empirical variance obtained by simulating Eq. (1)
for 100 s, for neuronal networks constructed as specified in Sec. III
with connectivity density p = 0.1. The spectral radius was set to
R = 0.1 (top plot) and R = 0.5 (bottom plot).
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The asymptotics of var[μ(t)] are given by

var[μ(t)] ∼
{

p2w2
0

2 if γ = 1,

2(1+γ 2)
N(γ−1)2 if γ > 1.

(C6)

Thus, when inhibition dominates over excitation (γ > 1),
the fluctuations of the overall population activity vanish for
large networks, which was already shown in [30] for inhibition-
dominated networks of spiking neurons. In contrast, fine tuning
the connectivity such that the balance becomes exact (γ =
1) opens the possibility for these fluctuations to subsist in

arbitrarily large networks. This has profound consequences for
the mean pairwise correlation r̄ ≡ ∑

i �=j cov[xi(t),xj (t)]/N2,
as seen from the following identity:

r̄ = var[μ(t)] − 1

N2

∑
i

var[xi(t)]. (C7)

We have seen that the average variance var[xi(t)] in the
individual neurons (i.e., amplification as we define it) is O(1).
Thus, Eq. (C7) implies that r̄ scales with N in the same way
var[μ(t)] does: either O(1) if the balance is perfect or O(1/N )
if inhibition dominates.
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