Real-time Optimized Rendezvous on
Nonholonomic Resour ce-Constrained Robots

Sven Gowal and Alcherio Martinoli

Abstract In this work, we consider a group of differential-wheeletots endowed
with noisy relative positioning capabilities. We developlecentralized approach
based on a receding horizon controller to generate, intn@al- trajectories that
guarantee the convergence of our robots to a common loqagorendezvous). Our
receding horizon controller is tailored around two numedraptimization methods:
the hybrid-state A* and trust-region algorithms. To vataboth methods and test
their robustness to computational delays, we perform esthauexperiments on a
team of four real mobile robots equipped with relative gogsihg hardware.

1 Introduction

Since the 1960€0nsensuproblems have puzzled the minds of many researchersin
various fields, ranging from computer science to infornragiggregation [23]. The
term consensus describes the problem of reaching an agneamengst different
agents on a certain quantity or state. These agents canisf@raation about their
state either by means of communication or observations.rnetaork of robots,
solving the consensus problem on the position of each agefas to the task of
controlling them as to reach a commm@mdezvoupoint. The ability to meet or to
rendezvous has indeed many practical applications suabramafion control [11],
flocking [7], attitude alignment [25] or cooperative aergairveillance [1]. Addi-
tionally, although this paper specifically addresses timeleevous of differential-
wheeled robots, its general concept may be applied the wédeye of consensus
problems.
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1.1 Related Work

Solving the rendezvous with nonholonomic agents is compled proving the con-
vergence property can be difficult. Many works empfegdback linearizatioo
design relaxed control laws that recreate the holonomipent@s [16, 26]; oth-
ers create algorithms that are very specific to their apjdinaneeds [6, 5]; but
all of them rely on deterministic assumptions both in terrhaatuation and sens-
ing. Our previous work [13] incorporates insights from {rebabilistic consen-
susproblem [9] to guarantee that differential-wheeled rolwats rendezvous under
noisy measurements. However, this approach and all prigmoaghes to solve the
rendezvous problem on nonholonomic mobile robots rely iheawn strict time-
invariant controllers that yield poor trajectories withi@onsideration to neither ac-
tuation constraints nor the energy spent.

On another front, a great body of literature starting withsietder [19] in 1963
focuses on the optimization of the rendezvous maneuveratihdugh efforts to
decentralize the optimization approach using commurindtetween agents have
been made [18], many works remain centralized [20, 4] ansl tieed global knowl-
edge of the system. We can also observe that most work, imgjiti8], use a pre-
defined cost function and leave no design choices to the Tséaickle the problem
of decentralization with an arbitrary user-defined metsie rely on a receding hori-
zon controller (RHC) [12]. This RHC needs to run in real-tioreour platform, the
Khepera Il robot [24] (shown on Fig. 1(a)) equipped with atel XScale PXA-270
running at 624MHz without floating-point unit.

In particular, we use two distinct optimization strategi@thin our RHC) that
provide real-time capabilities to resource-constraimdabts:(i) the hybrid-state A*
algorithm [8] — an optimization strategy based on the A* shagorithm that gen-
erates quickly feasible trajectories for a wide range of fiosctions (i) a subspace
conjugate gradient trust-region method [2, 3] — a numegdimization method
that takes advantage of the differential flathess propdrypbrobots. We compare
both strategies in terms of performance and computati@tplirements. The pur-
pose of this work is then twofold: first, to experimentallyifethe convergence of
our mobile robot team using our decentralized approacloygbd¢o compare its ef-
ficiency with that of a centralized equivalent. We note thatjate, no contribution
has addressed the generation of real-time, optimal redsznaneuvers on mo-
bile robots performing noisy positioning observations —ther from a theoretical
nor from an experimental point of view. In this work, we fo@rsthe experimental
aspect (the theory is covered in more depth in another cosypublication [14]).

1.2 Problem Statement

We have a team dfl differential-wheeled robotRy, .. ., Ry driven by the kinematic
equations:

Xj = UjcosB
Yi = uising | (2)
6 =uw
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Fig. 1 () A Khepera llI v -
robot with a range and bear-
ing module attached. (b)
The kinematic model of a |
differential-wheeled robdg;. X X

whereu; = [ui,oq]T is the vector of control inputs, with; the linear translational
speed andy the rotational speed, and the vectpe [x;, Vi, G.]T defines the absolute
pose or state of the rob&;, as shown on Fig. 1(b).

A robotR; has a set of neighborg/{ containing all robotRR; such that it can
measure the rangg; and bearingyjj to them. Its measurements are affected by
noise such that each observatigyrit) of Rj at timet is defined by

ORI b e S @

whereg; is a random noise vector.

Our goal will be to drive all robots to the same meeting pdtat. each roboR;,
thisrendezvous maneuvshould be performedptimallyin real-timeunder a local
user-defined metric#; (u;) which should only depend on values directly measurable
(either through sensors or communication) or calculabledgh individual robot
R;. Without loss of generality, throughout this paper, we wike the Bolza form
Zi(-) = JLi(-)dt +Vi(-) whereL;(-) is a cost rate an¥(-) is a terminal cost (also
calledsalvage term

2 Technical Approach

In this section, we explain in brevity how RHC can guarantralezvous with the
addition of optimization constraints, and how to perforncleaptimization cycle,
on-board, in real-time, using, on one hand, the hybridesdtalgorithm and, on the
other, a subspace conjugate gradient trust-region mefiutitionally, we introduce
a closed-loop control that follows the resulting RHC trajees.

2.1 Decentralized Receding Horizon Control

To solve our optimization problem (i.e., minimizingi(-) whilst guaranteeing the
rendezvous, as seen in Section 1.2), we will rely on RHC. Rei@i&s many names
such as model predictive control (MPC) or real-time optatian (RTO). It is an

advanced method, widely used in industry, that has thetylbiiuse the available
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information on the system at hand to control it optimally end user-defined cost.
Although its requirements in terms of computing power aghlR1], it has found
many successful applications, in particular when the Ugoher system to control
has slow dynamics (i.e., in the order of minutes or secofd®) recent advances in
computing power have in part alleviated this issue, but Re#&hes its limits when
the underlying system is nonlinear, changing fast and hagton a simple mobile
platform.

RHC is an optimization-based control that uses online nogltirajectory gener-
ation. The general idea is to plan a feasible and sub-opti@jalctory over a finite
time T horizon and control the system (i.e. the robots) to folloig thajectory over
a sampling timed (0 < 8 < T). After d seconds, a new trajectory is recomputed
from the current position until timé + T and this trajectory is again followed until
time 2. This cycle is repeated until the goal is reached. We willalersuch a re-
ceding horizon control with the symbét.#’ (T, d). This process is schematized in
Fig. 2, where roboR; plans during three cycles three trajectories that are éck
sequentially.

Theorem 1. Given asymmetric and connected group of N differential-wheeled
robotsR1, ..., Rn, the decentralized receding horizon cont&l77 (T;, &), with
Ti > 0and0 < & < Tj, that solves the following optimization problem on eaclotob
Rj attimert:

T+T
minimize _Zi(uj) = Li(t, xi, X, ui) dt+Vi(T+T,%i,%i, up) 3)
JT
subjectto Eq. uj € %, % € Zi (4)
such that ki = k;ji > 0 satisfying y= z kij %ij (5)
RjeA
3t > 1 satisfyingw (t) # O, (6)

where Z; and % are user-defined admissible sets, drives the gralapost surely
to a common rendezvous poingift) = {Xij (t) = [% (t),¥ij ()] T|Rj € 4} and the
estimationy;; (t) of x; (t) = &j cosaij is unbiased in the time intervakt 1, T + &].
Proof. The proof is omitted for conciseness, but its complete déiow is available
in[14]. O

Remark 1 As we will see in Section 3, the constraints (5) and (6) carratiice be
ignored when an adequate salvage t&f(v) is used. In particular, it is sufficient to
penalize inter-robot distances that increase.
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Remark 2Theorem 1 assumes for each roBpthe presence of a prediction func-
tion X;(t) capable of estimating the position of neighboring robots.ekplained
in [14], this function can be implemented using an extendatirtan filter based on
the observations made through the relative positioninguiare.

2.2 Cost Function

To ease our discussion on the algorithmic details, we desdiist the cost func-
tion used in our experiments. Given a continuous trajedmryextT seconds, we
discretize it by splitting it intdN linear segments oAt = T /N seconds each, thus
generating a sequence Nif}- 1 verticesp; € R? with i € {0,...,N}. Additionally,
we assume that there &g obstacles denoted; with j € {1,...,No}. Each obsta-

cle has a position!) € R? at timeiAt and an associated uncertaiy’ € R?<2,
We denote byAp; = p; — pi_1 the displacement vector at a vertex andyythe
final position that the trajectory aims to reach. Our costfiom is then:

f

N-1
f(Po.N) = Ws Z (Api1—Ap) T (Apis1—Api)

N N No . .
+we 3 [4pil3+wo3 3 o(pi;0l) RY) +wepr —pnf3  (7)
i= i=0j=1
—— ——
f2 fa fa

wherews, we, Wt , W, are positive weights an@(x; u, >) is the multi-variate normal
probability density function with megm and covariance .

The first termf; of the cost function forces the trajectory to be smooth: tre f
ward acceleration and rotational speed should be smalls@bend ternt, penal-
izes fast motion and ensures that minimal energy to spendtiaton. The third
term f3 guides the trajectory away from obstacles and correspanaghty to a
scaled probability of hitting any of them. The fourth tefgsteers the trajectory to-
wards a goal position by penalizing an excessive distaniteTbe first three terms
correspond to the sum of all cost rates over the trajectangreas the last term is
the salvage term. To ensure the rendezvous in practiceeitasgh to set the goal
positionp; to the estimated center of mass of all neighboring robotsn T,

1 ”
Pt = WRJEJ%X” (T). (8)
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2.3 Optimization Strategies

The sampling time& is related to the computational time required by the optamiz
tion of Eq. (3) [21]. Hence, it is important that this optiration takes as little time
as possible (to guarantee, in practice, the unbiasednehbse estimator ok;j). In
this section, we provide two alternatives capable of efficieal-time optimization.

2.3.1 Hybrid-state A*

The first alternative, explained in [8], is a continuous optiation method derived
from a discrete heuristic search method, the A* search dlgor The general idea
is to discretize into cells the three-dimensional seardtsyfx;,y;, 6) represent-
ing the robot’s state. Whereas A* explores the center ofdldiscrete cells and
generates paths that may not be feasible with respect toitleenlatic constraints
of Eq. (1), hybrid-state A* associates with each cell a fii@e&hsional continuous
state(x, Vi, &, Ui, w). Hence the transitions from a cell to the next may change ac-
cording to the stored continuous state. To determine thagesitions, we simply
discretize the action that the robot can take during the Aesteconds and perform
an Euler integration of the kinematic equations. In patéicuve allow the robot
to either keep, increase, or decrease its forward or rotaltispeed by a constant
incrementAu or Aw respectively. It is clear that hybrid-state A* is not guaesed
to find the minimal-cost solution because of the discretiradf controls and time,
as well as the pruning of all but one continuous-state brestat enter a cell. Fi-
nally, to use hybrid-state A* with RHC, we stop the search mtihe number of cells
explored on the current branch reaches the number of pdintd required by the
trajectory. We note that although hybrid-state A* is memlaygry, it will always
generates feasible trajectories and can be easily modifiettiude dynamics and
additional constraints with little overhead in terms of gartational time.

For completeness, we show through Algorithm 1 the complettine, where
g(c) represents the real cost of the current path from the sgadall to cellc,
h(s,p) is the heuristic cost to reach positiprfrom a continuous state ands(c)
is the continuous state associated with celNote that the cosg(c) can be com-
puted by adding up the first three terms of our cost functfer-(f, + f3) until cellc
on the current branch and the heuristic, p) is the last term of this same cost func-
tion. In the context of our experimental test-bed, we obs#nat this algorithm can
easily make use of fixed-point arithmetic as all variablegesare known a priori.
Combined with a proper implementation (i.e., efficient gtioqueue), we obtain a
procedure on our platform, the Khepera lll robot. In the e@xpents of Section 3,
the cell discretization is done by a 6464 x 52 grid on an area of 2m 2m x 360°
centered around the robot. The speed incremé&ntandAw are set to A25m/s
and 15rad/s respectively anfit is set to 01s. These values are selected to reach the
best compromise between optimality and computational/orgmequirements (the
overall memory usage is 14.8 MB which can easily fit on-bohedhepera Ill).
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Algorithm 1 Hybrid-state-A*, Vi, 6, Ui, &, ps)

: closedSet 0

. start+ getCell, yi, 6)

. S(Start)<_ <Xisyis 9|, uis m>

. g(start+— 0

. openSet— {start}

. while openSet£ 0 do

cell argmir}:eopenSeg(C) +h(s(c),pr)

if isGoal(cell)or depth(cell)= [T /At] then
return generatePathTo(cell)

10:  endif

11:  openSet- openSet cell

12:  closedSet- closedSeu cell

130 (XY, 60,u,w) < s(cell)

14:  for all [, w] € {[u, w] £[Au,Aw]} do

©CONOUDWNE

15: (X,Y,0') + eulerintegratiof(/, '], (x,y, 6),At)
16: dest— getCell',y’, 0')

17: if dest = cellthen

18: continue

19: end if

20: newCost g(cell)+ edgeCost(cell{(X,y, 6, U, ')
21: if newCost +h((X,y,6,u,w'),ps) > g(des) + h(s(des), pr ) then
22: continue

23: end if

24: openSet— openSetU dest

25: closedSet- closedSet, dest

26: s(desh + (X,y,0",U, )

27: g(desy «+— newCost

28:  end for

29:  return trajectory impossible

30: end while

2.3.2 Subspace Conjugate Gradient Trust-Region

This second alternative is an efficient non-convex optititramethod that uses a
preconditioned conjugate gradient to define a two-dimeradisubspace on which
a trust-region method is applied.

Let us consider a functioh: R" — R, which we want to minimize. We currently
have an estimate of the solution, which we wish to improve. The basic idea be-
hind the trust-region approach is to approximate the fomcti with a functionq
reflecting the behavior of in a neighborhood2 around the poink. This neigh-
borhood is the trust-region. Hence the problem is to find p stat minimizes
g: mins{q(s)|s € Q}. If the vectorx+ s is a better estimate of the solution (i.e.,
f(x+9s) < f(x)), x is set tox+ s; otherwise, it is unchanged and the trust-region
is shrunk. In practice, the approximate functigpiis defined by the first two term
of the Taylor expansion of aroundx and the trust-region is often circular. The
trust-region step then becomes

msin{%sTHs+gTs | |s|2§A}, (9)
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whereg andH are the gradient and Hessian bfrespectively, and\ is positive.
Good algorithms to solve Eq. (9) based on the eigenvalubsaxist [22]. However,
they become inefficient whet becomes large. Hence, a good heuristic is to reduce
the original problem into a two-dimensional subspace spdroy an approximate
Newton direction (given in our case by a preconditionedggafe gradient method)
and the gradient direction.

The method of conjugate gradient (CG) [15] is an effectivey waiteratively
solve large-scale linear equations suctHas= —g (note that, here is the New-
ton direction) without calculating the inverseldf Using a preconditioned variant
(PCG) allows for faster convergence by altering the origimablem toM ~1Hv =
—M~1g, whereM is called the preconditioner. Finally, the only costly agtem that
PCG needs to perform is the multiplicationtéfwith a vector. Thus, PCG is very
efficient whenH is sparse. If the number of points is small (i.< 50), PCG can
be replaced with Newton’s method for greater efficiency;Nexvton’s method will
need more memory as the inverse of the Hessian needs to bd.stor

For a fast implementation, it is important that the functiobe twice differen-
tiable and that both an analytical gradient and Hessian emomputed. In our case,
for the gradient, we have

ot _
api
— We(24pi1— 24pi)
No

+ W Z (Ri(J'))fltp(pi;oi(J)’Ri(j))(oi(J) —pi)
=

+Wwili—n(Pf —PN)s (10)

Ws(2Api 2 — 6Api 1+ 6Ap; — 2Api_1)

where 1, is the indicator function ofA. The Hessian is then simply the sum of
two sparse matrices: a constant banded métyikepresenting the first, second and
fourth term off and a block diagonal matrkt, composed of 22 blocksBy, ... ., By

(if we interleave the coordinates of every pain), with

_ 0%f3

B =

(w71 o,

whereR meanst”. If no collisions are possible (i.e-, = 0), it is beneficial to use
Newton’s method to minimizé (if memory allows). Indeed the functiohbecomes
gquadratic and Newton’s method converges in one iteratitso,/asH; is constant,
its inverse only needs to be calculated once.

Although, less hungry than hybrid-state A* in terms of meyahe subspace
conjugate gradient trust-region method (which we denatmfnereon as PCG-TR)
may not generate a feasible trajectory. However, our spatibice of the cost func-
tion f, which penalizes non-smooth trajectories, mitigatesitisige. Additionally,
it can be shown that differential-wheeled robots are dfieially flat and thus can
follow a sufficientlysmooth trajectory. Algorithm 2 shows the complete routine.
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Lines (5-11) compute the two-dimensional subspace whikesli(12) and (14-20)
perform a trust-region step.

Algorithm 2 PCG-TrustRegion, Vi, 6, u;, (3, ps)

1: xoid ¢ generatelnitialTrajectory(, yi, 6, U, @, ps)
2: foig + f(Xola)

3: A « InitialTrustRegionRadius()

4: repeat
5. (g,H) < computeGradientAndHessiagf;)
6:  v; + preconditionedConjugateGradiemt)
7
8

Vi < vi/|va|2
D e+ g-vi(viQ)
9 v w/|vaf2
10: g <« [vivo]Tg
11 H  [vavo] TH[v1vo)
12: s« argmin{3s"H's+gTs | |s|2<A}
13: s« [vivp)s
14: X<+ Xod+S

15:  f+ f(x)

16: if f < fggthen
17: foig < f

18: Xold — X

19:  endif

20: A <+ updateTrustRegionRadius)
21: until convergence
22: return Xgig

2.4 Computational Delays

In RHC, the optimized trajectory is followed during a tidaluring which no feed-
back from the environment is observed. Afteseconds, feedback from the envi-
ronmentis incorporated to re-optimize the trajectory.fagtice, the amount of time
0 dedicated to follow the trajectory is not fixed. Indeed, ofteroprefers to opti-
mize the trajectory as fast as possible and use the resulirisas possible. The
sampling timed then directly relates to the computation time needed tonupé
the new trajectory.

It is clear that while the optimization takes place, the totmntinues to move
according to the old trajectory which may result in a misrhdietween the opti-
mized position and the current position at the time when gigrazation completes.
Hence, the robdR®; needs to reacquire (and track) the optimized trajectorgarso,
it needs to know its current position with respect to the reshew position, here-
after denoted by the coordinateg, yq). This can easily be achieved by integrating
the open-loop controls or, for more precision, by using odtsynmeasurements (in
our case given by wheel encoders which are deployed on nféetetitial-wheeled
robots). Fig. 3 shows a robot with its desired trajectory.
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ey ol trajectory
. ¥ g~ Desired trajectory
Fig. 3 Schema of the quan- Lafb_

tities used by the control law E
in Eq. 12 that enabl&; to ;
reach a trajectory given by the J
virtual robotRy (desired tra-
jectory) after having followed
the old trajectory fotoo long

Ktug

According to the desired trajectory, robRf should be located at the position
indicated by the virtual robot referen&y. R; is able to calculate the rangeand
the bearingx to Ry. It can identify the orientation-ey (with respect to itself), the
forward motionuy and rotational motiomy of Rq. Note thatg is the bearing to the
point located at a distand€s ug in front of Ry. We propose the following control
law whenR4 moves forward:

{ Ui = Kyecosa + ug (12)

w = Kpesina + Kpf + ay

with Ky, Ky, Ky andK; all positive constants. An equivalent control law can be
found whenRy moves backward. Although omitted here for concisenessnte
shown that this control law is stable and converges to thatesajectory.

This strategy bears resemblance to the third strategy pempby Milam et
al. [21] to account for computation delays, with the exaapthat, instead of blindly
applying the optimized control inputs (open-loop), we caecorrected control in-
puts based on the optimized trajectory using a tracking léglesed-loop).

3 Experiments

Experiments are conducted using Khepera Ill robots irx&8r® arena. This robot
has a diameter of 12cm, making it appropriate for multi-tabdoor experiments.
As shown on Fig. 1(a), we equip each robot with a range andirlgeanodule
allowing for inter-robot positioning. A measurement caigpaperformed in [13]
showed that the observation noisgis normally distributed with a covariance
2 ~[0.0221 — 0.0011; —0.0011 00196. The ground truth position and orien-
tation of each robot is monitored using an overhead cametraSvvisTrack [17],
an open-source tracking software. The experiments argmsito analyze four
different controllers:

Reactive This controller, on top of which we add an obstacle avoidazargrol
as explained in [10], was presented in [13]. It is a standeadttive controller,
which does not optimize trajectories, nor predicts therifositions of neigh-
boring robots or obstacles. However, it guarantees theemmdis mathemati-
cally and was shown to perform under noisy perception paetity well.

Hybrid-state A* This controller implements Algorithm 1.
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PCG-TR This controller implements Algorithm 2.
Centralized PCG-TR This controller implements Algorithm 2, but optimizes si-
multaneously the trajectories of all robots. In particutae new cost function

is the sum of the individual costs of all robotgg, f(pg')_'N), Wherepé")_'N are
vertices of the trajectory of robdR;. We note that even if inter-dependencies
between robots avoiding each other arise, the new Hessitixratays sparse
and the optimization stays efficient. While all of the thréewe controllers use
exclusively on-board resources, this centralized optutiin is run off-board on
a desktop computer and uses the information of the trackisigs as input. It
serves as an upper-bound on performance.
All controllers are tuned such that the average speed ofabets is about 15cm/s
(i.e., f» is about the same across all controllers). Four scenargosedected to pro-
vide a wide-range of situations upon which the differenttoaliers can be tested:

Scenario (a) Four robots are randomly placed in the arena and form a caenple
graph (all robots are neighbors). Their task is to perforeréndezvous.

Scenario (b) Two robotsR; andR; are placed 2 meters apart, facing each other.
Each robot has to reach the initial location of the other tobbese locations
are represented by 2 additional motion-less rolfysand R4 (whose relative
positions are artificially fed to the robots). Aldg; andR» have to avoid each
other. Formally, we have’; = 1 andoﬁl) = X12(kAt) for Ry andoﬁl) = X21(kAt)
for R,. This scenario not only tests collision avoidance, but hts@ each robot
is able to rendezvous with a fixed goal position.

Scenario (c) Like the previous scenario but with four robots. This is a pter
crossing and is an effective test-bed for analyzing thetgli optimize the
trajectories quickly. Examples of trajectories obtaingdhe robots are shown
in Fig. 4.

Scenario (d) This scenario involves two robots having to rendezvous am t
other robots disturbing this rendezvous maneuver by argshkie arena.

Finally, across all scenarios and controllers, we perfavmgets of experiments:

Set | The first set tests the performance in terms of smoothheskthe result-
ing ground-truth trajectories of all controllers. The sriioeess is a valid per-
formance indicator, since the average forward speed wasatine across con-
trollers and scenariog]l runs were collision-fref; < f;) andall rendezvous
maneuvers succeedéfl, < f1). In this set, we did 10 runs per scenario per
controller, resulting in a total of 160 experimental runs.

Set 11 The second set aims to test the degradation of performarSoeiario (a)
when the computational time of the controllers is incredsed fixed additional
delay of 0, 200 and 400ms. Additionally, we test our apprdachitigate com-
putational delays (Section 2.4, closed-loop) againstltird strategy proposed
in [21] (open-loop). The performance is measured both thindhe smoothness
and the convergence speed towards the rendezvous poinidWeuhs per de-
lay per mitigation strategy per controller, resulting irogat of 90 experimental
runs.
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Fig. 4 Runs performed on = S V)< ’<) )
. . LA 4 A<

Scenario (c) with (a) the ‘ |
decentralized PCG-TR vari- 0 Tosm ' 05m
ant and (b) its centralized 3AV AY
equivalent.
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4 Results

Before diving into the core results, we show that both athams are capable of
running in real-time on board of our miniature robots. Therage computational
time over all robots and scenarios &t | is shown in Fig. 5(a). We observe that
PCG-TR is 46x faster than hybrid-state A*, averaging 11.2ms per optitiora
cycle against 51.15ms (both algorithms run faster thanH®i5 average). The
difference in performance is even more stagering when tapki the worst-case
performance, in Fig. 5(b), yielding 23.12ms for PCG-TR araking out at 600ms
for hybrid-state A* (600ms is a hard computational time tinmnposed on both
optimization strategies to keep real-time capabilitie®)leed, hybrid-state A* may
have to explore many cells when the heuristic does not mathkurrent situation.
However, hybrid-state A* guarantees that the optimizejgttary is feasible. Note
that when run on a single core on a standard desktop compotel§ Core " i7
2.93GHz), PCG-TR averages 0.32ms and hybrid-state A* 1.3ms

Fig. 6 shows in the form of boxplots, the distribution of tmeadthness of each
trajectory of each robot iBet |. Low smoothness values indicate smooth trajec-
tories, whereas high values indicate rough trajectorigl wmany speed changes.
Incidentally, a low value means a better minimization of ¢st function. We ob-
serve that PCG-TR and hybrid-state A* perform equally welll @rovide an im-
provement of about 300% over the standard state-of-theactive controller. Both
algorithms show their capability to minimize the objectiuaction across the wide
range of proposed scenarios. Their performance with résptwe centralized PCG-
TR also suggests that our decentralized approach is caipétibout 74% worse).
Remember that the centralized algorithm uses ground-pghioning information

PeeTR 4.6X PCG-TR]zsx

Hybrid A* 1x Hybrid A'| 1x

20 30 40 50 60 0 100 200 300 400 500 600
average computational time [ms] worst computational time [ms]

(@ (b)

0 10

Fig. 5 (a) Average and (b) worst computational time across all@ges for PCG-TR and hybrid-
state A* on the real robots oBet |.
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1

0.9
Fig. 6 Boxplot of the re- 0.8
sulting smoothness of each
controller across all scenar- ” 07
ios and all robots. Smaller 206
values indicate that trajecto- £ 08
ries are more smooth (i.e., g
smaller is better). We observe 04
that the centralized controller 0.3
performs best as expected, 02
PCG-TR and hybrid-state A* ’
perform slightly worst but are 0.1 ;
much better than the reactive %
controller. Centralized PCG-TR Hybrid A* Reactive

and requires the synchronization of our robots, whereasli¢aentralized variants
only require local observations and no explicit commundatOne can qualita-
tively compare trajectories obtained with PCG-TR and itstiadized equivalent in
Fig. 4.

The results of the second set of experiments are shown ir7Fithey concern
only the pure rendezvous scenaoenario (a), with four robots. On the first row,
we show the smoothness degradation for both the closeddondmpen-loop con-
trol as we increase the computational delay. On one hantytréd-state A* seems
to perform slightly worse and the resulting smoothnessaties more rapidly. This
simple scenario may indeed exacerbate the computatiomalréquired by hybrid-
state A*. On the other hand, the benefit of our closed-looprobis to keep the
smoothness almost constant even when computational cedahes up to 36 the
original computation time (for PCG-TR). The same conclasian be made when
looking at the second row of Fig. 7. This row shows the avecagwergence speed
of the inter-robot distances (the higher, the faster th@t®bonverge to the same
rendezvous point). We observe that the performance of te-tqop control worsen
as the one of the closed-loop control stays constant. Qyiralclosed-loop control
provides an efficient alternative when the optimizationcess is slow. However, it
may only be implementable on robots equipped with accunaipripceptive sen-
sors. Hence, when one can only use the open-loop contreinitjortant to provide
fast optimization methods such as PCG-TR or hybrid-state A*

5 Conclusion

In this work, we proposed a RHC capable of performing the eemdus on a team
of differential-wheeled robots equipped with noisy relatpositioning hardware.
This RHC is tested with two complementary optimization gahares and showed,
in both cases, its ability to rendezvous on a wide range oéemyental scenarios.
The two optimization procedures are the hybrid-state Abethm and a subspace
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Fig. 7 Plots of the smoothness (top row, smaller is better) andergewce rate (bottom row, higher
is better) for the centralized (left column), PCG-TR (midblumn) and hybrid-state A* (right
column) controllers for different additional computatbmlelays and different tracking strategies
(open versus closed-loop). The solid lines represent thianevhile the shaded region show the
25th and 75th percentiles. The performance worsen as thputational delay increases although
the closed-loop controller (see Section 2.4) mitigatesatieed delays and performs better.

trust-region method based on PCG. Both algorithms wereessfully deployed
on miniature robots, the Khepera 1ll, and are able to run al-tiene on-board.
Finally, we developed a closed-loop control that follows tptimized trajectories
and showed superior performance than its open-loop varfdni$ work provides
an exhaustive analysis of two fast, numerical, optimal agphes to nonholonomic
rendezvous for differential-wheeled robots.
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