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Abstract. Let G be a finite group and let T (G) be the abelian group of equivalence classes of

endotrivial kG-modules, where k is an algebraically closed field of characteristic p. We investigate

the torsion-free part TF (G) of the group T (G) and look for generators of TF (G). We describe
three methods for obtaining generators. Each of them only gives partial answers to the question

but we obtain more precise results in some specific cases. We also conjecture that TF (G) can

be generated by modules belonging to the principal block and we prove the conjecture in some
cases.

1. Introduction

If G is a finite group, let T (G) be the group of equivalence classes of endotrivial kG-modules, where
k is a field of characteristic p (assumed algebraically closed for simplicity). The abelian group T (G)
is finitely generated, hence of the form T (G) = TT (G)⊕ F , where TT (G) is the torsion subgroup
and F is a free abelian group. The purpose of this paper is to investigate the torsion-free part of
T (G), and in particular find generators for a suitable torsion-free direct summand F of T (G). The
non-uniqueness of F is actually an issue and so we work instead with the canonically defined free
abelian group TF (G) = T (G)/TT (G).

In many cases, TF (G) ∼= Z, generated by the class of the syzygy module Ω(k). Otherwise, by
[9], G has maximal elementary abelian p-subgroups of rank 2 and its Sylow p-subgroup P has a
rather special structure. In particular, the centre Z(P ) is cyclic, hence has a unique subgroup Z
of order p.

In order to find generators for TF (G), there are three known constructions, one using relative
syzygies, one using suitable subquotients of a syzygy module Ωn(k), and one involving a class in
group cohomology restricting non-trivially to Z. We analyze the three constructions and extend
as much as possible the results about them. The first construction works well for p-groups and
also for groups with a normal Sylow p-subgroup, but it does not seem possible to extend the
method to arbitrary finite groups. The second construction needs the assumption that Z is normal
in G and hence cannot work otherwise. The third construction, which we call the cohomological
pushout method, works well in general, but only rationally, not integrally : it provides generators
for Q ⊗Z TF (G), but it produces only a subgroup of finite index in TF (G). We can show that
this subgroup is the whole of TF (G) in some cases, but we also give examples where this is not so.
The problem of describing generators of TF (G) in full generality remains open, but our discussion
shows where the difficulties lie and allows us to state specific questions to be solved.
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We then prove that the endotrivial modules in the principal block form a subgroup T0(G) of
T (G) and that T0(G) has finite index. We conjecture that T (G) = T0(G) +TT (G), in other words
that TF (G) can be generated by modules in the principal block. We prove that the conjecture
holds in some cases, in particular if Z is a normal subgroup.

Finally we discuss control of p-fusion and we conjecture that if P is a common Sylow p-subgroup
of G and G′ and if a group homomorphism φ : G→ G′ induces an isomorphism FP (G)→ FP (G′)
between the canonical fusion systems of G and G′ on P , then φ induces an isomorphism TF (G′)→
TF (G). We prove the conjecture in a few cases.

In a final section, we have gathered a number of examples illustrating various results of this
paper.

A general remark about our methods may be useful. If NG(P ) denotes the normalizer of a
Sylow p-subgroup P of G, many results can be proved for NG(P ) but the passage from NG(P )

to G seems difficult. It is known that the restriction map ResGNG(P ) : T (G) −→ T (NG(P )) is
injective, induced by the Green correspondence, but the non-surjectivity of this map is a crucial
issue and is an obstacle for solving several of our problems (see Section 8).

2. Preliminaries

Throughout this paper, we let k denote an algebraically closed field of prime characteristic p. In
addition, we assume that all modules are finitely generated.

Given a finite group H, we write k for the trivial kH-module, or, whenever H needs to be
clarified, we write kH instead. Unless otherwise specified, the symbol ⊗ is the tensor product ⊗k
of the underlying vector spaces, and in case of kH-modules, then H acts diagonally on the factors.
If M is a kH-module, and ϕ : Q → M its projective cover, then we let Ω1(M), or simply Ω(M),
denote the kernel of ϕ (called the first syzygy of M). Likewise, if ϑ : M → Q is the injective hull
of M (recall that kH is a self-injective ring so Q is also projective), then Ω−1(M) denotes the
cokernel of ϑ. Inductively, we set Ωn(M) = Ω(Ωn−1(M)) and Ω−n(M) = Ω−1(Ω−n+1(M)) for all
integers n > 1.

If G is a finite group of order divisible by p, then a kG-module M is endotrivial if its endomor-
phism algebra Endk(M) is isomorphic (as a kG-module) to the direct sum of the trivial module
kG and a projective kG-module. In other words, a kG-module M is endotrivial if and only if
M∗⊗M ∼= k⊕ (proj), where M∗ denotes the k-dual Homk(M,k) of M , and (proj) some projective
module. Recall the following basic results (see Section 2 in [9]).

Lemma 2.1. Let G be a finite group of order divisible by p.

(1) Let M be a kG-module. If M is endotrivial, then M splits as the direct sum M� ⊕ (proj)
for an indecomposable endotrivial kG-module M�, which is unique up to isomorphism.

(2) The relation

M ∼ N ⇐⇒ M� ∼= N�

on the class of endotrivial kG-modules is an equivalence relation. We let T (G) be the set
of equivalence classes. Every equivalence class contains a unique indecomposable module
up to isomorphism.

(3) The tensor product induces an abelian group structure on the set T (G) by

[M ] + [N ] = [M ⊗N ] .
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The zero element of T (G) is the class [k] of the trivial module, consisting of all modules
of the form k ⊕ (proj). The inverse of the class of a module M is the class of the dual
module M∗.

The group T (G) is called the group of endotrivial kG-modules. It is known to be a finitely
generated abelian group. In particular, the torsion subgroup TT (G) of T (G) is finite. We define
TF (G) = T (G)/TT (G). The rank of the free abelian group TF (G) is called the torsion-free rank
of T (G) and has been determined in [9], extending work of Alperin [1]. If the p-rank of G is one,
then TF (G) = {0}, so we can assume that the p-rank of G is at least 2. Let CG be the set of all
maximal elementary abelian p-subgroups of G and write

CG = CG1 ∪ . . . ∪ CGnG

where we have the following:
(i) If the p-rank of G is 2, then CG1 , . . . , CGnG

are the conjugacy classes of maximal elementary
abelian p-subgroups (all of which have rank 2). If a Sylow p-subgroup P of G is not dihedral, one
of these subgroups must be normal in P , say E1, and we assume that E1 ∈ CG1 .

(ii) If the p-rank of G is at least 3, then CG1 is the set of all maximal elementary abelian p-
subgroups of rank at least 3, and CG2 , . . . , CGnG

are the conjugacy classes of maximal elementary
abelian p-subgroups of rank 2 (if any).

For an elementary abelian p-group E of rank at least 2, Dade [15] proved that T (E) ∼= Z,
generated by the class [Ω(k)]. This is used in the following result, which is Theorem 3.1 in [9].

Theorem 2.2. Assume that the p-rank of G is at least 2.

(1) The torsion-free rank of T (G) is equal to the number nG above.
(2) More precisely, choose Ei ∈ CGi for each i = 1, . . . , nG and consider the homomorphism

Ψ =

nG∏
i=1

ResGEi
: T (G) −→

nG∏
i=1

T (Ei) ∼= ZnG .

Then Ker(Ψ) = TT (G), Im(Ψ) ∼= TF (G), and Im(Ψ) has finite index in ZnG .
(3) The map Ψ is independent of the choices of the subgroups Ei.

Note that the most common situation occurs when the p-rank of G is at least 3 and there are no
maximal elementary abelian p-subgroups of rank 2, so that nG = 1. If nG = 1, then TF (G) ∼= Z,
generated by the class [Ω(k)], so the question of finding generators for TF (G) really occurs when
nG ≥ 2. We shall usually assume that nG ≥ 2.

We define the type of an endotrivial module M to be the nG-tuple of integers given by Ψ([M ]).
The whole point is that, for each i, there exists an endotrivial module of type (0, . . . , 0, t, 0, . . . , 0)
for some integer t appearing in i-th position. One of the main issues when looking for generators
of TF (G) is to find the minimal value of t for each i. Recall that Ωr(k) has type (r, r, . . . , r).

Our next result is general and does need the assumption that nG ≥ 2.

Proposition 2.3. Let G be a finite group of order divisible by p and P a Sylow p-subgroup of G.

(1) The restriction map ResGP : T (G) → T (P ) has a finite kernel. In other words, it induces
an injective homomorphism

ResGP : TF (G)→ TF (P ) .
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(2) If G has a nontrivial normal p-subgroup, then the kernel of ResGP : T (G)→ T (P ) consists
of the classes of one-dimensional modules.

Proof. (1) follows from part (2) of Theorem 2.2, or from Lemma 2.3 in [11], while (2) follows from
Lemma 2.4 in [11]. �

We end this section with some notes on support varieties of kG-modules. The theory of support
varieties played a key role in the classification of endotrivial modules over p-groups and it is a
necessary ingredient in two of the constructions that appear in Sections 5 and 6. The books [5]
and [14] serve as references for this material.

The basic definitions rely on the facts that the cohomology ring H∗(G, k) is a graded-commutative
noetherian ring and for any finite-dimensional kG-modules M and N , the k-space Ext∗kG(M,N)
is a graded, finitely generated module over H∗(G, k) ∼= Ext∗kG(k, k). For a finitely generated kG-
module M , let J(M) be the annihilator in H∗(G, k) of the cohomology module Ext∗kG(M,M).
Then the support variety VG(M) of M is the subvariety of the maximal ideal spectrum VG(k) of
H∗(G, k) defined by the graded ideal J(M). That is, VG(M) is the subset of VG(k) formed by all
maximal ideals that contain J(M). The support variety has many useful properties. Here are a
few that we use in the paper.

Theorem 2.4. Suppose that L, M and N are kG-modules.

(1) VG(M) = {0} if and only if M is projective.
(2) VG(M ⊕N) = VG(M) ∪ VG(N).
(3) VG(M ⊗N) = VG(M) ∩ VG(N).

(4) VG(M) =
⋃
E res∗G,E(VE(M↓GE)), where the union is over a set of representatives of the

maximal elementary abelian subgroups of G and res∗G,E : VE(M)→ VG(M) is the map on
spectra induced by the restriction map on cohomology.

(5) If VG(M) = V1 ∪ V2 where V1 and V2 are closed sets such that V1 ∩ V2 = {0}, then M has
submodules M1 and M2 such that VG(M1) = V1, VG(M2) = V2 and M ∼= M1 ⊕M2.

3. Values of the type function

Our purpose is to describe more precisely the possible values of the type of endotrivial modules.
We do this for a p-group P such that the torsion-free rank nP of TF (P ) is at least 2. We shall see
in later sections that the results extend to the case of a group G with Sylow p-subgroup P such
that the unique central subgroup Z of P of order p is normal in G. This happens, for example, if
P is normal in G.

We assume that the torsion-free rank nP of T (P ) is at least 2, so that there exist maximal
abelian elementary p-subgroups of rank 2. For 2 ≤ i ≤ nP , we choose a maximal elementary
abelian p-subgroup Ei of rank 2 with Ei ∈ CGi . The group Ei has the form Ei = Z×Si where Z is
the unique central subgroup of P of order p and Si is a non-central subgroup of order p. Moreover,
NP (Si)/Si = CP (Si)/Si must have p-rank 1, by maximality of Ei. Thus NP (Si)/Si = CP (Si)/Si
is either cyclic or quaternion (where a quaternion group means a generalized quaternion 2-group).
We define the integer mi as follows:

mi =

 1 if CP (Si)/Si is cyclic of order 2,
2 if CP (Si)/Si is cyclic of order ≥ 3,
4 if CP (Si)/Si is quaternion.
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Our next result shows that given a finite p-group P with nP > 1, then m2 = · · · = mnP
.

Theorem 3.1. Let P be a finite p-group with nP > 1. Then mi = mj for all 2 ≤ i, j ≤ nP .
Moreover, the case where one value of mi is equal to 1 only occurs if p = 2 and P is a dihedral
2-group (and nP = 2).

Proof. The statement holds if p is odd, as then all the factor groups CP (Si)/Si are cyclic of order
at least 3, and therefore m2 = · · · = mnP

= 2.
We are left with the case p = 2. We can assume that nP ≥ 3, otherwise there is nothing to prove.

First assume that mi = 1 for some i. Then |CP (Si)| = 4, so P has maximal class by a theorem
of Suzuki (see Satz III.14.23 in [17]). Therefore, P is dihedral, semi-dihedral, or quaternion (see
Theorem 5.4.5 in [16]). But a quaternion group has rank 1 and a semi-dihedral group has nP = 1.
So P is dihedral and has two conjugacy classes of maximal Klein four-groups. Thus nP = 2 and
there is nothing to prove. (Actually for both classes, we have |CP (Si)/Si| = 2.)

Assume now that mi = 2 for some i ≥ 2, that is, CP (Si) = Si × A where A is cyclic of order
≥ 4 (see Lemma 2.2 in [12]). For every j ≥ 2, we must prove that CP (Sj) ∼= Sj × C2q for some
q ≥ 2 (in other words CP (Sj)/Sj is not quaternion). Thus we must prove that, for any non-central
involution w of P , either CP (w) ∼= C2×C2q for some q ≥ 2, or w is contained in a subgroup in CP1 .
Recall that if the rank of P is 2, then CP1 = {E1} where E1 /P , and then CP (E1) has index 2 in P ,
while if the rank of P is at least 3, then the subgroups in CP1 have rank ≥ 3. We let also Z = 〈z〉
be the unique central subgroup of P of order 2.

By assumption, P contains an involution t whose centralizer has the form CP (t) = 〈t〉×A with
A = 〈a〉 ∼= C2m for some m ≥ 2. All such 2-groups have been classified by Janko, and we proceed
by inspection of the eight possible isomorphism types, which we consider in the same order as
listed by Berkovitch and Janko in [6, Theorem 48.1] (see [18, Theorem 1.1] for the original result).
In the first four cases the rank of P is 2 and in the last four cases it is equal to 3.

In case (a), P is a dihedral 2-group, so P does not satisfy the assumption (because mi = 1
and this case has actually been treated at the beginning of our proof). Case (b) does not occur,
because it is that of quasi-dihedral groups, which have a unique elementary abelian subgroup of
rank 2, hence nP = 1, contrary to our assumption.

In case (c), P has rank 2, the subgroup T = CP (t) is a maximal subgroup of P and Z(P ) is cyclic
of order ≥ 4 contained in T . Since T is abelian, E1 = 〈t, z〉 is a normal elementary abelian subgroup
of P , where z is the generator of Z, and E1 is the unique subgroup in CP1 . For every involution w,
that is in P but not in T = CP (t), we have |CP (w) : CT (w)| = 2, hence CP (w) = 〈w〉 ×CT (w). If
CT (w) had rank 2, then CP (w) would have rank 3, which is impossible since P has rank 2. Thus
CT (w) has rank 1, hence it is cyclic (because T is abelian) and of order ≥ 4 because it contains
Z(P ), which is cyclic of order ≥ 4. Thus CP (w) has the desired form.

For the remaining five isomorphism types of such finite 2-groups P , we follow [6] and introduce
the following notation. In addition to the above, P has a subgroup S = AL of index at most 2,

where L = 〈t, b | t2 = b2
n−1

= 1, bt = b−1〉 is dihedral of order 2n, L / P , and A ∩ L = Z(L) = Z.
In particular, |S| = 2n+m−1 with m ≥ 2 and n ≥ 3. The action of a on 〈b〉 is such that the two

elements of order 4, a2m−2

and b2
n−3

, commute. Put also c = a2m−2

b2
n−3

, which is an involution.

In case (d), every involution of P is contained in the central product 〈a2m−2〉 ∗ L. Thus an
involution w ∈ P is non-central if and only if either w ∈ L − Z, or w = c, or w = cz. For the

involutions c and cz, we have 〈c, z〉 / P because a and b centralize c and ct = a2m−2

(b2
n−3

)t =

a2m−2

b2
n−3

z = cz. This is the only four-group which is normal in P (unless L has order 8, see
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below), and hence E1 = 〈c, z〉 belongs to CP1 . So we only have to consider the involutions in L−Z.
If w ∈ L − Z, then w is L-conjugate to either t or tb, because L is dihedral. In the case where
S < P , we know that t and tb fuse in P , so nP = 2 and there is nothing to prove. So we can
assume that P = S = AL. Then a centralizes t and stabilizes the L-conjugacy class of tb. Hence
(tb)a = (tb)y, for some y ∈ L, and ã = ay−1 centralizes tb. We obtain isomorphic centralizers

CP (t) = 〈t〉×A and CP (tb) = 〈tb〉× Ã, where Ã = 〈ã〉, hence the result. There is a slight technical
problem if L is dihedral of order 8, because E1 = 〈c, z〉, E2 = 〈t, z〉, and E3 = 〈tb, z〉 are all normal
in P , and any of them can be chosen to be in CP1 , not necessarily E1. But in that case all three
centralizers are isomorphic (as one can easily check), so the result follows. This completes the
discussion of the first four cases and we are left with the groups of rank 3.

In case (e), P = S with n ≥ m + 2 ≥ 5, ba = b1+2n−m

, and A/〈z〉 acts faithfully on L. An

involution outside L must be of the form a2m−2

x with x ∈ L. By direct computation, we see that

the involutions of P are conjugate to either t, tb, c, or a2m−2

tb. Then 〈c, z〉 is normal in P with
ca = c, cb = cz, and ct = cz, and CP (c) = 〈a, b2, tb〉 is a maximal subgroup of P of rank 3. Both tb

and a2m−2

tb have a centralizer of rank 3 because they commute with c and z. Hence t is the only
remaining involution up to conjugation and 〈t, z〉 is the only maximal elementary abelian subgroup
of rank 2 up to conjugation. Therefore nP = 2 and there is nothing to prove.

In the last three possible isomorphism types of groups, we have |P : S| = 2 and, following [6],
there is an involution s ∈ P − S, hence P = S o 〈s〉. In case (f), we have n ≥ m + 1 ≥ 5,

as = a1+2m−2

b−2n−m

, bs = b−1, and ts = tb. That is, 〈b, s〉 ∼= D2n and 〈t, s〉 = L o 〈s〉 ∼= D2n+1 .
Moreover, a routine computation gives cs = c. Again, 〈c, z〉 is normal in P and CP (c) = 〈a, b, s〉 is
a maximal subgroup of P of rank 3. It follows that the involutions w of P are either involutions
of L or they are contained in CP (c). If w ∈ CP (c), then CP (w) has rank 3, because it contains
〈w, c, z〉. Otherwise, we observe that the two conjugacy classes of involutions of L fuse, because
ts = tb. Thus t is the only remaining involution up to conjugation and 〈t, z〉 is the only maximal
elementary abelian subgroup of rank 2 up to conjugation. Therefore nP = 2 and there is nothing
to prove.

In case (g), S = A∗L (central product over Z), and we have the same action of s on L, whereas
as ∈ aZ. This gives us the same involutions as in (f) and again nP = 2.

Case (h) is very similar, but with as = a−1c and n,m ≥ 4. In particular, nP = 2 once again. �

Remark 3.2. In case P has rank 2, one may wonder if Theorem 3.1 holds in the range 1 ≤ i, j ≤ nP
instead of 2 ≤ i, j ≤ nP , but the following example shows that it not so. Take P = (Q8×〈u〉)o 〈t〉
where both u and t have order 2. The action of t swaps two generators of Q8 and inverts their
product, and moreover ut = uz, where z is the generator of Z(Q8) = Z(P ). Then E1 = 〈z, u〉 is
normal in P , so E1 ∈ CP1 , and we get CP (u) = 〈u〉 × Q8. On the other hand E2 = 〈z, t〉 belongs
to CP2 and we have CP (t) = 〈t〉 ×A where A is cyclic of order 4. This is an example of a group in
case (d) of the Berkovitch-Janko list.

Theorem 3.1 improves the result given as Theorem 7.1 in [12] or Theorem 7.2 in [8] as follows.

Theorem 3.3. Let P be a p-group such that the torsion-free rank nP of TF (P ) is at least 2. Let
m = m2 = · · · = mnP

.

(1) For 2 ≤ i ≤ nP , there exists an endotrivial kP -module Ni with type (0, . . . , 0,mp, 0, . . . , 0)
(where mp appears in i-th position).

(2) T (P ) is free abelian with generators [Ω(k)], [N2], . . . , [NnP
].
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There are two available proofs based on two different constructions of the modules Ni. Both
constructions will be recalled in the next sections (see Theorem 4.1 and Theorem 5.2).

4. Construction via relative syzygies

The construction of generators of TF (G) as relative syzygies works well if a Sylow p-subgroup is
normal in G. It does not seem to extend further to other cases. In this section, we review this
construction of generators of TF (G) under the assumption that a Sylow p-subgroup P of G is
normal in G. Our results are only slight improvements of those obtained in [19], but we need the
improvement later in Section 9.

We assume that the torsion-free rank nP of T (P ) is at least 2 and we keep the notation of
Section 3, with m = m2 = · · · = mnP

. Then we define the module

Ni = Ωm(Ω−mP/Si
(k)) ,

where Ω−mP/Si
(k) denotes the relative syzygy of the trivial module, relative to the subgroup Si (see

Section 3 in [12]). This is defined as the m-th cokernel in a minimal relative injective resolution
of the trivial module. Alternatively, Ω−1

P/Si
(k) is defined as the cokernel of the canonical map

k → k[P/Si] and then Ω−mP/Si
(k) is the unique indecomposable summand with vertex P in the

tensor product Ω−1
P/Si

(k)⊗
m

.

Here is now a more precise version of Theorem 3.3. It is proved in [12] (using also [13]), but the
statement now incorporates the improvement obtained in Theorem 3.1.

Theorem 4.1. Let P be a p-group such that the torsion-free rank nP of TF (P ) is at least 2.

(1) For 2 ≤ i ≤ nP , the kP -module Ni is endotrivial and has type (0, . . . , 0,mp, 0, . . . , 0)
(where mp appears in i-th position).

(2) T (P ) is free abelian with generators [Ω(k)], [N2], . . . , [NnP
].

Actually, the modules in [12] are the dual modules of the modules Ni defined here, i.e. N∗i
∼=

Ω−m(ΩmP/Si
(k)). The advantage of our definition here is that the type is positive and also that

there is a map Ni → k which splits on restriction to Ej for j 6= i, so that Ni resembles the module
Mi constructed in Section 6 by the cohomological pushout method.

We assume that P is normal in G. When passing from P to G, some of the conjugacy classes
of maximal elementary abelian p-subgroups of rank 2 may fuse (so in particular nG ≤ nP ). For
simplicity of notation, we assume that E1, E2, . . . , EnG

are representatives of CG1 , . . . , CGnG
. Because

of our assumption that P is normal in G, fusing of the classes means that for nG + 1 ≤ j ≤ nP ,
Ej is G-conjugate to one of E1, . . . , EnG

. Note that Ej can only fuse to E1 if the p-rank of G is 2.
It was proved in [19] that the restriction map induces an isomorphism T (G) ∼= T (P )G. For

every P -conjugacy class CPi with 2 ≤ i ≤ nG, an endotrivial module for G is constructed by first
extending Ni to the stabilizer of CPi and then tensor-inducing to G. The stabilizer of CPi is equal to
PNG(Si) = PNG(Ei) (see Lemma 3.5 in [19]) and we write for simplicity Ji = PNG(Si). From the
argument in [19], we know that Ni extends to Ji and our improvement is to make this extension
more explicit (and more elementary).

Proposition 4.2. Let G be a group with a normal Sylow p-subgroup P . Assume that the torsion-
free rank nP of TF (P ) is at least 2.

(1) For 2 ≤ i ≤ nG, the kJi-module Ω−mJi/Si
(kJi) is endotrivial and Ω−mJi/Si

(kJi)↓
Ji
P
∼= Ω−mP/Si

(kP ).
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(2) For 2 ≤ i ≤ nG, the kJi-module Ñi = Ωm(Ω−mJi/Si
(kJi)) is endotrivial and Ñi↓JiP ∼= Ni.

(3) T (G) = X(G) ⊕ F , where X(G) is the subgroup of T (G) generated by the classes of one-
dimensional modules and where F is free abelian, generated by the classes of Ω(k) and of

the tensor induced modules TenGJi(Ñi) (for 2 ≤ i ≤ nG).

(4) Each of the modules TenGJi(Ñi) has a trivial one-dimensional quotient, given by a map

TenGJi(Ñi)→ kG which splits on restriction to Ej for any j 6= i, 1 ≤ j ≤ nG.

Proof. For simplicity of notation, write S = Si and J = Ji, and assume that CP (S)/S is cyclic of
order ≥ 3, so that m = 2. The other values of m are treated similarly. Let

E : 0 // kP // Q0
// Q1

// Ω−2
P/S(kP ) // 0

be a minimal relative injective resolution of the trivial kP -module (relative to S). For instance
Q0 = k[P/S]. Since J stabilizes the conjugacy class of S, every module in this sequence is J-

invariant and therefore E↑JP ↓
J
P is the direct sum of |J/P | copies of E . On the other hand, we claim

that E↑JP is a relative injective resolution of the kJ-module kP ↑JP (relative to S). Clearly Qi↑JP is

projective relative to S. Moreover the sequence E↑JP ↓
J
S splits because

E↑JP ↓
J
S = E↑JP ↓

J
P ↓

P
S
∼= (|J/P | · E)↓PS

and E↓PS splits (by definition of a relative injective resolution).

Since relative injective resolutions are additive and kP ↑JP ∼= kJ ⊕ L for some kJ-module L, it
follows that E ∼= F ⊕ F ′, where

F : 0 // kJ // R0
// R1

// Ω−2
J/S(kJ) // 0

is a minimal relative injective resolution of the trivial kJ-module and F ′ is a relative injective reso-
lution of L. It follows that Ω−2

J/S(kJ) is a direct summand of Ω−2
P/S(kP )↑JP and, since Ω−2

P/S(kP )↑JP ↓
J
P

is the direct sum of |J/P | copies of Ω−2
P/S(kP ), we obtain

Ω−2
J/S(kJ)↓JP ∼= Ω−2

P/S(kP )⊕ . . .⊕ Ω−2
P/S(kP ) (r summands)

where 1 ≤ r ≤ |J/P |. On the other hand

Ω−2
J/S(kJ)↓JP ∼= Ω−2

P/S(kP )⊕ T

for some S-projective module T . This forces r = 1 and T = 0. Thus Ω−2
J/S(kJ)↓JP ∼= Ω−2

P/S(kP ),

and in particular Ω−2
J/S(kJ) is endotrivial. This proves (1).

For the proof of (2), note that Ω2(Ω−2
J/S(kJ)) is endotrivial by (1) and it is indecomposable.

Since its restriction to P must remain indecomposable (by Proposition 2.6 in [9]), we must have

Ω2(Ω−2
J/S(kJ))↓JP ∼= Ω2(Ω−2

P/S(kP )) .

Now (3) was proved as Theorem 3.10 in [19].
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For the proof of (4), we consider the diagram

0 // Ω2(Ω−2
J/S(kJ))

��

// I0

��

// I1

��

// Ω−2
J/S(kJ)

��

// 0

0 // kJ // R0
// R1

// Ω−2
J/S(kJ) // 0

where I0 and I1 are projective kJ-modules and where the right-hand side map is the identity.
Write Ñi = Ω2(Ω−2

J/S(kJ)). Fix j 6= i with 1 ≤ j ≤ nG. Since Ej intersects trivially S and all

its conjugates, any module induced from S is projective on restriction to Ej . Therefore the two

modules R0↓JEj
and R1↓JEj

are projective and so Ω−2
J/S(kJ)↓JEj

∼= Ω−2(kEj
) ⊕ (proj). Therefore,

on restriction to Ej , we have two homotopy equivalent projective resolutions of Ω−2(kEj
) and

Ñi↓JEj
= kEj ⊕ (proj). It follows that the map Ñi↓JEj

→ kEj must be the shift of the identity, so
it must be the identity on kEj

and zero on a suitable projective complement. In other words, the

map Ñi → kJ splits on restriction to Ej . In particular, it is non-zero and kJ is isomorphic to a

quotient of Ñi. Now tensor inducing from J to G, we see that TenGJ (Ñi) has a quotient isomorphic

to TenGJ (kJ) ∼= kG. Again this splits on restriction to Ej . �

5. Construction via ordinary syzygies

The second construction of generators for TF (G) uses suitable subquotients of some ordinary
syzygy Ωn(k) of the trivial module. It is presented in Theorem 7.2 of [8] in the case of a p-group,
and in Theorem 3.4 of [9] in the case where the group G has a normal Sylow p-subgroup P . We
extend slightly this result by showing that it holds more generally if Z is normal in G, where Z
is the unique central subgroup of P of order p. We cannot expect to extend further the method
because it uses in an essential way the quotient group G/Z, hence the normality of Z. For an
arbitrary finite group G with nG ≥ 2, the result of this section applies to NG(Z), so we will be left

to consider the restriction map ResGNG(Z) : T (G) −→ T (NG(Z)), which is injective, but its image

is not easy to control (see Section 8).
Let G be a group such that the torsion-free rank nG of TF (G) is at least 2. Let P be a Sylow

p-subgroup of G, let Z be the unique central subgroup of P of order p, and assume that Z is normal
in G. Let G = G/Z, P = P/Z, and similarly for other subgroups containing Z. For 2 ≤ i ≤ nG,
we let Ei ∈ CGi . Then Ei has the form Ei = Z × Si where Si is a non-central subgroup of order p.
We let m = m2 be the integer defined in Section 3 and we set a = mp. Recall that Theorem 3.1
says that m = mi for each 2 ≤ i ≤ nP . In [8] and [9], the integer a is defined differently when
p = 2, but we first check that both definitions agree.

Lemma 5.1. Assume that p = 2. With the notation above, there is a unique elementary abelian 2-
subgroup Ai of P which has maximal order subject to the condition that Ei ⊆ Ai. In fact, the group
NP (Ei) is abelian, hence contains a unique maximal elementary abelian 2-subgroup Ai. Moreover,
if Ai denotes its inverse image in G, then |Ai|/4 = |Ai|/2 = a.

Proof. Let Ai ⊆ P be a subgroup such that Ei ⊆ Ai and Ai is a maximal elementary abelian
subgroup. Without loss, by Theorem 3.1, we may take i = 2 and let A = A2 and E = E2. Because
A is abelian, E is a normal subgroup of A, hence A ⊆ NP (E). By Lemma 2.2 in [12], NP (E)
is a central product NP (E) = D8 ∗ L, where D8 is dihedral of order 8 and L is either cyclic or
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quaternion. Thus NP (E) is abelian and so A is unique. Moreover L ∼= CP (S)/S, so that, by
definition of m in Section 3, we obtain

a = 2m =

 2 if L is cyclic of order 2,
4 if L is cyclic of order ≥ 4,
8 if L is quaternion.

If L is cyclic of order 2, then NP (E) = D8 = A, hence |A| = 4. If L is cyclic of order ≥ 4, then
NP (E) = D8 ∗ L contains A = D8 ∗ C4 and |A| = 8. If L is quaternion, then NP (E) = D8 ∗ L
contains A = D8 ∗Q8 and |A| = 16. �

Let Z = 〈z〉 be the unique central subgroup of order p in P . For any kG-module M , we let
M0 = {m ∈M | (z−1)p−1m = 0} and M = M/M0. Notice that M is a kG-module. Applying this

construction to the module M = Ωa(k), we obtain a kG-module Ωa(k).
We now come to the second more precise version of Theorem 3.3, which extends Theorem 7.2

of [8] and Theorem 3.4 of [9].

Theorem 5.2. Let G be a group such that the torsion-free rank nG of TF (G) is at least 2. Let P
be a Sylow p-subgroup of G, let Z be the unique central subgroup of P of order p, and assume that
Z is normal in G. For 1 ≤ i ≤ nG, we let Ei ∈ CGi and we let a = mp.

(1) For 2 ≤ i ≤ nG, there is a subquotient Ni of Ωa(k) which is endotrivial and has type
(0, . . . , 0, a, 0, . . . , 0) (where a appears in i-th position).

(2) TF (G) is generated by [Ω(k)], [N2], . . . , [NnG
].

Proof. We follow quite closely the proof of Theorem 3.4 of [9] and indicate the necessary modifi-
cations. First it should be noted that one of the main ingredients is Theorem 4.2 in [8], which is
explicitly stated for a group in which Z is normal. The second main ingredient is Theorem 7.2
of [8], which treats the case of a p-group.

Now we fix i such that 2 ≤ i ≤ nG, we let C be the set of subgroups in CGi which are contained
in P , and we decompose

C = A1 ∪ . . . ∪ Ar ,
where each At is a P -conjugacy class of maximal elementary abelian p-subgroups of rank 2 in P
(for 1 ≤ t ≤ r). Then, as in the proof of Theorem 3.4 of [9], the variety VP

(
Ωa(kP )

)
of the

kP -module Ωa(kP ) decomposes as follows:

VP
(
Ωa(kP )

)
= (W1 ∪ . . . ∪Wr) ∪ Ŵ ,

where Wt = res∗
P,At

(VAt
(k)) and At ∈ At for 1 ≤ t ≤ r, and such that (W1 ∪ . . .∪Wr)∩ Ŵ = {0}.

Since all the subgroups At fuse in G and become conjugate to Ei, we obtain

res∗
G,P

(Wt) = res∗
G,P

res∗
P,At

(VAt
(k)) = res∗

G,At
(VAt

(k)) = res∗
G,Ei

(VEi
(k)) ,

and therefore the variety V = res∗
G,P

(Wt) is independent of t for 1 ≤ t ≤ r. It follows that

VG
(
Ωa(kG)

)
= V ∪ V̂ ,

where V̂ = res∗
G,P

(Ŵ ), and such that V ∩ V̂ = {0}. Then by Theorem 2.4 (5), Ωa(kG) ∼=
M1 ⊕M2, where VG(M1) = V and VG(M2) = V̂ . By similar means and with some additional
work, as in Lemma 4.1 and Theorem 4.2 of [8], we show that (z − 1)Ωa(kG) ∼= L1 ⊕ L2, where



TORSION-FREE ENDOTRIVIAL MODULES 11

(z − 1)rLj/(z − 1)r+1Lj ∼= Mj for all r = 0, . . . , p − 2 and j = 1, 2. Let Uj be the kernel of the
composition

Ωa(kG) // Ωa(kG) // Mj

where the first map is the natural quotient and the second is the projection. Continuing the
argument of Theorem 3.3 in [9] (which is a restatement of Theorem 4.2 in [8]), we obtain that the
subquotient Ni = U2/L2 is an endotrivial module such that

Ni↓GEi
∼= Ωa(k)⊕ (proj) and Ni↓GEj

∼= k ⊕ (proj) for 1 ≤ j ≤ nG , j 6= i ,

so Ni is of type (0, . . . , 0, a, 0, . . . , 0) with a in i-th position.
On restriction to the Sylow p-subgroup P , the types have more components (because nP ≥ nG)

and we see that the type of Ni↓GP is

(0, . . . , 0, a, . . . , a, 0, . . . , 0)

with a repeated r times, where r is, as above, the number of P -conjugacy classes of maximal
elementary abelian p-subgroups of rank 2 in P which fuse with Ei in G. Clearly, the restriction
to P of any endotrivial kG-module M must have a type which is constant on those r conjugacy
classes (and this remark holds for each i). By subtracting a multiple c[Ω(k)] for some c ∈ Z, the
first component of the type of [M ′] = [M ] − c[Ω(k)] can be assumed to be zero. Then, we know

from Theorem 4.1 that the j-th component of the type of [M ′↓GP ] is an integral multiple of a = mp.
Therefore, since the components are constant on elementary abelian p-subgroups of P which fuse
in G, the class [M ′↓GP ] in TF (P ) must be a Z-linear combination of the classes of [N2↓GP ], . . . ,

[NnG
↓GP ]. It follows that [M↓GP ] is a Z-linear combination of [Ω(k)↓GP ], [N2↓GP ], . . . , [NnG

↓GP ]. Since

ResGP : TF (G) → TF (P ) is injective by Proposition 2.3, [M ] is a Z-linear combination of [Ω(k)],
[N2], . . . , [NnG

], as required. �

6. Construction via a cohomological pushout

The third construction of generators for TF (G) uses a cohomology class restricting non-trivially to
the unique central subgroup Z of order p in a Sylow p-subgroup P . In contrast with the previous
two constructions, it can be used for any finite group G. However, it does not produce integral
generators of TF (G), but only generators of Q⊗ZTF (G). We recall the construction and generalize
it slightly. We also give examples where it does not produce integral generators of TF (G).

For the discussion of TF (G), we can assume that a Sylow p-subgroup P has maximal elementary
abelian subgroups of rank 2. In particular, Z(P ) must be cyclic and we let Z be the unique central
subgroup of P of order p. As in Section 2, we let n = nG and we choose Ei ∈ CGi for each
i = 1, . . . , n.

Let q be the minimal positive integer such that there exists a one-dimensional kG-module W
and a cohomology class ζ ∈ Hq(G,W ) with the property that resG,Z(ζ) is not nilpotent in Hq(Z, k)
(note that W is trivial on restriction to Z). From the cohomology of cyclic groups, we see that q
must be even if p is odd. The condition can be rewritten as resG,Z(ζ) 6= 0, provided we assume
that q is even if p is odd.

We only need to extend some of the results from Section 4 of [8] by allowing for a one-dimensional
module W instead of the trivial module. If ζ ∈ Hq(G,W ) satisfies the above property and if

ζ̂ : Ωq(k)→W represents ζ, then the variety of the module Lζ = Ker(ζ̂), decomposes as

VG(Lζ) = V1 ∪ . . . ∪ Vn
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with Vi ∩ Vj = {0} for i 6= j, where Vi = res∗G,Ei
(VEi(Lζ)). Consequently, Lζ decomposes as

Lζ = L1 ⊕ . . .⊕ Ln

where VG(Li) = Vi. Now consider the module

Mi = Ωq(k)
/

(⊕j 6=iLj)

and the map ζi : Mi → W induced by ζ̂, which has kernel Li. In other words, Mi appears as a
pushout in the following diagram :

0

��

0

��
⊕j 6=iLj

��

// ⊕j 6=iLj

��
0 // Lζ

��

// Ωq(k)

��

ζ̂ // W

��

// 0

0 // Li

��

// Mi

��

ζi // W // 0

0 0

For this reason, this construction of Mi is called the cohomological pushout method.
The following was proved in [8] and [9] in case W is the trivial module, but the proof extends

without change to the case of a one-dimensional module W , because its restriction to any p-group
is trivial.

Theorem 6.1. Let q, W , ζ, Li, Mi, and ζi be as above, in particular, with resG,Z(ζ) not nilpotent.

(1) For each i, the kG-module Mi is endotrivial.
(2) The map ζi splits on restriction to Ej for j 6= i. In particular, ζi splits on restriction to Z.
(3) Mi is of type (0, . . . , 0, q, 0, . . . , 0) with q in i-th position.
(4) The classes [Ω(k)], [M2], . . . , [Mn] generate a torsion-free subgroup of T (G) of finite index.

The question now is whether the above classes generate TF (G). Some positive answers to this
question will be considered in Section 7. However, it often occurs that the classes above do not
generate TF (G), but only a subgroup of finite index. The problem is that we obtain a module Mi

of type (0, . . . , 0, q, 0, . . . , 0), but an endotrivial module may exist with type (0, . . . , 0, r, 0, . . . , 0)
and r dividing q. In other words, it is not sufficient to require the minimality of q with the property
that there exists W and ζ ∈ Hq(G,W ) such that resG,Z(ζ) is not nilpotent.

This problem already occurs for p-groups (in which case W must be the trivial module). By
Theorem 4.1, we know the minimal value r = mp such that there exists an endotrivial module with
type (0, . . . , 0, r, 0, . . . , 0). When p = 2, there is an example of a 2-group of order 64 with q = 8
and r = 4 (see Example 8.2 in [8]). When p is odd, we present an example of a group of order 35

with q = 18 and r = 6 (see Example 11.2).
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One may wonder whether the one-dimensional moduleW may be chosen to be the trivial module,
but there are examples where the minimal value of q occurs only with a non-trivial one-dimensional
module W (see Example 11.1).

For reference, we present one specific result on the existence of cohomology elements restricting
non-trivially to the center of the Sylow p-subgroup. It is a standard result and we present a proof
for completeness.

Lemma 6.2. Assume that p > 2. Let G be a finite group with the property that the rank nG of
the group TF (G) is at least two. Let P be a Sylow p-subgroup of G, let Z be the unique subgroup
of order p in the center of P , and let N = NG(Z). If N 6= CG(Z), then there exists no element ζ
in H2p(G, k) such that resG,Z(ζ) 6= 0.

Proof. The natural action of N on Z induces an injection N/CG(Z) → Aut(Z) ∼= Z/(p−1)Z. So
there exists a p′-element x in N such that x and CG(Z) generate N . Let H be the subgroup
generated by x and Z. Then H = Z o 〈x〉 has order pa where a is relatively prime to p. The
restriction map resG,Z factors through resH,Z . Thus we can prove the lemma by showing that

H2p(H, k) = {0}.
Because Z is a cyclic p-group, the groups Hm(Z, k) have k-dimension one for all m. In particular,

H2(Z, k) is spanned by a single element γ and the action of x on H2(Z, k) is given by γx = ωγ
where ω is a primitive tth-root of unity, t being the order of the image of x in Aut(Z). Therefore,
(γp)x = ωpγp 6= γp, where γp ∈ H2p(Z, k) is the p-th power of γ, and it spans H2p(H, k). Because
H2p(H, k) is the space of H-fixed points in H2p(Z, k), we must have that H2p(H, k) = {0}, as
asserted. �

7. When the cohomological pushout method is optimal

When the cohomological pushout method of Section 6 produces generators for the whole of TF (G)
(and not merely a subgroup of finite index), we say that the method is optimal for the group G.
In this section, we prove that there are various cases where the method is optimal. We start with
some specific p-groups.

Proposition 7.1. Let P = Cp oCp = E0oCp where E0 = (Cp)
p and consider the normal subgroups

Ei = [P,Ei−1], for 1 ≤ i ≤ p (forming the lower central series of P ). Consider the group Q = P/Ei
where 2 ≤ i ≤ p. Then the cohomological pushout method is optimal for the group Q. In particular,
this holds for P itself and for the extraspecial p-group P/E2 of order p3.

Proof. Let Q = P/Ei and F = E0/Ei, so that Q = F oCp. We have Z = Z(Q) = Ei−1/Ei. Since
F is elementary abelian, there exists ζ ∈ Hm(F, k) whose restriction to Z is not zero, where m = 2
if p is odd and m = 1 if p = 2. Let η = NormF,Q(ζ) ∈ Hmp(Q, k). Using the Mackey formula for
the norm map, we obtain

resQ,Z(η) =
∏

g∈[Z\Q/F ]

NormZ∩ gF,Z conjg resF,Zg∩F (ζ)

=
∏

g∈[Q/F ]

NormZ,Z resF,Z(ζ) = resF,Z(ζ)p 6= 0 .

Since ζ has degree m, the cohomology class η has degree mp and, by Theorem 6.1, we obtain
endotrivial kQ-modules Mi of type (0, . . . , 0,mp, 0 . . . , 0), with mp in i-th position and 2 ≤ i ≤ nQ.
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But we know from Theorem 4.1 that the values mp are the minimal possible values for generators
of TF (Q) (because CQ(Si)/Si is cyclic of order p, so m = 1 if p = 2 and m = 2 if p is odd).
Therefore TF (Q) is generated by the classes of Ω(k),M2, . . . ,MnQ

(and in fact TF (Q) = T (Q)
since TT (Q) = 0 by [13]).

The two special cases correspond to the values i = p (with Ep = {1}) and i = 2. �

Note that if p is odd, then P/E2 is extraspecial of exponent p, while if p = 2, then P = P/E2

is dihedral of order 8. Note also that the module Mi must be isomorphic to the module Ni of
Theorem 4.1 because both are indecomposable of same type and, for the p-group P , the restriction
map from T (P ) to the product

∏
E T (E), taken over all elementary abelian subgroups E is injective.

We now show that we can always push the method from P to the centralizer of the subgroup Z.

Proposition 7.2. Let G be a group such that the torsion-free rank nG of TF (G) is at least 2.
Let P be a Sylow p-subgroup of G and let Z be the unique central subgroup of order p in P . If the
cohomological pushout method is optimal for the group P , then so it is for the group CG(Z).

Proof. We may assume thatG = CG(Z), that is, Z is central inG. We prove that the cohomological
pushout method is optimal for the group G by constructing a cohomology class as follows. Let q
be the minimal positive integer such that there exists ζ ∈ Hq(P, k) with resP,Z(ζ) not nilpotent.
Let η = TrP,G(ζ), where TrP,G is the transfer map. Using the Mackey formula and the fact that
any cohomology class in H∗(Z, k) is invariant under G-conjugation, because Z is central, we obtain

resG,Z(η) =
∑

g∈[Z\G/P ]

TrZ∩ gP,Z conjg resP,Zg∩P (ζ)

=
∑

g∈[G/P ]

TrZ,Z resP,Z(ζ) = |G : P | resP,Z(ζ) .

Since |G : P | is prime to p, this is not nilpotent.
If η̂ : Ωq(kG)→ kG represents η and Lη = Ker(η̂), then

VG(Lη) = V1 ∪ . . . ∪ Vn and Lη = L1 ⊕ . . .⊕ Ln
where n = nG and Vi = res∗G,Ei

(VEi
(Lζ)). For 2 ≤ i ≤ n, we obtain an endotrivial module

Mi = Ωq(kG)
/

(⊕j 6=iLj)
of type (0, . . . , 0, q, 0, . . . , 0) with q in i-th position. We may have several P -conjugacy classes of
maximal elementary abelian subgroups which fuse into the single G-conjugacy class CGi and so

the type of Mi↓GP may have several values q corresponding to elementary abelian subgroups gEi
where g ∈ G and gEi ≤ P . In other words, Mi has the property that, for any elementary abelian
p-subgroup E of rank 2 of P ,

[Mi↓GE ] ∼=
{

0 if E is not G-conjugate to Ei,
[Ωq(kE)] if E = gEi for some g ∈ G.

Now any endotrivial kG-module M has the property that, if [M↓GE ] = [Ωr(kE)], then also

[M↓GgE ] = [Ωr(k gE)] for any g ∈ G with gE ≤ P . Thus the type of M↓GP must be constant on
G-conjugacy classes. Since the cohomological pushout method is optimal for the group P , the
class of M↓GP in TF (P ) is generated by classes with type (1, 1, . . . , 1) and (0, . . . , 0, q, 0, . . . , 0)
with q in j-th position, for each j with 2 ≤ j ≤ nP . In view of the injectivity of the restriction
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map to elementary abelian p-subgroups (Theorem 2.2) and because the type is constant on G-
conjugacy classes, it follows that the class of M in TF (G) must be generated by the classes of the
modules Ω(k) and Mi for 2 ≤ i ≤ nG. Thus the cohomological pushout method is optimal for the
group G. �

8. Green correspondence

Let H = NG(P ) be the normalizer of a Sylow p-subgroup P of G. By Proposition 2.6 in [9], we

know that ResGH : T (G) −→ T (H) is injective (induced by the Green correspondence). Clearly,
this induces a group homomorphism

ResGH : TF (G) −→ TF (H) .

This is is still injective because if ResGH([M ]) is torsion, then ResGH(n[M ]) = 0 for some n, hence
n[M ] = 0.

By Proposition 4.2, any element of T (H) is the class of a module of the form A⊗M , where M
is torsion-free, generated by the modules of Proposition 4.2, and A is a one-dimensional module.
However, we do not know in general which kH-modules have a Green correspondent which is
endotrivial.

Question 8.1. Keep the notation above.

(1) If A is one-dimensional, find conditions implying that the Green correspondent of A is
endotrivial.

(2) If M is a generator of TF (H) (as constructed by one of our methods), is its Green corre-
spondent endotrivial ?

For the first question, there are examples where the Green correspondent L is not endotrivial
(see Example 11.3, or more generally Theorem 6.2 in [9]) and others where L turns out to be
endotrivial (e.g. when G = S2p and L is the Young module Y (p,p), see Proposition 7.1 in [10]).
A general answer to this first question has been obtained recently by Balmer [3] but, although
elementary, it involves some technicalities which do not seem to be easy to deal with. For the
second question, we have no example where the Green correspondent is not endotrivial, but we
have too little evidence to make a conjecture.

In principle, it might happen that the Green correspondents of A and M are not endotrivial
while the Green correspondent of A⊗M is endotrivial. This difficulty seems, at present, hard to
overcome. In other words, if an element of TF (H) = T (H)/TT (H) is in the image of ResGH , it

does not mean that all its representatives in T (H) are in the image of ResGH . So we see that the
non-uniqueness of a torsion-free complement of the torsion subgroup is an important issue.

9. Blocks

Let B0(G) denote the principal block of the finite group G. We let T0(G) be the set of all classes
in T (G) such that the only indecomposable module in the class (up to isomorphism) belongs
to B0(G). As instances of classes in T0(G), we have of course [Ωr(k)], but also the classes of the

modules Ni = Ωm(Ω−mP/Si
(k)) of Theorem 4.1, the classes of the modules TenHJi(Ñi) of Proposi-

tion 4.2, and the classes of the modules Mi of Theorem 6.1, because in each of those three cases,
there is a non-zero map from the module to the trivial module k.

We first observe the following.
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Proposition 9.1. Let G be a finite group.

(1) T0(G) is a subgroup of T (G).
(2) T0(G) has finite index in T (G).

Proof. If M belongs to B0(G), then so does its dual M∗. So T0(G) is invariant under passage to
additive inverses. Now let M be an indecomposable endotrivial kG-module belonging to B0(G).
Since tensoring with M is a stable equivalence, with inverse obtained by tensoring with M∗, we
have isomorphisms

Ext1
kG(S, T ) ∼= Ext1

kG(M ⊗ S,M ⊗ T )

and it follows that if S and T belong to the same block, then so do S′ and T ′, where S′ and T ′ are
indecomposable modules such that M ⊗ S ∼= S′ ⊕ (proj) and M ⊗ T ∼= T ′ ⊕ (proj). Applying this
to S = k and T in B0(G), we see that M belongs to the same block as the indecomposable module
T ′ in the class of M ⊗ T . (In other words, tensoring with M preserves the principal block.) This
means that T ′ belongs to B0(G), or in other words, that [M ] + [T ] = [M ⊗ T ] belongs to T0(G).
This completes the proof of (1).

For the proof of (2), we let H be the normalizer of a Sylow p-subgroup and we note that, by
Proposition 4.2, T (H) = X(H) ⊕ F , where F is free abelian generated by modules belonging
to B0(H). Thus T0(H) has finite index in T (H). Now

ResGH : T (G) −→ T (H)

is induced by the Green correspondence, which preserves the principal blocks. Thus T0(G) is the
kernel of

T (G) −→ T (H) −→ T (H)/T0(H) .

Therefore T (G)/T0(G) embeds in the finite group T (H)/T0(H), so T0(G) has finite index in T (G).
�

Part (2) of Proposition 9.1 suggests the following conjecture.

Conjecture 9.2. For any finite group G, the group TF (G) can be generated by classes of modules
belonging to B0(G). Equivalently, T (G) = TT (G)+T0(G). Equivalently, there exists a torsion-free
subgroup F of T (G) such that T (G) = TT (G)⊕ F and F ⊆ T0(G).

Proposition 9.3. Conjecture 9.2 holds in each of the following cases:

(1) The group G has a normal Sylow p-subgroup.
(2) The group G has the property that the cohomological pushout method is optimal, for a

class in cohomology with trivial coefficients (i.e. the endotrivial modules of Theorem 6.1
generate TF (G), with the additional assumption that W = k).

(3) The subgroup NG(P ) is strongly p-embedded in G, where P is a Sylow p-subgroup of G.

Proof. (1) If G has a normal Sylow p-subgroup P , we apply Proposition 4.2. Each of the modules

Ω(k) and TenGJi(Ñi) belongs to the principal block, because there is a non-trivial homomorphism

TenGJi(Ñi)→ k.
(2) Suppose that TF (G) is generated by the classes of the modules Ω(k), M2, . . ., Mn of

Theorem 6.1. Again there is a non-trivial homomorphism ζi : Mi → k, so Mi belongs to B0(G).

(3) When NG(P ) is strongly p-embedded in G, the restriction map ResGNG(P ) : T (G) −→
T (NG(P )) is an isomorphism (by Remark 2.9 in [9]), induced by the Green correspondence, which
preserves the principal block. �
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Note that the situation for a group G with a normal Sylow p-subgroup is quite clear. By
Proposition 4.2, the classes of the modules Ω(k) and TenGJi(Ñi) (for 2 ≤ i ≤ nG) generate a
torsion-free subgroup F such that T (G) = X(G)⊕F . Tensoring the indecomposable modules in F
by a one-dimensional module A, we get modules which all belong to the block containing A. If A
belongs to B0(G), then we get again modules in B0(G). Otherwise, we get modules in a different
block.

Remark 9.4. Let stmod(kG) denote the stable category of finitely generated modules modulo
projectives. It should be noted that if the cohomological pushout method is optimal for constructing
endotrivial modules (using ζ ∈ Hq(G, k) for some values of q), then all of the endotrivial modules
constructed by the method are in the thick subcategory Thick(k) of stmod(kG) generated by the
trivial module k. This is because, in the diagram preceding Theorem 6.1, with W = k, the module
Ωq(k) is in Thick(k) and hence Lζ and all its direct summands are in Thick(k) too. Because the
tensor product of two modules in Thick(k) is again in Thick(k), the classes of endotrivial modules in
Thick(k) form a subgroup Tk(G) of finite index in T (G). We might ask if it is always the case that
TT (G) + Tk(G) = T (G). This is a stronger statement than Conjecture 9.2, since Tk(G) ⊆ T0(G).

10. Control of fusion

If P is a Sylow p-subgroup of G, we let FP (G) denote the fusion system on P with morphisms
induced by all conjugations by elements of G. We say that a group homomorphism φ : G → G′

controls p-fusion if φ induces an isomorphism between a Sylow p-subgroup P of G and a Sylow
p-subgroup P ′ of G′, and if moreover φ induces an isomorphism between FP (G) and FP ′(G). The
two cases of interest are the following:

(1) If A is a normal subgroup of G of order prime to p (e.g. A = Op′(G)), the canonical group
homomorphism G→ G/A controls p-fusion.

(2) If H is a subgroup of G containing a Sylow p-subgroup of G, the inclusion H → G controls
p-fusion if and only if the subgroup H controls p-fusion in the usual sense.

The general case is just made of these two cases, because an arbitrary homomorphism φ : G→ G′

which controls p-fusion involves the composition of G → G/Ker(φ) (and Ker(φ) is necessarily
of order prime to p) and the inclusion Im(φ) → G′ (and Im(φ) necessarily contains a Sylow p-
subgroup P ′).

If φ : G→ G′ is a group homomorphism which controls p-fusion, then φ induces a homomorphism

φ∗ : T (G′) −→ T (G)

via restriction along φ. Indeed, it is the composition of the ordinary restriction map

ResG
′

Im(φ) : T (G′) −→ T (Im(φ)) ,

the isomorphism T (Im(φ)) −→ T (G/Ker(φ)), and the inflation map

T (G/Ker(φ)) −→ T (G) .

Note that the inflation map is well defined when the kernel has order prime to p, because it
maps projective modules to projective modules, hence endotrivial modules to endotrivial modules.
Clearly, φ∗ : T (G′) −→ T (G) induces in turn a group homomorphism

φ∗ : TF (G′) −→ TF (G) .
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Conjecture 10.1. Let φ : G → G′ be a group homomorphism which controls p-fusion. Then the
induced homomorphism φ∗ : TF (G′) −→ TF (G) is an isomorphism.

The first evidence for this conjecture is the following result, which is essentially contained in
Corollary 3.2 of [9]. The result has also been obtained by completely different means in Corollary 4.5
of [2].

Proposition 10.2. Let φ : G → G′ be a group homomorphism which controls p-fusion. Then
the induced homomorphism φ∗ : T (G′) −→ T (G) has finite kernel and its image has finite index
in T (G). In other words φ∗ : TF (G′) −→ TF (G) is injective and has finite cokernel.

Proof. For simplicity, we assume that G and G′ have a common Sylow p-subgroup P and that φ is
the identity on P . Since we have control of p-fusion, the G- and G′-conjugacy classes of subgroups
of P are the same. It follows that T (G) and T (G′) have the same torsion-free rank. Thus it suffices
to prove that φ∗ : T (G′) −→ T (G) has finite kernel.

As noticed above, φ∗ is the composition of a restriction to a subgroup containing P , an isomor-
phism, and an inflation map. It is clear that the inflation map is injective. Now if H is a subgroup
of G′ containing P , then we know that ResGP : T (G) −→ T (P ) has finite kernel (Proposition 2.3),

hence so does the restriction map ResGH : T (G) −→ T (H). Therefore, the composition of these
three maps defining φ∗ has finite kernel too. �

Remark 10.3. As noticed in the proof, the inflation map is injective. Moreover, the restriction
map to a subgroup containing NG(P ) is always injective (induced by the Green correspondence).
So φ∗ : T (G′) −→ T (G) is injective in many cases, but not always. For instance, if G = P × C
with C of order prime to p, then ResGP : T (G) −→ T (P ) has kernel consisting of the classes of the
one-dimensional kC-modules, and this kernel is not trivial in general. Thus φ∗ is injective but we
cannot hope for the injectivity of φ∗.

In Conjecture 10.1, the only question is the surjectivity of the map φ∗. This is clearly related
to our main theme of finding generators for TF (G).

Here is one case where the conjecture holds.

Proposition 10.4. Let φ : G → G′ be a group homomorphism which controls p-fusion. Suppose
that the cohomological pushout method is optimal for G, by means of a cohomology class ζ ∈
Hq(G, k) with values in the trivial module k. Then the induced homomorphism φ∗ : TF (G′) −→
TF (G) is an isomorphism. Moreover, the cohomological pushout method is optimal for G′.

Proof. For simplicity, we assume that G and G′ have a common Sylow p-subgroup P and that φ
is the identity on P . The homomorphism φ induces a map

resφ : H∗(G′, k) −→ H∗(G, k)

and we first recall the well-known fact that resφ is an isomorphism. This is clear for the inflation
map induced by G→ G/Ker(φ) because Ker(φ) has order prime to p, hence acts trivially on the
principal block and the cohomology only detects the principal block. Moreover, the restriction
map induced by the inclusion Im(φ)→ G′ is easily seen to be an isomorphism when the subgroup
Im(φ) controls p-fusion (see Proposition 3.8.4 in [4]).

Now by assumption, TF (G) is generated by the classes of Ω(k), M2, . . . , Mn, where n = nG
and Mi is constructed as in Theorem 6.1, using a class ζ ∈ Hq(G, k) with resG,Z(ζ) not nilpotent.
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Then we have a map ζ̂ : Ωq(k)→ k representing ζ,

Lζ = Ker(ζ̂) = L1 ⊕ . . .⊕ Ln and VG(Lζ) = V1 ∪ . . . ∪ Vn
with VG(Li) = Vi, and there is a map ζi : Mi → k with kernel Li.

Let ζ ′ = resφ
−1(ζ) ∈ Hq(G′, k). Then for any elementary abelian p-subgroup E of P , we have

resG′,E(ζ ′) = resG,E resφ(ζ ′) = resG,E(ζ)

and it follows that

VG′(ζ
′) = VG′(Lζ′) = V ′1 ∪ . . . ∪ V ′n

where V ′i = res∗φ(Vi). Now if ζ ′ is represented by ζ̂ ′ : Ωq(kG′)→ kG′ , then

Lζ′ = Ker(ζ̂ ′) = L′1 ⊕ . . .⊕ L′n
with VG′(L

′
i) = V ′i . We then construct the endotrivial module

M ′i = Ωq(kG′)
/

(⊕j 6=iL′j) .

Now ζ is also represented by the map

resφ(ζ̂ ′) : Resφ(Ωq(kG′)) = Ωq(kG)⊕ (proj) −→ kG

and therefore we obtain resφ(L′i)
∼= Li ⊕ (proj) and resφ(M ′i)

∼= Mi ⊕ (proj). This proves that the

generators of TF (G) are in the image of φ∗. Therefore φ∗ is surjective, hence an isomorphism.
It also follows that the images of the generators of TF (G) under (φ∗)−1, namely [Ω(kG′)], [M ′2],

. . . , [M ′n], generate TF (G′). �

As an interesting special case, we note the following result.

Corollary 10.5. Suppose that the subgroup H = NG(P ) controls p-fusion in G and that the
cohomological pushout method is optimal for H, by means of a cohomology class ζ ∈ Hq(H, k)

with values in the trivial module k. Then the restriction map ResGH : TF (G) −→ TF (H) is an
isomorphism and the cohomological pushout method is optimal for G.

Another situation where Conjecture 10.1 holds occurs when G = A o P is p-nilpotent and
φ : G → G/A ∼= P is the quotient map where A = Op′(G). In that case, by Corollary 3.4 in [11],
any endotrivial module M has the form M ∼= V ⊗L, where V is simple and endotrivial, and L is in
the image of inflation from G/A ∼= P . Moreover V is torsion by Remark 3.5 in [11]. It follows that
[M ] can be modified by the torsion class [V ∗] to obtain a class [L] in the image of the inflation map.
This shows that the inflation map φ∗ : TF (G/A) −→ TF (G) is surjective, hence an isomorphism.

However, in the general case of an arbitrary group G and the quotient map φ : G→ G/Op′(G),
it is not clear how to prove the conjecture. It is not clear either how to prove the conjecture
when H is a subgroup of G containing NG(P ) and controlling p-fusion, because of the difficulty
mentioned in Section 8.

11. Examples

In this final section we present the results of some calculations for finding generators of TF (G) for
specific finite groups G.
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Example 11.1. Here is an example where the cohomological pushout method is optimal, but
where we need a one-dimensional module W which is not the trivial module. Let p = 3, let P be
extraspecial of order 27 and exponent 3, and let G = P oV where V is a Klein four-group with one
generator inverting the centre Z of P . In that case the minimal degree q of cohomology is q = 6.
There is a class in H6(G,W ) restricting non-trivially to Z, but the one-dimensional module W
cannot be the trivial module in view of Lemma 6.2.

Example 11.2. Here is an example where the cohomological pushout method is not optimal. Let
R = C9 o C3 be an extraspecial 3-group of order 27 and exponent 9, generated by a and b, and
let z = a3 = [a, b] be the generator of Z = Z(R). Let Q = R × 〈c〉, where 〈c〉 is a cyclic group of
order 3, and let P = QoC3, where a generator d of C3 acts on Q via [d, a] = 1, [d, b] = c, [d, c] = z.
Then P has order 35 and has 3 classes of maximal elementary abelian subgroups of rank 2 and also
a maximal elementary abelian subgroup of rank 3, so T (P ) = TF (P ) has rank 4. Now Theorem 4.1
tells us that there are endotrivial modules of type (1, 1, 1, 1), (0, 6, 0, 0), (0, 0, 6, 0), and (0, 0, 0, 6)
which generate T (P ). However, q = 18 is the smallest value of q such that there exists ζ ∈ Hq(P, k)
whose restriction to Z is non zero.

The final three examples were all calculated using the computer algebra system MAGMA [7].
The method was very direct. In the first step, a suitable endotrivial module U was created for the
Sylow p-subgroup P by taking a relative syzygy. This module was induced to NG(P ). The result
was decomposed into direct summands and each indecomposable direct summand was tested for
being endotrivial. The endotrival summands were induced again to a subgroup containing NG(P ).
Again, the induced module was decomposed into indecomposable direct summands and the sum-
mands tested to see if they were endotrivial. This process was repeated until the resulting modules
were induced to G. Note that, to check that a module, in any stage, is endotrivial, it is only
necessary to test if its restriction to P is the direct sum of U and a projective module. Because
of the fact that decomposing a module into indecomposable directs summands is computationally
difficult, it was necessary to go through a chain of subgroups of maximal length in order to keep
the dimensions of the induced modules as small as possible.

Example 11.3. PSL(3, 3) in characteristic 3. Suppose that G is the projective linear group
PSL(3, 3) and k is a field of characteristic 3. A Sylow 3-subgroup P of G is an extraspecial group
of order 27 and exponent 3. There are four maximal elementary abelian subgroups in P , and two
of these fuse in G. So G has three conjugacy classes of maximal elementary abelian 3-subgroups,
and we label them so that the second and third are the classes of the two unipotent radicals E2

and E3 of the two maximal parabolic subgroups. The normalizer B = NG(P ) is a Borel subgroup,
it has order 4 × 27 and it is also the normalizer of the center Z of P . The centralizer of Z has
index 2 in B. Hence by Lemma 6.2, there is no element in H6(G, k) whose restriction to Z is not
zero. The first such element occurs in degree 12. It follows that the cohomological pushout method
will produce endotrivial modules of type (0, 12, 0) and (0, 0, 12), hence only of type (a, b, c) where
any two of a, b or c differ by a multiple of 12.

On the other hand with the computer we can produce an endotrivial module M of type (2,−4, 2)

and dimension 55. In other words, [M↓GE1
] = [Ω2(k)], [M↓GE2

] = [Ω−4(k)] and [M↓GE3
] = [Ω2(k)].

Because there is an outer automorphism of G that interchanges the two parabolic subgroups, hence
E2 and E3, we can get also an endotrivial module of type (2, 2,−4). Consequently, there exist
endotrivial modules of type (0, 6, 0) and (0, 0, 6), hence of type (a, b, c) for any triple a, b, c such
that both a− b and a− c are multiples of 6. The module M is in the principal block and remains
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indecomposable on restriction to both maximal parabolic subgroups. If U is a one-dimensional
kB-module, then its kG-Green correspondent is endotrivial if and only if U ∼= k (this is a general
fact for groups of Lie type of rank ≥ 2, by Theorem 6.2 in [9]). Hence, TT (G) = {0} and
T (G) = TF (G) = T0(G).

We can also describe T (B) and T (H), where H = NG(E2) is a maximal parabolic subgroup.
First note that B and H both have also three conjugacy classes of maximal elementary abelian
3-subgroups. The endotrivial kG-modules of type (0, 6, 0) and (0, 0, 6) remain of the same type
on restriction to B, so TF (G) ∼= TF (H) ∼= TF (B) via restriction. By Proposition 4.2, we have
T (B) ∼= TF (B)⊕X(B) and X(B) is a Klein four-group (because B/P is a Klein four-group). Only
two of the one-dimensional representations of B have a Green correspondent for the group H which
is endotrivial (both are actually just one-dimensional again), hence TT (H) = X(H) ∼= Z/2Z. But
only the trivial module for B has a Green correspondent for the whole group G which is endotrivial.
Hence we obtain

T (B) ∼= Z3 ⊕ Z/2Z⊕ Z/2Z , T (H) ∼= Z3 ⊕ Z/2Z , T (G) ∼= Z3 .

Example 11.4. PSL(3, 5) in characteristic 5. In the case that G = PSL(3, 5) and the charac-
teristic of k is 5, the situation is very similar to that in the previous example. A Sylow 5-subgroup P
is extraspecial of exponent 5. There are three classes of maximal elementary abelian 5-subgroups,
two of which are represented by unipotent radicals of parabolic subgroups. The normalizer B of
P has order 24 × 53. The centralizer of the center Z of P has index 4 in B. Hence, there is no
element in H10(G, k) whose restriction to Z is not zero. The first such element occurs in degree 40.
It follows that the cohomological pushout method will produce endotrivial modules only of type
(a, b, c) where any two of a, b or c differ by a multiple of 40.

However, we can construct an endotrivial module of type (2,−8, 2) having dimension 251, and
by the same argument as above, there exists an endotrivial module of type (a, b, c) for any a, b, c
with a− b and a− c multiples of 10. The constructed module is indecomposable on restriction to
both maximal parabolic subgroups. Also, T (G) = TF (G) = T0(G).

Example 11.5. M12 in characteristic 3. A Sylow 3-subgroup P of G = M12 is extraspecial
of order 27 and exponent 3. There are three G-conjugacy classes of maximal elementary abelian
3-subgroups. The centralizer of the center Z of P has index 2 in the normalizer of Z. Thus
the restriction to Z of every element in H6(G, k) vanishes. However, there exists an endotrivial
kG-module of type (2,−4, 2) and dimension 82 in the principal kG-block. And again, T (G) =
TF (G) = T0(G).
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