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Abstract

In this thesis, we focus on the problem of recovering 3D shapes of deformable sur-

faces from a single camera. This problem is known to be ill-posed as for a given

2D input image there exist many 3D shapes that give visually identical projections.

We present three methods which make headway towards resolving these ambigui-

ties. We believe that our work represents a significant step towards making surface

reconstruction methods of practical use.

First, we propose a surface reconstruction method that overcomes the limitations

of the state-of-the-art template-based and non-rigid structure from motion meth-

ods. We neither track points over many frames, nor require a sophisticated defor-

mation model, or depend on a reference image. In our method, we establish corre-

spondences between pairs of frames in which the shape is different and unknown.

We then estimate homographies between corresponding local planar patches in

both images. These yield approximate 3D reconstructions of points within each

patch up to a scale factor. Since we consider overlapping patches, we can en-

force them to be consistent over the whole surface. Finally, a local deformation

model is used to fit a triangulated mesh to the 3D point cloud, which makes the

reconstruction robust to both noise and outliers in the image data.

Second, we propose a novel approach to recovering the 3D shape of a deformable

surface from a monocular input by taking advantage of shading information in

more generic contexts than conventional Shape-from-Shading (SfS) methods. This

includes surfaces that may be fully or partially textured and lit by arbitrarily many

light sources. To this end, given a lighting model, we learn the relationship be-

tween a shading pattern and the corresponding local surface shape. At run time,

we first use this knowledge to recover the shape of surface patches and then enforce

spatial consistency between the patches to produce a global 3D shape. Instead of

treating texture as noise as in many SfS approaches, we exploit it as an additional



source of information. We validate our approach quantitatively and qualitatively

using both synthetic and real data.

Third, we introduce a constrained latent variable model that inherently accounts

for geometric constraints such as inextensibility defined on the mesh model. To

this end, we learn a non-linear mapping from the latent space to the output space,

which corresponds to vertex positions of a mesh model, such that the generated

outputs comply with equality and inequality constraints expressed in terms of the

problem variables. Since its output is encouraged to satisfy such constraints inher-

ently, using our model removes the need for computationally expensive methods

that enforce these constraints at run time. In addition, our approach is completely

generic and could be used in many other different contexts as well, such as im-

age classification to impose separation of the classes, and articulated tracking to

constrain the space of possible poses.

Keywords: Computer Vision, deformable surfaces, reconstruction, shading, tex-

ture, constrained latent variable model.



Résumé

Dans cette thése, nous nous concentrons sur le probléme de la reconstruction de

formes en 3D de surfaces dèformables à partir d’images acquises avec une seule

camèra. Ce probléme a plusieurs interpretations puisque pour une image 2D, il ex-

iste de nombreuses formes en 3D qui donnent des projections visuellement iden-

tiques. Nous prèsentons trois mèthodes qui reprèsentent un avancement vers la

rèsolution de ces ambigutès. Nous croyons que notre travail reprèsente une ètape

significative pour l’utilisation pratique de la reconstruction de surfaces.

Premiérement, nous proposons une mèthode de reconstruction de surface qui dèpasse

les limites des mèthodes existantes basèes sur des modéle ou des mèthodes de

mouvement de surfaces non-rigides. Notre mèthode na pas besoin de suivre des

points sur de nombreuses frames, ou besoin d’un modéle de dèformation sophis-

tiquè et ne dèpend pas d’une image de rèfèrence. Notre mèthode ètablit des cor-

respondances entre des paires dimages dans lesquelles la forme est diffèrente et

inconnue. Nous estimons les homographies entre des correspondances de patches

extraits de deux images. Ceci donne des reconstitutions approximatives en 3D

de points au sein de chaque patche avec un facteur d’èchelle. Puisque nous con-

sidèrons des patches qui se chevauchent, notre mèthode est cohèrent sur toute la

surface. Enfin, un modéle de dèformation locale est utilisè pour ajuster un mail-

lage triangulaire au nuage de points 3D, ce qui rend la reconstruction robuste à la

fois au bruit et les valeurs aberrantes dans les donnèes.

Deuxiémement, nous proposons une nouvelle approche pour la reconstruction

de la forme 3D d’une surface dèformable à partir d’une entrèe monoculaire en

tirant parti des informations d’ombrage dans des contextes plus gènèriques. Cela

comprend des surfaces qui peuvent tre totalement ou partiellement texturèes et

èclairèes par de nombreuses sources de lumiére arbitraire. Etant donnè un modéle

d’èclairage, nous apprenons la relation entre un modéle d’ombrage et la forme de



surface locale correspondante. Au moment de l’exècution, nous avons d’abord

utilisè cette connaissance pour rècupèrer la forme des patches de surface, puis ap-

pliquè une cohèrence spatiale entre les patches pour produire une forme globale

3D. En d’autres termes, au lieu de traiter la texture comme du bruit, comme dans

un grand nombre dapproches nomèes shape-from-shading (SFS), nous l’utilisons

comme une information supplèmentaire. Nous validons notre approche quantita-

tivement et qualitativement à l’aide donnèes à la fois synthètiques et rèelles.

Troisiémement, nous introduisons un modéle latent de contraintes de variables qui

reprèsente en soi des contraintes gèomètriques tels que dèfinis sur le modéle de

maille. A cette fin, nous apprenons une cartographie non linèaire de l’espace latent

à l’espace de sortie, qui contient les positions des sommets d’un modéle de maille.

Les sorties gènèrèes sont conforme avec des contraintes d’ègalitè et d’inègalitè

exprimè en termes de variables du probléme. Puisque la sortie est encouragèe

à rèpondre à ces contraintes de faon inhèrente, utiliser notre modéle èlimine la

nècessitè pour les mèthodes de calcul coûteux qui appliquent ces contraintes lors

de l’exècution. En outre, notre approche est complétement gènèrique et pourrait

tre utilisèe dans de nombreux autres contextes diffèrents, telles que la classification

d’image pour imposer la sèparation des classes, et le suivi articulè pour contraindre

l’espace de poses èventuelles.

Mots-clès: Vision par ordinateur, surfaces dèformables, reconstruction, ombrage,Texture,

modéle contraint avec des variables latentes.



Acknowledgements

There are a number of people without whom this thesis could not have been writ-

ten and to whom I am greatly indebted. I would like to begin by thanking Pascal

Fua for making me a part of his exceptional group. I considerably benefited from

his guidance and vision throughout my studies. It is with immense gratitude that I

acknowledge the help of Mathieu Salzmann, an inspirational, dedicated and gen-

erous advisor. Mathieu has taught me a great deal and working with him has truly

strengthened my passion for science. The quality of this work owes much to his

creativity and insight.

I thank the members of my thesis committee Adrien Bartoli, Mark Pauly and Roger

D. Hersch for accepting to evaluate this work and for their valuable feedback.

Many thanks to Raquel Urtasun who invited me to TTI in Chicago and worked

closely with me during my stay there. I give my thanks to Appu Shaji for our many

discussions and for his willingness to listen and his always thoughtful advise. To

Mario Christoudias, for his encouragement and for helping me during the last year
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CHAPTER

ONE

INTRODUCTION

Reconstructing 3D deformable surfaces from a single viewpoint is an active research area in

Computer Vision with applications in many domains such as sports, entertainment and med-

ical imaging. The main challenge comes from the fact that for a given 2D input image there

exist many 3D shapes that give visually identical projections. In addition to the inherent am-

biguities associated with solving an inverse problem, image noise makes the task even more

challenging. In this thesis, we are exploring several means of resolving ambiguities in the sur-

face reconstruction process by simultaneously exploiting various kinds of image information

and using priors and constraints.

In the remainder of the chapter, we first describe the problem we address in this thesis and

discuss a few practical applications. Next, we present some of the ambiguities resulting from

the ill-posed nature of the surface reconstruction problem and motivate our work. Finally, we

conclude the chapter by listing our main contributions to the field.

1.1 Problem Definition

Our goal in this work is to recover the 3D shape of a deformable surface given either a single

image, or an image sequence of the surface acquired by a single camera. Some of the images

on which we applied our reconstruction algorithms are shown in Figure 1.1. For all cases, we

assume that the camera is calibrated, and that its internal parameters do not change during the

capture of the sequence. We use a rectangular triangulated mesh to represent the surface of

interest in 3D. We take advantage of a reference image of the surface of interest for which we
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(a) (b)

(c) (d)

Figure 1.1: Examples of the surfaces to which we applied our reconstruction methods. (a) A
well-textured sheet of paper undergoing a simple deformation. (b) Another well-textured surface
undergoing a more complex deformation. A partially textured t-shirt (c) and sheet of paper (d) .

know the 3D shape (i.e template model) if it is available. This image is used to extract the

texture information of the target surface. If such an image is not provided, we rely on two

images of the same surface under different surface configurations while recovering their shape.

For the cases where we exploit shading information, we assume that we are provided with the

calibration of the lighting environment in which the deforming surface is captured as well as

the surface albedo which can be measured from the reference image.

2



1.2 Potential Applications

1.2 Potential Applications

While being a very challenging task in Computer Vision, our problem has potential applications

in various fields ranging from medical imaging to sports industry. We discuss a few of them

below.

1.2.1 Sailing

Sailors, particularly the ones on boards of racing sail boats such as the French boat Hydroptère

and the Swiss boat Alinghi as shown in Figure 1.2(a) and (b) respectively, are interested in

measuring shape changes of their sails while traveling. These measurements help them make

adjustments, and better understand the behavior of the boat and improve their design for higher

speeds. We have successfully developed and installed real-time sail surface deformation mea-

surement systems that use images of the sails captured by an on-boat camera. Some of these

methods were inspired from the ones presented in this thesis.

(a) (b)

Figure 1.2: Computer Vision in sailing. We applied our reconstruction algorithms to measure the
deformation of sails from images (a) French boat Hydroptère (b) Swiss boat Alinghi.

3
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(a) (b)

Figure 1.3: Computer Vision in surgery. (a) Our methods can be applied to assist surgeons by
providing them real-time measurements of organ deformations during a surgery. (b) They can also
help autonomous surgery robots in high-level scene understanding and motion planning. Images
are courtesy of www.wikipedia.org.

1.2.2 Medical imaging

One of the other most promising applications of our work is in medical imaging. As the tech-

niques for surgery get more and more advanced, less invasive methods, such as laparoscopy,

are becoming more popular. Laparoscopic surgery is a recent surgical method in which opera-

tions on the body are executed through a small incision as opposed to the traditional technique

which requires larger incisions. A picture of a typical operating room for such a surgery is

shown in Figure 1.3(a). A relatively low resolution camera captures the interior of the body

and the organs as a surgeon performs the operation.

The reconstruction methods that are discussed in this work, for instance, could be useful for

surgeons in two ways. First, they could be used to obtain a 3D model of the organ of interest

and provide real-time feedback on its shape by augmenting the low-resolution camera view.

Second, the deformations of the organs could be analyzed offline to train other surgeons. In a

very similar spirit, our methods could also be utilized by autonomous surgery robots as shown

in Figure 1.3(b), which is potentially one of the next important advances in surgical methods.

Such measurements would be useful for an automated surgery robot in obtaining a high-level

scene understanding of the operation field and planning collision-free motion paths for its arms.

1.2.3 Aerospace industry

Another potential application of our methods lies in image-based measurements for industrial

design and experimentation. Specifically, plane wings, such as the one shown in Figure 1.4(a),
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(a) (b)

Figure 1.4: Computer Vision in image-based measurements. Our methods can be applied to
help aerospace engineers in measuring the deformations of a plane’s (a) wings and (b) jet-turbine
plates during a flight. Images are courtesy of www.wikipedia.org.

(a) (b)

Figure 1.5: Computer vision in entertainment and marketing industries. (a) Cloth simulation
results of [34]. As an alternative to cloth simulation methods in Computer Graphics applications,
one could use our reconstruction methods to obtain realistic cloth deformations with only very
limited manual intervention. (b) They can also be used to draw graphics for displaying virtual
commercials on images of real surfaces such as the ones soccer players wear during a game.

deform significantly during a flight. Their deformations can be measured by an on-board video

camera while operating under real working conditions. Such measurements can replace the

results obtained by physically-based simulations which are costly in terms of labor force and

time and require knowledge of physical properties of potentially complicated bodies. Our

reconstructions would provide realistic feedbacks to the plane manufacturers and could help

them in tailoring their designs. Similarly, to analyze their dynamical behavior while operating,

our methods could be applied to jet-engine plates such as those in Figure 1.4(b).
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1.2.4 Entertainment and marketing industry

There is a considerable effort in the Computer Graphics community for simulating realistic

surface deformations. These efforts involve simulating cloth like surface deformations, such as

the one depicted in Figure 1.5(a) [34]. As an alternative, we could use our methods to capture

3D deformations of real clothes on artists from video and use the reconstructed surfaces in

animation movies, video games or other applications involving such special effects.

Similarly, as augmented reality applications are getting more popular, we expect virtual

advertisements to begin appearing in a broader range of applications, such as on the shirts of

the soccer players shown on Figure 1.5(b). For example, one could use our methods to estimate

the deformation of the soccer shirts and draw virtual graphics that replace the real commercials

appearing on them. These graphics could potentially be tailored for the different countries

where the soccer game is broadcasted.

1.3 Ambiguities

Reconstructing deformable surfaces from single views is an ill-posed problem. Therefore

putting the mentioned applications into practice requires the use of prior information and con-

straints due to the ambiguities. In what follows in this chapter, we first describe and demon-

strate the nature of these ambiguities and propose solutions for resolving them. We illustrate

the fact that there are different 3D shapes that correspond to the same image observations by

examples. Particularly, we introduce some of the ambiguities faced while performing surface

reconstructions by exploiting texture and shading cues present in the image.

1.3.1 Ambiguities of Shape-from-Texture

Shape-from-Texture (SfT) methods have been widely used to recover deformable surfaces from

images in a monocular setting. Here we give an overview of the analysis studied in [78] which

shows that reconstructing surface geometry from point correspondences is an ambiguous prob-

lem even when a reference image, for which the 3D shape is known, is provided.

Here we start by assuming that we are given a reference image of a textured surface whose

3D shape is represented by a known triangulated mesh, and an input image in which the surface

undergoes an unknown deformation with respect to the reference. Furthermore, we assume that
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Reference Model Reference Image Input Image

image matchingprojecting

Figure 1.6: Obtaining 3D-2D correspondences. Given a feature point detected in the reference
image, camera parameters, and the reference model, we can retrieve the position of the feature point
on the mesh by casting a ray from the camera center passing through the image coordinates of the
feature point in the reference image. The point of intersection between the ray and the reference
model can be identified in terms of a facet index to which the feature point belongs and barycentric
coordinates with respect to facet vertices. This yields the 3D correspondence for the feature point
expressed by the mesh coordinates. The image coordinates of the matching feature point on the
input image provides us the corresponding 2D location to where the feature point should project
after it is deformed.

we are provided with 2D point correspondences between the two images which can be estab-

lished by any feature point matching algorithm. Given those, we can obtain 3D-to-2D corre-

spondences from the mesh to the input image by associating 2D points in the reference image

to the corresponding 3D mesh points, which we represent in terms of barycentric coordinates

with respect to the facets they belong to, as demonstrated by Figure 1.6. The reconstruction

problem then becomes one of finding the 3D locations of the mesh vertices representing the

deformed surface such that they reproject correctly on the input image.

More formally, given a 3D point defined by its barycentric coordinates β, we can express

the fact that this point should reproject at the image location u as

k

[
u
1

]
= A

3∑
j=1

βjYf,j , (1.1)

where f is the index of the facet to which the 3D point belongs, Yf,j is its jth vertex, and

k is a scalar accounting for depth and A is the known matrix of camera internal parameters.

Without loss of generality, we assume that the world and camera frames are aligned. From

the last row of the system of Eq. 1.1, k can be expressed as a linear function of the unknown

vertex coordinates. Replacing k in the remaining rows yields two linear equations in terms of
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(a) (b)

Figure 1.7: Effective rank of matrix M. (a) All singular values of M constructed for an 11× 8

rectangular triangulation with 5 correspondences sampled on every facet. Note that there is a drop
down after 2Nv = 176th singular value, reducing the effective rank of M in Eq. 1.2. (b) Last
Nv = 88 singular values plotted separately from the rest for visual purposes. Note that only the
last one is actually numerically zero but not the rest. However, they are still negligible compared
to the first 2Nv singular values of the linear system.

the vertex coordinates. Similar equations can be obtained for all point correspondences and

grouped in a linear system of the form

MY = 0 (1.2)

where Y is the vector of all the vertex coordinates. M is a 2Nc×3Nv matrix encoding sim-

ilar projection equations for all correspondences where Nc is the number of correspondences

and Nv is the number of vertices in the mesh.

Solving this system yields a surface which reprojects correctly on the input image. How-

ever, in general this linear system is ill-conditioned as many of its singular values are small

compared to the rest. To illustrate this, we randomly sampled 5 barycentric coordinates in ev-

ery facet of in an 11×8 rectangular triangulation and projected them to image coordinates by a

known camera model. Note that, for well textured surfaces, M is a thin matrix with more rows

than columns, formally 2Nc > 3Nv.

Figure 1.7 shows singuar values of M in Eq. 1.2 constructed from a set of synthetic 3D-

to-2D correspondences. Even though, in theory only one of them is numerically zero [78], we

observe a drop down after 2Nv = 176 singular values. The zero singular value suggests that the

solution we compute by singular values decomposition of M will be valid up to a single global

scale. The remaining small singular values that appear before the last one reveal that the matrix

is not effectively full rank minus one but even lower. Therefore, there are Nv vectors spanning
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(a) (b) (c) (d)

Figure 1.8: Ambiguous solutions in 3D whose projections are almost identical in 2D. (a) the
solution obtained by singular value decomposition (b) the solution obtained when a deformation
model is used such as those in [78] (c) the solution when distance constraints on the mesh edges
are enforced (d) a mesh after applying a global scale to the one in (c). Top row: The same input
image to be used by different methods (a) to (d). Middle row: Their projections on the input
image which are indistinguishable. Bottom row: Triangulations in 3D as seen from a side view
point.

the effective null space of M whose any linear combination is another approximate solution to

the linear system. Considering also that the 3D-to-2D correspondences are typically noisy for

real images, in a practical setting, any of these approximate solutions could be the desired one

and hence, there is a need for regularization through additional priors and constraints on the

surface deformations.

To illustrate this on a real image, we formed the linear system in Eq. 1.2 for an input image

shown at the top row of Figure 1.8. We computed its solution with and without additional con-

straints. As depicted in the middle and bottom rows, all the solutions project reasonably well

on the image while being remarkably different in 3D. Applying singular value decomposition

(SVD) on the matrix M and then scaling the singular vector that corresponds to the smallest
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singular value such that the mean edge length of the reference model is preserved results in the

solution depicted in Figure 1.8(a). Using one of the deformation models, as described in [78],

to regularize the surface shape results in a reconstruction shown in Figure 1.8(b). Enforcing

distance constraints, that will be discussed in detail in Chapter 5, gives a visually plausible

solution as shown in Figure 1.8(c), whereas any globally scaled version of this solution gives

another mesh whose projection is identical to the original one as shown in Figure 1.8(d).

We observe that relying on reprojection constraints of the feature points results in a family

of solutions all of which describe the input image visually indifferently. Note that for the

cases when a reference image is not available, there exists less information about the surface of

interest. Therefore, the problem becomes even more computationally challenging and ill-posed

due to the increase in the number of unknowns to be estimated. We continue our analysis by

discussing the ambiguities associated with using shading cues in surface reconstruction.

1.3.2 Ambiguities of Shape-from-Shading

Shading is one other important source of information that can be used to reconstruct surfaces

from images and it is particularly useful for the surfaces which are only partially textured such

as the ones depicted by Figure 1.1(c) and (d).

The Shape-from-Shading (SfS) problem is to recover the 3D shape of a surface from a

single image. Developing robust methods for SfS has been one of the goals of Computer

Vision since the seminal work of Horn in the 70’s [41]. In all the previous attempts, intensities

observed on an image are assumed to be related to angles between surface normals and the

dominant light source direction. For cases where lighting environment calibration is provided,

the goal is to recover the surface geometry from the intensity values. Otherwise, it is to recover

both the lighting environment and the geometry simultaneously.

Similarly to the SfT problem, which was discussed in the previous section, the SfS problem

is also highly ambiguous. This is the case even for the human perceptual system. For example,

consider the crater images given in Figure 1.9. The shadow information in these images is

not strong enough to estimate the dominant light direction. Therefore, we have little cues

on where the light is coming from, as the surface might be lit from above or from below.

Due to evolutionary reasons, human beings have a strong tendency to assume that the light is

coming from above, as in the case of the sun or moon. Hence, we interpret the image given in

Figure 1.9(a) as a concave shaped crater. However, when we look at the flipped image shown

in Figure 1.9(b), we observe a convex bump instead. This example demonstrates that the light
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(a) (b)

Figure 1.9: The crater illusion [67]. Pictures of craters can look like convex bumps instead of
concave depressions depending on the light direction. (a) If we imagine the light source to be at
the top, like the sun is, we observe a concave crater. (b) Using the same reasoning for the flipped
image, we see a convex bump instead of a crater.

Figure 1.10: Ambiguities for flat surfaces. First row: Three different 3D surfaces. Second row:
Corresponding intensity patches. Even though the 3D planar shapes have different orientations,
their image appearances are identical.

direction and surface normals are inextricably linked. Similar sources of the ambiguities in SfS

are formalized and discussed in detail in [73].

Even when the lighting environment is calibrated and available, SfS can be potentially am-

biguous as different shapes in 3D can produce identical, or nearly identical, intensity profiles.

This is particularly true for local reconstruction methods where image patches are analyzed
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Figure 1.11: Ambiguities for deformed surfaces. First row: Three different 3D surfaces. Sec-
ond row: Corresponding intensity patches. Even though the 3D shapes are different, their image
appearances are almost identical.

individually. To illustrate this, we synthetically rendered gray-scale images of both flat and

deformed 3D shapes using a known lighting environment and surface albedo as shown in Fig-

ure 1.10 and Figure 1.11, respectively. Note that not only for the flat surfaces but also for the

set of deformed ones the image appearances corresponding to the different shapes in 3D are al-

most the same as depicted in the bottom rows of the same figures. This suggests that the inverse

problem of reconstructing local surface geometry using only image appearance information is

potentially ambiguous since multiple 3D surfaces could describe the same image patch equally

well.

1.4 Contributions

Our goal is to make headway towards resolving the above mentioned ambiguities that exist in

deformable surface reconstruction from a single view. We believe that our work represents a

significant step towards making surface reconstruction methods of practical use. Throughout

the thesis, we seek priors and constraints that are generic enough to be applied to different

cases while still being effective for practical purposes. Using them, we overcome some of the

limitations of the state of the art methods that will be discussed in the next chapter. Below we

list our main contributions in this thesis:
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• We begin by introducing local planarity constraints that allow us perform the surface

reconstruction without a reference image by modeling the global surface as a set of con-

nected planar patches. We show that our approach is capable of recovering 3D geome-

tries of well-textured smoothly deforming surfaces in the absence of such an image,

which was not possible with the earlier template-based methods.

• We then introduce a hybrid method that can reconstruct surfaces by simultaneously ex-

ploiting both shading and texture cues in the input image in a principled way. This

approach is very similar to the previous one in that it models the whole surface as a

connected set of local surface patches. However, this method is designed to handle both

textureless and textured surface patches while modeling them as deformable parts in-

stead of the rigid ones as in the earlier case. Thus our method allows us to handle more

complicated deformations while being able to reconstruct poorly textured surfaces.

• Finally, we demonstrate that by using a surface parameterization that inherently satisfies

the commonly employed edge-length constraints in the literature, we are able to improve

our reconstruction accuracy. To this end we present a learning mechanism that can be

used to train a constrained latent variable model for deformable surfaces.

In what follows we cover our main contributions in greater detail.

1.4.1 Reconstructing Locally Planar Deformable Surfaces

It has been previously shown that well-textured deformable 3D surfaces can be reconstructed

from single video streams. However, the methods that exploit texture have some limitations.

Particularly, template-based methods require a reference view in which the shape of the surface

is known a priori. In most of the practical cases, such an image might not be readily available.

Conventional Non-rigid Structure from Motion methods, on the other hand, require tracking

points over long sequences, which is hard to perform.

As our first contribution, in Chapter 3, we introduce an approach to recovering the shape of

a 3D deformable surface from image pairs in short video sequences that does not suffer from

any of the above limitations. We neither track points over many frames, nor require a sophis-

ticated deformation model, or depend on a reference image. Furthermore, all key algorithmic

steps, which are depicted by Figure 1.12,only involve either solving linear or convex optimiza-

tion problems, which can be done reliably. In short, our technique overcomes the limitations

13
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(a) (b) (c)

Figure 1.12: Algorithm work flow for reconstructing locally planar deformable surfaces. (a)
Image patches are reconstructed individually up to a scale ambiguity which causes their recon-
structions not to be aligned. (b) Using shared correspondences between the patches (blue points),
we recover consistent scales for all patches and reconstruct the whole surface up to a single global
scale. (c) Finally, a triangulated mesh is fitted to the resulting 3D point cloud to account for texture-
less parts of the surface and outliers in the correspondences. It can be used to provide a common
surface representation across the frames and to enforce temporal consistency.

of the previous approaches by requiring only two images of a surface in unknown and different

configurations. This corresponds to a more realistic scenario where a reference image is not

readily available. We discuss this method in detail and present the results we obtained using it.

1.4.2 Reconstructing Locally Textured Deformable Surfaces

While texture-based methods, such as the one proposed in Chapter 3, have been proved to be

effective in surface reconstruction tasks, they are ill-equipped to handle partially-textured sur-

faces. As our second contribution, in Chapter 4, we propose a novel approach to recovering

the 3D shape of a deformable surface from a monocular input by taking advantage of shading

information in more generic contexts than the conventional Shape-from-Shading (SfS) meth-

ods. This includes surfaces that may be fully or partially textured and lit by arbitrarily many

light sources. To this end, given a lighting model, we learn the relationship between a shading

pattern and the corresponding local surface shape. At run time, we first use this knowledge to

recover the shape of surface patches and then enforce spatial consistency between the patches

to produce a global 3D shape. Instead of treating texture as noise as in many SfS approaches,

we exploit it as an additional source of information.

More specifically, we represent surface patches as triangulated meshes whose deformations

are parametrized as weighted sums of deformation modes. We use spherical harmonics to
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GP
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GP

GP

GP

Neighbourhood 
Alignment Global Mesh Fitting

Reconstruction of
Textured Region

Figure 1.13: Algorithmic flow for reconstructing locally textured deformable surfaces. We
partition the image into patches, some of which are labeled as textured and others as featureless.
We compute the 3D shape of textured patches such as the blue one by establishing point correspon-
dences with a reference image in which the shape is known. We use Gaussian Processes trained on
synthetic data to predict plausible 3D shapes for featureless patches such as the red ones. Finally,
neighborhood alignment of the patches is done using a Markov Random Field to choose among all
possible local interpretations those that are globally consistent.

model the lighting environment, and calibrate this model using a light probe. This lets us shade

and render realistically deforming surface patches that we use to create a database of pairs of

intensity patterns and 3D local shapes. We exploit this data set to train Gaussian Process (GP)

mappings from intensity patterns to deformation modes.

At run time, given an input image, we find featureless surface patches and use the GPs to

predict their potential shapes, which usually yields several plausible interpretations per patch.

We find the correct candidates by linking each individual patch with its neighbors in a Markov

Random Field (MFR). This procedure is demonstrated in Figure 1.13. We exploit texture

information to constrain the global 3D reconstruction and add robustness. To this end, we

estimate the 3D shape of textured patches using a correspondence-based technique [80] and

add these estimates into the Markov Random Field.

In short, our contribution is an approach to SfS that can operate in a much broader context
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1. INTRODUCTION

than earlier ones: We can equally handle weak or full perspective cameras; the surfaces can be

partially or fully textured; we can handle any lighting environment that can be approximated by

spherical harmonics [76]; there is no need to pre-segment the surface and we return a solution in

the right scale as opposed to one up to a scale factor. While some SfS earlier methods address

subsets of these problems, we are not aware of any that tackles them all. We demonstrate

the effectiveness of our approach on synthetic and real images, and show that it outperforms

state-of-the-art texture-based shape recovery and SfS techniques.

1.4.3 Surface Reconstruction using Constrained Latent Variable Model

Recent surface reconstruction methods employ latent variable models for reducing the dimen-

sionality of the problem independent of the image information they exploit. These models,

such as those obtained by Principal Component Analysis (PCA), provide valuable compact

representations for surface reconstruction from images. However, most existing models cannot

directly encode prior knowledge about the specific problem at hand.

In Chapter 5, we introduce a constrained latent variable model whose generated output in-

herently accounts for geometric constraints such as inextensibility defined on the mesh model.

To this end, we learn a non-linear mapping from the latent space to the output space, which

corresponds to vertex positions of a mesh model, such that the generated outputs comply with

equality and inequality constraints expressed in terms of the problem variables. Using our

constrained model removes the need for computationally expensive methods that enforce these

constraints at run time since its output is encouraged to satisfy such constraints inherently. In

addition, our approach is completely generic and could be used in many other different con-

texts as well, such as image classification to impose separation of the classes, and articulated

tracking to constrain the space of possible poses.

Our experimental evaluation shows that our constrained latent variable model produces

more accurate reconstructions than the standard linear subspace models and the increasingly

popular Gaussian Process Latent Variable Model (GPLVM) [49], which corresponds to the

unconstrained version of our model. Figure 1.14 depicts some of our reconstructions for the

images where the ground-truth measurements are available.

16



1.5 Outline

Figure 1.14: Reconstruction results obtained using our constrained latent variable model
Top row: Images on which we applied our reconstruction method with the reprojections of the
recovered meshes. Bottom row: Reconstructed meshes seen from a different viewpoint.

1.5 Outline

We begin in Chapter 2 by describing the previous approaches found in 3D reconstruction of

surfaces literature and relate these methods to our work in this thesis. Chapter 3 introduces our

approach that models a deformable surface as a connected set of planar patches. Our method

does not require a template image unlike the template-based state-of-the art surface reconstruc-

tion methods. We validate our method on both synthetic and real images. Chapter 4 introduces

our hybrid approach to reconstruct surfaces by using shading and texture cues simultaneously.

Our framework is validated on both synthetic and real data where ground-truth is available.

We show that our reconstructions are superior to those methods which use solely texture or

shading information. Chapter 5 introduces our surface reconstruction approach which uses a

constrained latent variable. We show that using a constrained latent variable model yields in

superior accuracy in reconstruction compared to the unconstrained ones. Finally, we conclude

in Chapter 6 with a retrospective and a brief discussion on future works.

Our work in this thesis partially appears in a number of peer-reviewed international confer-

ences and journals [107, 108, 109].
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CHAPTER

TWO

LITERATURE OVERVIEW

Reconstructing deformable surfaces from monocular images has been a popular research area

in Computer Vision in the last decades. Although being a reasonably easy problem for human

beings, it is a very challenging one for computer algorithms because of the ambiguities inherent

to it. To overcome them, a number of surface models and reconstruction methods have been

proposed in the literature. Here, we briefly discuss the existing approaches in the community

that are related to our work in this thesis. We point out their similarities and differences with our

methods to help the reader place our contributions in their right places in the existing literature.

We start by introducing some of the models that have been used to parametrize and regular-

ize surfaces both for simulation and reconstruction purposes. Then, we present an overview of

surface reconstruction methods most of which rely on these models. We classify these meth-

ods with respect to the main source of image information they exploit. Finally, we relate these

methods to those presented in this thesis.

2.1 Surface Models

The existing approaches to deformable surface reconstruction rely on various techniques to rep-

resent surface deformations and constrain them in a way to make the task easier. These methods

can be roughly classified into two main groups: Physics-Based and Statistical Learning-Based

models. We review some of them here.
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2. LITERATURE OVERVIEW

2.1.1 Physics-Based Models

Physics-based deformation models have been widely used in recovering deformable surfaces as

well as simulating them with known external forces. These approaches are inspired by earlier

techniques developed for Mechanical Engineering applications. The original 2D models have

been used not only for shape recovery [44] but also for 2D surface registration [5]. They

have also been extended to 3D modeling [97, 98]. In this formulation, surface deformations

are recovered so that the minimum of the sum of internal and external energies is satisfied.

Internal energy simulates the physically-based stiffness equations of a solid body and brings

shape regularization in terms of its smoothness. External energy encodes the image data and

attracts the shape to bend towards the image features so that its deformation fits to the image

observations.

These methods, especially the Finite Element Method (FEM) [8, 123], are inspired by

physical equations that govern the deformations of bodies under internal and external forces.

In the remainder of this section, we describe FEM and its use in Computer Vision as well as its

limitations.

2.1.1.1 The Finite Element Method

The Finite Element Method, or also known as Finite Element Analysis, is a numerical method

for finding approximate solutions to engineering problems involving partial different equations.

It has been applied to accurately compute deformations of structures such as beams, plates and

3D bodies under external forces [8, 123]. In this method, a discrete connected set of elements,

such as cubes or tetrahedron, are used to model the structure of interest. These elements serve

as mass nodes linked together by springs and dampers, resulting in a mechanical system whose

behavior can be modeled by a differential equation in terms of node displacements and their

first and second order derivatives. Other quantities in this system are functions of node con-

nectivity and material properties, such as Young’s modulus, Poisson’s ratio or shear modulus

of the material, which might be linear or nonlinear functions of displacements.

With such a system, small displacements around the initial shape can be accurately mod-

eled as it is valid to assume that the material properties and the topology of the connected

nodes remain unchanged around the initial shape. However, this is no longer true in cases

where the object of interest exhibits large deformations because of both geometric and material
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2.1 Surface Models

non-linearities. Under these conditions, solving the differential equations becomes computa-

tionally expensive and even unstable. Nevertheless, a number of algorithms has been developed

to overcome the nonlinearities. For example Updated Lagrangian approach, where several so-

lutions starting from the rest configuration is iteratively computed in small steps while updating

it with the current solutions, has been introduced instead of the Total Lagrangian Approach in

which the matrices are computed once and remain constant. Alternatively, the co-rotational

approach, where rigid rotations are treated separately from the rest of deformations, has been

presented that bring numerical stability.

2.1.1.2 Physics-Based Methods for Computer Vision

In the original FEM formulation the goal is to compute displacements of a deformable body

under external forces. This makes FEM suitable for certain Computer Graphics applications

where the goal is to simulate the dynamics of a deforming cloth on virtual characters as they

move [22, 111]. However inverse FEM suits better for Computer Vision applications where the

goal is to recover 3D shape given noisy observations rather than simulating deformations of an

object under known external forces.

While yielding physically accurate deformations of a structure, FEM has three main disad-

vantages that make it impractical: high computational complexity which prevents it to be used

for real-time applications, requirement of exact physical properties of the object of interest

which might not be available for general cases, and high dimensionality of unknowns, which

makes it prune to over-fitting to potentially noisy input data. To overcome these weaknesses,

modal analysis, which is another concept borrowed from Mechanical Engineering domain, has

been proposed. It has been applied to techniques not only for medical imaging [66, 68] but also

for other tasks such as image segmentation [61, 62].

In these methods, a linear combination of a set vibration modes that are obtained by solving

the generalized eigenvalue problem

K̂φ = ω2M̂φ (2.1)

where K̂ and M̂ are the stiffness and mass matrices in the FEM formulation and ω’s and

φ’s are the vibration frequencies and the modes, respectively. Given these, shape Y and dis-

placements dY can be expressed as
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dY =

Ns∑
i=1

ωiφi (2.2)

Y = Y0 + dY (2.3)

where Ns is the number of vibration modes and Y and Y0 represent the deformed and

undeformed rest shapes, respectively. The fact that lower frequency modes dominate the

global shape compared to the higher ones justifies using Ns parameters, where Ns < 3 ×
number of nodes, and thus allows for a lower dimensional surface representation.

These Physics-based models have been highly popular in Computer Vision applications

since the original Snakes [44]. Even though they approximated the external forces in a similar

formulation by a quadratic function that measures the sum of square of the curvatures along the

surface, which makes another approximation, its quadratic form allows use of efficient solvers.

Its popularity in the field made other researchers follow the same formalism in their research. A

very similar approach was also used for 2D shape estimation [72] as well as 3D shape recovery

from stereo [33]. Other physical-based approaches have been applied in order to reconstruct

surfaces from medical images. Among all of them, balloon forces [24], superquadrics [96],

and thin plates [54, 55] are proven to be useful for surface reconstruction performed on med-

ical images. We suggest readers to review the survey papers discussing different formulations

proposed for medical images for a more complete overview of the existing literature on this

domain [56, 58].

These models have proved very successful when the deformation is linear, however they

rely on material properties of the surfaces, which may not be always available. Furthermore,

they are restricted to small deformation where linear deformation models are valid. The com-

plexity of the nonlinear deformation models restrict their use in case of large deformations.

2.1.2 Statistical Learning-Based Models

Due to the complexity of the Physics-Based methods in practice, Statistical Learning-Based

deformation models that take advantage of training data have been popular in the literature.

Instead of guessing usually unknown physical properties of the objects, they extract the statis-

tics on the shape deformations from a training set. As it is the case with the Physically-Based

deformation models, the main benefit achieved by using Statistical Learning-Based models
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2.1 Surface Models

is dimensionality reduction compared to the original problem involving large number of de-

grees of freedom. As those degrees of freedom are not decoupled, the right parametrization

should involve less degrees of freedom which lie on a lower-dimensional manifold. We cate-

gorize these methods, that are used to discover this manifold and the low-dimensional surface

parametrization from training samples, into two main classes: linear and non-linear methods.

Linear dimensionality reduction methods assume that there is a linear relation between an

example Y and its latent, typically low-dimensional, representation c. Formally,

Y = Y0 + Sc + ε (2.4)

where Y0 is mean of the training samples, ε models Gaussian noise, and S is the matrix

containing the basis vectors that span the new lower-dimensional parameters space.

The most popular method to obtain S is Principal Component Analysis (PCA) [43]. It

is a well-known mathematical procedure that converts a set of observed samples, which are

probably correlated, into a set of uncorrelated values which are computed by projecting the

original data to orthogonal bases vectors. For non-rigid surfaces, in the case of the generalized

eigenvalue problem of Eq. 2.1, this procedure results in a set of orthonormal deformation bases

that correspond to deformation modes sorted from low to high frequencies. The matrix S

contains Ns number of such deformation modes.

As a linear model would not be sufficiently powerful to capture potentially non-linear

manifolds several non-linear dimensionality reduction methods have been introduced in the

literature such as Kernel PCA [88], Locally Linear Embeddings [77], Isomap [95], Laplacian

Eigenmaps [10], and Maximum Variance Unfolding [114]. However, since these methods are

not designed to provide the inverse mappings, that is from low-dimensional representations to

original dimensions, they are not very well-suited to surface reconstruction problem. More

recently, the Gaussian Process Latent Variable Model (GPLVM) [48] has been proposed that

provides such a mapping given a kernel function that measures the similarities between train-

ing data. In this model, a high-dimensional prediction for a test latent point can be computed

as well as its confidence. This allows for incorporating priors for the shape. In addition, its

latent representation makes the method efficient to use for surface reconstruction tasks while

still requiring large number of training samples. The GPLVM formulation was extended to

account for motion dynamics in the Gaussian Process Dynamical Model (GPDM) [113]. Such

models have been popular in many Computer Vision tasks such as our problem of non-rigid

surface recovery.
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Both global and local statistical learning-based linear deformation methods have been pro-

posed for template-based surface reconstruction methods such as the ones in [78]. Global

deformation models were used to parametrize a surface with all its nodes as a weighted sum of

first few columns of S in Eq. 2.4, that we call global deformation modes. These are obtained

by applying PCA on a large set of deformation examples of a single surface model. Motion

capture systems, such as Vicon R©, have been used to gather these training shapes for a particular

surface of interest. As an alternative, a numerical method for synthetically generating them to

build a database of shapes has been proposed in [83] that replaces the time-consuming motion

capture process. It relies on the fact that an inextensible mesh, where the edge-lengths of the

mesh remain constant independent of the global shape, can be parametrized with a few angles

between its neighboring facets.

As global deformation models are beneficial in reducing the dimensionality of the recon-

struction problems, they have some drawbacks. First, gathering enough number of training

data for an arbitrary surface model is not a straightforward process by the existing methods.

Second, a global deformation model is only valid for a particular surface model and cannot be

reused for another model having different topology. To overcome these limitations, an efficient

extension of the GPLVM was used to learn a prior over local surface patch deformations [85].

To do so, a smaller set of training samples is required as local deformations are more con-

strained than those of a global surface. In addition, the same model can be used for surfaces of

arbitrary shapes as local surface patches can be assembled together to form any global shape.

Non-rigid Structure-from-Motion methods have also been proposed in the literature for

non-rigid shape recovery. They do not rely on a reference image in contrast to the template-

based surface reconstruction approaches but instead track points over image sequences. Similar

to template-based methods, they also make use of linear deformation models and deformation

basis. Such basis can either be known a priori [1] or learned from the video sequence on-

line [18, 100, 101, 102, 103]. The number of basis that are used to represent the deformations

in the video accurately can also be estimated online [4].

In the remainder of the chapter we discuss the use of these deformation models in surface

reconstruction from images.
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2.2 Surface Reconstruction Methods

In this section we review the existing methods for non-rigid surface recovery from single im-

ages. We classify them according to the image information they exploit, particularly texture

and shading.

2.2.1 Shape-from-Texture

Recent advances in non-rigid surface reconstruction from monocular images have mostly fo-

cused on exploiting textural information. These techniques can be roughly classified into

template-based approaches and Non-rigid Structure-from-Motion (NRSFM) methods. Al-

though the former require more information such as the camera calibration and a template

model of the surface they are more robust to noise in image measurements and can be formal-

ized with less number of degrees of freedoms making it more generally applicable compared

to the latter. On the other hand, as NRSFM methods do not requite a template image or a

surface model, they can be employed for the cases where template-based approaches are not

applicable. In the following, we discuss the constraints and priors these methods suggest to

disambiguate the surface recovery.

2.2.1.1 Template-Based Methods

Template-based methods start from a reference image in which the 3D surface shape is known.

They require point correspondences established between the reference image and an input im-

age from which the unknown 3D shape is recovered. Given such correspondences one can

formulate a linear system of equations

MY = 0 (2.5)

where M is a matrix encoding the reporjection error for the correspondences and Y is

the vector of all the vertex coordinates. Solving this system in the least-square sense yields a

surface for which the mean reprojection error of all the correspondences is small. However, in

general this linear system is ill-conditioned as many of its singular values are small compared

to the rest [78]. Therefore, with noisy correspondences, any linear combination of the least-

square solution to it and null vectors of M would be the correct shape and it is not possible to

identify it from point correspondences without additional priors or constraints on the surface

deformations.
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Imposing temporal consistency is one of the approaches suggested to overcome these am-

biguities and improve the reconstruction accuracy in a tracking framework given a video se-

quence. The main assumption is that surfaces deform smoothly from frame to frame so its con-

secutive deformations are highly correlated. One way to implement such a prior is to consider

multiple frames simultaneously and stack the unknown vectors of mesh coordinates Y’s as well

as the individual M’s for all frames. Without any additional equations correlating different

frames, this larger system is still under-constrained. However, by adding additional equations

which penalize displacements from frame to frame for every pair of two consecutive frames, it

can be made well posed as shown in [82]. Alternatively, temporal consistency can be imposed

by preventing the orientation of mesh edges from changing excessively from one frame to the

next. This prior can be expressed as Second Order Cone Programming (SOCP) [17] constraints

besetting an upper bound that encodes the maximum orientation change allowed. Such tem-

poral constraints are more suitable for the surface reconstruction and can handle high surface

deformations without introducing superfluous smoothness as shown in [81].

While being very applicable to surfaces having different material properties, the use of

these constraints is limited to tracking scenarios where both an accurate initialization and full

video sequence are available. Therefore, alternative constraints such as geometric ones have

been proposed for the cases where an initialization is not provided or only a single input image

exists. Here we briefly overview some of the most popular geometry-based constraints existing

in the literature.

• Developable Surface Constraints: A developable surface is a surface with zero Gaus-

sian curvature which is defined as the product of the two principle curvatures at any

point. In other words, it is a surface that can be flattened onto a plane without distor-

tion. There have been surface reconstruction methods which are specifically developed

to handle them. For example, in [35], it has been shown that in a calibrated setup solv-

ing a number of Ordinary Differential Equations yields surface reconstructions given the

surface boundaries on the input image. More recently, a parametrization for developable

surfaces in terms of guiding rules and bending angles has been proposed for surface re-

construction [69]. Also, it has been shown that in cases where the rulings are parallel

these type of constraints turn the initially ill-posed problem to a well-posed one [92].

Unfortunately, these constraints are only valid for a specific class of surfaces and do not

26



2.2 Surface Reconstruction Methods

generalize to the others. Therefore, more generic constraints have also been introduced

such as smoothness and distance constraints.

• Smoothness Constraints: As discussed in Section 2.1 a popular approach to impose

shape smoothness is to parametrize the surface in terms of a few most-dominant global

deformation modes and to regularize it such that lower-frequency components are en-

couraged [85]. These deformation modes could be obtained by solving the generalized

eigenvalue problem involving a stiffness matrix [63, 68] as in Eq. 2.1 or applying PCA

on a set of deformation examples [83]. In fact, it was reported that these modes com-

puted by PCA produced more accurate results compared to the ones obtained by a stiff-

ness matrix which is constructed by not exact but guessed physical parameters of the

surface [78]. Although they are proven to be useful in recovering smoothly deforming

surfaces, they do not perform as well when dealing with sharp deformations [80]. Using

more deformation modes would be one solution in theory in the expense of introducing

more unknowns which are the weights corresponding to these modes. Local deformation

modes are used instead of global ones in [80, 84, 89] to be able to handle sharp folds

appearing on the surface.

• Distance Constraints: Unfortunately, imposing only smoothness constraints is not suffi-

cient to make the reconstruction problem a well-posed one [80] so additional constraints

on the surface geometry are required. Employing distance constraints across the surface

has been one of the most effective ways of disambiguating the process. For example,

edge-length equality constraints or Euclidian distance constraints which enforce edge-

lengths of the mesh to remain constant are employed by Salzmann et al. [80] in con-

junction with global deformation models . Extended linearization [25] has been used to

linearize the quadratic length-equality constraints in terms of the unknowns which are

the weights for global deformation modes. A similar linearization has been performed

in [59]. More recently, using a local linear deformation model with the same constraints

has been suggested in [80] yielding very similar results as in [85]. Alternatively, meth-

ods that enforce such in extensibility constraints in between feature points instead of

across the mesh edges have been proposed for both orthographic [28] and full projective

cases [70]. One advantage of these methods over the one in [85] is that they do not, at

least initially, assume surface smoothness. More recently, geodesic length constraints to

model an inexentensible surface have been suggested instead of the Euclidian ones. The
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observation is that geodesic distances in between any pair of surface points are actually

preserved but not Euclidian ones [80]. This is especially true for sharply-folding sur-

faces where the edge-lengths are not preserved but are upper-bounded with the distances

computed for the reference configuration of the mesh. A comparison showing mean

vertex-to-vertex distances between reconstructions and ground-truth meshes when using

different distance constraints reveals that inequality constraints used with a local defor-

mation model tend to outperform the global smoothness methods of [84] as well as the

nonlinear local models of [85]. A recent work of Bartoli et al. [7] showed that template-

based surface reconstruction from a single view with these constraints generally has a

single solution.

2.2.1.2 Non-rigid Structure-from-Motion Methods

Template-based methods which are discussed in the previous chapter have proven effective

in reconstructing surfaces from monocular images provided a template image where the 3D

shape is known a priori. However, in many practical cases, this reference image might not be

available and methods that can operate without it are required. Here, we briefly overview their

common formulation and discuss the existing ambiguities as well as the previous attempts to

resolve them. For a more involved discussion on NRSFM methods, we refer the reader to a

recent survey paper [79].

Non-rigid Struture-from-Motion methods do not rely on a reference image and work on

multiple images of the same surface with different deformations in a video sequence. The aim is

to recover both 3D positions of image features throughout the sequence and camera parameters

for each frame in the sequence provided frame-to-frame correspondences. The formulation

that is employed by most of the recent methods was initially introduced by Bregler et al. [21].

It was an extension of the original Structure-from-Motion (SfM) method for rigid objects by

Tomasi and Kanade [99]. The earlier NRSFM formulation [21], which was suggested for a

weak projective camera, was later extended to handle full perspective cases by several authors

[6, 51, 110, 112, 118]. Provided a number of outlier-free frame-to-frame correspondences

between feature points for a video sequence, once can build a linear system that encodes the

reprojection equations for 3D positions of the feature points described as a linear combination

of basis vectors. As there is no mesh representation available, these basis vectors depend on the

specific distribution of the feature points and cannot be pre-computed as it was the case with

the template-based methods.
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2.2 Surface Reconstruction Methods

In the case of a full perspective camera, a linear system that groups reprojection equations

of Nc frame-to-frame correspondences throughout a sequence of Nf frames can be expressed

as

W = CB (2.6)

where W is the measurement matrix which involves 2D correspondences and perspective

depth scalars for all the features points for all frames, C is a matrix containing camera param-

eters and linear deformation weights to be estimated for each frame and B contains the shape

basis. In the weak perspective case where W depends on only the observed parameters and

singular value decomposition yields estimates Ĉ and B̂ for both C and B, respectively. Unfor-

tunately, this is no longer true for the full perspective camera where W cannot be constructed

solely from the video sequence as it includes the perspective depth values which are unknown.

Several methods have been proposed to overcome this problem. For example, in [118] an iter-

ative method to compute the shape assuming the depths are fixed and updating them with fixed

a fixed shape is proposed. Alternatively a closed-form solution [38] that involves the tensor

estimation and factorization method of [37] is proposed. Unfortunately, as discussed by the

authors this method is not robust to image noise.

NRSFM methods suffer from ambiguities as template-based ones do. For example, the de-

composition of the matrix W into C and B can only be done up to an invertible transformation.

This can be observed by writing

W = ĈGG−1B̂ = CB (2.7)

where G is any 3Ns × 3Ns matrix and Ns is the number of basis vectors describing the

shapes. The matrix G is called the corrective transformation and its existence has also been ob-

served by the original rigid SfS method of Tomasi and Kanade [99]. The fact that any invertible

matrix G would satisfy Eq. 2.7 makes the reconstruction ill-posed and yields in ambiguities.

To overcome them a number of constraints have been incorporated into the factorization. For

example, orthonormality constraints [3, 19, 51, 103, 117] can be used to ensure that the rota-

tion matrices are orthonormal, that is the multiplication of the transposed rotation matrix with

itself results in an identity matrix. Although they are effective in reducing the ambiguities of

NRSFM, the results remain sensitive to the image noise.
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Therefore additional constraints similar to those used in template-based methods have been

introduced for NRSFM such as temporal consistency and geometric constraints. Since these

methods deal with video sequences instead of still frames, the use of temporal consistency is

better adapted to them. For example in [1, 26, 74] shape variations from frame-to-frame were

penalized with a hand-tuned regularization term. In a similar spirit, a linear dynamical model

was proposed by Torresani et al. [103]. There also have been studies [74, 75] where large

camera motions from frame-to-frame are penalized instead of the shape displacements.

As the motion models do not fully disambiguate the reconstruction in some cases and they

are only effective for orderly captured input frames, geometric constraints have been investi-

gated in many studies. In the early ones, shapes are encouraged to remain close to a mean

shape [18] or an initial shape [1] which is recovered using rigid SfM. To overcome the in-

herent ambiguity in the estimation of shape basis, several other studies have been presented.

For example in [117, 118], an algorithm is proposed that chooses Ns most independent im-

ages in the sequence and enforces the shapes in those frames to be generated by a single basis

shape. Other recent approaches that more directly encourage independent basis shapes are

presented in [6, 20]. In contrast to these methods, which rely a linear subspace deformation

models, Fayad et al. [30] suggested the use of a higher-order subspace model which exploits a

quadratic deformation model allowing for reconstructions of more complicated deformations

given accurate initializations.

As it is the case in template-based methods, local deformation models have proven ef-

fective in NRSFM approaches. Local surface deformations are modeled as planar [94, 107],

quadratic [31]. In all of these methods, surface patches are reconstructed locally first and then

global consistency between them is enforced while recovering the global deformation. More

recently, another method by Taylor at al. [93] has been proposed in which triplets of neighbor-

ing triangles that move rigidly are identified and a soup of 3D triangles representing the surface

is recovered whose distances between the vertices are preserved.

2.2.2 Shape-from-Shading

In the absence of texture, the natural technique to use for surface recovery is shape-from-

shading. However, despite many generalizations of the original formulation of Horn [42] to

account for increasingly sophisticated shading effects, such as interreflections [32, 64], spec-

ularities [65], shadows [47], or non-Lambertian materials [2], most state-of-the-art solutions

can only handle a subset of these effects and, therefore, only remain valid in tightly controlled
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environments. Shape-from-shading techniques have been made more robust by exploiting de-

formation models [86, 87]. However, this was only demonstrated for the single light source

case where modeling the lighting is easy.

A more practical solution to exploiting shading is to use it in conjunction with texture.

In a very specialized application, shading models were used to synthetically flatten a book

page [121]. In [116], texture information was first used to triangulate an input image which

was then used to estimate the normals of the individual facets with respect to the reference

model. Shading information was used to overcome the twofold ambiguity in normal direction

that arises from template matching. In [59], the inextensibility constraints mentioned earlier

and used in [84] were replaced with shading equations, which allowed the reconstruction of

stretchable surfaces. In this method, the surface is assumed to be lit by a distant far source and

shading equation relate the intensities of surface patches surrounding the feature points in the

input and reference images. In [60], shading information was used to select the best candidate

among a set ambiguous reconstructions generated for an input image.

2.3 Relations to our Work

The surface reconstruction methods we propose in this thesis are related to the above-mentioned

methods in this chapter. Our methods have both similarities and differences when compared to

the existing other approaches in the literature. Here we briefly discuss them.

In Chapter 3, we present a template-free surface reconstruction method. Our method does

not require a template image in which 3D shape of the surface is available in contrast to the

template-based methods of Section 2.2.1.1. Therefore, we consider it as one of the NRSFM

methods. However, unlike most of the other NRSFM methods discussed in Section 2.2.1.2,

ours does not require tracks of feature points over a relatively long video sequence which is

hard to achieve. We show that we can reconstruct smoothly deforming textured surfaces from

only two images of a surface in unknown and different configurations. In this approach, we

model a global surface as a set of connected planar patches. Our approach of modeling the

surface has later been extended for surface reconstruction tasks by several authors such as

[31, 93, 94].

In Chapter 4, we introduce a hybrid method that can reconstruct surfaces by simultaneously

exploiting both shading and texture cues in the input image in a principled way. This approach

is very similar to the previous one in that it models the whole surface as a connected set of
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local surface patches. However, this method is designed to handle both textureless and textured

surface patches while modeling them as deformable parts instead of rigid ones. Our approach

can be considered as one of the template-based methods as we require a template image to

measure the albedo of the surface of interest. However unlike the other template-based methods

that exploit textural information, which are discussed in Section 2.2.1.1, we exploit shading

information similar to the SfS methods of Section 2.2.2. On the other hand, our method differs

from the existing SfS methods as it does not treat texture as noise but instead exploits it as an

additional source of information.

In Chapter 5, we introduce a latent variable model to parametrize inextensible deformable

surfaces, whose output accounts for the geometric constraints such as inextensibility defined on

the mesh model. These constraints are commonly employed in surface reconstruction methods

of Section 2.2. As discussed in this chapter, both linear and non-linear latent variable model

have been used in non-rigid surface recovery. However, since existing models are unable to

make use of the known physical properties of the surface, they produce shapes that violate im-

portant constraints, and therefore look unnatural. Physics-Based approaches, such as FEM as

discussed in Section 2.1 have been introduced as an alternative approach is to directly encode

the physical properties of the system. Even though these Physics-Based approaches have the

advantage of explicitly encoding prior knowledge, they involve solving high-dimensional op-

timization problems. In our approach, we use a novel non-linear latent variable model which

brings a low-dimensional parametrization and accounts for the inherent constraints of the prob-

lem. To this end, we learn a non-linear mapping from the latent space to the output space such

that the generated outputs comply with equality and inequality constraints expressed in terms

of the problem variables.
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CHAPTER

THREE

TEMPLATE-FREE RECONSTRUCTION OF DEFORMABLE
SURFACES

3.1 Introduction

It has been previously shown that well-textured deformable 3D surfaces, such as those in Fig-

ure 3.1, could be recovered from single video streams. However, the methods that exploit

texture have some limitations. Particularly, template-based methods require a reference view

in which the shape of the surface is known a priori, which often may not be available. On

the other hand, non-rigid Structure from Motion methods require tracking points over long se-

quences, which is hard to do. In this chapter, we introduce an approach to recovering the shape

of a 3D deformable surface from image pairs in short video sequences that does not suffer from

any of the above limitations: We do not track points over many frames, require a sophisticated

deformation model, or depend on a reference image. Furthermore, all key algorithmic steps

depicted by Figure 3.2 only involve either solving linear or convex optimization problems,

which can be done reliably. In short, our technique overcomes the limitations of the previous

approaches by requiring only two images of a surface in unknown and different configurations.

This corresponds to a more realistic scenario in many situations.

More specifically, given two images for which the shapes are both unknown and different,

we first establish image-to-image correspondences. We then split each image into small over-

lapping patches, which we assume to be flat. This lets us estimate a homography between any

two corresponding patches, from which we can recover the 3D positions of the feature points in
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3. TEMPLATE-FREE RECONSTRUCTION OF DEFORMABLE SURFACES

Figure 3.1: 3D reconstruction of textured deformable surfaces from single video sequences with-
out using a reference image.

the patches up to a scale factor. Since the image patches overlap, we can enforce scale consis-

tency among all the reconstructed 3D points, which yields a cloud of 3D points that describes

the deformed surface up to a single global scale factor. Finally, to further ensure robustness to

noise and outliers, and to have a common surface representation for the different frames of the

sequence, we fit an inextensible triangulated mesh regularized by a local deformation model to

the resulting point cloud, which can be expressed as a convex optimization problem.

In the remainder of this chapter we first describe our method of reconstructing a planar

surface patch up to a scale factor provided that we can establish enough correspondences be-

tween a pair of images depicting two different configurations of the same surface. We then

present how we perform reconstruction of multiple surface patches and solve for the relative

scale between them in order to get a consistent point cloud. Before presenting our qualitative

and quantitate results, we introduce our mesh fitting algorithm applied to the reconstructed

point cloud.

34



3.2 Two-Frame Reconstruction
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(a) (b) (c)

Figure 3.2: Algorithm work flow. (a) Image patches are reconstructed individually up to a scale
ambiguity which causes their reconstructions not to be aligned. (b) Using shared correspondences
between the patches (blue points), we recover consistent scales for all patches and reconstruct the
whole surface up to a single global scale. (c) Finally, a triangulated mesh is fitted to the resulting
3D point cloud to account for textureless parts of the surface and outliers in the correspondences. It
can be used to provide a common surface representation across the frames and to enforce temporal
consistency.

3.2 Two-Frame Reconstruction

In this section, we show how we can reconstruct the shape of a 3D deforming surface from 2

frames, provided that we can establish enough correspondences and that the surface changes

from one frame to the other. Note that this is very different both from conventional stereo,

which relies on the shape being the same in both frames, and from recent monocular approaches

to 3D shape recovery, which require knowledge of the shape in a reference image [70, 81, 84,

122].

In the following, we refer to the first image of the pair as the input image in which we

want to recover the 3D shape and to the second as the support image. We assume the camera

to be calibrated and the matrix A of intrinsic parameters given. To simplify our notations and

without loss of generality, we express all 3D coordinates in the camera referential. Finally, we

assume that the surface is inextensible and model it as a set of overlapping planar patches that

only undergo rigid transformations between the two images. In practice, on images such as

those presented in the result section, we use patches of size 100 × 100 pixels that overlap by

50 pixels.

Given point correspondences between the input and support images established using SIFT[52],

all subsequent algorithmic steps depicted by Figure 3.2 only involve solving linear or convex

optimization problems. We first split the input image into small overlapping patches and com-

pute homographies between pairs of corresponding patches. For each patch, the corresponding
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Figure 3.3: Splitting the input image into overlapping patches. Numbered circles represent the
correspondences found between the input and support frames and colored squares are the patches.
Note that some correspondences are shared by 2 or 4 patches. These shared correspondences are
used later to estimate the relative scale of these patches with respect to each other in order to have
a consistent shape.

homography can be decomposed into relative rotation and translation, which let us compute

the 3D coordinates of all its feature points up to a scale factor. We can then recover a cloud of

3D points for the whole surface up to a global scale factor, by enforcing consistency between

neighboring patches. Finally, to fill the gaps in the reconstructed points and to discard outliers,

we fit a triangulated surface model to this cloud. In the remainder of this section, we describe

these steps in more details.

3.2.1 Homography Decomposition

Since we model the surface as a set of rigidly moving patches, we can define these patches over

the input image by splitting it into small overlapping regions as depicted by Figure 3.3. For

each such patch, we estimate the homography that links its feature points to the corresponding

ones in the support image. To this end, we perform a RANSAC-based robust homography

estimation [40] and label the correspondences which disagree with the estimated homography

as outliers. This yields a reduced number of points on the images, which we now consider as
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Figure 3.4: Equivalence between a deforming surface and moving virtual cameras (a) A de-
formable surface in two different frames observed with a fixed monocular camera setup. (b) Equiv-
alent representation where the surface is now fixed, but each patch is seen from two cameras: the
original one, P0, and a virtual one, Pi, which can be found by decomposing the homography
relating the patch at time t0 and time t1.

our correspondences, and which are grouped into local patches with an estimated homography

for each.

Given the homography estimated for a patch, we now seek to retrieve its 3D surface normal

ni as well as its rigid motion between the two frames expressed as a rotation and translation. As

depicted by Figure 3.4, this is equivalent to assuming that the patch is fixed and that the camera

is moving, which yields one virtual camera per patch. Since we know its internal parameters,

its translation ti, its rotation Ri and ni can be recovered up to a scale factor by decomposing

the homography [53, 120]. Let Pi = A[Ri|ti] be the projection matrix of the virtual camera

for patch i. The decomposition of the corresponding homography Hi is expressed as

Hi = Ri −
tin

T
i

di
= Ri − t′in

T
i , (3.1)

where di is the unknown distance of the patch to the camera and t′i is the scaled translation.

This decomposition results in two distinct solutions for the relative camera motion and the patch

normals. We pick the solution with the normal whose sum of the angle differences with the

neighboring patches is smallest.
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3.2.2 Reconstruction of a Single Patch

Given a virtual camera Pi, whose external parameters were estimated from the homography,

and the original camera P0 = A[I|0], we seek to reconstruct the Ci 3D points Qi
j , 1 ≤ j ≤

Ci of patch i. To this end, we minimize the reprojection errors both in the input and support

frames, which, for a single point j can be formulated as the least-squares solution to the linear

system

Bi
jQ

i
j = bij , (3.2)

where

bij =


−p014 + rij,xp

0
34

−p024 + rij,yp
0
34

−pi14 + sij,xp
i
34

−pi24 + sij,yp
i
34


4×1

, and (3.3)

Bi
j =


p011 − rij,xp031 p012 − rij,xp032 p013 − rij,xp033
p021 − rij,yp031 p022 − rij,yp032 p023 − rij,yp033
pi11 − sij,xpi31 pi12 − sij,xpi32 pi13 − sij,xpi33
pi21 − sij,ypi31 pi22 − sij,ypi32 pi23 − sij,ypi33


4×3

, (3.4)

and where pkmn the (m,n)th entry of the kth projection matrix Pk, and rij and sij are the 2D

coordinates on the input frame and on the support frame, respectively.

Furthermore, to ensure that the patch remains flat, we constrain its points to lie on a plane

whose normal is the one given by the homography decomposition of Eq. (3.1). Since the

reconstruction of the points in camera coordinates can only be up to a scale factor, we can fix

without loss of generality the depths of the plane to a constant value, di = d0. For a single

point j, the planarity constraint can then also be formulated as a linear equation in terms of Qi
j

as

nTi Q
i
j = −d0 . (3.5)

We combine Eqs. (3.2) and (3.5) into the linear system

Gi
jQ

i
j = gij , (3.6)

where

Gi
j =

[
Bi
j

nTi

]
5×3

and gij =

[
bij
−d0

]
5×1

.
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3.2 Two-Frame Reconstruction

We can then group individual systems for each point in patch i into the system



Gi
1

. . .

Gi
j

. . .

Gi
Ci





Qi
1

...
Qi
j

...
Qi
Ci


=



gi1
...
gij
...

giCi


, (3.7)

whose solution is valid up to a scale factor in camera coordinates.

3.2.3 Reconstruction of Multiple Patches

The method described above lets us reconstruct 3D patches individually each with its own depth

in camera coordinates. However, because the depths of different patches are inconsistent, this

results in an unconnected set of 3D points. We therefore need to re-scale each patch with

respect to the others to form a consistent point cloud for the whole surface. To this end, we use

overlapping patches in the input image where each patch shares some of the correspondences

with its neighbors. Let Q̂ be a single point shared by patches i and i′ such that Q̂ = Qi
j = Qi′

j′ .

The scales di and di
′

for the two patches can then be computed by solving the linear system


Bi
j 04×2

nTi 1 0

Bi′
j′ 04×2

nTi′ 0 1


 Q̂
di

di
′

 =


bij
0

bi
′
j′

0

 . (3.8)

As before, the equations for all the shared points of all the patches can be grouped together,

which yields the system

E


Q̃
d1

...
dNp

 = e , (3.9)

where Q̃ is the vector of all shared 3D points, Np is the number of planar patches and

E and e are formed by adequately concatenating the matrices and the vectors of Eq. (3.8).

Solving Eq. (3.9) gives the relative scales
[
d1...dNp

]
for all the patches, which lets us compute

a consistent 3D point cloud for the whole surface. Note, however, that, since these scales are

relative, the resulting point cloud is recovered up to a single global scale factor.

39



3. TEMPLATE-FREE RECONSTRUCTION OF DEFORMABLE SURFACES

3.2.4 From Point Clouds to Surfaces

In the previous sections, we have presented an approach to reconstructing 3D points from

two images depicting two different configurations of the surface. Because the recovered point

clouds may still contain some outliers and because in many applications having a common

surface representation for all the frames of a sequence is of interest, we fit a triangulated mesh

to the reconstructed point clouds within a convex optimization framework.

3.2.4.1 Mesh Fitting for a Single Frame

Given the vector Q obtained by concatenating the N reconstructed 3D points, we seek to

recover the deformation of a given mesh with Nv vertices and Ne edges that best fits Q. Since

Q has been reconstructed up to a global scale factor, we first need to resize it, so that it matches

the mesh area. In camera coordinates, a rough approximation of the scale of a surface can

be inferred from the mean depth of its points. Computing such values for both the mesh and

the point cloud allows us to resize the latter to a scale similar to that of the mesh. Then,

because the surface may have undergone a rigid transformation, we align the mesh to the point

cloud by applying a standard Iterative Closest Point (ICP) algorithm [119]. In the current

implementation, a coarse manual initialization is provided for ICP. This is the only non fully

automated step in the whole algorithm. It is required to indicate an area of interest in the

absence of a reference image.

From this first alignment, we can deform the mesh to fit the point cloud. To do so, we first

estimate the location of each 3D point Qj on the mesh. These locations are given in barycentric

coordinates β with respect to the mesh facets, and can be obtained by intersecting rays between

the camera center and the 3D points with the mesh. Given this representation, each 3D point

can be written as Qj =
∑3

k=1 βky
k
f(j), where f(j) represents the facet to which point j was

attached, and ykf(j) is its kth vertex. Fitting a mesh to the whole point cloud can then be written

as the solution of the linear system

MY = Q , (3.10)

where M is a 3N × 3Nv matrix containing the barycentric coordinates of all 3D points,

and Y is the vector of concatenated mesh vertices.
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3.2 Two-Frame Reconstruction

Because the scale factor obtained from the depth of the points is only a rough estimate of

the true scale, we need to refine it. This can be done by introducing a variable γ accounting for

the scale of the point cloud in the above-mentioned reconstruction problem, and solve

MY = γQ . (3.11)

However, without further constraints on the mesh, nothing prevents it from shrinking to a

single point and therefore perfectly satisfy the equation. Assuming that the surface is inexten-

sible, we can overcome this issue by maximizing γ under inequality constraints that express

the fact that the edges of the mesh cannot stretch beyond their original length. The problem

can then be re-formulated as the optimization problem

maximize
Y,γ

wsγ − ‖MY − γQ‖ (3.12)

subject to ‖yk − yj‖ ≤ lj,k , ∀(j, k) ∈ E

γlow ≤ γ ≤ γup ,

where E is the set of mesh edges, lj,k is the original length of the edge between vertices vj
and vk, and ws is a weight that sets the relative influence between point distance minimization

and scale maximization. To further constrain the scale of the point cloud, we introduced a lower

and an upper bounds γlow and γup. The advantage of using inequality constraints over edge

length equalities is twofold. First, the inequality constraints are convex, and can therefore be

optimized easily. Second, these constraints also are more general than the equality ones, since

they allow to account for folds appearing between the vertices of the mesh, which is bound to

happen in real scenarios.

Finally, to account for outliers in the 3D reconstructed points, we introduce a linear local

deformation model. As in [85], we model a global surface as a combination of local patches.

Note that these patches are different from those used in the point cloud reconstruction, since

we expect them to deform. To avoid the complexity of the non-linear model of [85], and to

keep our formulation convex, we use a linear local model, where the shape of a patch Yi is

computed as a linear combination of Ns deformation modes λj , 1 ≤ j ≤ Ns, which we can

write

Yi = Y0
i + Λci , (3.13)
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3. TEMPLATE-FREE RECONSTRUCTION OF DEFORMABLE SURFACES

where Λ is the matrix whose columns are the deformation modes, Y0
i is the mean shape of

patch i, and ci is the vector of its mode coefficients. Thanks to the local deformation models,

this method is applicable to meshes of any shape, be it rectangular, circular, triangular, or any

other.

In practice, these modes are obtained by applying Principal Component Analysis (PCA)

to a set of inextensible patches deformed by randomly setting the angles between their facets.

Since the deformation modes obtained with PCA are orthonormal, the coefficients ci that define

a patch shape can be directly computed from Yi as ci = ΛT
(
Yi −Y0

i

)
. This, in contrast with

the standard use of linear deformation models, lets us express our deformation model directly

in terms of the mesh vertex coordinates. Furthermore, we use all the modes, which lets us

represent any complex shape of a patch,and we regularize the projection of the shape in the

modes space by minimizing

∥∥∥Σ−1/2ci

∥∥∥ =
∥∥∥Σ−1/2ΛT

(
Yi −Y0

i

)∥∥∥ , (3.14)

which penalizes overly large mode weights, and where Σ is a diagonal matrix containing

the eigenvalues of the training data covariance matrix. This lets us define the global regulariza-

tion term

Er(Y) =

Nd∑
i=1

∥∥∥Σ−1/2ΛT
(
Yi −Y0

i

)∥∥∥ , (3.15)

by summing the measure of Eq. 3.14 over all Nd overlapping patches in the mesh. This

regularization can be inserted into our convex optimization problem, which then becomes

maximize
V,γ

wsγ − ‖MY − γQ‖ − wrEr(Y) (3.16)

subject to ‖yk − yj‖ ≤ lj,k , ∀(j, k) ∈ E

γlow ≤ γ ≤ γup ,

where wr is a regularization weight. In practice, because the shape of the mesh is initially

far from matching that of the point cloud, we iteratively compute the barycentric coordinates

of the points on the surface and solve the optimization problem of Eq. 3.16 using the available

solver SeDuMi [91].
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3.3 Results

3.2.4.2 Enforcing Consistency over Multiple Frames

While, in most cases, the mesh reconstruction presented in the previous section is sufficient to

obtain accurate shapes, we can further take advantage of having a video sequence to enforce

consistency across the frames. In the previous formulation nothing constrains the barycentric

coordinates of a point to be the same in every frame where it appears. We now show that

such constraints can be introduced in our framework. This lets us reconstruct multiple frames

simultaneously, which stabilizes the individual results in a way that is similar to what bundle

adjustment methods do.

The only additional requirement is to be able to identify the reconstructed points in order to

match them across different frames. This requirement is trivially fulfilled when all points have

been reconstructed using the same support frame. With multiple support frames, such an iden-

tification can easily be obtained by additionally matching points across the different support

frames. Given the identity of all points, we only need to compute barycentric coordinates once

for each point, instead of in all frames as before. For points shared between several frames,

this is done in the frame that gave the minimum point-to-surface distance.

This lets us rewrite the optimization problem of Eq. 3.16 in terms of the vertex coordinates

in the Nf frames of a sequence as

maximize
Y1,...,Nf ,γ1,...,Nf

Nf∑
t=1

(
wsγ

t − ‖MtYt − γtQt‖ − wrEr(Vt)
)

subject to ‖ytk − ytj‖ ≤ lj,k , ∀(j, k) ∈ E , ∀t ∈ [1, Nf ]

γlow ≤ γt ≤ γup ,∀t ∈ [1, Nf ] , (3.17)

where Yt, γt, Qt and Mt are similar quantities as in Eq. 3.16 but for frame t. As in the

single frame case, we iteratively solve this problem and recompute the barycentric coordinates

of the unique points.

3.3 Results

We first applied our approach to synthetic data to quantitatively evaluate its performance. We

obtained the meshes of Figure 3.5 by capturing the deformations of a piece of paper using a
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3. TEMPLATE-FREE RECONSTRUCTION OF DEFORMABLE SURFACES

(a) (b) (c) (d) (e)

Figure 3.5: Changing the support frame. (a-d) 4 of the synthetic meshes we used for our
experiments. (e). The three meshes recovered using (a) as the input frame and (b,c,d) in turn as the
support frame. Note how similar they are.
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Figure 3.6: Robustness to noise. (a) Mean distance of the vertices to the ground truth using
the first frame as the support frame and the others as the input frame. The curves correspond to
gaussian noise of variance 0.5, 1.0, and 2.0 added to the correspondences. (b) Results using the
same correspondences and the method of [84], which, unlike ours, requires a priori knowledge of
the shape in the support frame.

Figure 3.7: Deforming piece of paper. Top row Reconstructed 3D meshes reprojected into suc-
cessive images. Bottom row The same meshes seen from a different viewpoint.
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3.3 Results

Figure 3.8: Deforming Tshirt. Top row Reconstructed 3D meshes reprojected into successive
images. Bottom row The same meshes seen from a different viewpoint.

Vicontm optical motion capture system. We then used those to create synthetic correspon-

dences by randomly sampling the mesh facets and projecting them using a known projection

matrix and adding varying amounts of noise to the resulting image coordinates.

In Figure 3.5(e), we superpose the reconstructions obtained for the same input image using

different images as the support frame and the ground truth mesh, without noise. Note how well

superposed the reconstructed surfaces are, thus indicating the insensitivity of our approach to

the specific choice of support frame. The mean distances between the recovered vertices and

those of the ground truth mesh vary from 3.8 to 5.6, which is quite small with respect to 20,

the length of the mesh edges before deformation.

We then used the first frame as the support frame and all the others in turn as the input

frame. In the graph of Figure 3.6(a), each curve represents the mean distance between the

reconstructed mesh vertices and their true positions in successive frames for a specific noise

level in the correspondences. As evidenced by Figure 3.5, a mean error of 2 is very small

and one of 5 remains barely visible. For comparison purposes, we implemented the method

of [84] that relies on knowing the exact shape in one frame. At low noise levels, the results

using the same correspondences are comparable, which is encouraging since our approach does

not imply any a priori knowledge of the shape in any frame. At higher noise levels, however,

the performance of our approach degrades faster, which is normal since we solve a much less

constrained problem.

In practice, since SIFT provides inliers whose mean error is less than 2 pixels and since we
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use a robust estimator, this does not substantially affect our reconstructions. To demonstrate

this, in Figures 3.7 and 3.8, we show results on real video sequences of a deforming piece of

paper and a t-shirt.

3.4 Conclusion

We have presented an approach to deformable surface 3D reconstruction that overcomes most

limitations of state-of-the-art techniques. We can recover the shape of a non-rigid surface while

requiring neither points to be tracked throughout a whole video sequence nor a reference image

in which the surface shape is known. We only need a pair of images displaying the surface in

two different configurations and with enough texture to establish correspondences. We believe

this to be both a minimal setup for which a correspondence-based 3D shape recovery technique

could possibly work and a practical one for real-world applications.

While texture-based methods, such as the one proposed in this chapter, have proved effec-

tive in surface reconstruction tasks, they are ill-equipped to handle partially-textured surfaces.

In Chapter 4, we propose a novel approach to recovering the 3D shape of a deformable surface

from a monocular input by exploring shading as well as the textural information.

46



CHAPTER

FOUR

RECONSTRUCTION OF LOCALLY TEXTURED SURFACES

4.1 Introduction

Most recent approaches to monocular non-rigid 3D shape recovery rely on exploiting point

correspondences and work best when the whole surface is well-textured. The alternative is to

rely either on contours or shading information, which has only been demonstrated in very re-

strictive settings. Here, we propose a novel approach to monocular deformable shape recovery

that can operate under complex lighting and handle partially textured surfaces. At the heart

of our algorithm are a learned mapping from intensity patterns to the shape of local surface

patches and a principled approach to piecing together the resulting local shape estimates. We

validate our approach quantitatively and qualitatively using both synthetic and real data.

Many algorithms have been proposed to recover the 3D shape of a deformable surface from

either single views or short video sequences. The most recent approaches rely on using point

correspondences that are spread over the entire surface [28, 31, 70, 80, 90, 93, 107, 122], which

requires the surface to be well-textured. Others avoid this requirement by exploiting contours,

but can only handle surfaces such as a piece of paper where the boundaries are well defined [35,

50, 69, 121]. Some take advantage of shading information, but typically only to disambiguate

the information provided by the interest points or the contours [116]. This is largely because

most traditional shape-from-shading techniques can only operate under restrictive assumptions

regarding lighting environment and surface albedo.

In this chapter, we propose a novel approach to recovering the 3D shape of a deformable

surface from a monocular input by taking advantage of shading information in more generic
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contexts. This includes surfaces that may be fully or partially textured and lit by arbitrarily

many light sources. To this end, given a lighting model, we propose to learn the relationship

between a shading pattern and the corresponding local surface shape. At run time, we first use

this knowledge to recover the shape of surface patches and then enforce spatial consistency

between the patches to produce a global 3D shape.

Figure 4.1: 3D reconstruction of two poorly-textured deformable surfaces from single images.

More specifically, we represent surface patches as triangulated meshes whose deformations

are parametrized as weighted sums of deformation modes. We use spherical harmonics to

model the lighting environment, and calibrate this model using a light probe. This lets us

shade and render realistically deforming surface patches that we use to create a database of

pairs of intensity patterns and 3D local shapes. We exploit this data set to train Gaussian

Process (GP) mappings from intensity patterns to deformation modes. Given an input image,

we find featureless surface patches and use the GPs to predict their potential shapes, which

usually yields several plausible interpretations per patch. We find the correct candidates by
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linking each individual patch with its neighbors in a Markov Random Field (MFR). Finally, we

generate a global 3D surface by fitting a larger mesh to the resulting set of 3D patches.

We exploit texture information to constrain the global 3D reconstruction and add robust-

ness. To this end, we estimate the 3D shape of textured patches using a correspondence-based

technique [80] and add these estimates into the Markov Random Field. In other words, instead

of treating texture as noise as in many shape-from-shading approaches, we exploit it as an ad-

ditional source of information. In short, our contribution is an approach to shape-from-shading

that can operate in a much broader context than earlier ones: We can handle indifferently weak

or full perspective cameras; the surfaces can be partially or fully textured; we can handle any

lighting environment that can be approximated by spherical harmonics; there is no need to

pre-segment the surface and we return an exact solution as opposed to one up to a scale fac-

tor. While some earlier methods address subsets of these problems, we are not aware of any

that tackles them all. We demonstrate the effectiveness of our approach on synthetic and real

images, and show that it outperforms state-of-the-art texture-based shape recovery and shape-

from-shading techniques.

4.2 Method Overview

Our goal is to recover the 3D shape of deforming surfaces such as those shown in Figure 4.1

from a single input image, given a reference image in which the shape is known, a calibrated

camera, and a lighting model. We assume that the surface albedo is constant, except at textured

regions, and measure it in the reference image. Our approach relies on several insights:

• The deformations of local surface patches are simpler to model than those of the whole

surface.

• For patches that are featureless, one can learn a relationship between gray-level variations

induced by changes in surface normals and 3D shape that holds even when the lighting

is complex.

• For patches that fall on textured parts of the surface, one can use preexisting correspondence-

based techniques [80].

This patch-based approach allows the use of different techniques for different patches de-

pending on the exact nature of the underlying image. In practice, the local reconstruction
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Figure 4.2: Algorithmic flow. We partition the image into patches, some of which are labeled as
textured and others as featureless. We compute the 3D shape of textured patches such as the blue
one by establishing point correspondences with a reference image in which the shape is known.
We use Gaussian Processes trained on synthetic data to predict plausible 3D shapes for featureless
patches such as the red ones. Finally, neighborhood alignment of the patches is done using a
Markov Random Field to choose among all possible local interpretations those that are globally
consistent.

problems may have several plausible solutions and obtaining a global surface requires a final

step to enforce global geometric consistency across the reconstructed patches. The algorithm

corresponding to our approach is depicted by Figure 4.2. Its two key steps are the estimation

of local 3D surface shape from gray level intensities across image patches followed by the en-

forcement of global geometric consistency. We outline them briefly below and discuss them in

more details in the two following sections.

4.2.1 Estimating the Shape of Local Patches

While we can reconstruct the 3D shape of textured patches by establishing correspondences

between the feature points they contain and those points in the reference image [80], this can

obviously not be done for featureless ones. For those, we infer shape from shading-induced

gray-level variations. Since there is no simple algebraic relationship between intensity patterns
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and 3D shape when the lighting is complex, we use a Machine Learning approach to establish

one.

More specifically, we learn GP mappings from intensity variations to surface deformations

using a training set created by rendering a set of synthetically deformed 3D patches shaded

using the known lighting model. As we will see, this is a one-to-many mapping since a given

intensity pattern can give rise to several interpretations.

4.2.2 Enforcing Overall Geometric Consistency

Because there can be several different interpretations for each patch, we must select the ones

that result in a consistent global 3D shape. To this end, we link the patches into an MRF that

accounts for dependencies between neighboring ones. Finding the maximum a posteriori state

of the MRF then yields a consistent set of local interpretations.

Although not strictly necessary, textured patches, which can be reconstructed accurately

in most cases, help better constrain the process. In essence, they play the role of boundary

conditions, which are always helpful when performing shape-from-shading type computations.

4.3 Estimating Local Shape

As outlined above, our method begins by reconstructing local surface patches from intensity

profiles, which we do using a statistical learning approach. To this end, we calibrate the scene

lighting, create a training database of deformed 3D patches and corresponding intensity pro-

files, and use GPs to learn the mapping between them.

4.3.1 Generating Training Data

Since shading cues are specific to a given lighting environment, we begin by representing it

in terms of spherical harmonics coefficients that we recover using a spherical light probe. As

scene irradiance is relatively insensitive to high frequencies in the lighting, for Lambertian ob-

jects lit by far lighting sources, we can restrict ourselves to the first nine such coefficients [76].

In practice, this has proved sufficient to operate in an everyday environment, such as our office

pictured in Figure 4.3, which is lit by large area lights and extended light sources.

To populate our training database, we take advantage of the availability of a set of real-

istically deforming surface patches, represented by 5×5 grids of 3D points. It was acquired

by attaching 3mm wide hemispherical reflective markers to pieces of cloth , which were then
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Figure 4.3: Panoramic image of the environment in which we performed our experiments

waved in front of six infrared ViconTM cameras to reconstruct the 3D positions of the markers.

For each 3D patch, we use a standard Computer Graphics method [76] to render the patches as

they would appear under our lighting model.

As a result, our training database contains pairs of 2D intensity profiles and their cor-

responding 3D shapes. In practice, we use 101×101 intensity patches and 5×5 3D patches,

which could mean learning a mapping from an 10201-dimensional space into an 75-dimensional

one. It would require data with large number of samples and be computationally difficult to

achieve. Furthermore, as Lambertian surfaces evenly scatter the incoming light, they can be

viewed as low-pass filters over the incident illumination. Thus, the high-frequency intensity

variations tend to supply relatively little shape information and are mostly induced by noise.

We therefore reduce the dimensionality of our learning problem by performing Principal Com-

ponent Analysis (PCA) on both the intensity patches and the corresponding 3D deformations,

and discarding high-frequency modes.

Performing PCA on the intensity patches produces an orthonormal basis of intensity modes

and a mean intensity patch, as depicted by the top row of Figure 4.7. Each intensity mode

encodes a structured deviation from the mean intensity patch. More formally, a square intensity

patch I ∈ Rw×w of width w can be written as

I = I0 +

NI∑
i=1

xiIi , (4.1)

where I0 is the mean intensity patch, the Iis are the intensity modes, the xis are the modal

weights that specify the intensity profile of the patch, and NI denotes the number of modes.

Note that, even though we learn the modes from patches of width w, we are not restricted to
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that size because we can uniformly scale the modes to the desired size at run-time. As a result,

the mode weights will remain invariant for similar intensity profiles at different scales.

Similarly, we parametrize the shape of a 3D surface patch as the deformations of a mesh

around its undeformed state. The shape can thus be expressed as the weighted sum of defor-

mation modes

Y = Y0 +

Ns∑
i=1

Λici (4.2)

where Y0 is the undeformed mesh configuration, the Λis are the deformation modes, the

cis are the modal weights, and Ns is the number of modes.

The modes are obtained by performing PCA over vectors of vertex coordinates from many

examplars of inextensibly deformed surface patches, obtained from motion capture data [85],

such as those depicted by Figure 4.7. Since they are naturally ordered by increasing levels

of deformation, the first three always correspond to translations in the X, Y and Z directions

and the next three to a linear approximation of rotations around the three axes. We discard the

in-plane deformation modes because they do not affect local patch appearance.

This being done, for each training sample, we now have intensity modal weights [x1, · · · , xNI
]

and deformation modal weights [c1, · · · , cNs ].

4.3.2 From Intensities to Deformations

Our goal is to relate the appearance of a surface patch to its 3D shape. In our context, this

means using our database to learn a mapping

M : [x1, · · · , xNI
] 7→ [c1, · · · , cNs ] (4.3)

that relates intensity weights to deformation weights, as illustrated by Figure 4.4. Given

M, the 3D shape of a patch that does not belong to the database can be estimated by computing

its intensity weights as the dot product of the vector containing its intensities and the intensity

modes, mapping them to deformation modes, and recovering the 3D shape from Eq. (4.2).

4.3.2.1 Gaussian Processes

GivenN training pairs of intensity and deformation modes
[
(x1,y1), · · · , (xN ,yN )

]
, our goal

is to predict the output c′ = M(x′) from a novel input x′. Since the mapping from x to c is
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Figure 4.4: Mapping from intensity to surface deformation. Projecting an intensity patch to
the set of orthogonal intensity modes produces a set of intensity modal weights x that describe its
intensity profile. Given a mappingM from these weights to the deformation modal weights c, we
reconstruct the shape of the patch in 3D.

both complex and non-linear, with no known parametric representation, we exploit the GPs’

ability to predict c′ by non-linearly interpolating the training samples
(
c1 · · · cN

)
.

A GP mapping assumes a Gaussian process prior over functions, whose covariance matrix

K is built from a covariance function k(xi,xj) evaluated between the training inputs. In our

case, we take this function to be the sum of a radial basis function, and a noise term

k(xi,xj) = θ0 exp

{
−θ1

2
‖xi − xj‖2

}
+ θ2 . (4.4)

It depends on the hyper-parameters Θ = {θ0, θ1, θ2}. Given the training samples, the

behavior of the GP is only function of these parameters. Assuming Gaussian noise in the

observations, they are learned by maximizing p(C|x1, · · · ,xN ,Θ)p(Θ) with respect to Θ,

where C = [c1 · · · cN ]T .

At inference, given the new input intensity patch coefficients x′, the mean prediction µ(x′)

can be expressed as
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µ(x′) = CK−1k(x′) , (4.5)

where k(x′) is the vector of elements
[
k(x′,x1) · · · k(x′,xN )

]
[14]. We take c′ to be this

mean prediction.

4.3.2.2 Partitioning the Training Data

The main difficulty in learning the mappingM is that it is not a function. Even though going

from deformation to intensity can be achieved by a simple rendering operation, the reverse is

not true. As shown in Figure 4.5, many different 3D shapes can produce identical, or nearly

identical, intensity profiles. These ambiguities arise from multiple phenomena, such as rota-

tional ambiguity, convex-concave ambiguity [46], or bas-relief ambiguity [9].

As a result, many sets of deformation weights can correspond to a single set of intensity

weights. Since GPs are not designed to handle one-to-many mappings, training one using all

the data simultaneously produces meaningless results. Observing the ambiguous configurations

reveals that the ambiguity is particularly severe when the surface patch remains planar and only

undergoes rotations. Recall that the principal components of out-of-plane rotations are encoded

by the first two deformation modes, which are depicted at the bottom left of Figure 4.7 and the

corresponding c1 and c2 weights. In Figure 4.6(a) we plot the contour curves for the rendered

intensities of planar patches in various orientations obtained by densely sampling c1,c2 space.

This shows that there are infinitely many combinations of c1 and c2 that represent a planar

patch with the same intensity. Since c1 and c2 encode the amount of out-of-plane rotation,

a line emanating from the center of the iso-contours in the c1,c2 space defines a particular

surface normal orientation and, within angular slices, such as those depicted by the alternating

green and white quadrants of Figure 4.6(a), the surface normal of the corresponding patch

remains within a given angular distance of an average orientation. We can therefore reduce

the reconstruction ambiguities by splitting the c1,c2 space into such angular slices and learning

one local GP per slice. In practice, we use 20 local GPs to cover the whole space. This

resembles the clustering scheme proposed in [106], but with a partitioning scheme adapted to

our problem. Other schemes, such as defining boxes in the c1 and c2 dimensions, would of

course have been possible. However, since the dominant source of ambiguity appears to be the

average surface normal that is encoded by the ratio of c1 to c2, we experimentally found our

angular partitioning to be more efficient than others.
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(a)

(b)

Figure 4.5: Ambiguities for flat (a) and deformed (b) surfaces. First rows Three different 3D
surfaces. Second rows Corresponding intensity patches. Even though the 3D shapes are different,
their image appearances are almost identical.

In Figure 4.6(b), we demonstrate the benefit of using local GPs over a global one to re-

construct a uniform flat patch from its intensities. The predictions from multiple GPs correctly

sample the iso-intensity contour that encodes the family of all orientations producing the same

56



4.3 Estimating Local Shape

0 10 20 30 40 50 60 70

−30

−20

−10

0

10

20

c
1

c
2

 

 

local GP estimations

global GP estimation

(a) (b)

1 2 3 4 5 6 7 8 9 1011121314151617181920
0

1

2

3

4

5

6

Local GP Index

M
ea

n 
3D

 E
rr

or
 (

m
m

)

0 200 400 600 800 1000 1200 1400
2

3

4

5

6

7

8

Number Of Training Samples

M
ea

n 
3D

 E
rr

or
 (

m
m

)

(c) (d)

Figure 4.6: Single vs Multiple GPs. (a) Given a uniform intensity patch, there are infinitely
many 3D planar patches that could have generated it. In our scheme, they are parametrized by
the c1 and c2 weights assigned to the first two deformation modes, which encode out-of-plane
rotations. The ovals represent iso-intensity values of these patches as a function of c1 and c2. (b)
If we train a GP using all the training samples simultaneously, it will predict the same erroneous
surface orientation depicted by the black dot for any uniform intensity patch. If we first partition
the training samples according to angular slices shown in green and white in (a) and train a GP
for each, we can predict the patch orientation shown as blue dots, which are much closer to the
true orientations shown in red. (c) Mean and variance of the vertex-to-vertex distance between
the predicted patch deformations and the ground-truth shapes for each local GP. (d) Accuracy of a
local GP as a function of the number of training samples. GPs are accurate even when using as few
as 1000 samples. In our experiments, for each local GP, we use 1400 samples on average from the
training set.
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Figure 4.7: Intensity and Deformation Modes. Top Block. A subset of the low-frequency
intensity modes. Bottom Block. A subset of the low-frequency deformation modes. The top-left
and middle ones encode out-of-plane rotations and the following ones are bending modes.

intensity. In Figure 4.6(c), we consider the case of a deformed patch and plot the mean and

variance values of the vertex-to-vertex distances between the prediction and ground-truth. For

each slice we tested 100 unique patch deformations while training over 1000 data points. We

repeated this 100 times. The average reconstruction error of 3 millimeters is small, considering

that the average patch side is 100 millimeters long. This indicates that, within each partition,

there is a one-to-one correspondence between intensity and deformation mode weights. Other-

wise, the GP mapping could not produce this accuracy.

One attractive feature of GPs is that they can be learned from a relatively small training set.

We estimate the required size empirically by measuring the accuracy of the mapping, given

by the average vertex-to-vertex distance between the prediction and ground truth data, as a

function of the number of training samples. For a given size, we draw 100 independent subsets
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4.4 Enforcing Global Consistency

of samples of that size from our training set. For each subset, we test the accuracy using 100

other instances from the test set. The resulting mean error is depicted by Figure 4.6(d).

4.3.3 Local Reconstructions from an Input Image

At run time, we first identify the textured patches by extracting SIFT interest points and estab-

lishing point correspondence with the reference image. They are used to recover their 3D-shape

using the correspondence-based method [80]. We then scan the remainder of the image multiple

times with square sliding windows of varying sizes, starting with a large one and progressively

decreasing its size. During each scan, the windows whose intensity variance is greater than

a threshold are discarded. The remaining ones are projected into the learned intensity mode

space and retained if their mode-space distance to their nearest neighbor in the training set is

smaller than a threshold. In successive scans, we ignore areas that are completely subsumed by

previously selected windows. Finally, we run a connected component analysis and keep only

the patches that are connected directly or indirectly to the textured one. In all our experiments

we keep the maximum acceptable standard deviation of intensities in a patch to be 30 units and

mode-space distance to be 10.

Given a set of featureless patches and NGP Gaussian Processes, one for each angular par-

tition of the training data, we therefore predict NGP shape candidates per patch represented as

5×5 meshes. We initially position them in 3D with their center at a fixed distance along the

line of sight defined by the center of the corresponding image patch.

4.4 Enforcing Global Consistency

Local shape estimation returns a set Sp = {S1p, · · · , SNGP
p } of plausible shape interpretations

reconstructed up to a scale factor for each patch p, and a single one Sp′ for each textured patch

p′. To produce a single global shape interpretation, we go through the two following steps.

First, we choose one specific interpretation for each featureless patch. To this end, we use

a MRF to enforce global consistency between the competing interpretations in a way that does

not require knowing their scales. Second, we compute the scale of each patch, or equivalently

its distance to the camera, by solving a set of linear equations. In the remainder of this section,

we describe these two steps in more details.
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Figure 4.8: Enforcing Shape Consistency (a) Two different instances of the evaluation of the
geometric consistency of patches i and j, shown in blue and green respectively. In both cases, the
predicted normals of points along the same lines of sight, drawn in yellow, are compared. Since
these points have the same projections, their normals should agree. Thus, the patches on the left
are found to be more consistent than those on the right. (b) Moving patches along their respective
lines of sight. The patches i and j are moved to distances di and dj from the optical center so as to
minimize the distance between them in their regions of overlap.

4.4.1 Selecting one Shape Interpretation per Patch

To select the correct interpretation for individual patches, we treat each one as a node in an

MRF graph. Featureless patches can be assigned one of the NGP labels corresponding to the

elements of Sp, while textured ones are assigned their recovered shape label.

We take the total energy of the MRF graph to be the sum over all the featureless local

patches

E =
∑
p

E1(Sp) +
1

2

∑
q∈O(p)

E2(Sp, Sq)

 , (4.6)

where O(p) is the set of patches that overlap p. The unary terms E1 favor shapes whose

shaded versions match the image as well as possible. The pairwise terms E2 favor geometric

consistency of overlapping shapes.

In practice, we take E1(Sp) to be the inverse of the normalized cross correlation score

between the image patch and the rendered image of the 3D shape. To evaluate the pairwise term

E2(Sp, Sq) for overlapping patches p and q, we shoot multiple camera rays from the camera

center through their common projection area, as shown in Figure 4.8 (a). For each ray, we

compare the normals of the two 3D shapes and take E2(Sp, Sq) to be the mean L2 norm of the
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4.4 Enforcing Global Consistency

difference between the normals.

Note that both the unary and pairwise terms of Eq. (4.6) can be evaluated without knowing

the scale of the patches, which is essential in our case because it is indeed unknown at this stage

of the computation. We use a tree re-weighted message passing technique [45] to minimize the

energy. In all of our experiments, the primal and dual programs returned the same solution [11],

which indicates the algorithm converged to a global optimum even though the energy includes

non sub-modular components.

4.4.2 Aligning the Local Patches

Having assigned a specific shape Sp to each patch, we now need to scale these shapes by moving

them along their respective lines of sight, which comes down to computing the distances dp
from the optical center to the patch centers. In the camera referential, the line of sight defined

by the center of patch p emanates from the origin and its direction is

losp =
A−1up
‖A−1up‖2

, (4.7)

where A is the 3× 3 matrix of internal camera parameters and up represents the projective

coordinates of the patch center.

To enforce scale consistency between pairs of overlapping patches p and q, we consider the

same point samples as before, whose projections lie in the overlap area as shown in Figure 4.8

(b). Let [xp, yp, zp]
T and [xq, yq, zq]

T be the 3D coordinates of the vectors connecting such a

sample to the centers of p and q, respectively. Since they project to the same image location,

we must have

dp
(
losTp + [xp, yp, zp]

)
= dq

(
losTq + [xq, yq, zq]

)
. (4.8)

Each sample yields one linear equation of the form of Eq. (4.8). Thus, given enough

samples we can compute all the dp up to a global scale factor by solving the resulting system

of equations in the least-squares sense. If there is at least one textured patch whose depth can

be recovered accurately, the global scale can be fixed and this remaining ambiguity resolved.

4.4.3 Post Processing

The alignment yields a set of overlapping 3D shapes. To make visual interpretation easier, we

represent them as point clouds which are computed by linearly interpolating the z values of the
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vertices of all the local solutions on a uniformly sampled xy grid. For display purposes, we

either directly draw these points or the corresponding Delaunay triangulation.

4.5 Results

In this section, we demonstrate our method’s ability to reconstruct different kinds of surfaces.

In all these experiments, we learned 20 independent GPs by partitioning the space of potential

surface normals, as discussed in Section 4.3.2. For training purposes, we used 28000 surface

patches, or approximately 1400 per GP. They are represented as 5 × 5 meshes and rendered

using the calibrated experiment-specific lighting environment. The calibration and the training

process jointly take approximately two hours to complete on a standard machine with a 2.4

GHz processor.

In the remainder of this section, we first use synthetic data to analyze the behavior of our

algorithm. We then demonstrate its performance on real data and validate our results against

ground-truth data.

Since our images contain both textured and non-textured parts, we compare our results to

those obtained using our earlier technique [80] that relies solely on point correspondences to

demonstrate that also using the shading information does indeed help. We also compare against

pure Shape-from-Shading algorithms described in [104] and [29] that are older but, as argued

in [27], still representative of the state-of-the-art, and whose implementations are available

online.

4.5.1 Synthetic Images

We first tested the performance of our algorithm on a synthetic sequence created by rendering

100 different deformations of a piece of cardboard obtained using a motion capture system.

Note that this is not the same sequence as the one we used for learning the intensity to de-

formation mapping discussed in Section 4.3. The entire sequence is rendered using the light-

ing parameters corresponding to a complicated lighting environment such as the one shown

in Figure 4.3. To this end, we use a set of spherical harmonics coefficients computed for

that particular lighting environment. In addition, the central part of the surface is artificially

texture-mapped. Figure 4.9 depicts a subset of these synthetic images, the 3D reconstructions

we derive from them, and 3D reconstructions obtained with our earlier texture-based method

[80]. We compute 3D reconstruction errors as the mean point-to-surface distances from the
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FRAME 38 FRAME 46 FRAME 94

OUR RECONSTRUCTION

RECONSTRUCTION USING SALZMANN 11 [80]

Figure 4.9: Comparisons against a texture-based method [80] on a synthetic sequence First
row Input images. Second row Local Patches. The blue patches indicate the regions where fea-
ture correspondences are given, and the red patches are non-textured areas, selected by our patch
selection algorithm. Third row Reconstructed point cloud (green dots) and ground-truth mesh
vertices (black dots) seen from another view point. Forth row Estimated triangulation (green) and
ground-truth triangulation (black) seen from another view point. Fifth row Reconstruction results
using the method in [80] (green mesh) and ground-truth triangulation (black).
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FRAME 38 FRAME 46 FRAME 94

GROUND TRUTH

OUR RECONSTRUCTION

RECONSTRUCTION USING TSAI [104]

RECONSTRUCTION USING FALCONE [29]

Figure 4.10: Comparisons against SfS methods on a synthetic sequence First row: Input
images. Second row: Ground truth depth maps Third row: Depth maps computed from our
reconstructions. Forth to fifth rows: Depth maps computed by the methods in [104], [29].
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reconstructed point clouds to the ground-truth surfaces for all the frames in this sequence. The

results are shown in Figure 4.11.

By combining shading and texture cues, our method performs significantly better except

for flat surfaces, where both methods return similar results.In Figure 4.10, we compare our

results against those of pure shape-from-shading methods [29, 104]. Our algorithm computes

a properly scaled 3D surface but these methods only return a normalized depth map. For a fair

comparison, we therefore computed normalized depth maps from our results. Furthermore,

although our method does not require it, we provided manually drawn masks that hide the

background and the textured parts of the surfaces to make the task of the Shape-from-Shading

methods easier. As can be seen, in addition to being correctly scaled, our reconstructions are

also considerably more accurate.
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Figure 4.11: Reconstruction error of both methods for all the frames in the sequence. Note that
the proposed method provides much better reconstructions, except for 6 frames in the sequence.

Because the projection of intensity patches to PCA modes can be viewed as a filtering

operation, our method is robust to image noise. To demonstrate this, we introduced various

level of Gaussian noise to the input image, shown in the top row of Fig. 4.12. Independently

of the noise, we were able to accurately reconstruct the surface, as depicted by the blue mesh

in second row of Fig. 4.12. The third and fourth rows of Fig. 4.12 show the intensity profiles

of a selected patch from the noisy input images before and after the mode projection operation,

respectively. As expected, using only the first few PCA modes filtered out the high frequency

noise.
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Figure 4.12: Reconstruction from noisy images. Top Row: Input images with Gaussian noise
of zero mean and 3, 8, and 26 intensity variances, respectively. Second Row: Comparison of our
reconstructions, in blue, against the ground-truth mesh in red. Third Row: Intensity profiles of
the same patch extracted from the noisy images.Fourth Row: Intensity profiles of the patch after
mode projection.

66



4.5 Results

In theory, there is no guarantee that the reconstruction of the textured patch is correct,

which could lead to reconstruction failure. An incorrect reconstruction will result in a gross

error, especially since our algorithm tries to enforce global consistency with respect to this

erroneous configuration. In practice, this only rarely occurs, and in all the correspondence-

based experiments reported here, the algorithm we used [80] returned a valid reconstruction

for the textured area. Nevertheless, our method can also handle cases when there are multiple

interpretations for the textured patches by adding them as additional labels to our MRF. To

demonstrate this, we generated multiple candidates for the textured patches using the sampling

scheme proposed in [60]. As shown in Figure 4.13, our algorithm picks the right one from the

candidate reconstructions.

(a) (b) (c)

Figure 4.13: Reconstruction with multiple 3D hypotheses for the textured patch. (a) Input
images. (b) 3D hypotheses for the textured patches. (c) 3D reconstructions of the surfaces.

4.5.1.1 Robustness to Lighting Environment

To show that our algorithm is robust to lighting changes, we rendered images of the same sur-

face under three different lighting arrangements with either frontal, on left, or on right lighting.

As shown in Figure 4.14, the three reconstructions that we obtained were all similar and close

to the ground truth.
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Frontal Left Right

Figure 4.14: Robustness to Lighting Environment The surface is lit by three different lighting
schemes. Top row: Intensity variation in the surface. Bottom row: Reconstructed surfaces.

4.5.2 Real Images

As the nature of the deformations vary considerably with respect to the surface material type,

we applied our reconstruction algorithm to two surfaces with very different physical properties:

the piece of paper of Figure 4.15 and the T-shirt of Figure 4.16. The deformation of the latter

is significantly less constrained than that of the former. Note that because we only model the

deformations of small patches that are then assembled into global surfaces, we can handle

complex global deformations. However, as will be discussed below, folds that are too sharp

may result in self shadowing which is not handled in our current implementation.

The real sequences were captured by a single-lens reflex (SLR) camera and recorded in

raw format. The linear images were then extracted from the raw image files and the image

intensities linearly scaled so that they cover most of the observable intensity range. The image

resolution was approximately 5 mega-pixels.

The image patches of Section 4.3 were selected by the patch selection algorithm. In prac-

tice, we used square patches whose size ranges from 401 to 101 pixels with a 100 pixels step.

We show the textured and textureless image patches selected by this procedure in the second

rows of Figures 4.15 and 4.16.
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Frame 7600 Frame 7605 Frame 7623 Frame 7636

Reference Point Ground Frame Number
Image Pairs Truth 7600 7605 7623 7636

a – b 2.6 2.5 2.6 2.6 3.2
a – h 30.8 30.6 29.4 31.0 32.6
a – i 28.9 28.2 27.9 28.9 30.1
a – j 26.9 26.1 26.1 27.1 27.6
a – k 21.7 21.2 22.6 22.5 22.1
a – m 2.6 2.8 2.8 2.9 2.9
c – k 17.8 18.0 18.0 18.4 18.9
d – k 19.3 20.2 20.0 20.2 NA
e – l 27.2 27.3 26.3 26.9 28.5
f – l 25.8 26.3 24.9 25.2 27.8
g – l 25.3 25.6 24.3 24.8 27.5
n – o 5.8 5.9 5.9 5.9 6.1
p – q 4.7 4.8 4.9 4.8 5.1

All distances are in cm Avg Error 0.36 0.65 0.35 1.03

Figure 4.15: Paper Sequence. First row Input images. Second row Local Patches. The blue
patch is the one for which enough correspondences are found and the red ones are featureless
patches. Third row Reconstructed point cloud seen from another viewpoint. Fourth row Geodesic
distances between prominent landmarks as identified on the left. Point d in frame 7636 was outside
our reconstruction, which explains the missing value in the table.
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Figure 4.16: T-Shirt Sequence. First row Input images. Second row Local Patches. The blue
patch is the one for which enough correspondences are found and the red ones are featureless
patches. Third row Reconstructed point cloud seen from another viewpoint.

4.5.3 Validation

To quantitatively evaluate our algorithm’s accuracy, we performed two different sets of experi-

ments involving real data, which we detail below.

4.5.3.1 Preservation of Geodesic Distances

The geodesic distances between pairs of points, such as the circles on the piece of paper at the

bottom of Figure 4.15, remain constant no matter what the deformation is because the surface is

inextensible. As shown in the bottom-right table, even though we do not explicitly enforce this

constraint, it remains satisfied to a very high degree, thus indicating that the global deformation

is at least plausible.
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(a) (b) (c)

Figure 4.17: Failure Modes. (a) Non-Lambertian surface. (b) Folds that create self-shadows. (c)
Background albedo very similar to the surface.

In this example, the ground-truth geodesic distances were measured when the sheet of

paper was lying flat on a table. To compute the geodesic distances on the recovered meshes,

we used an adapted Gauss-Seidel iterative algorithm [16].

4.5.3.2 Comparison against Structured Light Scans

To further quantify the accuracy of our reconstructions, we captured surface deformations using

a structured light scanner [115]. To this end, we fixed the shape of the same piece of paper and

t-shirt as before by mounting them on a hardboard prior to scanning, as shown at the top of

Figure 4.18. Because of the physical setup of the scanner, we then had to move the hardboard

to acquire the images we used for reconstruction purposes. To compare our reconstructions to

the scanned values, we therefore used an ICP algorithm [12] to register them together.

In the remainder of Figure 4.18, we compare the output of our algorithm to that of the same

algorithms as before. These results clearly indicate that our approach to combining texture and

shading cues produces much more accurate results than those of these other methods that only

rely on one or the other.

4.5.4 Limitations

The main limitation of our current technique is that, outside of the truly textured regions, we

assume the surface to be Lambertian and of constant albedo. As a result, we cannot reconstruct

shiny objects such as the balloon shown in Figure 4.17(a). However, given the bidirectional

reflectance distribution function (BRDF) of the surface points, our framework could in theory

be extended to such non-Lambertian surfaces.
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Like most other shape-from-shading methods, ours is ill-equipped to handle self shadows

and occlusions. The effect of the latter can be mitigated to a certain extent by using temporal

models. The self shadows produced by sharp folds, such as the ones shown in Figure 4.17(b),

violate our basic assumptions that shading only depends on 3D shape, and could be handled

by a separately trained generative model [36]. Addressing these issues is a topic for future

research.

Failure may also occur when background image regions are extracted by our patch selec-

tion algorithm. Fortunately, this occurs rarely, i.e. when the background is made up of uniform

regions with albedo very similar to that of the surface to be reconstructed, as shown in Fig-

ure 4.17(c). In such cases, the background patches look very similar to those of our training set

and will not be filtered out.

4.6 Conclusion

We have presented an approach to monocular shape recovery that effectively takes advantage

of both shading cues in non-textured areas and point correspondences in textured ones under

realistic lighting conditions and under full perspective projection. We have demonstrated the

superior accuracy of our approach compared to state-of-the-art techniques on both synthetic

and real data.

Our framework is general enough so that each component could be replaced with a more

sophisticated one. For instance, representations of the lighting environment more sophisticated

than spherical harmonics could be used to create our training set. Similarly, other, potentially

nonlinear parametrizations of the patch intensities and deformations could replace the current

PCA mode weights.

In the next chapter, we focus on a machine learning algorithm that explicitly accounts for

the constraints in its predictions. These constraints include the commonly-employed edge-

length constraints which have proved effective to resolve the ambiguities in reconstructing

inextensible surfaces.
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Figure 4.18: Accuracy estimation using structured light scans. Top Row. Two different sur-
faces and their corresponding structured light scans. Middle Block. From top to bottom, point
clouds from the scans (red) and reconstructions by either our algorithm or that of [80] (green),
reconstructed 3D surface rendered using a color going from blue to red as the vertex-to-surface
distance to the ground-truth increases, and corresponding histogram of vertex-to-surface distances.
Bottom Block. Depth maps obtained from our reconstructions and from the methods in [29, 104].
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CHAPTER

FIVE

CONSTRAINED LATENT VARIABLE MODELS FOR SURFACE
RECONSTRUCTION

5.1 Introduction

As we have seen in the previous chapters, latent variable models have been widely used for

non-rigid pose estimation. However, as effective as they are, they suffer from the fact that they

ignore prior knowledge that might be available for the specific problem at hand. In particular,

nothing prevents commonly-employed latent variable models from generating configurations

that violate known constraints.

In this chapter, we propose a novel non-linear latent variable model whose output explic-

itly accounts for the inherent constraints of the problem. To this end, we learn a non-linear

mapping from the latent space to the output space such that the generated outputs comply

with equality and inequality constraints expressed in terms of the problem variables. We make

use of unlabeled examples to enforce the constraints, while minimizing the prediction error of

labeled ones. To allow for kernel-based mappings, we introduce a primal-dual optimization

framework, where the mapping is learned by sequential closed-form updates. Our approach is

completely generic and could be used in many different contexts, such as image classification

to impose separation of the classes, and articulated tracking to constrain the space of possible

poses.

To illustrate the benefits of our model, we consider a toy case where the output is a single

3D point constrained to lie on a hemisphere. We learned a constrained latent variable model

and its unconstrained version using the black dots close to the great circle of the hemisphere
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Standard LVM Our constrained LVM

Figure 5.1: Generating 3D points on a hemisphere. (Left) Predictions from random samples in
the latent space using an unconstrained latent variable model. (Right) Predictions from the same
samples using our constrained latent variable model. Both models were learned using only the
black dots as labeled training samples.

as labeled training examples. Figure 5.1 shows the predictions of the unconstrained and con-

strained models from random samples on the latent space. Note how much the predictions are

improved by learning a constrained model. While this corresponds to an extreme case of poorly

sampled training points, a similar scenario could easily occur locally on more complex output

spaces.

In particular, this is true for the task of non-rigid surface reconstruction from monocular

inputs that we address in this thesis. This is known to be a very ambiguous problem due to the

fact that any point on a line of sight reprojects at the same image location, thus making depth

estimation very ill-posed. Furthermore, the partial lack of identifiable texture on the surface

makes the use of shape regularizers necessary to produce reasonable reconstructions. Latent

variable models are commonly used for such regularization [15, 21, 30, 74, 85]. Our exper-

imental evaluation shows that our constrained latent variable model produces more accurate

reconstructions than the standard linear subspace models and the increasingly popular Gaus-

sian Process Latent Variable Model (GPLVM) [49], which corresponds to the unconstrained

version of our model. This evaluation was performed in a variety of scenarios including real

images of different materials captured with the Microsoft Kinect, providing ground-truth 3D

measurements.

In the context of non-rigid reconstruction, both linear [15, 18, 21, 39, 51, 103, 118] and

non-linear [30, 31, 74, 85] latent variable models have been employed. However, since ex-
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isting models are unable to make use of the known physical properties of the surface, they

produce shapes that violate important constraints, and therefore look unnatural. An alternative

approach is to directly encode the physical properties of the system. Physics-based approaches

have made use both of the Finite Element Method [13, 54, 57, 63, 68, 105] and of more intu-

itive constraints, such as inextensibility [23, 28, 71, 90]. Unfortunately, while physics-based

approaches have the advantage of explicitly encoding prior knowledge, they involve solving

high-dimensional optimization problems. Furthermore, since constraints such as inextensibil-

ity are only local, the resulting methods typically require the surface to be well-textured.

Attempts at coupling latent variable models and constraints for deformable shape recovery

have been made [80]. However, these methods are limited to linear subspace models and to

specific constraints. Furthermore, and more importantly, they incorporate the constraints on

top of a latent variable model that still allows for invalid configurations. It would seem more

effective to exploit the constraints while learning the model, thus yielding a latent variable

model that only generates physically-plausible deformations. This, in essence, is what we

propose in this chapter.

5.2 Learning a Constrained LVM

In this section, we present our approach to learning a latent variable model that incorporates

constraints on the generated outputs. In particular, we focus on the problem of learning the

mapping from a given latent space to the output space under equality and inequality constraints.

Note that the latent space itself can be obtained with any available technique, such as PCA, or

Isomap. Our mapping can thus be seen as a predictor from the latent space to the output space.

We learn this mapping by minimizing a prediction error on labeled examples, for which the

true output is known, while simultaneously enforcing constraints on unlabeled ones, for which

the output is unknown. In the remainder of this section, we first derive the primal form of our

learning problem. We then exploit duality to kernelize our approach, and thus be able to make

use of the nonlinear kernels (e.g.,RBF) that have proven more effective than linear ones for

many computer vision tasks.

5.2.1 Primal Optimization Problem

Let X ⊆ Rm be a given latent space, and Y ⊆ RD be the output space of interest, such as the

space of non-rigid 3D surfaces. Given a latent variable x ∈ X , our latent variable model can
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be encoded as a mapping of the form

ŷ = Wφ(x) , (5.1)

such that ŷ ∈ Y . W ∈ RD×d is the parameter matrix that defines the mapping, and

φ(x) : Rm → Rd is the feature map of the latent variable x.

Let L be the set of labeled training examples containingN pairs {xi,yi} of latent variables

xi and associated continuous multi-dimensional labels (outputs) yi. Furthermore, let U =

UE ∪ UI be the set of unlabeled training examples x̄j subject to equality (UE) and inequality

(UI ) constraints. We formulate learning as a constrained optimization problem, where a loss

function l is minimized on the labeled training set L subject to constraints on the unlabeled set

U . This can be written as

min
W

∑
{xi,yi}∈L

l(W,xi,yi) + γR(W) (5.2)

s. t. C(W, x̄u) = 0 ∀x̄u ∈ UE

D(W, x̄v) ≤ 0 ∀x̄v ∈ UI ,

where R is the regularizer on W with weight γ, and C(W, x̄u), resp. D(W, x̄v), is a

vector function encoding all NE equality constraints, resp. NI inequality constraints, defined

with respect to the prediction of the unlabeled data x̄u, resp. x̄v.

The problem of Eq. 5.2 is very general, and different loss functions, regularizers and con-

straints can be utilized. Here, we consider the case of the square loss, Frobenius norm regular-

izer, and arbitrary nonlinear constraints on the predictions. The optimization problem therefore

becomes

min
W

1

2
‖Wφ(x)−Y‖2F +

γ

2
‖W‖2F (5.3)

s. t. C (Wφ(x̄u)) = 0 ∀x̄u ∈ UE

D (Wφ(x̄v)) ≤ 0 ∀x̄v ∈ UI ,

where φ(x) = [φ(x1) · · ·φ(xN )], and Y = [y1 · · ·yN ] is the matrix of labeled training out-

puts.

If the constraints are non-convex, so is the optimization problem in Eq. 5.3. We therefore

transform it so that we can solve it as a sequence of closed-form updates. First, we rewrite the
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inequality constraints as equalities by introducing slack variables ε. This yields the optimiza-

tion problem

min
W,ε

1

2
‖Wφ(x)−Y‖2F +

γ

2
‖W‖2F +

α

2
‖ε‖22 (5.4)

s. t. C (Wφ(x̄u)) = 0 ∀x̄u ∈ UE

D (Wφ(x̄v)) + ε(v) � ε(v) = 0 ∀x̄v ∈ UI ,

where � is the Hadamard (elementwise) product, ε(v) contains the slack variables associ-

ated with example v, and α
2 ‖ε‖

2
2 encodes potential additional knowledge about the problem.

This, for instance, is useful in conjunction with the inequality constraints of [80], where only

small deviations from equalities are expected.

As a second step, we perform a first order Taylor expansion of the constraints. Given an

initial solution for the parameters W and ε, we iteratively linearize the constraints around the

current solution, and update the parameters by solving the linearized problem. At each iteration

t of this procedure, the linearized problem can be written as

min
δW,δε

1

2
‖(Wt + δW)φ(x)−Y‖2F (5.5)

+
γ

2
‖Wt + δW‖2F +

α

2
‖ε + δε‖22

s. t. C
(u)
t + GuδWφ(x̄u) = 0 ∀x̄u ∈ UE ,

D
(v)
t +

1

2
ε
(v)
t � ε

(v)
t + QvδWφ(x̄v)

+ ε
(v)
t � δε(v) = 0 ∀x̄v ∈ UI ,

where Wt and εt are the current estimates of W and ε, respectively. C(u)
t is the value of

the equality constraints for unlabeled example u at the current prediction ŷu,t, and Gu is the

NE × D matrix containing the gradient of these constraints with respect to ŷu,t. Similarly,

D
(v)
t and Qv encode the value and gradient of the inequality constraints for unlabeled example

v at the current prediction ŷv,t. The solution to the problem in Eq. 5.6 can be obtained in

closed-form by solving a linear system in δW and δε.

5.2.2 Kernel-based Mappings

The primal formulation of our latent variable model only allows for linear mappings from the

feature map of the latent space to the output space. While some degree of non-linearity can
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be encoded in the feature map, it results in the rapid growth of the number of parameters to

optimize. This makes our primal formulation computationally expensive and more prone to

overfitting. Furthermore, for many kernels (e.g., RBF), the feature maps cannot be explicitly

computed.

We therefore need to kernelize our approach to take advantage of such kernels. To this

end, we exploit duality. We start by first writing the Lagrangian of the minimization prob-

lem in Eq. 5.6, and then make use of the Karush-Kuhn-Tucker (KKT) conditions to derive a

solution for the Lagrange multipliers. This yields an optimization method similar to the one

in Section 5.2.1, where we iteratively linearize the constraints around the current prediction

of the unlabeled data, solve for the Lagrange multipliers of the dual linearized problem, and

update the prediction. Importantly, we show that the Lagrange multipliers can be obtained in

closed-form, thus yielding a sequence of closed-form updates similar to the one in the primal

formulation.

More specifically, the Lagrangian of the minimization problem in Eq. 5.6 can be expressed

as

L=
1

2
‖(Wt + δW)φ(x)−Y‖2F +

γ

2
‖Wt + δW‖2F +

α

2
‖ε + δε‖22

+
∑
u

[
C

(u)
t + GuδWφ(x̄u)

]T
λEu

+
∑
v

[
D

(v)
t +

1

2
ε
(v)
t � ε

(v)
t + QvδWφ(x̄v) + ε

(v)
t � δε(v)

]T
λIv ,

where λEu ∈ RNE and λIv ∈ RNI are the Lagrange multipliers associated with the equality and

inequality constraints for unlabeled examples u and v, respectively.

To find an optimal solution to our problem, we first make use of the KKT stationarity

condition, which, in our case, states that the solution for δW and δε must satisfy ∂L
∂δW = 0 and

∂L
∂δε = 0, respectively.

Claim 1 Solving the KKT stationarity conditions yields

δW = AZ−Wt,

δε(v) = −
(

1

α
λIv + 1

)
� ε

(v)
t , ∀x̄v ∈ UI , (5.6)
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respectively, where

A =

[
M−

∑
u

GT
uλevuKu,: −

∑
v

QT
v λ

I
vKv,:

]
B−1, (5.7)

Z =
[
φ(x) · · · φ(x̄u′) · · · φ(x̄s) · · · φ(x̄v′) · · ·

]T
,

B = K:,LKL,: + γK:,: ,

M = YKL,: ,

with u′,s and v′ the indices of the unlabeled data in UE\UI , UE∩UI , and UI \UE , respectively.

The kernel K:,: is defined as

K:,: = ZZT =

[
KL,L KL,U
KU ,L KU ,U

]
, (5.8)

and can be computed via any kernel function, e.g., RBF.

Proof: In Appendix A.

The KKT stationarity conditions define a solution for our variables δW and δε in terms

of the Lagrange multipliers λEu and λIv. To find a solution for these Lagrange multipliers, we

make use of the KKT primal feasibility condition, which states that the constraints should be

satisfied at the optimal value of the parameters.

Claim 2 The solution to the constraints encoded by the KKT primal feasibility condition takes
the form λ = S−1r, where

λ =

[
λE

λI

]
, S =

[
SE,E SE,I

SI,E SI,I

]
, r =

[
rE

rI

]
,

and

SE,Eu,a = GuG
T
a (Ka,:B

−1K:,u) ,

SE,Iu,b = GuQ
T
b (Kb,:B

−1K:,u),

SI,Ev,a = QvG
T
a (Ka,:B

−1K:,v),

SI,Iv,b = QvQ
T
b (Kb,:B

−1K:,v) + δv,b diag

(
1

α
ε
(v)
t � ε

(v)
t

)
,

rEu = GuMB−1K:,u −Guŷu,t + C
(u)
t ,

rIv = QvMB−1K:,v −Qvŷv,t +D
(v)
t −

1

2
ε
(v)
t � ε

(v)
t ,
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with δv,b the Kronecker delta.

Proof: In Appendix A.

In the two claims above, we have shown how to obtain in closed-form the Lagrange multi-

pliers that give the optimal solution to the problem in Eq. 5.6. Note that this requires having a

prediction for the unlabeled examples ŷv,t at the current iteration t. Furthermore, at inference,

to make use of our latent variable model, we need to be able to compute the prediction for a

new input. To address these points, we now define the form of the prediction in our model.

Claim 3 Prediction for any input x∗ in our kernelized model can be done in closed-form, and
can be written as

ŷ∗ = AK:,∗ , (5.9)

where K:,∗ = Zφ(x∗) =
[
K∗,L K∗,U

]T
.

Proof: In Appendix A.

Since we follow the same linearization strategy as in Section 5.2.1, learning still consists of

a succession of updates based on the current prediction for the unlabeled inputs. Therefore, we

can derive an algorithm that iteratively linearizes the constraints around the current prediction,

solves for the Lagrange multipliers and refines the prediction. This scheme is summarized in

Algorithm 1. Note that each step can be done in closed-form. Note also that, even though

Claim 1 defines the update δW in terms of the Lagrange multipliers, W is never explicitly

computed in our algorithm, thus making it fully kernelized.

Algorithm 1 Learning a constrained latent variable model

Initialize ŷu,0 and ŷv,0 using an unconstrained predictor
Initialize ε0 to non-zero values
for t = 1 to #iters do

Compute Gu, C(u)
t , Qv, D(v)

t from ŷu,t−1, ŷv,t−1
Compute S from Claim 2
Compute r from Claim 2
Compute λEu and λIv using λ = S−1r

Compute A using Eq. 5.8
Compute ŷu,t and ŷv,t using Eq. 5.9
Compute εt using Eq. 5.6

end for
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5.3 Experimental Evaluation

We demonstrate the effectiveness of our constrained latent variable model at reconstructing

deformable surfaces from monocular images. We compare our results to those obtained using

a linear subspace model and an unconstrained version of our non-linear model, which corre-

sponds to a GPLVM. In all cases, reconstruction is obtained by optimizing the latent variable

so as to minimize an image-based loss function. Errors are given in terms of both the 3D recon-

struction errors and the constraint violation. Reconstruction errors are computed as the average

point-to-point distance between ground-truth and reconstructed shapes. Constraint violation is

taken to be the mean value of C(x∗) for equalities and the mean value ofD(x∗) for all violated

inequality constraints. All the quantitative results are expressed in millimeters.

In the remainder of this section, we first describe our learning setup and the different types

of constraints used in our experiments. We then present our results on synthetic data and real

images of surfaces made of different materials. Our results include a quantitative evaluation

of reconstructions obtained from real images captured with a Microsoft Kinect, whose output

depth we treat as ground-truth.

5.3.1 Learning Setup

To learn the models, we make use of two publicly available datasets obtained with a motion

capture system1. The first one consists of the 3D locations of markers placed as a 9×9 grid on

a piece of cardboard, thus forming a square mesh of size 160 × 160mm with 208 edges. The

second one consists of similar measurements on a piece of cloth, represented by a 9×7 mesh of

size 160 × 120mm with 158 edges. The cardboard dataset exhibits simpler deformations than

the cloth one. To obtain latent spaces for each dataset independently, we performed PCA on the

3D marker locations. We used 12 and 30 latent variables for the cardboard and cloth datasets,

respectively, which covers more than 95% of the variance of the data. In all the experiments,

we used an RBF kernel for our model and its unconstrained version. We set both regularization

weights γ and α to 0.001.

We investigated the use of length constraints as both equalities and inequalities. Under the

former, the length of the edges connecting the mesh vertices must remain constant. The lat-

ter allow these lengths to decrease to model the fact that two vertices may come closer to each

other if folds appear between them, but cannot be further apart than the geodesic distance along

1Publicly available at http://cvlab.epfl.ch/data/dsr/
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Reconstruction error [mm]

V = 20 V = 60 V = 100 V = 150

C
ar

db
oa

rd

E
qu

al
ity PCA 31.6±4.45 31.6±4.45 31.6±4.45 31.6±4.45

Unconstrained 4.64±0.29 4.64±0.29 4.64±0.29 4.64±0.29
Ours 4.48±0.31 4.28±0.33 4.30±0.36 4.27±0.39

In
eq

. PCA 31.6±4.45 31.6±4.45 31.6±4.45 31.6±4.45
Unconstrained 4.64±0.29 4.64±0.29 4.64±0.29 4.64±0.29

Ours 4.52±0.31 4.34±0.30 4.25± 0.28 4.12±0.27

C
lo

th E
qu

al
ity PCA 16.2±2.19 16.2±2.19 16.2±2.19 16.2±2.19

Unconstrained 4.36±0.20 4.36±0.20 4.36±0.20 4.36±0.20
Ours 4.30±0.19 4.29±0.12 4.27±0.21 4.44±0.17

In
eq

. PCA 16.2±2.19 16.2±2.19 16.2±2.19 16.2±2.19
Unconstrained 4.36±0.20 4.36±0.20 4.36±0.20 4.36±0.20

Ours 4.25±0.17 4.10±0.14 3.99± 0.17 3.95±0.16

Table 5.1: Predicting shapes from known latent variables. Reconstruction error as a function
of the number of unlabeled examples V for a fixed N = 50. Note that the constraint violation
measure is different for inequalities and for equalities.
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Constraint violation [mm]

V = 20 V = 60 V = 100 V = 150

C
ar

db
oa

rd

E
qu

al
ity PCA 3.19±0.64 3.19±0.64 3.19±0.64 3.19±0.64

Unconstrained 0.98±0.05 0.98±0.05 0.98±0.05 0.98±0.05
Ours 0.81±0.02 0.63± 0.01 0.50±0.02 0.41±0.02

In
eq

. PCA 3.43±0.76 3.43±0.76 3.43±0.76 3.43±0.76
Unconstrained 0.94±0.04 0.94±0.04 0.94±0.04 0.94±0.04

Ours 0.77±0.03 0.56±0.02 0.43±0.02 0.34±0.02

C
lo

th E
qu

al
ity PCA 3.05±0.26 3.05±0.26 3.05±0.26 3.05±0.26

Unconstrained 1.33±0.04 1.33±0.04 1.33±0.04 1.33±0.04
Ours 1.20±0.04 1.03± 0.04 0.88±0.02 0.75±0.02

In
eq

. PCA 3.43±0.29 3.43±0.29 3.43±0.29 3.43±0.29
Unconstrained 1.14±0.08 1.14±0.08 1.14±0.08 1.14±0.08

Ours 1.02±0.09 0.87±0.06 0.73±0.03 0.63±0.02

Table 5.2: Predicting shapes from known latent variables. Constraint violation as a function
of the number of unlabeled examples V for a fixed N = 50. Note that the constraint violation
measure is different for inequalities and for equalities.
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Figure 5.2: Training times. (Left) Training time as a function of the number of validation samples
when using all constraints. (Right) Training times for different constraint selection strategies for a
fixed number of validation samples V = 140.

the surface. The equalities have been shown to be appropriate for smoothly deforming surfaces,

and the inequalities for surfaces undergoing more complex deformations [80]. To confirm this,

we predicted shapes given the true latent variables of 500 test examples. Tables 5.1 and 5.2

depicts reconstruction and constraint errors averaged over the test samples as a function of the

number of unlabeled examples V . Note that the constraint violation measure is different for

inequalities and equalities. For the cardboard dataset, both constraint types perform well. For

the cloth dataset where sharper folds occur, inequality constraints are more appropriate; in-

creasing V improves both reconstruction and constraint satisfaction for inequalities, whereas it

only improves constraint satisfaction for equalities. Note that our predictions are more accurate

than those of the baselines.

Our implementation can handle up to 60K constraints on a standard PC. However, this

still limits us in the number of unlabeled examples that we can use. To increase this number,

we implemented a different strategy to encode the constraints, which involves summing over

individual ones. This yields new constraints of the form C̃(x) =
∑

j Cj(x) = 0, and re-

duces the number of constraints for each unlabeled sample, which lets us use more of them. In

practice, we define these sums of constraints as the sums of all individual vertical or horizon-

tal constraints on the rectangular grid, which amounts to preserving the length of a complete

horizontal or vertical line as opposed to that of individual edges.

The constraints we use are sparse in nature, since each one only depends on two mesh

vertices. Thus, the linear system to obtain the Lagrange multipliers is sparse as well, which

allows for the use of efficient sparse solvers. Figure 5.2(left) depicts training time as a function

of the number of unlabeled examples for the cardboard dataset. To improve efficiency, we can
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Figure 5.3: Reconstructing a piece of cardboard from synthetic data. (a,b) Reconstruction
error and constraint violation as a function of image noise for N = 50 and V = 100. (c,d) Similar
errors for N = 50 and V = 150. Our model was trained using equality constraints.

87



5. CONSTRAINED LATENT VARIABLE MODELS FOR SURFACE
RECONSTRUCTION

0 2 4 6 8 10
0

50

100

150

200

N=50, V=100

Noise

M
e

a
n

 R
e

c
o

n
s
tr

u
c
ti
o

n
 E

rr
o

r 
[m

m
]

 

 

Constrained

Unconstrained

PCA

0 2 4 6 8 10
0

1

2

3

4

5

6

N=50, V=100

Noise

M
e

a
n

 C
o

n
s
tr

a
in

t 
V

io
la

ti
o

n
 [

m
m

]

 

 

Constrained

Unconstrained

PCA

(a) (b)

0 2 4 6 8 10
0

50

100

150

200

N=50, V=150

Noise

M
e

a
n

 R
e

c
o

n
s
tr

u
c
ti
o

n
 E

rr
o

r 
[m

m
]

 

 

Constrained

Unconstrained

PCA

0 2 4 6 8 10
0

1

2

3

4

5

6

N=50, V=150

Noise

M
e

a
n

 C
o

n
s
tr

a
in

t 
V

io
la

ti
o

n
 [

m
m

]

 

 

Constrained

Unconstrained

PCA

(c) (d)

Figure 5.4: Reconstructing a piece of cloth from synthetic data. (a,b) Reconstruction error and
constraint violation as a function of image noise for N = 50 and V = 100. (c,d) Similar errors for
N = 50 and V = 150. Our model was trained using inequality constraints.
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also rely on different strategies to account for constraints. Summing constraints, as described

above, is one such strategy. Another one consists in adding the most violated constraints to a set

of active constraints at each learning iteration. Training times for these different strategies are

given in Figure 5.2(right). Note that summing constraints decreases the training time dramat-

ically since it effectively reduces the number of constraints for the same number of unlabeled

samples. Iteratively adding constraints to an active set also noticeably reduces training time.

However, since the final iterations exploits all the constraints, this strategy does not allow us to

use more samples.

5.3.2 Synthetic Data

We first used the two motion capture datasets to generate synthetic data. To this end, we

sampled the barycentric coordinates of the ground-truth meshes and projected the resulting 3D

points with a known camera, thus creating 2D image measurements. We then added Gaussian

noise with standard deviation ranging between 0 and 10 to these measurements. At test time, we

optimized the latent variables, as well as the global rotation and translation, so that the predicted

3D shape minimizes the reprojection error with respect to the noisy image measurements. For

both datasets, we learned the models with N = 50 labeled examples and either V = 100 or

V = 150 unlabeled ones, and tested them on 300 samples. For each noise value, we used 5

different train/test partitions. Figs. 5.3 and 5.4 depict errors as a function of the image noise

standard deviation for the cardboard and cloth datasets, respectively. Note that our constrained

model consistently outperforms PCA and the unconstrained model for both reconstruction error

and constraint violation. Error bars on the plots represent ±1 standard deviation over the 5

different partitions. Note that the PCA model was learned from all the data, and therefore does

not depend on the partition. This remains a valid comparison, since only the baseline has access

to more data. Figure 5.5 depicts similar errors for our different constraint selection strategies.

Note that, while being faster to train, summing constraints yields less accurate reconstructions

for a given V .

5.3.3 Real Images with Ground-truth

To evaluate our model’s accuracy in realistic conditions, we performed experiments where the

images were captured with a Microsoft Kinect, which also provides us with ground-truth 3D
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Figure 5.5: Reconstructing a piece of cardboard using different constraint selection strate-
gies. Reconstruction error and constraint violation as a function of noise for N = 100 and
V = 100. The curves for the single and most-violated strategies overlap.

Equality Inequality

Reconstr. Constraint Reconstr. Constraint
Error [mm] Viol. [mm] Error [mm] Viol. [mm]

PCA 11.68 ± 0.00 1.71 ± 0.00 11.68 ± 0.00 2.09 ± 0.00
Unconstrained 9.35 ± 1.03 1.10 ± 0.23 9.35 ± 1.03 0.96 ± 0.09

Ours 7.23 ± 0.76 0.78 ± 0.03 8.03 ± 0.56 0.71 ± 0.13

Table 5.3: Reconstructing a piece of paper. Reconstruction error was computed with respect to
the Kinect ground-truth.

information, only used for evaluation purposes. We captured deformations of two different ma-

terials: a piece of paper and a t-shirt. As before, we used reprojection error as image loss, but

used SIFT to compute the correspondences between a reference image in which the 3D shape

is known and the other images of the sequence. For both materials, we learned the models with

N = 20 labeled and V = 50 unlabeled examples from the cardboard dataset, and, as before,

used 5 different training sets. Figure 5.6 depicts images of both sequences with our reconstruc-

tions. Tables 5.3 and 5.4 show errors averaged over the frames of the sequence when using

either equality, or inequality constraints. Here, reconstruction error was computed between the

predicted 3D locations of the feature points and their ground-truth Kinect locations. As with

synthetic data, our model outperforms the baselines for both constraint types.
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5.3 Experimental Evaluation

Figure 5.6: Real images with ground-truth. (Top two rows) Images of a deforming piece of paper
with reconstructed meshes seen from a different viewpoint. (Bottom two rows) Similar images for
a deforming t-shirt. In both cases, we show our reconstructions reprojected on the images.
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Equality Inequality

Reconstr. Constraint Reconstr. Constraint
Error [mm] Viol. [mm] Error [mm] Viol. [mm]

PCA 18.44±0.00 0.97±0.00 18.44±0.00 0.84±0.00
Unconstrained 15.50±1.78 0.92±0.22 15.50±1.78 0.75±0.14

Ours 14.79 ± 0.84 0.73 ± 0.05 14.35±0.90 0.60±0.07

Table 5.4: Reconstructing a deforming t-shirt. Reconstruction error was computed with respect
to the Kinect ground-truth.

5.3.4 Real Images without Ground-truth

For qualitative evaluation, we also applied our model to reconstructing two sequences of de-

forming cloth surfaces. In both cases, we used N = 500 labeled examples. Since the defor-

mations in the first sequence are relatively simple, we could use a small number of unlabeled

examples (V=150), and thus exploit all individual edge equality constraints when learning our

model. For the second sequence, which contains more complex deformations, we used sums

of constraints which let us employ more unlabeled examples (V=1500). In both experiments,

the image-based loss was taken as the normalized cross-correlation between the texture un-

der the optimized mesh and the texture in a reference image. In Figure 5.7, we compare our

results with those obtained with the baselines for the first sequence. Note that the shapes re-

constructed with our model better correspond to the ones in the images. Figure 5.8 depicts our

reconstructions on the second sequence. However, we encourage the reader to look at the full

comparison in the videos given as supplementary material. Since we have no ground-truth for

these sequences, we can only evaluate constraint violation. Figure 5.9 depicts this error for all

the frames in the sequences. Note that our method clearly outperforms the baselines in terms

of constraint satisfaction.

5.4 Conclusion

In this chapter, we have introduced a constrained latent variable model that encodes prior

knowledge about the desired output in the form of equality and inequality constraints. We

have shown that our approach can be kernelized, thus allowing for the use of non-linear kernels

that have proven effective in many computer vision tasks. Using both synthetic and real data,
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PCA Unconstrained Ours

Figure 5.7: Reconstructing a deforming bed sheet. Comparison of our reconstructions with
those of two baselines for two frames of the sequence. In each frame, we show the reconstructed
mesh reprojected on the original image, as well as a side view of the mesh.
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Figure 5.8: Reconstructing a deforming cushion cover. Reconstructions obtained with our
model for 3 frames reprojected on the original image, and seen from a different viewpoint.

10 20 30 40 50 60 70
0

2

4

6

# frame

C
o
n
s
tr

a
in

t 
V

io
la

ti
o
n
 [
m

m
]

 

 constrained

unconstrained

PCA

20 40 60
0

2

4

6

8

10

# frame

C
o
n
s
tr

a
in

t 
V

io
la

ti
o
n
 [
m

m
]

 

 constrained

unconstrained

PCA

(a) (b)

Figure 5.9: Constraint violation. Comparison of our model with two baselines for (a) the bed
sheet and (b) the cushion sequences.
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5.4 Conclusion

we have demonstrated that our model outperforms the commonly-employed ones for the pur-

pose of monocular 3D surface reconstruction, which is such an ambiguous problem that using

constraints effectively is a requirement for success. Furthermore, our formalism is extremely

general.
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CHAPTER

SIX

CONLUDING REMARKS

In this thesis we have presented various approaches for monocular 3D deformable surface

reconstruction problem. It is known to be an ambiguous problem when using feature points

or shading patterns observed on an input image. Existence of multiple 3D shapes that give

visually identical projections on the input image makes the problem challenging. In addition

to the inherent ambiguities associated with solving an inverse problem, image noise makes the

task even more difficult. Throughout the thesis, we have explored several means of resolving

these ambiguities in the surface reconstruction process by simultaneously exploiting various

kinds of image information and using priors and constraints.

In Chapter 3, we have presented an approach to deformable surface 3D reconstruction

that overcomes most limitations of state-of-the-art techniques. We have shown that we could

recover the shape of a non-rigid surface while requiring neither points to be tracked throughout

a whole video sequence nor a reference image in which the surface shape is known. To this end,

we only need a pair of images displaying the surface in two different configurations and enough

texture to establish correspondences. We believe this to be both a minimal setup for which a

correspondence-based 3D shape recovery technique could possibly work and a practical one

for real-world applications.

While texture-based methods, such as the one proposed in Chapter 3, have proven effec-

tive in surface reconstruction tasks, they are ill-equipped to handle partially-textured surfaces.

As our second contribution, in Chapter 4, we proposed a novel approach to recovering the 3D

shape of a deformable surface from a monocular input by taking advantage of shading informa-

tion in more generic contexts than conventional SfS methods. This includes surfaces that may
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be fully or partially textured and lit by arbitrarily many distant light sources. To this end, given

a lighting model, we learn the relationship between a shading pattern and the corresponding

local surface shape. At run time, we first use this knowledge to recover the shape of surface

patches and then enforce spatial consistency between the patches to produce a global 3D shape.

We have demonstrated the superior accuracy of our approach compared to state-of-the-art tech-

niques on both synthetic and real data.

Finally, in Chapter 5 we introduced a constrained latent variable model whose generated

output inherently accounts for geometric constraints such as inextensibility defined on the mesh

model. To this end, we learn a non-linear mapping from the latent space to the output space,

which corresponds to vertex positions of a mesh model, such that the generated outputs com-

ply with equality and inequality constraints expressed in terms of the problem variables. Since

its output is encouraged to satisfy such constraints inherently, using our constrained model re-

moves the need for computationally expensive methods that enforce them at run time. Using

both synthetic and real data, we have demonstrated that our model outperforms the commonly-

employed ones for the purpose of monocular 3D surface reconstruction, which is such an am-

biguous problem that using constraints effectively is a requirement for success. Furthermore,

our formalism is extremely general so that it could be used in many other vision tasks such as

image classification and human pose recovery.

Taken together, the presented methods in this thesis headway towards dissolving the men-

tioned disambiguates that exist in deformable surface reconstruction from a single view. We

believe that our methods represent a significant step towards making it of practical use. In the

remainder of this chapter, we discuss their limitations and directions to improve them.

6.1 Future Work

There are various ways in which our proposed methods can be improved. We briefly mention

the most interesting extensions below.

One way of extending our template-free reconstruction of Chapter 3 approach is to explore

the use of multiple frames to handle self-occlusions. In our current implementation, points

that are occluded in one of the two images cannot be reconstructed and we have to depend on

surface fitting using a local deformation model to guess the shape around such points. However,

since we can perform reconstruction from any two pairs of images, one can work on merging

the results and filling the gaps without having to rely solely on interpolation. In other words,
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given an input frame, one can use any other frame in the sequence as the support frame and

consider all the reconstructed point clouds simultaneously.

There is also space for improvement for the method we have presented in Chapter 4 that

is useful for reconstructing partially textured surfaces while simultaneously exploiting textural

and shading information. Even though our framework is general enough so that each com-

ponent could be replaced with a more sophisticated one. For instance, representations of the

lighting environment more sophisticated than spherical harmonics could be used to create our

training set. Similarly, other potentially nonlinear parametrizations of the patch intensities and

deformations could replace the current PCA mode weights. In addition, future work could

focus on estimating the lighting parameters from the sequence. To this end, partial recon-

structions for the textured regions of a surface would provide training data related with surface

normals and corresponding intensity variations. This data would then be used to estimate the

spherical harmonics coefficients describing the lighting environment.

The constrained latent variable model that we have presented in Chapter 5 can be poten-

tially useful for other Computer Vision tasks where there are constraints on the output. In our

future work, we will apply it on the human pose recovery problem where the human body is

modeled with a set of connected inextensible line segments. In addition to this, we aim to

integrate our method with the one presented in Chapter 4 to improve the reconstruction accu-

racy. To this end, we will apply our constrained learning framework to train a mapping from

intensity patterns to 3D shapes.
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APPENDIX

A

APPENDIX

To prove the claims in Chapter 5, we first rewrite the primal minimization problem that is

solved at each iteration t of the constraints linearization. Recall that we have a set L of N

labeled training pairs {xi,yi}, and a set U = UE ∪ UI of V unlabeled examples x̄u ∈ UE and

x̄v ∈ UI on which we impose equality (UE) and inequality (UI ) constraints. Our optimization

problem can be written in terms of the parameter updates δW and δε as

min
δW,δε

1

2
‖(Wt + δW)φ(x)−Y‖2F +

γ

2
‖Wt + δW‖2F +

α

2
‖ε + δε‖22 (A.1)

subject to C
(u)
t + GuδWφ(x̄u) = 0 ∀x̄u ∈ UE

D
(v)
t +

1

2
ε
(v)
t � ε

(v)
t + QvδWφ(x̄v) + ε

(v)
t � δε(v) = 0 ∀x̄v ∈ UI ,

where φ(x) = [φ(x1) · · ·φ(xN )] contains the feature map of the labeled inputs, Wt and εt

are the estimates at iteration t of the parameters W and of the slack variables ε, respectively,

and Y = [y1 · · ·yN ] is the matrix containing the training outputs. C(u)
t is the NE-dimensional

vector containing the value of the equality constraints for unlabeled example u at the current

prediction ŷu,t, and Gu is the NE ×D matrix encoding the gradient of these constraints with

respect to ŷu,t. Similarly,D(v)
t contains the value of theNI inequality constraints for unlabeled

example v at the current prediction ŷv,t, and Qv is the gradient of these constraints with respect

to ŷv,t.
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The Lagrangian of this problem can be expressed as

L =
1

2
‖(Wt + δW)φ(x)−Y‖2F +

γ

2
‖Wt + δW‖2F +

α

2
‖ε + δε‖22 (A.2)

+
∑
u

[
C

(u)
t + GuδWφ(x̄u)

]T
λEu +

∑
v

[
D

(v)
t +

1

2
ε
(v)
t � ε

(v)
t + QvδWφ(x̄v) + ε

(v)
t � δε(v)

]T
λIv ,

where λEu and λIv are the Lagrange multipliers associated with the equality and inequality

constraints for unlabeled examples u and v, respectively.

A solution to the original problem can be obtained by solving the Karush-Kuhn-Tucker

(KKT) conditions, which, in our case, can be stated as

∂L

∂δW
= 0 , (A.3)

∂L

∂δε
= 0 , (A.4)

C
(u)
t + GuδWφ(x̄u) = 0 , ∀x̄u ∈ UE , (A.5)

D
(v)
t +

1

2
ε
(v)
t � ε

(v)
t + QvδWφ(x̄v) + ε

(v)
t � δε(v) = 0 , ∀x̄v ∈ UI . (A.6)

Claim 1 Solving the KKT stationarity conditions given in Eq. (A.3) and (A.4) yields

δW = AZ−Wt , (A.7)

δε(v) = −
(

1

α
λIv + 1

)
� ε

(v)
t , ∀x̄v ∈ UI , (A.8)

respectively, where

A =

[
M−

∑
u

GT
uλ

E
uKu,: −

∑
v

QT
v λ

I
vKv,:

]
B−1 , (A.9)

Z =
[
φ(x) · · · φ(x̄u′) · · · φ(x̄s) · · · φ(x̄v′) · · ·

]T
, (A.10)

B = K:,LKL,: + γK:,: ,

M = YKL,: ,

with u′,s and v′ the indices of the unlabeled data in UE \UI , UE∩UI , and UI \UE respectively.

The kernel K:,: is defined as

K:,: = ZZT =

[
KL,L KL,U
KU ,L KU ,U

]
, (A.11)

and can be computed via standard kernel functions, e.g. RBF.
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Proof: The KKT stationarity conditions involve looking for solutions where ∂L
∂δW = 0 and

∂L
∂δε = 0. The derivative of the Langrangian with respect to δW can be computed as

∂L

∂δW
= [(Wt + δW)φ(x)−Y]φ(x)T+γ(Wt+δW)+

∑
u

GT
uλ

E
u φ(x̄u)T+

∑
v

QT
v λ

I
vφ(x̄v)

T .

(A.12)

By grouping terms and setting ∂L
∂δW = 0, we can write

δW = AZ−Wt , (A.13)

where

A =



− 1
γ [(Wt + δW)φ(x)−Y]T

...
− 1
γ

(
GT
u′λ

E
u′
)T

...
− 1
γ

(
GT
s λ

E
s + QT

s λ
I
s

)T
...

− 1
γ

(
QT
v′λ

I
v′
)T

...



T

, (A.14)

and Z =
[
φ(x) · · · φ(x̄u′) · · · φ(x̄s) · · · φ(x̄v′) · · ·

]T .

Since A still contains terms that depend on δW, we need to solve for A. To this end, we

replace δW in the Lagrangian with its value from Eq. A.13, which yields

L =
1

2
‖AZφ(x)−Y‖2F +

γ

2
‖AZ‖2F +

α

2
‖ε + δε‖22 (A.15)

+
∑
u

[
C

(u)
t + Gu(AZ−Wt)φ(x̄u)

]T
λEu

+
∑
v

[
D

(v)
t +

1

2
ε
(v)
t � ε

(v)
t + Qv(AZ−Wt)φ(x̄v) + ε

(v)
t � δε(v)

]T
λIv .

(A.16)

As before, to get a stationary point for A, we compute the derivative of the Lagrangian, which

can be written as

∂L

∂A
= [AZφ(x)−Y]φ(x)TZT +γAZZT +

∑
u

GT
uλ

E
u φ(x̄u)TZT +

∑
v

QT
v λ

I
vφ(x̄v)

TZT .

(A.17)
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Setting ∂L
∂A = 0 yields the linear system

A [K:,LKL,: + γK:,:]︸ ︷︷ ︸
B

= YKL,:︸ ︷︷ ︸
M

−
∑
u

GT
uλ

E
u φ(x̄u)TZT −

∑
v

QT
v λ

I
vφ(x̄v)

TZT , (A.18)

where B is an (N + V ) × (N + V ) matrix, which in general has full rank if γ > 0 and

N + V ≤ d (i.e., the dimensionality of the feature map). This lets us write

A =

[
M−

∑
u

GT
uλ

E
u φ(x̄u)TZT −

∑
v

QT
v λ

I
vφ(x̄v)

TZT

]
B−1 . (A.19)

By making use of the kernel definition of Eq. A.11, we can then write

A =

[
M−

∑
u

GT
uλ

E
uKu,: −

∑
v

QT
v λ

I
vKv,:

]
B−1 . (A.20)

This, in conjunction with Eq. A.13 stating that δW = AZ −Wt, concludes the proof of the

first part of Claim 1.

To prove the second part, we study the derivative of the Langrangian with respect to δε for

a particular unlabeled example. This derivative can be computed as

∂L

∂δε(v)
= α(ε

(v)
t + δε(v)) + λIv � ε

(v)
t ∀x̄v ∈ UI . (A.21)

Setting ∂L
∂δε(v)

= 0 yields

δε(v) = −
(

1

α
λIv + 1

)
� ε

(v)
t ∀x̄v ∈ UI , (A.22)

which requires α > 0. While, strictly speaking, this condition prevents us from having com-

pletely free inequalities, in practice, a small α would only regularize the slack variable very

weakly, thus effectively yielding true inequalities. This concludes the proof of the second part

of Claim 1.

Claim 2 The solution to the constraints encoded by the KKT primal feasibility conditions in
Eq. A.5 and Eq. A.6 takes the form λ = S−1r, where

λ =



λE1
...

λENE

λI1
...

λINI


, S =



SE,E1,1 . . . SE,E1,NE
SE,I1,1 . . . SE,I1,NI

...
...

...
...

...
...

SE,ENE ,1
. . . SE,ENE ,NE

SE,INE ,1
. . . SE,INE ,NI

SI,E1,1 . . . SI,E1,NE
SI,I1,1 . . . SI,I1,NI

...
...

...
...

...
...

SI,ENI ,1
. . . SI,ENI ,NE

SI,INI ,1
. . . SI,INI ,NI


, r =



rE1
...

rENE

rI1
...

rINI


,

(A.23)
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and

SE,Eu,a = GuG
T
a (Ka,:B

−1K:,u) ,

SE,Iu,b = GuQ
T
b (Kb,:B

−1K:,u) ,

SI,Ev,a = QvG
T
a (Ka,:B

−1K:,v) ,

SI,Iv,b = QvQ
T
b (Kb,:B

−1K:,v) + δv,b diag

(
1

α
ε
(v)
t � ε

(v)
t

)
,

rEu = GuMB−1K:,u −Guŷu,t + C
(u)
t ,

rIv = QvMB−1K:,v −Qvŷv,t +D
(v)
t −

1

2
ε
(v)
t � ε

(v)
t ,

with δv,b the Kronecker delta.

Proof: Given the solution for δW obtained from the previous claim, we can re-write the

equality constraints for a particular unlabeled example as

0 = GuδWφ(x̄u) + C
(u)
t (A.24)

= Gu

[(
M−

NE∑
a=1

GT
aλ

E
aKa,: −

NI∑
b=1

QT
b λ

I
bKb,:

)
B−1Z−Wt

]
φ(x̄u) + C

(u)
t .(A.25)

By making use of the kernel definition of Eq. A.11 and of the prediction equation, this can be

simplified as

GuMB−1K:,u−
NE∑
a=1

GuG
T
aλ

E
aKa,:B

−1K:,u−
NI∑
b=1

GuQ
T
b λ

I
bKb,:B

−1K:,u−Guŷu,t+C
(u)
t = 0 .

(A.26)

Using the solutions for δε(v) and δW, we can re-write the inequality constraints for a

particular unlabeled example as

0 =
1

2
ε
(v)
t � ε

(v)
t + QvδWφ(x̄v) + ε

(v)
t � δε(v) +D

(v)
t ,

=
1

2
ε
(v)
t � ε

(v)
t + Qv

[(
M−

NE∑
a=1

GT
aλ

E
aKa,: −

NI∑
b=1

QT
b λ

I
bKb,:

)
B−1Z−Wt

]
φ(x̄v) ,

−
(

1

α
λIv + 1

)
� ε

(v)
t � ε

(v)
t +D

(v)
t . (A.27)

As before, from the kernel definition of Eq. A.11 and the prediction equation, we obtain

0 = QvMB−1K:,v −
NE∑
a=1

QvG
T
aλ

E
aKa,:B

−1K:,v −
NI∑
b=1

QvQ
T
b λ

I
bKb,:B

−1K:,v −Qvŷv,t

−
(

1

α
λIv +

1

2
1

)
� ε

(v)
t � ε

(v)
t +D

(v)
t . (A.28)
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A. APPENDIX

Combining all constraints for all unlabeled examples allows us to write the following sys-

tems of linear equations

SE,E1,1 . . . SE,E1,NE
SE,I1,1 . . . SE,I1,NI

...
...

...
...

...
...

SE,ENE ,1
. . . SE,ENE ,NE

SE,INE ,1
. . . SE,INE ,NI

SI,E1,1 . . . SI,E1,NE
SI,I1,1 . . . SI,I1,NI

...
...

...
...

...
...

SI,ENI ,1
. . . SI,ENI ,NE

SI,INI ,1
. . . SI,INI ,NI





λE1
...

λENE

λI1
...

λINI


=



rE1
...

rENE

rI1
...

rINI


, (A.29)

where

SE,Eu,a = GuG
T
a (Ka,:B

−1K:,u) ,

SE,Iu,b = GuQ
T
b (Kb,:B

−1K:,u) ,

SI,Ev,a = QvG
T
a (Ka,:B

−1K:,v) ,

SI,Iv,b = QvQ
T
b (Kb,:B

−1K:,v) + δv,b diag

(
1

α
ε
(v)
t � ε

(v)
t

)
,

rEu = GuMB−1K:,u −Guŷu,t + C
(u)
t ,

rIv = QvMB−1K:,v −Qvŷv,t +D
(v)
t −

1

2
ε
(v)
t � ε

(v)
t .

This concludes the proof of Claim 2.

Claim 3 Prediction for any input x∗ in our kernelized model can be done in closed-form, and
can be written as

ŷ∗ = AK:,∗ , (A.30)

where

K:,∗ = Zφ(x∗) =
[
K∗,L K∗,U

]T
,

and A is defined in Eq. A.9.

Proof: The prediction can be computed as

ŷ∗ = Wφ(x∗) = (Wt + δW)φ(x∗) = AZφ(x∗) = AK:,∗ , (A.31)

where we made use of Eq. A.13. This concludes the proof of Claim 3.
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