

Abstract

Programs expressed in a high-level programming language need to be translated to a low-level

machine dialect for execution. This translation is usually accomplished by a compiler, which

is able to translate any legal program to equivalent low-level code. But for individual source

programs, automatic translation does not always deliver good results: Software engineering

practice demands generalization and abstraction, whereas high performance demands spe-

cialization and concretization. These goals are at odds, and compilers can only rarely translate

expressive high-level programs to modern hardware platforms in a way that makes best use of

the available resources.

Explicit program generation is a promising alternative to fully automatic translation.

Instead of writing down the program and relying on a compiler for translation, developers

write a program generator, which produces a specialized, efficient, low-level program as its

output. However, developing high-quality program generators requires a very large effort that

is often hard to amortize.

In this thesis, we propose a hybrid design: Integrate compilers into programs so that

programs can take control of the translation process, but rely on libraries of common compiler

functionality for help.

We present Lightweight Modular Staging (LMS), a generative programming approach

that lowers the development effort significantly. LMS combines program generator logic

with the generated code in a single program, using only types to distinguish the two stages

of execution. Through extensive use of component technology, LMS makes a reusable and

extensible compiler framework available at the library level, allowing programmers to tightly

integrate domain-specific abstractions and optimizations into the generation process, with

common generic optimizations provided by the framework. Compared to previous work on

program generation, a key aspect of our design is the use of staging not only as a front-end,

but also as a way to implement internal compiler passes and optimizations, many of which

can be combined into powerful joint simplification passes.

LMS is well suited to develop embedded domain specific languages (DSLs) and has been

used to develop powerful performance-oriented DSLs for demanding domains such as ma-

chine learning, with code generation for heterogeneous platforms including GPUs. LMS

has also been used to generate SQL for embedded database queries and JavaScript for web

applications.

Keywords Programming Languages, Compilers, Staging, Performance, Parallelism.

iii

Zusammenfassung

In einer “high-level” Programmiersprache geschriebene Programme müssen zur Ausführung

in einen “low-level” Maschinendialekt übersetzt werden. Diese Übersetzung wird üblicherwei-

se von einem Compiler durchgeführt, der jedes zulässige Programm in äquivalenten low-level

Code übersetzen kann. Für individuelle Quellprogramme führt die automatische Übersetzung

allerdings nicht immer zu einem guten Ergebnis: Anforderungen des Software-Engineering

(Generalisierung und Abstrahierung) stehen im Widerspruch zu denen hoher Rechenlei-

stung (Spezialisierung und Konkretisierung). Compiler können ausdrucksstarke Programme

nur selten auf eine solche Weise übersetzen, dass sie die verfügbaren Ressourcen moderner

Hardware-Plattformen in günstigster Weise ausnutzen.

Explizite Programmgenerierung is eine vielversprechende Alternative zur vollautomati-

schen Übersetzung. Anstatt ein Programm fertig auszuformulieren und sich auf einen Compi-

ler zur Übersetzung zu verlassen, können Entwickler einen Programmgenerator schreiben.

Dieser erzeugt ein spezialisiertes, effizientes low-level Programm als Ausgabe. Die Entwick-

lung qualitativ hochwertiger Programmgeneratoren erfordert allerdings einen sehr großen

Aufwand der schwer zu amortisieren ist.

Diese Dissertation schlägt ein Hybrid-Modell vor: Man integriere Compiler in Programme

so dass die Programme Kontrolle über den Übersetzungsvorgang übernehmen können wobei

sie von Bibliotheken gängiger Übersetzerfunktionalität unterstützt werden.

Wir präsentieren Lightweight Modular Staging (LMS), eine Methode zur Programmge-

nerierung die den Entwicklungsaufwand deutlich verringert. LMS verbindet Logik des Pro-

grammgenerators mit erzeugtem Code im gleichen Programm und unterscheidet die zwei

Ausführungsstufen anhand von Typen. Durch weitreichenden Einsatz von Komponenten

macht LMS ein erweiterbares Compiler Framework als Bibliothek verfügbar. Dies erlaubt

Prorammierern die enge Integration von Programm-spezifischen Abstraktionen und Optimie-

rungen in den Generatorprozess, wobei generische Optimierungen vom Framework bereit

gestellt werden. Ein wesentlicher Aspekt ist die Verwendung von Staging nicht allein als Front-

End sondern auch zur implementierung interner Compiler-Stufen.

LMS ist gut geeignet zur Entwicklung von Domain-Specifc Languages (DSLs) und wurde

erfolgreich eingesetzt um Performance-orientierte DSLs für anspruchsvolle Bereiche wie

Machine Learning zu implementieren, einschließlich Code Generierung für GPUs. LMS wurde

ebenfalls eingesetzt um SQL for eingebettete Datenbankabfragen und JavaScript für Web

Anwendungen zu erzeugen.

Schlagwörter Programmiersprachen, Übersetzer, Staging, Performance, Parallelismus.

v

Acknowledgments

I would like to thank my advisor Martin Odersky for giving me the opportunity to work on

exciting projects, introducing me to the right people at the right times, and betting a large ERC

grant proposal on my early ideas. I would also like to thank the members of my thesis jury,

Christoph Koch, Viktor Kuncak, Kunle Olukotun and Walid Taha for their time and helpful

comments. I am also grateful to my late MS advisor Walter Dosch for encouraging me to

pursue a PhD in the first place.

The work presented in this thesis is part of a large collaborative effort driven by many

people, both at EPFL and at Stanford University. It is hard to do justice to the profound and

numerous ways this thesis was shaped by the joint work on Delite with Kevin Brown, Hassan

Chafi, HyoukJoong Lee, Arvind Sujeeth, and Kunle Olukotun (Stanford). A huge thanks and

it’s a pleasure working with you! Additional thanks go to Adriaan Moors for the joint work

on Scala-Virtualized, Christopher Vogt for SIQ, Vlad Ureche for StagedSAC, Philipp Haller

and Manohar Jonalagedda for debugging and profiling facilities, Nada Amin and Grzegorz

Kossakowski for embedded JavaScript, Stefan Ackermann, Vojin Jovanovic and Aleksandar

Prokopec for distributed and collection operations (EPFL).

I would also like to thank everybody at LAMP, present and past, for providing a great and

enjoyable work environment.

Last but not least, I would like to thank my friends and my family for their support and for

providing a healthy counterbalance to work and research, in particular my parents and my

lovely wife Maria.

vii

Contents

1 Introduction 1

1.1 Embedded Compilers: A Hybrid Approach . 3

1.2 Lightweight Modular Staging . 4

1.3 Combining Staging and Extensible Compilers . 4

1.4 Deep Linguistic Reuse . 4

1.5 Abstraction Without Regret . 5

1.6 Language Virtualization . 5

1.7 Domain-Specific Languages (DSLs) . 5

1.8 Delite . 6

1.9 Contributions . 6

1.10 Terminology . 8

1.11 Outline . 8

2 Background 11

2.1 Economics of Productivity, Performance and Safety 11

2.2 Hardware Trends and Productivity Challenges . 12

2.2.1 Hitting the Power Wall . 12

2.2.2 Proliferation of Programming Models . 12

2.3 Domain-Specific Languages (DSLs) . 12

2.3.1 DSLs for Performance . 13

2.3.2 External DSLs . 13

2.3.3 Embedded DSLs . 13

2.4 Programming Language Trends and Performance Challenges 14

2.4.1 The Abstraction Penalty . 14

2.4.2 The General Purpose Bottleneck . 14

2.4.3 Static or Dynamic Compilation . 15

2.4.4 Combinatorial Explosion . 15

2.4.5 Functional Programming Challenges . 15

2.4.6 Scala Challenges . 16

2.4.7 JVM Challenges . 16

2.5 Staging and Generative Programming . 17

2.5.1 Multi-Stage Programming With Explicit Annotations 17

ix

Contents

2.5.2 Partial Evaluation . 17

2.5.3 Generative Front-Ends and Extensible Compilers 18

I Defining Embedded Programs 21

3 Intro: Staging as Meta Programming 23

4 Language Virtualization 27

4.1 Defining Language Virtualization . 27

4.1.1 Virtualization and Reflection . 28

4.2 Achieving Virtualization . 28

5 Scala-Virtualized 31

5.1 Everything is a Method Call . 32

5.1.1 Virtualizing Control Structures . 32

5.1.2 Virtualizing Method Calls . 33

5.1.3 Virtualizing Record Types . 34

5.1.4 Virtualizing Pattern Matching . 35

5.2 Putting Static Information to Work . 36

5.2.1 Virtualizing Static Type Information . 37

5.2.2 Virtualizing Static Source Information . 37

6 Staging: Deep Linguistic Reuse for Easier Program Generator Development 39

6.1 State of the Art . 39

6.1.1 Program Generation with Strings . 39

6.1.2 Program Generation with Quasi-Quotes 40

6.1.3 Syntactic Correctness through Deep Reuse of Syntax 40

6.1.4 Scope Correctness through Deep Reuse of Scope 41

6.1.5 Type Correctness through Deep Reuse of Types 41

6.1.6 Value Correctness is an Open Problem . 41

6.2 Contributions . 43

6.2.1 Value Correctness through Deep Reuse of Evaluation Order 44

6.2.2 Removing Syntactic Overhead . 46

6.2.3 Staging as a Library and Modular Definition of Object Languages 47

6.2.4 Functions and Recursion . 49

6.2.5 Semi-Automatic BTA through Deep Reuse of Type Inference 50

6.2.6 Generating and Loading Executable Code 51

II Compiling Embedded Programs 53

7 Intro: Not your Grandfather’s Compiler 55

x

Contents

8 Intermediate Representation: Trees 57

8.1 Trees Instead of Strings . 57

8.1.1 Modularity: Adding IR Node Types . 59

8.2 Enabling Analysis and Transformation . 59

8.2.1 Modularity: Adding Traversal Passes . 60

8.2.2 Solving the “Expression Problem” . 61

8.2.3 Generating Code . 61

8.2.4 Modularity: Adding Transformations . 61

8.2.5 Transformation by Iterated Staging . 62

8.3 Problem: Phase Ordering . 63

9 Intermediate Representation: Graphs 65

9.1 Purely Functional Subset . 65

9.1.1 Modularity: Adding IR Node Types . 66

9.2 Simpler Analysis and More Flexible Transformations 67

9.2.1 Common Subexpression Elimination/Global Value Numbering 67

9.2.2 Pattern Rewrites . 67

9.2.3 Modularity: Adding new Optimizations . 68

9.2.4 Context- and Flow-Sensitive Transformations 69

9.2.5 Graph Transformations . 69

9.2.6 Dead Code Elimination . 70

9.3 From Graphs Back to Trees . 71

9.3.1 Code Motion . 71

9.3.2 Tree-Like Traversals and Transformers . 74

9.4 Effects . 75

9.4.1 Simple Effect Domain . 75

9.4.2 Fine Grained Effects: Tracking Mutations per Allocation Site 75

10 Advanced Optimizations 79

10.1 Rewriting . 79

10.1.1 Context-Sensitive Rewriting . 79

10.1.2 Speculative Rewriting: Combining Analyses and Transformations 79

10.1.3 Delayed Rewriting and Multi-Level IR . 80

10.2 Splitting and Combining Statements . 81

10.2.1 Effectful Statements . 81

10.2.2 Data Structures . 81

10.2.3 Representation Conversion . 82

10.3 Loop Fusion and Deforestation . 83

III Staging and Embedded Compilers at Work 87

11 Intro: Abstraction Without Regret 89

11.1 Common Compiler Optimizations . 89

xi

Contents

11.2 Delite: An End-to-End System for Embedded Parallel DSLs 90

11.2.1 Building a Simple DSL . 91

11.2.2 Code Generation . 93

11.2.3 The Delite Compiler Framework and Runtime 93

12 Control Abstraction 95

12.1 Leveraging Higher-Order Functions in the Generator 95

12.2 Using Continuations in the Generator to Implement Backtracking 97

12.3 Using Continuations in the Generator to Generate Async Code Patterns 99

12.3.1 CPS and Staging . 100

12.3.2 CPS for Interruptible Traversals . 101

12.3.3 Defining the Ajax API . 103

12.3.4 CPS for Parallelism . 104

12.4 Guarantees by Construction . 106

13 Data Abstraction 109

13.1 Static Data Structures . 109

13.2 Dynamic Data Structures with Partial Evaluation 110

13.3 Generic Programming with Type Classes . 112

13.4 Unions and Inheritance . 113

13.5 Struct of Array and Other Data Format Conversions 113

13.6 Loop Fusion and Deforestation . 115

13.7 Extending the Framework . 116

14 Case Studies 119

14.1 OptiML Stream Example . 119

14.1.1 Downsampling in Bioinformatics . 119

14.2 OptiQL Struct Of Arrays Example . 123

14.3 Fast Fourier Transform Example . 124

14.3.1 Implementing Optimizations . 126

14.3.2 Running the Generated Code . 126

14.4 Regular Expression Matcher Example . 127

IV Validation and Evaluation 131

15 Intro 133

16 Delite 135

16.1 Building Parallel DSLs Using Delite . 135

16.1.1 Building an Intermediate Representation (IR) 135

16.1.2 Heterogeneous Target Code Generation 137

16.2 Executing Embedded Parallel DSLs . 138

16.2.1 Scheduling the Delite Execution Graph (DEG) 139

xii

Contents

16.2.2 Generating Execution Plans for Each Hardware Resource 139

16.2.3 Managing Execution on Heterogeneous Parallel Hardware 140

16.3 Putting It All Together . 141

16.4 Delite DSLs . 141

16.4.1 OptiML . 141

16.4.2 OptiQL . 141

16.4.3 OptiMesh . 142

16.4.4 OptiGraph . 143

16.4.5 OptiCollections . 143

16.4.6 DSL Extensibility . 144

16.4.7 DSL Interoperability . 145

16.5 Performance Evaluation . 146

16.5.1 Discussion . 150

16.5.2 OptiML vs C++ Performance Measurements 150

17 Other Projects 153

17.1 StagedSAC . 153

17.2 Scala Integrated Query (SIQ) . 154

17.3 Jet: High Performance Big Data Processing . 154

17.4 JavaScript as an Embedded DSL . 155

17.4.1 Sharing Code between Client and Server 156

17.4.2 Evaluation . 157

18 Related Work 159

xiii

Chapter 1

Introduction

Computer programs are written by humans and executed by machines. But humans and

machines do not speak the same language. Programs expressed in a high-level programming

language convenient for human programmers need to be translated to a low-level machine

dialect. This translation is usually accomplished by a separate program, a compiler. Compil-

ers can translate any legal program to equivalent low-level code. But for individual source

programs, automatic translation does not always deliver good results.

High-level programming languages such as Scala increase development productivity

by focusing on abstraction and generalization. Efficient execution, by contrast, demands

concretization and specialization. In many cases, programmers are forced to rewrite large

parts of their own and possibly third-party code in a low-level style, which is time consuming

and makes the program harder to understand and maintain. How can we scale productivity

gains to performance-critical software?

On the hardware side, performance increasingly depends on multi-core processors and

specialized accelerators such as GPUs, which are much harder to program efficiently than

traditional sequential processors. The trend towards heterogeneous execution targets is

not just performance driven, though. Web applications, for example, must deliver client

components as executable JavaScript. Similar constraints apply to apps for mobile devices.

How can we target heterogeneous platforms from single high-level programs?

In broad terms, these are the research questions this thesis seeks to address. The software

industry is facing a difficult tradeoff: Hardware developments and heterogeneous targets

pose increasing productivity challenges, and expressive programming languages pose growing

performance challenges. Compilers have not kept pace for two primary reasons:

1. Abstraction penalty: High level programs contain a lot of indirection and redundant

dispatch overhead due to module and abstraction boundaries which are essential for

productivity. These indirections impose a runtime cost and perhaps more importantly,

they cloud the compiler’s view of the program so that it becomes much harder to apply

optimizations.

2. Lack of domain-specific optimizations: To obtain good performance a compiler needs

to optimize programs based on semantic knowledge about the program operations.

1

Chapter 1. Introduction

General purpose language compilers can only perform generic optimizations but cannot

employ knowledge about the specific application domain (particularly important for

efficient parallelization).

Other reasons include:

1. Dependence on program input: Domain specific optimizations or abstraction over-

head may depend on parts of the program input, which is not available at compile

time.

2. Overwhelming number of choices: An optimizing compiler is confronted with a large

set of choices with uncertain outcomes. Exploring them all is not tractable for large

programs.

An alternative to automatic program translation is explicit program generation. In this

case, programmers write a high-level program that produces a lower-level program as its

output. This approach has the potential to solve the issues listed above but comes with a set

of other challenges:

1. Not much support to build program generators. Compilers are well understood. The

development effort for a new (general purpose) compiler is large but it can be amortized

over a huge number of programs. Program generators are less widespread and more spe-

cialized. There is much less practical experience to draw from. The development effort

is also large but the scope of use is much narrower. Thus, building program generators

is only feasible for key libraries (FFT, BLAS), not for everyday programming. Specialized

multi-stage programming languages[133] aim to increase productivity in building code

generators by providing special syntax that allows to mark staged program expressions

that will become part of the generated program (as opposed to the generator). While

there are certain well-formedness and type safety guarantees, the program abstraction

is still essentially syntactic, and programmers have to explicitly manage the execution

order of staged expressions. This makes it hard to avoid subtle errors caused by dupli-

cating or reordering computation. Moreover, since the original intention is to generate

low-level programs, it is often desirable to have a more restricted target language.

2. Lack of generic optimizations. Program generators can easily implement domain

specific optimizations that are expressible as specializations of a certain template. But to

work well in a more general setting, they also need to apply all the generic optimizations

of a regular compiler. Generic and specific optimizations need to be integrated for

maximum effectiveness. This means that common compiler optimizations that, for

example, remove redundant or unnecessary computations or move computation out of

loops, need to be applied on the level of domain operations, for example, on matrix and

vector operations in a linear algebra program. Applying these common optimizations

only on the level of generated low-level code is too late. For example, a duplicated matrix

multiplication will lead to two sets of nested loops that a low-level compiler cannot

easily recognize as identical. This is a key reason why compiler preprocessors and macro

systems are only suited for a limited range of optimizations.

2

1.1. Embedded Compilers: A Hybrid Approach

1.1 Embedded Compilers: A Hybrid Approach

In this dissertation we investigate an alternative approach to fully automatic translation or

fully manual program generation. We propose a hybrid design: integrate compilers into

programs so that programs can take control of the translation process, but rely on libraries of

common compiler functionality for help. This raises three important questions. If compilers

are embedded into programs then:

1. What language does an embedded compiler understand? Compared to general-pur-

pose languages, embedded compilers understand simpler but larger languages. Their

languages are domain specific: they provide only a minimum of abstraction facilities

but lots of concrete operations with efficient translations. Embedded compilers are

essentially libraries. They are modular and extensible through modularity features of

the language they are written in. For the embedded languages, core constructs and

generic optimizations are provided by a framework. New domain specific features

and optimizations can be added by additional libraries or by the application itself.

Depending on the code generation target, compiler modules exist that lift large parts of

the standard library of the enclosing language to the embedded domain and add library

specific optimizations.

2. Which programs does an embedded compiler translate? Embedded compilers do not

implement lexers, parsers or type checkers. They rely on the surrounding program to

provide input in an intermediate representation (IR). Embedded compilers expose the

syntax of their language as an API that the program can use to create and assemble IR

expressions. This API behaves just like a library that would otherwise directly execute

the operations, but instead it creates IR nodes. In this thesis, expressions that create IR

nodes are identified by their type. Many operations on regular values are lifted to the

domain of IR nodes. The types of the arguments define which version is used, whether

the operation is executed directly or an IR node created. Compiler API calls and direct

computation can be mixed freely in the same program. This way, the program can

resolve indirection and abstraction overhead through immediate computation and will

create IR expressions only for those operations that need to run fast.

3. What is the output of an embedded compiler? The final output of an embedded com-

piler is low-level source or binary code in one or more target languages (e.g. Scala, C,

assembly, CUDA, JavaScript, SQL) that the program can load and run at its convenience.

Embedded compilers can also be layered to form multi-pass compilation pipelines. In

that case, the program traverses (i.e. interprets) the IR-form output of one compiler and

computes input for another, possibly lower-level compiler. Thus, program transforma-

tion passes can take advantage of the same benefits as the initial program generation.

Most importantly, they need not implement low-level IR manipulation but use the

regular compiler API, intermixed with direct computation to resolve abstraction.

The rest of this thesis will explain the technical details and demonstrate the validity and

usefulness of this approach.

3

Chapter 1. Introduction

1.2 Lightweight Modular Staging

Embedded compilers try to overcome the performance and productivity gap by leveraging

productivity where performance does not matter and vice versa: Generating embedded

programs and compiling them is not performance critical but productivity is paramount to

make the development of staged programs and embedded compilers affordable. Embedded

programs need to run fast but they are generated programmatically and not written by humans,

so programmer productivity is not a concern.

Programming with embedded compilers makes a pattern explicit that is found in many

programs, namely a division into computational stages, separated by frequency of execution

or availability of information [68]. Thus, embedded compilers can be seen as a form of multi-

stage programming (MSP) [130]. We will refer to the program phase of constructing embedded

program IR nodes via the embedded compiler API as staging time. The particular method,

developed throughout this thesis, is called lightweight modular staging (LMS) [110, 111].

Compared to previous multi-stage programming approaches, LMS uses types to identify stages

instead of syntax annotations, provides execution order guarantees, and offers a principled

interface for extensible optimizations.

1.3 Combining Staging and Extensible Compilers

In order to reason about user or library defined abstractions compilers need to be extensi-

ble. Common mechanisms to extend compilers fall into two categories. Frontend macros,

staging or partial evaluation systems can be used to programmatically remove abstraction

and specialize programs before they enter the compiler. Alternatively, some compilers allow

extending the internal workings by adding new transformation passes at different points in

the compile chain or adding new IR types. None of these mechanisms alone is sufficient to

handle the challenges posed by high level abstractions such as domain specific data structures.

We present a novel way to combine them to yield benefits that are greater than the sum of the

parts.

Instead of using staging merely as a front end, we implement internal compiler passes

using staging as well. These internal passes delegate back to program execution to construct

the transformed IR. Staging is known to simplify program generation, and in the same way it

can simplify program transformation. Defining a transformation as a staged IR interpreter

is simpler than implementing a low-level IR to IR transformer. Custom IR nodes can be

added easily and many optimizations that are expressed as rewritings from IR nodes to staged

program fragments can be combined into a single pass, mitigating phase ordering problems.

Speculative rewriting can preserve optimistic assumptions around loops.

1.4 Deep Linguistic Reuse

Similar to previous MSP approaches, LMS leverages linguistic reuse [80] to increase produc-

tivity for developing program generators by expressing program generator and generated

4

1.5. Abstraction Without Regret

code in a single program. We distinguish mostly syntactic shallow reuse from deep reuse that

includes a nontrivial translation step: We say that we are reusing a language feature of the

surrounding language in a deep way in embedded programs if the embedded compiler and

its language do not need to implement the particular feature. Reusing the type system of the

embedding language to produce type-correct target code without implementing type checking

in an embedded compiler is an example of deep reuse. Deep reuse is key for productivity as it

drastically simplifies embedded compiler development.

1.5 Abstraction Without Regret

As explained earlier, abstraction and generalization enable productivity but hinder perfor-

mance by incurring interpretive overhead at runtime and obscuring semantic information at

compile time, which complicates static analysis.

Deep reuse of abstraction facilities like functions or objects enables “abstraction without

regret”: Programmers can use arbitrary language features to structure their programs in the

generator stage, with the comforting knowledge that these abstractions are guaranteed to be

removed at staging time. No runtime price will need to be paid, and the embedded compiler

will see a program that has the abstraction stripped away. Thus, deep reuse is also important

for performance. We demonstrate deep reuse of a variety of language features including

functions, continuations, type classes, and staging-time data structures.

1.6 Language Virtualization

Coupled with an expressive general purpose language, embedded compilers are a key com-

ponent to enable what we call language virtualization [19]: Tweaking the language so that

other languages can be embedded in it and embedded programs are “as good as” stand-alone

programs. Of course “as good as” has many facets (expressiveness, safety, performance).

Embedded compilers enable the performance aspect, which is otherwise a key obstacle for

providing domain specific abstractions as libraries as opposed to building full fledged external

domain specific languages.

This thesis presents Scala-Virtualized, an effort in virtualizing the Scala programming

language. We understand virtualization also in the sense of virtual (i.e. overridable) methods,

making core language features overridable. Overriding control structures such as conditionals

is necessary to provide variants that create IR nodes for embedded compilers.

1.7 Domain-Specific Languages (DSLs)

With embedded compilers, developers can program with efficiently compiled domain-specific

abstractions without having to build a complete DSL and a separate compiler toolchain. In

other words, embedded compilers significantly enhance the power of the embedded DSL

approach [58] of implementing DSLs as domain-specific libraries in an expressive general

purpose host language.

5

Chapter 1. Introduction

Programmers get most of the benefits of a full external DSL (domain specific abstractions,

efficient compilation; minus domain specific syntax) without the drawbacks (DSL develop-

ment effort, overhead of several DSLs in a single program). They also get the benefits of an

embedded DSL or a domain-specific library (familiar constructs across different domain-

specific extensions: loops, functions, etc). Many host language libraries can be lifted to the

compiled DSL domain, so that DSLs need not implement standard library functionality. DSLs

can be built from components and interoperate through the host language.

1.8 Delite

We have implemented the concepts described in this thesis as part of the LMS-Core and

Delite frameworks, which are the basis for a number of highly efficient embedded DSLs

[126, 11, 113, 127, 83]. Delite is a parallelization and heterogeneous computing platform that

started out as a library-based deferred execution runtime [18]. Version 2 of Delite uses LMS

and embedded compilation with very good results to provide a full-stack embedded DSL

framework.

Among the DSLs developed using Delite are the following:

• OptiML / OptiLA: Machine Learning and linear algebra

• OptiQL / OptiCollections: Collection and query operations

• OptiMesh: Mesh-based PDE solvers

• OptiGraph: Graph analysis

More details about Delite and the individual DSLs are presented in Chapter 16.

1.9 Contributions

In addition to demonstrating the power and usefulness of LMS and embedded compilers on

the whole this thesis makes the following individual contributions:

Staging

• We present staging combinators that maintain the relative execution order of expres-

sions within a stage. In previous work, arbitrary and context free combination of code

fragments (plain strings or quasi-quoted expressions) may reorder effects or slow down

programs by duplicating computation. We build on previous work on let-insertion, and

on partial evaluation with side effects [137].

• We implement staging facilities as a library, with only minimal language support (virtual-

ized control structures) and without extra syntax. Types within the language distinguish

stages, and type inference provides a semi-automatic local binding-time analysis (BTA).

Thus, the approach shares features of automatic partial evaluation and manual staging.

6

1.9. Contributions

Previous work focused on dedicated MSP languages with explicit quasi-quote syntax

(Lisp, MetaML), or on fully automatic partial evaluation. We build on previous work on

embedding typed languages [55, 15].

• We combine staging with extensible compilation. In particular, staged IR interpreters

act as IR transformers. Thus we show that staging is not only beneficial for program

generation but also for program transformation. Among the previously presented MSP

languages, some (but not all) allow inspection of staged ASTs but in general there are

no facilities to integrate domain specific optimizations into the compilation pipeline of

staged expressions.

• We present applications and case studies that use advanced host language abstractions

as part of code generator and obtain the effect of those abstractions in generated code

without overhead (abstraction without regret) and without much additional work (deep

linguistic reuse). In particular we discuss closures, continuations, type classes, trait-

s/objects, gradual typing, object literals, for comprehensions and pattern matching.

Many staged applications presented previously used monadic front-ends, or explicit

interpreters that were staged to remove overhead.

Compiler Architecture

• We present an extensible compiler architecture that allows to compose many inde-

pendent optimizations and maintains optimistic assumptions for combined optimiza-

tions through speculative rewriting. In previous work, extensible compilers are often

restricted to adding new phases and implementing combined optimizations often re-

quires manually devising complicated superanalyses. We build on previous work on

combining data flow analyses [85].

• We present a structured “sea of nodes” IR with nesting, frequency and parallelism infor-

mation. On this IR we implement a code motion algorithm that can rearrange structured

expressions such as nested loops or lambdas. The algorithm is driven by nesting instead

of dataflow information. Most previously presented code motion algorithms rely an

dataflow information which precludes their use for situations where flow information is

not available.

• We present a novel data structure traversal and loop fusion algorithm that handles

high-level data parallel loops and also supports asymmetric traversal operations, includ-

ing flatMap and groupBy. In previous work, imperative loop fusion has been studied

extensively but most algorithms only support flat array traversals, no flatMap, filter,

or groupBy. In the functional setting, deforestation [153] and stream fusion [30] are able

to combine linear traversals but neither data parallel loops nor groupBy.

Artifacts (developed in collaboration with others)

• Scala-Virtualized (Chapter 5): An extension of the Scala language to make embeddings

more seamless.

7

Chapter 1. Introduction

• LMS-Core framework (Chapter 9): Common building blocks for core language features,

lifting parts of the Scala standard library, generic optimizations.

• Delite DSL framework (Chapter 16): Data parallel operations and code generation for

heterogeneous parallel devices.

• Various DSLs (Section 16.4, Chapter 17)

1.10 Terminology

Since much of the implementation work has been carried out in the context of compiled em-

bedded DSLs that share common generic functionality, we will use the term “DSL” frequently

with a broad meaning, for example to refer to arbitrary library modules that can construct

program fragments for an embedded compiler (domain specific or not). Drawing a clear

distinction between embedded DSLs and regular libraries seems like a futile undertaking in

general. Moreover, we will use the following terms interchangeably (per line) except where

otherwise noted:

host language meta language surrounding language

embedded language object language DSL

embedded program object program DSL program

embedded compiler DSL compiler

If further precision is required, we take the term object program to denote a program

expressed in an embedded compiler’s IR representation and DSL program to denote the larger

class of programs that may also contain operations that are evaluated at staging time. Likewise,

object language refers to the language of an embedded compiler whereas DSL is the user-facing

language that may contain staging-time operations.

1.11 Outline

Chapter 2 gives background information on hardware developments (Section 2.2), program-

ming language advances (Section 2.4) and their respective challenges. Section 2.3 discusses

domain-specific languages. Section 2.5 presents background on staging and generative

programming.

Then two technical parts follow. The question Part I seeks to answer is: How do we

define programs for embedded compilers? Correspondingly, Part II seeks to answer: How do

embedded compilers compile these programs?

Within Part I, Chapter 3 reviews multi-stage programming as a way of increasing produc-

tivity in program generator development by linguistic reuse, namely embedding generated

code templates and generation logic in a single program. Chapter 4 discusses language virtu-

alization. Chapter 5 introduces Scala-Virtualized. Chapter 6 discusses staging from the point

8

1.11. Outline

of view of linguistic reuse, Section 6.1 reviews the state of the art and Section 6.2 presents

the contributions of LMS, as far as they apply to generating concrete syntax from staged

expressions.

Within Part II, Chapter 7 switches to the intermediate representation level and gives an

overview of the challenges that embedded compilers face and the design decisions taken

in this thesis. Chapter 8 discusses a straightforward intermediate representation based on

expression trees. Chapter 9 presents a more refined, graph-based representation that is better

suited to extreme modularity. Chapter 10 discusses advanced optimizations.

Part III demonstrates staging and embedded compilers at work, discussing small but

in-depth examples, in particular how embedded compilers provide abstraction without regret.

Chapter 11 presents an overview, Chapter 12 focuses on control abstraction and Chapter 13 on

data abstraction. Chapter 14 discusses case studies related to data representation conversion

and loop fusion, as well as more common staging challenges.

Part IV provides additional validation and evaluation by describing larger projects that

use the techniques developed in this thesis. Chapter 16 discusses the Delite DSL Framework.

Section 16.4 discusses individual Delite DSLs. Chapter 17 discusses other projects (StagedSAC,

SIQ, Jet embedded JavaScript). Chapter 18 finishes by surveying related work.

9

Chapter 2

Background

This chapters expands upon some of the topics from the introduction, such as hardware trends,

programming language trends, domain specific languages and generative programming. The

discussion focuses on the prior state of the art, not including the contributions of this thesis.

2.1 Economics of Productivity, Performance and Safety

Software development is largely driven by economic concerns. Project managers and devel-

opers face a dilemma in choosing their tools: On the one hand, it is desirable to write very

high level code and use programming abstractions close to the problem domain, while on the

other hand, software is required to be efficient.

High-level abstractions make code easy to write and modify, thus economizing on devel-

opment and maintenance hours. At the same time, high-level code is easy to understand for

others. It is easier to reuse and adapt for new projects, so development efforts are more likely

to amortize in the long run. In addition, the closer executable code is to a formal or informal

specification, the easier it is to verify and test, reducing the chance of costly bugs in the field.

Efficiency comprises low resource demands, so the system can be deployed on inexpensive

hardware, as well as the system itself achieving low latency and high throughput.

Manually optimizing programs for performance incurs a great loss in productivity. Pro-

grammers typically start with a high-level implementation and translate it to low-level, high

performance code in a time-consuming process. This optimization process obfuscates the

programmer’s intent and makes the code harder to understand, debug and maintain. The

low-level code is tied to hardware details (e.g. cache-line size, number of processor cores)

and is not easily portable to different architectures. A specification change may require re-

optimizing the high-level code, or worse, the optimized code is modified and the high-level

reference implementation is no longer in accordance with the specification. The use of low-

level programming models is also detrimental to program safety because low-level code is

more likely to attract bugs and is harder to verify correct. From a safety point of view, code

generation and program synthesis are preferable to low-level post-hoc verification.

In other cases obtaining peak performance is not the primary objective but developers

11

Chapter 2. Background

need to cope with a heterogeneous programming environment due to external reasons. In-

terfacing with relational databases, for example, happens through SQL statements. Web

applications contain server and client functionality where the client part that is supposed

to run inside a web browser has to be provided as JavaScript code. This split makes it hard

to refactor programs and move pieces of functionality from the server to the client or vice

versa. Thus, equivalent functionality is often duplicated. In the case of web applications, input

validation logic is frequently implemented twice, to be executed on the client for responsive-

ness and on the server for security. Both versions must be maintained independently and if

validation logic is accidentally changed in only one place there is a potential security risk.

2.2 Hardware Trends and Productivity Challenges

2.2.1 Hitting the Power Wall

Power constraints have limited the ability of microprocessor vendors to scale single-core

performance with each new generation. Instead, vendors are increasing the number of

processor cores and incorporating specialized hardware such as GPUs and SIMD units to

improve performance [61].

2.2.2 Proliferation of Programming Models

To take advantage of heterogeneous systems, programmers need expertise in a variety of

programming models (Pthreads or OpenMP for multi-core CPU, OpenCL or CUDA for GPU,

MPI for clusters [136, 96]). An efficient mapping of an application to a heterogeneous architec-

ture needs to match the characteristics of the application to the different capabilities of the

hardware. At this time, there are no compilers or other automatic solutions that can reliably

create efficient mappings for entire programs. This suggests that for each application and for

each computing platform a specialized mapping must be created by a programmer that is an

expert in the specific domain as well as in the targeted parallel architecture. This approach

is unsatisfactory and likely infeasible at scale, as it incurs an explosion and fragmentation of

mapping solutions. The key challenge is to find ways to take good mapping solutions created

by experts and reuse them for larger classes of programs or entire application domains.

2.3 Domain-Specific Languages (DSLs)

One way to capture application-specific knowledge for a whole class of applications and

simplify application development at the same time is to use a domain specific language (DSL).

A DSL is a concise programming language with a syntax that is designed to naturally express

the semantics of a narrow problem domain [143]. Examples of commonly used DSLs are TeX

and LaTeX for typesetting academic papers, Matlab for prototyping numerical linear algebra

algorithms, and SQL for querying relational databases.

12

2.3. Domain-Specific Languages (DSLs)

2.3.1 DSLs for Performance

DSLs have a long history of increasing programmer productivity by providing extremely high-

level, in a sense “ideal”, abstractions tailored to a particular domain. Performance-oriented

DSLs strive to also make the compiler more productive (producing better code) by enabling

it to reason on a higher level as well. While productivity and performance are often at odds

in general-purpose languages, DSLs can expose significantly more semantic information

about the application in addition to providing a means of writing concise, maintainable code.

This semantic information, obtained in particular through domain constructs that expose

structured, coarse-grained parallelism, makes it feasible for a DSL compiler to generate high

performance code targeting parallel heterogeneous architectures, from high-level, single-

source application code [18].

2.3.2 External DSLs

Despite the benefits of performance oriented DSLs, there are significant challenges to their

widespread adoption. The dominant approach is to implement a DSL compiler tool chain

from scratch. First, the cost of developing a DSL to a sufficient degree of maturity is immense

and it is unclear whether this investment can be be made time and time again for all possible

domains. This means that many DSLs will likely be immature and buggy. They will not

provide state of the art tooling (IDEs, debuggers, profilers), they will be lacking in terms of

modularity, and they are unlikely to support advanced programming constructs like objects

or higher order functions due to their restricted execution model. Tools like Spoofax [71]

address some of these issues by providing infrastructure for not only defining DSLs but also

associated components like IDE editors and debuggers. There is also a tendency for DSLs to

accumulate general purpose features over time but the implementation of those features will

be substandard compared to general purpose languages (“inner platform effect”). Second,

significant applications may need to use several DSLs. Having to use multiple different,

incompatible, and immature DSLs to get high performance is not a clear advantage over the

current low-level programming approach with multiple frameworks.

2.3.3 Embedded DSLs

Embedded, or internal DSLs require significantly less investment for development and use,

especially if they are well integrated with the host language and environment [58, 59]. Such

DSLs can be used like libraries and DSL programs can use regular host language syntax. Since

embedded DSL programs can interoperate more easily with one another and with generic code

written in the host language, programmers do not need to learn different syntax for common

features and much of the host language tooling can be reused. However, embedded DSLs

usually cannot perform optimizing transformations or compile to platforms not supported by

the host language. Therefore, they are limited in the performance they can achieve on modern

hardware. Individual compiled embedded DSLs have been studied [42, 84] but no general

frameworks for their construction have emerged yet.

13

Chapter 2. Background

2.4 Programming Language Trends and Performance Challenges

General-purpose languages focus on primitives for abstraction and composition, so that

programmers can build large systems from few and relatively simple but versatile parts.

Modern expressive languages allow to build domain-specific language extensions as libraries

(in fact, purely embedded DSLs). However, the compiler has no knowledge about the extended

semantics.

2.4.1 The Abstraction Penalty

High-level programming languages such as Scala increase development productivity by fo-

cusing on abstraction and generalization. In fact, building and managing complex software

systems is only possible by generalizing functionality and abstracting from particular use

cases. But abstraction does not come for free. Efficient execution, by contrast, demands con-

cretization and specialization. These requirements are at odds. High level programs contain a

lot of indirection and redundant dispatch overhead due to module and abstraction boundaries

which are essential for productivity.

These indirections incur interpretive overhead and thus impose a runtime cost. Perhaps

more importantly, they also cloud the compiler’s view of the program so that it becomes

much harder to apply optimizations. Control flow analysis is a prerequisite for many other

optimizations, but higher order control flow analysis is a tough problem because the flow of

control depends on the flow of data, which again depends on the flow of control [145, 38].

2.4.2 The General Purpose Bottleneck

To obtain good performance a compiler needs to optimize programs based on semantic

knowledge about the program operations. General purpose language compilers can only

perform generic optimizations but cannot employ knowledge about the specific application

domain. Domain knowledge is particularly important for efficient parallelization.

General-purpose compilers do not understand the semantics of the complex operations

performed within an application. Reasoning across domain constructs, however, enables

more powerful and aggressive optimizations that are infeasible otherwise. Because of the

general-purpose nature needed to support a wide range of applications, compilers can usually

infer little about the structure of the data or the nature of the algorithms the code is using. By

contrast, DSL compilers can use aggressive optimization techniques using knowledge of the

data structures and algorithms derived from the DSL.

General-purpose languages impose very few restrictions on programmers which in turn

requires the compiler to perform non-trivial analyses to prove that optimizations are safe.

Unfortunately, safety of optimizations often cannot be determined and therefore the compiler

must be conservative and not apply the optimization to guarantee correctness of the generated

code.

Performance-oriented DSLs can take the opposite approach to the problem, namely re-

strict the programmer from writing code that would prevent the compiler from generating

14

2.4. Programming Language Trends and Performance Challenges

an efficient implementation. The compiler is then able to perform very aggressive optimiza-

tions with much simpler or even without safety analyses, providing the programmer with

efficient code for significantly less effort. For example, a program requiring graph-analysis

would express graph traversals using a breadth-first search or depth-first search language

construct without spelling out the implementation of such traversals [57]. A corresponding

domain-specific compiler can reason about the program at the level of domain operations,

enabling coarse grain optimizations, for example eliminating whole linear algebra operations

as opposed to individual arithmetic instructions. Furthermore, these abstractions leave im-

plementation details unspecified, providing the compiler with the freedom to translate the

application to a number of different low-level programming models.

2.4.3 Static or Dynamic Compilation

Domain specific optimizations or abstraction overhead may depend on parts of the program

input, which is not available at compile time.

Programs can be compiled either ahead of time or just in time (JIT). Some modern lan-

guage environments such as the Java Virtual Machine (JVM) employ a combination of these

techniques. Virtual machines that employ JIT compilation obtain some information on dy-

namic behavior of the program, for example by call-site specific profiling or class analysis

(HotSpot/V8). Nevertheless, compilation happens mostly automatically and it is hard for JIT

compilers to guess the right specialization points. While VMs employ aggressive inlining they

do not usually generate multiple specialized code paths based on program data (monovariant

specialization only).

2.4.4 Combinatorial Explosion

An optimizing compiler is confronted with an overwhelmingly large set of choices with uncer-

tain outcomes. It cannot possibly explore all of them and must rely on heuristics which, by

their very nature, work some but not all of the time.

2.4.5 Functional Programming Challenges

Functional programming presents lots of theoretical opportunities for program optimization

due to referential transparency: Evaluating a particular expression produces always the same

result, independent of the context. Expressions can be reordered or eliminated as long as input

dependencies are maintained. Control and anti-dependences do not exist in pure functional

programs. This simplicity is also exploited by mostly-functional intermediate representations

such as SSA-form [3].

In practice however, functional programs are often less efficient than tight imperative code

because they create lots of temporary data structures instead of modifying data in place. In a

sense, impure functional languages that discourage but do not disallow side effects get the

worst of both worlds because their compilers cannot safely apply optimizations that rely on

15

Chapter 2. Background

functional properties without proving the absence of side effects with the help of sophisticated

effect systems.

2.4.6 Scala Challenges

The Scalac compiler does not employ effect analysis and thus has to be very conservative,

assuming worst case side effects in many places. This slows down functional programs in

Scala noticeably. If generic types are instantiated to primitives, primitive values will need to

be “boxed” in order to maintain the uniform representation as heap allocated objects. Boxing

is expensive in terms of memory use, allocation cost and garbage collection overhead. Thus,

programmers can request to specialize generics for primitive types by adding @specialized

annotations to type parameters of classes or methods [36]. However, programmers must take

care that indeed the full call paths are specialized, otherwise boxing will still occur. There is

also a risk of code bloat: When naively specializing a class with three type parameters for all

10 primitive types, 1000 versions of this class will be produced.

The Scala compiler is also prone to a few instances of phase ordering problems. Early on,

for example, local variables that are accessed by closures will be converted to heap allocated

reference cells. Later, the closure allocation may get eliminated and the code inlined. However,

the local variables have already been converted to heap objects and will not be converted

back. Another example is tail call elimination happening before inlining. If an invocation

becomes a recursive tail call only via inlining it will not be converted to a jump. Inlining in

general has to be conservative, since Scalac has to operate under a fundamental open-world

assumption. Inlining implicitly assumes that the inlined bytecode will not change between

compilation and runtime. Scalac chooses to inline only (effectively) final methods that can

never be overridden. This decision is slightly more conservative than it needs to be: If the exact

type of an object is known at compile time even non-final methods could safely be inlined.

2.4.7 JVM Challenges

The Java Virtual Machine (JVM) comes with its own set of challenges. The uniform reference

object representation that requires boxing of primitives was already mentioned above. A

related problem is that there is no notion of structs or records that can be allocated on the

stack or stored consecutively in arrays. Array accesses also require bounds checks. The JIT

compiler will eliminate bounds checks in many cases but these mechanisms do not work

reliably for complex access patterns. Furthermore, all freshly allocated arrays are initialized

with zero values, which can impose some slowdown and hinder efficient parallelization.

The HotSpot JIT compiler performs aggressive inlining of “hot” methods driven by runtime

profiling. The profiling is done on a per call site basis, which produces very good results if

call sites are monomorphic, i.e. always call the same target method. However the scheme

breaks down for higher order control flow [22]. Taking the higher order function foreach as an

example, the number of distinct functions called from foreach is very large and thus every

iteration step pays the overhead of a virtual method call. A much better strategy would be to

16

2.5. Staging and Generative Programming

first inline foreach at its caller which would produce a monomorphic call to the particular

closure argument.

2.5 Staging and Generative Programming

Generative programming is a promising alternative to fully automatic translation. Instead

of writing down the target program directly, developers write a high-level, generic program

generator, which produces a specialized, efficient program as its output. However, developing

high-quality program generators requires a very large effort that is often hard to amortize.

Generative programming can be broadly classified as static or dynamic. Static code gener-

ation happens at compile time, a widely used example is the C++ template language or macro

systems in other languages. Dynamic code generation that takes place at program runtime

brings additional flexibility because code can be specialized with respect to parameters not

yet available at compile time.

2.5.1 Multi-Stage Programming With Explicit Annotations

Many computations can naturally be separated into stages distinguished by frequency of

execution or availability of information. Staging transformations aim at executing certain

pieces of code less often or at a time where performance is less critical. In the context of

program generation, multi-stage programming (MSP, staging for short) as established by Taha

and Sheard [133] allows programmers to explicitly delay evaluation of a program expression to

a later stage (thus, staging an expression). The present stage effectively acts as a code generator

that composes (and possibly executes) the program of the next stage. A nice property of this

approach is that generator and generated code are expressed in a single program, with the

aim that programmers can construct a multi-stage program from a naive implementation of

the same algorithm by adding staging annotations in a selective way.

Basic mechanisms for composing program fragments at runtime have existed for a long

time in the form of Lisp’s “code is data” model and its use of quasi-quotation: syntactic

annotations to denote expressions that should remain unevaluated and to mark holes within

them, to be filled in with expressions computed elsewhere. Dedicated MSP languages such

as MetaML [133] and MetaOCaml [13] add well-scoping and well-typing guarantees about

the generated code. Despite these advances, building “active” libraries or domain-specific

languages (DSLs) that incorporate dynamic code generation remains a significant challenge.

2.5.2 Partial Evaluation

Partial evaluation is an automatic program transform that essentially performs very aggressive

constant propagation [65]: Given some static parts of the program input, partial evaluation

produces a residual program that is specialized to the already provided static inputs. Passing

the remaining dynamic input to the residual program will produce the final result, but in a

more efficient way than just executing the original program.

17

Chapter 2. Background

Partial evaluation literature calls stages “binding times”. Where staging requires the pro-

grammer to define the binding times of each expression, partial evaluation determines the

binding times automatically. Offline partial evaluation itself works in two stages, with a ded-

icated binding time analysis (BTA) followed by a specialization pass. BTA annotates each

expression of the input program whether it can be computed statically or must be residualized,

i.e. become part of the residual staged program. Staging can be seen as a manual form of BTA

and BTA as a form of automatic staging.

Since partial evaluation is a form of program specialization, it usually comes with sound-

ness guarantees and preserves semantics of programs. In general this is not the case with

staging, where programmers can more freely compose program fragments. Nevertheless

staging is often used with the intent of achieving specialization, so tighter semantic guarantees

seem highly desirable.

An alternative to offline partial evaluation is online partial evaluation, which makes deci-

sions what to specialize during the specialization process itself, instead of relying on a separate

BTA. Hybrid approaches exist as well [128, 116]. Closely related to partial evaluation is super-

compilation [141, 123], and there have been efforts to unify different notions of automatic

program transformation [12, 122].

2.5.3 Generative Front-Ends and Extensible Compilers

Macro systems, staging and partial evaluation are used to specialize programs before they

reach the real compiler. Thus, they provide a simple way of extending a general purpose

language with domain-specific abstractions that can be resolved in a controlled way.

Another option is to teach the compiler itself new domain-specific rules [97, 41, 67]. In

many cases, compiler extensibility is understood as allowing to add new phases. This leads to

phase ordering issues if there are many optimization passes. Also, passes need to be defined

as transformations on some kind of program IR. This is much more difficult than the macro

or staging approach, which can use regular (multi-stage) computation to express the desired

target code. Some extensible compilers also allow adding new IR types but often it is not clear

how new nodes interact with existing generic optimizations.

We argue that none of these approaches alone is sufficient and a lot is to be gained if they

are combined. To give an example, if all we have is staging or macros, and we implement a

linear algebra package, then a matrix multiplication m*id will be expanded into while loops

before it even reaches the compiler, so no simplification to m can take place.

Let us imagine that we use a system which allows us to implement the matrix multiplication

in such a way that it can inspect its arguments to look for uses of id. This would cover the

simple case m*id but we would still run into problems if we complicate the use case slightly

and first assign val m2 = id and then compute m*m2. To handle programs like this, it is

not sufficient to just inspect the (syntactic) arguments. We need to integrate the staging

expansion with some form of forward data flow propagation, otherwise the argument is just

an identifier. In general, limited forms of simplification can be added (see C++ expression

templates [146]) but to be fully effective, the whole range of generic compiler optimizations

18

2.5. Staging and Generative Programming

(constant propagation, dead code elimination, etc) would need to be duplicated, too.

If on the other hand all we have is a facility to add new compiler passes, then we can add

an optimization pass that simplifies m*id to m, but we need another pass that expands matrix

multiplications into loops. This pass needs to be implemented as a low-level IR to IR transfor-

mation that is much more complicated than a straightforward staged implementation. Phase

ordering problems are also likely to arise if multiple optimizations are added independently.

The deeper problem is that we are forced to commit to a single data representation. Even

if we combine staging with an extensible compiler we need to make a decision: Should we

treat matrices as symbolic entities with algebraic laws, implemented as IR nodes amenable to

optimization? Or should we stage them so that the compiler sees just loops and arrays without

abstraction overhead?

What we really want instead is to first treat operations symbolically, subject to linear

algebra optimizations and generic optimizations (combined for maximum effectiveness).

Once no further simplification is possible, lower the operations to expose the representation

as arrays and loops and apply another set of specific optimizations (e.g. loop fusion), again

combined with the usual generic ones. Since we have changed the representation, there may

be new opportunities for generic optimizations, e.g. newly exposed internal sharing between

two matrix or vector ops, which should become subject to common subexpression elimination

again.

19

Part I

Defining Embedded Programs

21

Chapter 3

Intro: Staging as Meta Programming

How do we define programs for embedded compilers?

First a bit of terminology: Meta-programs are programs that manipulate other programs.

Object-programs are programs manipulated by other programs. Meta-languages and object-

languages are the languages of meta-programs and object-programs, respectively. Program

generators are meta-programs that produce object-programs as their final result [130].

In the context of program generation, multi-stage programming (MSP, staging for short)

as established by Taha and Sheard [133] allows programmers to stage program expressions,

moving them from the meta program to the object program and delaying their evaluation

until the object program is executed. The presently executing (meta program) stage acts as

a program generator that composes and possibly executes the programs of the next stage.

The meta program and the object programs are uniformly expressed in a single multi-stage

program. Thus, object programs are embedded programs.

For the programmer, the key benefit of multi-stage programming is linguistic reuse [80]:

Multi-stage programs inherit functionality of the meta-language, such as scoping and typing

rules, so if a multi-stage programs type checks, all the generated code will be syntactically

valid and well-typed. The goal is to allow programmers to construct a multi-stage program

from a naive implementation of the same algorithm by adding staging annotations in a small

number of key places. Unfortunately, staging does not generally preserve the semantics

of a program [60]. Thus, it is not so easy to achieve this goal in practice because adding

staging annotations can drastically change the result of even very simple and straightforward

programs. A contribution of this thesis is to systematically preserve statement execution order

within a stage, following earlier work on partial evaluation in the presence of effects [137]. This

preserves semantics in many more cases and takes us a step closer to our goal.

Lightweight Modular Staging (LMS) The following chapters present the front end part of

Lightweight Modular Staging (LMS), a new multi-stage programming approach developed as

part of this thesis [110, 111]. The elaboration continues in Part II, which presents the back end

parts.

The classical introductory staging example is to specialize the power function for a given

exponent, assuming that a program will take many different numbers to the same power.

23

Chapter 3. Intro: Staging as Meta Programming

Considering the usual implementation,

def power(b: Double, n: Int): Double =

if (n == 0) 1.0 else b * power(b, n - 1)

we want to turn the base b into a staged expression. LMS uses types to distinguish the compu-

tational stages. In particular, we change b’s declared type from Double to Rep[Double]. The

meaning of having type Rep[Double] is that b represents a computation that will yield a Double

in the next stage. We also change the function’s return type accordingly.

Now we need to regain the ability to do arithmetic on b, which is no longer a plain Double.

The second idea of LMS is to package operations on staged types as components. To make its

required functionality explicit, we wrap the power function itself up as a component (a trait):

trait Power { this: Arith =>

def power(b: Rep[Double], n: Int): Rep[Double] =

if (n == 0) 1.0 else b * power(b, n - 1)

}

LMS shares many properties of earlier staging approaches but has some important differ-

ences:

1. In most previous approaches, the meta language and the object language are the same

(homogeneous staging). Both are part of a dedicated, fixed multi-stage language. But

sometimes we would like the object and the meta languages to be different, as there is

a lot to be gained from simpler object languages. Where meta languages should focus

on abstraction, embedded languages should provide only a minimum of abstraction

facilities but lots of concrete operations with efficient translations. Similar to previous

“offshoring” approaches [39], LMS allows programmers to write combined multi-stage

programs and profit from linguistic reuse, even if the object and meta languages are

different. Since LMS is a purely library-based staging solution, the embedded languages

can also be extended and composed by the multi-stage program itself, without changing

the meta language implementation.

2. Linguistic reuse has previously been exploited for scoping and typing, but not for execu-

tion order. Naturally, staging allows programmers to define execution order by adding

staging annotations. But in practice, programmers must explicitly and precisely define

the execution order of all staged program fragments! As shown in Section 6.1.6, the

execution order is not related to the appearance of the statements in the multi-stage

program. With our approach, programmers only define the stage. The execution order

within a stage is retained from the multi-stage program. As shown in Section 6.2.1,

this aspect of LMS is also applicable to more traditional staging approaches based on

quasiquotation, which previously relied on monads for sequencing [129].

3. Previous staging approaches used syntactic annotations to distinguish stages. LMS

reduces the syntactic overhead by using only types. This makes the system more expres-

sive because changes required to add staging are more localized. Deep reuse of type

inference provides a simple form of local binding-time analysis.

24

Organization Before we dive into the details of LMS, we take a look at language virtualization

(Chapter 4) and the Scala-Virtualized language extensions (Chapter 5), which are helpful to

support embedded languages and in particular library based staging in Scala.

After that, we examine how linguistic reuse allows staging to simplify the development

of program generators (Chapter 6). We review the state of the art (Section 6.1), identify open

problems and present the contributions of LMS in detail (Section 6.2).

25

Chapter 4

Language Virtualization

The necessity of general purpose languages to serve as meta languages is widely recognized

[81, 125, 118], not only in the context of program optimizations through code generation and

staging but also more generally for embedding DSLs [58, 59].

We propose language virtualization as a concept to capture necessary conditions to assess

the ability of a programming language to serve as meta language. In an analogy to hardware

virtualization [106], where one wants to virtualize costly “big iron” server resources in a data

center and run many logical machines on top of them, it is desirable to leverage the engineering

effort that went into a general-purpose language to support many small embedded languages,

each of which should behave more or less like a real language. The following material is taken

from [19].

4.1 Defining Language Virtualization

Definition. A programming language is virtualizable with respect to a class of embedded

languages (and by extension programs) if and only if it can provide an environment to these

embedded languages that makes the embedded implementations (and by extension programs)

essentially identical to corresponding stand-alone language implementations (programs)

in terms of expressiveness, performance and safety—with only modestly more effort than

implementing the simplest possible complete embeddings (as pure libraries).

Expressiveness encompasses syntax, semantics and, in the case of domain-specific lan-

guages, general ease of use for domain experts. Just as virtual hardware resources are not

exactly identical to real ones, we do not require that an embedded language can exactly model

the syntax of a stand-alone language but settle for a syntax that is essentially the same, i.e.

modulo syntactic sugar. The same consideration applies to the other criteria as well.

Performance implies that programs in the embedded language must be amenable to

extensive static and dynamic analysis, optimization, and code generation, just as programs in

a stand-alone implementation would be. For many embedded languages, in particular those

that are the focus of this paper, this rules out any purely interpretation-based solutions.

27

Chapter 4. Language Virtualization

Safety means that the embedded implementation is not allowed to loosen guarantees

about program behavior. In particular, host-language operations that are not part of the

embedded language’s specification must not be available to embedded programs.

Modest effort is the only criterion that has no counterpart in hardware virtualization. How-

ever, it serves an important purpose since an embedded language implementation that takes a

DSL program as a string and feeds it into an external, specialized stand-alone compiler would

trivially satisfy criteria expressiveness, performance and safety. Building this implementation,

however, would include the effort of implementing the external compiler, which in turn would

negate any benefit of the embedding. In a strict sense, one can argue that virtualizability is not

a sufficient condition for a particular language being a good embedding environment because

the “simplest possible” embedding might still be prohibitively expensive to realize.

The virtualization criteria are similar to Veldhuizen’s criteria for universal languages [148]

but add the effort criterium. There are also considerable similarities to Steele’s approach of

“growing a language” [125], which demands that features provided by a library should look and

behave like built-in language features. Virtualization requires explicitly that library features

should not only look like built-in features but also exhibit the same performance.

4.1.1 Virtualization and Reflection

The ability of a programming language to represent its (meta) programs as object programs

is called reflection [121]. In other words, reflection enables a program to inspect and reason

about itself.

Virtualization can be seen as a (static) dual of (dynamic) reflection: Where a reflective

language allows programs to inspect language elements they are composed of, a virtualizable

language allows programs to give language elements new meaning. In a reflective language

programs can use information obtained by reflection to trigger a certain behavior. In a

virtualizable language the language elements can be customized to trigger the behavior

directly within programs.

In practical terms, virtualization allows programs to override and reinterpret built-in

language features. In that sense, virtualized language features are similar to virtual (i.e. over-

ridable) methods in the terminology of C++.

4.2 Achieving Virtualization

What does it take to make a language virtualizable in practice? Various ways of fulfilling

subsets of the requirements exist, but we are unaware of any existing language that fulfills all

of them. The “pure embedding” approach [59] of implementing embedded languages as pure

libraries in a modern host language can likely satisfy expressiveness, safety and effort if the

host language provides a strong static type system and syntactic malleability (e.g. custom infix

operators). Achieving performance in addition, however, seems almost impossible without

switching to a completely different approach.

28

4.2. Achieving Virtualization

Expressiveness We can maintain expressiveness by overloading all relevant host language

constructs. In Scala, for example, a for-loop such as

for (x <- elems if x % 2 == 0) p(x)

is defined in terms of its expansion

elems.withFilter(x => x % 2 == 0)

.foreach(x => p(x))

Here, withFilter and foreach are higher-order methods that need to be defined on the type of

elems. By providing suitable implementations for these methods, a domain-specific language

designer can control how loops over domain collections should be represented and executed.

To achieve full virtualization, analogous techniques need to be applied to all other relevant

constructs of the host language. For instance, a conditional control construct such as

if (cond) something else somethingElse

would be defined to expand into the method call

__ifThenElse(cond, something, somethingElse)

where __ifThenElse is a method with two call-by-name parameters:

def __ifThenElse[T](cond: Boolean, thenp: => T, elsep: => T)

Domain languages can then control the meaning of conditionals by providing overloaded

variants of this method which are specialized to domain types.

In the same vein, all other relevant constructs of the host language need to map into

constructs that are extensible by domain embeddings, typically through overloading method

definitions.

Performance As we have argued above, achieving performance requires the ability to apply

extensive (and possibly domain-specific) optimizations and code generation to embedded

programs. This implies that embedded programs must be available at least at some point

using a lifted, AST-like intermediate representation. Pure embeddings, even if combined

with (hypothetical) powerful partial evaluation as suggested in [59], would not be sufficient

if the target architecture happens to be different from the host language target. What is

needed is essentially a variant of staged metaprogramming, where the embedded “object”

program can be analyzed and manipulated by a “meta” program that is part of the embedding

infrastructure. However, any DSL will also contain generic parts, some of which will be host

language constructs such as function definitions, conditionals or loops. These must be lifted

into the AST representation as well.

This ability to selectively make constructs ‘liftable’ (including their compilation) such that

they can be part of (compiled) DSL programs while maintaining expressiveness, safety and

effort is an essential characteristic of virtualizable languages.

29

Chapter 4. Language Virtualization

Modest Effort However, having to implement the lifting for each new DSL that uses a slightly

different AST representation would still violate the effort criterion. Using an existing multi-

stage language such as MetaOCaml [53, 130] would also likely violate this criterion, since

the staged representation cannot be analyzed (for safety reasons we will consider shortly)

and any domain-specific optimizations would require effort comparable to a stand-alone

compiler. Likewise, compile-time metaprogramming approaches such as C++ templates [144]

or Template Haskell [117] would not achieve the goal, since they are tied to the same target

architecture as the host language and their static nature precludes dynamic optimizations (i.e.

recompilation). What is needed here is a dynamic multi-stage approach with an extensible

common intermediate representation (IR) architecture. In the context of Scala, we can make

extensive use of traits and mixin-composition to provide building blocks of common DSL

functionality (API, IR, optimizations, code generation), including making parts of Scala’s

semantics available as traits. This approach, which we call lightweight modular staging [110],

is described below and allows us to maintain the effort criterion. A key element is to provide

facilities to compile a limited range of Scala constructs to architectures different from the JVM,

Scala’s primary target.

Safety There are two obstacles to maintaining safety. The first is to embed a typed object

language into a typed meta language. This could be solved using a sufficiently powerful type

system that supports an equivalent of GADTs [115, 104] or dependent types [103]. The second

problem is that with a plain AST-like representation, DSL programs can get access to parts

of their own structure. This is unsafe in general and also potentially renders optimizations

unsound. The finally tagless [15] or polymorphic embedding [55] of DSLs that forms a basis

for lightweight modular staging solves both problems at once by abstracting over the actual

representation used.

30

Chapter 5

Scala-Virtualized

In this chapter, we present Scala-Virtualized, our effort to improve the meta-language capa-

bilities of Scala. Scala is a mature language that is seeing widespread adoption in industry.

Scala-Virtualized is a suite of minimal extensions, based on the same codebase and undergo-

ing the same rigorous testing as the main Scala distribution. Part of the following material is

taken from [95].

Scala is used successfully for pure library-based DSLs, such as parser combinators [94],

actors [54] and testing frameworks. DSLs typically leverage the following three aspects of

Scala’s flexibility:

• Flexible syntax. From mimicking BNF in the parser combinator library, over concise

syntax for message passing, to naturally expressing specifications in the Specs [140]

testing framework:

// generate 500 different mail addresses

mailAddresses must pass { address =>

address must be matching(companyPattern)

}

Scala is an extensible language because in many cases libraries can be made to look like

built-ins. However Scala does not provide real, arbitrarily extensible syntax (such as

Racket [139]).

• Redefining the run-time semantics of for-comprehensions.

for (i <- foo) yield 2 * i

This expression is desugared to the following method call:

foo.map(i => 2 * i)

The class of foo defines the implementation and type signature of the methods (such as

map and flatMap) that define the semantics of a for-comprehension. This allows DSLs

to provide non-standard implementations of looping constructs.

31

Chapter 5. Scala-Virtualized

• Customizing the type system and reifying types at run time. Domain-specific type

restrictions can be implemented using implicit resolution, which provides a limited

form of logic programming at the type level [31]. Phantom types and other classic tricks

are also commonly used. Finally, manifests [37] put static types to work at run time.

These features are sufficient for DSLs as pure libraries. However they fall short when better

performance is required, additional program properties must be verified for safety, or code is to

be generated for different platforms. This requires an accessible representation of embedded

programs that can be analyzed and transformed.

On the other hand, an accessible program representation alone, such as provided by a

lifting mechanism that reifies expression trees, is not always sufficient. First, reified expression

trees can contain arbitrary host language expressions, not just those that are also part of

the embedded DSL. Second, in many cases it is desirable to freely mix lifted DSL code and

non-lifted host language code.

5.1 Everything is a Method Call

The overarching idea of embedded languages is that user-defined abstractions should be first

class in a broad sense. User-defined abstractions should have the same rights and privileges

as built-in abstractions. Scala-Virtualized redefines many built-in abstractions as method

calls. In this way, the corresponding method definitions may be redefined by a DSL, just like

any other method. In a sense we do not make user-defined abstractions first class but built-in

abstractions second class. The net effect is the same: both have equal rights.

The essential difference between Scala-Virtualized and plain vanilla Scala is that more of a

Scala program is expressed in terms of method calls. Similar to the “finally tagless” [16] or

polymorphic embedding [55] approach, and going back to an old idea of Reynolds [109], we

represent object programs using method calls rather than data constructors. By overriding

or overloading the default implementations appropriately, the embedding can be configured

to generate an explicit program representation, which is typically only provided by a deep

embedding using explicit data constructors.

5.1.1 Virtualizing Control Structures

1 In Scala-Virtualized an expression such as if(c) a else b is translated into a method call

__ifThenElse(c, a, b). By providing its own implementation of this method, the DSL can

have it generate an AST for this part of the domain program, which can thus further be

analyzed and optimized by the DSL implementation. When no alternative implementation is

provided, the if-then-else has the usual semantics.

This approach fits well with the overall Scala philosophy: for-comprehensions and parser

combinators were implemented like this from the beginning. Unlike approaches that lift host

language expression trees 1:1 using a fixed set of data types, the DSL implementor has control

over which language constructs are lifted and which are not.

1Credits: Design by the author, original implementation with help from Martin Odersky.

32

5.1. Everything is a Method Call

To give an (admittedly silly) example, we could change if to print its condition and return

the then-branch, discarding the else-branch:

scala > def __ifThenElse[T](cond: Boolean, thenp: => T, elsep: => T): T

= { println("if: "+cond); thenp }

__ifThenElse: [T](cond: Boolean, thenp: => T, elsep: => T)T

scala > if(false) 1 else 2

// virtualized to: ‘__ifThenElse(false, 1, 2)‘

if: false

res0: Int = 1

Besides if, the following control structures and built-ins (left column) are virtualized into

method calls (right column):
if (c) a else b __ifThenElse(c, a, b)

while(c) b __whileDo(c, b)

do b while(c) __doWhile(b, c)

var x = i val x = __newVar(i)

x = a __assign(x, a)

return a __return(a)

a == b __equal(a, b)

These methods are defined as follows in a trait EmbeddedControls:

trait EmbeddedControls {

def __ifThenElse[T](cond: Boolean, thenp: => T, elsep: => T): T

def __whileDo(cond: Boolean, body: Unit): Unit

def __doWhile(body: Unit, cond: Boolean): Unit

def __newVar[T](init: T): T

def __assign[T](lhs: T, rhs: T): Unit

def __return(expr: Any): Nothing

def __equal(expr1: Any, expr2: Any): Boolean

}

Trait EmbeddedControls is mixed into Predef, which is implicitly imported into every com-

pilation unit. Thus, the virtualization hooks are available in any Scala program. Programmers

can either shadow them by defining a synonymous method, or override/overload them by

inheriting from a DSL trait that mixes in EmbeddedControls.

5.1.2 Virtualizing Method Calls

Ordinarily, there are two ways to customize the meaning of an expression such as x a y,

which is short for x.a(y). Obviously, if we control the type of x, we can simply introduce the

appropriate method in its class. Otherwise an implicit conversion can be used — if (and only

if) x’s type does not provide an (appropriately typed) member a. While useful, this technique

requires a fair bit of boilerplate code and it imposes some code size and run-time overhead.

Most importantly, it cannot be used to override existing methods, such as the ubiquitous

method toString.

33

Chapter 5. Scala-Virtualized

Overriding existing behavior is necessary in a number of cases for embedded DSLs:

val buffer = new ArrayBuffer[Int]

trait DSL {

buffer += 7

}

Here, class ArrayBuffer already has a += method but we want to override the behavior within

the scope of trait DSL to construct a staged representation. If we do not, 7 will be added to the

buffer at staging time and not when running the staged program, as would be desired.

Scala-Virtualized introduces infix functions that are able to selectively and externally

introduce new methods on existing types, as well as override existing ones, without any run-

time overhead. The idea is simple: We redefine x.a(y) as infix_a(x,y). If the type of x has

any members with name a, we insert them as sentinels of the form def infix_a(x,y) into

EmbeddedControls. If overloading resolution picks one of the sentinels, the regular invocation

x.a(y) is chosen. Otherwise a user-defined method takes precedence.

Infix functions can greatly reduce boilerplate in many cases. Complementary to Scala’s

syntactic flexibility, Scala’s type system also allows enforcing certain restrictions. For example,

it may be desirable to restrict DSL expressions to a given grammar. Here is an example

how adherence of DSL expressions to a context-free grammar (anbn) can be enforced using

phantom types and infix functions:

object Grammar {

type ::[A,B] = (A,B)

class WantAB[Stack] extends WantB[Stack]

class WantB[Stack]

class Done

def start() = new WantAB[Unit]

def infix_a[Stack](s: WantAB[Stack]) = new WantAB[Unit::Stack]

def infix_b[Rest](s: WantB[Unit::Rest]) = new WantB[Rest]

def infix_end(s: WantB[Unit]) = new Done

def phrase(x: => Done): String = "parsed"

}

import Grammar._

phrase { start () a () a () b () b () end () } // "parsed"

phrase { start () a () a () b () b () b () end () } // error

phrase { start () a () a () b () end () } // error

The same behavior can be encoded in vanilla Scala using implicit conversions but in a more

cumbersome way.

5.1.3 Virtualizing Record Types

2 The Scala-Virtualized compiler can turn an expression new C{val x_i: T_i = v_i} into

a method call __new(("x_i", (self_i: R) => v’_i)). There is no definition of __new in

2Credits: Design by the author and Adriaan Moors, with help from Hassan Chafi, Nada Amin, Grzegorz Kos-
sakowski, implementation by Adriaan Moors.

34

5.1. Everything is a Method Call

EmbeddedControls, as its signature would be too unwieldy. Virtualization is not performed

unless there exists a type constructor Rep, such that C is a subtype of Struct[Rep], where the

marker trait Struct is defined in EmbeddedControls:

trait Struct[+Rep[x]]

Furthermore, for all i,

• there must be some T’_i so that T_i = Rep[T’_i] – or, if that previous equality is not

unifiable, T_i = T’_i

• v’_i results from retyping v_i with expected type Rep[T’_i], after replacing this by a

fresh variable self_i (with type Rep[C{ val x_i: T’_i }], abbreviated as R)

Finally, the call __new(("x_i", (self_i: R) => v’_i)) must type check with expected type

R. If this is the case, the new expression is replaced by this method call. This assumes a method

in scope whose definition conforms to:

def __new[T](args: (String, Rep[T] => Rep[_])*): Rep[T].

Type-Safe Selection on Record Fields

In addition to virtualizing object creation, Scala-Virtualized provides a facility for type-safe

access of record fields. When e refers to a representation of a record, e.x_i is turned into

e.selectDynamic[T_i]("x_i") as follows. When a selection e.x_i does not type check ac-

cording to the normal typing rules, and e has type Rep[C{ val x_i: T_i }] (for some Rep

and where C and the refinement meet the criteria outlined above), e.x_i is turned into

e.selectDynamic[T_i]("x_i"). Note the T_i type argument: by defining selectDynamic ap-

propriately, the DSL can provide type safe selection on records. No type argument will be

supplied when the field’s type cannot be determined, i.e., it is not in the record’s refinement.

5.1.4 Virtualizing Pattern Matching

3 Pattern matching expressions can also be virtualized. Let us consider a simple match

expression:

7 match { case 5 => "foo" case _ => "bar" }

The virtualized Scala compiler will translate this expression to:

__match.runOrElse(7) { x =>

__match.guard(x == 5, "foo").orElse(__match.one("bar"))

}

In line with other virtualized features the translation is entirely structural. A suitable __match

object that provides the expected methods must be available in scope. The translation target

is modeled after the zero-plus monad and distinguishes between pure types, which denote the

3Credits: Design and implementation mostly by Adriaan Moors, the author helped with some details of the
design.

35

Chapter 5. Scala-Virtualized

domain of values matching is performed on, and monadic types, which are used to structure

the matcher logic.

The default implementation looks like this:

type Pure[T] = T

type Monad[T] = Option[T]

object __match {

def zero: Monad[Nothing] = None

def one[T](x: Pure[T]): Monad[T] = Some(x)

def guard[T](cond: Pure[Boolean], then: => Pure[T]): Monad[T] =

if(cond) Some(then) else None

// runs the matcher on the given input

def runOrElse[T, U](in: Pure[T])(matcher: Pure[T] => Monad[U]): Pure[U] =

matcher(in) getOrElse (throw new MatchError(in))

// used for isDefinedAt

def isSuccess[T, U](x: Pure[T])(f: Pure[T] => Monad[U]): Pure[Boolean] =

!f(x).isEmpty

}

Internally, the Scala-Virtualized compiler will apply all the usual optimizations if the default

(non-virtualized) case is detected, such as translating match expressions to conditionals and

generating jumps instead of method calls.

A virtualized pattern matching interface with Rep types suitable for staging can look like

this:

val __match: Matcher

abstract class Matcher {

def runOrElse[T, U](in: Rep[T])(matcher: Rep[T] => Maybe[U]): Rep[U]

def zero: Maybe[Nothing]

def one[T](x: Rep[T]): Maybe[T]

def guard[T](cond: Rep[Boolean], then: => Rep[T]): Maybe[T]

def isSuccess[T, U](x: Rep[T])(f: Rep[T] => Maybe[U]): Rep[Boolean]

}

abstract class Maybe[+A] {

def flatMap[B](f: Rep[A] => Maybe[B]): Maybe[B]

def orElse[B >: A](alternative: => Maybe[B]): Maybe[B]

}

5.2 Putting Static Information to Work

Scala’s implicits [31] provide a convenient way of deriving run-time information from static

types. When the last argument list of a method is marked as implicit, a call to this method

need not specify its actual arguments. For each missing implicit argument, the compiler will

36

5.2. Putting Static Information to Work

(statically) determine the (unique) implicit value of the correct type in order to complete the

method call. The implicit keyword is used to mark regular value definitions as potential

implicit arguments. By overriding a virtualized language feature to include certain implicit

parameters we can require additional static information or predicate virtualization on some

static condition.

5.2.1 Virtualizing Static Type Information

Certain types of implicit values are treated specially by the compiler: when no user-defined

implicit value of the expected type can be found, the compiler synthesizes the value itself. In

standard Scala, manifests, which provide a run-time representation of static types, are the

only implicit values that are treated this way [37].

As an example of manifests, consider the following polymorphic method that requires a

manifest for its type parameter T:

def m[T](x: T)(implicit m: Manifest[T]) = ...

When this method is called at type String, and assuming there is no implicit value of

type Manifest[String] in scope, the compiler will synthesize a factory call that generates a

run-time representation of the class String, like this:

reflect.Manifest.classType(classOf[String])

The main use of manifests in the context of embedded DSLs is to preserve information

necessary for generating efficient specialized code in those cases where polymorphic types

are unknown at compile time (e.g., to generate code that is specialized to arrays of a primitive

type, even though the object program is constructed using generic types).

5.2.2 Virtualizing Static Source Information

4 Scala-Virtualized extends the idea of Manifest and introduces SourceContext to provide

run-time information about the static source code context. Implicit source contexts reify static

source information, such as the current file and line number, which is otherwise lost after

the program is compiled. The idea is for a method to declare an implicit parameter of type

SourceContext:

def m[T](x: T)(implicit pos: SourceContext) = ...

Inside the method m, the source context of its invocation, i.e., the file name, line number,

character offset, etc., is available as pos. Like manifests, source contexts are generated by the

compiler on demand.

Implicit SourceContext object are chained to reflect the static call path. Thus they can

provide source information that is impossible to recover from exception stack traces, say.

Consider the following example:

4Credits: Design by the author and Philipp Haller after an initial idea by Ingo Maier, implementation by Philipp
Haller.

37

Chapter 5. Scala-Virtualized

def m()(implicit pos: SourceContext) = ...

def outer()(implicit outerPos: SourceContext) =

() => m()

val fun = outer()

fun() // invoke closure

Here, the method outer returns a closure which invokes method m. Since m has an implicit

SourceContext parameter, the compiler generates an object containing source information

for the invocation of m inside the closure. The compiler will not only pass the SourceContext

corresponding to the current invocation but also the outerPos context as the parent of the

current SourceContext. As a result, when invoking the closure inside m the chain of source

contexts remains available. Both inside m as well as inside the closure, the static source context

of the closure is known. This means that even if the closure escapes its static creation site,

when the closure is invoked, the source context of its creation site can be recovered. Stack

traces would not be able to expose this information since it can not be recovered from the

dynamic call stack.

38

Chapter 6

Staging: Deep Linguistic Reuse for
Easier Program Generator
Development

The idea of linguistic reuse was first introduced in the context of syntactic extensions for

first-class components [80]. An embedded language should reuse the features of its host

language. We distinguish mostly syntactic shallow reuse from deep reuse that includes a

nontrivial translation step: We consider reuse of a linguistic feature as deep if the feature

is translated away and the embedded language does not need to implement it. This is in

contrast to shallow reuse provided directly by virtualization, for example reusing the familiar

syntax var x = 7 in DSL programs to express a creation of an object-program variable via

__newVar(7). In this case, the feature of variables is reused but not translated away. The object

language still has to accommodate mutable variables.

In the context of staging, deep linguistic reuse plays a key role in reducing the development

effort for program generators. We first review the state of the art in multi-stage programming

with an eye on deep reuse (Section 6.1) and then present our contributions in Section 6.2.

6.1 State of the Art

Previous staging approaches either work directly with strings that represent concrete program

syntax or make use of quasiquoting to compose abstract syntax trees. We examine both

approaches in turn, with an eye on how linguistic reuse improves productivity and safety for

the multi-stage programmer.

6.1.1 Program Generation with Strings

As a simple example, let us turn the power function:

def power(b: Double, n: Int): Double =

if (n == 0) 1.0 else b * power(b, n - 1)

39

Chapter 6. Staging: Deep Linguistic Reuse for Easier Program Generator Development

into a code generator:

def power(b: String, n: Int): String =

if (n == 0) "1.0" else "(" + b + " * " + power(b, n - 1) + ")"

As result of an invocation we obtain:

power("x",4) // "(x * (x * (x * (x * 1.0)))"

However there is a problem: We can produce arbitrary strings that might not be valid code.

It is very easy to make subtle mistakes:

def power(b: String, n: Int): String =

if (n == 0) "1.0" else "b * " + power(b, n - 1) + ")"

We have accidentally omitted a parenthesis, so the result is not syntactically well formed code.

Furthermore, the literal identifier b is part of the output:

power("x",4) // "b * b * b * b * 1.0)))"

This code will not compile and even if we fix the syntax, the code is no longer well scoped. The

free identifier b can lead to variable capture when the code is spliced in somewhere else.

We have seen two problems, syntax correctness and scope correctness. Two other prob-

lems are type correctness and value correctness. If we cannot guarantee to generate valid

programs, we can much less guarantee that programs are well-typed or compute correct

results.

6.1.2 Program Generation with Quasi-Quotes

Strings model concrete syntax, but we can also use abstract syntax. This idea is inspired by

Lisp’s “code as data” model. We start with a slightly more convenient string notation, denoted

by s"..." quotes:

def power(b: String, n: Int): String =

if (n == 0) s"1.0" else s"($b * ${ power(b, n - 1) })"

The notation ${ ... } denotes a hole in the string, to be filled by the string result of evaluating

the enclosed expression.

The same idea applies to abstract syntax. Let [[...]] denote the AST of the enclosed

expression, and let Tree be the type of AST nodes. Holes will require an expression of type

Tree:

def power(b: Tree, n: Int): Tree =

if (n == 0) [[1.0]] else [[$b * ${ power(b, n - 1) }]]"

Now we have a program generator that assembles AST nodes.

6.1.3 Syntactic Correctness through Deep Reuse of Syntax

The multi-stage language compiler parses the whole program and builds ASTs for all expres-

sions, quoted or not, at once. Thus we obtain syntax correctness. However the multi-stage

40

6.1. State of the Art

language compiler must know about the syntax of the object language. This is trivial if meta-

language and object language are the same. Otherwise it is slightly more difficult [86].

The Tree type can be left abstract. Some implementations hide the exact data structures

to guarantee safety of optimizations on object code. Silently modifying trees with rewrites that

maintain semantic but not structural equality (e.g. beta reduction) can change the behavior of

programs that inspect the tree structure [131]. In general, optimizations should not change

the result of a program.

6.1.4 Scope Correctness through Deep Reuse of Scope

The multi-stage compiler can bind identifiers at the definition site of the quote. This avoids

variable capture and ensures scope correctness (hygiene).

Another possible issue is scope extrusion. This happens when a variable bound in quoted

code escapes through a hole:

var x: Tree;

[[val y = 7; ${ x = y }]]

Scope extrusion can be prevented by appropriate type systems [155, 70], which are beyond the

scope of this thesis. Scope extrusion is a real problem for code generators that imperatively

manage staged program fragments. For generators expressed in a functional style it it far less

of an issue, regardless of whether the object program uses effects or not.

6.1.5 Type Correctness through Deep Reuse of Types

With syntax and scoping out of the way, we turn our attention to type correctness. Fortunately,

type correctness falls out naturally if parametric types are available. We just replace type Tree

with Tree[T]:

def power(b: Tree[Double], n: Int): Tree[Double] =

Now the type system ensures that power is only applied to AST nodes that compute Double

values in the next stage.

Note that the use of parametric types alone does not prevent scope extrusion, which can

also be seen as a type error in the sense of a well-typed multi-stage program “going wrong”

[134, 132]. Thus we do not obtain a guarantee that all generated programs type check, but

the slightly weaker assurance that all generated programs that are well-formed are also type

correct.

6.1.6 Value Correctness is an Open Problem

The remaining big problem is what we (somewhat vaguely) call value correctness or more

generally preservation of program semantics: How can we be reasonably certain that a pro-

gram computes the same result after adding staging annotations? We cannot expect a strong

guarantee in all cases for reasons of nontermination but what is troubling is that there are

many practical cases where staging annotations change a program’s behavior quite drastically.

This fact is well documented in the literature [40, 25, 14, 129, 60].

41

Chapter 6. Staging: Deep Linguistic Reuse for Easier Program Generator Development

The problem manifests itself both with strings and with trees. The root cause is that

both approaches are based on syntactic expansion, irrespective of semantics such as order of

execution.

Using the regular, unstaged power implementation:

def power(b: Double, n: Int): Double = ...

val x = computeA() // computeA executed here

power(computeB() + x, 4) // computeB executed before calling power (cbv)

Both compute functions will be executed once, in order. Afterwards, power will be applied to

the result.

Let us compare this with the staged implementation:

def power(b: Tree[Double], n: Int): Tree[Double] = ...

val x = [[computeA()]]

power([[computeB() + $x]], 4)

Result:

((computeB() + computeA()) *
((computeB() + computeA()) *

((computeB() + computeA()) *
((computeB() + computeA()) * 1.0))))"

In this case, the computation has been duplicated n times and the order of the function

calls has been reversed. Effectively we ignore all bindings and follow a call-by-name policy

even though power declares its arguments as call-by-value. If either of the compute functions

depends on side effects the staged function computation will produce a very different result.

Imagine for example:

def computeA() = readNextInputValue()

We clearly want to read only one value, not four.

Even if both functions are pure, it will be much more expensive to compute the result. If

we applied staging to obtaining better performance we have not achieved our goal.

As another example, let us switch to a better algorithm:

def power(b: Tree[Double], n: Int): Tree[Double] =

if (n == 0) [[1.0]]

else if ((n&1) == 0) { val y = power(b, n/2); [[$y * $y]] }

else [[$b * ${ power(b, n - 1) }]]

Result:

power([[x]]) // (((x*1.0)*(x*1.0))*((x*1.0)*(x*1.0)))

Staging has turned the more efficient algorithm into a less efficient one. This effect of

staging undoing binding and memoization is widely known [129, 40].

42

6.2. Contributions

Let Insertion as a Remedy

One way of fixing the order of staged expressions is to insert let-bindings in strategic places.

This is frequently done by separate front ends. Staging effectively becomes an “assembly

language” for code generation. The front end can assemble pieces of generated code using

explicit side effects, or the code generators are written in monadic style or continuation passing

style (CPS), in which case the monadic bind operation will insert let-bindings to maintain the

desired evaluation order [129]. Effectful code generators are much more likely to cause scope

extrusion. Explicit monadic style or CPS complicate code generators a lot. This dilemma is

described as an “agonizing trade-off”, due to which one “cannot achieve clarity, safety, and

efficiency at the same time” [70]. Only very recently have type-systems been devised to handle

both staging and effects [69, 70, 155]. They are not excessively restrictive but not without

restrictions either. Mint [155], a multi-stage extension of Java, restricts non-local operations

within escapes to final classes which excludes much of the standard Java library. Languages

that support both staging and first class delimited continuations can mitigate this overhead

but front ends that encapsulate the staging primitives are still needed [70].

In the partial evaluation community, specialization of effectful programs has been achieved

by inserting let-bindings eagerly for each effectful statement [137, 82], achieving on-the-fly

conversion to administrative normal form (ANF, [46]). As we will show below, a simplified

variant of this approach naturally extends to staging with and without quasiquotes.

6.2 Contributions

We first show how to maintain value correctness through deep reuse of evaluation order.

The key idea is similar to that employed in partial evaluation [137, 82] and applies to both

quasiquoting and LMS. Our presentation differs from the partial evaluation literature in that it

is independent of any partial evaluation mechanics such as CPS conversion and expressed

in a simple, purely operational way. Continuing with quasiquoting, we show how we can

remove syntactic overhead and arrive at a more restricted object language by providing a

typed API over staged Rep[T] values that hides the internal implementation. At this point,

quasiquoting becomes an implementation detail that is no longer strictly needed because

the higher level object language interface has taken over most of the staging guarantees.

Staging can be implemented as a library, without specific language support. Linguistic reuse

is enabled by lifting operations from type T to Rep[T]. The object language can be divided

into reusable components. Since there is only a single shared Rep[T] type, no layerings or

translations between components are necessary. Deep reuse of type inference enables a form

of semi-automatic local BTA since method overloading will select either staged or unstaged

operations depending on the types. In many cases, methods can be staged by just changing

their parameter types.

43

Chapter 6. Staging: Deep Linguistic Reuse for Easier Program Generator Development

6.2.1 Value Correctness through Deep Reuse of Evaluation Order

The key idea is to treat quoted fragments as context-sensitive statements, not context-free

expressions. This means that we will need to explicitly perform a statement. We continue the

description with strings as the representation type since it is the most basic. Performing a

statement will register the side effects of this statement in the current context. The counterpart

to perform is accumulate, which defines such a context and returns a program fragment that

captures all the effects within the context. To make sure that all code fragments are treated in

this way we introduce the following typings:

type Code

def perform(stm: String): Code

def accumulate(res: => Code): String

Note the by-name argument of accumulate. The Code type and the method implementations

can remain abstract for the moment.

We can put perform and accumulate to use in the power example as follows:

def power(b: Code, n: Int): Code =

if (n == 0) perform("1.0") else
perform("(" + accumulate { b } + " * " + accumulate { power(b, n - 1) } + ")")

We define perform and accumulate in the following way to perform automatic eager let

insertion. The private constructor code builds a Code object from a string:

accumulate { E[perform("str")] }

¡! "{ val fresh = str; " + accumulate { E[code("fresh")] } + "}"

accumulate { code("str") }

¡! "str"

Where E is an accumulate-free evaluation context and fresh a fresh identifier. These rules can

be implemented using one piece of mutable state in a straightforward way.

We are reusing the execution order of the meta language: In the meta language we execute

perform whenever we encounter an object program expression. If we force the object program

to replay the order of the perform calls by inserting a let binding for each of them, we are sure

to execute the performed statements in the right order. Whenever we have a hole to fill in

an object program fragment, we use accumulate to gather all statements performed while

computing the fragment to splice into the hole.

Perform and accumulate form a reflect/reify pair that translates between a syntactic and a

semantic layer. Alternatively, perform could be called reflectEffects, accumulate reifyEffects.

This hints at the view that we are embedding perform and accumulate in the (invisible)

computation monad of the meta language using Filinski’s notion of monadic reflection [44, 45].

Accumulate is a left inverse of perform with respect to extensional equality (·) of the generated

code:

accumulate { perform("a") } ¡!⁄ "{ val fresh = a; fresh }" · "a"

If structural equality is desired, a simple special case can be added to the above definition

to directly translate accumulate(perform("a")) to "a". Within a suitable context, perform is

44

6.2. Contributions

also a left inverse of accumulate: Performing a set of accumulated statements together is the

same as just performing the statements individually.

Clearly, using perform and accumulate manually is tedious. However we can incorporate

them entirely inside the quasi quotation / interpolation syntax:

s" foo ${ bar } baz " ¡! " foo " + bar + " baz " // regular interpolation

q" foo ${ bar } baz " ¡! perform(" foo " + accumulate { bar } + " baz ")

In essence, we identify quotation with perform and holes with accumulate.

We get back to a power implementation using quasiquotes. This time we use type Code,

although we are still working with concrete syntax:

def power(b: Code, n: Int): Code =

if (n == 0) q"1.0" else q"($b * ${ power(b, n - 1) })"

The same mechanism can be used to implement order preserving versions of (type-safe)

abstract syntax quotation [[...]]. The signatures will change from strings to trees:

type Code[T]

def perform(stm: Tree[T]): Code[T]

def accumulate(res: => Code[T]): Tree[T]

We put the modified quasiquotes to test by invoking power on the example from the

previous Section 6.1.6:

def power(b: Code[T], n: Int): Code[T] = ...

val x = [[computeA()]]

power([[computeB() + $x]], 4)

We obtain as intermediate result before invoking power (dropping unnecessary braces and

replacing semicolons with newlines):

val x1 = computeA()

val x3 = { val x2 = computeB() + x1; x2 }

power(x3,4)

And as the final result:

val x1 = computeA()

val x3 = { val x2 = computeB() + x1; x2 }

val x4 = 1.0

val x5 = x3 * x4

val x6 = x3 * x5

val x7 = x3 * x6

val x8 = x3 * x7

x8

It is easy to see that this is the correct sequencing of statements. No computation is duplicated.

Likewise, if we use the improved algorithm, we actually get better performance.

We have removed the need for monadic or side-effecting front-ends (in this case, in other

cases they may still be needed but never to perform let insertion). Since we have extended

45

Chapter 6. Staging: Deep Linguistic Reuse for Easier Program Generator Development

the core staging primitives with a controlled form of side effect, we have removed the need

for uncontrolled side effects in the generator. This makes otherwise common errors such as

scope extrusion much less likely.

6.2.2 Removing Syntactic Overhead

We have seen how we can improve staging based on quasiquotes or direct string generation.

Now we turn to other approaches of delineating embedded object programs. Our aim is em-

bedding domain specific compilers. We want object languages tailored to specific applications,

with custom compiler components. The “one size fits all” approach of having the same meta

and object language is not ideal for this purpose. In our case, we would have to inspect Scala

ASTs and reject or possibly interpret constructs that have no correspondence in the object

language (type, class or method definitions, etc).

The staged power implementations with quasi quotes (Sections 6.1.2,6.1.6) look OK but

they do contain a fair bit of syntactic noise. Also, we might want stronger guarantees about

the staged code, for example that it does not use a particular language feature, which we know

is detrimental to performance. What is more, we might want to generate code in a different

language (JavaScript, CUDA, SQL).

We already hide the internal code representation from client programs. There are good

reasons to also hide the full power of arbitrary program composition / quasi quoting from

client programs.

Programs, such as power, use quasiquotes for two purposes: lifting primitives and opera-

tions:

def power(b: Code[Double], n: Int): Code[Double] =

if (n == 0) q"1.0" else q"($b * ${ power(b, n - 1) })"

We already identify object code via Code[T] types. Instead of quasiquotes we can employ other

ways of lifting the necessary operations on type T to type Code[T]:

implicit def liftDouble(x: Double): Code[Double] = q"x"

def infix_*(x: Code[Double], y: Code[Double]): Code[Double] = q"$x * $y"

Now power can be implemented like this:

def power(b: Code[Double], n: Int): Code[Double] =

if (n == 0) liftDouble(1.0) else infix_*(b, power(b, n - 1))

But we can simplify further. In fact, the Scala compiler will do most of the work for us and we

can write just this:

def power(b: Code[Double], n: Int): Code[Double] =

if (n == 0) 1.0 else b * power(b, n - 1)

Apart from the Code[_] types, we have re-engineered exactly the regular, unstaged power

function! All other traces of staging annotations are gone.

We are relying on Scala’s support for implicit conversions (views) and Scala-Virtualized

support for infix methods. Other expressive languages provide similar features.

46

6.2. Contributions

6.2.3 Staging as a Library and Modular Definition of Object Languages

With the object language definition given by method signatures we can implement staging

as a library, without dedicated language support and with roughly the same guarantees as

a multi-stage language with quasi quotation. Furthermore, we can easily generate code in

another target language, for example emit JavaScript from staged Scala expressions. Given that

the multi-stage program is in control of defining the object language we can model additional

guarantees about the absence of certain operations from staged code, simply by not including

these operations in the object language interface.

The core idea is to delegate correctness issues to the implementations of the lifted opera-

tions, i.e. the implementation of the object language interface. Client code can access staging

only through the object language API, so if the implementation is correct, the interface ensures

correctness of the client code.

We can use any representation we like for staged expressions. For the sake of simplicity we

will stick to strings. Where we have used type Code[T] above, we will use Rep[T] from now on

because we want to allude to thinking more about the representation of a T value in the next

stage and less about composing code fragments.

Where quasiquoting allowed the full language to be staged, we now have to explicitly

“white-list” all operations we want to make available. Clearly there is a tradeoff, as explicit

white-listing of operations can be tedious. However we can remedy the white-listing effort to a

large extent by providing libraries of reusable components that contain sets of lifted operations

from which different flavors of object languages can be assembled. It is also possible to lift

whole traits or classes using reflection [79].

We can define a simple object language MyStagedLanguage as follows, using private access

qualifiers to ensure that the staging primitives perform and accumulate are inaccessible to

client code outside of package internal:

package internal

trait Base extends EmbeddedControls {

type Rep[T]

private[internal] def perform[T](stm: String): Rep[T]

private[internal] def accumulate[T](res: => Rep[T]): String

}

trait LiftPrimitives extends Base {

implicit def liftDouble(x: Double): Rep[Double] = perform(x.toString)

}

trait Arith extends Base {

def infix_*(x: Rep[Double], y: Rep[Double]): Rep[Double] = perform(x+"*"+y)

}

trait IfThenElse extends Base {

def __ifThenElse[T](c: Rep[Boolean], a: =>Rep[T], a: =>Rep[T]): Rep[T] =

perform("if (" + c + ") " + accumulate(a) + " else " + accumulate(b))

}

trait MyStagedLanguage extends LiftPrimitives with Arith with IfThenElse

Note that we invoke accumulate only for by-name parameters. All others are already object

47

Chapter 6. Staging: Deep Linguistic Reuse for Easier Program Generator Development

code values, so evaluating them is a no-op and cannot have side effects. In doing so we

silently assume a sensible toString operation on Rep[T]. If we do not want to make this

assumption then we need accumulate calls everywhere a Rep[T] value is converted to a string

representation.

Client code just needs access to an object of type MyStagedLanguage to call methods on it.

Common ways to achieve this include path-dependent types and imports:

val p: MyStagedLanguage = ...

import p._

def power(b: Rep[Double], n: Int): Rep[Double] = ...

In which case the desugared method signature is:

def power(b: p.Rep[Double], n: Int): p.Rep[Double] = ...

Or by structuring the client code as traits itself:

trait Power { this: MyStagedLanguage =>

def power(b: Rep[Double], n: Int): Rep[Double] = ...

}

In the following we briefly revisit the various static guarantees and show how they are

fulfilled in LMS.

Syntax correctness through Embedding as Methods

Generating syntactically well formed programs is delegated to methods implementing the

object language interface. Client code never assembles pieces of code directly. If clients only

use the API methods, and their implementations produce syntax correct code, overall syntax

correctness follows.

Scope Correctness through Deep Reuse Of Val Bindings

The staging primitives perform eager let insertion and perform will assign a fresh identifier

to each and every subexpression encountered, essentially producing on object program in

administrative normal form (ANF). This removes the need for explicit val bindings in object

code. Instead, programmers can just use val bindings in the meta program. This is an example

of deep linguistic reuse, as the “feature” of val bindings is translated away.

As for scope correctness, we have not encountered any binders in object code so far. Below

in Section 6.2.4 we will introduce staged functions using higher order abstract syntax (HOAS)

[105]:

def lambda[A,B](f: Rep[A] => Rep[B]): Rep[A=>B]

lambda { (x:Rep[Int]) => ... } // a staged function object

The essence of HOAS is to reuse meta language bindings to implement object language

bindings. Unless subverted by explicit scope extrusion, the reuse of meta language bindings

ensures scope correctness of object programs.

48

6.2. Contributions

Type Correctness through Typed Embedding (Deep Reuse of Types)

The object language API exposes only typed methods. If the implementations of these methods

produce type correct code, then overall type correctness follows.

Value Correctness through Deep Reuse of Evaluation Order

The perform and accumulate abstraction has been described at length in Section 6.2.1.

6.2.4 Functions and Recursion

Many features can be added to the object language in a way that is analogous to what we have

seen above but some require a bit more thought. In this section we will take a closer look

at staged functions. Basic support for staged function definitions and function applications

can be defined in terms of a simple higher-order abstract syntax (HOAS) [105] representation,

similar to those of Carette et al. [16] and Hofer et al. [55].

The idea is to provide a lambda operation that transforms present-stage functions over

staged values (type Rep[A] => Rep[B]) to staged function values (type Rep[A=>B]).

trait Functions extends Base {

def lambda[A,B](f: Rep[A] => Rep[B]): Rep[A=>B]

def infix_apply[A,B](f: Rep[A=>B], x: Rep[A]): Rep[B]

}

To give an example, the staged recursive factorial function will look like this:

def fac: Rep[Int => Int] = lambda { n =>

if (n == 0) 1

else n * fac(n - 1)

}

As opposed to the earlier power example, an invocation fac(m) will not inline the definition of

fac but result in an actual function call in the generated code.

However the HOAS representation has the disadvantage of being opaque: there is no

immediate way to “look into” a Scala function object. If we want to treat functions in the same

way as other program constructs, we need a way to transform the HOAS encoding into our

string representation. We can implement lambda(f) to call

accumulate { f(fresh[A]) }

which will unfold the function definition into a block that represents the entire computation

defined by the function (assuming that fresh[A] creates a fresh symbol of type A). But eagerly

expanding function definitions is problematic. For recursive functions, the result would be

infinite, i.e. the computation will not terminate. What we would like to do instead is to detect

recursion and generate a finite representation that makes the recursive call explicit. However

this is difficult because recursion might be very indirect:

def foo(x: Rep[Int]) = {

val f = (x: Rep[Int]) => foo(x + 1)

49

Chapter 6. Staging: Deep Linguistic Reuse for Easier Program Generator Development

val g = lambda(f)

g(x)

}

Each incarnation of foo creates a new function f; unfolding will thus create unboundedly

many different function objects.

To detect cycles, we have to compare those functions. This, of course, is undecidable in the

general case of taking equality to be defined extensionally, i.e. saying that two functions are

equal if they map equal inputs to equal outputs. The standard reference equality, by contrast,

is too weak for our purpose:

def adder(x:Int) = (y: Int) => x + y

adder(3) == adder(3)

,! false

However, we can approximate extensional equality by intensional (i.e. structural) equality,

which is sufficient in most cases because recursion will cycle through a well defined code path

in the program text. Testing intensional equality amounts to checking if two functions are

defined at the same syntactic location in the source program and whether all data referenced by

their free variables is equal. Fortunately, the implementation of first-class functions as closure

objects offers (at least in principle) access to a “defunctionalized” data type representation

on which equality can easily be checked. A bit of care must be taken though, because the

structure can be cyclic. On the JVM there is a particularly neat trick. We can serialize the

function objects into a byte array and compare the serialized representations:

serialize(adder(3)) == serialize(adder(3))

,! true

With this method of testing equality, we can implement controlled unfolding. Unfolding

functions only once at the definition site and associating a fresh symbol with the function

being unfolded allows us to construct a block that contains a recursive call to the symbol we

created. Thus, we can create the expected representation for the factorial function above.

6.2.5 Semi-Automatic BTA through Deep Reuse of Type Inference

Given a method or function implementation:

def power(b: _, n: Int) =

if (n == 0) 1.0 else b * power(b, n - 1)

Scala’s type inference can determine whether the operations and the result will be staged or

not. We just have to provide the binding time for parameter b. Note that staging n would

require explicit use of lambda because there is no static criterion to stop the recursion.

In some cases we need to be conservative, for example for mutable objects:

var i = 0

if (c) // c: Rep[Boolean]

i += 1

50

6.2. Contributions

The variable i must be lifted because writes depend on dynamic control flow. We can accom-

plish this by implementing the virtualized var constructor to always lift variable declarations,

even if the initial right-hand side is a static value. Packaged up in a trait, it can be selectively

imported:

trait MyProg { this: LiftVariables =>

... // all variables are lifted in this scope

}

6.2.6 Generating and Loading Executable Code

Code generation in LMS is an explicit operation. For the common case where generated

code is to be loaded immediately into the running program, trait Compile provides a suitable

interface in form of the abstract method compile:

trait Compile extends Base {

def compile[A,B](f: Rep[A] => Rep[B]): A=>B

}

The contract of compile is to “unstage” a function from staged to staged values into a function

operating on present-stage values that can be used just like any other function object in the

running program. Of course this only works for functions that do not reference externally

bound Rep[T] values, otherwise the generate code will not compile due to free identifiers. The

given encoding into Scala’s type system does not prevent this kind of error.

For generating Scala code, an implementation of the compilation interface is provided by

trait CompileScala:

trait CompileScala extends Compile {

def compile[A,B](f: Rep[A] => Rep[B]) = {

val x = fresh[A]

val y = accumulate { f(x) }

// emit header

emitBlock(y)

// emit footer

// invoke compiler

// load generated class file

// instantiate object of that class

}

}

The overall compilation logic of CompileScala is relatively simple: emit a class and apply-

method declaration header, emit instructions for each definition node according to the sched-

ule, close the source file, invoke the Scala compiler, load the generated class file and return a

newly instantiated object of that class.

51

Part II

Compiling Embedded Programs

53

Chapter 7

Intro: Not your Grandfather’s Compiler

How do embedded compilers compile their programs?

The purely string based representation of staged programs from Part I does not allow anal-

ysis or transformation of embedded programs. Since LMS is not inherently tied to a particular

program representation it is very easy to pick one that is better suited for optimization. As a

first cut, we switch to an intermediate representation (IR) based on expression trees, adding a

level of indirection between construction of object programs and code generation (Chapter 8).

On this tree IR we can define traversal and transformation passes and build a straightforward

embedded compiler. We can add new IR node types and new transformation passes that

implement domain specific optimizations. In particular we can use multiple passes of staging:

While traversing (effectively, interpreting) one IR we can execute staging commands to build

another staged program, possibly in a different, lower-level object language.

However the extremely high degree of extensibility poses serious challenges. In particular,

the interplay of optimizations implemented as many separate phases does not yield good

results due to the phase ordering problem: It is unclear in which order and how often to

execute these phases, and since each optimization pass has to make pessimistic assumptions

about the outcome of all other passes the global result is often suboptimal compared to a

dedicated, combined optimization phase [149, 23]. There are also implementation challenges

as each optimization needs to be designed to treat unknown IR nodes in a sensible way.

Other challenges are due to the fact that embedded compilers are supposed to be used

like libraries. Extending an embedded compiler should be easy, and as much of the work as

possible should be delegated to a library of compiler components. Newly defined high-level

IR nodes should profit from generic optimizations automatically.

To remedy this situation, we switch to a graph-based “sea of nodes” representation (Chap-

ter 9). This representation links definitions and uses, and it also reflects the program block

structure via nesting edges. We consider purely functional programs first. A number of non-

trivial optimizations become considerably simpler. Common subexpression elimination (CSE)

and dead code elimination (DCE) are particularly easy. Both are completely generic and

support an open domain of IR node types. Optimizations that can be expressed as context-free

rewrites are also easy to add in a modular fashion. A scheduling and code motion algorithm

transforms graphs back into trees, moving computations to places where they are less often

55

Chapter 7. Intro: Not your Grandfather’s Compiler

executed, e.g. out of loops or functions. Both graph-based and tree-based transformations

are useful: graph-based transformations are usually simpler and more efficient whereas tree-

based transformations, implemented as multiple staging passes, can be more powerful and

employ arbitrary context-sensitive information.

To support effectful programs, we make effects explicit in the dependency graph (similar

to SSA form). We can support simple effect domains (pure vs effectful) and more fine grained

ones, such as tracking modifications per allocation site. The latter one relies on alias and

points-to analysis.

We turn to advanced optimizations in Chapter 10. For combining analyses and optimiza-

tions, it is crucial to maintain optimistic assumptions for all analyses. The key challenge is

that one analysis has to anticipate the effects of the other transformations. The solution is

speculative rewriting [85]: transform a program fragment in the presence of partial and possi-

bly unsound analysis results and re-run the analyses on the transformed code until a fixpoint

is reached. This way, different analyses can communicate through the transformed code and

need not anticipate their results in other ways. Using speculative rewriting, we compose many

optimizations into more powerful combined passes. Often, a single forward simplification

pass that can be used to clean up after non-optimizing transformations is sufficient.

However not all rewrites can fruitfully be combined into a single phase. For example, high-

level representations of linear algebra operations may give rise to rewrite rules like I M ! M

where I is the identity matrix. At the same time, there may be rules that define how a matrix

multiplication can be implemented in terms of arrays and while loops, or a call to an external

library (BLAS). To be effective, all the high-level simplifications need to be applied exhaustively

before any of the lowering transformations are applied. But lowering transformations may

create new opportunities for high-level rules, too. Our solution here is delayed rewriting:

programmers can specify that a certain rewrite should not be applied right now, but have it

registered to be executed at the next iteration of a particular phase. Delayed rewriting thus

provides a way of grouping and prioritizing modularly defined transformations.

On top of this infrastructure, we build a number of advanced optimizations. A general

pattern is split and merge: We split operations and data structures in order to expose their

components to rewrites and dead-code elimination and then merge the remaining parts

back together. This struct transformation also allows for more general data structure conver-

sions, including array-of-struct to struct-of-array representation conversion. Furthermore we

present a novel loop fusion algorithm, a powerful transformation that removes intermediate

data structures.

Evaluation and examples follow in Part III.

56

Chapter 8

Intermediate Representation: Trees

With the aim of generating code, we could represent staged expressions directly as strings, as

done in Part I. But for optimization purposes we would rather have a structured intermediate

representation that we can analyze in various ways. Fortunately, LMS makes it very easy to

use a different internal program representation.

8.1 Trees Instead of Strings

Our starting point is an object language interface derived from Part I:

trait Base {

type Rep[T]

}

trait Arith extends Base {

def infix_+(x: Rep[Double], y: Rep[Double]): Rep[Double]

def infix_*(x: Rep[Double], y: Rep[Double]): Rep[Double]

...

}

trait IfThenElse extends Base {

def __ifThenElse[T](c: Rep[Boolean], a: =>Rep[T], b: =>Rep[T]): Rep[T]

}

The goal will be to build a corresponding implementation hierarchy that supports optimizing

compilation.

Splitting interface and implementation has many advantages, most importantly a clear

separation between the user program world and the compiler implementation world. For the

sake of completeness, let us briefly recast the string representation from Part I in this model:

trait BaseStr extends Base {

type Rep[T] = String

}

trait ArithStr extends BaseStr with Arith {

def infix_+(x: Rep[Double], y: Rep[Double]) = perform(x + " + " + y)

def infix_*(x: Rep[Double], y: Rep[Double]) = perform(x + " * " + y)

...

57

Chapter 8. Intermediate Representation: Trees

}

trait IfThenElseStr extends BaseStr with IfThenElse {

def __ifThenElse[T](c: Rep[Boolean], a: =>Rep[T], b: =>Rep[T]) =

perform("if (" + c + ") " + accumulate(a) + " else " + accumulate(b))

}

In this chapter, we will use an IR that is based on expression trees, closely resembling the

abstract syntax tree (AST) of a staged program. This representation enables separate analysis,

optimization and code generation passes. We will use the following types:

type Exp[T] // atomic: Sym, Const

type Def[T] // composite: Exp + Exp, Exp * Exp, ...

type Stm[T] // statement: val x = Def

type Block[T] // blocks: { Stm; ...; Stm; Exp }

They are defined as follows in a separate trait:

trait Expressions {

// expressions (atomic)

abstract class Exp[T]

case class Const[T](x: T) extends Exp[T]

case class Sym[T](n: Int) extends Exp[T]

def fresh[T]: Sym[T]

// definitions (composite, subclasses provided by other traits)

abstract class Def[T]

// statements

case class Stm[T](sym: Sym[T], rhs: Def[T])

// blocks

case class Block[T](stms: Stm[_], res: Exp[T])

// perform and accumulate

def reflectStm[T](d: Stm[T]): Exp[T]

def reifyBlock[T](b: =>Exp[T]): Block[T]

// bind definitions to symbols automatically

// by creating a statement

implicit def toAtom[T](d: Def[T]): Exp[T] =

reflectStm(Stm(fresh[T], d))

}

This trait Expressions will be mixed in at the root of the object language implementation

hierarchy. The guiding principle is that each definition has an associated symbol and refers to

other definitions only via their symbols. This means that every composite value will be named,

similar to administrative normal form (ANF). Methods reflectStm and reifyBlock take over

the responsibility of perform and accumulate.

58

8.2. Enabling Analysis and Transformation

8.1.1 Modularity: Adding IR Node Types

We observe that there are no concrete definition classes provided by trait Expressions. Provid-

ing meaningful data types is the responsibility of other traits that implement the interfaces

defined previously (Base and its descendents).

Trait BaseExp forms the root of the implementation hierarchy and installs atomic expres-

sions as the representation of staged values by defining Rep[T] = Exp[T]:

trait BaseExp extends Base with Expressions {

type Rep[T] = Exp[T]

}

For each interface trait, there is one corresponding core implementation trait. Shown be-

low, we have traits ArithExp and IfThenElseExp as the running example. Both traits define

one definition class for each operation defined by Arith and IfThenElse, respectively, and

implement the corresponding interface methods to create instances of those classes.

trait ArithExp extends BaseExp with Arith {

case class Plus(x: Exp[Double], y: Exp[Double]) extends Def[Double]

case class Times(x: Exp[Double], y: Exp[Double]) extends Def[Double]

def infix_+(x: Rep[Double], y: Rep[Double]) = Plus(x, y)

def infix_*(x: Rep[Double], y: Rep[Double]) = Times(x, y)

...

}

trait IfThenElseExp extends BaseExp with IfThenElse {

case class IfThenElse(c: Exp[Boolean], a: Block[T], b: Block[T]) extends Def[T]

def __ifThenElse[T](c: Rep[Boolean], a: =>Rep[T], b: =>Rep[T]): Rep[T] =

IfThenElse(c, reifyBlock(a), reifyBlock(b))

}

The framework ensures that code that contains staging operations will always be executed

within the dynamic scope of at least one invocation of reifyBlock, which returns a block

object and takes as call-by-name argument the present-stage expression that will compute

the staged block result. Block objects can be part of definitions, e.g. for loops or conditionals.

Since all operations in interface traits such as Arith return Rep types, equating Rep[T]

and Exp[T] in trait BaseExp means that conversion to symbols will take place already within

those methods. This fact is important because it establishes our correspondence between

the evaluation order of the program generator and the evaluation order of the generated

program: at the point where the generator calls toAtom, the composite definition is turned into

an atomic value via reflectStm, i.e. its evaluation will be recorded now and played back later

in the same relative order with respect to others within the closest reifyBlock invocation.

8.2 Enabling Analysis and Transformation

Given our IR representation it is easy to add traversals and transformations.

59

Chapter 8. Intermediate Representation: Trees

8.2.1 Modularity: Adding Traversal Passes

All that is needed to define a generic in-order traversal is a way to access all blocks immediately

contained in a definition:

def blocks(x: Any): List[Block[Any]]

For example, applying blocks to an IfThenElse node will return the then and else blocks.

Since definitions are case classes, this method is easy to implement by using the Product

interface that all case classes implement.

The basic structural in-order traversal is then defined like this:

trait ForwardTraversal {

val IR: Expressions

import IR._

def traverseBlock[T](b: Block[T]): Unit = b.stms.foreach(traverseStm)

def traverseStm[T](s: Stm[T]): Unit = blocks(s).foreach(traverseBlock)

}

Custom traversals can be implemented in a modular way by extending the ForwardTraversal

trait:

trait MyTraversalBase extends ForwardTraversal {

val IR: BaseExp

import IR._

override def traverseStm[T](s: Stm[T]) = s match {

// custom base case or delegate to super

case _ => super.traverseStm(s)

}

}

trait MyTraversalArith extends MyTraversalBase {

val IR: ArithExp

import IR._

override def traverseStm[T](s: Stm[T]) = s match {

case Plus(x,y) => ... // handle specific nodes

case _ => super.traverseStm(s)

}

}

For each unit of functionality such as Arith or IfThenElse the traversal actions can be defined

separately as MyTraversalArith and MyTraversalIfThenElse.

Finally, we can use our traversal as follows:

trait Prog extends Arith {

def main = ... // program code here

}

val impl = new Prog with ArithExp

val res = impl.reifyBlock(impl.main)

val inspect = MyTraversalArith { val IR: impl.type = impl }

inspect.traverseBlock(res)

60

8.2. Enabling Analysis and Transformation

8.2.2 Solving the “Expression Problem”

In essence, traversals confront us with the classic “expression problem” of independently

extending a data model with new data variants and new operations [152]. There are many

solutions to this problem but most of them are rather heavyweight. More lightweight im-

plementations are possible in languages that support multi-methods, i.e. dispatch method

calls dynamically based on the actual types of all the arguments. We can achieve essentially

the same using pattern matching and mixin composition, making use of the fact that com-

posing traits is subject to linearization [100]. We package each set of specific traversal rules

into its own trait, e.g. MyTraversalArith that inherits from MyTraversalBase and overrides

traverseStm. When the arguments do not match the rewriting pattern, the overridden method

will invoke the “parent” implementation using super. When several such traits are combined,

the super calls will traverse the overridden method implementations according to the lin-

earization order of their containing traits. The use of pattern matching and super calls is

similar to earlier work on extensible algebraic data types with defaults [160], which supported

linear extensions but not composition of independent extensions.

Implementing multi-methods in a statically typed setting usually poses three problems:

separate type checking/compilation, ensuring non-ambiguity and ensuring exhaustiveness.

The described encoding supports separate type-checking and compilation in as far as traits

do. Ambiguity is ruled out by always following the linearization order and the first-match

semantics of pattern matching. Exhaustiveness is ensured at the type level by requiring a

default implementation, although no guarantees can be made that the default will not choose

to throw an exception at runtime. In the particular case of traversals, the default is always safe

and will just continue the structural traversal.

8.2.3 Generating Code

Code generation is just a traversal pass that prints code. Compiling and executing code can

use the same mechanism as described in Section 6.2.6.

8.2.4 Modularity: Adding Transformations

Transformations work very similar to traversals. One option is to traverse and transform an

existing program more or less in place, not actually modifying data but attaching new Defs to

existing Syms:

trait SimpleTransformer {

val IR: Expressions

import IR._

def transformBlock[T](b: Block[T]): Block[T] =

Block(b.stms.flatMap(transformStm), transformExp(b.res))

def transformStm[T](s: Stm[T]): List[Stm] =

List(Stm(s.lhs, transformDef(s.rhs))) // preserve existing symbol s

def transformDef[T](d: Def[T]): Def[T] // default: use reflection

// to map over case classes

61

Chapter 8. Intermediate Representation: Trees

}

An implementation is straightforward:

trait MySimpleTransformer extends SimpleTransformer {

val IR: IfThenElseExp

import IR._

// override transformDef for each Def subclass

def transformDef[T](d: Def[T]): Def[T] = d match {

case IfThenElse(c,a,b) =>

IfThenElse(transformExp(c), transformBlock(a), transformBlock(b))

case _ => super.transformDef(d)

}

}

8.2.5 Transformation by Iterated Staging

Another option that is more principled and in line with the idea of making compiler transforms

programmable through the use of staging is to traverse the old program and create a new

program. Effectively we are implementing an IR interpreter that executes staging commands,

which greatly simplifies the implementation of the transform and removes the need for low-

level IR manipulation.

In the implementation, we will create new symbols instead of reusing existing ones so we

need to maintain a substitution that maps old to new Syms. The core implementation is given

below:

trait ForwardTransformer extends ForwardTraversal {

val IR: Expressions

import IR._

var subst: Map[Exp[_],Exp[_]]

def transformExp[T](s: Exp[T]): Exp[T] = ... // lookup s in subst

def transformDef[T](d: Def[T]): Exp[T] // default

def transformStm[T](s: Stm[T]): Exp[T] = {

val e = transformDef(s.rhs); subst += (s.sym -> e); e

}

override def traverseStm[T](s: Stm[T]): Unit = {

transformStm(s)

}

def reflectBlock[T](b: Block[T]): Exp[T] = withSubstScope {

traverseBlock(b); transformExp(b.res)

}

def transformBlock[T](b: Block[T]): Block[T] = {

reifyBlock(reflectBlock(b))

}

}

Here is a simple identity transformer implementation for conditionals and array construc-

tion:

62

8.3. Problem: Phase Ordering

trait MyTransformer extends ForwardTransformer {

val IR: IfThenElseExp with ArraysExp

import IR._

def transformDef[T](d: Def[T]): Exp[T] = d match {

case IfThenElse(c,a,b) =>

__ifThenElse(transformExp(c), reflectBlock(a), reflectBlock(b))

case ArrayFill(n,i,y) =>

arrayFill(transformExp(n), { j => withSubstScope(i -> j) { reflectBlock(y) }})

case _ => ...

}

}

The staged transformer facility can be extended slightly to translate not only within a

single language but also between two languages:

trait FlexTransformer {

val SRC: Expressions

val DST: Base

trait TypeTransform[A,B]

var subst: Map[SRC.Exp[_],DST.Rep[_]]

def transformExp[A,B](s: SRC.Exp[A])(implicit t: TypeTransform[A,B]): DST.Rep[B]

}

It is also possible to add more abstraction on top of the base transforms to build combina-

tors for rewriting strategies in the style of Stratego [71] or Kiama [120].

8.3 Problem: Phase Ordering

This all works but is not completely satisfactory. With fine grained separate transformations

we immediately run into phase ordering problems [149, 23]. We could execute optimization

passes in a loop until we reach a fixpoint but even then we may miss opportunities if the

program contains loops. For best results, optimizations need to be tightly integrated. Opti-

mizations need a different mechanisms than lowering transformations that have a clearly

defined before and after model. In the next chapter, we will thus consider a slightly different

IR representation.

63

Chapter 9

Intermediate Representation: Graphs

To remedy phase ordering problems and overall allow for more flexibility in rearranging

program pieces, we switch to a program representation based on structured graphs. This

representation is not to be confused with control-flow graphs (CFGs): Since one of our main

goals is parallelization, a sequential CFG would not be a good fit.

9.1 Purely Functional Subset

Let us first consider a purely functional language subset. There are much more possibilities for

aggressive optimizations. We can rely on referential transparency: The value of an expression

is always the same, no matter when and where it is computed. Thus, optimizations do not need

to check availability or lifetimes of expressions. Global common subexpression elimination

(CSE), pattern rewrites, dead code elimination (DCE) and code motion are considerably

simpler than the usual implementations for imperative programs.

We switch to a “sea of nodes”-like [24] representation that is a directed (and for the moment,

acyclic) graph:

trait Expressions {

// expressions (atomic)

abstract class Exp[T]

case class Const[T](x: T) extends Exp[T]

case class Sym[T](n: Int) extends Exp[T]

def fresh[T]: Sym[T]

// definitions (composite, subclasses provided by other traits)

abstract class Def[T]

// blocks -- no direct links to statements

case class Block[T](res: Exp[T])

// bind definitions to symbols automatically

// by creating a statement

implicit def toAtom[T](d: Def[T]): Exp[T] =

65

Chapter 9. Intermediate Representation: Graphs

reflectPure(d)

def reifyBlock[T](b: =>Exp[T]): Block[T]

def reflectPure[T](d: Def[T]): Sym[T] =

findOrCreateDefinition(d)

def findDefinition[T](s: Sym[T]): Option[Def[T]]

def findDefinition[T](d: Def[T]): Option[Sym[T]]

def findOrCreateDefinition[T](d: Def[T]): Sym[T]

}

It is instructive to compare the definition of trait Expressions with the one from the

previous Chapter 8. Again there are three categories of objects involved: expressions, which

are atomic (subclasses of Exp: constants and symbols; with a “gensym” operator fresh to

create fresh symbols), definitions, which represent composite operations (subclasses of Def,

to be provided by other components), and blocks, which model nested scopes.

Trait Expressions now provides methods to find a definition given a symbol or vice

versa. Direct links between blocks and statements are removed. The actual graph nodes

are (Sym[T], Def[T]) pairs. They need not be accessible to clients at this level. Thus method

reflectStm from the previous chapter is replaced by reflectPure.

Graphs also carry nesting information (boundSyms, see below). This enables code motion

for different kinds of nested expressions such as lambdas, not only for loops or conditionals.

The structured graph representation is also more appropriate for parallel execution than the

traditional sequential control-flow graph. Pure computation can float freely in the graph and

can be scheduled for execution anywhere.

9.1.1 Modularity: Adding IR Node Types

The object language implementation code is the same compared to the tree representation:

trait BaseExp extends Base with Expressions {

type Rep[T] = Exp[T]

}

Again, we have separate traits, one for each unit of functionality:

trait ArithExp extends BaseExp with Arith {

case class Plus(x: Exp[Double], y: Exp[Double]) extends Def[Double]

case class Times(x: Exp[Double], y: Exp[Double]) extends Def[Double]

def infix_+(x: Rep[Double], y: Rep[Double]) = Plus(x, y)

def infix_*(x: Rep[Double], y: Rep[Double]) = Times(x, y)

...

}

trait IfThenElseExp extends BaseExp with IfThenElse {

case class IfThenElse(c: Exp[Boolean], a: Block[T], b: Block[T]) extends Def[T]

def __ifThenElse[T](c: Rep[Boolean], a: =>Rep[T], b: =>Rep[T]): Rep[T] =

IfThenElse(c, reifyBlock(a), reifyBlock(b))

}

66

9.2. Simpler Analysis and More Flexible Transformations

9.2 Simpler Analysis and More Flexible Transformations

Several optimizations are very simple to implement on this purely functional graph IR. The

implementation draws inspiration from previous work on compiling embedded DSLs [42, 84]

as well as staged FFT kernels [76].

9.2.1 Common Subexpression Elimination/Global Value Numbering

Common subexpressions are eliminated during IR construction using hash consing:

def findOrCreateDefinition[T](d: Def[T]): Sym[T]

Invoked by reflectPure through the implicit conversion method toAtom, this method

converts a definition to an atomic expression and links it to the scope being built up by the

innermost enclosing reifyBlock call. When the definition is known to be side-effect free, it

will search the already encountered definitions for a structurally equivalent one. If a matching

previous definition is found, its symbol will be returned, possibly moving the definition to

a parent scope to make it accessible. If the definition may have side effects or it is seen for

the first time, it will be associated with a fresh symbol and saved for future reference. This

simple scheme provides a powerful global value numbering optimization [21] that effectively

prevents generating duplicate code.

9.2.2 Pattern Rewrites

Using findDefinition, we can implement an extractor object [43] that enables pattern match-

ing on a symbol to lookup the underlying definition associated to the symbol:

object Def {

def unapply[T](s: Exp[T]): Option[Def[T]] = s match {

case s: Sym[T] => findDefinition(s)

case _ => None

}

}

This extractor object can be used to implement smart constructors for IR nodes that deeply

inspect their arguments:

def infix_*(x: Exp[Double], y: Exp[Double]) = (x,y) match {

case (Const(x), Const(y)) => Const(x * y)

case (Const(k), Def(Times(Const(l), y))) => Const(k * l) * y

case _ => Times(x,y)

}

Smart constructors are a simple yet powerful rewriting facility. If the smart constructor is

the only way to construct Times nodes we obtain a strong guarantee: No Times node is ever

created without applying all possible rewrites first.

67

Chapter 9. Intermediate Representation: Graphs

9.2.3 Modularity: Adding new Optimizations

Some profitable optimizations, such as the global value numbering described above, are

very generic. Other optimizations apply only to specific aspects of functionality, for example

particular implementations of constant folding (or more generally symbolic rewritings) such

as replacing computations like x * 1.0 with x. Yet other optimizations are specific to the

actual program being staged. Kiselyov et al. [76] describe a number of rewritings that are

particularly effective for the patterns of code generated by a staged FFT algorithm but not as

much for other programs. The FFT example is discussed in more detail in Section 14.3.

What we want to achieve again is modularity, so that optimizations can be combined in

a way that is most useful for a given task. To implement a particular rewriting rule (whether

specific or generic), say, x * 1.0 ! x, we can provide a specialized implementation of infix_*

(overriding the one in trait ArithExp) that will test its arguments for a particular pattern. How

this can be done in a modular way is shown by the traits ArithExpOpt and ArithExpOptFFT,

which implement some generic and program specific optimizations. Note that the use of x*y

within the body of infix_* will apply the optimization recursively.

The appropriate pattern is to override the smart constructor in a separate trait and call the

super implementation if no rewrite matches. This decouples optimizations from node type

definitions.

trait ArithExpOpt extends ArithExp {

override def infix_*(x:Exp[Double],y:Exp[Double]) = (x,y) match {

case (Const(x), Const(y)) => Const(x * y)

case (x, Const(1)) => x

case (Const(1), y) => x

case _ => super.infix_*(x, y)

}

}

trait ArithExpOptFFT extends ArithExp {

override def infix_*(x:Exp[Double],y:Exp[Double]) = (x,y) match {

case (Const(k), Def(Times(Const(l), y))) => Const(k * l) * y

case (x, Def(Times(Const(k), y))) => Const(k) * (x * y))

case (Def(Times(Const(k), x)), y) => Const(k) * (x * y))

...

case (x, Const(y)) => Const(y) * x

case _ => super.infix_*(x, y)

}

}

Note that the trait linearization order defines the rewriting strategy. We still maintain our

guarantee that no Times node could be rewritten further.

Figure 9.1 shows the component architecture formed by base traits and corresponding

optimizations.

68

9.2. Simpler Analysis and More Flexible Transformations

Expressions

Base BaseExp ScalaGenBase

Compile CompileScala

Arith ArithExp ArithExpOpt ArithExpOptFFT ScalaGenArith Arithmetic

Trig TrigExp TrigExpOpt ScalaGenTrig Trigonometry

Interface Core Implementation Optimizations Specific Opts Scala Code generation

Figure 4: Component architecture. Arrows denote extends relationships, dashed boxes represent units of
functionality.

trait Expressions {
// expressions (atomic)
abstract class Exp[+T]
case class Const[T](x: T) extends Exp[T]
case class Sym[T](n: Int) extends Exp[T]

def fresh[T]: Sym[T]

// definitions (composite, subclasses provided
// by other traits)
abstract class Def[T]

def findDefinition[T](s: Sym[T]): Option[Def[T]]
def findDefinition[T](d: Def[T]): Option[Sym[T]]
def findOrCreateDefinition[T](d: Def[T]): Sym[T]

// bind definitions to symbols automatically
implicit def toAtom[T](d: Def[T]): Exp[T] =

findOrCreateDefinition(d)

// pattern match on definition of a given symbol
object Def {

def unapply[T](s: Sym[T]): Option[Def[T]] =
findDefinition(s)

}
}

Figure 5: Expression representation (method imple-
mentations omitted).

Through the implicit conversion method toAtom, a defini-
tion can be used anywhere an atomic expression is expected.
Doing so will search the already encountered definitions,
which are kept in an internal table (omitted in Figure 4),
for a structurally equivalent one. If a matching previous
definition is found, its symbol will be returned. Otherwise
the definition is seen for the first time. It will be associ-
ated with a fresh symbol and saved for future reference.
This simple scheme provides a powerful global value number-
ing (common subexpression elimination) optimization that
effectively prevents generating duplicate code (this is safe
since expressions do not have side effects so far—see Sec-
tion 4). Since all operations in interface traits such as Arith
return Rep types, defining Rep[T] = Exp[T] in trait BaseExp
(see Figure 5) means that conversion to symbols will take
place already within those methods, making sure that the
created definitions are actually registered.

We observe that there are no concrete definition classes

trait BaseExp extends Base with Expressions {
type Rep[+T] = Exp[T]

}
trait ArithExp extends Arith with BaseExp {

implicit def unit(x: Double) = Const(x)
case class Plus(x: Exp[Double], y: Exp[Double])

extends Def[Double]
case class Times(x: Exp[Double], y: Exp[Double])

extends Def[Double]
def infix_+(x: Exp[Double], y: Exp[Double]) = Plus(x, y)
def infix_*(x: Exp[Double], y: Exp[Double]) = Times(x, y)

}
trait TrigExp extends Trig with BaseExp {

case class Sin(x: Exp[Double]) extends Def[Double]
case class Cos(x: Exp[Double]) extends Def[Double]
def sin(x: Exp[Double]) = Sin(x)
def cos(x: Exp[Double]) = Cos(x)

}

Figure 6: Implementing the interface traits from
Figure 3 using the expression types from Figure 4.

trait ArithExpOpt extends ArithExp {
override def infix_*(x:Exp[Int],y:Exp[Int]) = (x,y) match {

case (Const(x), Const(y)) => Const(x * y)
case (x, Const(1)) => x
case (Const(1), y) => x
case _ => super.infix_*(x, y)

}
}
trait ArithExpOptFFT extends ArithExp {

override def infix_*(x:Exp[Int],y:Exp[Int]) = (x,y) match {
case (x, Def(Times(Const(k), y))) => Const(k) * (x * y))
case (Def(Times(Const(k), x)), y) => Const(k) * (x * y))
...
case (x, Const(y)) => Times(Const(y), x)
case _ => super.infix_*(x, y)

}
}

Figure 7: Extending the implementation from Fig-
ure 5 with generic (top) and specific (bottom) opti-
mizations (analog of TrigExp omitted).

Figure 9.1: Component architecture. Arrows denote extends relationships, dashed boxes
represent units of functionality.

9.2.4 Context- and Flow-Sensitive Transformations

Context and flow sensitive transformation become very important once we introduce effects.

But even pure functional programs can profit from context information:

if (c) { if (c) a else b } else ...

The inner test on the same condition is redundant and will always succeed. How do we detect

this situation? In other cases we can use the Def extractor to lookup the definition of a symbol.

This will not work here, because Def works on Exp input and produces a Def object as output.

We however need to work on the level of Exps, turning a Sym into Const(true) based on

context information.

We need to adapt the way we construct IR nodes. When we enter the then branch, we add

c!Const(true) to a substitution. This substitution needs to be applied to arguments of IR

nodes constructed within the then branch.

One possible solution would be add yet another type constructor, Ref, with an implicit con-

version from Exp to Ref that applies the substitution. A signature like IfThenElse(c: Exp, ...)

would become IfThenElse(c: Ref, ...). A simpler solution is to implement toAtom in such

a way that it checks the resulting Def if any of its inputs need substitution and if so invoke

mirror (see below) on the result Def, which will apply the substitution, call the appropriate

smart constructor and finally call toAtom again with the transformed result.

9.2.5 Graph Transformations

In addition to optimizations performed during graph constructions, we can also implement

transformation that work directly on the graph structure. This is useful if we need to do analysis

on a larger portion of the program first and only then apply the transformation. An example

would be to find all FooBar statements in a graph, and replace them uniformly with BarBaz.

All dependent statements should re-execute their pattern rewrites, which might trigger on the

new BarBaz input.

69

Chapter 9. Intermediate Representation: Graphs

We introduce the concept of mirroring: Given an IR node, we want to apply a substitution

(or generally, a Transformer) to the arguments and call the appropriate smart constructor

again. For every IR node type we require a default mirror implementation that calls back its

smart constructor:

override def mirror[A](e: Def[A], f: Transformer): Exp[A] = e match {

case Plus(a,b) => f(a) + f(b) // calls infix_+

case Times(a,b) => f(a) * f(b)

case _ => super.mirror(e,f)

}

There are some restrictions if we are working directly on the graph level: In general we have

no (or only limited) context information because a single IR node may occur multiple times

in the final program. Thus, attempting to simplify effectful or otherwise context-dependent

expressions will produce wrong results without an appropriate context. For pure expressions,

a smart constructor called from mirror should not create new symbols apart from the result

and it should not call reifyBlock. Otherwise, if we were creating new symbols when noth-

ing changes, the returned symbol could not be used to check convergence of an iterative

transformation easily.

The Transfomer argument to mirror can be queried to find out whether mirror is allowed

to call context dependent methods:

override def mirror[A](e: Def[A], f: Transformer): Exp[A] = e match {

case IfThenElse(c,a,b) =>

if (f.hasContext)

__ifThenElse(f(c),f.reflectBlock(a),f.reflectBlock(b))

else
ifThenElse(f(c),f(a),f(b)) // context-free version

case _ => super.mirror(e,f)

}

If the context is guaranteed to be set up correctly, we call the regular smart constructor and

use f.reflectBlock to call mirror recursively on the contents of blocks a and b. Otherwise, we

call a more restricted context free method.

9.2.6 Dead Code Elimination

Dead code elimination can be performed purely on the graph level, simply by finding all

statements reachable from the final result and discarding everything else.

We define a method to find all symbols a given object references directly:

def syms(x: Any): List[Sym[Any]]

If x is a Sym itself, syms(x) will return List(x). For a case class instance that implements the

Product interface such as Times(a,b), it will return List(a,b) if both a and b are Syms. Since

the argument type is Any, we can apply syms not only to Def objects directly but also to lists of

Defs, for example.

70

9.3. From Graphs Back to Trees

Then, assuming R is the final program result, the set of remaining symbols in the graph G is

the least fixpoint of:

G = R [syms(G map findDefinition)

Dead code elimination will discard all other nodes.

9.3 From Graphs Back to Trees

To turn program graphs back into trees for code generation we have to decide which graph

nodes should go where in the resulting program. This is the task of code motion.

9.3.1 Code Motion

Other optimizations can apply transformations optimistically and need not worry about

maintaining a correct schedule: Code motion will fix it up. The algorithm will try to push

statements inside conditional branches and hoist statements out of loops. Code motion

depends on dependency and frequency information but not directly on data-flow information.

Thus it can treat functions or other user defined compound statements in the same way as

loops. This makes our algorithm different from code motion algorithms based on data flow

analysis such as Lazy Code Motion (LCM, [77]) or Partial Redundancy Elimination (PRE, [74]).

The graph IR reflects “must before” (ordering) and “must inside” (containment) relations,

as well as anti-dependence and frequency. These relations are implemented by the following

methods, which can be overridden for new definition classes:

def syms(e: Any): List[Sym[Any]] // value dependence (must before)

def softSyms(e: Any): List[Sym[Any]] // anti dependence (must not after)

def boundSyms(e: Any): List[Sym[Any]] // nesting dependence (must not outside)

def symsFreq(e: Any): List[(Sym[Any], // frequency information (classify

Double)] // sym as ’hot’, ’normal’, ’cold’)

To give an example, boundSyms applied to a loop node RangeForeach(range,idx,body) with

index variable idx would return List(idx) to denote that idx is fixed “inside” the loop expres-

sion.

Given a subgraph and a list of result nodes, the goal is to identify the graph nodes that

should form the “current” level, as opposed to those that should remain in some “inner” scope,

to be scheduled later. We will reason about the paths on which statements can be reached

from the result. The first idea is to retain all nodes on the current level that are reachable on a

path that does not cross any conditionals, i.e. that has no “cold” refs. Nodes only used from

conditionals will be pushed down. However, this approach does not yet reflect the precedence

of loops. If a loop is top-level, then conditionals inside the loop (even if deeply nested) should

not prevent hoisting of statements. So we refine the characterization to retain all nodes that

are reachable on a path that does not cross top-level conditionals.

This leads to a simple iterative algorithm (see Figure 9.3): Starting with the known top level

statements, nodes reachable via normal links are added and for each hot ref, we follow nodes

that are forced inside until we reach one that can become top-level again.

71

Chapter 9. Intermediate Representation: Graphs

R

R: current block result
B: bound in e1

e1

e0

B

g1

f1

e0 = global scope
e1 = reachable from R “ current scope “
g1 = dependent on B “ forced inside ”

f1 = (1 step from g1) - g1 “ fringe ”

Figure 9.2: Graph IR with regular and nesting edges (boundSyms, dotted line) as used for code
motion.

Code Motion Algorithm: Compute the set L of top level state-
ments for the current block, from a set of available statements
E , a set of forced-inside statements G µ E and a block result R.

1. Start with L containing the known top level statements,
initially the (available) block result R \ E .

2. Add to L all nodes reachable from L via normal links (nei-
ther hot nor cold) through E ¡G (not forced inside).

3. For each hot ref from L to a statement in E ¡ L, follow any
links through G , i.e. the nodes that are forced inside, if
there are any. The first non-forced-inside nodes (the “hot
fringe”) become top level as well (add to L).

4. Continue with 2 until a fixpoint is reached.

Figure 9.3: Code Motion algorithm.

72

9.3. From Graphs Back to Trees

To implement this algorithm, we need to determine the set G of nodes that are forced

inside and may not be part of the top level. We start with the block result R and a graph E that

has all unnecessary nodes removed (DCE already performed):

E = R [syms(E map findDefinition)

We then need a way to find all uses of a given symbol s, up to but not including the node

where the symbol is bound:

U(s) = {s} [{ g 2 E | syms(findDefinition(g)) \ U(s) 6˘ ;
&& s Ý boundSyms(findDefinition(g))) }

We collect all bound symbols and their dependencies. These cannot live on the current

level, they are forced inside:

B = boundSyms (E map findDefinition)

G = union (B map U) // must inside

Computing U(s) for many symbols s individually is costly but implementations can exploit

considerable sharing to optimize the computation of G.

The iteration in Figure 9.3 uses G to follow forced-inside nodes after a hot ref until a node

is found that can be moved to the top level.

Let us consider a few examples to build some intuition about the code motion behavior.

In the code below, the starred conditional is on the fringe (first statement that can be outside)

and on a hot path (through the loop). Thus it will be hoisted. Statement foo will be moved

inside:

loop { i => z = *if (x) foo

if (i > 0) loop { i =>

*if (x) if (i > 0)

foo z

} }

The situation changes if the inner conditional is forced inside by a value dependency. Now

statement foo is on the hot fringe and becomes top level.

loop { i => z = *foo

if (x) loop { i =>

if (i > 0) if (x)

*foo if (i > 0)

} z

}

For loops inside conditionals, the containing statements will be moved inside (relative to

the current level).

if (x) if (x)

loop { i => z = foo

foo loop { i =>

} z

}

73

Chapter 9. Intermediate Representation: Graphs

Pathological Cases

The described algorithm works well and is reasonably efficient in practice. Being a heuristic,

it cannot be optimal in all cases. Future versions could employ more elaborate cost models

instead of the simple hot/cold distinction. One case worth mentioning is when a statement is

used only in conditionals but in different conditionals:

z = foo if (x)

if (x) foo

z if (y)

if (y) foo

z

In this situation foo will be duplicated. Often this duplication is beneficial because foo can

be optimized together with other statements inside the branches. In general of course there

is a danger of slowing down the program if both conditions are likely to be true at the same

time. In that case it would be a good idea anyways to restructure the program to factor out the

common criteria into a separate test.

Scheduling

Once we have determined which statements should occur on which level, we have to come up

with an ordering for the statements. Before starting the code motion algorithm, we sort the

input graph in topological order and we will use the same order for the final result. For the

purpose of sorting, we include anti-dependencies in the topological sort although they are

disregarded during dead code elimination. A bit of care must be taken though: If we introduce

loops or recursive functions the graph can be cyclic, in which case no topological order exists.

However, cycles are caused only by inner nodes pointing back to outer nodes and for sorting

purposes we can remove these back-edges to obtain an acyclic graph.

9.3.2 Tree-Like Traversals and Transformers

To generate code or to perform transformation by iterated staging (see Section 8.2.5) we need

to turn our graph back into a tree. The interface to code motion allows us to build a generic

tree-like traversal over our graph structure:

trait Traversal {

val IR: Expressions; import IR._

// perform code motion, maintaining current scope

def focusExactScope(r: Exp[Any])(body: List[Stm[Any]] => A): A

// client interface

def traverseBlock[T](b: Block[T]): Unit =

focusExactScope(b.res) { levelScope =>

levelScope.foreach(traverseStm)

}

def traverseStm[T](s: Stm[T]): Unit = blocks(s).foreach(traverseBlock)

}

74

9.4. Effects

This is useful for other analyses as well, but in particular for building transformers that traverse

one graph in a tree like fashion and create another graph analogous to Section 8.2.5. The

implementation of trait ForwardTransformer carries over almost unmodified.

9.4 Effects

To ensure that operations can be safely moved around (and for other optimizations as well), a

compiler needs to reason about their possible side effects. The graph representation presented

so far is pure and does not mention effects at all. However all the necessary ingredients are

already there: We can keep track of side effects simply by making effect dependencies explicit

in the graph. In essence, we turn all programs into functional programs by adding an invisible

state parameter (similar in spirit but not identical to SSA conversion).

9.4.1 Simple Effect Domain

We first consider global effects like console output via println. Distinguishing only between

“has no effect” and “may have effect” means that all operations on mutable data structures,

including reads, have to be serialized along with all other side effects.

By default, we assume operations to be pure (i.e. side-effect free). Programmers can desig-

nate effectful operations by using reflectEffect instead of the implicit conversion toAtom

which internally delegates to reflectPure. Console output, for example, is implemented like

this:

def print(x: Exp[String]): Exp[Unit] = reflectEffect(Print(x))

The call to reflectEffect adds the passed IR node to a list of effects for the current block.

Effectful expressions will attract dependency edges between them to ensure serialization. A

compound expression such as a loop or a conditional will internally use reifyBlock, which

attaches nesting edges to the effectful nodes contained in the block.

Internally, reflectEffect creates Reflect nodes that keep track of the context dependen-

cies:

var context: List[Exp[Any]]

case class Reflect[T](d: Def[T], es: List[Sym[Any]]) extends Def[T]

def reflectEffect[T](d: Def[T]): Exp[T] = createDefinition(Reflect(d, context)).sym

The context denotes the “current state”. Since state can be seen as an abstraction of effect

history, we just define context as a list of the previous effects.

In this simple model, all effect dependencies are uniformly encoded in the IR graph.

Rewriting, CSE, DCE, and Code Motion are disabled for effectful statements (very pessimistic).

Naturally we would like something more fine grained for mutable data.

9.4.2 Fine Grained Effects: Tracking Mutations per Allocation Site

We can add other, more fine grained, variants of reflectEffect which allow tracking mu-

tations per allocation site or other, more general abstractions of the heap that provide a

75

Chapter 9. Intermediate Representation: Graphs

partitioning into regions. Aliasing and sharing of heap objects such as arrays can be tracked

via optional annotations on IR nodes. Reads and writes of mutable objects are automatically

serialized and appropriate dependencies inserted to guarantee a legal execution schedule.

Effectful statements are tagged with an effect summary that further describes the effect.

The summary can be extracted via summarizeEffects, and there are some operations on

summaries (like orElse, andThen) to combine effects. As an example consider the definition

of conditionals, which computes the compound effect from the effects of the two branches:

def __ifThenElse[T](cond: Exp[Boolean], thenp: => Rep[T], elsep: => Rep[T]) {

val a = reifyBlock(thenp)

val b = reifyBlock(elsep)

val ae = summarizeEffects(a) // get summaries of the branches

val be = summarizeEffects(b)

val summary = ae orElse be // compute summary for whole expression

reflectEffect(IfThenElse(cond, a, b), summary) // reflect compound expression

// (effect might be none, i.e. pure)

}

To specify effects more precisely for different kinds of IR nodes, we add further reflect

methods:

reflectSimple // a ’simple’ effect: serialized with other simple effects

reflectMutable // an allocation of a mutable object; result guaranteed unique

reflectWrite(v) // a write to v: must refer to a mutable allocation

// (reflectMutable IR node)

reflectRead(v) // a read of allocation v (not used by programmer,

// inserted implicitly)

reflectEffect(s) // provide explicit summary s, specify may/must info for

// multiple reads/writes

The framework will serialize reads and writes so to respect data and anti-dependency with

respect to the referenced allocations. To make this work we also need to keep track of sharing

and aliasing. Programmers can provide for their IR nodes a list of input expressions which the

result of the IR node may alias, contain, extract from or copy from.

def aliasSyms(e: Any): List[Sym[Any]]

def containSyms(e: Any): List[Sym[Any]]

def extractSyms(e: Any): List[Sym[Any]]

def copySyms(e: Any): List[Sym[Any]]

These four pieces of information correspond to the possible pointer operations x = y,

*x = y, x = *y and *x = *y. Assuming an operation y = Foo(x), x should be returned in the

following cases:

x 2 aliasSyms(y) if y = x // if then else

x 2 containSyms(y) if *y = x // array update

x 2 extractSyms(y) if y = *x // array apply

x 2 copySyms(y) if *y = *x // array clone

Here, y = x is understood as “y may be equal to x”, *y = x as “dereferencing y (at some index)

may return x” etc.

76

9.4. Effects

Restricting Possible Effects

It is often useful to restrict the allowed effects somewhat to make analysis more tractable and

provide better optimizations. One model, which works reasonably well for many applications,

is to prohibit sharing and aliasing between mutable objects. Furthermore, read and write

operations must unambiguously identify the allocation site of the object being accessed. The

framework uses the aliasing and points-to information to enforce these rules and to keep track

of immutable objects that point to mutable data. This is to make sure the right serialization

dependencies and reflectRead calls are inserted for operations that may reference mutable

state in an indirect way.

77

Chapter 10

Advanced Optimizations

We have seen above in Chaper 9 how many classic compiler optimizations can be applied to the

IR generated from embedded programs in a straightforward way. Due to the structure of the IR,

these optimizations all operate in an essentially global way, at the level of domain operations.

In this chapter we discuss some other advanced optimizations that can be implemented on

the graph IR. We present more elaborate examples for how these optimizations benefit larger

use cases later in Part III.

10.1 Rewriting

Many optimizations that are traditionally implemented using an iterative dataflow analysis

followed by a transformation pass can also be expressed using various flavors of rewriting.

Whenever possible we tend to prefer the rewriting version because rewrite rules are easy to

specify separately and do not require programmers to define abstract interpretation lattices.

10.1.1 Context-Sensitive Rewriting

Smart constructors in our graph IR can be context sensitive. For example, reads of local

variables examine the current effect context to find the last assignment, implementing a form

of copy propagation (middle):

var x = 7 var x = 7 println(5)

x = 5 x = 5

println(x) println(5)

This renders the stores dead, and they will be removed by dead code elimination later (right).

10.1.2 Speculative Rewriting: Combining Analyses and Transformations

Many optimizations are mutually beneficial. In the presence of loops, optimizations need to

make optimistic assumptions for the supporting analysis to obtain best results. If multiple

analyses are run separately, each of them effectively makes pessimistic assumptions about

the outcome of all others. Combined analyses avoid the phase ordering problem by solving

79

Chapter 10. Advanced Optimizations

everything at the same time. Lerner, Grove, and Chambers showed a method of composing

optimizations by interleaving analyses and transformations [85]. We use a modified version

of their algorithm that works on structured loops instead of CFGs and using dependency

information and rewriting instead of explicit data flow lattices. Usually, rewriting is semantics

preserving, i.e. pessimistic. The idea is to drop that assumption. As a corollary, we need to

rewrite speculatively and be able to rollback to a previous state to get optimistic optimization.

The algorithm proceeds as follows: for each encountered loop, apply all possible transforms

to the loop body, given empty initial assumptions. Analyze the result of the transformation: if

any new information is discovered throw away the transformed loop body and retransform

the original with updated assumptions. Repeat until the analysis result has reached a fixpoint

and keep the last transformation as result.

Here is an example of speculative rewriting, showing the initial optimistic iteration (mid-

dle), with the fixpoint (right) reached after the second iteration:

var x = 7 var x = 7 var x = 7 //dead

var c = 0 var c = 0 var c = 0

while (c < 10) { while (true) { while (c < 10) {

if (x < 10) print("!") print("!") print("!")

else x = c print(7) print(7)

print(x) print(0) print(c)

print(c) c = 1 c += 1

c += 1 } }

}

This algorithm allows us to do all forward data flow analyses and transforms in one uniform,

combined pass driven by rewriting. In the example above, during the initial iteration (mid-

dle), separately specified rewrites for variables and conditionals work together to determine

that x=c is never executed. At the end of the loop body we discover the write to c, which

invalidates our initial optimistic assumption c=0. We rewrite the original body again with the

augmented information (right). This time there is no additional knowledge discovered so the

last speculative rewrite becomes the final one.

10.1.3 Delayed Rewriting and Multi-Level IR

For some transformations, e.g. data structure representation lowering, we do not execute

rewrites now, but later, to give further immediate rewrites a change to match on the current

expression before it is rewritten. This is a simple form of prioritizing different rewrites, in this

case optimizations over lowerings. It also happens to be a central idea behind telescoping

languages [73].

We perform simplifications eagerly, after each transform phase. Thus we guarantee that

CSE, DCE etc. have been applied on high-level operations before they are translated into

lower-level equivalents, on which optimizations would be much harder to apply.

We call the mechanism to express this form of rewrites delayed rewriting. Here is an

example that delayedly transforms a plus operation on Vectors into an operation on arrays:

def infix_plus(a: Rep[Vector[Double]], b: Rep[Vector[Double]]) = {

80

10.2. Splitting and Combining Statements

VectorPlus(a,b) atPhase(lowering) {

val data = Array.fill(a.length) { i => a(i) + b(i) }

vector_with_backing_array(data)

}

}

The transformation is only carried out at phase lowering. Before that, the IR node remains a

VectorPlus node, which allows other smart constructor rewrites to kick in that match their

arguments against VectorPlus.

Technically, delayed rewriting is implemented using a worklist transformer that keeps

track of the rewrites to be performed during the next iteration. The added convenience over

using a transformer directly is that programmers can define simple lowerings inline without

needing to subclass and install a transformer trait.

10.2 Splitting and Combining Statements

Since our graph IR contains structured expressions, optimizations need to work with com-

pound statements. Reasoning about compound statements is not easy: For example, our

simple dead code elimination algorithm will not be able to remove only pieces of a compound

expression. Our solution is simple yet effective: We eagerly split many kinds of compound

statements, assuming optimistically that only parts will be needed. We find out which parts

through the regular DCE algorithm. Afterwards we reassemble the remaining pieces.

10.2.1 Effectful Statements

A good example of statement splitting are effectful conditionals:

var a, b, c = ... var a, b, c = ... var a, c = ...

if (cond) { if (cond) if (cond)

a = 9 a = 9 a = 9

b = 1 if (cond) else
} else b = 1 c = 3

c = 3 if (!cond) println(a+c)

println(a+c) c = 3

println(a+c)

From the conditional in the initial program (left), splitting creates three separate expressions,

one for each referenced variable (middle). Pattern rewrites are executed when building the

split nodes but do not have any effect here. Dead code elimination removes the middle one

because variable b is not used, and the remaining conditionals are merged back together

(right). Of course successful merging requires to keep track of how expressions have been split.

10.2.2 Data Structures

Splitting is also very effective for data structures, as often only parts of a data structure are

used or modified. We can define a generic framework for data structures:

81

Chapter 10. Advanced Optimizations

trait StructExp extends BaseExp {

abstract class StructTag

case class Struct[T](tag: StructTag, elems: Map[String,Rep[Any]]) extends Def[T]

case class Field[T](struct: Rep[Any], key: String) extends Def[T]

def struct[T](tag: StructTag, elems: Map[String,Rep[Any]]) = Struct(tag, elems)

def field[T](struct: Rep[Any], key: String): Rep[T] = struct match {

case Def(Struct(tag, elems)) => elems(index).asInstanceOf[Rep[T]]

case _ => Field[T](struct, index)

}

}

There are two IR node types, one for structure creation and one for field access. The structure

creation node contains a hash map that holds (static) field identifiers and (dynamic) field

values. It also contains a tag that can be used to hold further information about the nature of

the data structure. The interface for field accesses is method field, which pattern matches on

its argument and, if that is a Struct creation, looks up the desired value from the embedded

hash map.

We continue by adding a rule that makes the result of a conditional a Struct if the branches

return Struct:

override def ifThenElse[T](cond: Rep[Boolean], a: Rep[T], b: Rep[T]) =

(a,b) match {

case (Def(Struct(tagA,elemsA)), Def(Struct(tagB, elemsB))) =>

assert(tagA == tagB)

assert(elemsA.keySet == elemsB.keySet)

Struct(tagA, elemsA.keySet map (k => ifThenElse(cond, elemsA(k), elemsB(k))))

case _ => super.ifThenElse(cond,a,b)

}

Similar rules are added for many of the other core IR node types. DCE can remove individual

elements of the data structure that are never used. During code generation and tree traversals,

the remaining parts of the split conditional are merged back together.

We will study examples of this struct abstraction in Section 13.2 and an extension to unions

and inheritance in Section 13.4.

10.2.3 Representation Conversion

A natural extension of this mechanism is a generic array-of-struct to struct-of-array trans-

form. The definition is analogous to that of conditionals. We override the array constructor

arrayFill that represents expressions of the form Array.fill(n) { i => body } to create a

struct with an array for each component of the body if the body itself is a Struct:

override def arrayFill[T](size: Exp[Int], v: Sym[Int], body: Def[T]) = body match {

case Block(Def(Struct(tag, elems))) =>

struct[T](ArraySoaTag(tag,size),

elems.map(p => (p._1, arrayFill(size, v, Block(p._2)))))

case _ => super.arrayFill(size, v, body)

82

10.3. Loop Fusion and Deforestation

}

Note that we tag the result struct with an ArraySoaTag to keep track of the transformation.

This class is defined as follows:

case class ArraySoaTag(base: StructTag, len: Exp[Int]) extends StructTag

We also override the methods that are used to access array elements and return the length

of an array to do the right thing for transformed arrays:

override def infix_apply[T](a: Rep[Array[T]], i: Rep[Int]) = a match {

case Def(Struct(ArraySoaTag(tag,len),elems)) =>

struct[T](tag, elems.map(p => (p._1, infix_apply(p._2, i))))

case _ => super.infix_at(a,i)

}

override def infix_length[T](a: Rep[Array[T]]): Rep[Int] = a match {

case Def(Struct(ArraySoaTag(tag, len), elems)) => len

case _ => super.infix_length(a)

}

Examples for this struct of array transformation are shown in Section 13.5 and Chapter 14.

10.3 Loop Fusion and Deforestation

The use of independent and freely composable traversal operations such as v.map(..).sum

is preferable to explicitly coded loops. However, naive implementations of these operations

would be expensive and entail lots of intermediate data structures. We provide a novel loop

fusion algorithm for data parallel loops and traversals (see Chapter 14 for examples of use).

The core loop abstraction is

loop(s) x ˘G { i => E [x ˆ f(i)] }

where s is the size of the loop and i the loop variable ranging over [0,s). A loop can compute

multiple results x, each of which is associated with a generator G , one of Collect, which

creates a flat array-like data structure, Reduce('), which reduces values with the associative

operation ', or Bucket(G), which creates a nested data structure, grouping generated values

by key and applying G to those with matching key. Loop bodies consist of yield statements

xˆf(i) that define values passed to generators (of this loop or an outer loop), embedded

in some outer context E [.] that might consist of other loops or conditionals. For Bucket

generators yield takes (key,value) pairs.

The fusion rules are summarized in Figure 10.1. This model is expressive enough to model

many common collection operations:

x=v.map(f) loop(v.size) x=Collect { i => x ˆ f(v(i)) }

x=v.sum loop(v.size) x=Reduce(+) { i => x ˆ v(i) }

x=v.filter(p) loop(v.size) x=Collect { i => if (p(v(i)))

x ˆ v(i) }

x=v.flatMap(f) loop(v.size) x=Collect { i => val w = f(v(i))

loop(w.size) { j => x ˆ w(j) }}

83

Chapter 10. Advanced Optimizations

Generator kinds: G ::˘ Collect j Reduce(') j Bucket(G)

Yield statement: xs ˆ x
Contexts: E [.] ::˘ loops and conditionals

Horizontal case (for all types of generators):

loop(s) x1=G1 { i1 => E1[x1 ˆ f1(i1)] }
loop(s) y1=G2 { i2 => E2[x2 ˆ f2(i2)] }

loop(s) x1=G1, x2=G2 { i =>
E1[x1 ˆ f1(i)]; E2[x2 ˆ f2(i)] }

Vertical case (consume collect):

loop(s) x1=Collect { i1 => E1[x1 ˆ f1(i1)] }
loop(x1.size) x2=G { i2 => E2[x2 ˆ f2(x1(i2))] }

loop(s) x1=Collect, x2=G { i =>
E1[x1 ˆ f1(i); E2[x2 ˆ f2(f1(i))]] }

Vertical case (consume bucket collect):

loop(s) x1=Bucket(Collect) { i1 =>
E1[x1 ˆ (k1(i1), f1(i1))] }

loop(x1.size) x2=Collect { i2 =>
loop(x1(i2).size) y=G { j =>

E2[y ˆ f2(x1(i2)(j))] }; x2 ˆ y }

loop(s) x1=Bucket(Collect), x2=Bucket(G) { i =>
E1[x1 ˆ (k1(i), f1(i));

E2[x2 ˆ (k1(i), f2(f1(i)))]] }

Figure 10.1: Loop fusion

84

10.3. Loop Fusion and Deforestation

x=v.distinct loop(v.size) x=Bucket(Reduce(rhs)) { i =>

x ˆ (v(i), v(i)) }

Other operations are accommodated by generalizing slightly. Instead of implementing a

groupBy operation that returns a sequence of (Key, Seq[Value]) pairs we can return the keys

and values in separate data structures. The equivalent of (ks,vs)=v.groupBy(k).unzip is:

loop(v.size) ks=Bucket(Reduce(rhs)),vs=Bucket(Collect) { i =>

ks ˆ (v(i), v(i)); vs ˆ (v(i), v(i)) }

In Figure 10.1, multiple instances of f1(i) are subject to CSE and not evaluated twice.

Substituting x1(i2) with f1(i) will remove a reference to x1. If x1 is not used anywhere else, it

will also be subject to DCE. Within fused loop bodies, unifying index variable i and substituting

references will trigger the uniform forward transformation pass. Thus, fusion not only removes

intermediate data structures but also provides additional optimization opportunities inside

fused loop bodies (including fusion of nested loops).

Fixed size array construction Array(a,b,c) can be expressed as

loop(3) x=Collect { case 0 => x ˆ a

case 1 => x ˆ b case 2 => x ˆ c }

and concatenation xs ++ ys as Array(xs,ys).flatMap(i=>i):

loop(2) x=Collect { case 0 => loop(xs.size) { i => x ˆ xs(i) }

case 1 => loop(ys.size) { i => x ˆ ys(i) }}

Fusing these patterns with a consumer will duplicate the consumer code into each match

case. Implementations should have some kind of cutoff value to prevent code explosion.

Code generation does not need to emit actual loops for fixed array constructions but can just

produce the right sequencing of yield operations.

Examples for the fusion algorithm are shown in Section 13.6 and Chapter 14.

85

Part III

Staging and Embedded Compilers at
Work

87

Chapter 11

Intro: Abstraction Without Regret

LMS is a dynamic multi-stage programming approach: We have the full Scala language

at our disposal to compose fragments of object code. In fact, DSL programs are program

generators that produce an object program IR when run. DSL or library authors and application

programmers can exploit this multi-level nature to perform computations explicitly at staging

time, so that the generated program does not pay a runtime cost. Multi-stage programming

shares some similarities with partial evaluation [65], but instead of an automatic binding-time

analysis, the programmer makes binding times explicit in the program. We have seen how

LMS uses Rep types for this purpose:

val s: Int = ... // a static value: computed at staging time

val d: Rep[Int] = ... // a dynamic value: computed when generated program is run

Unlike with automatic partial evaluation, the programmer obtains a guarantee about

which expressions will be evaluated at staging time.

While moving computations from run time to staging time is an interesting possibility,

many computations actually depend on dynamic input and cannot be done before the input is

available. Nonetheless, explicit staging can be used to combine dynamic computations more

efficiently. Modern programming languages provide indispensable constructs for abstract-

ing and combining program functionality. Without higher-order features such as first-class

functions or object and module systems, software development at scale would not be possible.

However, these abstraction mechanisms have a cost and make it much harder for the compiler

to generate efficient code.

Using explicit staging, we can use abstraction in the generator stage to remove abstraction

in the generated program. This holds both for control (e.g. functions, continuations) and data

abstractions (e.g. objects, boxing). Some of the material in this chapter is taken from [113].

11.1 Common Compiler Optimizations

We have seen in Part II how many classic compiler optimizations can be applied to the IR gen-

erated from embedded programs in a straightforward way. Among those generic optimizations

are common subexpression elimination, dead code elimination, constant folding and code

89

Chapter 11. Intro: Abstraction Without Regret

motion. Due to the structure of the IR, these optimizations all operate in an essentially global

way, at the level of domain operations. An important difference to regular general-purpose

compilers is that IR nodes carry information about effects they incur (see Section 9.4). This

permits to use quite precise dependency tracking that provides the code generator with a lot of

freedom to group and rearrange operations. Consequently, optimizations like common subex-

pression elimination and dead code elimination will easily remove complex DSL operations

that contain internal control-flow and may span many lines of source code.

Common subexpression elimination (CSE) / global value numbering (GVN) for pure

nodes is handled by toAtom: whenever the Def in question has been encountered before, its

existing symbol is returned instead of a new one (see Section 9.2.1). Since the operation is

pure, we do not need to check via data flow analysis whether its result is available on the

current path. Instead we just insert a dependency and let the later code motion pass (see

Section 9.3.1) schedule the operation in a correct order. Thus, we achieve a similar effect as

partial redundancy elimination (PRE [74]) but in a simpler way.

Based on frequency information for block expression, code motion will hoist computation

out of loops and push computation into conditional branches. Dead code elimination is

trivially included. Both optimizations are coarse grained and work on the level of domain

operations. For example, whole data parallel loops will happily be hoisted out of other loops.

Consider the following user-written code:

v1 map { x =>

val s = sum(v2.length) { i => v2(i) }

x/s

}

This snippet scales elements in a vector v1 relative to the sum of v2’s elements. Without any

extra work, the generic code motion transform places the calculation of s (which is itself a

loop) outside the loop over v1 because it does not depend on the loop variable x.

val s = sum(v2.length) { i => v2(i) }

v1 map { x =>

x/s

}

11.2 Delite: An End-to-End System for Embedded Parallel DSLs

This section gives an overview of our approach to developing and executing embedded DSLs

in parallel and on heterogeneous devices. A more thorough description of Delite can be found

in Section 16 of Part IV.

Delite seeks to alleviate the burden of building a high performance DSL by providing

reusable infrastructure. Delite DSLs are embedded in Scala using LMS. On top of this layer,

Delite is structured into a framework and a runtime component. The framework provides

primitives for parallel operations such as map or reduce that DSL authors can use to define

higher-level operations. Once a DSL author uses Delite operations, Delite handles code

90

11.2. Delite: An End-to-End System for Embedded Parallel DSLs

generating to multiple platforms (e.g. Scala and CUDA), and handles difficult but common

issues such as device communication and synchronization. These capabilities are enabled by

exploiting the domain-specific knowledge and restricted semantics of the DSL compiler.

11.2.1 Building a Simple DSL

On the surface, DSLs implemented on top of Delite appear very similar to purely-embedded

(i.e. library only) Scala-based DSLs. However, a key aspect of LMS and hence Delite is that

DSLs are split in two parts, interface and implementation. Both parts can be assembled from

components in the form of Scala traits. DSL programs are written in terms of the DSL interface,

agnostic of the implementation. Part of each DSL interface is an abstract type constructor

Rep[_] that is used to wrap types in DSL programs. For example, DSL programs use Rep[Int]

wherever a regular program would use Int. The DSL operations defined in the DSL interface

(most of them are abstract methods) are all expressed in terms of Rep types.

The DSL implementation provides a concrete instantiation of Rep as expression trees

(or graphs). The DSL operations left abstract in the interface are implemented to create an

expression representation of the operation. Thus, as a result of executing the DSL program,

we obtain an analyzable representation of the very DSL program which we will refer to as IR

(intermediate representation).

To substantiate the description, let us consider an example step by step. A simple (and

rather pointless) program that calculates the average of 100 random numbers, written in a

prototypical DSL MyDSL that includes numeric vectors and basic console IO could look like

this:

object HelloWorldRunner extends MyDSLApplicationRunner with HelloWorld

trait HelloWorld extends MyDSLApplication {

def main() = {

val v = Vector.rand(100)

println("today’s lucky number is: ")

println(v.avg)

}

}

Programs in our sample DSL live within traits that inherit from MyDSLApplication, with

method main as the entry point.

MyDSLApplication is a trait provided by the DSL that defines the DSL interface. In addition

to the actual DSL program, there is a singleton object that inherits from MyDSLApplicationRunner

and mixes in the trait that contains the program. As the name implies, this object will be

responsible for directing the staged execution of the DSL application.

Here is the definition of MyDSL’s components encountered so far:

trait MyDSLApplication extends DeliteApplication with MyDSL

trait MyDSLApplicationRunner extends DeliteApplicationRunner with MyDSLExp

trait MyDSL extends ScalaOpsPkg with VectorOps

trait MyDSLExp extends ScalaOpsPkgExp with VectorOpsExp with MyDSL

91

Chapter 11. Intro: Abstraction Without Regret

MyDSLApplicationRunner inherits the mechanics for invoking code generation from DeliteAp-

plication. We discuss how Delite provides these facilities in section 11.2.3. We observe a

structural split in the inheritance hierarchy that is rather fundamental: MyDSL defines the DSL

interface, MyDSLExp the implementation. A DSL program is written with respect to the interface

but it knows nothing about the implementation. The main reason for this separation is safety.

If a DSL program could observe its own structure, optimizing rewrites that maintain semantic

but not structural equality of DSL expressions could no longer be applied safely.1 Our sample

DSL includes a set of common Scala operations that are provided by the core LMS library as

trait ScalaOpsPkg. These operations include conditionals, loops, variables and also println.

On top of this set of generic things that are inherited from Scala, the DSL contains vectors and

associated operations. The corresponding interface is defined as follows:

trait VectorOps extends Base {

abstract class Vector[T] // placeholder ("phantom") type

object Vector {

def rand(n: Rep[Int]) = vector_rand(n) // invoked as: Vector.rand(n)

}

def vector_rand(n: Rep[Int]): Rep[Vector[Double]]

def infix_length[T](v: Rep[Vector[T]]): Rep[Int] // invoked as: v.length

def infix_sum[T:Numeric](v: Rep[Vector[T]]): Rep[T] // invoked as: v.sum

def infix_avg[T:Numeric](v: Rep[Vector[T]]): Rep[T] // invoked as: v.avg

...

}

There is an abstract class Vector[T] for vectors with element type T. The notation T:Numeric

means that T may only range over numeric types such as Int or Double. Operations on vectors

are not declared as instance methods of Vector[T] but as external functions over values of

type Rep[Vector[T]].

Returning to our sample DSL, this is the definition of VectorOpsExp, the implementation

counterpart to the interface defined above in VectorOps:

trait VectorOpsExp extends DeliteOpsExp with VectorOps {

case class VectorRand[T](n: Exp[Int]) extends Def[Vector[Double]]

case class VectorLength[T](v: Exp[Vector[T]]) extends Def[Int]

case class VectorSum[T:Numeric](v: Exp[Vector[T]]) extends DeliteOpLoop[Exp[T]] {

val range = v.length

val body = DeliteReduceElem[T](v)(_ + _) // scalar addition (impl not shown)

}

def vector_rand(n: Rep[Int]) = VectorRand(n)

def infix_length[T](v: Rep[Vector[T]]) = VectorLength(v)

def infix_sum[T:Numeric](v: Rep[Vector[T]]) = VectorSum(v)

def infix_avg[T:Numeric](v: Rep[Vector[T]]) = v.sum / v.length

...

}

1In fact, this is the main reason why MSP languages do not allow inspection of staged code at all [131].

92

11.2. Delite: An End-to-End System for Embedded Parallel DSLs

The constructor rand and the function length are implemented as new plain IR nodes (ex-

tending Def). Operation avg is implemented directly in terms of sum and length whereas sum

is implemented as a DeliteOpLoop with a DeliteReduceElem body. These special classes of

structured IR nodes are provided by the Delite framework and are inherited via DeliteOpsExp.

11.2.2 Code Generation

The LMS framework provides a code generation infrastructure that includes a program sched-

uler and a set of base code generators. The program scheduler uses the data and control

dependencies encoded by IR nodes to determine the sequence of nodes that should be gen-

erated to produce the result of a block. After the scheduler has determined a schedule, it

invokes the code generator on each node in turn. There is one code generator object per target

platform (e.g. Scala, CUDA, C++) that mixes together traits that describe how to generate

platform-specific code for each IR node. This organization makes it easy for DSL authors to

modularly extend the base code generators; they only have to define additional traits to be

mixed in with the base generator.

Therefore, DSL designers only have to add code generators for their own domain-specific

types. They inherit the common functionality of scheduling and callbacks to the generation

methods, and can also build on top of code generator traits that have already been defined. In

many cases, though, DSL authors do not have to write code generators at all; the next section

describes how Delite takes over this responsibility for most operations.

11.2.3 The Delite Compiler Framework and Runtime

On top of the LMS framework that provides the basic means to construct IR nodes for DSL

operations, the Delite Compiler Framework provides high-level representations of execution

patterns through DeliteOp IR, which includes a set of common parallel execution patterns

(e.g. map, zipWith, reduce).

DeliteOp extends Def, and DSL operations may extend one of the DeliteOps that best de-

scribes the operation. For example, since VectorSum has the semantics of iterating over the el-

ements of the input Vector and adding them to reduce to a single value, it can be implemented

by extending DeliteOpLoop with a reduction operation as its body. This significantly reduces

the amount of work in implementing a DSL operation since the DSL developers only need

to specify the necessary fields of the DeliteOp (range and body in the case of DeliteOpLoop)

instead of fully implementing the operation.

DeliteOpLoops are intended as parallel for-loops. Given an integer index range, the run-

time guarantees to execute the loop body exactly once for each index but does not guarantee

any execution order. Mutating global state from within a loop is only safe at disjoint in-

dexes. There are specialized constructs to define loop bodies for map and reduce patterns

(DeliteCollectElem, DeliteReduceElem) that transform a collection of elements point-wise

or perform aggregation. An optional predicate can be added to perform filter-style operations,

i.e. select or aggregate only those elements for which the predicate is true. All loop constructs

can be fused into DeliteOpLoops that do several operations at once.

93

Chapter 11. Intro: Abstraction Without Regret

Given the relaxed ordering guarantees, the framework can automatically generate effi-

cient parallel code for DeliteOps, targeting heterogeneous parallel hardware. Therefore, DSL

developers can easily implement parallel DSL operations by extending one of the parallel

DeliteOps, and only focus on the language design without knowing the low-level details of the

target hardware.

The Delite Compiler Framework currently supports Scala, C++, and CUDA targets. The

framework provides code generators for each target in addition to a main generator (Delite

generator) that controls them. The Delite generator iterates over the list of available target

generators to emit the target-specific kernels. By generating multiple target implementations

of the kernels and deferring the decision of which one to use, the framework provides the

runtime with enough flexibility in scheduling the kernels based on dynamic information

such as resource availability and input size. In addition to the kernels, the Delite generator

also generates the Delite Execution Graph (DEG) of the application. The DEG is a high-

level representation of the program that encodes all necessary information for its execution,

including the list of inputs, outputs, and interdependencies of all kernels. After all the kernels

are generated, the Delite Runtime starts analyzing the DEG and emits execution plans for each

target hardware. Further details are available in Section 16 of Part IV.

94

Chapter 12

Control Abstraction

Among the most useful control abstractions are higher order functions. We can implement

support for higher order functions in DSLs while keeping the generated IR strictly first order.

This vastly simplifies the compiler implementation and makes optimizations much more

effective since the compiler does not have to reason about higher order control flow. We can

implement a higher order function foreach over Vectors as follows:

def infix_foreach[A](v: Rep[Vector[A]])(f: Rep[A] => Rep[Unit]) = {

var i = 0; while (i < v.length) { f(v(i)); i += 1 }

}

// example:

Vector.rand(100) foreach { i => println(i) }

The generated code from the example will be strictly first order, consisting of the unfolded

definition of foreach with the application of f substituted with the println statement:

while (i < v.length) { println(v(i)); i += 1 }

The unfolding is guaranteed by the Scala type system since f has type Rep[A]=>Rep[Unit],

meaning it will be executed statically but it operates on staged values. In addition to simplifying

the compiler, the generated code does not pay any extra overhead. There are no closure

allocations and no inlining problems [22].

Other higher order functions like map or filter could be expressed on top of foreach.

Section 11.2.1 and Chapter 16 show how actual Delite DSLs implement these operations

as data parallel loops. The rest of this chapter shows how other control structures such as

continuations can be supported in the same way.

12.1 Leveraging Higher-Order Functions in the Generator

Higher-order functions are extremely useful to structure programs but also pose a significant

obstacle for compilers, recent advances on higher-order control-flow analysis notwithstanding

[145, 38]. While we would like to retain the structuring aspect for DSL programs, we would like

to avoid higher-order control flow in generated code. Fortunately, we can use higher-order

functions in the generator stage to compose first-order DSL programs.

95

Chapter 12. Control Abstraction

Consider the following program that prints the number of elements greater than 7 in some

vector:

val xs: Rep[Vector[Int]] = ...

println(xs.count(x => x > 7))

The program makes essential use of a higher-order function count to count the number of

elements in a vector that fulfill a predicate given as a function object. Ignoring for the time

being that we would likely want to use a DeliteOp for parallelism, a good and natural way

to implement count would be to first define a higher-order function foreach to iterate over

vectors, as shown at the beginning of the chapter:

def infix_foreach[A](v: Rep[Vector[A]])(f: Rep[A] => Rep[Unit]) = {

var i: Rep[Int] = 0

while (i < v.length) {

f(v(i))

i += 1

}

}

The actual counting can then be implemented in terms of the traversal:

def infix_count[A](v: Rep[Vector[A]])(f: Rep[A] => Rep[Boolean]) = {

var c: Rep[Int] = 0

v foreach { x => if (f(x)) c += 1 }

c

}

It is important to note that infix_foreach and infix_count are static methods, i.e. calls

will happen at staging time and result in inserting the computed DSL code in the place

of the call. Likewise, while the argument vector v is a dynamic value, the function argu-

ment f is again static. However, f operates on dynamic values, as made explicit by its type

Rep[A] => Rep[Boolean]. By contrast, a dynamic function value would have type Rep[A => B].

This means that the code generated for the example program will look roughly like this,

assuming that vectors are represented as arrays in the generated code:

val v: Array[Int] = ...

var c = 0

var i = 0

while (i < v.length) {

val x = v(i)

if (x > 7)

c += 1

i += 1

}

println(c)

All traces of higher-order control flow have been removed and the program is strictly

first-order. Moreover, the programmer can be sure that the DSL program is composed in the

desired way.

96

12.2. Using Continuations in the Generator to Implement Backtracking

This issue of higher-order functions is a real problem for regular Scala programs exe-

cuted on the JVM. The Scala collection library uses essentially the same foreach and count

abstractions as above and the JVM, which applies optimizations based on per-call-site pro-

filing, will identify the call site within foreach as a hot spot. However, since the number of

distinct functions called from foreach is usually large, inlining or other optimizations cannot

be applied and every iteration step pays the overhead of a virtual method call [22].

12.2 Using Continuations in the Generator to Implement Backtrack-

ing

Apart from pure performance improvements, we can use functionality of the generator stage

to enrich the functionality of DSLs without any work on the DSL-compiler side. As an example

we consider adding backtracking nondeterministic computation to a DSL using a simple

variant of McCarthy’s amb operator [89]. Here is a nondeterministic program that uses amb to

find pythagorean triples from three given vectors:

val u,v,w: Rep[Vector[Int]] = ...

nondet {

val a = amb(u)

val b = amb(v)

val c = amb(w)

require(a*a + b*b == c*c)

println("found:")

println(a,b,c)

}

We can use Scala’s support for delimited continuations [112] and the associated control

operators shift and reset [33, 32] to implement the necessary primitives. The scope delimiter

nondet is just the regular reset. The other operators are defined as follows:

def amb[T](xs: Rep[Vector[T]]): Rep[T] @cps[Rep[Unit]] = shift { k =>

xs foreach k

}

def require(x: Rep[Boolean]): Rep[Unit] @cps[Rep[Unit]] = shift { k =>

if (x) k() else ()

}

Since the implementation of amb just calls the previously defined method foreach, the

generated code will be first-order and consist of three nested while loops:

val u,v,w:Rep[Vector[Int]]=...

var i = 0

while (i < u.length) {

val a = u(i)

val a2 = a*a

var j = 0

while (j < v.length) {

val b = v(j)

val b2 = b*b

val a2b2 = a2+b2

var k = 0

while (k < w.length) {

val c = w(k)

val c2 = c*c

if (a2b2 == c2) {

println("found:")

println(a,b,c)

}

k += 1

}

j += 1

}

i += 1

}

97

Chapter 12. Control Abstraction

Besides the advantage of not having to implement amb as part of the DSL compiler, all

common optimizations that apply to plain while loops are automatically applied to the

unfolded backtracking implementation. For example, the loop invariant hoisting performed

by code motion has moved the computation of a*a and b*b out of the innermost loop.

The given implementation of amb is not the only possibility, though. For situations where

we know the number of choices (but not necessarily the actual values) for a particular invoca-

tion of amb at staging time, we can implement an alternative operator that takes a (static) list

of dynamic values and unfolds into specialized code paths for each option at compile time:

def bam[T](xs: List[Rep[T]]): Rep[T] @cps[Rep[Unit]] = shift { k =>

xs foreach k

}

Here, foreach is not a DSL operation but a plain traversal of the static argument list xs. The

bam operator must be employed with some care because it incurs the risk of code explosion.

However, static specialization of nondeterministic code paths can be beneficial if it allows

aborting many paths early based on static criteria or merging computation between paths.

val u: Rep[Vector[Int]] = ...

nondet {

val a = amb(u)

val b = bam(List(x1), List(x2))

val c = amb(v)

require(a + c = f(b)) // assume f(b) is expensive to compute

println("found:")

println(a,b,c)

}

If this example was implemented as three nested loops, f(x1) and f(x2) would need to be

computed repeatedly in each iteration of the second loop as they depend on the loop-bound

variable b. However, the use of bam will remove the loop over x1,x2 and expose the expensive

computations as redundant so that code motion can extract them from the loop:

val fx1 = f(x1)

val fx2 = f(x2)

while (...) { // iterate over u

while (...) { // iterate over v

if (a + c == fx1) // found

}

while (...) { // iterate over v

if (a + c == fx2) // found

}

}

In principle, the two adjacent inner loops could be subjected to the loop fusion opti-

mization discussed in Section 10.3. This would remove the duplicate traversal of v. In this

particular case fusion is currently not applied since it would change the order of the side-

effecting println statements.

98

12.3. Using Continuations in the Generator to Generate Async Code Patterns

12.3 Using Continuations in the Generator to Generate Async Code

Patterns

The previous section used continuations that were completely translated away during genera-

tion. In this section, we will use a CPS-transformed program generator to generate code that is

in CPS. While the previous section generated only loops, we will generate actual functions in

this section, using the mechanisms described in Section 6.2.4. The example is taken from [79]

and concerned with generating JavaScript but the techniques apply to any target.1

A callback-driven programming style is pervasive in JavaScript programs. Because of lack

of thread support, callbacks are used for I/O, scheduling and event-handling. For example,

in an Ajax call (Asynchronous JavaScript and XML), one has to provide a callback that will be

called once the requested data arrives from the server. This style of programming is known

to be unwieldy in more complicated scenarios. To give a specific example, let us consider a

scenario where we have an array of Twitter account names and we want to ask Twitter for the

latest tweets of each account. Once we obtain the tweets of all users, we would like to log that

fact in a console.

We implement this program both directly in JavaScript and in the embedded JavaScript

DSL [79]. Let us start by implementing logic that fetches tweets for a single user by using the

jQuery library for Ajax calls:

Listing 12.1: Fetching tweets in JavaScript

function fetchTweets(user, callback) {

jQuery.ajax({

url: "http://api.twitter.com/1/"

+ "statuses/user_timeline.json/",

type: "GET",

dataType: "jsonp",

data: {

screen_name: user,

include_rts: true,

count: 5,

include_entities: true

},

success: callback

})

}

Listing 12.2: Fetching tweets in DSL

def fetchTweets(user: Rep[String]) =

(ajax.get { new JSLiteral {

val url = "http://api.twitter.com/1/"

+ "statuses/user_timeline.json"

val ‘type‘ = "GET"

val dataType = "jsonp"

val data = new JSLiteral {

val screen_name = user

val include_rts = true

val count = 5

val include_entities = true

}

}

}).as[TwitterResponse]

type TwitterResponse =

Array[JSLiteral {val text: String}]

Note that the JavaScript version takes a callback as second argument that will be used to

process the fetched tweets. We provide the rest of the logic that iterates over array of users and

makes Ajax requests:

1Credits: Design (mostly) by the author, impl. and presentation by Grzegorz Kossakowski and Nada Amin

99

Chapter 12. Control Abstraction

Listing 12.3: Twitter example in JavaScript

var processed = 0

var users = ["gkossakowski",

"odersky", "adriaanm"]

users.forEach(function (user) {

console.log("fetching " + user)

fetchTweets(user, function(data) {

console.log("finished " + user)

data.forEach(function (t) {

console.log("fetched " + t.text)

})

processed += 1

if (processed == users.length) {

console.log("done")

}

})

})

Listing 12.4: Twitter example in DSL

val users = array("gkossakowski",

"odersky", "adriaanm")

for (user <- users.parSuspendable) {

console.log("fetching " + user)

val tweets = fetchTweets(user)

console.log("finished " + user)

for (t <- tweets)

console.log("fetched " + t.text)

}

console.log("done")

Because of the inverted control flow of callbacks, synchronization between callbacks has

to be handled manually. Also, the inverted control flow leads to a code structure that is distant

from the programmer’s intent. Notice that the in JavaScript version, the call to console that

prints “done" is put inside of the foreach loop. If it was put it after the loop, we would get

“done” printed before any Ajax call has been made leading to counterintuitive behavior.

As an alternative to the callback-driven programming style, one can use an explicit

monadic style, possibly sugared by a Haskell-like “do”-notation. However, this requires rewrit-

ing possibly large parts of a program into monadic style when a single async operation is added.

Another possibility is to automatically transform the program into continuation passing style

(CPS), enabling the programmer to express the algorithm in a straightforward, sequential

way and creating all the necessary callbacks and book-keeping code automatically. Links [28]

uses this approach. However, a whole-program CPS transformation can cause performance

degradation, code size blow-up, and stack overflows. In addition, it is not clear how to interact

with existing non-CPS libraries as the whole program needs to adhere to the CPS style. Here

we use a selective CPS transformation, which precisely identifies expressions that need to be

CPS transformed.

In fact, the Scala compiler already does selective, @suspendable type-annotation-driven

CPS transformations of Scala programs [112, 32, 33]. We show how this mechanism can be

used for transforming our DSL code before staging and stripping out most CPS abstractions at

staging time. The generated JavaScript code does not contain any CPS-specific code but is

written in CPS-style by use of JavaScript anonymous functions.

12.3.1 CPS and Staging

As an example, we will consider a seemingly blocking sleep method implemented in a non-

blocking, asynchronous style. In JavaScript, there are no threads and there is no notion of

blocking. However the technique is useful in other circumstances as well, for example when

100

12.3. Using Continuations in the Generator to Generate Async Code Patterns

using thread pools, as no thread is being blocked during the sleep period. Let us see how our

CPS transformed sleep method can be used:

def foo() = {

sleep(1000)

println("Called foo")

}

reset {

println("look, Ma ...")

foo()

sleep(1000)

println(" no callbacks!")

}

We define sleep to use JavaScript’s asynchronous setTimeout function, which takes an

explicit callback:

def sleep(delay: Rep[Int]) = shift { k: (Rep[Unit]=>Rep[Unit]) =>

window.setTimeout(lambda(k), delay)

}

The setTimeout method expects an argument of type Rep[Unit=>Unit] i.e. a staged func-

tion of type Unit=>Unit. The shift method offers us a function of type Rep[Unit]=>Rep[Unit],

so we need to reify it to obtain the desired representation. The reification is achieved by the

fun function (called lambda in 6.2.4) provided by our framework and performed at staging

time.

It is important to note that reification preserves function composition. Specifically, let

f: Rep[A] => Rep[B] and g: Rep[B] => Rep[C] then lambda(g compose f) == (lambda(g)

compose lambda(f)) where we consider two reified functions to be equal if they yield the same

observable effects at runtime. That property of function reification is at the core of reusing the

continuation monad in our DSL. Thanks to the fact that the continuation monad composes

functions, we can just insert reification at some places (like in a sleep) and make sure that we

reify effects of the continuation monad without the need to reify the monad itself.

12.3.2 CPS for Interruptible Traversals

We need to be able to interrupt our execution while traversing an array in order to implement

the functionality from listing 12.4. Let us consider a simplified example where we want to

sleep during each iteration. We present both JavaScript and DSL code that achieves that

(listings 12.5 & 12.6). Both programs, when executed, will print the following output:

//pause for 1s

1

//pause for 2s

2

//pause for 3s

3

done

101

Chapter 12. Control Abstraction

Listing 12.5: JavaScript
var xs = [1, 2, 3]
var i = 0
var msg = null
function f1() {

if (i < xs.length) {
window.setTimeout(f2, xs[i]*1000)
msg = xs[i]
i++

}
}
function f2() {

console.log(msg)
f1()

}
f1()

Listing 12.6: DSL

val xs = array(1, 2, 3)
// shorthand for xs.suspendable.foreach
for (x <- xs.suspendable) {

sleep(x * 1000)
console.log(String.valueOf(x))

}
log("done")

In the DSL code, we use a suspendable variant of arrays, which is achieved through an

implicit conversion from regular arrays:

implicit def richArray(xs: Rep[Array[A]]) = new {

def suspendable: SArrayOps[A] = new SArrayOps[A](xs)

}

The idea behind suspendable arrays is that iteration over them can be interrupted. We will

have a closer look at how to achieve that with the help of CPS. The suspendable method

returns a new instance of the SArrayOps class defined here:

Listing 12.7: Suspendable foreach

class SArrayOps(xs: Rep[Array[A]]) {

def foreach(yld: Rep[A] => Rep[Unit] @suspendable):

Rep[Unit] @suspendable = {

var i = 0

suspendableWhile(i < xs.length) { yld(xs(i)); i += 1 }

}

}

Note that one cannot use while loops in CPS but we can simulate them with recursive functions.

Let us see how regular while loop can be simulated with a recursive function:

def recursiveWhile(cond: => Boolean)(body: => Unit): Unit = {

def rec = () => if (cond) { body; rec() } else {}

rec()

}

By adding CPS-related declarations and control abstractions, we implement suspendableWhile:

def suspendableWhile(cond: => Rep[Boolean])(

body: => Rep[Unit] @suspendable): Rep[Unit] @suspendable =

shift { k =>

102

12.3. Using Continuations in the Generator to Generate Async Code Patterns

def rec = fun { () =>

if (cond) reset { body; rec() } else { k() }

}

rec()

}

12.3.3 Defining the Ajax API

With the abstractions for interruptible loops and traversals at hand, what remains to complete

the Twitter example from the beginning of the section is the actual Ajax request/response

cycle.

The Ajax interface component provides a type Request that captures the request structure

expected by the underlying JavaScript/jQuery implementation and the necessary object and

method definitions to enable the use of ajax.get in user code:

trait Ajax extends JS with CPS {

type Request = JSLiteral {

val url: String

val ‘type‘: String

val dataType: String

val data: JSLiteral

}

type Response = Any

object ajax {

def get(request: Rep[Request]) = ajax_get(request)

}

def ajax_get(request: Rep[Request]): Rep[Response] @suspendable

}

Notice that the Request type is flexible enough to support an arbitrary object literal type

for the data field through subtyping. The Response type alias points at Any which means that

it is the user’s responsibility to either use dynamic or perform an explicit cast to the expected

data type.

The corresponding implementation component implements ajax_get to capture a con-

tinuation, reify it as a staged function using fun and store it in an AjaxGet IR node.

trait AjaxExp extends JSExp with Ajax {

case class AjaxGet(request: Rep[Request],

success: Rep[Response => Unit]) extends Def[Unit]

def ajax_get(request: Rep[Request]): Rep[Response] @suspendable =

shift { k =>

reflectEffect(AjaxGet(request, lambda(k)))

}

}

During code generation, we emit code to attach the captured continuation as a callback

function in the success field of the request object:

103

Chapter 12. Control Abstraction

trait GenAjax extends JSGenBase {

val IR: AjaxExp

import IR._

override def emitNode(sym: Sym[Any], rhs: Def[Any])(

implicit stream: PrintWriter) = rhs match {

case AjaxGet(req, succ) =>

stream.println(quote(req) + ".success = " + quote(succ))

emitValDef(sym, "jQuery.ajax(" + quote(req) + ")")

case _ => super.emitNode(sym, rhs)

}

}

It is interesting to note that, since the request already has the right structure for the

jQuery.ajax function, we can simply pass it to the framework-provided quote method, which

knows how to generate JavaScript representations of any JSLiteral.

The Ajax component completes the functionality required to run the Twitter example with

one caveat: The outer loop in listing 12.4 uses parSuspendable to traverse arrays instead of

the suspendable traversal variant we have defined in listing 12.7.

In fact, if we change the code to use suspendable instead of parSuspendable and run the

generated JavaScript program, we will get following output printed to the JavaScript console:

fetching gkossakowski

finished fetching gkossakowski

fetched [...]

fetched [...]

fetching odersky

finished fetching odersky

fetched [...]

fetched [...]

fetching adriaanm

finished fetching adriaanm

fetched [...]

fetched [...]

done

Notice that all Ajax requests were done sequentially. Specifically, there was just one Ajax

request active at a given time; when the callback to process one request is called, it would

resume the continuation to start another request, and so on. In many cases this is exactly the

desired behavior, however, we will most likely want to perform our Ajax request in parallel.

12.3.4 CPS for Parallelism

The goal of this section is to implement a parallel variant of the foreach method from list-

ing 12.7. We will start with defining a few primitives like futures and dataflow cells. We start

with cells, which we decide to define in JavaScript, as another example of integrating external

libraries with our DSL:

104

12.3. Using Continuations in the Generator to Generate Async Code Patterns

Listing 12.8: JavaScript-based implementation of a non-blocking Cell

function Cell() {

this.value = undefined

this.isDefined = false

this.queue = []

this.get = function (k) {

if (this.isDefined) {

k(this.value)

} else {

this.queue.push(k)

}

}

this.set = function (v) {

if (this.isDefined) {

throw "can’t set value twice"

} else {

this.value = v

this.isDefined = true

this.queue.forEach(function (f) {

f(v) //non-trivial spawn could be used here

})

}

}

}

A cell object allows us to track dependencies between values. Whenever the get method

is called and the value is not in the cell yet, the continuation will be added to a queue so it

can be suspended until the value arrives. The set method takes care of resuming queued

continuations. We expose Cell as external library using our typed API mechanism and we use

it for implementing an abstraction for futures.

def createCell(): Rep[Cell[A]]

trait Cell[A]

trait CellOps[A] {

def get(k: Rep[A => Unit]): Rep[Unit]

def set(v: Rep[A]): Rep[Unit]

}

implicit def repToCellOps(x: Rep[Cell[A]]): CellOps[A] =

repProxy[Cell[A],CellOps[A]](x)

def spawn(body: => Rep[Unit] @suspendable): Rep[Unit] = {

reset(body) //non-trivial implementation uses

//trampolining to prevent stack overflows

}

def future(body: => Rep[A] @suspendable) = {

val cell = createCell[A]()

spawn { cell.set(body) }

cell

105

Chapter 12. Control Abstraction

}

The last bit of general functionality we need is RichCellOps that ties Cells and continua-

tions together inside of our DSL.

class RichCellOps(cell: Rep[Cell[A]]) {

def apply() = shift { k: (Rep[A] => Rep[Unit]) =>

cell.get(lambda(k))

}

}

implicit def richCellOps(x: Rep[Cell[A]]): RichCell[A] =

new RichCellOps(x)

It is worth noting that RichCellOps is not reified so it will be dropped at staging time and

its method will get inlined whenever used. Also, it contains CPS-specific code that allows us to

capture the continuation. The fun function reifies the captured continuation.

We are ready to present the parallel version of foreach defined in listing 12.7.

def foreach(yld: Rep[A] => Rep[Unit] @suspendable):

Rep[Unit] @suspendable = {

val futures = xs.map(x => future(yld(x)))

futures.suspendable.foreach(_.apply())

}

We instantiate each future separately so they can be executed in parallel. As a second step

we make sure that all futures are evaluated before we leave the foreach method by forcing

evaluation of each future and “waiting” for its completion. Thanks to CPS transformations, all

of that will be implemented in a non-blocking style.

The only difference between the parallel and serial versions of the Twitter example 12.4

is the use of parSuspendable instead of suspendable so the parallel implementation of the

foreach method is used. The rest of the code stays the same. It is easy to switch between both

versions, and users are free to make their choice according to their needs and performance

requirements.

12.4 Guarantees by Construction

Making staged functions explicit through the use of lambda (as described in Section 6.2.4)

enables tight control over how functions are structured and composed. For example, functions

with multiple parameters can be specialized for a subset of the parameters. Consider the

following implementation of Ackermann’s function:

def ack(m: Int): Rep[Int=>Int] = lambda { n =>

if (m == 0) n+1 else
if (n == 0) ack(m-1)(1) else
ack(m-1)(ack(m)(n-1))

}

Calling ack(m)(n) will produce a set of mutually recursive functions, each specialized to a

particular value of m (example m=2):

106

12.4. Guarantees by Construction

def ack_2(n: Int) = if (n == 0) ack_1(1) else ack_1(ack_2(n-1))

def ack_1(n: Int) = if (n == 0) ack_0(1) else ack_0(ack_1(n-1))

def ack_0(n: Int) = n+1

acc_2(n)

In essence, this pattern implements what is known as “polyvariant specialization” in the

partial evaluation community. But unlike automatic partial evaluation, which might or might

not be able to discover the right specialization, the use of staging provides a strong guarantee

about the structure of the generated code.

Other strong guarantees can be achieved by restricting the interface of function definitions.

Being of type Rep[A=>B], the result of lambda is a first-class value in the generated code that

can be stored or passed around in arbitrary ways. However we might want to avoid higher-

order control flow in generated code for efficiency reasons, or to simplify subsequent analysis

passes. In this case, we can define a new function constructor fundef as follows:

def fundef[A,B](f: Rep[A] => Rep[B]): Rep[A] => Rep[B] =

(x: Rep[A]) => lambda(f).apply(x)

Using fundef instead of lambda produces a restricted function that can only be applied but

not passed around in the generated code (type Rep[A]=>Rep[B]). At the same time, a result of

fundef is still a first class value in the code generator. If we do not expose lambda and apply at

all to client code, we obtain a guarantee that each function call site unambiguously identifies

the function definition being called and no closure objects will need to be created at runtime.

107

Chapter 13

Data Abstraction

High level data structures are a cornerstone of modern programming and at the same time

stand in the way of compiler optimizations.

As a running example we consider implementing a complex number datatype in a DSL.

The usual approach of languages executed on the JVM is to represent every non-primitive

value as a heap-allocated reference object. The space overhead, reference indirection as well as

the allocation and garbage collection cost are a burden for performance critical code. Thus, we

want to be sure that our complex numbers can be manipulated as efficiently as two individual

doubles. In the following, we explore different ways to achieve that.

13.1 Static Data Structures

The simplest approach is to implement complex numbers as a fully static data type, that

only exists at staging time. Only the actual Doubles that constitute the real and imaginary

components of a complex number are dynamic values:

case class Complex(re: Rep[Double], im: Rep[Double])

def infix_+(a: Complex, b: Complex) =

Complex(a.re + b.re, a.im + b.im)

def infix_*(a: Complex, b: Complex) =

Complex(a.re*b.re - a.im*b.im, a.re*b.im + a.im*b.re)

Given two complex numbers c1,c2, an expression like

c1 + 5 * c2 // assume implicit conversion from Int to Complex

will generate code that is free of Complex objects and only contains arithmetic on Doubles.

However the ways we can use Complex objects are rather limited. Since they only exists at

staging time we cannot, for example, express dependencies on dynamic conditions:

val test: Rep[Boolean] = ...

val c3 = if (test) c1 else c2 // type error: c1/c2 not a Rep type

It is worthwhile to point out that nonetheless, purely static data structures have important

use cases. To give an example, the fast fourier transform (FFT) [27] is branch-free for a fixed

109

Chapter 13. Data Abstraction

input size. The definition of complex numbers given above can be used to implement a staged

FFT that computes the well-known butterfly shaped computation circuits from the textbook

Cooley-Tukey recurrences (see Section 14.3).

To make complex numbers work across conditionals, we have have to split the control

flow explicitly (another option would be using mutable variables). There are multiple ways to

achieve this splitting. We can either duplicate the test and create a single result object:

val test: Rep[Boolean] = ...

val c3 = Complex(if (test) c1.re else c2.re, if (test) c1.im else c2.im)

Alternatively we can use a single test and duplicate the rest of the program:

val test: Rep[Boolean] = ...

if (test) {

val c3 = c1

// rest of program

} else {

val c3 = c2

// rest of program

}

While it is awkward to apply this transformation manually, we can use continuations

(much like for the bam operator in Section 12.2) to generate two specialized computation

paths:

def split[A](c: Rep[Boolean]) = shift { k: (Boolean => A) =>

if (c) k(true) else k(false) // "The Trick"

}

val test: Rep[Boolean] = ...

val c3 = if (split(test)) c1 else c2

The generated code will be identical to the manually duplicated, specialized version above.

13.2 Dynamic Data Structures with Partial Evaluation

We observe that we can increase the amount of statically possible computation (in a sense,

applying binding-time improvements) for dynamic values with domain-specific rewritings:

val s: Int = ... // static

val d: Rep[Int] = ... // dynamic

val x1 = s + s + d // left assoc: s + s evaluated statically,

// one dynamic addition

val x2 = s + (d + s) // naively: two dynamic additions,

// using pattern rewrite: only one

In computing x1, there is only one dynamic addition because the left associativity of

the plus operator implies that the two static values will be added together at staging time.

Computing x2 will incur two dynamic additions, because both additions have at least one

dynamic summand. However we can add rewriting rules that first replace d+c (c denoting a

110

13.2. Dynamic Data Structures with Partial Evaluation

dynamic value that is know to be a static constant, i.e. an IR node of type Const) with c+d and

then c+(c+d) with (c+c)+d. The computation c+c can again be performed statically.

We have seen in Section 10.2.2 how we can define a generic framework for data structures

that follows a similar spirit. The interface for field accesses field pattern matches on its

argument and, if that is a Struct creation, looks up the desired value from the embedded hash

map.

An implementation of complex numbers in terms of Struct could look like this:

trait ComplexOps extends ComplexBase with ArithOps {

def infix_+(x: Rep[Complex], y: Rep[Complex]): Rep[Complex] =

Complex(x.re + y.re, x.im + y.im)

def infix_*(x: Rep[Complex], y: Rep[Complex]): Rep[Complex] =

Complex(a.re*b.re - ...)

}

trait ComplexBase extends Base {

class Complex

def Complex(re: Rep[Double], im: Rep[Double]): Rep[Complex]

def infix_re(c: Rep[Complex]): Rep[Double]

def infix_im(c: Rep[Complex]): Rep[Double]

}

trait ComplexStructExp extends ComplexBase with StructExp {

def Complex(re: Rep[Double], im: Rep[Double]) =

struct[Complex](classTag("Complex"), Map("re"->re, "im"->im))

def infix_re(c: Rep[Complex]): Rep[Double] = field[Double](c, "re")

def infix_im(c: Rep[Complex]): Rep[Double] = field[Double](c, "im")

}

Note how complex arithmetic is defined completely within the interface trait ComplexOps,

which inherits double arithmetic from ArithOps. Access to the components via re and im is

implemented using struct.

Using virtualized record types (see Section 5.1.3) that map to struct internally, we can

express the type definition more conveniently as

class Complex extends Struct { val re: Double, val im: Double }

and remove the need for methods infix_re and infix_im. The Scala-Virtualized compiler

will automatically provide staged field accesses like c.re and c.im. It is still useful to add a

simplified constructor method

def Complex(r: Rep[Double], i: Rep[Double]) =

new Complex { val re = re; val im = im }

to enable using Complex(re,im) instead of the new Complex syntax.

In contrast to the completely static implementation of complex numbers presented in Sec-

tion 13.1 above, complex numbers are a fully dynamic DSL type now. The previous restrictions

are gone and we can write the following code without compiler error:

val c3 = if (test) c1 else c2

println(c3.re)

111

Chapter 13. Data Abstraction

The conditional ifThenElse is overridden to split itself for each field of a struct. Internally

the above will be represented as:

val c3re = if (test) c1re else c2re

val c3im = if (test) c1im else c2im // removed by dce

val c3 = Complex(c3re, c3im) // removed by dce

println(c3re)

The computation of the imaginary component as well as the struct creation for the result of

the conditional are never used and thus they will be removed by dead code elimination.

13.3 Generic Programming with Type Classes

The type class pattern [154], which decouples data objects from generic dispatch, fits naturally

with a staged programming model as type class instances can be implemented as static objects.

Extending the Vector example, we might want to be able to add vectors that contain

numeric values. We can use a lifted variant of the Numeric type class from the Scala library

class Numeric[T] {

def num_plus(a: Rep[T], b: Rep[T]): Rep[T]

}

and provide a type class instance for complex numbers:

implicit def complexIsNumeric = new Numeric[Complex] {

def num_plus(a: Rep[Complex], b: Rep[Complex]) = a + b

}

Generic addition on Vectors is straightforward, assuming we have a method zipWith

already defined:

def infix_+[T:Numeric](a: Rep[Vector[T]], b: Rep[Vector[T]]) = {

val m = implicitly[Numeric[T]] // access type class instance

a.zipWith(b)((u,v) => m.num_plus(u,v))

}

With that definition at hand we can add a type class instance for numeric vectors:

implicit def vecIsNumeric[T:Numeric] = new Numeric[Vector[T]] {

def num_plus(a: Rep[Vector[T]], b: Rep[Vector[T]]) = a + b

which allows us to pass, say, a Rep[Vector[Complex]] to any function that works over generic

types T:Numeric including vector addition itself. The same holds for nested vectors of type

Rep[Vector[Vector[Complex]]]. Usually, type classes are implemented by passing an implicit

dictionary, the type class instance, to generic functions. Here, type classes are a purely stage-

time concept. All generic code is specialized to the concrete types and no type class instances

exist (and hence no virtual dispatch occurs) when the DSL program is run.

An interesting extension of the type class model is the notion of polytypic staging, studied

on top of LMS [119].

112

13.4. Unions and Inheritance

13.4 Unions and Inheritance

The struct abstraction from Section 10.2.2 can be extended to sum types and inheritance

using a tagged union approach [98, 66]. We add a clzz field to each struct that refers to an

expression that defines the object’s class. Being a regular struct field, it is subject to all common

optimizations. We extend the complex number example with two subclasses:

abstract class Complex

class Cartesian extends Complex with Struct { val re: Double, val im: Double }

class Polar extends Complex with Struct { val r: Double, val phi: Double }

Splitting transforms work as before: e.g. conditional expressions are forwarded to the fields

of the struct. But now the result struct will contain the union of the fields found in the two

branches, inserting null values as appropriate. A conditional is created for the clzz field only

if the exact class is not known at staging time. As an example, the expression

val a = Cartesian(1.0, 2.0); val b = Polar(3.0, 4.0)

if (x > 0) a else b

produces this generated code:

val (re, im, r, phi, clzz) =

if (x > 0) (1.0, 2.0, null, null, classOf[Cartesian])

else (null, null, 3.0, 4.0, classOf[Polar])

struct("re"->re, "im"->im, "r"->r, "phi"->phi, "clzz"->clzz)

The clzz fields allows virtual dispatch via type tests and type casting, e.g. to convert any

complex number to its cartesian representation:

def infix_toCartesian(c: Rep[Complex]): Rep[Cartesian] =

if (c.isInstanceOf[Cartesian]) c.asInstanceOf[Cartesian]

else { val p = c.asInstanceOf[Polar]

Cartesian(p.r * cos(p.phi), p.r * sin(p.phi)) }

Appropriate rewrites ensure that if the argument is known to be a Cartesian, the conversion

is a no-op. The type test that inspects the clzz field is only generated if the type cannot be

determined statically. If the clzz field is never used it will be removed by DCE.

13.5 Struct of Array and Other Data Format Conversions

There is another particularly interesting use case for the splitting of data structures: Let us

assume we want to create a vector of complex numbers. Just as with the if-then-else example

above, we can override the vector constructors such that a Vector[Cartesian] is represented

as a struct that contains two separate arrays, one for the real and one for the imaginary

components. A more general Vector[Complex] that contains both polar and cartesian values

will be represented as five arrays, one for each possible data field plus the clzz tag for each

value. In fact, we have expressed our conceptual array of structs as a struct of arrays (AoS to

SoA transform, see Section 10.2.3). This data layout is beneficial in many cases. Consider for

113

Chapter 13. Data Abstraction

example calculating complex conjugates (i.e. swapping the sign of the imaginary components)

over a vector of complex numbers.

def conj(c: Rep[Complex]) = if (c.isCartesian) {

val c2 = c.toCartesian; Cartesian(c2.re, -c2.im)

} else {

val c2 = c.toPolar; Polar(c2.r, -c2.phi)

}

To make the test case more interesting we perform the calculation only in one branch of a

conditional.

val vector1 = ... // only Cartesian values

if (test) {

vector1.map(conj)

} else {

vector1

}

All the real parts remain unchanged so the array holding them need not be touched at all. Only

the imaginary parts have to be transformed, cutting the total required memory bandwidth

in half. Uniform array operations like this are also a much better fit for SIMD execution. The

generated intermediate code is:

val vector1re = ...

val vector1im = ...

val vector1clzz = ... // array holding classOf[Cartesian] values

val vector2im = if (test) {

Array.fill(vector1size) { i => -vector1im(i) }

} else {

vector1im

}

struct(ArraySoaTag(Complex,vector1size),

Map("re"->vector1re, "im"->vector2im, "clzz"->vector1clzz))

Note how the conditionals for the re and clzz fields have been eliminated since the fields do

not change (the initial array contained cartesian numbers only). If the struct expression will

not be referenced in the final code, dead code elimination removes the clzz array.

In the presence of conditionals that produce array elements of different types, it can be

beneficial to use a sparse representation for arrays that make up the result struct-of-array,

similar to the approach in Data Parallel Haskell [66]. Of course no choice of layout is optimal

in all cases, so the usual sparse versus dense tradeoffs regarding memory use and access time

apply here as well.

We conclude this section by taking note that we can actually guarantee that no dynamic

Complex or Struct object is ever created just by not implementing code generation logic

for Struct and Field IR nodes and signaling an error instead. This is a good example of a

performance-oriented DSL compiler rejecting a program as ill-formed because it cannot be

executed in the desired, efficient way.

114

13.6. Loop Fusion and Deforestation

13.6 Loop Fusion and Deforestation

Building complex bulk operations out of simple ones often leads to inefficient generated code.

For example consider the simple vector code

val a: Rep[Double] = ...

val x: Rep[Vector[Double]] = ...

val y: Rep[Vector[Double]] = ...

a*x+y

Assuming we have provided the straightforward loop-based implementations of scalar-

times-vector and vector-plus-vector, the resulting code for this program will perform two

loops and allocate a temporary vector to store a*x. A more efficient implementation will only

use a single loop (and no temporary vector allocations) to compute a*x(i)+y(i).

In addition to operations that are directly dependent as illustrated above, side-by-side

operations also appear frequently. As an example, consider a DSL that provides mean and

variance methods.

def mean(x: Rep[Vector[Double]]) =

sum(x.length) { i => x(i) } / x.length

def variance(x: Rep[Vector[Double]]) =

sum(x.length) { i => square(x(i)) } / x.length - square(mean(x))

val data = ...

val m = mean(data)

val v = variance(data)

The DSL developer wishes to provide these two functions separately, but many applications

will compute both the mean and variance of a dataset together. In this case we again want

to perform all the work with a single pass over data. In both of the above example situations,

fusing the operations into a single loop greatly improves cache behavior and reduces the

total number of loads and stores required. It also creates coarser-grained functions out of

fine-grained ones, which will likely improve parallel scalability.

Our framework handles all situations like these two examples uniformly and for all DSLs.

Any non-effectful loop IR node is eligible for fusing with other loops. In order to handle all the

interesting loop fusion cases, the fusing algorithm uses simple and general criteria: It fuses all

pairs of loops where either both loops have the exact same size or one loop iterates over a data

structure the other loop creates, as long as fusing will not create any cyclic dependencies. The

exact rules are presented in Section 10.3. When it finds two eligible loops the algorithm creates

a new loop with a body composed of both of the original bodies. Merging loop bodies includes

array contraction, i.e. the fusing transform modifies dependencies so that all results produced

within a loop iteration are consumed directly rather than by reading an output data structure.

Whenever this renders an output data structure unnecessary (it does not escape the fused

loop) it is removed automatically by dead code elimination. All DeliteOpLoops are parallel

loops, which allows the fused loops to be parallelized in the same manner as the original loops.

115

Chapter 13. Data Abstraction

The general heuristic is to apply fusion greedily wherever possible. For dominantly imper-

ative code more refined heuristics might be needed [8]. However, our loop abstractions are

dominantly functional and many loops create new data structures. Removing intermediate

data buffers, which are potentially large and many of which are used only once is clearly a win,

so fusing seems to be beneficial in almost all cases.

Our fusion mechanism is similar but not identical to deforestation [153] and related

approaches [30]. Many of these approaches only consider expressions that are directly de-

pendent (vertical fusion), whereas we are able to handle both dependent and side-by-side

expressions (horizontal fusion) with one general mechanism. This is critical for situations

such as the mean and variance example, where the only other efficient alternative would be to

explicitly create a composite function that returns both results simultaneously. This solution

additionally requires the application writer to always remember to use the composite version

when appropriate. It is generally difficult to predict all likely operation compositions as well as

onerous to provide efficient, specialized implementations of them. Therefore fusion is key for

efficient compositionality in both applications and DSL libraries.

13.7 Extending the Framework

A framework for building DSLs must be easily extensible in order for the DSL developer to

exploit domain knowledge starting from a general-purpose IR design. Consider a simple DSL

for linear algebra with a Vector type. Now we want to add norm and dist functions to the DSL.

The first possible implementation is to simply implement the functions as library methods.

def norm[T:Numeric](v: Rep[Vector[T]]) = {

sqrt(v.map(j => j*j).sum)

}

def dist[T:Numeric](v1: Rep[Vector[T]], v2: Rep[Vector[T]]) = {

norm(v1 - v2)

}

Whenever the dist method is called the implementation will be added to the application IR

in terms of vector subtraction, vector map, vector sum, etc. (assuming each of these methods

is built-in to the language rather than also being provided as a library method). This version

is very straightforward to write but the knowledge that the application wishes to find the

distance between two vectors is lost.

By defining norm explicitly in the IR implementation trait (where Rep[T] = Exp[T]) we

gain ability to perform pattern matching on the IR nodes that compose the arguments.

override def norm[T:Numeric](v: Exp[Vector[T]]) = v match {

case Def(ScalarTimesVector(s,u)) => s * norm(u)

case Def(ZeroVector(n)) => 0

case _ => super.norm(v)

}

In this example there are now three possible implementations of norm. The first case factors

scalar-vector multiplications out of norm operations, the second short circuits the norm of a

116

13.7. Extending the Framework

ZeroVector to be simply the constant 0, and the third falls back on the default implementation

defined above. With this method we can have a different implementation of norm for each

occurrence in the application.

An even more powerful alternative is to implement norm and dist as custom IR nodes.

This enables the DSL to include these nodes when optimizing the application via pattern

matching and IR rewrites as illustrated above. For example, we can add a rewrite rule for

calculating the norm of a unit vector: if v1 ˘ v
kvk then kv1k ˘ 1. In order to implement this

optimization we need to add cases both for the new norm operation as well as to the existing

scalar-times-vector operation to detect the first half of the pattern.

case class VectorNorm[T](v: Exp[Vector[T]]) extends Def[T]

case class UnitVector[T](v: Exp[Vector[T]]) extends Def[Vector[T]]

override def scalar_times_vector[T:Numeric](s: Exp[T], v: Exp[Vector[T]]) =

(s,v) match {

case (Def(Divide(Const(1), Def(VectorNorm(v1)))), v2)

if v1 == v2 => UnitVector(v)

case _ => super.scalar_times_vector(s,v)

}

override def norm[T:Numeric](v: Exp[Vector[T]]) = v match {

case Def(UnitVector(v1)) => 1

case _ => super.norm(v)

}

In this example the scalar-times-vector optimization requires vector-norm to exist as an

IR node to detect1 and short-circuit the operation to simply create and mark unit vectors.

The vector-norm optimization then detects unit vectors and short circuits the norm oper-

ation to simply add the constant 1 to the IR. In every other case it falls back on the default

implementation, which is to create a new VectorNorm IR node.

The default constructor for VectorNorm uses delayed rewriting (see Section 10.1.3) to

specify the desired lowering of the IR node:

def norm[T:Numeric](v: Rep[Vector[T]]) = VectorNorm(v) atPhase(lowering) {

sqrt(v.map(j => j*j).sum)

}

The right hand side of this translation is exactly the initial norm implementation we started

with.

1The == operator tests structural equality of IR nodes. The test is cheap because we only need to look at symbols,
one level deep. Value numbering/CSE ensures that intensionally equal IR nodes get assigned the same symbol.

117

Chapter 14

Case Studies

This chapter presents case studies for Delite apps (using the OptiML and OptiQL DSLs) as well

as classical staging use cases (FFT specialization and regular expression matching). The Delite

apps are real-world examples for the loop fusion algorithm from Section 10.3 and the struct

conversion from Section 10.2.2.

14.1 OptiML Stream Example

1 OptiML is an embedded DSL for machine learning (ML) developed on top of LMS and Delite.

It provides a MATLAB-like programming model with ML-specific abstractions. OptiML is a

prototypical example of how the techniques described in this thesis can be used to construct

productive, high performance DSLs targeted at heterogeneous parallel machines.

14.1.1 Downsampling in Bioinformatics

In this example, we will demonstrate how the optimization and code generation techniques

discussed in previous sections come together to produce efficient code in real applications.

SPADE is a bioinformatics application that builds tree representations of large, high-dimensional

flow cytometry datasets. Consider the following small but compute-intensive snippet from

SPADE (C++):

std::fill(densities, densities+obs, 0);

#pragma omp parallel for shared(densities)

for (size_t i=0; i<obs; i++) {

if (densities[i] > 0)

continue;

std::vector<size_t> apprxs; // Keep track on observations we can approximate

Data_t *point = &data[i*dim];

Count_t c = 0;

for (size_t j=0; j<obs; j++) {

1Credits: Design and presentation by Arvind Sujeeth, fusion implementation by the author

119

Chapter 14. Case Studies

Dist_t d = distance(point, &data[j*dim], dim);

if (d < apprx_width) {

apprxs.push_back(j);

c++;

} else if (d < kernel_width) c++;

}

// Potential race condition on other density entries, use atomic

// update to be safe

for (size_t j=0; j<apprxs.size(); j++)

__sync_bool_compare_and_swap(densities+apprxs[j],0,c);

densities[i] = c;

}

This snippet represents a downsampling step that computes a set of values, densities,

that represents the number of samples within a bounded distance (kernel_width) from the

current sample. Furthermore, any distances within apprx_width of the current sample are

considered to be equivalent, and the density for the approximate group is updated as a whole.

Finally, the loop is run in parallel using OpenMP. This snippet represents hand-optimized, high

performance, low-level code. It took a systems and C++ expert to port the original MATLAB

code (written by a bioinformatics researcher) to this particular implementation. In contrast,

consider the equivalent snippet of code, but written in OptiML:

val distances = Stream[Double](data.numRows, data.numRows) {

(i,j) => dist(data(i),data(j))

}

val densities = Vector[Int](data.numRows, true)

for (row <- distances.rows) {

if(densities(row.index) == 0) {

val neighbors = row find { _ < apprxWidth }

densities(neighbors) = row count { _ < kernelWidth }

}

}

densities

This snippet is expressive and easy to write. It is not obviously high performance. However,

because we have abstracted away implementation detail, and built-in high-level semantic

knowledge into the OptiML compiler, we can generate code that is essentially the same as the

hand-tuned C++ snippet. Let’s consider the OptiML code step by step.

Line 1 instantiates a Stream, which is an OptiML data structure that is buffered; it holds

only a chunk of the backing data in memory at a time, and evaluates operations one chunk at

a time. Stream only supports iterator-style access and bulk operations. These semantics are

necessary to be able to express the original problem in a more natural way without adding

overwhelming performance overhead. The foreach implementation for stream.rows is:

def stream_foreachrow[A:Manifest](x: Exp[Stream[A]],

block: Exp[StreamRow[A]] => Exp[Unit]) = {

var i = 0

120

14.1. OptiML Stream Example

while (i < numChunks) {

val rowsToProcess = stream_rowsin(x, i)

val in = (0::rowsToProcess)

val v = fresh[Int]

// fuse parallel initialization and foreach function

reflectEffect(StreamInitAndForeachRow(in, v, x, i, block)) // parallel

i += 1

}

}

This method constructs the IR nodes for iterating over all of the chunks in the Stream,

initalizing each row, and evaluating the user-supplied foreach anonymous function. We first

obtain the number of rows in the current chunk by calling a method on the Stream instance

(stream_rowsin). We then call the StreamInitAndForeachRow op, which is a DeliteOpFore-

ach, over all of the rows in the chunk. OptiML unfolds the foreach function and the stream

initialization function while building the IR, inside StreamInitAndForeachRow. The stream

initialization function ((i,j) => dist(data(i),data(j)) constructs a StreamRow, which is

the input to the foreach function. The representation of the foreach function consists of

an IfThenElse operation, where the then branch contains the VectorFind, VectorCount, and

VectorBulkUpdate operations from lines 6-7 of the OptiML SPADE snippet. VectorFind and

VectorCount both extend DeliteOpLoop. Since they are both DeliteOpLoops over the same

range with no cyclic dependencies, they are fused into a single DeliteOpLoop. This eliminates

an entire pass (and the corresponding additional memory accesses) over the row, which is a

non-trivial 235,000 elements in one typical dataset.

Fusion helps to transform the generated code into the iterative structure of the C++ code.

One important difference remains: we only want to compute the distance if it hasn’t already

been computed for a neighbor. In the streaming version, this corresponds to only evaluating a

row of the Stream if the user-supplied if-condition is true. In other words, we need to optimize

the initialization function together with the anonymous function supplied to the foreach. LMS

does this naturally since the foreach implementation and the user code written in the DSL are

all uniformly represented with the same IR. When the foreach block is scheduled, the stream

initialization function is pushed inside the user conditional because the StreamRow result is

not required anywhere else. Furthermore, once the initialization function is pushed inside the

conditional, it is then fused with the existing DeliteOpLoop, eliminating another pass. We can

go even further and remove all dependencies on the StreamRow instance by bypassing field

accesses on the row, using the pattern matching mechanism described earlier:

trait StreamOpsExpOpt extends StreamOpsExp {

this: OptiMLExp with StreamImplOps =>

override def stream_numrows[A:Manifest](x: Exp[Stream[A]]) = x match {

case Def(Reflect(StreamObjectNew(numRows, numCols,

chunkSize, func, isPure),_,_)) => numRows

case _ => super.stream_numrows(x)

121

Chapter 14. Case Studies

}

// similar overrides for other stream fields

}

trait VectorOpsExpOpt extends VectorOpsExp {

this: OptiMLExp with VectorImplOps =>

// accessing an element of a StreamRow directly accesses the underlying Stream

override def vector_apply[A:Manifest](x: Exp[Vector[A]], n: Exp[Int]) = x match {

case Def(StreamChunkRow(x, i, offset)) => stream_chunk_elem(x,i,n)

case _ => super.vector_apply(x,n)

}

}

Now as the row is computed, the results of VectorFind and VectorCount are also computed

in a pipelined fashion. All accesses to the StreamRow are short-circuited to their underlying

data structure (the Stream), and no StreamRow object is ever allocated in the generated

code. The following listing shows the final code generated by OptiML for the “then” branch

(comments and indentation added for clarity):

// ... initialization code omitted ...

// -- FOR EACH ELEMENT IN ROW --

while (x155 < x61) {

val x168 = x155 * x64

var x185: Double = 0

var x180 = 0

// -- INIT STREAM VALUE (dist(i,j))

while (x180 < x64) {

val x248 = x164 + x180

val x249 = x55(x248)

val x251 = x168 + x180

val x252 = x55(x251)

val x254 = x249 - x252

val x255 = java.lang.Math.abs(x254)

val x184 = x185 + x255

x185 = x184

x180 += 1

}

val x186 = x185

val x245 = x186 < 6.689027961000001

val x246 = x186 < 22.296759870000002

// -- VECTOR FIND --

if (x245) x201.insert(x201.length, x155)

// -- VECTOR COUNT --

if (x246) {

val x207 = x208 + 1

x208 = x207

}

x155 += 1

}

// -- VECTOR BULK UPDATE --

var forIdx = 0

while (forIdx < x201.size) {

val x210 = x201(forIdx)

val x211 = x133(x210) = x208

x211

forIdx += 1

}

This code, though somewhat obscured by the compiler generated names, closely resembles

the hand-written C++ snippet shown earlier. It was generated from a simple, 9 line description

of the algorithm written in OptiML, making heavy use of the building blocks we described in

previous sections to produce the final result.

A more thorough performance evaluation is given in Section 16.5.2.

122

14.2. OptiQL Struct Of Arrays Example

14.2 OptiQL Struct Of Arrays Example

OptiQL is a DSL for data querying of in-memory collections, inspired by LINQ [90]. We

consider querying a data set with roughly 10 columns, similar to the table lineItems from the

TPCH benchmark. The example is slightly trimmed down from TPCH Query 1:

val res = lineItems Where(_.l_shipdate <= Date("1998-12-01"))

GroupBy(l => l.l_returnflag) Select(g => new Result {

val returnFlag = g.key

val sumQty = g.Sum(_.l_quantity)

})

A straightforward implementation is rather slow. There are multiple traversals that com-

pute intermediate data structures. There is also a nested Sum operation inside the Select that

follows the groupBy.

We can translate this code to a single while loop that does not construct any intermediate

data structures and furthermore ignores all columns that are not part of the result. First, the

complete computation is split into separate loops, one for each column. Unnecessary ones

are removed. Then the remaining component loops are reassembled via loop fusion. For the

full TPCH Query 1, these transformations provide a speed up of 5.5x single threaded and 8.7x

with 8 threads over the baseline array-of-struct version (see Section 16.5).

We use two hash tables in slightly different ways: one to accumulate the keys (so it is really

a hash set) and the other one to accumulate partial sums. Internally there is only one hash

table that maps keys to positions. The partial sums are just kept in an array that shares the

same indices with the key array.

Below is the annotated generated code:

val x11 = x10.column("l_returnflag")

val x20 = x10.column("l_shipdate")

val x52 = generated.scala.util.Date("1998-12-01")

val x16 = x10.columns("l_quantity")

val x283 = x264 + x265

// hash table constituents, grouped for both x304,x306

var x304x306_hash_to_pos: Array[Int] = alloc_htable // actual hash table

var x304x306_hash_keys: Array[Char] = alloc_buffer // holds keys

var x304_hash_data: Array[Char] = alloc_buffer // first column data

var x306_hash_data: Array[Double] = alloc_buffer // second column data

val x306_zero = 0.0

var x33 = 0

while (x33 < x28) { // begin fat loop x304,x306

val x35 = x11(x33)

val x44 = x20(x33)

val x53 = x44 <= x52

val x40 = x16(x33)

// group conditionals

123

Chapter 14. Case Studies

if (x53) {

val x35_hash_val = x35.hashCode

val x304x306_hash_index_x35 = {

// code to lookup x35_hash_val

// in hash table x304x306_hash_to_pos

// with key table x304x306_hash_keys

// (growing hash table if necessary)

}

if (x304x306_hash_index_x35 >= x304x306_hash_keys.length) { // not found

// grow x304x306_hash_keys and add key

// grow x304_hash_data

// grow x306_hash_data and set to x306_zero

}

x304_hash_data (x304x306_hash_index_x35) = x35

val x264 = x306_hash_data (x304x306_hash_index_x35)

val x265 = x40

val x283 = x264 + x265

x304_hash_data (x304x306_hash_index_x35) = x283

}

} // end fat loop x304,x306

val x304 = x304_hash_data

val x305 = x304x306_hash_to_pos.size

val x306 = x306_hash_data

val x307 = Map("returnFlag"->x304,"sumQty"->x306) //Array Result

val x308 = Map("data"->x307,"size"->x305) //DataTable

14.3 Fast Fourier Transform Example

We consider staging a fast fourier transform (FFT) algorithm. A staged FFT, implemented in

MetaOCaml, has been presented by Kiselyov et al. [76] Their work is a very good example for

how staging allows to transform a simple, unoptimized algorithm into an efficient program

generator. Achieving this in the context of MetaOCaml, however, required restructuring the

program into monadic style and adding a front-end layer for performing symbolic rewritings.

Using our approach of just adding Rep types, we can go from the naive textbook-algorithm to

the staged version (shown in Figure 14.1) by changing literally two lines of code:

trait FFT { this: Arith with Trig =>

case class Complex(re: Rep[Double], im: Rep[Double])

...

}

All that is needed is adding the self-type annotation to import arithmetic and trigonometric

operations and changing the type of the real and imaginary components of complex numbers

from Double to Rep[Double].

124

14.3. Fast Fourier Transform Example

trait FFT { this: Arith with Trig =>
case class Complex(re: Rep[Double], im: Rep[Double]) {

def +(that: Complex) = Complex(this.re + that.re, this.im + that.im)
def *(that: Complex) = ...

}
def omega(k: Int, N: Int): Complex = {

val kth = -2.0 * k * Math.Pi / N
Complex(cos(kth), sin(kth))

}
def fft(xs: Array[Complex]): Array[Complex] = xs match {

case (x :: Nil) => xs
case _ =>

val N = xs.length // assume it’s a power of two
val (even0, odd0) = splitEvenOdd(xs)
val (even1, odd1) = (fft(even0), fft(odd0))
val (even2, odd2) = (even1 zip odd1 zipWithIndex) map {

case ((x, y), k) =>
val z = omega(k, N) * y
(x + z, x - z)

}.unzip;
even2 ::: odd2

}
}

Figure 14.1: FFT code. Only the real and imaginary components of complex numbers need to
be staged.

Sym(8)
 Plus(Sym(0),Sym(4))

Sym(16)
 Plus(Sym(8),Sym(12))

Sym(18)
 Minus(Sym(8),Sym(12))

Sym(0)

Sym(10)
 Minus(Sym(0),Sym(4))

Sym(4)

Sym(12)
 Plus(Sym(2),Sym(6))Sym(2)

Sym(14)
 Minus(Sym(2),Sym(6))

Sym(6)

Sym(26)
 Result(Array(...))

Sym(9)
 Plus(Sym(1),Sym(5))

Sym(17)
 Plus(Sym(9),Sym(13))

Sym(19)
 Minus(Sym(9),Sym(13))

Sym(1)
Sym(11)

 Minus(Sym(1),Sym(5))

Sym(5)

Sym(13)
 Plus(Sym(3),Sym(7))

Sym(3)
Sym(15)

 Minus(Sym(3),Sym(7))

Sym(7)

Sym(22)
 Plus(Sym(10),Sym(15))

Sym(24)
 Minus(Sym(10),Sym(15))

Sym(23)
 Minus(Sym(11),Sym(14))

Sym(25)
 Plus(Sym(11),Sym(14))

Figure 14.2: Computation graph for size-4 FFT. Auto-generated from staged code in Fig-
ure 14.1.

125

Chapter 14. Case Studies

trait ArithExpOptFFT extends ArithExp {
override def infix_*(x:Exp[Double],y:Exp[Double]) = (x,y) match {

case (Const(k), Def(Times(Const(l), y))) => Const(k * l) * y
case (x, Def(Times(Const(k), y))) => Const(k) * (x * y))
case (Def(Times(Const(k), x)), y) => Const(k) * (x * y))
...
case (x, Const(y)) => Times(Const(y), x)
case _ => super.infix_*(x, y)

}
}

Figure 14.3: Extending the generic implementation from Section 9.2.3 with FFT-specific
optimizations.

Merely changing the types will not provide us with the desired optimizations yet. We will

see below how we can add the transformations described by Kiselyov et al. to generate the same

fixed-size FFT code, corresponding to the famous FFT butterfly networks (see Figure 14.2).

Despite the seemingly naive algorithm, this staged code is free of branches, intermediate data

structures and redundant computations. The important point here is that we can add these

transformations without any further changes to the code in Figure 14.1, just by mixing in the

trait FFT with a few others.

14.3.1 Implementing Optimizations

As already discussed in Section 9.2.3, some profitable optimizations are very generic (CSE,

DCE, etc), whereas others are specific to the actual program. In the FFT case, Kiselyov et al.

[76] describe a number of rewritings that are particularly effective for the patterns of code

generated by the FFT algorithm but not as much for other programs.

What we want to achieve again is modularity, such that optimizations can be combined in a

way that is most useful for a given task. This can be achieved by overriding smart constructors,

as shown by trait ArithExpOptFFT (see Figure 14.3). Note that the use of x*y within the body

of infix_* will apply the optimization recursively.

14.3.2 Running the Generated Code

Using the staged FFT implementation as part of some larger Scala program is straightforward

but requires us to interface the generic algorithm with a concrete data representation. The

algorithm in Figure 14.1 expects an array of Complex objects as input, each of which contains

fields of type Rep[Double]. The algorithm itself has no notion of staged arrays but uses arrays

only in the generator stage, which means that it is agnostic to how data is stored. The enclosing

program, however, will store arrays of complex numbers in some native format which we will

need to feed into the algorithm. A simple choice of representation is to use Array[Double]

with the complex numbers flattened into adjacent slots. When applying compile, we will thus

receive input of type Rep[Array[Double]]. Figure 14.4 shows how we can extend trait FFT to

126

14.4. Regular Expression Matcher Example

trait FFTC extends FFT { this: Arrays with Compile =>
def fftc(size: Int) = compile { input: Rep[Array[Double]] =>

assert(<size is power of 2>) // happens at staging time
val arg = Array.tabulate(size) { i =>

Complex(input(2*i), input(2*i+1))
}
val res = fft(arg)
updateArray(input, res.flatMap {

case Complex(re,im) => Array(re,im)
})

}
}

Figure 14.4: Extending the FFT component from Figure 14.1 with explicit compilation.

FFTC to obtain compiled FFT implementations that realize the necessary data interface for a

fixed input size.

We can then define code that creates and uses compiled FFT “codelets” by extending FFTC:

trait TestFFTC extends FFTC {

val fft4: Array[Double] => Array[Double] = fftc(4)

val fft8: Array[Double] => Array[Double] = fftc(8)

// embedded code using fft4, fft8, ...

}

Constructing an instance of this subtrait (mixed in with the appropriate LMS traits) will execute

the embedded code:

val OP: TestFFC = new TestFFTC with CompileScala

with ArithExpOpt with ArithExpOptFFT with ScalaGenArith

with TrigExpOpt with ScalaGenTrig

with ArraysExpOpt with ScalaGenArrays

We can also use the compiled methods from outside the object:

OP.fft4(Array(1.0,0.0, 1.0,0.0, 2.0,0.0, 2.0,0.0))

,! Array(6.0,0.0,-1.0,1.0,0.0,0.0,-1.0,-1.0)

Providing an explicit type in the definition val OP: TestFFC = ... ensures that the internal

representation is not accessible from the outside, only the members defined by TestFFC.

14.4 Regular Expression Matcher Example

Specializing string matchers and parsers is a popular benchmark in the partial evaluation

and supercompilation literature [26, 2, 124, 141, 123]. We consider “multi-threaded” regular

expression matchers, that spawn a new conceptual thread to process alternatives in parallel.

Of course these matchers do not actually spawn OS-level threads, but rather need to be

advanced manually by client code. Thus, they are similar to coroutines.

127

Chapter 14. Case Studies

Here is a simple example for the fixed regular expression .*AAB:

def findAAB(): NIO = {

guard(Set(’A’)) {

guard(Set(’A’)) {

guard(Set(’B’), Found)) {

stop()

}}} ++

guard(None) { findAAB() } // in parallel...

}

We can easily add combinators on top of the core abstractions that take care of producing

matchers from textual regular expressions. However the point here is to demonstrate how the

implementation works.

The given matcher uses an API that models nondeterministic finite automata (NFA):

type NIO = List[Trans] // state: many possible transitions

case class Trans(c: Set[Char], x: Flag, s: () => NIO)

def guard(cond: Set[Char], flag: Flag)(e: => NIO): NIO =

List(Trans(cond, flag, () => e))

def stop(): NIO = Nil

An NFA state consists of a list of possible transitions. Each transition may be guarded by a set

of characters and it may have a flag to be signaled if the transition is taken. It also knows how

to compute the following state. We use Chars for simplicity, but of course we could use generic

types as well. Note that the API does not mention where input is obtained from (files, streams,

etc).

We will translate NFAs to DFAs using staging. This is the unstaged DFA API:

abstract class DfaState {

def hasFlag(x: Flag): Boolean

def next(c: Char): DfaState

}

def dfaFlagged(flag: Flag, link: DfaState) = new DfaState {

def hasFlag(x: Flag) = x == flag || link.hasFlag(x)

def next(c: Char) = link.next(c)

}

def dfaState(f: Char => DfaState) = new DfaState {

def hasFlag(x: Flag) = false

def next(c: Char) = f(c)

}

The staged API is just a thin wrapper:

type DIO = Rep[DfaState]

def dfa_flag(x: Flag)(link: DIO): DIO

def dfa_trans(f: Rep[Char] => DIO): DIO

Translating an NFA to a DFA is accomplished by creating a DFA state for each encountered

NFA configuration (removing duplicate states via canonicalize):

128

14.4. Regular Expression Matcher Example

def exploreNFA[A](xs: NIO, cin: Rep[Char])(flag: Flag => Rep[A] => Rep[A])
(k: NIO => Rep[A]):Rep[A] = xs match {

case Nil => k(Nil)
case Trans(Set(c), e, s)::rest =>

if (cin == c) {
// found match: drop transitions that look for other chars and
// remove redundant checks
val xs1 = rest collect { case Trans(Set(‘c‘)|None,e,s) => Trans(Set(),e,s) }
val maybeFlag = e map flag getOrElse (x=>x)
maybeFlag(exploreNFA(xs1, cin)(acc => k(acc ++ s())))

} else {
// no match, drop transitions that look for same char
val xs1 = rest filter { case Trans(Set(‘c‘),_,_) => false case _ => true }
exploreNFA(xs1, cin)(k)

}
case Trans(Set(), e, s)::rest =>

val maybeFlag = e map flag getOrElse (x=>x)
maybeFlag(exploreNFA(rest, cin)(acc => k(acc ++ s())))

}

Figure 14.5: NFA Exploration

def convertNFAtoDFA(states: NIO): DIO = {

val cstates = canonicalize(state)

dfa_trans { c: Rep[Char] =>

exploreNFA(cstates, c)(dfa_flag) { next =>

convertNFAtoDFA(next)

}

}

}

iterate(findAAB())

The LMS framework memoizes functions (see Section 6.2.4) which ensures termination if the

NFA is indeed finite.

We use a separate function to explore the NFA space (see Figure 14.5), advancing the

automaton by a symbolic character cin to invoke its continuations k with a new automaton, i.e.

the possible set of states after consuming cin. The given implementation assumes character

sets contain either zero or one characters, the empty set Set() denoting a wildcard match.

More elaborate cases such as character ranges are easy to add. The algorithm tries to remove

as many redundant checks and impossible branches as possible. This only works because the

character guards are staging time values.

The generated code is shown in Figure 14.6. Each function corresponds to one DFA state.

Note how negative information has been used to prune the transition space: Given input such

as ...AAB the automaton jumps back to the initial state, i.e. it recognizes that the last character

B cannot also be A and starts looking for two As after the B.

129

Chapter 14. Case Studies

def stagedFindAAB(): DfaState = {
val x7 = { x8: (Char) =>

// matched AA
val x9 = x8 == B
val x15 = if (x9) {

x11
} else {

val x12 = x8 == A
val x14 = if (x12) {

x13
} else {

x10
}
x14

}
x15

}
val x13 = dfaState(x7)
val x4 = { x5: (Char) =>

// matched A
val x6 = x5 == A
val x16 = if (x6) {

x13
} else {

x10
}
x16

}
val x17 = dfaState(x4)
val x1 = { x2: (Char) =>

// matched nothing
val x3 = x2 == A
val x18 = if (x3) {

x17
} else {

x10
}
x18

}
val x10 = dfaState(x1)
val x11 = dfaFlagged(Found, x10)
x10

}

Figure 14.6: Generated matcher code for regular expression .*AAB

The generated code can be used as follows:

var state = stagedFindAAB()

var input = ...

while (input.nonEmpty) {

state = state.next(input.head)

if (state.hasFlag(Found))

println("found AAB. rest: " + input.tail)

input = input.tail

}

If the matcher and input iteration logic is generated together, further translations can be

applied to transform the mutually recursive lambdas into tight imperative state machines.2

2Credits: Optimizations implemented by Nada Amin

130

Part IV

Validation and Evaluation

131

Chapter 15

Intro

This part present projects undertaken that validate the use of LMS and embedded compilers.

Disclosure These projects are large efforts driven by many people. The author of this thesis

has co-authored publications on each of the projects. Most of the discussed aspects are not to

be understood as contributions of this thesis but as examples of how the research presented

earlier in this thesis has been used in large projects and other people’s works.

133

Chapter 16

Delite

1 Delite [11, 113, 83] is a research project lead by Stanford University’s Pervasive Parallelism

Laboratory (PPL). Delite is a compiler framework and runtime for parallel embedded domain-

specific languages (DSLs). To enable the rapid construction of high-performance, highly

productive DSLs, Delite provides several facilities:

• Code generators for Scala, C++ and CUDA

• Built-in parallel execution patterns

• Optimizers for parallel code

• A DSL runtime for heterogeneous hardware

The material in this chapter is taken from [83, 127]2. The Delite Compiler Framework is ca-

pable of expressing parallelism both within and among DSL operations, as well as performing

useful parallel analyses. It also provides a framework for adding domain-specific optimiza-

tions. It then generates a machine-agnostic intermediate representation of the program which

is consumed by the Delite Runtime. The runtime system provides a common set of features

required by most DSLs, such as scheduling work across hardware resources and managing

communication.

16.1 Building Parallel DSLs Using Delite

16.1.1 Building an Intermediate Representation (IR)

In Delite, a single IR node can be viewed from three different perspectives (as depicted in

Figure 16.1) which provide different optimizations and code generation strategies. Delite is

built using the concept of a multi-view IR.

Generic IR: The most basic view of an IR node is a symbol and its definition, which

is similar to a node in the flow graph of a traditional compiler framework. Therefore, we

1Credits: Joint work with Arvind Sujeeth, Kevin Brown, HyoukJoong Lee, Hassan Chafi, Kunle Olukotun
2Credits: Presentation HyoukJoong Lee, Arvind Sujeeth, Kevin Brown

135

Chapter 16. Delite

Matrix

Plus

Vector

Exp

Matrix

Sum

DeliteOp

Reduce

DeliteOp

Map

DeliteOp

ZipWith

Definition

S = sum(M) V1 = exp(V2) M1 = M2 + M3

Domain-specific

Analysis & Opt.

Domain User

Interface

Parallelism

Analysis & Opt.

Code Generation

Generic

Analysis & Opt.

Application

Domain-specific (DS) IR

Parallel IR

Generic IR

Collection

Quicksort

DeliteOp

Divide &

Conquer

C2 = sort(C1)

3 views (DS /

parallel / gener

ic) of IR nodes

for each DSL

operation in

the framework

DSL

operations

syntax

Figure 16.1: Multi-view of IR nodes in the Delite Compilation Framework. For example, the
matrix addition operation (M1 = M2 + M3) is represented as a MatrixPlus IR node, which
extends the DeliteOpZipWith IR node which again extends the Definition IR node. The
generic IR view is used for traditional compiler optimizations, the parallel IR view is used for
exposing parallel patterns and loop fusing optimizations, and the Domain-specific IR view is
used for domain-specific optimizations.

can apply all the well-known static optimizations at this level. The primary difference is

that our representation has a coarser granularity because each node is a DSL operation

rather than an individual instruction, and this often leads to better optimization results.

For example, the common subexpression elimination (CSE) can be applied to the vector

operations (x(i)¡mu0, x(i)¡mu1) as shown in Figure 16.2 instead of just to scalar operations.

Currently applied optimizations include CSE, constant propagation, dead code elimination,

and code motion.

Parallel IR: A generic IR node can be characterized by its parallel execution pattern.

At this level of view, the Delite Compiler Framework provides a finite number of common

structured parallel execution patterns in the form of DeliteOp IR nodes. Examples include

DeliteOpMap which encodes disjoint element access patterns without ordering constraints,

and DeliteOpForeach which allows a DSL-defined consistency model for overlapping ele-

ments. The DeliteOpSequential IR node is for the pattern that is not parallelizable. Since

certain parallel patterns share a common notion of loops, multiple loop patterns can be

fused into a single loop. The parallel IR optimizer iterates over all of the IR nodes of loop

types (e.g., DeliteOpMap, DeliteOpZipwith, etc.), and fuses those with the same number of

iterations into a single loop. This optimization removes unnecessary memory allocations and

also improves cache behavior by eliminating multiple passes over data, which is especially

useful for memory-bound applications.

Domain-specific (DS) IR: Since the parallel IR does not encode domain-specific infor-

136

16.1. Building Parallel DSLs Using Delite

mation, there is another viewpoint for semantic information of the operation. This enables

domain-specific optimizations such as linear algebra simplification. The transformation rules

are simply described by pattern matching on DS IR nodes, and the optimizer replaces the

matched nodes with a simpler set of nodes. Examples on matrix operations are (At)t ˘ A, and

A ⁄ B ¯ A ⁄C ˘ A ⁄ (B ¯C). Since the DSL developer has expertise in the execution patterns of

each DS IR node, the DSL developer extends the appropriate Delite parallel IR node. In this

way parallel execution patterns are abstracted away from DSL users.

This multi-view IR greatly simplifies the process of developing a new DSL since the generic

IR and the parallel IR can be re-used by all DSLs, and therefore DSL developers only need to

design a DS IR for each operation as an extension. In other words, DSL developers are only

exposed to a high-level parallel instruction set (the parallel IR nodes) and the implementation

details of each pattern on multiple targets are automatically managed by the Delite Compiler

Framework.

Delite uses LMS to build the IR from DSL applications As the application starts executing

within the framework, each operation is lifted to a symbolic representation to form an IR node

rather than actually being executed. The IR nodes track all dependencies among one another

and the various optimizations mentioned above are applied. After building the machine-

independent IR, the Delite Compiler Framework starts the code generation phase to target

heterogeneous parallel hardware.

16.1.2 Heterogeneous Target Code Generation

Generating a single binary executable for the application at compile time limits the portability

of the application and requires runtime and hardware systems to rediscover dependency

information in order to make machine-specific scheduling decisions. The Delite Compiler

Framework defers such decisions by generating kernels for each IR node in multiple target

programming models as well as the Delite Execution Graph describing the dependencies

among kernels. Currently supported targets are Scala [99], C++, and CUDA.

Delite Execution Graph (DEG)

The Delite generator is the main code generator that controls multiple target generators. It

first schedules IR nodes to form kernels in the execution graph, and iterates over the list of

available target generators to generate corresponding target code for the kernel. It may not be

possible to generate the kernel for all targets, but the kernel generation will succeed as long as

at least one target succeeds. The fact that each IR node has multiple viewpoints means that

they can also be generated in different ways for each view. For example, a matrix addition

kernel could be generated in the domain-specific view written by the DSL developer, but it also

can be generated in the parallel view since the operation is of type DeliteOpZipWith. Since the

Delite Compiler Framework provides parallel implementations for DeliteOps, DSL developers

do not have to provide code generators when they extend one of the parallel IR nodes. When

DSL developers already have an efficient implementation of the kernel (e.g., BLAS libraries for

matrix multiplication), they can generate calls to the external library using DeliteOpExternal.

137

Chapter 16. Delite

GPU code generation

GPU code generation requires additional work since the programming model has more con-

straints compared to the Scala and C++ targets. One major issue is memory allocation. Since

dynamic memory allocation within the kernel is either not possible or not practical for per-

formance in GPU programming models, all device memory allocations within the kernel

are pre-allocated by the Delite Runtime before launching the kernel. This is enabled by the

CUDA generator collecting the memory requirement information and passing it to the run-

time through a metadata field in the DEG. In addition, since the GPU resides in a separate

address space, input/output transfer functions are also generated so that the Delite Runtime

can manage data communication. Kernel configuration information (the dimensionality and

the size of each dimension) also needs to be generated by the CUDA generator.

Variants

When multiple data parallel operations are nested, various parallelization strategies exist. In a

simple case, a DeliteOpMap op within a DeliteOpMap can parallelize the outer loop or the inner

loop or both. Therefore, the Delite Compiler Framework generates a data parallel operation in

both a sequential version and a parallel version to provide flexible parallelization options when

they are nested. This feature is especially useful for the CUDA target generator to improve

the coverage of GPU kernels, since parallelizing the outer loop is not always possible for GPU

due to the memory allocation requirements of the kernel. In those cases, the outer loop is

serialized and only the inner loop is parallelized as a GPU kernel.

Target-specific Optimizations

While machine-independent optimizations are applied when building the IR, machine-specific

optimizations are applied during the code generation phase. For example, the memory access

patterns that enable better bandwidth utilization may not always be the same on the CPU and

the GPU. Consider a data-parallel operation on each row of a matrix stored in a row-major

format. In the case of the CPU where each core has its own private cache, assigning each row

to each core naturally exploits spatial cache locality and prevents false sharing. However, the

GPU prefers the opposite access pattern where each thread accesses each column, because

the memory controller can coalesce requests from adjacent threads into a single transfer.

Therefore the CUDA generator emits code that uses a transposed matrix with inverted indices

for efficient GPU execution. In addition, to exploit SIMD units for data-parallel operations on

the CPU, we currently generate source code that can be vectorized by the target compiler. It

would also be straightforward to generate explicit SIMD instructions (e.g., SSE, AVX).

16.2 Executing Embedded Parallel DSLs

DSLs targeting heterogeneous parallelism require a runtime to manage application execution.

The work done at this phase of execution includes generating a large amount of "plumbing"

138

16.2. Executing Embedded Parallel DSLs

code focused on managing parallel execution on a specific parallel architecture. The imple-

mentation can be difficult to get right, both in terms of correctness and efficiency, but is

common across DSLs. We therefore built a heterogeneous parallel runtime to provide these

shared services for all Delite DSLs.

16.2.1 Scheduling the Delite Execution Graph (DEG)

The Delite Runtime combines the machine-agnostic DEG generated by the framework with the

specification of the current machine (e.g., number of CPUs, number of GPUs, etc.) to sched-

ule the application across the available hardware resources. The Delite Runtime schedules

the application before beginning execution using the static knowledge provided in the DEG.

Since branch directions are still unknown, the Delite Runtime generates a partial schedule

for every straight-line path in the application and resolves how to execute those schedules

during execution. The scheduling algorithm attempts to minimize communication among

kernels by scheduling dependent kernels on the same hardware resource and makes device

decisions based on kernel and hardware availability. Sequential kernels are scheduled on a

single resource while data-parallel kernels selected for CPU execution are split by the sched-

uler to execute on multiple hardware resources simultaneously. Since the best strategy for

parallelizing and synchronizing these data-parallel chunks is not known until after scheduling,

the runtime is responsible for generating the decomposition. In the case of a Reduce kernel,

for example, the framework’s code generator emits the reduction function and the runtime

generates a tree-reduction implementation that is specialized to the number of processors

selected to perform the reduction.

16.2.2 Generating Execution Plans for Each Hardware Resource

Dynamically dispatching kernels into a thread pool can have very high overheads. However,

the knowledge provided by the DEG and static schedule of the application is sufficient to

generate and compile an executable (execution plan) for each hardware resource. Each ex-

ecutable launches the kernels and performs the necessary synchronization for its resource

according to the partial schedules. The combination of generating custom executables for the

chosen schedule and delaying the injection of synchronization code until after scheduling

allows for multiple optimizations in the compiled schedule that minimize runtime overhead.

For example, data that does not escape a given resource does not require any synchroniza-

tion. This synchronization code is customized to the underlying memory model between the

communicating resources. When shared memory is available, the implementation simply

passes the necessary pointers, and when the resources reside in separate address spaces it per-

forms the necessary data transfers. Minimizing runtime overhead by eliminating unnecessary

synchronization and removing the central kernel dispatch bottleneck enables applications to

scale with much less work per kernel.

139

Chapter 16. Delite

Delite Compiler Framework

Machine
specifications

Delite Runtime

. .

// x : TrainingSet[Double]
// mu0, mu1 : Vector[Double]

val s igma = sum(0, m) { i =>
 i f (x . labels(i) == false){
 ((x(i) -mu0).t) ** (x(i) -mu0)
 }
 else {
 ((x(i) -mu1).t) ** (x(i) -mu1)
 }
}

. .

DEG
Generator

Liveness Analysis
Address Space Management

Scheduling

CPU 1
Execution

Plan

Generate Executable
for Each Target Hardware

OptiML application

Scala
Generator

CUDA
Generator

..

C++
Generator

Input Data

Target compilers
(scalac, g++, nvcc)

app.deg

x.scala

x.cpp

x.cu

. .

Optimized IR

Build IR

Executables

GPU 1
Execution

Plan

Linear Algebra
Simplification

Initial IR

Common Subexp
Elimination (CSE)

Ȅό ƛ ύ πƳǳл
x (i) -mu1

Further IR
Optimizations

Figure 16.2: Entire process of the Delite Compiler Framework and Runtime

16.2.3 Managing Execution on Heterogeneous Parallel Hardware

Executing on heterogeneous hardware introduces new and difficult challenges compared to

traditional uniprocessor or even multi-core systems. The introduction of multiple address

spaces requires expensive data transfers that should be minimized. The Delite Runtime

achieves this through detailed kernel dependency information provided by the DEG. The

graph specifies which inputs a kernel will only read and which it will mutate. This informa-

tion combined with the schedule allows the runtime to determine at any given time during

the execution if the version of an input data structure in a given address space is currently

nonexistent, valid, or old.

Managing the memory in each of these address spaces is also critical. The Delite Runtime

currently utilizes the JVM to perform memory management for all CPU kernels, but GPUs

have no such facilities. In addition, all memory used by a GPU kernel must be allocated prior

to launching the kernel. In order to deal with these issues, the Delite Runtime pre-allocates

all the data structures for a given GPU kernel by using the allocation information supplied

by the framework’s GPU code generator. The runtime also performs liveness analysis using

the schedule to determine the earliest point at which each kernel’s inputs and outputs are no

longer needed by the GPU. By default the GPU host thread attempts to run ahead as much as

possible, but when this creates memory pressure it uses the liveness information to wait until

enough data becomes dead, free it, and continue executing.

140

http://jashkenas.github.com/coffee-script/
http://www.ros.org/wiki/bigg_detector

http://www.azulsystems.com/blog/cliff/2011-04-04-fixing-the-inlining-problem
http://www.azulsystems.com/blog/cliff/2011-04-04-fixing-the-inlining-problem

http://dl.acm.org/citation.cfm?id=1777707.1777724
http://dl.acm.org/citation.cfm?id=1777707.1777724
http://dx.doi.org/10.1007/978-3-540-89330-1_15
http://dx.doi.org/10.1007/978-3-540-89330-1_15

http://library.epfl.ch/theses/?nr=4820
http://library.epfl.ch/theses/?nr=5007
http://library.epfl.ch/theses/?nr=5007
https://github.com/davidflanagan/javascript6_examples/blob/master/examples/21.06.koch.js
https://github.com/davidflanagan/javascript6_examples/blob/master/examples/21.06.koch.js
http://http://www.dartlang.org/
http://code.google.com/webtoolkit/

http://download.intel.com/research/platform/terascale/terascale_overview_paper.pdf
http://download.intel.com/research/platform/terascale/terascale_overview_paper.pdf
http://software.intel.com/en-us/articles/intel-array-building-blocks
http://software.intel.com/en-us/articles/intel-array-building-blocks

http://doi.acm.org/10.1145/1837513.1640143

http://scalagwt.github.com/
http://doi.acm.org/10.1145/1863523.1863533
http://www.mathworks.com/products/matlab/

http://doi.acm.org/10.1145/1640089.1640091
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW491.abs.html
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW491.abs.html
http://developer.nvidia.com/object/cuda.html
http://www.scala-lang.org
http://ilpubs.stanford.edu:8090/422/

http://library.keldysh.ru/preprint.asp?id=2012-5&lg=e

https://github.com/clojure/clojurescript/wiki
http://www.khronos.org/opencl/
http://www.informatik.uni-freiburg.de/~thiemann/papers/mlpe.ps.gz
http://www.informatik.uni-freiburg.de/~thiemann/papers/mlpe.ps.gz
http://etorreborre.github.com/specs2/
http://etorreborre.github.com/specs2/

http://dx.doi.org/10.1007/978-3-540-88643-3_7
http://spark-project.org/

	Introduction
	Embedded Compilers: A Hybrid Approach
	Lightweight Modular Staging
	Combining Staging and Extensible Compilers
	Deep Linguistic Reuse
	Abstraction Without Regret
	Language Virtualization
	Domain-Specific Languages (DSLs)
	Delite
	Contributions
	Terminology
	Outline

	Background
	Economics of Productivity, Performance and Safety
	Hardware Trends and Productivity Challenges
	Hitting the Power Wall
	Proliferation of Programming Models

	Domain-Specific Languages (DSLs)
	DSLs for Performance
	External DSLs
	Embedded DSLs

	Programming Language Trends and Performance Challenges
	The Abstraction Penalty
	The General Purpose Bottleneck
	Static or Dynamic Compilation
	Combinatorial Explosion
	Functional Programming Challenges
	Scala Challenges
	JVM Challenges

	Staging and Generative Programming
	Multi-Stage Programming With Explicit Annotations
	Partial Evaluation
	Generative Front-Ends and Extensible Compilers

	I Defining Embedded Programs
	Intro: Staging as Meta Programming
	Language Virtualization
	Defining Language Virtualization
	Virtualization and Reflection

	Achieving Virtualization

	Scala-Virtualized
	Everything is a Method Call
	Virtualizing Control Structures
	Virtualizing Method Calls
	Virtualizing Record Types
	Virtualizing Pattern Matching

	Putting Static Information to Work
	Virtualizing Static Type Information
	Virtualizing Static Source Information

	Staging: Deep Linguistic Reuse for Easier Program Generator Development
	State of the Art
	Program Generation with Strings
	Program Generation with Quasi-Quotes
	Syntactic Correctness through Deep Reuse of Syntax
	Scope Correctness through Deep Reuse of Scope
	Type Correctness through Deep Reuse of Types
	Value Correctness is an Open Problem

	Contributions
	Value Correctness through Deep Reuse of Evaluation Order
	Removing Syntactic Overhead
	Staging as a Library and Modular Definition of Object Languages
	Functions and Recursion
	Semi-Automatic BTA through Deep Reuse of Type Inference
	Generating and Loading Executable Code

	II Compiling Embedded Programs
	Intro: Not your Grandfather's Compiler
	Intermediate Representation: Trees
	Trees Instead of Strings
	Modularity: Adding IR Node Types

	Enabling Analysis and Transformation
	Modularity: Adding Traversal Passes
	Solving the ``Expression Problem''
	Generating Code
	Modularity: Adding Transformations
	Transformation by Iterated Staging

	Problem: Phase Ordering

	Intermediate Representation: Graphs
	Purely Functional Subset
	Modularity: Adding IR Node Types

	Simpler Analysis and More Flexible Transformations
	Common Subexpression Elimination/Global Value Numbering
	Pattern Rewrites
	Modularity: Adding new Optimizations
	Context- and Flow-Sensitive Transformations
	Graph Transformations
	Dead Code Elimination

	From Graphs Back to Trees
	Code Motion
	Tree-Like Traversals and Transformers

	Effects
	Simple Effect Domain
	Fine Grained Effects: Tracking Mutations per Allocation Site

	Advanced Optimizations
	Rewriting
	Context-Sensitive Rewriting
	Speculative Rewriting: Combining Analyses and Transformations
	Delayed Rewriting and Multi-Level IR

	Splitting and Combining Statements
	Effectful Statements
	Data Structures
	Representation Conversion

	Loop Fusion and Deforestation

	III Staging and Embedded Compilers at Work
	Intro: Abstraction Without Regret
	Common Compiler Optimizations
	Delite: An End-to-End System for Embedded Parallel DSLs
	Building a Simple DSL
	Code Generation
	The Delite Compiler Framework and Runtime

	Control Abstraction
	Leveraging Higher-Order Functions in the Generator
	Using Continuations in the Generator to Implement Backtracking
	Using Continuations in the Generator to Generate Async Code Patterns
	CPS and Staging
	CPS for Interruptible Traversals
	Defining the Ajax API
	CPS for Parallelism

	Guarantees by Construction

	Data Abstraction
	Static Data Structures
	Dynamic Data Structures with Partial Evaluation
	Generic Programming with Type Classes
	Unions and Inheritance
	Struct of Array and Other Data Format Conversions
	Loop Fusion and Deforestation
	Extending the Framework

	Case Studies
	OptiML Stream Example
	Downsampling in Bioinformatics

	OptiQL Struct Of Arrays Example
	Fast Fourier Transform Example
	Implementing Optimizations
	Running the Generated Code

	Regular Expression Matcher Example

	IV Validation and Evaluation
	Intro
	Delite
	Building Parallel DSLs Using Delite
	Building an Intermediate Representation (IR)
	Heterogeneous Target Code Generation

	Executing Embedded Parallel DSLs
	Scheduling the Delite Execution Graph (DEG)
	Generating Execution Plans for Each Hardware Resource
	Managing Execution on Heterogeneous Parallel Hardware

	Putting It All Together
	Delite DSLs
	OptiML
	OptiQL
	OptiMesh
	OptiGraph
	OptiCollections
	DSL Extensibility
	DSL Interoperability

	Performance Evaluation
	Discussion
	OptiML vs C++ Performance Measurements

	Other Projects
	StagedSAC
	Scala Integrated Query (SIQ)
	Jet: High Performance Big Data Processing
	JavaScript as an Embedded DSL
	Sharing Code between Client and Server
	Evaluation

	Related Work

