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Resumo 

As Redes de Sensores sem Fios (RSSF) têm vindo a popularizar-se como soluções de 

monitorização remota, especialmente em cenários hostis, de difícil acesso, ou de outra forma 

complexos, em que a instalação de uma rede tradicional seria pouco prática. Algumas das 

aplicações vislumbradas, como a monitorização de vida selvagem, introduzem dificuldades 

adicionais ao incluir elementos móveis. Nestas circunstâncias, é necessário abandonar as 

técnicas de encaminhamento tradicional em favor das de encaminhamento oportunístico, que 

aproveita a mobilidade dos nós utilizando-os para transportar mensagens. 

Esta dissertação aborda a temática do Encaminhamento Oportunístico em RSSFs. Começa 

por apresentar um resumo estruturado das soluções existentes, após o que é proposta uma 

nova abordagem: a Convergent Hybrid-replication Approach to Routing in Opportunistic 

Networks (CHARON). Esta abordagem tem como principais objectivos a simplicidade e a 

eficiência, com vista à aplicabilidade em situações reais. Usa como principal métrica de 

encaminhamento o atraso estimado, e suporta mecanismos básicos de Qualidade de Serviço 

(QoS), incluindo também funções de gestão de energia raramente encontradas noutras 

soluções. Em seguida descreve-se a implementação do protótipo do sistema em nós Sun SPOT, 

e, finalmente, são apresentados resultados de simulação e testes em ambiente real que 

demonstram que esta solução é capaz de conseguir um bom desempenho com elevada 

eficiência.  

Palavras-chave 

Redes sem Fios de Sensores, Comunicações Oportunísticas, Protocolos de Encaminhamento, 

Encaminhamento Oportunístico, Redes Tolerantes a Atraso, Eficiência Energética 
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Abstract 

Wireless Sensor Networks (WSNs) have been slowly moving into the mainstream as 

remote monitoring solutions – especially in hostile, hard-to-reach or otherwise complicated 

scenarios, where deployment of a traditional network may be unpractical. Some of the 

envisioned applications, such as wildlife monitoring, introduce an additional difficulty by 

featuring mobile elements. In these circumstances traditional routing techniques must be 

abandoned in favour of Opportunistic Routing (OR), which uses mobility to its advantage by 

having nodes carry around messages. 

This dissertation addresses the issue of Opportunistic Routing in WSNs. An overview of 

existing solutions is presented, followed by the description of a new Convergent Hybrid-

replication Approach to Routing in Opportunistic Networks (CHARON). This approach is 

focused on simplicity and efficiency, aiming for real-world applicability. It primarily routes 

messages based on estimated delay, and supports basic Quality of Service (QoS) mechanisms. 

It also provides built-in radio power management, a seldom found feature. A reference 

implementation of CHARON is then presented, accompanied by simulation and real-world test 

results that show this solution is capable of achieving good delivery statistics with high 

efficiency.   

Keywords 

Wireless Sensor Networks, Opportunistic Communications, Routing Protocols, Opportunistic 

Routing, Delay-Tolerant Networks, Energy Efficiency 
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1 Introduction 

Advances in miniaturized electronic systems and wireless communications have enabled 

their use for monitoring applications which were previously very difficult or even impossible to 

monitor, giving birth to the field of wireless sensor networks (WSNs). These networks are 

comprised of a potentially large number of small nodes of limited capacity which communicate 

with each other using wireless links, also of limited range.  

Many of the applications envisioned for WSNs, such as agricultural and habitat 

monitoring, require spreading the network over relatively large areas, causing the radio range 

to be insufficient to assure a fully and permanently connected network. The network will 

therefore be split into several partitions that are unable to directly transfer information to 

each other. For some networks this is not a problem, as there can be individual base stations 

(sink nodes) that receive and use the information from their respective partitions. For others, 

however, such sink deployment may be impossible or impractical, or full connectivity may be 

an important application requirement.  

In such cases, node mobility emerges as a possible solution. By making some nodes mobile 

and exploiting their mobility, new communication opportunities are created between 

otherwise isolated network elements. In some applications, such as wildlife monitoring, 

mobility may even be part of the problem specification, so taking advantage of it seems a 

logical choice. But exploiting node mobility comes with a price: data exchanges only take place 

intermittently, when nodes are in range – what is called an opportunistic communication. 

Opportunistic communications present a challenge to several network layers, most 

notably routing, as the network topology becomes extremely volatile and complete end-to-

end routes may never even exist at any single point in time – a situation falling within the 

realm of disruption and delay tolerant networks (DTNs). While opportunistic communications 

in general, and opportunistic routing (OR) in particular, are challenging in and of themselves, 

applying these principles to WSNs presents additional problems and specificities which must 

be carefully considered.  

The primary concern with WSN design is the chronic lack of resources. Heavily constrained 

resources typically include storage space, execution memory, processor cycles, and 

transmission power, just to name a few. The most serious limitation, though, is that of energy 

supply, as most nodes run on batteries with a finite and relatively short lifetime, after which 
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human intervention is required to keep the networks running. While several energy harvesting 

systems are available, they are usually expensive and sometimes unsuitable for the operating 

conditions, and have found limited use among current deployments. Even when a node is 

equipped with an energy harvesting device, the energy provided might not be enough to 

sustain it in a high-power state, requiring implementation of software power management 

solutions. 

The previously stated limitations lead to a scenario in which existing OR approaches may 

be less than ideal for this class of networks. Assumptions on acceptable algorithmic complexity 

must be reviewed, as must those about the available information and the number and size of 

signalling messages. Availability of unlimited buffer space, another popular assumption, must 

also be handled with caution, as this can present a major problem in the context of WSNs.  

1.1 Motivation and Goals 

This dissertation aims to contribute to the state of the art in opportunistic routing 

protocols specifically tailored for WSN use. Routing in WSNs, as previously stated, always has 

application-specific requirements and constraints, and it is close to impossible to design a good 

general-purpose algorithm.  

Many of the existing protocols assume resources or behaviours which are not entirely 

compatible with the characteristics of most WSNs and the requirements of the applications 

they support. They suffer from the all-too-common problem of having been designed for the 

simulator instead of the real world [1]. 

This dissertation defines a realistic target scenario, and proposes a solution that can be 

used to effectively and efficiently route messages in that setting, without compromising its 

simplicity and, consequently, its feasibility. The system is also intended to be fairly flexible, 

supporting applications with different requirements.  

The proposed approach is named CHARON – Convergent Hybrid-replication Approach to 

Routing in Opportunistic Networks. 

1.2 Contributions 

The full contributions of this dissertation are: 

 A brief survey of existing opportunistic routing solutions, both general-purpose 

and WSN-specific. 
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 A low-overhead opportunistic routing algorithm for use in low-density, highly-

mobile WSNs.  

 A simple opportunistic synchronization and radio power management technique, 

integrated with the routing solution. 

 A reference implementation of the system using real WSN nodes. 

1.3 Document Structure 

The remainder of this dissertation is organised into six main chapters. The following 

chapter, Chapter 2, presents a brief overview of the current state of the art of opportunistic 

routing approaches suitable for use in WSNs. A brief outline of each approach is provided, as 

well as the available performance data, and the different approaches are compared in their 

main characteristics. Chapter 3 describes the target scenario, and the main architectural 

requirements for a network operating in this scenario. In the main chapter, Chapter 4, the 

algorithm design is presented, its features are described and the choices made are explained. 

Chapter 5 presents the reference implementation, and Chapter 6 provides the results of the 

algorithm’s evaluation. Finally, Chapter 7 concludes the dissertation with some final 

considerations and suggests directions for future work. 
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2 State of the Art of Opportunistic Routing 

In this chapter, the current state of the art in OR protocols for mobile networks will be 

reviewed. While some of these protocols were designed for use in WSNs, others were not, but 

are nevertheless applicable. After presenting the two widely-used categorisations, the most 

representative existing protocols will be briefly explained. Finally, a classification table will be 

presented, followed by some significant conclusions. 

2.1 Opportunistic Routing Approach Categorisation 

2.1.1 Categorisation Based on Network Infrastructure 

This first categorisation concerns the required structural aspects of the network [2], and 

defines two main categories: 

 Networks without infrastructure 

 Networks with infrastructure 

Networks featuring some kind of infrastructure can be further divided into two additional 

sub-categories: 

 Networks with fixed infrastructure 

 Networks with mobile infrastructure 

This so-called infrastructure is typically composed of more powerful nodes, featuring 

higher computational capability, higher storage capacity or higher energy reserves, for 

instance. Nodes that are part of a mobile infrastructure may move randomly, according to pre-

defined paths or even on demand, driven by the networks’ needs.  

An important distinction must be made between the meaning of the term infrastructure in 

this context and in the context of wireless access networks. In a wireless local area network 

(WLAN) using infrastructure mode, devices can only communicate through an access point 

(AP), as opposed to the ad-hoc mode in which devices communicate without central 

coordination. This is not the case with infrastructure-equipped WSNs, which are still 

considered ad-hoc networks, as their nodes do exchange data directly and independently. 



5 

 

2.1.2 Categorisation Based on Network Evolution 

The second categorisation divides networks according to the temporal evolution of their 

topology [3]. The two categories are: 

 Networks with deterministic evolution 

 Networks with stochastic evolution 

Network evolution is considered deterministic when the future topology is known or 

predictable. In this case, delivery routes can be planned ahead of time. Otherwise, if the 

network evolution is regulated by a stochastic process1, reliably predicting the future topology 

is impossible. Thus, routing decisions cannot be made in advance and are, at best, informed 

guesses. 

2.2 Existing Approaches 

2.2.1 Epidemic or Random Forwarding Approaches 

2.2.1.1 Epidemic Routing 

Epidemic Routing [4], one of the first proposed OR algorithms, was modelled from the 

manner in which diseases spread in the population. When two nodes are in range they trade 

summary vectors containing the unique identifiers of the stored messages and use them to 

determine which messages to transfer. The vectors contain both currently and previously 

carried messages, preventing a node from receiving the same message twice.  

Epidemic Routing is in effect a pure flooding algorithm, with each node diffusing messages 

to all of its neighbours. This, in turn, means that it requires very little information about the 

network, which makes it useful for a wide range of scenarios.  Its main weaknesses are the 

heavy use of storage space and radio transmissions. 

2.2.1.2 Two-Hop Forwarding 

Two-Hop Forwarding [5] is a simple routing approach in which messages are relayed 

through a single intermediate node, thereby imposing a limit of two hops. A source node 

generating a message sends it to a randomly chosen relay, which stores the message until 

delivery to the destination is possible.  

                                                            
1 A stochastic process is, informally, a process whose behaviour can be described by the evolution of one or more 
random variables. 
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While still a very conservative approach, and limited to scenarios of high node mobility 

and/or small network diameter, it manages to significantly improve network throughput with a 

low energy budget, achieving results close to the maximum limit imposed by the interference 

model used in the authors’ evaluation. It is, however, ill-suited for applications with delivery 

deadlines because message delay under this scheme tends to be very high. 

2.2.1.3 (p,q)-Epidemic Routing 

The authors of (p,q)-Epidemic Routing [6] define a class of routing schemes in which 

messages are forwarded in a probabilistic manner, with p (respectively q) being the probability 

of a relay node (respectively source node) transmitting a packet to another node when they 

meet. Several previous algorithms are special cases of (p,q)-Epidemic Routing, such as 

conventional Epidemic Routing (p=1, q=1), and Two-Hop Forwarding (p=0, q=1), as well as 

direct source-destination delivery (p=0, q=0).  

The authors conclude that Two-Hop Forwarding is the most energy-efficient scheme, but 

very wasteful of buffer space. In terms of buffer requirements, either Epidemic Routing or a 

scheme with small p are the most efficient, depending on the number of nodes in the network. 

2.2.1.4 Spray and Wait 

Spray and Wait [7] attempts to reduce duplication by limiting the maximum number of 

copies of a single message. It works in two separate phases as the name suggests: the spray 

phase and the wait phase. During the spray phase, messages are spread over the network, up 

to an established limit on the number of copies. Afterwards, during the wait phase, nodes keep 

the messages stored until they come within reach of the destination node, in which case they 

deliver it.  

The authors’ evaluation results show better energy efficiency and lower delay than the 

other tested stochastic protocols, including Epidemic Routing. Its performance is, nevertheless, 

tied to the network diameter, and very wide networks may require high number of copies, 

with a considerable decrease of efficiency. 

2.2.1.5 Spraying 

The Spraying algorithm [8] aims to reduce the number of broadcast messages by 

restricting forwarding to the vicinity of the last known location of the destination node. While 

it is possible that the node has since moved, a reasonable assumption is made that it is not 
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likely to have moved too far. Under that assumption, the packet is first unicast to a node close 

to the destination’s last known location, and then broadcast in the area.  

This protocol requires knowledge of each node’s current location. The authors, finding 

existing location solutions unsuitable, propose a rudimentary scheme based on the existence 

of location managers, to which both location update and location request messages are sent. 

It is also worth noting that this is not a predictive protocol, as it bases its decisions solely on 

the last known location instead of trying to determine trajectories or other possibly useful 

information. 

2.2.1.6 Infostation 

In the Infostation model [9] communication only takes place between nodes and static 

infrastructure elements named Infostations. Infostations act as gateways, are permanently 

connected, and are capable of providing a high bandwidth service. A node wanting to send a 

message has to move close to a nearby Infostation and upload it. It is then the Infostation’s 

responsibility to deliver the message to the final destination, which is always outside the 

considered opportunistic network. 

2.2.1.7 Shared Wireless Infostation Model 

The Shared Wireless Infostation Model (SWIM) [10] extends Infostation by including node-

to-node forwarding. Message routing between the nodes follows an epidemic model, but 

instead of aiming at a specific destination, any of the Infostations may serve as the termination 

node for any given message.  

The authors present an example application consisting of a whale monitoring network 

with fixed or mobile infrastructure, and extract some conclusions from the results. The SWIM 

model manages to decrease delivery delays by 1.6 to 3.5 times when compared to Infostation, 

taking a slight penalty on the transmission bandwidth and storage requirements. 

2.2.1.8 Data MULEs 

The authors of Data MULEs [11] propose a three-tier architecture (composed of sensors, 

mobile agents and access points) designed for sparse networks. Mobile agents, named MULEs 

(Mobile Ubiquitous LAN Extensions) randomly move around, picking up data from sensors 

when in close range and dropping it at access points, connecting otherwise partitioned 

networks while lowering transmission range and energy requirements. As MULEs have more 
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resources (energy, storage, etc.) than sensors, most of the routing effort is moved to them, 

further reducing CPU energy consumption on the nodes. 

2.2.2 History or Prediction-based Approaches 

2.2.2.1 ZebraNet 

ZebraNet [12] [13] was a pioneering project in wildlife monitoring using WSNs, intended 

to allow tracking of individual wild zebras’ positions under strict constraints, the most notable 

of which is the absence of fixed infrastructure. It uses self-sufficient tracking collars carried by 

the zebras, and a vehicle-mounted base station that periodically moves around the territory. 

The network features node-to-node and node-to-sink communications and uses one of two 

routing protocols: either a pure flooding variant or a history-based protocol. The history-based 

protocol (which, from now on, will be referred to as the ZebraNet protocol) forwards the data 

to the nearby node with the highest hierarchy level, a simple integer counter that is 

periodically increased if the node is in range of the sink or decreased otherwise. 

Based on simulation results, the authors report that by exploiting indirect connectivity, the 

system achieves a six-fold decrease on the radio range needed to keep the network fully 

connected, and halves the radio range required to achieve a 100% delivery success rate. They 

also conclude that the history-based protocol generally works better than flooding while 

maintaining energy consumption levels similar to direct transmission. 

2.2.2.2 MV Routing 

MV Routing [14] uses the same pair-wise message exchange principle as Epidemic 

Routing, but improves on the method used to determine which messages to transmit. Instead 

of flooding its neighbours, each node uses observation data on the meetings between nodes 

and visits to locations (hence the name MV) to compute a delivery probability for every other 

node on the network.  

When two nodes meet, the summary vectors contain not only the message identifiers but 

also the computed delivery probability. Nodes compare their own and their pair’s values, and 

only request messages for which their probability is higher. These messages are then erased 

from the source node, preventing message duplication. 
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2.2.2.3 PROPHET 

The Probabilistic ROuting Protocol using History of Encounters and Transitivity (PROPHET) 

[15] uses delivery probability information to choose the best forwarding path. When two 

nodes meet, they exchange both a summary vector and a delivery probability vector, 

containing the delivery probability to each known node. The delivery probability metric is 

derived from previous encounters and subject to an ageing factor. It has a transitive property 

that allows calculation of probabilities to destinations which the node has never had direct 

contact with. Following the vector exchange, messages are transferred from the lower to the 

higher delivery probability node, but are not deleted from the source node as long as there is 

available buffer space, allowing for the possibility that in the future the node may find a better 

forwarder or even the destination. 

2.2.2.4 Context-Aware Routing 

Context-Aware Routing (CAR) [16] is a hybrid protocol, featuring both synchronous and 

asynchronous routing mechanisms. The synchronous delivery mechanism – used when at the 

time of packet arrival there is an end-to-end path between the receiving node and the 

destination – assumes a synchronous routing protocol is running on each network partition, 

and forwards the packet according to that routing protocol. Otherwise, the next best hop is 

selected by means of an application-specific delivery probability metric. Delivery probabilities 

are determined by local analysis of several bits of context information, such as the degree of 

mobility and the battery level. Kalman filters are used to predict context evolution, and the 

resulting probabilities are periodically sent to the other nodes in the partition, where they are 

used to make routing decisions. 

Simulation results show CAR having a lower delivery rate than that of Epidemic Routing 

but higher than pure flooding, and doing so with less message duplication, and hence better 

efficiency. Contrary to Epidemic Routing, the number of exchanged messages is approximately 

constant in regards to the buffer size, indicating better scalability. 

2.2.2.5 Sensor Context-Aware Routing 

Sensor Context-Aware Routing (SCAR) [17] bears some resemblance to CAR, but was 

specifically thought for use in WSNs. In particular, it shares the same prediction model, using 

Kalman Filters, but the communication and replication aspects were redesigned in 

consideration of the resource limitations, high data traffic and high fault rate of WSNs, as 
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stated by the authors. The combined delivery probability is forecast from sink collocation, 

sensor connectivity change rate (a measure of relative mobility) and battery level. Source 

nodes keep an ordered list of neighbouring nodes, and replicate each message to the top 𝑅 

(the application-specific replication factor, which can also be thought of as a priority level). The 

message copy delivered to the first sensor is known as the master copy, while the rest are 

secondary copies. From then on, nodes forward messages when they encounter a better 

carrier, but do not replicate them, thereby limiting the number of message copies. While 

master copies are only deleted on delivery to a sink, secondary copies can also be erased if 

buffers are full.   

The authors’ evaluation only compares SCAR to a random choice protocol, achieving 

better results for all but one metric: delivery ratio when using high message replication factors. 

2.2.2.6 MobySpace 

MobySpace [18] introduces the idea of high-dimensional Euclidean spaces to OR. A 

Euclidean space named MobySpace is constructed upon the nodes’ mobility patterns, with 

axes representing some interesting event, such as previous encounters or visits to locations, 

and the distance along the axis measuring the event probability. Two nodes with similar 

experiences are close to each other on the MobySpace. When forwarding a message, the next 

best hop is the one closer to the destination, according to some distance measure, which can 

be a Euclidean distance, Canberra distance, Cosine angle separation, Matching distance, or any 

other which suits the application and network requirements. 

2.2.2.7 Space-Time Routing 

Space-Time Routing (STR) [19] algorithms take into account both the distance to the 

destination node and the age of the routing state. Being a family of algorithms, there are many 

possible solutions, with different metrics and weights. Two possible approaches by the same 

authors are Fresher Encounter Search (FRESH) [20] and Generalized Route Establishment 

Protocol (GREP) [21]. FRESH is a simple protocol which only considers temporal information. 

Nodes keep a record of their last contact with every other node, and forward a message if they 

encounter a node that had a later contact with the destination. GREP integrates this idea with 

traditional distance vector routing, causing messages at each hop to either advance in space 

along their current route, or in time onto a fresher route. 
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2.2.3 Movement Control Approaches 

2.2.3.1 Message Ferrying 

Message Ferrying (MF) [22] is a mobility-assisted approach which uses special nodes called 

message ferries to enable communication between nodes on the network. These ferries move 

around carrying data, such as their real-life counterparts carry passengers and vehicles. The 

main idea introduced in MF is the active use of mobility to facilitate communications, 

according to two possible movement schemes: Node-Initiated MF (NIMF) and Ferry-Initiated 

MF (FIMF). In NIMF, the ferry path is known, and nodes waiting to transmit move closer to the 

path in order to meet up with the ferry. In FIMF, it is the ferries that adjust their trajectories, 

moving towards nodes with communication needs, following short requests transmitted over a 

long-range radio. 

2.2.3.2 Inter-Regional Messengers 

Inter-Regional Messengers [23] use a different model in which messengers (akin to 

message ferries) are owned (either permanently or temporarily) by a single network region, 

and only carry messages whose source or destination is their owner. Two ownership schemes 

are proposed: regional ownership, in which a messenger is permanently owned by a region, 

performing two-way trips between that region and the destination, and independent 

ownership, in which a node sent to a given region becomes said region’s property until it is 

sent to a new one. The authors experimented with several scheduling strategies, namely 

periodic (fixed periodic departure times), on-demand (messenger is dispatched whenever 

there is a message to send) and storage-based (messenger is sent when buffer occupation 

reaches a predefined level). 

Simulation results show that, as expected, optimal ownership schemes and scheduling 

strategies depend on the network conditions and requirements. On-demand scheduling 

guarantees the lowest delay, while storage-based scheduling is usually the most efficient. 

Periodic scheduling provides a middle ground, but there is some difficulty in defining the right 

period. As for the ownership schemes, under the proposed scenario, independent messengers 

achieve double the efficiency and half the cost of the regional scheme mainly by avoiding the 

return trip.  
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2.2.3.3 Homing Pigeon based DTN 

Homing Pigeon (HoP) based DTNs (HoP-DTNs) [24] are similar in model to Inter-Regional 

Messengers, but are built on a theoretical framework considering message lifetimes and 

simplistic assumptions. Each node has its own messenger (here called pigeon, in reference to 

traditional homing pigeons), which is dispatched when s messages are buffered, and visits all 

the messages’ destination nodes on a single trip, before returning to its owner. Further work 

by the authors [25] introduces the concepts of regions and region-owned pigeons, also 

considering the existence of multiple pigeons per region. In addition to the already discussed 

on-demand and periodic scheduling strategies, the authors propose a new algorithm named 

Adaptive Pigeon Scheduling (APS) which aims to increase cooperation between pigeons in the 

same region and decrease average message delay. 

APS is shown to consistently achieve lower delays than the other approaches, regardless 

of message generation rate, pigeon speed and number, but at the cost of generally lower 

energy efficiency when compared to periodic scheduling. 

2.2.4 Coding-based Approaches 

2.2.4.1 Erasure Coding  

Erasure coding works by splitting a message into 𝑘 blocks and then expanding them to 𝑛 

blocks to be transmitted in such a way that the reception of any 𝑘 of the 𝑛 is enough to 

recover the original message. Several erasure coding based approaches have been proposed, 

such as [26] [27] [28]. 

In [26] a routing approach based on erasure coding is presented. Building on the existing 

2-hop routing protocol (with added message replication), the authors propose a variation in 

which the sending node codes the message into 𝑘 parts, replicating it by a factor 𝑟, and 

transmitting it to 𝑘𝑟 different relay nodes. The base assumption is that it is likely that 𝑘 of the 

𝑘𝑟 nodes meet the destination node sooner than just 1 of the otherwise 𝑟 nodes (maintaining 

the same replication factor), so delay can be reduced while maintaining the same efficiency 

(the 𝑘𝑟 blocks are the same size as just the 𝑟 message copies). 

Simulations were conducted using real world mobility traces from the ZebraNet project. 

Results obtained under the assumption of infinite buffer space, replication factor 𝑟 = 2 and 

splitting factor 𝑝 = 𝑘𝑟 =  8,16,32   show this approach to have lower delay variance than 2-
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hop routing with the same replication factor, also beating every other tested protocol except 

for pure flooding. The 50th percentile delay is generally higher than with the other approaches, 

showing that very low delays are uncommon under this scheme and the majority of messages 

are delivered at an almost constant, albeit moderate, delay. 

2.2.4.2 Network Coding  

Network coding is an approach in which intermediate nodes can combine packets using a 

given invertible function before forwarding. As an example, in a communication involving two 

nodes (A and B) and an intermediate node C, in which node A sends a message x and node B 

sends a message y, node C can combine them into a single message  𝑤 = 𝑥⨁𝑦, which it then 

broadcasts to both nodes. Each node, when receiving message w can decode it using its own 

sent message to recover the other, halving node C’s transmission needs. 

A network coding routing algorithm is presented in [29]. In this approach, packets are 

transmitted in the form of an encoded information vector and a separate encoding vector used 

to fill a decoding matrix. When a node receives a packet of which it is not the destination, it 

uses the matrix to generate d new vectors (d is referred to as the forwarding factor) that are 

broadcast to its neighbours. When a destination node receives enough packages, it can decode 

the original information.  

Coupled with a generation management mechanism and an information ageing 

mechanism to reduced the decoding matrix size, this algorithm is not only implementable in 

WSNs but manages to outperform probabilistic routing in regards to the packet delivery ratio 

and the average packet delay using the same forwarding factor or, alternatively, achieve a 

lower overhead for the same delivery requirements. Networks such as ZebraNet – where all 

packets are destined to a sink and never to another sensor node – can benefit even more from 

network coding, as there is no need for the nodes to be able to decode the messages and so 

packets can be combined arbitrarily. 

2.2.5 Modified Shortest Path Approaches 

2.2.5.1 Shortest Paths in Space and Time 

The Shortest Paths in Space and Time (SPST) algorithm [30] works on the assumption that 

it is possible to accurately predict node motion over at least a finite time interval. The network 

is modelled as a space-time graph, with end-to-end paths existing over time, and nodes select 
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the next best hop by looking at derived space-time routing tables that include not only current 

but also future neighbours. The selection algorithm, built with the aim of minimising latency, is 

a Floyd-Warshall adaptation that takes into account both the destination and the message 

arrival time. 

Simulation results show that SPST generally behaves better than Epidemic Routing and the 

other tested algorithms, providing both lower latency and higher message delivery success 

ratio while achieving reduced message duplication. 

2.2.5.2 Knowledge Oracles 

In [31] several algorithms are proposed, all based in the concept of Knowledge Oracles, 

each of the four representing some knowledge of the network at any point in time. The 

Contacts Oracle contains information about node contacts; the Contacts Summary Oracle 

contains aggregate statistics of these contacts; the Queuing Oracle contains information about 

buffer occupation at each node; finally, the Traffic Demand Oracle contains information about 

traffic demands at each node.  

The used algorithm depends on which oracles are available. If all of them are, then finding 

the best route is a Linear Programming (LP) problem. If at least the Contacts Summary Oracle 

or the Contacts Oracle is available then a modified Dijkstra’s algorithm is used, with the cost 

function depending on the specific combination of oracles.  

2.3 Approach Classification and Comparison 

In Section 2.1 the two most common classification criteria for WSNs were introduced. 

Table 2-1 lists, for each discussed protocol, its classification under each criterion. 

TABLE 2-1: CLASSIFICATION OF EXISTING ROUTING APPROACHES 

Approach 

Network 

infrastructure 

Network 

evolution 
Working 

principle 
Fixed Mobile Stochastic Deterministic 

Epidemic Routing [4]   •  Random 

Two-Hop forwarding [5]   •  Random 

(p,q)-Epidemic Routing [6]   •  Random 

Spray and Wait [7]   •  Random 

Spraying [8]   •  Random 
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Infostation[9] •  •  Random 

SWIM [10] •  •  Random 

Data MULEs [11]  • •  Random 

ZebraNet [12]  • •  History 

MV Routing [14]   •  History 

PROPHET [15]   •  History 

CAR [16]   •  History 

SCAR [17]   •  History 

MobySpace [18]   •  History 

STR [19]   •  History 

Message Ferrying [22]  • •  Movement control 

Inter-Regional Messengers [23]  • •  Movement control 

HoP-DTN [25]  • •  Movement control 

Erasure Coding [26]   •  Coding 

Network Coding [29]   •  Coding 

SPST [30]    • Shortest path 

Knowledge Oracles [31]    • Shortest path 

Table 2-2 presents a brief comparison of some of the most important characteristics of 

these protocols. The complexity and suitability levels are, of course, subjective. 

TABLE 2-2: COMPARISON OF EXISTING ROUTING APPROACHES 

Approach Directed 
Information 

(1) 

Complexity 

(2) 

Suitability 

(3) 
Publication 

Epidemic Routing [4]  - • ••• 2000 

Two-Hop forwarding [5]  - • •• 2002 

(p,q)-Epidemic Routing [6]  - • ••• 2008 

Spray and Wait [7]  - • ••• 2005 

Spraying [8] • L •• • 2001 

Infostation[9]  - • •• 1997 

SWIM [10]  - • ••• 2003 

Data MULEs [11]  - • ••• 2003 

ZebraNet [12] • C • ••• 2004 
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(1) Information used: B = buffer occupation; C = contacts; F = flexible or application dependant; L = location; O = other; T = time. 

(2) Conceptual and implementation complexity: • = easy to understand and implement; •• = somewhat complex, conceptually 
more complicated and/or requires information or functionalities not readily available; ••• = complex algorithm, hard to 
understand and/or to implement. 

(3) Suitability for use in WSNs: • = not designed for WSNs nor easily adaptable; •• = not designed for WSNs but adaptable, 
designed for WSNs but using unrealistic assumptions, or conceptually adequate but not sufficiently detailed; ••• = designed for 
WSNs, fully adequate. 

2.4 Discussion 

This chapter listed many approaches that, even when not designed with WSNs in mind, 

may still have some degree of applicability. Looking at Table 2-1, one can see that most 

approaches assume a stochastic network evolution (there is no concrete knowledge of future 

network topology) and the absence of network infrastructure (every node is seen as equal by 

the routing algorithm).  

The former assumption is easy to understand, as there are few real-world cases of 

deterministic opportunistic WSNs (one being, for instance, a rail transport network with pre-

defined static train schedules). The latter assumption is more debatable, but there are some 

reasons why it is made. First, it is important to note that approaches that were not specifically 

thought for use in WSNs may rely on scenarios in which network homogeneity is standard, 

such as pure mobile ad-hoc networks (MANET) – one example being Two-Hop Routing [4]. On 

the other hand, an opportunistic WSN will normally (but not always) have a fixed component, 

frequently featuring static sensor nodes, mobile carrier nodes, and fixed sinks. The existence of 

MV Routing [14] • C, L •• • 2005 

PROPHET [15] • C •• •• 2003 

CAR [16] • C, F, T ••• • 2005 

SCAR [17] • C, F, T •• ••• 2007 

MobySpace [18] • F ••• •• 2005 

STR [19] • C, T •• •• 2003 

Message Ferrying [22] • L •• •• 2004 

Inter-Regional Messengers [23] • B, L •• • 2006 

HoP-DTN [25] • L •• • 2007 

Erasure Coding [26]  - ••• •• 2005 

Network Coding [29]  - ••• •• 2005 

SPST [30] • C, T ••• • 2004 

Knowledge Oracles [31] • C, B, O, T ••• • 2004 
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sink nodes is assumed in most WSNs, and is not enough to classify a network as having 

infrastructure. There are also fully mobile networks: ZebraNet [12], for instance, only uses 

mobile sensor nodes and a mobile sink node.  

Few of these approaches have withstood real world testing, and most have never even 

been implemented outside the simulation environment used by the authors. The most used 

are probably the Epidemic Routing algorithm [4] and the ZebraNet history-based algorithm 

[12], which are also two of the simplest. This should come as no surprise given that, by 

increasing routing complexity and/or expanding the underlying assumptions, many algorithms 

are implicitly restricting their applicability, either because of hardware limitations, lack of 

required information or plain inadequacy to the network structure, requirements or 

movement patterns. Some algorithms do this in accordance with the longstanding trend in 

WSNs (or, to be precise, in any heavily constrained system) of using scenario-specific solutions 

as a way to optimize performance. Others go the opposite direction, aiming for such generality 

that they become too complex for any real scenario. 
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3 Target Scenario and Network Architecture 

There are uncountable different WSN usage scenarios. As previously stated, it is very hard, 

if not impossible, to develop a true general-purpose solution. To be realistic, a sensible set of 

restrictions must be specified. Architectural aspects of the network are tightly coupled to these 

restrictions, hence they are jointly described.  

Sparse networks, those with low node density, are the most challenging from an OR point 

of view, since decisions carry a graver impact on global performance. They are also the ones 

most in need of OR solutions, as high-density networks can in most cases make use of other 

approaches, namely traditional ad-hoc routing. Networks are also assumed to be highly 

scattered, with permanently-connected partitions being a rare occurrence. This negates the 

need for hybrid routing protocols, which include a separate, non-opportunistic mechanism for 

routing inside these partitions.  

Highly mobile networks, in which the majority of nodes (or, in the limiting case, all of 

them) move, also make for a more interesting case, as mostly static networks are easily served 

by a MULE-like architecture [11]. Passive mobility is another reasonable assumption. Even 

though there are cases in which it makes sense to have on-demand mobile agents, these 

constitute a minority due to cost and complexity. Networks with deterministic evolution are 

seldom found and well served by existing solutions, so it makes sense to focus on those with 

stochastic evolution. That does not imply, however, the total absence of movement patterns 

on the network: if that were the case, no routing algorithm would do better than a random 

forwarding approach. Consequences of high-speed movement, found in scenarios such as 

motorways and railway networks, are outside the scope of this work. 

For realism’s sake, resource constraints must also be taken into account. While sensor 

nodes are becoming more powerful each day, they will keep on being a heavily-constrained 

system in the foreseeable future. Radio range and bitrate, processor speed, memory capacity 

and energy are examples of scarce resources. Energy limitations are perhaps the most serious: 

the reduced size and cost of nodes prevent the use of long-life batteries, and while there are 

energy-harvesting solutions, these too are expensive, inefficient or impractical. 

Finally, in most sensor networks, the goal is to collect data from sensors and deliver it to a 

central node (sink) for analysis. This is best accomplished by using what is commonly known as 
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a single-tree convergecast architecture. Additionally, an any-sink property is assumed, 

meaning that several sinks may exist, and delivery to any one of them is sufficient. 

In short, the focus has been placed on low-density, highly mobile networks with stochastic 

evolution and convergecast architecture, possibly using multiple sinks. Nodes are assumed to 

be resource-constrained, particularly in relation to energy. This is a reasonable set of 

assumptions and the resulting scenario is commonly found in real-world applications including 

environmental, wildlife and silvopastoral systems monitoring. 

3.1 Example scenario – Organic Silvopastoral Systems 

Organic farming is assuming an increasing importance all over Europe due to its perceived 

higher product quality, possible health benefits and reduced environmental impact. It is based 

on the use of natural processes and subject to hard, government regulated constraints on the 

use of chemical helpers such as synthetic fertilisers and pesticides. Animals grown under 

organic farming regimes are also subject to the same constraints, and must generally be fed 

with natural products, these too coming from organic farms.  

These requirements create an incentive for the use of a holistic model, taking advantage 

of synergies between both practices: free-grazing livestock (most commonly sheep, goats, 

cattle, pigs and horses) provide fertilization, control the proliferation of invasive plants and 

reduce fire hazard, while at the same time naturally feeding and using the trees for shelter. 

Traditional silvopastoral systems are abundant all over the world. In the Portuguese case, 

the main ones are plantations of Cork Oak (the montado), Pyrenean Oak, Chestnut and Olive 

Tree orchards, with the last maybe being “the most complete multipurpose form of land use in 

the world” [32]. While the industrial high-yield agriculture trends of the last decades have 

threatened these systems, the new trend towards organic farming (and the high economic 

value of organic olive oil) is thought to open the gates for its survival and expansion.  

There is presently interest in using WSNs for monitoring several cultures, seeing as they 

present undeniable advantages, but most proposed systems assume some form of long-range 

communication, typically public cellular networks. Even though there is also some research on 

livestock monitoring WSNs, no project combines both. 

The use of an opportunistic WSN integrating both tree-mounted sensor nodes and 

livestock carried sensor nodes would allow monitoring of the whole system, and using the 

animals as information carriers would drop the dependency on external communication 
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systems and its associated costs. Several solar-powered sinks could be deployed on sites the 

animals are known to frequently visit, and relay data via a long-range radio link. 

An example of such an application can be seen in Figure 3-1, where sheep help carry a 

message from a tree-mounted node, through other mobile and static nodes, ending with 

delivery to a sink node.  

 

FIGURE 3-1: EXAMPLE OF A SILVOPASTORAL SYSTEM SCENARIO 
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4 CHARON Design 

In this chapter the main considerations behind CHARON’s design will be discussed. The 

initial design goals will be listed, followed by a brief overview of the approach, a detailed 

description of the mechanisms used, and the reasons leading to their selection.  

4.1 Design Goals 

Considering the target scenario, four main goals were defined for the development of 

CHARON: reliability, simplicity, efficiency and flexibility. Some of these goals are in conflict with 

each other, e.g., increasing reliability may require a less efficient solution. In the course of the 

design phase, choices had to be made to achieve a balanced solution.  

Reliability. This is the basic goal of any routing solution, and the single goal of many. It can 

be defined as the delivery the largest possible fraction of messages, in a limited time frame, 

while they are still useful for the application. Note that, beyond guaranteeing a message 

arrives within its usefulness window, minimizing delivery delay isn’t necessarily a concern. 

Simplicity. Simplicity in this context comprises not only computational simplicity, but also 

that of the implementation. Computational simplicity is necessary because the available 

hardware has severe resource constraints. Even if resources suffice to run somewhat complex 

routing protocols, the network’s objective is not to route messages but to run an application, 

and the bulk of resources should be left for the application to use. A solution is of limited 

usefulness if it is hard to implement or deploy, and so the developed solution should be easily 

implemented in any platform. For the same reason, dependencies on hardware that is not 

normally available must also be avoided. 

Efficiency. The least possible amount of resources should be required to execute the 

required tasks. That includes using less memory, transmitting fewer messages and spending 

less energy. By minimizing the number of transmissions, memory requirements are usually 

reduced, and in some cases energy can also be saved2. Energy-efficiency does nonetheless 

require additional thought, and frequently involves specific power management mechanisms. 

Flexibility. The developed solution should be usable in many settings, provided these 

settings fit the target scenario. To accomplish this goal, design has to be done with (relative) 

                                                            
2 Some radios use more energy while idle listening than while transmitting. In those radios, reducing the number of 
transmissions has no direct impact on energy usage. Nevertheless, by transmitting less messages, the radio rests 
unused for longer periods, and can be turned off. 
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generality in mind, right from the start. Nevertheless, all applications have specificities, and 

the system must be easy to customize to each specific setting. Finally, there is the question of 

intra-scenario flexibility:  even in the same network there may be different requirements for 

different data. The solution should be able to accommodate all these requirements. 

4.2 Solution Overview 

CHARON is a history-based routing algorithm. It shares the same basic operating principle 

as other algorithms in that class: nodes exchange and/or record some kind of historic 

information when they meet, and make routing decisions based on that information. The main 

historic routing metric used in CHARON is delay, as previously proposed in other contexts [33]. 

The expected delivery delay through each node (its Estimated Delivery Delay or EDD) is 

determined, and messages are routed along a decreasing delay gradient having a sink node as 

its end. The decision to use this metric, versus, for instance, the nodes’ relative mobility or sink 

encounter frequency, was made in an effort to align the mechanism to the goal, which is to get 

the data to the sinks before it expires (see Section 4.3). 

Nonetheless, optimizing delay isn’t the only concern, as limited network resources should 

also be considered in order to provide a truly efficient solution. To accommodate that 

requirement, while also providing easy customizability, a multivariate utility function is used to 

compute an additional score for each node. The utility function is of optional character: if 

undefined, routing is based solely on minimizing the delay.  If it is defined, it can use the 

CHARON-provided free buffer space and available energy data, and/or draw on other 

application- or system-provided metrics (see Section 4.3.2). 

Decisions are made based on both the nodes’ EDDs and the values assigned to each by the 

utility function, if defined. Messages are forwarded if the other node’s EDD is lower than the 

node’s own, and if the score is the same or higher (Figure 4-1).  

// For a contacted node c 

algorithm forward_if_better (c) is 

if score(c) ≥ score(self) and EDD(c) < EDD(self) then 

forward_messages(c) 

end 

end 

FIGURE 4-1: FORWARDING DECISION ALGORITHM 
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Messages are basically forwarded using a single-copy approach, meaning that there is but 

one copy of a message in the network at any single time. Nonetheless, there is always implicit 

message copying, as every time a message is forwarded a copy is left behind. Instead of 

deleting messages on transmission, CHARON retains them in a special state that doesn’t allow 

forwarding except in the case that the node meets a sink. Messages in this state are known as 

zombies, and the strategy was named hybrid replication. The traditional multi-copy paradigm is 

also supported for situations that require it (see Section 4.3.3).   

In order to realize the intra-scenario flexibility objective, basic Quality of Service (QoS) 

mechanisms were designed into the solution. QoS classes may be configured, and each can use 

a different replication strategy and utility function. This allows CHARON to provide very 

reliable (though inefficient) service to urgent or important messages, whilst maintaining high 

efficiency for the majority of (delay and disruption tolerant) messages (see Section 4.3.4). 

As minimizing the number of transmissions isn’t enough to provide an energy-efficient 

solution, CHARON has built-in support for synchronous radio power management, significantly 

reducing energy waste (see Section 4.3.5). As a global time reference is not always available, a 

very simple and low-precision synchronization mechanism was integrated, making use of just 

two values: the reference and the reference age (see Section 4.3.6). 

CHARON operates as a bundle layer, being implemented on top of the network stack 

provided with the platform. By relying on already available lower-level protocols and avoiding 

duplicated functionality, this approach manages to significantly reduce the size and complexity 

of CHARON’s implementation. There is a small impact on communication efficiency, leading to 

longer frames due to extra encapsulation – a generally advantageous trade-off. Furthermore, it 

helps make the solution platform-agnostic and independent of the low-level details. There are 

only two types of messages in CHARON: beacons, which relay routing information, and 

bundles, which carry application data. Through the entire document, the terms message and 

bundle are used interchangeably, unless otherwise noted (see Section 4.4).  
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4.3 Feature Design 

4.3.1 Delay-Based Routing 

The main goal is to route messages in such a way that their expected delivery delay 

decreases with each hop. To do so, the expected delivery delay of each node must be 

estimated, considering its movement patterns. Two parameters are defined: 

 Estimated Delivery Delay (EDD) is a characteristic of each node, and describes the 

estimated time a message delivered to that node will take to reach a sink. Sink 

nodes have an EDD of 0. 

 Inter-Contact Time (ICT) is a characteristic of each node pair (or link), and is a 

measure of the expected time between encounters of those two nodes. The ICT is 

not defined (or can be thought of as infinite) for a pair of nodes that never met.  

A node (𝑣 ∈ 𝑉) maintains a list of its contacts (𝑉𝑣 ⊆ 𝑉) and records the advertised EDD for 

each contacted node. It also computes the ICT, through an exponentially weighted moving 

average (EWMA) of the intervals between previous encounters. From node 𝑣’s perspective, 

the perceived delay (𝑑) through a known contact (𝑐) is given by the sum of its EDD (𝑒𝑑𝑑 ∶ 𝑉𝑐  →

ℛ+) and the ICT (𝑖𝑐𝑡 ∶ 𝑉, 𝑉𝑣  → ℛ+) between both nodes (1).   

𝑑 𝑣, 𝑐 = 𝑒𝑑𝑑 𝑐 + 𝑖𝑐𝑡 𝑣, 𝑐 , 𝑐 ∈ 𝑉𝑣   (1) 

In fact, ICT describes the expected worst case encounter delay so, for the average delay, 

its half should be considered. Yet both strategies are equivalent as long as there is coherence, 

and this way the number of required arithmetic operations is reduced.  

A node’s EDD is equal to the minimum achievable delay, or the delay through the quickest 

known node, given by (2).  

𝑒𝑑𝑑 𝑣 = min
𝑐  ∈ 𝑉𝑣

{𝑑(𝑣, 𝑐)} (2) 

In practice, this means CHARON uses a transitive delay metric with an additive 

concatenation operator and an extra variable per-hop factor. As a consequence, EDD is only 

defined for nodes with a complete chain of contacts ending in a sink. 

A problem with this approach is that ICTs don’t degrade naturally, that is, if two nodes 

(𝑎, 𝑏, ⊂ 𝑉) don’t meet, their ICT value stays unchanged. This may have serious consequences if 

𝑏 is 𝑎’s best known forwarder, and 𝑏 stops being a good forwarder, perhaps because its 
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movement pattern changed or simply because it ran out of energy. As 𝑎’s EDD also remain 

unchanged, it is advertising itself to be a better forwarder than it really is, potentially 

degrading the entire network’s performance. Possible fixes include setting a threshold on the 

maximum allowable ICT overrun time (after which the entry is deleted), periodically aging the 

ICT values or taking this difference into account. The last course of action was preferred, 

replacing eq. (1) with (3).  

𝑑 𝑣, 𝑐 = 𝑒𝑑𝑑 𝑐 + 𝑖𝑐𝑡 𝑣, 𝑐 + 𝑖𝑐𝑡𝑉𝑎𝑟 𝑣, 𝑐  𝐻 𝑖𝑐𝑡𝑉𝑎𝑟 𝑣, 𝑐  , 𝑐 ∈ 𝑉𝑣   (3) 

𝑖𝑐𝑡𝑉𝑎𝑟 𝑣, 𝑐 =  𝑡𝑖𝑚𝑒 − 𝑙𝑎𝑠𝑡𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝑣, 𝑐  − 𝑖𝑐𝑡(𝑣, 𝑐) (4) 

The ICT variation function (4) is positive if the time since last contact is in excess of the 

stored ICT value, and negative otherwise. In (3), 𝐻 refers to the Heaviside step function, as 

only positive variation values should be added. 

Generally, messages are forwarded when a node with lower EDD is met. Although other 

factors may be taken into account when deciding whether to forward messages, a node with 

higher EDD is never considered a suitable forwarder, not only to minimize latency and energy 

waste but also as a way to prevent loops created by rapid variation of other metrics. The ICT of 

a link is an intermediate value, used only to determine a node’s own EDD and not to make 

forwarding decisions – at that point, nodes will already be in contact, and the ICT is irrelevant. 

4.3.1.1 EDD Calculation as a Shortest-Path Problem  

On a network-wide level, computing each node’s EDD can be seen as a shortest-path 

problem. Formally, the problem can be defined as follows: given a directed graph 𝐺 = (𝑉, 𝐸) 

with a weight function 𝑤 ∶ 𝐸 → ℛ+, the weight of a path 𝑝 = {𝑣0 , 𝑣1 , … , 𝑣𝑘} is given by (5). 

𝑤 𝑝 =   𝑤(𝑣𝑖−1 , 𝑣𝑖)

𝑘

𝑖=1

 (5) 

Defining a set 𝑆 ⊂ 𝑉 containing all the sink nodes and taking the edge’s weights to be 

their ICT value, the EDD (𝛿) of a node 𝑢 ∈ 𝑉 is equal to the shortest-path weight to any 

member of 𝑆 (6). 

𝛿 𝑢 =   
min  𝑤 𝑝 : 𝑢

𝑝
→ 𝑣 , ∃ 𝑢

𝑝
→ 𝑣, ∀ 𝑣 ∈ 𝑆

∞ , ∄ 𝑢
𝑝
→ 𝑣, ∀ 𝑣 ∈ 𝑆

  (6) 
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In Figure 4-2, a progressive view of the operation is shown. In (A), a weighted, non-

directed graph is presented, where each edge is marked with the measured ICT between the 

nodes it connects. As all sinks are logically equivalent, they can be reduced to a single virtual 

sink, thereby reducing the problem to the single-destination kind. Then, in (B) the paths with 

the lowest cost (represented in bold and with directional arrows) are selected and their weight 

used to establish each node’s EDD (the number in the centre). In the resulting graph (C), all 

paths but the used ones have been omitted, resulting in a shortest-path tree.  

 

(A) 

 

(B) 

 

(C) 

FIGURE 4-2: EDD COMPUTATION AS A SHORTEST-PATH PROBLEM 

In reality, however, the calculation is done in a distributed way, with incomplete and 

outdated information. Each node determines its own EDD, based only on its known nodes, 

their last-received EDD and the recorded ICT, having no knowledge of the remaining tree. 

Accordingly, the resulting solution may not be the best in all cases. It should also be noted 

that, despite this method being used to compute nodes’ EDDs, messages aren’t necessarily 

routed along the shortest-path tree. A node may forward a message to any node it meets with 

better EDD and global score, regardless of it being the estimated best forwarder (shortest 

path). 

4.3.2 Multivariate Utility Function 

The concept of multi-factor utility functions has been used before in OR protocols (e.g. 

[17]). The general idea behind its use is that it is possible to get a better solution by taking 

more information into account, which is commonly true. There is another equally important 

advantage, in that it allows easy customization of the algorithm to the specific usage setting.  

For instance, in an underwater WSN equipped with barometric sensors, the pressure read is 
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related to each sensor’s depth. If messages are to be routed to the surface, lower pressure 

may be a good indicator.  

The use of utility functions in CHARON is optional. An implementation can choose to use 

an empty utility function (i.e. one that returns a constant value), basing the decision only on 

the delay metric. If a utility function is defined, its results (the score) should increase with the 

desirability of the forwarder. In the case of EDD, on the contrary, lower is better – it is a 

negative indicator. As such, its symmetric should be used in the score’s calculation. A basic 

utility function, using the most commonly available data, is (7). 

𝑆 𝑣 = −𝑒𝑑𝑑 𝑣 +  𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝐿𝑒𝑣𝑒𝑙 𝑣 +  𝑓𝑟𝑒𝑒𝐵𝑢𝑓𝑓𝑒𝑟(𝑣) (7) 

Depending on the expected EDD values and the range of the other parameters, they may 

have to be individually scaled in order to exert the desired influence on the final score. Note 

that, as there is a separate safeguard against forwarding messages to nodes with higher EDD, it 

is possible to build utility functions that do not use the EDD. Those functions are, however, 

replacing a possibly quantitative evaluation of the EDD (“is the other node’s EDD so much 

better that it compensates for our larger energy reserve?”) with a purely binary assessment. 

There are no significant restrictions to the utility function other than having to return an 

integer value. They can be as simple as or simpler than (7), return a single value or a 

combination of several, or they can employ more advanced logic: anything that can be 

expressed in the language used for its implementation. Nevertheless, the use of simple 

functions is recommended to keep up with the stated goals.  

4.3.3 Message Replication 

There are two main replication strategies in widespread use. On the one hand, there are 

single-copy solutions, in which only one copy of each message can be present in the network 

at any single time. On the other hand, there are multi-copy solutions that replicate messages 

in-network, resulting in the presence of several redundant copies.  

The single-copy strategy is normally more efficient, as it does lead to lower buffer 

occupation and also to a lower number of message transmissions. It does however have some 

important disadvantages: when a suboptimal routing decision is made, it tends to have direr 

consequences, as there are no alternate paths being concurrently attempted. It is also possible 

that the node carrying the single copy fails, eliminating it permanently. These limitations lead 

to lower delivery rates and higher average latency. 
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The multi-copy strategy has the opposite problem. Delivery rates and latency are usually 

better, but are tied to higher overheads, in the sense that there are more transmissions per 

message, also leading to higher energy waste. In addition, this solution behaves badly under 

high loads, as the extra copies are likely to exhaust the available buffer, resulting in dropped 

messages and severely degrading network performance. The number of replications and the 

circumstances in which they are made can be constrained, mitigating this problem, at the cost 

of performance under low loads. 

Having high efficiency as a goal, a mostly single-copy approach was chosen, with a single 

optimization. In a traditional single-copy approach, a node forwards a message and 

subsequently erases it from its buffer. However, keeping an already held message bears no 

cost, neither in bandwidth nor in energy. As there is no real reason to remove such messages, 

they are kept in a special state: they are called zombies. The solution becomes a hybrid 

strategy, combining all the advantages of single-copy schemes with some of the performance 

improvements made possible by multi-copy ones. 

Zombies are leftover copies from previously carried messages that cannot be forwarded. 

They are kept, while possible, and delivered only on the event that a node meets a sink, after 

which they are erased. A small comparison of the three strategies can be seen in Figure 4-3:  

 In the single-copy approach (A), the message flows through the network and is 

delivered, just once, to the sink. A message carried by a node that fails or wanders 

away is lost. 

 In the multi-copy approach (B), the message is copied at each carrier node, and 

then forwarded. This results in an increase of the number of transmissions, as well 

as in the amount of buffer space in use. The number of paths being followed, as 

well as the number of simultaneous carriers, does however increase delivery 

probability, which is reflected in the number of copies (three) delivered to the 

sink. 

 In the hybrid approach (C), the message flows through the same path, but nodes 

on that path keep a zombie copy of the message. If any of these nodes come in 

contact with the sink, they deliver the message themselves. The problem is 

expressed in the following example: after forwarding a message (5), a node finds 

the sink, transmitting the zombie (7), thereby providing resilience against failures 

further down the path. While it is not the case in the example figure, it is also 
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possible that a zombie copy reaches the sink before the current holder of the 

message, in which case delivery latency is reduced. 

 

(A) 

 

(B) 

 

(C) 

FIGURE 4-3: DIFFERENT REPLICATION STRATEGIES (SINGLE COPY, MULTI-COPY AND HYBRID) 

Zombies have negligible impact on the routing efficiency (adding at most a single 

transmission per message), yet share the same properties of message copies in that they 

increase fault tolerance and improve delivery statistics. It is also necessary to examine the 

subject of buffer use, and to explain why this strategy fares better than multi-copy in that 

regard. A zombie message, being a complete copy of its parent message, naturally requires the 

same buffer space. The fundamental difference is easily understood when a node runs out of 

memory:  

 In a naive multi-copy strategy, a node has no way of knowing whether it can 

delete a message in case it runs out of memory. As this is a distributed problem, 

there are no guarantees that all nodes won’t delete the same message, making it 

undeliverable. 

 In the hybrid strategy, nodes generally carry some messages and some zombies. 

They know any zombie can be safely removed, as its parent message is being 

carried by some other node. Conversely, they know they must not delete their 

messages, because no other node carries them. 

Despite the advantages of this approach, there are situations in which delivery probability 

must be maximized and, perhaps most importantly, latency has to be minimized at any cost. 

The system supports a secondary purely multi-copy mode for use in such situations. In this 

mode CHARON does not tag forwarded messages as zombies, continuing to forward them as 

before. This is clearly wasteful, as a message can be forwarded to a node that is already 
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carrying it, but unavoidable without introducing additional message types or additional beacon 

fields. Given that this mode is meant to be seldom used, the introduction of additional 

complex mechanisms has been avoided. A node can however keep track of other nodes to 

which it has already forwarded each message and refrain from forwarding to them again. 

While this mode does succeed in improving delivery statistics, it has a negative impact on the 

network as a whole if abused, and should only be employed when strictly required.  

4.3.4 Quality of Service 

Even within specific applications, there are sometimes messages with different 

requirements. A simple example is that of an agricultural monitoring WSN: while most 

messages probably contain only temperature, humidity and PH samples and are not urgent, 

there can also be alarm messages alerting the operators to a pest or a fire threatening 

production and requiring immediate attention. This coexistence of different requirements 

within the same network is the motivation for including quality-of-service (QoS) mechanisms in 

CHARON.  

Before going into details, it is important to clarify that the definition of QoS in this context 

is limited to the ability to provide different performance levels to different data classes. 

Resource reservation and service level guarantees are difficult (if not impossible) to put into 

practice in the target scenario and within the stated goals, and as such weren’t considered. In 

that sense, the service CHARON provides is always best-effort. 

The customizability of some parts of CHARON was previously discussed, in what refers to 

the particularities of the deployment scenario. The system is even more adaptable as it can be 

customized for individual traffic classes within the same deployment. There are three 

independently configurable class-specific features: 

 Utility function 

 Replication strategy 

 Time to Live (TTL) value 

Depending on the chosen settings, the result can range from purely delay-based, multi-

copy routing with high overhead but low latency, to very efficient, single-copy, energy-aware 

routing. While CHARON supports an unlimited number of classes, in the vast majority of cases 

two will be sufficient: 
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 A low-priority class used for bulk monitoring data, configured with an energy-

aware utility function and hybrid replication 

 A high-priority class used for urgent alarm data, configured with no utility function 

and multi-copy replication 

An example of such an arrangement is presented in Table 4-1, where different TTL values 

were also defined. The choice of TTL parameters should take into account the period during 

which data is useful. Alarm data is, by definition, urgent and – considering the wasteful 

mechanism being used to route it – should be set to expire as soon as possible.  

TABLE 4-1: EXAMPLE CLASS CONFIGURATION 

Class Utility function Replication strategy TTL value 

Monitoring 𝑆 𝑐 =  −𝑒𝑑𝑑 𝑐 + 𝑓𝑟𝑒𝑒𝐵𝑢𝑓𝑓𝑒𝑟 𝑐 + 𝑏𝑎𝑡𝑡𝑒𝑟𝑦𝐿𝑒𝑣𝑒𝑙(𝑐)  Hybrid 72 h 

Alarm 𝑆(𝑐) = 0  Multi-copy 12 h 
 

Using this simple scheme, CHARON is able to provide multi-copy-like performance on 

high-priority messages, as long as they are few and far in between, while still keeping global 

overhead at very low levels. It must be emphasised that this is only true if alarm messages 

account for a small fraction of the total as otherwise global performance will be severely 

degraded. 

4.3.5 Power Management 

Regardless of how high an algorithm’s routing efficiency is, it can’t achieve good energy 

efficiency per se. Broadband radios are not only one of the largest consumers but can use as 

much or even more energy on idle listening than they do while transmitting. To save energy, 

this must be taken into account by turning off the radio when it is not necessary.  

There are several possible radio power management approaches including synchronous 

[34] and asynchronous [35] [36] cycling, as well as more advanced, on-demand solutions such 

as wake-up radios [37]. Asynchronous cycling presents a sub-optimal solution, requiring very 

short rounds that may inhibit advanced power saving modes, and can lead to long always-on 

periods if trying to transmit in the absence of neighbours. The use of wake-up radios seems 

promising but requires additional hardware on most current platforms. This leaves 

synchronous cycling, which is generally a good solution although it requires a global time 
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reference. The reference can either be provided by the CHARON-integrated synchronization 

mechanism or any other available source. 

The global clock is used to generate synchronous rounds on all nodes. Rounds comprise an 

on time, when the radio is turned on and communication takes place, and an off time, when 

the radio is turned off and all system activity is suspended. Although only radio power 

management is handled, turning the radio off can (depending on the platform) allow the 

system to enter low-power modes, further reducing energy consumption. For that to happen, 

the applications must also be synchronized and suspend their activities during off times, which 

is why CHARON allows applications to listen to round generation events. 

There are two parameters controlling radio rounds: the round period and the round time. 

The first describes the time between successive round starts, while the second describes the 

time the radio is left on in each round. The starting time of the following round (𝜏) is computed 

from the current time using a simple formula (8). 

𝜏 =  𝑡𝑖𝑚𝑒 \ 𝑟𝑜𝑢𝑛𝑑𝑃𝑒𝑟𝑖𝑜𝑑 + 1 ∗ 𝑟𝑜𝑢𝑛𝑑𝑃𝑒𝑟𝑖𝑜𝑑 (8) 

The node must wake-up frequently enough not to miss too many connection 

opportunities and stay awake long enough to hear the neighbouring nodes’ beacons and 

possibly forward messages. This requires some thought and analysis during the definition of 

sleeping periods, as these must be tailored to the scenario and take into account the expected 

movement speed and radio range. It is expected that in most scenarios radios can be turned 

on for a few seconds every minute, leading to duty cycles around 10%. Only under optimal 

conditions can the duty cycle go lower than 1%. Once again, there is a balance to be struck 

between energy efficiency and network performance.  

When a node does not yet have a time reference available, synchronized radio cycling is 

impossible. It was decided that a fall-back mode not be implemented, instead keeping the 

radio permanently on until a reference is acquired. While this might be seen as wasteful, in 

most cases nodes can be initially synchronized at the time of deployment, limiting the 

problem’s severity. 

4.3.6 Time Synchronization 

There are two main ways to obtain a global time reference on a WSN: listening to a 

broadcast source, such as GPS or FM signals, or running a synchronization protocol. While the 



33 

 

former option is simpler and more precise, it requires additional hardware. Consequently, it 

was decided to use a synchronization protocol.  

There are already several high-precision time synchronization protocols designed for 

WSNs [38]. Most were designed for stationary networks and do not support opportunistic 

scenarios. The few that do, tend to behave poorly under high mobility and/or be of high 

complexity. They also introduce additional communication overhead in the form of 

synchronization messages.  

Since CHARON’s use for a time reference does not require high-precision, a simpler 

solution can be used. The (very basic) developed mechanism uses two fields on the periodic 

beacons broadcast by each node, and allows synchronization to the sinks’ clock. When a 

beacon is received, a node updates its local reference using the algorithm presented in Figure 

4-4. 

algorithm update_time (c) is 

if localTimeAge ≥ timeAge(c) + stepPenalty then 

localTime ← time(c) 

localTimeAge ← timeAge(c) + stepPenalty 

end 

end 

FIGURE 4-4: TIME SYNCHRONIZATION ALGORITHM 

Sink nodes have an age of 0, and are always used as sources. The stepPenalty parameter is 

indented to reduce the number of average synchronization steps, as there is an additional 

error introduced with each.  

The algorithm is about as simple as can be. There is no statistical treatment of time 

samples and transmission and reception delays are not compensated for. While accuracy of 

advanced algorithms can be in the order of microseconds, in this case it is around tens of 

milliseconds. Seeing that there is also no drift correction, the error will tend to rapidly increase 

with reference age. Current digital clocks can, however, maintain a useful reference for many 

hours or even days, which is good enough for most scenarios. Implementations should 

nevertheless monitor the age of the reference and move the system back to an 

unsynchronized state if it exceeds a given threshold, based on the used clocks’ specified drift.  

In addition to being used for power management, the global time reference is used to 

timestamp messages. It can also be queried and used directly by applications. 
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4.4 Messages Formats 

Nodes detect each other, and routing information is exchanged by periodically 

broadcasting beacons. Beacons contain the needed data for all parts of the solution to 

operate. The structure of a beacon is shown in Figure 4-5. 

Time Reference Time Reference Age 

EDD 
Available 
Memory 

Available 
Power 

FIGURE 4-5: STRUCTURE OF A BEACON MESSAGE 

Note that the format isn’t completely specified, as the size of each field is 

implementation-dependent in order not to limit efficiency or applicability. Useful time values 

are required to have reasonable precision, and are likely to require larger sizes than memory 

or power indicators. Also note the lack of a source identifier: that is handled at the lower 

layers, and there is no need for duplication. 

Messages are transferred using unicast connections. The structure of a data message is 

shown in Figure 4-6. 

Source Address Sequence Number 

Timestamp 
Traffic 
Class 

Data 
Stream 

Data 
(...) 

FIGURE 4-6: STRUCTURE OF A DATA MESSAGE 

All fields are immutable, i.e., are never changed by carrier nodes. The sequence number is 

a monotonically increasing integer and should be dimensioned so that it does not roll over 

during the network lifetime – even at a high generation frequency of 1 message per second an 

unsigned 32-bit integer should be enough for over 130 years. The timestamp is used in 

prioritizing messages for transmission, as well as checking for TTL expiration. The traffic class is 

used for QoS purposes, as previously explained, and the data stream identifier is present so 

that sinks can separately queue messages for concurrent applications. No limit is imposed as to 

how much data a message can carry but, as bundle-layer fragmentation is not supported, that 

amount is limited by the maximum allowable payload size of the underlying layer. 
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There are no other routing-specific messages, in an effort to maintain the approach’s 

simplicity. This also means there are no bundle-layer acknowledgements; it is a non-

conversational protocol. Data loss is prevented by relying on lower-layer acknowledgements. 
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5 Reference Implementation 

A reference implementation of CHARON was developed, primarily as a proof of concept. It 

is meant to allow validation and evaluation of the proposed solution in a real setting. It also 

helped to better assess the difficulty of implementing CHARON in real WSN hardware. This 

chapter describes the implementation’s architecture. 

5.1 Development Platform 

Most previous [39] [34] and ongoing WSN experiments at GEMS3 have used Crossbow 

MICAz nodes [40] and the TinyOS operating system [41]. Despite this being a somewhat 

flexible combination, developing for it can be tiresome, and it is also an aging platform with 

severe resource limitations (although successors are available). 

For CHARON’s reference implementation, it was decided that Sun Microsystems’ Small 

Programmable Object Technology (SPOT) [42] should be used. The SPOT is the result of a 

project started at Sun Labs in 2004, and presents several important advantages when 

compared to the aforementioned platform. This implementation also presented an 

opportunity to test a new platform for future projects at GEMS.  

 

FIGURE 5-1: SUN SPOT NODE (IMAGE CREDIT: SUN MICROSYSTEMS) 

The SPOT (Figure 5-1) is a fairly powerful system, based on the following hardware: 

 180-MHz 32-bit ARM9 processor 

 512KB of RAM 

                                                            
3 The Group of Embedded Networked Systems and Heterogeneous Networks at LEMe/IST 
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 4MB of Flash memory 

 IEEE 802.15.4-compliant [43] CC2420 radio transceiver [44] 

 3.7v, 750mAh rechargeable lithium-ion battery 

It also comes with a sensor board featuring: 

 A 3-axis accelerometer 

 A temperature sensor 

 A light sensor 

 8 RGB LEDs 

 2 Switches 

 Analogue and digital input and output pins 

SPOT nodes are programmed using Java. They do not run an operating system, replacing it 

with a bare-metal Java Virtual Machine (VM), Squawk [45]. Squawk is a very lightweight VM, it 

too mostly written in Java, and targets small, resource constrained devices, such as WSN 

nodes. It is compliant with the Java Micro Edition (ME) Connected Limited Device 

Configuration (CLDC), version 1.1. It provides a full-featured Java environment, with support 

for multiple threads, application isolation, dynamic loading and linking, and exact garbage 

collection. Squawk’s implementation on the SPOT is bundled with specific libraries that 

facilitate development for the platform, e.g., by allowing easy access to the sensors and other 

connected hardware. It also includes a full communication framework that provides low-level 

radio access, high-level connection-oriented and connectionless protocols, as well as mesh 

routing protocols. 

One of the advantages to using SPOTs is that they are relatively well equipped, being close 

to the current state of the art of WSN hardware. However, the single most important 

argument going for them is the fact that they are Java-based, making development much 

easier for non-expert users. They also benefit from an entirely open-source approach to both 

software and hardware development. SPOTs have been previously used in WSN contexts, such 

as KTH’s AquaWSN [46] and WaterWell [47] water quality monitoring projects.  

5.2 Architecture 

CHARON is implemented as a library that can be included in any application. It follows an 

object-oriented approach with several high-level logical blocks, each typically composed of 
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several classes. Figure 5-2 shows a logical overview of the reference implementation, in which 

blocks are matched to the system’s main features. 

 

FIGURE 5-2: LOGICAL OVERVIEW OF THE IMPLEMENTATION 

The blocks with coloured backgrounds represent the layers above (Application) and 

below (Radiogram). Each block in between them is part of CHARON, and will be described in 

the following sections. Blocks are not entirely separate, and some components may be part of 

more than one, so the previous figure should be understood as a simplification. While an effort 

has been made to apply the Object-Oriented Programming (OOP) principles of modularity, 

isolation and abstraction to their full extent, in some places it wasn’t reasonable to do so, 

mainly for performance reasons.   

5.2.1 Routing  

The most important components of the routing block (Figure 5-3) are the routing engine 

(RoutingEngine), the beacon sending (BeaconThread) and receiving (ListenThread) 

threads, and the routing table (RoutingTable).  

 

FIGURE 5-3: COMPONENT DIAGRAM FOR THE ROUTING BLOCK 

The RoutingEngine module is, as expected, the main module in the block. In addition to 

coordinating the other modules, it keeps track of all contacts, storing for each known node its 

ICT and EDD values. It also processes received beacons and updates the routing table.  
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Each QoS class has specific routing logic that must be considered by RoutingEngine and 

other system components. To do so, classes are described by objects implementing the 

ServiceClass interface, and registered with a static manager, omitted from the figure for 

clarity. This interface contains methods to access each of the class-specific parameters, and to 

calculate a node’s score according to the class’s utility function. For simplicity reasons, zombies 

are also considered a traffic class.  

The routing table has a single entry for each class, indicating the next hop. It is located 

outside the RoutingEngine to facilitate access to the forwarding block. It is protected by a 

wait/notify mechanism that allows the interested threads to synchronize: when an entry is 

edited, the waiting threads are notified. 

BeaconThread and ListenThread have simple assignments:  the former grabs the 

necessary information from the system and uses it to broadcast beacons, the latter receives 

beacons broadcast by other nodes and passes them on to RoutingEngine and other 

interested modules. This use of independent threads with self-contained functions 

considerably simplifies the system, reducing the need for centralized control or state sharing.  

5.2.2 Forwarding 

The main components in the forwarding block are the forwarding engine 

(ForwardingEngine), the message sending (ClientThread) and receiving 

(ServerThread) threads and the routing table (RoutingTable), presented in Figure 5-4. The 

buffer is, of course, used to store the messages being carried. 

 

FIGURE 5-4: COMPONENT DIAGRAM FOR THE FORWARDING BLOCK 

The buffer is implemented as a set of several linked lists, one per class. These lists are kept 

sorted by message timestamp, so that older messages are forwarded first. Entries are sorted 

on insertion, trading upfront cost for savings in every dispatching access. The buffer has a size 
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limit, defined as a number of messages, which is freely distributed among classes. In order to 

reduce the load on the garbage collector, all the list nodes are created on start-up and kept in 

a shared pool4. Cleanups are periodically executed to remove expired messages and, if buffer 

space goes under a specified limit, zombies (which are non-critical) are deleted to make room 

for other messages. 

ServerThread continuously waits for messages to be received and adds them to the 

buffer, while ClientThread blocks on RoutingTable’s wait/notify mechanism. When the 

table is updated, the thread wakes up and matches available routes to available queues, 

starting with the highest priority class5. As soon as it finds a route for which there are 

messages to send, it begins transmission. When all messages in that class have been 

forwarded, it moves to the next class. This means, in effect, that while high-priority messages 

are queued and a suitable round is available, lower-priority classes are not served. Starvation 

of low-priority queues is possible if many high-priority classes are carried, but the system has 

not been designed for such usage patterns. If a transmission fails, the message is put back into 

the buffer. If a message’s class uses zombies, the message is moved to the zombie queue after 

being sent. The thread performs a short sleep between each transmission as a way to throttle 

resource and bandwidth occupation and allow more critical functions to execute. For instance, 

by imposing non-transmission periods, channel access contention is reduced and beacon 

messages suffer lower contention delays, improving synchronization precision. 

In case the buffer fills up, message reception must be halted. That only takes place when 

the node broadcasts the following beacon, advertising the lack of available memory. However, 

before that occurs, messages may still be forwarded by other nodes. The obvious solution 

would be to close the listening connection, resulting in acknowledgements not being sent, and 

causing the sending nodes to stop. However, an optimization on the lower levels of the SPOT 

stack leads to closed connections still acknowledging received messages, forestalling this 

approach. This problem was solved by attaching the free buffer space to each routing entry. 

This value is decremented by the node every time a message is sent. Because there may be 

other nodes transmitting to the same destination, the announced buffer space should not be 

                                                            
4 In the absence of the shared pool, new list objects be would be allocated every time a message was received, 
requiring the garbage collector to remove these objects when the message was later forwarded, and wasting CPU 
cycles. 
5 The concept of class priority wasn’t previously discussed as it is implementation-specific and not a design choice. 
Each class is assigned an integer that defines the order in which it is served. Urgent data should be configured with 
the highest priority level, while zombies should receive the lowest. 



41 

 

the real one, but a fraction of it. The division factor is scenario-specific, and should be set with 

respect to the number of nodes expected to simultaneously transmit to a single one. On most 

cases it is unlikely to have a significant effect on network performance, only reducing the 

maximum number of messages forwarded between beacons. In the worst-case scenario, in 

which the division factor is set too low and many nodes happen to transmit a large number of 

messages to the same destination simultaneously, some messages might be silently dropped 

for lack of buffer space. This is clearly undesirable, so it is best to always choose a factor higher 

than the expected. 

5.2.3 Time Synchronization 

The time synchronization subsystem is very simple, and composed mainly of the 

TimeKeeper module (Figure 5-5). It uses the same threads of the routing block to get 

information in and out of the beacons. 

 

FIGURE 5-5: COMPONENT DIAGRAM FOR THE TIME SYNCHRONIZATION BLOCK 

TimeKeeper manages all the time information. It keeps global time and provides access 

and update methods. Three values are stored:  

 The delta (Δ) between local and global times 

 The reference age at the time it was received 

 The local time at which the clock was synchronized 

Using these values, the module converts between local and global times. The function that 

converts global to local times is (9), whereas the converse operation inverts the delta’s sign. 

𝑔𝑙𝑜𝑏𝑎𝑙2𝑙𝑜𝑐𝑎𝑙 𝑡 = 𝑡 + Δ (9) 

When a beacon is received by ListenThread, and even before it is passed on to the 

routing engine, the time information is sent to TimeKeeper. If it is more recent than the 

current reference, the latter is replaced. BeaconThread grabs the current time values and 
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writes them to the beacon just prior to dispatching. Both threads use the highest priority level, 

in order to minimize synchronization error. 

5.2.4 Power Management 

When a time reference is available, the system can commence round generation. That is 

done by the power management block which, besides RoundGenerator, only uses 

components belonging to other subsystems – it is tightly integrated with the system. An 

overview of the components involved can be seen in Figure 5-6. 

 

FIGURE 5-6: COMPONENT DIAGRAM FOR THE POWER MANAGEMENT BLOCK 

RoundGenerator uses a Java Timer to schedule tasks. At the beginning, a control task 

(ControlTask) is scheduled periodically to wait for the time reference. When one is found, 

the control task determines the global time when the next round should start – as specified in 

Section 4.3.6 –, converts it to a local time, and schedules a RoundStartTask for execution. 

This task turns the radio on and resumes system activity, in addition to scheduling the 

following round.  

An end-of-round task (RoundStopTask) is also scheduled: it not only turns the radio off 

but also invokes the garbage collector at a time the system is still on but unlikely to be active – 

the client application is not controlled by CHARON and may be running. This task notifies 

CharonEngine, which requests for the radio to be shut down, and calls a pause method on 

the other engine objects. This method stops all activity of the sending threads; receiving 

threads don’t need to be suspended, as they will be blocked while the radio is off. 

The SPOT’s power management library automatically throws the system into deep sleep 

mode – a very low power state – when all threads are blocked and the radio is off. As long as 

the application is also inactive, that means CHARON’s radio power management solution is, in 

fact, extended to the entire system. 
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5.2.5 Network Connections 

This implementation of CHARON uses Radiogram as the underlying connection protocol. 

Radiogram is a lightweight connectionless protocol. It is a generally unreliable protocol, but in 

the single-hop case it guarantees that messages will not be silently lost (with the exception 

pointed out on Section 5.2.2) or delivered out of sequence, though they can be delivered more 

than once. It relies on 802.15.4 acknowledgments to guarantee delivery. 

Communication is accomplished using a socket-like model. In each node CHARON 

operates four connections: 

 A broadcast sending connection, on the beacon port, for BeaconThread 

 A listening connection, on the beacon port, for ListenThread 

 A unicast sending connection, on the data port, for ClientThread 

 A listening connection, on the data port, for ServerThread 

ClientThread’s connection is the only non-permanent one, being created each time a 

node is about to start forwarding messages. 

Since the Java CLDC does not support object serialization, a message marshalling6 

mechanism had to be created. Both bundles and beacons extend the Message class and can be 

easily marshalled into a radiogram’s payload or unmarshalled out of it. 

5.3 Application Interface 

Having a simple interface is a critical part of CHARON’s developer-friendliness. Its basic 

interface solution consists of just one class, CharonConnection. That is the only required 

interaction between an application and the system. Access to TimeKeeper and 

RoundGenerator is also possible, but entirely optional. Figure 5-7 illustrates the possible data 

flows. 

                                                            
6 Marshalling is the process of transforming the memory representation of an object to a format suitable for 
transmission or storage. 
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FIGURE 5-7: APPLICATIONS’ INTERACTION WITH CHARON 

The data message class (Bundle) implements the standard datagram interface used by 

the built-in high-level protocols, requiring minimal changes to existing application.  In 

particular, it supports typical Java data input and output streams, allowing its payload to be 

written and read using simple operations.  

An instance of CharonConnection (Figure 5-8) is created for each data stream an 

application wishes to use. A connection provides methods for instantiating bundles and 

sending them. Two sending methods are available and they differ only in the service class 

assigned to the message. This structure was thought to be easier to use considering there are 

only two classes. If more service classes were configured, the interface could instead be 

adapted to receive the class ID as either a parameter to the constructor or to the send 

method. The standard CLDC Generic Connection Framework (GCF) was not used as it would 

introduce unneeded complexity. 

 

FIGURE 5-8: CONNECTION INTERFACE 

Both TimeKeeper and RoundGenerator are system-wide static classes, and their 

abridged interfaces can be seen in Figure 5-9. TimeKeeper provides access to the current 

global time and converts between local and global times. RoundGenerator allows the 

application to subscribe to notifications of synchronous rounds by using a simplified Observer 

design pattern. Any class wishing to be notified must only implement the RoundObserver 

interface and call the RoundGenerator.attach method. 
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FIGURE 5-9: TIME AND ROUND INTERFACES 

5.4 Sink Library 

The previous sections described the node-deployed part of CHARON. There is a sink (or 

host) library too, running on the computer connected to the SPOT base station. The sink has to 

broadcast beacons, like any other node, and receive messages. Both mechanisms are similar to 

the ones used in the node library, and will not be described in detail.  

Received messages, instead of being put into a class-specific queue, are instead grouped 

according to their stream ID. Given that the system deals with delay-tolerant data, applications 

must be prepared to handle out-of-order data, and as such there is no reason to reorder 

messages. The system does, however, keep track of the already received messages and drops 

any duplicates, although this behaviour can be disabled if necessary. 

To receive messages, applications must first instantiate a CharonConnection object 

(Figure 5-10) with the desired stream ID. The sole method provided by the connection 

(receive) goes into a blocking wait until a message is available, at which time it returns. 

 

FIGURE 5-10: HOST INTERFACE 

The host library does not currently include support for multi-sink data aggregation, as this 

is outside the scope of the project. Such support can easily be implemented at the library or 

application levels by re-marshalling (using the built-in marshalling methods) and sending the 

received bundles over an IP connection. 
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5.5 Implementation Complexity 

One of the goals set for CHARON was its ease of implementation, and verifying it was also 

one of the reasons leading to the development of this prototype. While ease of 

implementation is always a topic of subjective evaluation, some objective metrics can be 

presented. 

The full implementation contains 32 classes and 1517 physical source lines of code (SLOC), 

excluding utilities and debugging functionality. It was finished in one and a half months of part-

time work by a developer unfamiliar with the platform, while an experienced full-time 

developer could probably have done it in less than two weeks. These development times 

appear to be acceptable, considering the multiple problems CHARON solves.  

Although very subjective, a short comparison can be made with TinyOS, considering the 

implementation of a power management solution similar to the one used (although more 

complex) by the same developer [34]. That implementation required more than one month of 

work, in addition to an intermediate redesign, mainly because of the unfriendly and exotic 

nature of the development environment. 

The full compiled suite stands at 47 KB, a value that must be seen in the context of the 

used framework and system. In effect, given that the system has 4 MB of available Flash 

memory, CHARON’s footprint isn’t relevant. Unfortunately, runtime RAM and CPU usage could 

not be quantified, as support for profiling is not yet implemented in the SPOT firmware. 
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6 Evaluation 

In order to validate the ideas behind CHARON, and evaluate its performance, a set of 

evaluation experiments were conducted. These include large-scale simulations to perform 

asymptotic performance analysis and real-world validation, carried out using the reference 

implementation. This chapter details the evaluation protocol and presents the obtained 

results. 

6.1 Metrics of Interest 

Several metrics of interest can be defined for the evaluation of CHARON. Considering each 

metric’s importance and the restrictions imposed by the platform used and the equipment 

available, the following were chosen: 

 Routing 

o Delivery ratio is defined as the number of unique delivered messages, divided 

by the number of sent messages 

o Message latency measures the elapsed time between the creation of a 

message by the source and the moment when it is first delivered to the 

destination 

o Hop count or path length is the number of hops a delivered message travels 

through before reaching the sink 

o Routing overhead describes the number of extraneous message transmissions, 

i.e. those beyond the single required transmission from source to destination 

 Time synchronization 

o Clock offset is the difference between two clocks carrying the same reference 

o Clock drift is the rate at which the offset increases with time 

 Power management 

o Node lifetime is the time required for a node’s battery to go from fully charged 

to fully discharged 



48 

 

6.2 Simulation 

Opportunistic routing techniques are typically designed to be used in large networks with 

mobility — conditions which are hard to reproduce in a laboratory. Simulation techniques 

were therefore used to evaluate the macroscopic behaviour of the algorithm, in conditions 

resembling the target scenario. 

Simulations were performed using the Opportunistic Network Environment (ONE) 

simulator [48], an open-source Java-based simulator designed for evaluation of DTN routing 

algorithms. Because the reference implementation was also written in Java, this option 

allowed for an easier conversion. It also includes implementations of several algorithms that 

were used for comparison. 

6.2.1 Base Scenario 

Settings for the simulation were extracted from the target scenario described in Chapter 

3. The area of movement was defined to be 80 km2, approximately the size of Lisbon, to 

provide sufficient freedom of movement. A total of 60 nodes are initially distributed randomly 

throughout the area, resulting in a low node density of 0.75 nodes/km2, as expected in our 

target scenario. A single static sink is placed in the centre of the map, shown in Figure 6-1. 

 

FIGURE 6-1: PARTIAL VIEW OF THE SIMULATION SCENARIO  
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There are six node groups, emulating a setting where different species or populations 

cohabit and exhibit different behaviour. Each group has a set of pre-defined waypoints, from 

which nodes select their next destination. Movement speed is randomly chosen from a 

predefined range (1.8 km/h to 18 km/h). Upon reaching a waypoint, nodes stop for a random 

length of time (0 s to 120 s). Nodes of some groups can never come in direct contact with the 

sink, as their movement area does not include the centre of the map. In the simulator used, 

this model of waypoint pools is not compatible with unrestricted movement. Instead, an 

approximation was implemented, in which nodes move on a tight lattice of possible paths, 

using a shortest path algorithm to reach their destination.  

Each node generates fixed-size messages (200 B of raw physical layer data) with fixed 

periodicity (60 s). All nodes have 200 kB of buffer space, a reasonable size for current memory 

capacities. All messages have the sink as their destination. A single sink was used to allow fair 

comparison to protocols that don’t support more than one. Radio range (40 m) and bitrate 

(250 kb/s) were chosen to reflect typical values for 802.15.4 [43] radios used in WSNs. 

Each simulation runs for a period of 1 simulation day, during which 1440 messages are 

generated. Movement and event generation are regulated by a pseudorandom number 

generator. The generator seed is the same for multiple settings within each run, guaranteeing 

comparable results.  

Table 6-1 presents a summary of the already listed simulation parameters. These default 

parameters are used in all simulations, except where otherwise noted. 

TABLE 6-1: DEFAULT SIMULATION PARAMETERS 

Area 80 km2 

Number of nodes 60 

Run duration 1 d 

Radio range 40 m 

Radio bit rate 250 kb/s 

Buffer space 200 kB 

Movement speed 1.8 km/h to 18 km/h 

Idle movement time 0 s to 120 s 

Message generation interval 60 s 

Message size 200 B 
 

Several of the simulation parameters may seem excessive, namely the message periodicity 

and the movement speed. These were chosen in order to guarantee meaningful results in 

simulations as short as 1 day, a necessity given the (real) time constraints for the evaluation. 



50 

 

Had more time been available, it would be preferable to execute longer simulations with 

longer message generation intervals and slower movement, a scenario closer to our target 

one. 

Statistical significance is provided by the high number of messages generated during the 

simulation. In addition, to further reduce variance and prevent artefacts caused by irregular 

movement, all results are averaged from multiple runs with different seeds. 

6.2.2 Results 

6.2.2.1 Replication Strategy 

The hybrid replication strategy used in CHARON is based on the assumption that leaving 

previously carried messages as zombies is better than deleting them. To verify that 

assumption, the same simulation was carried out comparing a pure single-copy strategy and 

the proposed hybrid strategy. The simulation’s results are presented in Figure 6-2.  

 

(A) 

 

(B) 

 

 

(C) 

 

(D) 

FIGURE 6-2: PERFORMANCE IMPACT OF ZOMBIES 

As the network load increases, buffers start to fill up and messages are dropped or not 

forwarded, leading to a decreased delivery ratio. Latency, overhead and hop count also show a 

downward trend with increasing network load: when buffers are full, there are fewer 

opportunities to forward each message, and only messages generated closer to the sink tend 

to be delivered. 



51 

 

Results show a very significant improvement on all delivery statistics for the hybrid 

strategy, although the difference tends to be smaller with higher load, as zombies start being 

deleted to make room for other messages. Delivery ratio is higher due to the alternative paths 

created, which also reduce latency. Although overhead is lower with the hybrid strategy, in 

reality the number of transmissions is greater or equal: the improvement is due to the larger 

number of delivered messages. Hop count is, as expected, greatly reduced, showing that 

zombies are, in many cases, effectively being delivered prior to their parent message. 

6.2.2.2 Quality of Service 

QoS mechanisms also need to be assessed in their ability to provide coexisting 

differentiated service levels. To do so, a set of simulations were run in which nodes generated 

sensing messages (at the normal rate of 60 messages/hour) and alarms (at a variable rate, 

leading to different alarm/message ratios). Figure 6-3 presents the results in several series:  

 With QoS disabled, “No QoS” 

 With QoS enabled  

o Alarm messages, “QoS-Alarm” 

o Sensing messages, “QoS-Sensing” 

o Overall outcome (alarm and sensing messages), “QoS-Overall” 

 

(A) 

 

(B) 

 

 

(C) 

 

(D) 

FIGURE 6-3: PERFORMANCE IMPACT OF QOS MECHANISMS 
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The first aspect to note is that the lines for non-QoS traffic and sensing traffic mostly 

overlap, showing that, in this load range, high-priority traffic does not negatively affect other 

traffic. Furthermore, a clear improvement can be seen in the delivery statistics for alarms: 

delivery ratio is considerably better and latency is reduced by more than 40%. These 

improvements come at a cost of higher specific overhead, yet global overhead remains low. 

6.2.2.3 Time Synchronization 

Contact information was used to infer the performance of the synchronization 

mechanism. The simulation was started with all nodes in an unsynchronized state, and the 

synchronization boot-up time was measured. Figure 6-4 shows the times needed to achieve a 

certain percentage of synchronized nodes, with each series representing a different network 

size, in number of nodes. 

Synchronization performance depends on the number of nodes or, to be precise, node 

density and unique encounter frequency. Networks with rare encounters need more time to 

become completely synchronized, while networks with frequent encounters synchronize 

quickly – nearly three times faster in the simulation.  

 

FIGURE 6-4: SYNCHRONIZATION BOOT-UP TIME FOR SEVERAL NETWORK SIZES 

Even in the worst presented case, a full initial synchronization takes approximately 8 

hours, and continuous reference refreshing makes it unlikely that nodes stay longer than that 

without receiving an updated reference. This appears to support the hypothesis that drift 

correction is not a critical feature of the synchronization mechanism. 
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6.2.2.4 Comparative Assessment 

To be meaningful, the results obtained by CHARON must be compared to those attained 

by other routing solutions. To enable this comparison, the same set of simulations was run 

using CHARON, Direct Delivery [6], Spray and Wait [7], Epidemic Routing [4], and PROPHET 

[15]. Epidemic Routing and PROPHET are multi-copy protocols, and therefore should provide 

better results at lower loads. Direct Delivery is the simplest possible single-copy protocol, 

allowing only direct transmission from source to destination. Spray and Wait is technically a 

multi-copy protocol, but with a bounded number of copies per message (4 in this case), 

resulting in an intermediate solution, and the closest to CHARON – for that reason, it is 

generally not to be included when referring to multi-copy protocols. For fairness, neither 

CHARON nor any of the other protocols were highly tuned for this specific scenario. 

6.2.2.4.1 Base Scenario 

The first simulation compares algorithms’ performance for a wide range of network loads. 

The results are presented on Figure 6-5. 

 

(A) 

 

(B) 

 

 

(C) 

 

(D) 

FIGURE 6-5: PERFORMANCE COMPARISON FOR VARIOUS NETWORK LOADS 

Multi-copy protocols behave better under low loads, resulting in very high delivery 

probabilities with low latency. As load increases, specifically around 90 messages/hour, 

resources turn out to be scarce and the situation is reversed, with CHARON and Spray and 
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Wait taking the lead. With these two protocols and Direct Delivery there is little variation of 

delivery ratio with network load, due to the efficient use of resources. The massive difference 

in terms of efficiency can be seen on (C), where PROPHET’s overhead is up to 70 times higher 

than CHARON’s. Latency is one of the strong points of multi-copy protocols, with a sustained 

lead at every load. Differences in the latency and hop count trends – decreasing with network 

load for CHARON, but increasing for PROPHET and Epidemic – are related to the different 

dropping schemes: CHARON drops messages according to their global age (those generated 

farther away tend to be dropped first), while in the others they are dropped according to the 

order of reception (regardless of when they were generated). 

It is interesting to compare these results with the ones obtained in Section 6.2.2.2. Alarm 

classes on a QoS-enable instance of CHARON on the exact same scenario can achieve delivery 

ratios above 0.80 and latencies in the order of 160 minutes, in line with those displayed by the 

best performers in the test. This means CHARON can provide top-quality service to messages 

that require it, while maintaining low general overhead. 

A second simulation analyses the influence of network size (in number of nodes) on the 

algorithms’ performance. As the area of movement is constant, the node density is also being 

varied. The message generation period was left at the default value (60 seconds), where multi-

copy approaches are still the best performers. Results are presented in Figure 6-6. 

 

(A) 

 

(B) 

 

 

(C) 

 

(D) 

FIGURE 6-6: PERFORMANCE COMPARISON FOR VARIOUS NETWORK SIZES 
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Results for CHARON seem to be fairly consistent over the tested range (except in the 12 

node scenario). Delivery ratio is relatively stable over the entire range but, contrary to the 

multi-copy approaches, neither CHARON nor Spray and Wait accomplish a significant latency 

reduction with the increase in the number of nodes. The lack of improvement is explained by 

the fact that, due to heavier constraints on the number of transmissions, these algorithms do 

not fully benefit from the increasing number of opportunities. On the other hand, overhead is 

also kept below 10 excess transmissions per message, while for multi-copy protocols it grows 

with network size, approaching 1000 excess transmissions for a network of 80 nodes. 

Analysing the results of both simulations, some conclusions can be drawn about each 

protocol’s performance relative to CHARON’s: 

 Direct Delivery always gets the worst results, and is presented mostly as a 

baseline. Given that, in the base scenario, only some nodes are capable of 

reaching the sink, there is a preset limitation on the achievable delivery ratio. In a 

scenario with free movement it could perform better. It is, nevertheless, the most 

efficient protocol, having no overhead. 

 Spray and Wait outperforms CHARON in many of the shared design goals. It is a 

very simple protocol, which achieves good results with low overhead. Its 

performance is nevertheless linked to the network diameter: in networks with 

different mobility patterns, in which the minimum number of hops required to 

reach the sink is greater, its performance-to-overhead ratio tends to degrade. On 

the other hand, it is more resilient than CHARON to changing network conditions 

and patternless movement, as it does not make use of historic data. 

 Epidemic Routing and PROPHET show outstanding performance at low network 

loads, although the delivery ratio degrades quickly. They have an entirely different 

focus, and the high overhead makes them incompatible with the goals defined for 

CHARON. 

CHARON fulfils its objective of achieving good delivery statistics with very low overhead. 

Delivery ratio is high, in line with Spray and Wait’s and what realistically can be expected from 

a single copy protocol, although latency is somewhat high too. The use of zombies seems to 

have limited impact under these conditions, as node movement is limited to separate areas, 

reducing the probability of a past carrier finding the sink. The QoS mechanism can make up for 
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the handicap in case urgent messages need to be transferred, without a significant impact on 

the overall efficiency. 

6.2.2.4.2 Alternative Scenarios 

Simulations were also conducted using two additional scenarios, to gauge CHARON’s 

adaptability to unplanned conditions. The first scenario is in every way identical to the base 

scenario, except that mobility follows a random waypoint model: nodes randomly select their 

destination coordinates from the entire map, and move there in a straight line. The results 

obtained are presented in Figure 6-7. 

CHARON’s performance in this scenario is markedly poor, as it is highly dependent on 

historic data. Epidemic Routing is the least affected, as it does not use any previous data at all.  

 

(A) 

 

(B) 

 

FIGURE 6-7: PERFORMANCE COMPARISON FOR VARIOUS NETWORK LOADS – RANDOM WAYPOINT 

The second scenario uses a street map of the centre of Helsinki, with an area of 15 km2, 

where 36 nodes (20 pedestrians, 10 cars and 6 trams) are distributed. All nodes but the trams 

use the same shortest path movement model as in the base scenario, selecting waypoints from 

a common pool. Trams move on predefined routes, as they would on real life. Node speed 

ranges from 2 km/h to 50 km/h. The results of this simulation are presented on Figure 6-8. 

 

(A) 

 

(B) 

 

FIGURE 6-8: PERFORMANCE COMPARISON FOR VARIOUS NETWORK LOADS – HELSINKI 
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Contrary to the previous scenario, in this case CHARON leads in delivery ratio and achieves 

good results for the average latency. Interestingly, CHARON’s performance is virtually 

independent of the network load. The results are explained by the higher freedom of 

movement – which potentiates the impact of zombies – combined with faster movement that 

increases contact frequency and the accuracy of CHARON’s delay calculations. 

6.3 Real-World Validation 

The reference implementation of CHARON allowed testing under real-world conditions 

and using real-world hardware. That testing includes the validation of all architectural 

components, and a limited evaluation of the achieved performance, given the limited available 

resources. Tests were conducted on a laboratory (workbench) setting and on an experimental 

testbed. 

6.3.1 Test Application 

A basic test application was developed and used in most of the real-world tests. The 

application creates a single connection with a network-wide common stream ID. It subscribes 

to round events and, in each round, generates one or more messages. Each message contains 

one temperature and one brightness sample, for a total of 8 bytes of data. Messages are sent 

as monitoring data. Alarm data can be generated by pressing a button on the SPOT, but that 

feature was not used in the tests, as it is practically impossible to evaluate QoS influence with 

the available resources. Except where otherwise noted, nodes were configured with enough 

buffer space for 100 messages and a beacon period of 500 ms. 

6.3.2 Workbench Tests 

A series of workbench tests were conducted to evaluate specific mechanisms on a static 

setting. Four SPOT nodes and one sink (referred to interchangeably as base station) were used 

for these tests. 

6.3.2.1 Basic Tests 

The basic tests were meant to verify that the algorithm and implementation were 

correctly designed and working as expected. The following pass/fail tests were done: 

 Routing 

o Beacon broadcast 
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o EDD/ICT calculation 

o Score calculation by class 

o Correct choice of route 

o Operation in a dual-sink setting 

 Forwarding 

o Message classification 

o Message transmission 

o Zombie replication 

o Behaviour under full buffer 

 Time synchronization 

o Initial synchronization 

o Age verification 

o Extended periods without synchronization 

 Power management 

o Round synchronization 

o Radio shutdown 

The final version of the implementation passed all tests. 

6.3.2.2 Routing – Static Network 

Although CHARON is meant to be used in highly-mobile networks, it is foreseeable that 

some segments may be permanently or temporarily static. Thus, it is important that the 

routing algorithm works reliably in such a scenario too. To assess its performance, a test setup 

was prepared with four nodes in a linear setting, seen in Figure 6-9. Transmission power was 

tuned so that nodes could only hear their immediate neighbours. The time was set to 1.5 

seconds, and the round period to 15 seconds, for a duty cycle of 10%. Nodes were configured 

to generate one message per round.  

 

FIGURE 6-9: LINEAR TEST SCENARIO 

The network was run for approximately 21 hours, until each node generated 5000 

messages. The summarized results are presented in Table 6-2. No messages were lost during 

the experiment, and the latency average (∆𝑡   ) and standard deviation (𝑠) are clearly correlated 

with the number of hops.  
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TABLE 6-2: DELIVERY STATISTICS BY NODE – STATIC NETWORK 

  Latency  (ms) 

Node Delivery ratio  ∆𝑡    𝑠  

A 1.0 133 87 

B 1.0 1847 4051 

C 1.0 5911 7740 

D 1.0 15877 12318 
 

Looking at the distribution of individual (each chart corresponds to the node with the 

same letter) latency values in Figure 6-10, groupings are clearly associated with multiples of 

the round period. Messages from node A (the closest) are all in the first group, while messages 

from node D (the farthest) sometimes require more than two rounds to reach the sink. Most of 

these cases are situations when messages cannot be routed across all hops in a single round 

time, a fast-forwarding situation for which the algorithm was not optimized. Some outliers are 

additionally influenced by late message generation, queuing and medium congestion. 

The results of this test are of marginal relevance in a real setting. Not only is this type of 

static linear topology rare, but the delays involved are unlikely to be significant when 

compared to those imposed in the network’s mobile segments. 

 

(A) 

 

(B) 

 

(C) 

 

(D) 

FIGURE 6-10: MESSAGE LATENCY DISTRIBUTION BY NODE – STATIC NETWORK 
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6.3.2.3 Time Synchronization 

To evaluate time synchronization errors, a simple application was developed. Upon 

reception of a beacon, this application obtains the current global time from CHARON and 

sends it back to the sink. By having two nodes listen for beacons and comparing the 

timestamps each returns, it is possible to determine the pair-wise clock offset. Figure 6-11 

shows the testbed setup. 

 

FIGURE 6-11: SYNCHRONIZATION TEST SCENARIO 

Direct comparisons against the sink’s reference aren’t possible, as there is a non-

deterministic delay between the time when a beacon is delivered to the sink’s stack and the 

moment it is ready for processing at the nodes. The beacon does however reach all nodes at 

the same time (propagation delays are negligible at workbench distances), and under light 

loads is available for processing at approximately the same time. Nevertheless, the technique 

does introduce some measurement error. 

Two experiments were carried out. In the first one, beacons were also used to update the 

time reference, enabling evaluation of errors in the synchronization process itself. In the 

second one, nodes were initially synchronized, and data was collected for a period of 3 hours 

without resynchronization. This experiment allowed for the determination of long-term clock 

drift and its influence on reference validity. In both experiments beacons were sent with a one-

second period. 

The first experiment ran for one hour, resulting in 3600 samples. The resulting offset 

average (휀 ) and standard deviation are presented in Table 6-3. 

TABLE 6-3: PAIR-WISE SYNCHRONIZATION OFFSET 

Offset (ms) 

 휀  𝑠  
0,02 2,90 

 

The measured offsets are acceptable for most uses, as is the maximum absolute offset (22 

ms). Figure 6-12 shows the detailed offset distribution which, as expected, approaches a 

normal distribution. 
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FIGURE 6-12: PAIR-WISE CLOCK OFFSET DISTRIBUTION 

For the second experiment nodes were first synchronized, and samples were collected for 

a period of 3 h, resulting in 10800 measurements. The results obtained can be seen on Figure 

6-13. 

The average sampled offset linearly increases with time. Starting from an estimated offset 

of 0.6 ms (averaged from the first 10 samples), after 3h it averages 52.9 ms. Clock drift is 

estimated at 4.9 ppm by linear regression. Clock drift is specific to each clock, and further 

depends on environmental factors. As such, these drift values have no statistical relevance, 

and should be taken as an example. 

 

FIGURE 6-13: LONG-TERM OFFSET EVOLUTION 

The results obtained show that the simple synchronization mechanism used in CHARON is 

able to provide reasonable precision. For the offset not to impact performance, it should stay 

below 20% of the round time, so nodes don’t miss too many beacons; in no condition should it 

exceed half the round time, as in that case a node could become completely unable to 

establish communication with other nodes, not even to update its reference. Using rounds of 2 
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seconds and the measured offset and drift values, a node would require one full day to drift 

more than 20%, and 2.3 days to drift 50%. 

6.3.2.4 Power Management 

The influence of CHARON’s radio power management solution on the lifetime of nodes 

was measured by having a fully-charged node run the test application in contact with a sink. 

The sink recorded the arrival timestamp of every message, and the lifetime was extracted by 

subtracting the first from the last timestamps. The round period was set to 20 seconds and the 

round time was varied to achieve the duty cycles (𝜂) presented in Table 6-4. 

 

FIGURE 6-14: POWER MANAGEMENT TEST SCENARIO 

In the experiment conducted on Section 6.3.2.2 no strong connection was found between 

the position the node occupies and its energy consumption. This is justified by the fact that, in 

the SPOT platform, energy consumption is lower in transmit mode than in receive mode [44], 

in which every node – regardless of its position – spends the majority of its round time. For this 

reason, and considering the long time required for each experiment, no tests were run with 

multiple nodes. 

TABLE 6-4: NODE LIFETIME UNDER DIFFERENT POWER MANAGEMENT CONFIGURATIONS 

𝜂  100% 70% 40% 10% 

Lifetime (h) 14,63 18,00 28,35 79,71 

Improvement  +23% +94% +445% 
 

The use of radio power management has a clear effect on the global energy consumption. 

Not only is the radio turned off but, given that the entire library and the application itself are 

synchronized to the rounds, nodes are free to enter deep sleep mode. While a SPOT node in a 

fully active state has a power usage of up to 104 mA, in deep sleep it is reduced to just 33 µA, 

an almost negligible value [49]. 

Figure 6-15 plots node lifetime as a function of the radio duty cycle, showing that it 

follows a power law (with 𝑟2 = 0,999) on the range analysed. Extrapolating from these 

results, a duty cycle of 1% would extend node lifetime to approximately 18 days, although the 

available data points aren’t sufficient to ensure a high confidence level for this prediction. 
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FIGURE 6-15: LIFETIME VARIATON WITH DUTY CYCLE 

6.3.3 Experimental Testbed 

An experimental testbed was deployed at the IST Taguspark campus, containing one Sun 

SPOT base station and four Sun SPOT nodes. Node mobility is provided by two LEGO 

Mindstorms NXT [50] robots, each carrying one of the SPOTs: 

 An aerial tram, crossing the central interior garden (Figure 6-16) 

 A three-wheeled rover travelling along the side corridor (Figure 6-17) 

 

FIGURE 6-16: MESSAGE CARRYING TRAM 

The tram and the SPOT it carries are powered over the rails, in order to reduce 

maintenance effort. The one-way trip time is 80 seconds. To reduce energy draw and 

mechanical wear, the robot pauses for 2 minutes after reaching the end of the line. After the 

pause, it resumes moving in the opposite direction, in a continuous cycle. A full movement 
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cycle takes 6 minutes and 40 seconds. Further details on the tram’s construction are presented 

on Annex 1. 

  

FIGURE 6-17: MESSAGE CARRYING ROVER 

The rover moves in a straight line for 20 seconds, after which it rotates and pauses for 2 

minutes before resuming movement. The one-way trip time is 20 seconds, and the full 

movement cycle takes 4 minutes and 40 seconds. 

The testbed assembly can be seen in Figure 6-18. Node transmission power was adjusted 

to try to prevent communication other than between a static node and a carrier passing it by. 

 

FIGURE 6-18: MAP OF THE BUILT TESTBED 

A single experiment was carried out on the testbed. It was meant to evaluate the system’s 

routing performance under mobile conditions, as opposed to the static conditions previously 

tested. 



65 

 

6.3.3.1 Routing – Mobile Network 

To evaluate routing in a mobile network, the test application was deployed on the 

experimental testbed. The round period was set to 15 seconds and the round time to 1.5 

seconds, for a duty cycle of 10%. Nodes were configured to generate one message per round. 

Practical considerations limited the test duration to one hour. Table 6-5 presents the results 

obtained. 

TABLE 6-5: DELIVERY STATISTICS BY NODE – MOBILE NETWORK 

  Latency (ms) 

Node Delivery ratio  ∆𝑡    𝑠  

A 1.0 49131 57129 

B 1.0 99841 80436 

C 1.0 107023 83180 

D 1.0 143001 90606 
 

The values obtained are in line with what’s expected. Delays are much longer than in the 

static setting, a result of having to wait for the carriers to pass by. Figure 6-19 shows the 

detailed breakdown of message latencies, with each chart representing the node identified 

with the same letter. 

 

(A) 

 

(B) 

 

(C) 

 

(D) 

FIGURE 6-19: MESSAGE LATENCY DISTRIBUTION BY NODE – MOBILE NETWORK 
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Descending lines can be seen on every chart: they correspond to carrier trips. Messages 

are created every round time, but their latency depends on the position of the carriers 

involved at the time of generation. Specifically, if a message is generated by a carrier moving 

towards the sink, its latency is inversely dependent on the distance between the carrier and its 

destination. The farthest the node is from the sink, the longer these lines are. 

The horizontal lines in node A’s chart correspond to the times in which the robot is parked 

next to the sink and messages are delivered without mobility-imposed delay. According to the 

defined scenario parameters, nodes should only be able to connect when in close proximity, so 

these lines should not be present on other nodes’ charts. The fact that they are means that, 

under specific conditions, communication range was long enough to create unexpected 

connection opportunities. The main reason for this is the positioning of the aerial tram: owing 

to the transmission power needed to overcome physical barriers present at close range, the 

tram is occasionally able to communicate from farther points in its path across an open, 

unobstructed area.  
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7 Conclusions 

This dissertation proposes the Convergent Hybrid-replication Approach to Routing in 

Opportunistic Networks (CHARON), a new history-based opportunistic routing approach for 

WSNs. This approach is focused on reliability, simplicity, efficiency and flexibility. Most 

importantly, it aims not only for theoretical performance, but also real-world applicability. 

Messages are routed by CHARON based primarily on the expected delivery delay, 

combined with information about the available resources or application-specific routing aids. A 

hybrid replication strategy is used for most messages to minimize resource waste. It works in a 

way similar to a single-copy strategy, but taking advantage of zombies, the inevitable copies 

left behind. 

Several uncommon features are also built-in to CHARON. Basic quality-of-service support 

makes it possible to serve coexisting applications with different needs. A time synchronization 

solution allows a global low-precision time reference to be shared by every node, and enables 

the use of synchronous radio power management, which can significantly reduce energy 

waste. 

A reference implementation of CHARON was developed on Sun SPOT nodes. It served as 

validation for the approach, and as a way of assessing its implementation complexity, which 

was found to be within reason for the volume of features included. An experimental testbed 

using these nodes was built and used to collect real-world performance information.  

Extensive performance evaluation was conducted. The following are some of the most 

relevant results: 

 In the base scenario, CHARON achieves better delivery statistics for high network 

loads than multi-copy algorithms, with delivery ratio never falling below 0.65. Its 

overhead is up to 100 times lower than that of the multi-copy algorithms, 

resulting in a performance-to-overhead ratio up to 80 times better. While for light 

loads its results are below those achieved by multi-copy algorithms, the overhead 

is still much lower. 

 The proposed hybrid replication strategy is able to increase delivery probability by 

40% to 70%, when compared to a single-copy strategy, at close to zero cost. 
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 The proposed QoS mechanism is able to provide multi-copy-like performance on 

urgent data, while routing non-urgent data with very low overhead. 

 The proposed synchronization mechanism is able to provide a useful global time 

reference, with initial error in the single-digit milliseconds and, in the prototype 

platform, maintain valid references for over two days. 

  The proposed power management mechanism was able to increase the 

prototype node’s lifetime by over 440% for a conservative 10% duty cycle. 

 The reference implementation was able to effectively route messages in an 

experimental testbed, providing important but often-overlooked real-world 

validation. 

The results obtained show CHARON to be a valid approach to routing in opportunistic 

WSNs, achieving good performance with low overhead. CHARON manages to accomplish and 

balance the four goals initially set, providing an effective and efficient solution, that is also 

flexible yet still simple to understand and implement. 

7.1 Future Work 

There are still several challenges and paths for improvement in future work. 

Improvements do, however, have a tendency to increase a solution’s complexity, and a cost-

benefit analysis should be made prior to development. The following are some of the 

remaining open issues: 

 More advanced uses of delay as a routing metric could be investigated and 

merged into the protocol. Particularly, instead of focusing only on the shortest 

known path, other redundant paths to sink nodes should be considered for the 

final calculation.  

 Time synchronization is designed in the simplest possible way. This is one of the 

areas where limited additional complexity may be desirable. While the achieved 

precision is usually sufficient, it can be improved by accounting for some of the 

delay factors. Furthermore, the algorithm could be made more resilient against 

pathological cases, by considering several references instead of just the latest. 

 Integrating techniques for secure routing could prove useful as WSN usage 

increases. At the routing level, an un-secured network allows an attacker to 
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perform basic denial-of-service attacks [51] by either announcing itself as a good 

forwarder and black-holing traffic, or injecting traffic leading to buffer exhaustion. 

Both problems may be solved by applying a message integrity code (MIC) to all 

beacon and data messages. While Sybil attacks [52] are also prevented by this 

mechanism, wormhole attacks [53] are still possible, as well as several non-

routing-specific attacks. 

 Collection of mobility information could prove helpful in many scenarios. Mobility 

data could be extracted from a node’s previous contacts and periodically 

forwarded to the sink, or a list of hops could be attached to each bundle. 

Combined with geo-referenced static nodes, this mechanism could also provide 

coarse location information, valuable in an animal-tracking scenario, for instance. 

 Deployment in a real WSN, followed by in-depth evaluation would, of course, be 

extremely helpful in identifying CHARON’s usefulness in real-world scenarios. In 

addition to providing real-world performance data for CHARON, it would also aid 

in identifying weaknesses in the simulation methodology. 
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Annex 1. Aerial Tram Construction Details 

There were significant challenges involved in the construction of the experimental 

testbed. The aerial tram, its centrepiece, includes the following main components: 

 A controlling NXT block 

 A single motor for traction  

 Two touch sensors 

 Two custom-machined copper rollers and a power conversion circuit 

 A cradled Sun SPOT node 

The tram is supported by two copper cables. Mechanically, the bottom cable is used for 

traction, while the top one is used for stability. As the distance between both cables is not 

constant along their entire extension, the top support is free-moving and held in tension by 

two rubber bands. 

  

The cable pair is also used to provide electrical power to the robot, using the circuit shown 

below. The rails carry DC power (10 V), which passes through a protection diode to a 

smoothing capacitor to filter out quick disconnections due to tram movement. Power is output 

to both a 10 V barrel plug, connected to the NXT input, and a 5 V mini-USB plug, connected to 

the SPOT. The board also includes two LEDs, allowing operators to easily monitor the power 

status. 
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Power is transmitted from the cables to the circuit through two metal rollers, one placed 

on the top cable support and the other on one of the robot’s lower cable guides. The latter 

also helps to reduce robot oscillation, and is accompanied by a pair of plastic rollers on the 

opposite side. 

  

The used rollers were custom-machined and drilled from a 10 mm copper bar, and are 8 

mm long, the same size as a typical LEGO plastic roller. They are mounted on a two-part axle, 

made of a drilled 4.5 mm metal cylinder bolted to an inner M3 threaded bar. The rollers rotate 

freely around the outer cylinder. Heat-shrink tubing was used to increase the external 

diameter of the axle and reduce its slippage. Two nuts are used to hold in place a blank PCB to 

which a wire is soldered.  

 

The algorithm regulating the tram movement is straightforward, simply moving until a 

touch sensor makes contact, at which time the tram pauses for a predefined time before 

resuming movement in the opposite direction. 

// d is the movement direction and t is the pause time 
algorithm move_tram is 

while true then 
while (!touch) then 

move (d) 
end 
pause (t) 
d  = -d; 

end 
end 

 


