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Abstract In this work, we consider a group of differential-wheeled robots endowed
with noisy relative positioning capabilities. We develop adecentralized approach
based on a receding horizon controller to generate, in real-time, trajectories that
guarantee the convergence of our robots to a common location(i.e. rendezvous). Our
receding horizon controller is tailored around two numerical optimization methods:
the hybrid-state A* and trust-region algorithms. To validate both methods and test
their robustness to computational delays, we perform exhaustive experiments on a
team of four real mobile robots equipped with relative positioning hardware.

1 Introduction

Since the 1960s,consensusproblems have puzzled the minds of many researchers in
various fields, ranging from computer science to information aggregation [23]. The
term consensus describes the problem of reaching an agreement amongst different
agents on a certain quantity or state. These agents can shareinformation about their
state either by means of communication or observations. In anetwork of robots,
solving the consensus problem on the position of each agentsrefers to the task of
controlling them as to reach a commonrendezvouspoint. The ability to meet or to
rendezvous has indeed many practical applications such as formation control [11],
flocking [7], attitude alignment [25] or cooperative aerialsurveillance [1]. Addi-
tionally, although this paper specifically addresses the rendezvous of differential-
wheeled robots, its general concept may be applied the widerrange of consensus
problems.
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1.1 Related Work

Solving the rendezvous with nonholonomic agents is complex, and proving the con-
vergence property can be difficult. Many works employfeedback linearizationto
design relaxed control laws that recreate the holonomic properties [16, 26]; oth-
ers create algorithms that are very specific to their application needs [6, 5]; but
all of them rely on deterministic assumptions both in terms of actuation and sens-
ing. Our previous work [13] incorporates insights from theprobabilistic consen-
susproblem [9] to guarantee that differential-wheeled robotscan rendezvous under
noisy measurements. However, this approach and all prior approaches to solve the
rendezvous problem on nonholonomic mobile robots rely heavily on strict time-
invariant controllers that yield poor trajectories without consideration to neither ac-
tuation constraints nor the energy spent.

On another front, a great body of literature starting with Meschler [19] in 1963
focuses on the optimization of the rendezvous maneuver, andalthough efforts to
decentralize the optimization approach using communication between agents have
been made [18], many works remain centralized [20, 4] and thus need global knowl-
edge of the system. We can also observe that most work, including [18], use a pre-
defined cost function and leave no design choices to the user.To tackle the problem
of decentralization with an arbitrary user-defined metric,we rely on a receding hori-
zon controller (RHC) [12]. This RHC needs to run in real-timeon our platform, the
Khepera III robot [24] (shown on Fig. 1(a)) equipped with an Intel XScale PXA-270
running at 624MHz without floating-point unit.

In particular, we use two distinct optimization strategies(within our RHC) that
provide real-time capabilities to resource-constrained robots:(i) the hybrid-state A*
algorithm [8] – an optimization strategy based on the A* search algorithm that gen-
erates quickly feasible trajectories for a wide range of cost functions,(ii) a subspace
conjugate gradient trust-region method [2, 3] – a numericaloptimization method
that takes advantage of the differential flatness property of our robots. We compare
both strategies in terms of performance and computational requirements. The pur-
pose of this work is then twofold: first, to experimentally verify the convergence of
our mobile robot team using our decentralized approach; second, to compare its ef-
ficiency with that of a centralized equivalent. We note that,to date, no contribution
has addressed the generation of real-time, optimal rendezvous maneuvers on mo-
bile robots performing noisy positioning observations — neither from a theoretical
nor from an experimental point of view. In this work, we focuson the experimental
aspect (the theory is covered in more depth in another concurrent publication [14]).

1.2 Problem Statement

We have a team ofN differential-wheeled robotsR1, . . . ,RN driven by the kinematic
equations: 





ẋi = ui cosθi

ẏi = ui sinθi

θ̇i = ωi

, (1)



Real-time Optimized Rendezvous on Nonholonomic Resource-Constrained Robots 3

Fig. 1 (a) A Khepera III
robot with a range and bear-
ing module attached. (b)
The kinematic model of a
differential-wheeled robotRi .
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whereui = [ui ,ωi ]
T is the vector of control inputs, withui the linear translational

speed andωi the rotational speed, and the vectorxi = [xi ,yi ,θi ]
T defines the absolute

pose or state of the robotRi , as shown on Fig. 1(b).
A robot Ri has a set of neighborsNi containing all robotsR j such that it can

measure the rangeei j and bearingαi j to them. Its measurements are affected by
noise such that each observationzi j (t) of R j at timet is defined by

zi j (t) =

[
ẽi j (t)
α̃i j (t)

]

=

[
ei j (t)
αi j (t)

]

+ εz, (2)

whereεz is a random noise vector.
Our goal will be to drive all robots to the same meeting point.For each robotRi ,

this rendezvous maneuvershould be performedoptimallyin real-timeunder a local
user-defined metricJi(ui) which should only depend on values directly measurable
(either through sensors or communication) or calculable byeach individual robot
Ri . Without loss of generality, throughout this paper, we willuse the Bolza form
Ji(·) =

∫
Li(·)dt +Vi(·) whereLi(·) is a cost rate andVi(·) is a terminal cost (also

calledsalvage term).

2 Technical Approach

In this section, we explain in brevity how RHC can guarantee rendezvous with the
addition of optimization constraints, and how to perform each optimization cycle,
on-board, in real-time, using, on one hand, the hybrid-state A* algorithm and, on the
other, a subspace conjugate gradient trust-region method.Additionally, we introduce
a closed-loop control that follows the resulting RHC trajectories.

2.1 Decentralized Receding Horizon Control

To solve our optimization problem (i.e., minimizingJi(·) whilst guaranteeing the
rendezvous, as seen in Section 1.2), we will rely on RHC. RHC carries many names
such as model predictive control (MPC) or real-time optimization (RTO). It is an
advanced method, widely used in industry, that has the ability to use the available
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Fig. 2 Receding horizon
trajectories:R1 plans an
initial trajectory for the next
T seconds and executes that
trajectoryblindly for the first
δ seconds; at that point,R1
plans a new trajectory (and so
on).

R1
Actual trajectory

Planned trajectories

t

δ T

First cycle
Second cycle

Third cycle

information on the system at hand to control it optimally under a user-defined cost.
Although its requirements in terms of computing power are high [21], it has found
many successful applications, in particular when the underlying system to control
has slow dynamics (i.e., in the order of minutes or seconds).The recent advances in
computing power have in part alleviated this issue, but RHC reaches its limits when
the underlying system is nonlinear, changing fast and has torun on a simple mobile
platform.

RHC is an optimization-based control that uses online, optimal trajectory gener-
ation. The general idea is to plan a feasible and sub-optimaltrajectory over a finite
timeT horizon and control the system (i.e. the robots) to follow this trajectory over
a sampling timeδ (0 < δ ≤ T). After δ seconds, a new trajectory is recomputed
from the current position until timeδ +T and this trajectory is again followed until
time 2δ . This cycle is repeated until the goal is reached. We will denote such a re-
ceding horizon control with the symbolRH (T,δ ). This process is schematized in
Fig. 2, where robotR1 plans during three cycles three trajectories that are tracked
sequentially.

Theorem 1. Given asymmetric and connected group of N differential-wheeled
robots R1, . . . , RN, the decentralized receding horizon controlRH (Ti ,δi), with
Ti > 0 and0< δi ≤ Ti , that solves the following optimization problem on each robot
Ri at timeτ:

minimize Ji(ui) =
∫ τ+T

τ
Li(t,xi , x̂i ,ui) dt+Vi(τ +T,xi, x̂i ,ui)

subject to Eq. 1,ui ∈Ui ,xi ∈Xi

such that ∃ki j = k ji > 0 satisfying ui = ∑
R j∈Ni

ki j x̂i j

∃t ≥ τ satisfyingωi(t) 6= 0,

(3)

(4)

(5)

(6)

whereXi andUi are user-defined admissible sets, drives the groupalmost surely
to a common rendezvous point ifx̂i(t) = {x̂i j (t) = [x̂i j (t), ŷi j (t)]T|R j ∈Ni} and the
estimationx̂i j (t) of xi j (t) = ei j cosαi j is unbiased in the time interval t∈ [τ,τ +δi ].

Proof. The proof is omitted for conciseness, but its complete derivation is available
in [14]. ⊓⊔

Remark 1.As we will see in Section 3, the constraints (5) and (6) can in practice be
ignored when an adequate salvage termVi(·) is used. In particular, it is sufficient to
penalize inter-robot distances that increase.
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Remark 2.Theorem 1 assumes for each robotRi the presence of a prediction func-
tion x̂i(t) capable of estimating the position of neighboring robots. As explained
in [14], this function can be implemented using an extended Kalman filter based on
the observations made through the relative positioning hardware.

2.2 Cost Function

To ease our discussion on the algorithmic details, we describe first the cost func-
tion used in our experiments. Given a continuous trajectoryfor nextT seconds, we
discretize it by splitting it intoN linear segments of∆ t = T/N seconds each, thus
generating a sequence ofN+1 verticespi ∈ R

2 with i ∈ {0, . . . ,N}. Additionally,
we assume that there areNo obstacles denotedO j with j ∈ {1, . . . ,No}. Each obsta-

cle has a positiono( j)
i ∈ R

2 at time i∆ t and an associated uncertaintyR( j)
i ∈ R

2×2.
We denote by∆pi = pi −pi−1 the displacement vector at a vertex and byp f the
final position that the trajectory aims to reach. Our cost function is then:

f (p0...N) =

f1
︷ ︸︸ ︷

ws

N−1

∑
i=1

(∆pi+1−∆pi)
T (∆pi+1−∆pi)

+we

N

∑
i=1

‖∆pi‖
2
2

︸ ︷︷ ︸

f2

+wo

N

∑
i=0

No

∑
j=1

Φ(pi ;o( j)
i ,R( j)

i )

︸ ︷︷ ︸

f3

+wf ‖p f −pN‖
2
2

︸ ︷︷ ︸

f4

, (7)

wherews,we,wf ,wo are positive weights andΦ(x;µ ,Σ) is the multi-variate normal
probability density function with meanµ and covarianceΣ .

The first termf1 of the cost function forces the trajectory to be smooth: the for-
ward acceleration and rotational speed should be small. Thesecond termf2 penal-
izes fast motion and ensures that minimal energy to spend in actuation. The third
term f3 guides the trajectory away from obstacles and corresponds roughly to a
scaled probability of hitting any of them. The fourth termf4 steers the trajectory to-
wards a goal position by penalizing an excessive distance toit. The first three terms
correspond to the sum of all cost rates over the trajectory, whereas the last term is
the salvage term. To ensure the rendezvous in practice, it isenough to set the goal
positionp f to the estimated center of mass of all neighboring robots at time T,

p f =
1
|Ni |

∑
R j∈Ni

x̂i j (T). (8)
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2.3 Optimization Strategies

The sampling timeδ is related to the computational time required by the optimiza-
tion of Eq. (3) [21]. Hence, it is important that this optimization takes as little time
as possible (to guarantee, in practice, the unbiasedness ofthe estimator of ˆxi j ). In
this section, we provide two alternatives capable of efficient real-time optimization.

2.3.1 Hybrid-state A*

The first alternative, explained in [8], is a continuous optimization method derived
from a discrete heuristic search method, the A* search algorithm. The general idea
is to discretize into cells the three-dimensional search space〈xi ,yi ,θi〉 represent-
ing the robot’s state. Whereas A* explores the center of those discrete cells and
generates paths that may not be feasible with respect to the kinematic constraints
of Eq. (1), hybrid-state A* associates with each cell a five-dimensional continuous
state〈xi ,yi ,θi ,ui ,ωi〉. Hence the transitions from a cell to the next may change ac-
cording to the stored continuous state. To determine those transitions, we simply
discretize the action that the robot can take during the next∆ t seconds and perform
an Euler integration of the kinematic equations. In particular, we allow the robot
to either keep, increase, or decrease its forward or rotational speed by a constant
increment∆u or ∆ω respectively. It is clear that hybrid-state A* is not guaranteed
to find the minimal-cost solution because of the discretization of controls and time,
as well as the pruning of all but one continuous-state branches that enter a cell. Fi-
nally, to use hybrid-state A* with RHC, we stop the search when the number of cells
explored on the current branch reaches the number of pointsN+1 required by the
trajectory. We note that although hybrid-state A* is memoryhungry, it will always
generates feasible trajectories and can be easily modified to include dynamics and
additional constraints with little overhead in terms of computational time.

For completeness, we show through Algorithm 1 the complete routine, where
g(c) represents the real cost of the current path from the starting cell to cell c,
h(s,p) is the heuristic cost to reach positionp from a continuous states ands(c)
is the continuous state associated with cellc. Note that the costg(c) can be com-
puted by adding up the first three terms of our cost function (f1+ f2+ f3) until cell c
on the current branch and the heuristich(c,p) is the last term of this same cost func-
tion. In the context of our experimental test-bed, we observe that this algorithm can
easily make use of fixed-point arithmetic as all variable ranges are known a priori.
Combined with a proper implementation (i.e., efficient priority queue), we obtain a
procedure on our platform, the Khepera III robot. In the experiments of Section 3,
the cell discretization is done by a 64×64×52 grid on an area of 2m×2m×360◦

centered around the robot. The speed increments∆u and∆ω are set to 0.125m/s
and 1.5rad/s respectively and∆ t is set to 0.1s. These values are selected to reach the
best compromise between optimality and computational/memory requirements (the
overall memory usage is 14.8 MB which can easily fit on-board the Khepera III).
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Algorithm 1 Hybrid-state-A*(xi,yi ,θi ,ui ,ωi ,p f )
1: closedSet← /0
2: start← getCell(xi ,yi ,θi)
3: s(start)← 〈xi ,yi ,θi,ui ,ωi〉
4: g(start)← 0
5: openSet←{start}
6: while openSet6= /0 do
7: cell← argminc∈openSetg(c)+h(s(c),p f )
8: if isGoal(cell)or depth(cell)= ⌈T/∆t⌉ then
9: return generatePathTo(cell)

10: end if
11: openSet← openSet\ cell
12: closedSet← closedSet∪ cell
13: 〈x,y,θ ,u,ω〉← s(cell)
14: for all [u′,ω ′] ∈ {[u,ω]± [∆u,∆ω]} do
15: 〈x′,y′,θ ′〉 ← eulerIntegration([u′ ,ω ′], 〈x,y,θ 〉,∆t)
16: dest← getCell(x′,y′,θ ′)
17: if dest = cellthen
18: continue
19: end if
20: newCost =g(cell)+ edgeCost(cell,〈x′,y′,θ ′,u′,ω ′〉)
21: if newCost +h(〈x′,y′,θ ′,u′,ω ′〉,p f )> g(dest)+h(s(dest),p f ) then
22: continue
23: end if
24: openSet← openSet∪ dest
25: closedSet← closedSet\ dest
26: s(dest)← 〈x′,y′,θ ′,u′,ω ′〉
27: g(dest)← newCost
28: end for
29: return trajectory impossible
30: end while

2.3.2 Subspace Conjugate Gradient Trust-Region

This second alternative is an efficient non-convex optimization method that uses a
preconditioned conjugate gradient to define a two-dimensional subspace on which
a trust-region method is applied.

Let us consider a functionf :Rn 7→R, which we want to minimize. We currently
have an estimatex of the solution, which we wish to improve. The basic idea be-
hind the trust-region approach is to approximate the function f with a functionq
reflecting the behavior off in a neighborhoodΩ around the pointx. This neigh-
borhood is the trust-region. Hence the problem is to find a step s that minimizes
q: mins{q(s)|s∈ Ω}. If the vectorx+ s is a better estimate of the solution (i.e.,
f (x+ s) < f (x)), x is set tox+ s; otherwise, it is unchanged and the trust-region
is shrunk. In practice, the approximate functionq is defined by the first two term
of the Taylor expansion off aroundx and the trust-region is often circular. The
trust-region step then becomes

min
s

{
1
2

sTHs+gTs | ‖s‖2≤ ∆
}

, (9)
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whereg andH are the gradient and Hessian off respectively, and∆ is positive.
Good algorithms to solve Eq. (9) based on the eigenvalues ofH exist [22]. However,
they become inefficient whenH becomes large. Hence, a good heuristic is to reduce
the original problem into a two-dimensional subspace spanned by an approximate
Newton direction (given in our case by a preconditioned conjugate gradient method)
and the gradient direction.

The method of conjugate gradient (CG) [15] is an effective way to iteratively
solve large-scale linear equations such asHv = −g (note that, herev is the New-
ton direction) without calculating the inverse ofH. Using a preconditioned variant
(PCG) allows for faster convergence by altering the original problem toM−1Hv=
−M−1g, whereM is called the preconditioner. Finally, the only costly operation that
PCG needs to perform is the multiplication ofH with a vector. Thus, PCG is very
efficient whenH is sparse. If the number of points is small (i.e.,N < 50), PCG can
be replaced with Newton’s method for greater efficiency; butNewton’s method will
need more memory as the inverse of the Hessian needs to be stored.

For a fast implementation, it is important that the functionf be twice differen-
tiable and that both an analytical gradient and Hessian can be computed. In our case,
for the gradient, we have

∂ f
∂pi

= ws(2∆pi+2−6∆pi+1+6∆pi−2∆pi−1)

−we(2∆pi+1−2∆pi)

+wo

No

∑
j=1

(R( j)
i )−1Φ(pi ;o( j)

i ,R( j)
i )(o( j)

i −pi)

+wf 1i=N(p f −pN), (10)

where1A is the indicator function ofA. The Hessian is then simply the sum of
two sparse matrices: a constant banded matrixH1 representing the first, second and
fourth term off and a block diagonal matrixH2 composed of 2×2 blocksB0, . . . ,BN

(if we interleave the coordinates of every pointpi), with

Bi =
∂ 2 f3
∂p2

i

=
(

R−1(pi − o( j)
i ) · (pi− o( j)

i )T− I
)

R−1Φ(pi ;o( j)
i ,R), (11)

whereRmeansR( j)
i . If no collisions are possible (i.e.,H2 = 0), it is beneficial to use

Newton’s method to minimizef (if memory allows). Indeed the functionf becomes
quadratic and Newton’s method converges in one iteration. Also, asH1 is constant,
its inverse only needs to be calculated once.

Although, less hungry than hybrid-state A* in terms of memory, the subspace
conjugate gradient trust-region method (which we denote from hereon as PCG-TR)
may not generate a feasible trajectory. However, our specific choice of the cost func-
tion f , which penalizes non-smooth trajectories, mitigates thisissue. Additionally,
it can be shown that differential-wheeled robots are differentially flat and thus can
follow a sufficientlysmooth trajectory. Algorithm 2 shows the complete routine.
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Lines (5-11) compute the two-dimensional subspace while lines (12) and (14-20)
perform a trust-region step.

Algorithm 2 PCG-TrustRegion(xi,yi ,θi ,ui ,ωi ,p f )
1: xold← generateInitialTrajectory(xi ,yi ,θi ,ui ,ωi ,p f )
2: fold← f (xold)
3: ∆ ← InitialTrustRegionRadius()
4: repeat
5: 〈g,H〉 ← computeGradientAndHessian(xold)
6: v1← preconditionedConjugateGradient(g,H)
7: v1← v1/‖v1‖2
8: v2← g−v1(vT1 g)
9: v2← v2/‖v2‖2

10: g′← [v1v2]
Tg

11: H ′← [v1v2]
TH[v1v2]

12: s′← argmins

{ 1
2sTH ′s+g′Ts | ‖s‖2 ≤ ∆

}

13: s← [v1v2]s′

14: x← xold+s
15: f ← f (x)
16: if f < fold then
17: fold← f
18: xold← x
19: end if
20: ∆ ← updateTrustRegionRadius(∆ )
21: until convergence
22: return xold

2.4 Computational Delays

In RHC, the optimized trajectory is followed during a timeδ during which no feed-
back from the environment is observed. Afterδ seconds, feedback from the envi-
ronment is incorporated to re-optimize the trajectory. In practice, the amount of time
δ dedicated to follow the trajectory is not fixed. Indeed, one often prefers to opti-
mize the trajectory as fast as possible and use the result as early as possible. The
sampling timeδ then directly relates to the computation time needed to optimize
the new trajectory.

It is clear that while the optimization takes place, the robot continues to move
according to the old trajectory which may result in a mismatch between the opti-
mized position and the current position at the time when the optimization completes.
Hence, the robotRi needs to reacquire (and track) the optimized trajectory. Todo so,
it needs to know its current position with respect to the desired new position, here-
after denoted by the coordinates(xd,yd). This can easily be achieved by integrating
the open-loop controls or, for more precision, by using odometry measurements (in
our case given by wheel encoders which are deployed on most differential-wheeled
robots). Fig. 3 shows a robot with its desired trajectory.
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Fig. 3 Schema of the quan-
tities used by the control law
in Eq. 12 that enableRi to
reach a trajectory given by the
virtual robotRd (desired tra-
jectory) after having followed
the old trajectory fortoo long.

Ri

RdRd

Desired trajectory
Old trajectory

e⊥

e‖

eθ

e

β
α

K f udωd

According to the desired trajectory, robotRi should be located at the position
indicated by the virtual robot referenceRd. Ri is able to calculate the rangee and
the bearingα to Rd. It can identify the orientation−eθ (with respect to itself), the
forward motionud and rotational motionωd of Rd. Note thatβ is the bearing to the
point located at a distanceK f ud in front of Rd. We propose the following control
law whenRd moves forward:

{
ui = Kuecosα +ud

ωi = Kω esinα +Kbβ +ωd
(12)

with Ku, Kω , Kb andK f all positive constants. An equivalent control law can be
found whenRd moves backward. Although omitted here for conciseness, it can be
shown that this control law is stable and converges to the desired trajectory.

This strategy bears resemblance to the third strategy proposed by Milam et
al. [21] to account for computation delays, with the exception that, instead of blindly
applying the optimized control inputs (open-loop), we compute corrected control in-
puts based on the optimized trajectory using a tracking layer (closed-loop).

3 Experiments

Experiments are conducted using Khepera III robots in a 3×3m2 arena. This robot
has a diameter of 12cm, making it appropriate for multi-robot indoor experiments.
As shown on Fig. 1(a), we equip each robot with a range and bearing module
allowing for inter-robot positioning. A measurement campaign performed in [13]
showed that the observation noiseεz is normally distributed with a covariance
Σ ≈ [0.0221 − 0.0011; − 0.0011 0.0196]. The ground truth position and orien-
tation of each robot is monitored using an overhead camera with SwisTrack [17],
an open-source tracking software. The experiments are designed to analyze four
different controllers:

Reactive This controller, on top of which we add an obstacle avoidancecontrol
as explained in [10], was presented in [13]. It is a standard reactive controller,
which does not optimize trajectories, nor predicts the future positions of neigh-
boring robots or obstacles. However, it guarantees the rendezvous mathemati-
cally and was shown to perform under noisy perception particularly well.

Hybrid-state A* This controller implements Algorithm 1.
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PCG-TR This controller implements Algorithm 2.
Centralized PCG-TR This controller implements Algorithm 2, but optimizes si-

multaneously the trajectories of all robots. In particular, the new cost function

is the sum of the individual costs of all robots:∑Ri
f (p(i)

0...N), wherep(i)
0...N are

vertices of the trajectory of robotRi . We note that even if inter-dependencies
between robots avoiding each other arise, the new Hessian matrix stays sparse
and the optimization stays efficient. While all of the three above controllers use
exclusively on-board resources, this centralized optimization is run off-board on
a desktop computer and uses the information of the tracking system as input. It
serves as an upper-bound on performance.

All controllers are tuned such that the average speed of the robots is about 15cm/s
(i.e., f2 is about the same across all controllers). Four scenarios are selected to pro-
vide a wide-range of situations upon which the different controllers can be tested:

Scenario (a) Four robots are randomly placed in the arena and form a complete
graph (all robots are neighbors). Their task is to perform the rendezvous.

Scenario (b) Two robotsR1 andR2 are placed 2 meters apart, facing each other.
Each robot has to reach the initial location of the other robot. These locations
are represented by 2 additional motion-less robotsR3 andR4 (whose relative
positions are artificially fed to the robots). Also,R1 andR2 have to avoid each

other. Formally, we haveO j = 1 ando(1)k = x̂12(k∆ t) for R1 ando(1)k = x̂21(k∆ t)
for R2. This scenario not only tests collision avoidance, but alsohow each robot
is able to rendezvous with a fixed goal position.

Scenario (c) Like the previous scenario but with four robots. This is a complex
crossing and is an effective test-bed for analyzing the ability to optimize the
trajectories quickly. Examples of trajectories obtained by the robots are shown
in Fig. 4.

Scenario (d) This scenario involves two robots having to rendezvous and two
other robots disturbing this rendezvous maneuver by crossing the arena.

Finally, across all scenarios and controllers, we perform two sets of experiments:
Set I The first set tests the performance in terms of smoothnessf1 of the result-

ing ground-truth trajectories of all controllers. The smoothness is a valid per-
formance indicator, since the average forward speed was thesame across con-
trollers and scenarios,all runs were collision-free( f3≪ f1) andall rendezvous
maneuvers succeeded( f4≪ f1). In this set, we did 10 runs per scenario per
controller, resulting in a total of 160 experimental runs.

Set II The second set aims to test the degradation of performance inScenario (a)
when the computational time of the controllers is increasedby a fixed additional
delay of 0, 200 and 400ms. Additionally, we test our approachto mitigate com-
putational delays (Section 2.4, closed-loop) against the third strategy proposed
in [21] (open-loop). The performance is measured both through the smoothness
and the convergence speed towards the rendezvous point. We did 5 runs per de-
lay per mitigation strategy per controller, resulting in a total of 90 experimental
runs.
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Fig. 4 Runs performed on
Scenario (c) with (a) the
decentralized PCG-TR vari-
ant and (b) its centralized
equivalent.

0.5m

(a)

0.5m

(b)

4 Results

Before diving into the core results, we show that both algorithms are capable of
running in real-time on board of our miniature robots. The average computational
time over all robots and scenarios ofSet I is shown in Fig. 5(a). We observe that
PCG-TR is 4.6× faster than hybrid-state A*, averaging 11.2ms per optimization
cycle against 51.15ms (both algorithms run faster than 19.5Hz in average). The
difference in performance is even more stagering when looking at the worst-case
performance, in Fig. 5(b), yielding 23.12ms for PCG-TR and maxing out at 600ms
for hybrid-state A* (600ms is a hard computational time limit imposed on both
optimization strategies to keep real-time capabilities).Indeed, hybrid-state A* may
have to explore many cells when the heuristic does not match the current situation.
However, hybrid-state A* guarantees that the optimized trajectory is feasible. Note
that when run on a single core on a standard desktop computer (Intel R© Core

TM
i7

2.93GHz), PCG-TR averages 0.32ms and hybrid-state A* 1.3ms.
Fig. 6 shows in the form of boxplots, the distribution of the smoothness of each

trajectory of each robot inSet I. Low smoothness values indicate smooth trajec-
tories, whereas high values indicate rough trajectories with many speed changes.
Incidentally, a low value means a better minimization of thecost function. We ob-
serve that PCG-TR and hybrid-state A* perform equally well and provide an im-
provement of about 300% over the standard state-of-the-artreactive controller. Both
algorithms show their capability to minimize the objectivefunction across the wide
range of proposed scenarios. Their performance with respect to the centralized PCG-
TR also suggests that our decentralized approach is competitive (about 74% worse).
Remember that the centralized algorithm uses ground-truthpositioning information

0 10 20 30 40 50 60

Hybrid A*

PCG-TR

average computational time [ms]

1x

4.6x

(a)

0 100 200 300 400 500 600

Hybrid A*

PCG-TR

worst computational time [ms]

1x

26x

(b)

Fig. 5 (a) Average and (b) worst computational time across all scenarios for PCG-TR and hybrid-
state A* on the real robots onSet I.
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Fig. 6 Boxplot of the re-
sulting smoothness of each
controller across all scenar-
ios and all robots. Smaller
values indicate that trajecto-
ries are more smooth (i.e.,
smaller is better). We observe
that the centralized controller
performs best as expected,
PCG-TR and hybrid-state A*
perform slightly worst but are
much better than the reactive
controller. Centralized PCG-TR Hybrid A* Reactive
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and requires the synchronization of our robots, whereas thedecentralized variants
only require local observations and no explicit communication. One can qualita-
tively compare trajectories obtained with PCG-TR and its centralized equivalent in
Fig. 4.

The results of the second set of experiments are shown in Fig.7. They concern
only the pure rendezvous scenario,Scenario (a), with four robots. On the first row,
we show the smoothness degradation for both the closed-loopand open-loop con-
trol as we increase the computational delay. On one hand, thehybrid-state A* seems
to perform slightly worse and the resulting smoothness degrades more rapidly. This
simple scenario may indeed exacerbate the computational time required by hybrid-
state A*. On the other hand, the benefit of our closed-loop control is to keep the
smoothness almost constant even when computational delay reaches up to 35× the
original computation time (for PCG-TR). The same conclusion can be made when
looking at the second row of Fig. 7. This row shows the averageconvergence speed
of the inter-robot distances (the higher, the faster the robots converge to the same
rendezvous point). We observe that the performance of the open-loop control worsen
as the one of the closed-loop control stays constant. Overall, the closed-loop control
provides an efficient alternative when the optimization process is slow. However, it
may only be implementable on robots equipped with accurate proprioceptive sen-
sors. Hence, when one can only use the open-loop control, it is important to provide
fast optimization methods such as PCG-TR or hybrid-state A*.

5 Conclusion

In this work, we proposed a RHC capable of performing the rendezvous on a team
of differential-wheeled robots equipped with noisy relative positioning hardware.
This RHC is tested with two complementary optimization procedures and showed,
in both cases, its ability to rendezvous on a wide range of experimental scenarios.
The two optimization procedures are the hybrid-state A* algorithm and a subspace
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Fig. 7 Plots of the smoothness (top row, smaller is better) and convergence rate (bottom row, higher
is better) for the centralized (left column), PCG-TR (middle column) and hybrid-state A* (right
column) controllers for different additional computational delays and different tracking strategies
(open versus closed-loop). The solid lines represent the median while the shaded region show the
25th and 75th percentiles. The performance worsen as the computational delay increases although
the closed-loop controller (see Section 2.4) mitigates theadded delays and performs better.

trust-region method based on PCG. Both algorithms were successfully deployed
on miniature robots, the Khepera III, and are able to run in real-time on-board.
Finally, we developed a closed-loop control that follows the optimized trajectories
and showed superior performance than its open-loop variant. This work provides
an exhaustive analysis of two fast, numerical, optimal approaches to nonholonomic
rendezvous for differential-wheeled robots.
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