Conference paper

Adaptive Open-Loop Aerobatic Maneuvers for Quadrocopters

We describe a process for enabling quadrocopters to perform and improve upon aerobatic maneuvers. We describe such maneuvers as a set of desired keyframes and a parametrized input trajectory. The full state trajectory of the vehicle is left unspecified - only predefined partial-state keyframes are used to measure errors and to refine the primitive. A first-principles model is used to find nominal trajectory parameter values and a first-order correction matrix. We apply this method to extending previous work on vertical-plane 2D adaptive flips to a fully 3D adaptive maneuver. We also show how this method can be applied to finding trajectories for flips with matching non-zero initial and final velocities. Preliminary results are presented from simulation and from quadrocopters in the ETH Flying Machine Arena.


  • There is no available fulltext. Please contact the lab or the authors.

Related material