Abstract

Patterned deposition of polymer light-emitting diode (PLED) pixels is a challenge for electronic display applications. PLEDs have additional problems requiring solvent orthogonality of different materials in adjacent layers. We present the fabrication of a PLED pixel by the sequential deposition of two different layers with laser-induced forward transfer (LIFT), a "dry" deposition technique. This novel use of LIFT has been compared to "normal" LIFT, where all the layers are transferred in a single step, and a conventional PLED fabrication process. For the sequential LIFT, a 50-nm film of an alcohol soluble polyfluorene (PFN) is transferred onto a receiver with a transparent anode, before an aluminum cathode is transferred on top Both steps use a triazene polymer dynamic release layer and are performed in a medium vacuum (1 mbar) across a 15 mu m gap. The rough morphologies of the single layer PFN pixels and the PLED device characteristics have been investigated and compared to both bilayer Al/PFN pixels fabricated by normal LIFT and conventionally fabricated devices. The functionality of the sequential LIFT pixels (0.003 cd/A, up to 200 mA/cm(2), at 30-40 V) demonstrates the suitability of LIFT for sequential patterned printing of different thin-film layers.

Details

Actions