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et Philippe C. qui ont toujours été disponibles au cours de cette longue traversée. Du
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j’ai nommé Séb et Cilecé ! Merci Cilecé de m’avoir mis dans le bain du couplage fluide-
structure et de m’avoir convaincu de faire une thèse... J’ai aussi apprécié ta compagnie
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oublier de remercier plus spécialement ma maman qui a eu le courage de lire ma thèse et
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Résumé

L’Interaction Rotor-Stator, RSI, présent dans les pompes-turbines hydrauliques, donne
naissance à une excitation périodique de leurs composants mécaniques. Cette interaction
est provoquée par le passage des aubes de roue dans le sillage des aubes directrices,
en mode turbine, ou en amont des aubes directrices, en mode pompe. Par conséquent,
diverses parties structurelles de la machine, notamment les aubes directrices, sont soumises
à des cycles de fatigue significatifs.

Le comportement dynamique des aubes directrices est influencé par l’écoulement du
fluide. Les vibrations structurelles sont fortement affectées par les effets inertiels et dissi-
patifs apportés par le fluide, puisque la masse ajoutée et l’amortissement hydrodynamique
sont souvent du même ordre de grandeur que leur pendant structurel. De plus, deux aubes
directrices placées côte à côte s’influencent mutuellement par le biais du fluide environ-
nant. Leurs fréquences propres ainsi que l’amplitude de leurs vibrations à des fréquences
proches de la résonance peuvent, ainsi, être fortement modifiées.

Une mauvaise estimation du comportement dynamique des aubes directrices au stade
de la conception peut entrâıner des défaillances mécaniques prématurées, pendant la phase
de mise en service de la machine, dues au RSI. Jusqu’à présent, les chercheurs ont étudié
le phénomène du RSI, sans pour autant être parvenu à en établir une description analy-
tique. Le concept de masse ajoutée a également fait l’objet de recherche, en particulier
au niveau des aubes de roue. Cependant, relativement peu d’études sont dédiées au
problème de l’amortissement hydrodynamique dans les machines hydrauliques. En outre,
à la connaissance de l’auteur, la recherche ne s’est pas encore axée sur l’étude de l’influence
des vibrations des aubes directrices sur les fluctuations de pression ni sur leur influence
mutuelle.

Par conséquent, ce travail expérimental traite de la réponse des aubes directrices à
l’excitation induite par le RSI. Les expériences sont menées à l’aide d’un modèle réduit
de pompe-turbine ayant une faible vitesse spécifique et présentant zb = 9 aubes de roue
et zo = 20 aubes directrices. La machine est stabilisée à son meilleur point de fonction-
nement, à un angle d’ouverture de 18◦. La grille d’aubes directrices consiste en un système
mécanique complexe présentant de nombreux degrés de liberté. Le but de l’étude est de
montrer que cette grille d’aube peut être vue comme un système mécanique du second
ordre.

La réponse impulsionnelle des aubes directrices immergées est obtenue en utilisant
une bougie d’allumage affleurant le flasque inférieur du canal inter-aubes directrices. Les
expériences sont menées avec succès en eau calme, modèle à l’arrêt, ainsi qu’en fonction-
nement.



En maintenant les conditions du meilleur point de fonctionnement constantes, la
fréquence de rotation de la roue est ensuite balayée et les aubes directrices sont ainsi ex-
citées par le RSI sur une large gamme de fréquence. La combinaison de zb aubes de roue
et de zo aubes directrices fait apparâıtre de nombreux modes de pression diamétraux tour-
nants. Les aubes directrices répondent jusqu’à la 5ème harmonique du RSI. Néanmoins,
elles restent principalement excitées aux fréquences correspondant à la fondamentale du
RSI f = zbn et à la seconde harmonique f = 2zbn.

L’amplitude des fluctuations du déplacement et de l’angle de torsion des aubes direc-
trices varie fortement en fonction de la fréquence de rotation de la roue. La fréquence du
1er mode propre de flexion et du 1er mode propre de torsion est contenue respectivement
dans la gamme de fréquence de la 2nd harmonique et la 5ème harmonique du RSI. Les
fluctuations de pression enregistrées proche des directrices vibrantes varient beaucoup et
peuvent baisser jusqu’à 50% à la résonance. En conséquence, un transfert d’énergie entre
la structure et l’écoulement a certainement lieu.

L’influence d’une aube directrice adjacente sur les vibrations d’une autre varie de
manière significative selon qu’elle est placée du côté de l’intrados ou de l’extrados de cette
dernière. Concernant les vibrations des aubes directrices en flexion, la force hydrody-
namique exercée sur une aube directrice induite par les vibrations de l’aube directrice
voisine positionnée du côté de son intrados est 10 fois supérieure à la force induite par
l’aube directrice voisine positionnée du côté de son extrados. Quant aux vibrations en
torsion, le couple hydrodynamique exercé sur une aube directrice induit par les vibrations
de l’aube directrice voisine positionnée du côté de son intrados est 5 fois supérieur au
couple induit par l’aube directrice voisine positionnée du côté de son extrados.

Le coefficient d’amortissement hydrodynamique et la masse ajoutée apportés par les
vibrations des aubes directrices adjacentes sont identifiés et permettent de construire une
matrice d’influence. Ces termes dépendent fortement de trois paramètres : l’amplitude
relative de leurs vibrations, la vitesse absolue de l’écoulement et le déphasage entre leurs
signaux de vibrations.

En considérant la périodicité de la grille d’aubes directrices, la matrice d’influence est
construite de manière à prédire le comportement vibratoire de la grille d’aubes complète.
Quatre et six modes propres différents sont respectivement traités pour le cas de la flexion
et de la torsion. La partie réelle des valeurs propres de tous les modes de flexion reste
positive sur toute la plage de fréquence de rotation de la roue, alors que celle relative
au mode de torsion le plus facilement excité par le RSI devient négative au-dessus d’une
certaine fréquence de rotation. Ainsi, ce mode est instable et on peut s’attendre à des
dégats aux niveaux des directrices. Deux solutions sont finalement proposées pour limiter
le risque de casse.

Mots-clés: Couplage fluide-structure, machines hydrauliques, pompe-turbine, Rotor-
Stator Interaction, Grille d’aubes directrices



Abstract

Hydraulic pump-turbines are subject to a high periodic excitation due to the Rotor-Stator
Interaction, RSI. Basically, the RSI is caused by the impeller blade passage in the wake of
the guide vanes in generating mode, or upstream from the guide vanes in pumping mode.
Therefore, the structural parts, notably the guide vanes, suffer from high cycle fatigue
strength.

The dynamic behavior of the guide vanes is influenced by the surrounding flow. Ad-
ditional inertia and dissipation strongly affect the structural vibrations; the added mass
and the hydrodynamic damping being of the same order of magnitude as the structural
mass and damping. In addition, should the entire guide vane cascade be considered, the
neighboring guide vanes are influencing each other through the fluid medium. Their eigen-
frequencies as well as the vibration amplitudes close to resonance may, thus, be strongly
modified.

A poor assessment of their dynamic behavior during the design stage may lead to
premature failures due to RSI in the early stage of commissioning. So far, researchers have
studied the RSI phenomenon, but have not established an analytical description. They
have also investigated the added mass, especially the one acting on vibrating runner
blades. However, few studies are related to the hydrodynamic damping in hydraulic
machines. Moreover, to the author’s knowledge, researchers have not yet considered
neither the influence of the guide vane vibrations on the pressure fluctuations arising
from the RSI nor the coupling between the guide vanes.

Therefore, the present experimental work considers the response of the guide vanes in
a pump-turbine reduced scale model to the RSI excitation. The pump-turbine is operated
at the Best Efficiency operating Point, BEP, in turbine mode. The guide vane cascade
consists of a complex mechanical system featuring many degrees of freedom. The study
aims to show that the cascade may be viewed as a 2nd order mechanical system.

The impulse response of immersed guide vanes is enabled with the use of a spark plug
flush mounted in the bottom ring in a guide vane channel. This type of measurements is
successfully undertaken in water, model at rest, and model in operation.

Keeping the operating conditions of the BEP constant, the impeller rotation frequency
is then swept and the guide vanes are therefore excited by the RSI over a wide frequency
range. The combination of zb impeller blades with zo guide vanes makes apparent many
different rotating diametrical pressure modes. The guide vanes respond up to the RSI 5th

harmonic, but are mostly excited at the frequencies corresponding to the RSI fundamental
f = zbn and the 2nd harmonic f = 2zbn.



The amplitude of the fluctuating bending displacement and torsion angle of the guide
vanes is strongly varying across the impeller frequency range. The ranges of the 1st and
the 5th RSI harmonic frequency contain the frequency of the 1st bending eigenmode and
the 1st torsion eigenmode, respectively. The pressure fluctuations close to the vibrating
guide vanes are strongly varying and may even decrease by 50% at resonance. Therefore,
a transfer of energy between the vibrating structure and the flow pressure should occur.

The influence of an adjacent guide vane on the vibrations of a guide vane is found
to vary significantly between its position on the pressure side and suction side of the
latter. Regarding the guide vane bending vibrations, the hydrodynamic force acting on a
guide vane induced by its neighboring guide vane on the pressure side is up to 10 times
higher than the force induced by its suction side neighbor. As for the guide vane torsion
vibrations, the hydrodynamic torque acting on a guide vane induced by its neighboring
guide vane on the pressure side is up to 5 times higher than the force induced by its
suction side neighbor.

The hydrodynamic damping coefficient and the added mass corresponding to the vi-
brations of the adjacent guide vanes are successfully identified and an influence matrix is
built. These two terms are shown to depend strongly on the relative amplitude of their
vibrations, the absolute flow velocity and the phase shift between their vibration signals.

Taking into account the periodicity condition, the influence matrix is built in order
to predict the dynamics of the entire guide vane cascade. Four and six different eigen-
modes are investigated for the case of bending and torsion motions, respectively. The
eigenvalue real part of each bending eigenmode remains positive on the investigated im-
peller frequency range, that is the mechanical system is stable. On the other hand, the
eigenvalue real part of the torsion eigenmode which is the most likely to be excited by the
RSI becomes negative. This means that the mechanical system is unstable and premature
failures of the guide vanes are expected. Finally, two different ways to prevent damage
to the guide vanes excited at the RSI 5th harmonic frequency are proposed. On the one
hand, it is shown that by increasing the structural damping constant by a factor 2, the
mechanical system becomes stable. On the other hand, the modification of the shape of
the cascade eigenmode is achieved by mistuning the cascade, such that its shape does
no longer match the shape of the RSI pressure mode. This way, even if the mechanical
system remains unstable, the risk of damaging the guide vanes is reduced.

Keywords: Fluid-structure coupling, Hydraulic Machines, Pump-Turbines, Rotor-
Stator Interaction, Guide vane cascade, wicket gate cascade.
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Notations

Latin

A Surface area [m2]

Bo Guide vane channel height [m]

B̂ Transfer function of the Butterworth filters [-]

Bp Complex eigenvector [m] or [rad]

C Absolute flow velocity [m · s-1]

[Cs] Structural bending damping constant matrix [kg · s-1][
Cf
]

Hydrodynamic bending damping constant matrix [kg · s-1]

D Diameter [m]

Dh Hydraulic diameter [m]

[Ds] Structural torsional damping constant matrix [kg · m2 · s-1][
Df
]

Hydrodynamic torsional damping constant matrix [kg · m2 · s-1]

E Pump-turbine specific energy [J · kg-1]

E Young modulus [GPa]

Fi Total bending force acting on the ith guide vane [N]

F f
i,j Fluctuating bending force due to Oj vibrations acting on Oi [N]

F ′i Fluctuating bending force due to change of incidence angle of Oi [N]

FRSI
i Fluctuating bending force due to the RSI acting on Oi [N]

G Shear modulus [GPa]

[G] 2nd matrix in the Newton’s law using the Duncan transformation diverse

[H] 1st matrix in the Newton’s law using the Duncan transformation diverse

Iz Moment of inertia in relation to the z-axis [m4]

Ip Polar moment of inertia [m4]

[I] Identity matrix [-]

[Is] Structural mass matrix [kg][
If
]

Added mass matrix [kg]

[Js] Structural inertia matrix [kg · m2][
Jf
]

Added inertia matrix [kg · m2]

[Ks] Structural bending stiffness matrix [kg · s-2]
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vi NOTATIONS

L Guide vane chord length [m]

[Ls] Structural torsional stiffness matrix [kg · m2 · s-2]

L̂18n
ps Transfer function between pressure (pres. side) and the force due to the RSI [m2]

L̂18n
ss Transfer function between pressure (suct. side) and the force due to the RSI [m2]

N Impeller rotation frequency [rpm]

Oi Denomination of the ith guide vane

P Pump-turbine power [W]

Q Pump-turbine volumetric discharge [m3 · s-1]

R Radius [m]

R3 Radius at a position between stay- and guide vanes [m]

Ti Total torsion torque acting on the ith guide vane [N · m]

T fi,j Fluctuating torsion torque due to Oj vibrations acting on Oi [N · m]

T ′i Fluctuating torsion torque due to change of incidence angle of Oi [N · m]

TRSIi Fluctuating torsion torque due to the RSI acting on Oi [N · m]

T Measuring period [s]

U Peripheral impeller velocity [m · s-1]

V Fluid control volume [m3]

W Relative flow velocity [m · s-1]

W Narrowest width of the guide vane channel [m]

Wh Hamming window function [-]

Z Elevation [m]

c0 Speed of sound [m · s-1]

e Unit vector [-]

f Frequency [Hz]

f0 Eigenfrequency [Hz]

g Gravitational acceleration [m · s-2]

gi Denomination of the ith pressure sensor in the rotor-stator gap

gHX Fluid specific energy at the section X [J · kg-1]

gHrX÷Y Fluid specific energy losses between the sections X and Y [J · kg-1]

h (t) Sinusoidal exponentially decreasing fitting curve [-]

h0 Y-intercept of the function h (t) [-]

k− 1st nodal diameter number [-]

k+ 2nd nodal diameter number [-]

l length [m]

m,m′ Integers for RSI harmonics [-]

n Impeller rotation frequency [Hz]

n− 1st diametrical pressure mode rotating frequency [Hz]
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NOTATIONS vii

n+ 2nd diametrical pressure mode rotating frequency [Hz]

n Unit vector normal to a surface [-]

p Gauge pressure [Pa]

pa Absolute pressure [Pa]

patm Atmospheric pressure [Pa]

pr Rotating pressure field [Pa]

pr,m m
′th component of the rotating pressure field [Pa]

ps Stationary pressure field [Pa]

ps,m mth component of the stationary pressure field [Pa]

si Denomination of the ith pressure sensor in the guide vane channel

t Time [s]

x Cartesian coordinate [m]

y Guide vane bending displacement [m]

zb Impeller blade number [-]

zo Guide vane number [-]

= Imaginary part of a complex number

< Real part of a complex number

Greek

α Guide vane torsion rotation [rad]

αO Guide vane opening angle [°]
βF Beam extremity rotation due to a bending force F [rad]

βT Beam extremity rotation due to a shear torque T [rad]

[δC] Matrix of the relative residuals assessing the Caughey condition [-]

εX Relative difference of the X quantity [-]

ε′dp Relative error on the differential pressure measurements [-]

ε′Q Relative error on the flow discharge measurements [-]

εFi Absolute uncertainty for bending force measurements [-]

εTi Absolute uncertainty for torsion torque measurements [-]

εpsi Absolute uncertainty measurement of the pressure sensor si [-]

φ phase [rad]

∆φk Phase shift relative to the RSI pressure mode k [rad]

η Total efficiency [-]

ηe Energetic efficiency [-]

ηh Volumetric efficiency [-]

ηrm Mechanical efficiency expressing the losses by disc friction [-]

ηm Mechanical efficiency expressing the losses in the bearings [-]
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viii NOTATIONS

λ Damping coefficient [s-1]

µ Mass per unit length [kg · m-1]

ν Kinematik viscosity [m2 · s-1]

θ Angular position in the stator [°]
θr Angular position in the rotor [°]
ρ Fluid density [kg · m-3]

ω Pulsation [rad · s-1]

[∆] Matrix containing the eigenvalues of the matrix [Ho]−1 [Go] diverse

Φ Flow velocity potential [m2 · s-1]

Φf Flow velocity potential due to guide vane vibrations [m2 · s-1]

ΦRSI Flow velocity potential due to the RSI excitation [m2 · s-1]

Γ2
X,Y Coherence function between two signals X and Y [-]

Λ Influence coefficient of the guide vane vibrations [-]

Λy Influence coefficient of the guide vane bending vibrations [-]

Λα Influence coefficient of the guide vane torsion vibrations [-]

Θ Green function [-]

∂Ω Fluid control volume boundary [m2]
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NOTATIONS ix

Subscripts

1 Impeller high pressure side

1̄ Impeller low pressure side

I Pump-turbine installation high pressure side

Ī Pump-turbine installation low pressure side

A Section of the water intake in the upper reservoir

Ā Section of water admission in the lower reservoir

B Upper reservoir free surface

B̄ Lower reservoir free surface

S Relative to a source of sound

e External streamline

ext External quantity

int Internal quantity

m Meridional flow velocity component

max Maximum quantity

ref Reference quantity

t Transferred quantity

tot Total quantity

u Peripheral flow velocity component

y Relative to bending displacement

α Relative to torsion rotation

Superscripts

S Quantity relative to the structure

R−R Obtained using the Rayleigh-Ritz method

exp Quantity experimentally obtained

f Quantity relative to the fluid

ˆ Spectral quantity

˜ RMS value

¯ Stationary quantity
′ Fluctuating quantity

˙ First time derivative

¨ Second time derivative
◦ Indicates a matrix which is linked to a decoupled system of equations
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x NOTATIONS

Dimensionless Numbers

Re Reynolds number Re =
Cmax ·Dh

ν
[-]

cp Pressure factor cp =
p

ρ · E
[-]

cy Displacement factor cy =
y

δ
[-]

cα Rotation factor cα =
α · L

2

δ
[-]

ϕ1̄e Discharge coefficient ϕ1̄e =
Q

π2

4
D3

1̄e
n

[-]

ψ1̄e Energy coefficient ψ1̄e =
E

π2

4
D2

1̄e
n2

[-]

κ Reduced frequency κ =
2πf L

2

Cref
[-]

ν Specific speed ν =
ϕ0.5

1̄e

ψ0.75
1̄e

[-]

Acronyms

BEP Best Efficiency operating Point

DOF Degree Of Freedom

EPFL Ecole Polytechnique Fédérale de Lausanne

FFT Fast Fourier Transform

FPS Frame Per Second

LMH Laboratoire de Machines Hydrauliques

OECD Organization for Economic Co-operation and Development

RSI Rotor-Stator Interaction
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Chapter 1

Problem overview

Hydraulic pump-turbines are subject to high periodic loading due to the Rotor-Stator
Interaction, RSI. Basically, the RSI is caused by the impeller blade passage in the wake of
the guide vanes in generating mode, or upstream from the guide vanes in pumping mode.
Therefore, the structural parts, notably the guide vanes, suffer from high cycle fatigue
strength.

The dynamic behavior of the guide vanes is influenced by the surrounding flow. Ad-
ditional inertia and dissipation strongly affect the structural vibrations; the added mass
and the hydrodynamic damping being of the same order of magnitude as the structural
mass and damping. In addition, should the entire guide vane cascade be considered, the
neighboring guide vanes are influencing each other through the fluid medium. Their eigen-
frequencies as well as the vibration amplitudes close to resonance may, thus, be strongly
modified.

A poor assessment of the guide vane dynamics during the design stage may lead to
premature failures due to RSI in the early stage of commissioning. So far, researchers have
studied the RSI phenomenon, but have not established an analytical description. They
have also investigated the added mass, especially the one acting on vibrating runner
blades. But, few studies are related to the hydrodynamic damping in hydraulic machines.
Moreover, to the author’s knowledge, researchers have not yet considered neither the
influence of the guide vane vibrations on the pressure fluctuations arising from the RSI
nor the coupling between the guide vanes.

Therefore, the present experimental work considers the response of the guide vanes in
a pump-turbine reduced scale model to the RSI excitation. The pump-turbine is operated
at the Best Efficiency operating Point, BEP, in turbine mode. The guide vane cascade
consists of a complex mechanical system featuring many degrees of freedom. The study
aims to show that the cascade may be viewed as a 2nd order mechanical system. The
fluid-structure coupling parameters are then identified and are shown to depend strongly
on the flow velocity and the vibration phase and amplitude. From the measurements
on two isolated guide vanes, the response of the entire guide vane cascade to the RSI
excitation may be predicted. Finally, solutions are proposed to prevent damage to the
guide vanes.
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4 I. Introduction

1.1 Thesis document organization

The thesis document is organized in four main parts:

Part I is the introduction of the present text. Firstly, the hydraulic pump-turbines
are placed in the general context of hydropower to progressively introduce the RSI phe-
nomenon. Then, the fluid-structure coupling in pump-turbine guide vane cascade is the-
oretically presented.

Part II describes the investigation methodology. The pump-turbine concerned in the
study is detailed. Then, the test facilities are described, as well as the measuring appara-
tus.

Part III concerns the dynamics of the guide vane cascade. The study of the RSI
pressure modes is firstly given. Then, the testing conditions for the investigation of the
fluid-structure coupling in the cascade are presented. Next, the guide vanes vibrations
as well as their influence on the pressure fluctuations are studied prior to the identifica-
tion of the hydrodynamic parameters. The analysis of the eigenmodes problem is then
investigated and, finally, the vibrations of the complete guide vanes cascade are analyzed.

Finally, a general discussion concludes the present text. Perspectives for the future
are also provided.
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Chapter 2

Hydraulic pump-turbines

2.1 Hydropower generation

The world electrical production is currently essentially based on fossil fuels; 67.1% of
electricity generated in 2009 being shared between natural gas, oil and coal [43]. The
distribution of electrical production is shown by energy source in Figure 2.1 for the years
1973 and 2009. The extraction and the excessive use of fossil fuels causes numerous
damages. For instance, the greenhouse gas emission is said to cause the global warming,
whose main consequence might be the rise of sea level which is forecasted to have severe
environmental and social impacts [86].

13.4%

40.6%

5.1%21.4%

Coal/peat Hydro

Oil

Natural gas

OthersNuclear

16.2%
3.3%

3.3%

38.3%

24.7%

12.1%

21.0%
0.6%

1973 2009

Figure 2.1: Distribution of electrical production by energy source for the years 1973 and
2009 [43].

Alternative sources of electricity generation are diverse. Nuclear fission and fusion con-
stitute the alternative non-renewable sources. Solar, biomass, wind, hydropower, ocean
thermal gradients, ocean tides and ocean waves are the available renewable sources. With
the necessary current tendency to reduce the industrial impacts on the environment, these
alternative sources, renewable and non-renewable, are likely to be more widely used in
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6 I. Introduction

the future. In 2009, they are already sharing 8% more of the world electrical production
than in 1973, while the electrical energy generation has rised from 6115 TWh to 20055
TWh [43].

With the growth of the world population and the global warming consequences, the
water [1] and energy supply will constitute great challenges in the 21st century [76]. More-
over, water and energy present a mutual necessity [39] in the sense that the access to water
needs energy and water is needed for energy production. In energy production, water is
indirectly employed for cooling, wasting, extracting and conducting heat. But, water may
also be directly used for electrical energy production, in so-called hydropower installations.

Nowadays, hydropower is being utilized in over 160 countries. The net installed ca-
pacity has reached 980 GW at the end of 2009. Hydropower largely contributes to the
global energy mix by providing 17% of the world’s estimated installed electrical capacity
and 72% of the estimated renewable energy-sourced capacity at the end 2010 [44]. The
International Hydropower Association, IHA, estimates that hydropower plants commis-
sioning will grow at an average rate of 3% per year [44], whilst the electricity consumption
is forecasted to grow at an average rate of 2.3% until 2035 [81].

The worldwide installed hydropower capacity and hydropower plants still under con-
struction at beginning-2008 are shown by region in Figure 2.2 [87]. Europe has the
greatest number of installed capacity, followed by Eastern Asia and Middle East which
notably have the greatest number of hydropower plants under construction. In emerging

Afric
a
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 America

South America

Weste
rn Asia

 and Oceania

Easte
rn Asia

 and Middle East
Europe0

50

100
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350

Installed capacity
Under constructionP[GW]

Figure 2.2: Worldwide installed and under construction hydropower capacity at
beginning-2008 [87].

economies, like in Asia and Latin America, hydropower is currently strongly developing.
As an example, the Chinese government has set a 300 GW hydropower capacity target for
2020, and China currently has a sufficient number of projects under construction to meet
the target. Pumped-storage plants are notably required among the many hydroelectric
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Chapter 2. Hydraulic pump-turbines 7

projects in China, in order to meet the future peak electricity demand [84]. In low income
countries, as in Africa, the ”translating of [recognized substantial hydropower potential]
into commissioned projects still encompasses many difficulties” [41]; 90% of Africa’s cur-
rent hydropower plants being operational in only eight countries. In developing countries,
energy supply security is currently one of the main issues to guarantee the growth of the
economy [85]. A correct transfer of technology is the key component to meet the economic
target by ensuring a technical independence. Finally, OECD economies in North America
and Europe focus on the rehabilitation of existing plants [55], [15], [82], the development
of new technologies [59], [65] and the construction of pumped-storage power plants, such
as Germany’s Goldisthal pumped-storage scheme [14].

Switzerland has about 2% of the world installed hydropower capacity. Figure 2.3
shows the distribution of the electrical production in 2010. 56.5 % of electrical power is

5.4%

38.1%

32.3%

24.2%

Storage hydropower plants Run-of-river hydropower plants

Nuclear power plants Other power plants

Figure 2.3: Electrical production distribution in 2010 in Switzerland [62].

produced by run-of-river and storage hydropower plants, whereas production by nuclear
power plants represents 38.1 %; the remaining 5.4 % being produced by conventional
thermic turbines, wind, solar, etc.

2.2 Pumped-storage power plants

Electrical energy must be efficiently stored and rapidly made available. On the one hand,
the demand is daily and seasonally varying and, technically, the production may not
always be instantaneously adapted to this demand. Nuclear and thermal powerplants,
for instance, generate stable electrical power and a great inertia is technically imposed in
the way of operating [19]. On the other hand, the intermittent sources of energy, such as
wind or solar must be balanced [83]. Therefore, storage sources fulfill the requirements
to finally stabilize the electrical grid, [37] and [75].

The types of electrical storage are listed in Table 2.1. The diverse storage sources are
plotted in Figure 2.4 representing the instantaneously available power P versus the stored
energy E.

Among the available storage sources, the pumped-storage powerplants present a large
storage capacity, an efficiency between 70% and 80% and low cost; the installation re-
quiring nevertheless specifically adapted geographical sites. This technology takes also
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8 I. Introduction

Table 2.1: Comparison of storage technologies [75].

Technology Advantages Drawbacks Power source Energy source

Hydraulic pumped-storage Large storage capacity Specific locations Pertinent solution

Low costs Construction delay

Compressed air Large storage capacity Specific locations Pertinent solution

Low costs Need natural gas

Redox flow battery Large storage capacity Small energy density Conceivable solution Pertinent solution

NaS battery Large energy and power density High cost Pertinent solution Pertinent solution

Operating security

Metal-Air battery Large energy density Hard recharge - Pertinent solution

Li-ion battery Large energy and power density High cost Pertinent solution Non-mature solution

Good efficiency Special recharge cycle

Ni-Cd battery Large energy and power density Pertinent solution Conceivable solution

Efficiency

Pb-Acid battery Low cost Life span Pertinent solution Pertinent solution

Flywheel High power Small energy density Pertinent solution Pertinent solution

Magnetic storage SMES High power Small energy density Pertinent solution

High cost

Super capacitance Life span Small energy density Pertinent solution Non-mature solution

Good efficiency

Portable
battery

Power
battery

Energy
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Compressed
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Figure 2.4: Utilization range of storage sources [75]: instantaneously available power P
versus the stored energy E.

advantage of over 100 years old experience. Moreover, pumped-storage powerplants in-
ject money into the economy, since electricity tends to be generated when its price is high
and the water, to be pumped when the price is low.

In 2009, more than 127 GW of pumped-storage power plants were operating through-
out the world [66]. A growth rate of 60% over the next four years was expected.
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Thanks to its geographical location and its topology, Switzerland plays a key role in the
European electrical network regulation. In Table 2.2, the exports and imports of electrical
energy in 2010 and during winter 2009/2010 are given [62]. The balance between exports
and imports is close to zero which illustrates the important position of Switzerland in
the European electrical energy business. The revenues from electricity exports are 5064
millions Swiss francs (7.65 cts./kWh) and the expense for electricity imports are 3736
millions Swiss francs (5.60 cts./kWh).

Table 2.2: Electrical energy exports and imports of Switzerland in 2010 and 2009 [62].

Year 2010 [x 109 kWh]
Exports 66.3
Imports 66.8
Imports/exports ratio 1.01
Winter 2009 / 2010 [x 109 kWh]
Exports 27.3
Imports 32.4
Imports/exports ratio 1.19

The daily electricity production in Switzerland is illustrated in Figure 2.5 for four dates
in 2010, whereas the daily electrical consumption is shown in Figure 2.6. The production is
classified by types of power plants. Because of technological requirements, all powerplants
except hydropower plants are generating a constant power all day long. Only hydropower
may ensure the balance between production and consumption. In summer, when the
electrical consumption is low, the extra energy is used to feed the storage basin; an
important part being also exported at an economically profitable price.

After the Fukushima Daiichi nuclear power plant accident in Japan due to the earth-
quake and tsunami in March 2011, Switzerland decided, less than two months later, to
abandon plans to build new nuclear reactors; the operation of the last one being sus-
pended in 2034. This decision will lead to a turnaround of the electrical supply strategy
by switching from a centralized to a decentralized and irregular electrical production [63].
The pumped-storage power plants precisely meet the requirements to ensure a safe and
high quality supply of electricity. At least 3 huge pumped-storage plants are already
planned to be commissioned up to 2015 increasing the hydropower capacity by 2 GW, [5]
and [6].

2.3 Pump-turbine technology

The first pumped storage plants started commercial operation in Europe at the end of
the 1920’s [64]. These hydraulic stations consisted of units with a separate centrifugal
pump and a separate turbine both coupled to their motor-generator. The pump of these
tandem pump-turbines may be single- or double-suction, single- or multi-stage designs.
The turbines are preferably Francis-type, but in case of very high head sites, Pelton
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Figure 2.5: Daily electrical production of four days in 2010 in Switzerland [61].
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Figure 2.6: Daily electrical consumption of four days in 2010 in Switzerland [61].
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Chapter 2. Hydraulic pump-turbines 11

turbines may be used [53]. Both the pump and the turbine are designed to be operated
at the most favorable operating conditions, making them still competitive [6].

Owing to the high costs of separate machines and the improved pump design, reversible
pump-turbines are often used. One impeller/runner, rotating in one direction for pumping
and in the other direction for generating electricity, is coupled to the motor-generator.
The machine may be Francis (radial), Deriaz (diagonal) or bulb (axial) type, whether it
is used for application in high, medium or low head ranges, respectively [53]. Reversible
pump-turbines may be single- or multi-stage designs [70].

However, due to the advance in research leading to a better design in pump mode and
because of the presence of adjustable guide vanes enabling more flexible operating con-
ditions, single-stage reversible Francis-type pump-turbines are nowadays mainly chosen
[54]; the power regulation being, therefore, more efficient. Moreover, the pumped-storage
plants currently tend to be located where a very high head is available in order to save
the capital costs per unit of stored energy and to reduce the size of the reservoirs and the
powerhouse [78]. Moreover, a pumped-storage plant does not produce energy, but rather
“transfers the energy from times of low demand to peak demand periods”[60]. High rate
of utilization induces frequent start and stop which reduces the reliability of the utilities
in comparison with conventional generating hydraulic machines.

In addition, pumped-storage is currently a dominant ancillary services provider. More
than a simple peak power supplier, a pumped-storage plant offers indeed services “to
improve system reliability, such as frequency control, voltage regulation, and reserve
operation”[79]. In the 21st century, to keep the pumped-storage competitive against
other generating sources, focus must be put, in particular, on quicker mode changes, the
reduction of capital costs, the improvement of part load efficiency and the extensive use
of the adjustable speed technology.

2.3.1 Pump-turbine components

The Figure 2.7 shows the main components of a reversible Francis-type pump-turbine. In
turbine mode, the spiral casing distributes the water flow on the whole circumference of
the impeller. The stay vanes are used for structural stiffening as well as flow distribution.
The guide vanes regulate the flow discharge. The impeller converts the hydraulic power
into mechanical power. The draft tube recovers the residual kinetic energy at the turbine
outlet. In pumping mode, the water flow reaches the impeller after passing through the
draft tube. The stay- and guide vanes as well as the spiral casing play the role of the
pump diffuser. This time, the impeller converts mechanical power into hydraulic power.

2.3.2 Energy balance

Technically, a reversible Francis-type pump-turbine is a reaction hydraulic machine [18]
which is coupled to an electrical machine connected to the grid. It has the ability to
convert hydraulic power into mechanical power or the inverse, depending on whether it is
used in turbine mode to generate electrical power, or in pumping mode to store surplus
electrical power. The global installation of a typical pumped-storage hydropower plant is
shown in Figure 2.8. The pump-turbine is placed between an upper and a lower reservoir.
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Figure 2.7: Pump-turbine main components.

The specific energy E of the pump-turbine is defined as:

E = gHI − gHĪ

= gHA − gHĀ ±
(
gHrĪ÷Ā − gHrA÷I

)
,

(2.1)

where the − sign is used in generating mode and the + sign in pumping mode; gHX being
the specific energy available at the fluid section X and gHrX÷Y , the specific energy losses
from the fluid section X to Y .

The hydraulic power Ph corresponds to the power available between the sections I and
Ī and is obtained as follows:

Ph = ρQE , (2.2)

ρ and Q being the water density and flow discharge at the pump-turbine section I, re-
spectively.

The Figure 2.9 shows the mechanical power balance in the impeller in both generating
and pumping modes. In the same way as the hydraulic power, the transformed power Pt

is defined as:

Pt = ρQtEt , (2.3)

where Qt and Et are the transferred discharge and specific energy, respectively. The
difference between Pt and Ph is the volumetric and friction losses between the sections I
and 1 and the respective low pressure sections Ī and 1̄.

By definition, Q > 0 in generating mode and Q < 0 in pumping mode. According to
eq. 2.3, the power sign follows the same sign convention. The power P supplied to or by
the electrical machine, depending on whether one is generating or pumping, is given by:

P = η · Pt = (ηe · ηh · ηrm · ηm) · Pt , (2.4)
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Figure 2.8: Global installation of a typical pumped-storage hydropower plant.

η being the total efficiency, ηe, the energetic efficiency, ηh, the volumetric efficiency, ηrm,
the mechanical efficiency in the impeller expressing the losses by disc friction and ηm, the
mechanical efficiency in the shaft expressing the power losses in the bearings.

Finally, the velocity triangles at the low and high pressure sides of the machine in
generating mode, on the external stream line e, are drawn in Figure 2.10. The Euler
equation expresses the transferred specific energy Et as a function of the absolute flow
velocity C and the peripheral impeller velocity U at the low and high pressure sides of
the machine, as follows:

Et = C1e ·U1e −C1̄e ·U1̄e (2.5)

2.4 Rotor-Stator Interaction phenomenon

A pump-turbine operating under steady-state conditions is nevertheless subject to un-
steady phenomena resulting from the interaction of the rotating with the stationary parts
of the machine, the so-called Rotor-Stator Interaction, RSI. Although studies are dedi-
cated to the prediction of this strong excitation, incidents may still occur. “The highest
vibration levels in large pump turbines are, in general, originated in the RSI”[69]. For
instance, Fisher et al. [33] and Coutu et al. [24] report relevant case studies of cracks ap-
pearing in hydraulic runners. The guide vanes may also be damaged. The complications
due to the machine shutdown and guide vane replacements are highlighted by Ducheney
[31], Henscheid [40] and Finnegan et al. [32].

In the present study, the RSI is the source of the guide vane vibrations. By addressing
the physical principles of this phenomenon, one is interested to determine the excitation
function of the mechanical system constituted by the guide vane cascade.
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Figure 2.9: Mechanical power balance in the impeller in both generating and pumping
modes.

2.4.1 Physical principles

Basically, two blade rows, one moving with respect to the other, are mutually interacting.
The resulting phenomena may arise from different sources which are discussed below.

First, the potential flow interaction causes fluid pressure and flow velocity fluctuations
both downstream and upstream from the rotor-stator clearance. In the following lines, we
restrict our approach to the turbine mode, the corresponding approach in radial pump and
axial compressor being discussed by Arndt et al. [2] and Kaji and Okazaki [46]. On the one
hand, in a guide vane channel, the flow is perturbed by the impeller blade which actually
obstructs the channel outlet periodically. Therefore, the associated flow velocity and fluid
pressure fluctuations mainly contain the blade passing frequency f = zbn, where zb refers
to the blade number and n to the impeller rotation frequency. Harmonics f = m′zbn,
where m′ is an integer, are nonetheless also present because of the imperfectly sinusoidal
fluctuations. Ruchonnet et al. [73] take into account this potential flow interaction in the
hydroacoustic model of a pump-turbine. On the other hand, the flow downstream from
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Figure 2.10: Velocity triangle at the low and high pressure sides of the machine.

the guide vanes is spatially perturbed due to the periodical flow velocity defects in the
potential wake of the guide vanes [47]. The potential effects depend strongly on rotor-
stator gap thickness. In axial gas turbines, Dring et al. [29] state that “the potential flow
over a row of airfoils can cause unsteadiness in both the upstream and downstream rows
if the axial gap between them is less than approximately the airfoil chord”.

Second, the fluid viscosity reinforces the flow velocity defect in the guide vane wake [48].
The resulting potential and viscous wakes interaction causes the relative flow velocity W1

at the impeller blade leading edge to fluctuate in time due to the periodic spatial variations
of the absolute flow velocity C1, the impeller peripheral velocity U1 staying constant, see
Figure 2.11. The frequency at which W1 fluctuates is f = mzon, m being an integer and
zo, the guide vanes number. The shape of the guide vanes wake, the opening angle and the
rotor-stator gap thickness are responsible for the number of harmonics m present in the
fluctuations. The fluctuations of W1, both in terms of magnitude and direction, induce
oscillations of the pressure field around the impeller blades. As a result, the impeller
blades are undergoing a fluctuating lift force. It is rather difficult to distinguish between
potential wake and viscous wake effects, but Kemp and Sears [48] note that, “the unsteady
forces arising from passage through viscous wakes are of about the same size as those due
to [potential wakes]”. Arndt et al. [3] adds that, if the rotor-stator clearance is small,
both wake and potential mechanisms initiate RSI.

Third, the possible vortex shedding, whose physics and generation process on an iso-
lated hydrofoil is well described by Ausoni [4] and Zobeiri [91], at the guide vane trailing
edge may play a role in the RSI as well. If flow conditions and guide vane geometry are
favorable to vortex shedding, the impeller inflow velocity W1 may be influenced.

Finally, vibrating blades may have an effect on RSI. Collard and Cizmas [21] numer-
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Figure 2.11: Influence of guide vane wake flow defect on the impeller inlet velocity triangle.

ically study the effects of vibrating rotor blades in an axial gas turbine. The efficiency
is found to decrease by approximately 1.8% compared to the turbine with rigid blades.
Giesing [35] proposes a general method for determining the unsteady incompressible flow
around one or more vibrating bodies placed in small amplitude gust fields. Kahl [45]
studied the effects of mistuning and coupling in a turbomachinery bladings. Beretta [11]
proves that the effect of rotor blade vibrations may be linearly superposed to rotor blades
gust response in an axial gas turbomachine. Rottmeier [72] highlight the dependence of
the gust phase on the pressure field around rotor blades.

The physics resulting from all these root phenomena is very complex. Research is
incidentally devoted to simplified numerical methods to take into account the RSI [20].
Moreover, these root phenomena produce other effects, such as guide vane vibrations [58],
impeller vibrations [23], shaft vibrations [38] and spinning pressure modes in the stator.
In pump-turbines, Blanc-Coquand and Lavigne [13] note that the fluctuating pressure
field due to the RSI is much more complex in the rotor-stator clearance than away from
this zone. Many rotating pressure modes are actually present close to the rotor-stator
clearance, but only the most energetic pressure modes remain in the spiral casing.

To the author’s knowledge, in the case of radial hydraulic machines, the RSI physics
has never been analytically approached. Tanaka [77], Franke et al. [34] and Dubas [30]
address the problem with elementary fluid flow principles and construct the RSI pressure
mode shapes based on requirements to satisfy consistency and the fluid physics. The
pressure consists of a modulation of the stator and rotor pressure fields which are firstly
decomposed in Fourier series. This approach makes apparent the RSI spinning modes,
but apparently fails to analytically predict the predominance of one spinning mode on
another; the predominance being only qualitatively appreciated based on the fact that a
mode with few diametrical nodes is more energetic. Nevertheless, numerous RSI studies
are based on this simplified approach, [92] and [33]. In addition to the complexity of the
root phenomena, the lack of data, [16] and [25], may be the reason for the absence of
analytical approach to explain RSI physics. In the following lines, this approach to the
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RSI is given.

The stationary ps (θ) and rotating pr (θr) pressure fields are decomposed in Fourier
series as follows:

ps (θ) =
∞∑
m=0

ps,mcos (mzoθ + φm) (2.6)

pr (θr) =
∞∑

m′=0

pr,m′cos (m′zbθr + φm′) (2.7)

m and m′ being integers, θ, the angular position in the stator, θr, the angular position
in the rotor, ps,m, the amplitude of the mth component of the stationary pressure Fourier
series and pr,m′ , the amplitude of the m

′th component of the rotating pressure Fourier
series.

The resulting pressure field p (θ) may be seen as a modulation which may be expressed
as the product of the two pressure fields:

p (θ) = ps (θ) · pr (θr) (2.8)

=

(
∞∑
m=0

ps,mcos (mzoθ + φm)

)
·

(
∞∑

m′=0

pr,m′cos (m′zbθr + φm′)

)

=
∞∑
m=0

∞∑
m′=0

ps,m · pr,m′ · cos (mzoθ + φm) · cos (m′zbθr + φm′)

Knowing that the angular position in the rotor θr may be expressed as θr = θ+n · t, n
being the impeller frequency, and by using a well-known trigonometric identity, the total
pressure field may be written as follows:

p (θ, t) =
∞∑
m=0

∞∑
m′=0

ps,m · pr,m′
2

· (cos (m′zbnt− (m′zb +mzo) · θ + φm + φm′) (2.9)

+ cos (m′zbnt− (m′zb −mzo) · θ − φm + φm′))

Finally, by introducing the numbers of diametrical nodes k+ = m′zb + mzo and k− =
m′zb−mzo, the total pressure field, consisting of the excitation function of the guide vane
cascade mechanical system, is given as:

p (θ, t) =
∞∑
m=0

∞∑
m′=0

ps,m · pr,m′
2

· (cos (m′zbnt− k+ · θ + φm + φm′) (2.10)

+ cos (m′zbnt− k− · θ − φm + φm′)) (2.11)

The combination of given integers m and m′ makes apparent two rotating pressure
modes featuring k+ and k− diametrical nodes. As mentioned above, this approach fails
to predict which of these two modes predominates and, therefore, does not agree with
the experiments in terms of relative amplitude. Nevertheless, it successfully predicts the
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number of diametrical nodes that would feature a pressure mode oscillating at a given
frequency.

Another interesting approach to RSI has been developed by Blake [12], which succeeds
in predicting the mode that predominates for a combination of given integers m and m′.
Since it is based on the acoustic fluid theory, some assumptions are not in accordance
with the potential flow theory. Even though the results may be controversial, the author
has adapted the theory to the case of a radial hydraulic pump-turbine. The approach
may be found in Appendix E.
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Chapter 3

Fluid-structure coupling in the guide
vane cascade

3.1 General definitions

Whenever a solid body is vibrating in a flow, one may observe many physical effects due
to the coupling between the structural and the fluid motions. Naudascher [57] proposes an
interesting general approach to flow-induced vibrations. He defines three basic elements:

• Body oscillators : either a rigid structure or structural part, that is elastically sup-
ported so that it can perform linear or angular movements, or a structure or struc-
tural part that is elastic in itself so that it can perform flexural movements.

• Fluid oscillators : a passive mass of fluid that can undergo oscillations usually gov-
erned either by fluid compressibility or by gravity.

• Sources of excitation: one may distinguish three types of sources:

– Extraneously induced excitation: caused by fluctuations in flow velocities or
pressures that are independent of any flow instability originating from the
structure considered and independent of structural movements.

– Instability-induced excitation: brought by a flow instability.

– Movement-induced excitation: due to fluctuating forces that arise from move-
ments of the vibrating body or fluid oscillator, the vibrations of the latter being
thus self-excited.

According to this approach, in the case of the guide vane cascade, the zo guide vanes
consist of zo rigid body oscillators. The flow compressibility and the gravity effect are
neglected, so that there is no fluid oscillator. The guide vanes are extraneously excited
by the Rotor-Stator Interaction. Moreover, the vibrations of the guide vanes consist of a
movement-induced excitation.
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3.2 Newton’s law applied to the guide vanes

The Newton’s law governing the bending displacement yi of the guide vane Oi is expressed
as follows [36]:

IS ÿi (t) + CS ẏi (t) +KSyi (t) = Fi (t) (3.1)

where IS denotes the bending structural inertia, CS the bending structural damping, KS

the bending structural stiffness and Fi the external force acting on the guide vane Oi.

The torsion angle αi of the guide vane Oi is governed by the expression:

JSα̈i (t) +DSα̇i (t) + LSαi (t) = Ti (t) (3.2)

where JS denotes the torsion structural inertia, DS the torsion structural damping, LS

the torsion structural stiffness and Ti the external torque acting on the guide vane Oi.

3.3 Hydrodynamic loading

The external bending force Fi acting on the guide vane Oi may be written as the sum of
a mean hydrodynamic loading F̄i, a fluctuating contribution F ′i linearly dependent of the
fluctuating angle of incidence αi, for small displacement, a fluctuating contribution FRSI

i

from the Rotor-Stator Interaction and fluctuating contributions F f
i,j from the vibrations

of the guide vane Oj, with 1 ≤ j ≤ zo:

Fi (t) = F̄i + F ′i (t) + FRSI
i (t) +

zo∑
j

F f
i,j (t) (3.3)

The fluctuating force contribution F ′i linearly dependent of the angle of incidence is
zero when the flow velocity is zero.

The lift force Fi results from the pressure field and from wall shear stresses on the
guide vane Oi surface as follows [8]:

Fi (t) =

∫
Ai

− (p(t) [I] · n) · ei,2dAi +

∫
Ai

(τ(t) · n) · ei,2dAi , (3.4)

p (t) = pa (t) − patm being the gauge pressure obtained by subtracting the atmospheric
pressure patm from the absolute pressure pa, Ai the guide vane Oi surface, τ the shear
stress tensor, [I] the identity matrix, n the vector normal to the guide vane surface and
ei,2 the vector perpendicular to the chord profile, see Figure 3.1.

For high Reynolds number, the viscosity effects may be neglected. Moreover, by
ignoring any turbulence effect that might occur, one obtains:

Fi (t) ≈
∫
Ai

− (p(t) [I] · n) · ei,2dAi (3.5)
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By discretizing the guide vane surface in n area segments Ai,k

Fi (t) ≈
n∑
k=1

ai,k · p (xi,k, t) (3.6)

where ai,k = ni,k · ei,2 · Ai,k.
Assuming a potential flow, the unsteady Bernoulli equation [74] between a position

x = xi,k in the stator and the spiral casing inlet I, see Figure 2.8, where a steady flow is
assumed, is written as:

pa (xi,k, t) + ρgZ (xi,k) + ρ
∂Φ (xi,k, t)

∂t
+

1

2
ρ|∇Φ (xi,k, t) |2 = ρ · gHI + Cste (3.7)

pa (xi,k, t) being the absolute pressure, Z (xi,k), the elevation at the position xi,k, gHI , the
specific energy at the section I and Φ (xi,k, t), the velocity potential.

Taking into account the eqs. 2.1 and 3.7 and neglecting the losses in the spiral casing
and those from the low pressure side of the impeller to the downstream reservoir, one may
define the dimensionless pressure factor cp as follows:

cp =
p (xi,k, t)

ρ · E

=
pa (xi,k, t)− patm

ρ · E

= 1− 1

E

(
g (Z (xi,k)− ZB̄) +

∂Φ (xi,k, t)

∂t
+

1

2
|∇Φ (xi,k, t) |2

)
(3.8)

p (xi,k, t) being the gauge pressure.

Decomposing the pressure in a mean and fluctuating parts p = p̄ + p′ and the flow
potential Φ = Φ̄ + Φ′ and assuming small perturbations, the pressure factor may be
expressed in a linearized form:

cp = 1− 1

E
[g (Z (xi,k)− ZB̄) +

∂Φ′ (xi,k, t)

∂t
+

1

2
|∇Φ̄ (xi,k) |2

+ ∇Φ̄ (xi,k, t) · ∇Φ′ (xi,k, t)] (3.9)

The superposition principle applicable to the theory of potential flow allows us to
write:

Φ′ = ΦRSI + Φf (3.10)

where ΦRSI is the flow velocity potential perturbed field due to RSI and Φf , the perturbed
field due to the vibrations of the guide vanes.

The pressure factor for the case with vibrating guide vanes placed in the cascade may
be written as:

cp = c̄p + cRSIp + cfp

= 1− 1

E
[g (Z (xi,k)− ZB̄) +

1

2
|∇Φ̄ (xi,k) |2

+
∂ΦRSI (xi,k, t)

∂t
+∇Φ̄ (xi,k) · ∇ΦRSI (xi,k, t)

+
∂Φf (xi,k, t)

∂t
+∇Φ̄ (xi,k) · ∇Φf (xi,k, t)] (3.11)
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For the case without moving guide vanes, eq. 3.11 yields:

c̄p + cRSIp =
p̄+ pRSI (xi,k, t)

ρ · E

= 1− 1

E
[g (Z (xi,k)− ZB̄) +

1

2
|∇Φ̄ (xi,k) |2

+
∂ΦRSI (xi,k, t)

∂t
+∇Φ̄ (xi,k) · ∇ΦRSI (xi,k, t)] (3.12)

Replacing eq. 3.12 in eq. 3.11, one obtains:

cp = c̄p + cRSIp − 1

E

(
∂Φf (xi,k, t)

∂t
+∇Φ̄ (xi,k) · ∇Φf (xi,k, t)

)
= c̄p + cRSIp + cfp (3.13)

The mass conservation principle for potential flow is expressed as:

4Φ = 0 , in V (3.14)

where V is the fluid control volume.

The superposition principle Φ = Φ̄ + ΦRSI + Φf and the linearity of the Laplace
operator yields:

4Φf = 0 (3.15)

For small displacements, this potential has to satisfy the following Neumann condition
on the boundary made by the guide vane surface Aj, see Figure 3.1:

∂Φf (xj,k, t)

∂n
= ẏj (t) ej,2 · nj,k + (α̇j (t) ej,3 × xj,k) · nj,k , for xj,k ∈ Aj (3.16)

Aj+3

j+zo

j+z  -1o

j+z  -2o

V

ej,1

ej,2

nj

Aj+2

Aj+1
Aj

A

A

A

Figure 3.1: Fluid domain V and moving boundaries Aj.
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As shown in eq. C.16 in Appendix C, the potential at any position xi,k in the fluid
volume V may be expressed as a function of the boundary condition:

Φf (xi,k, t) =
zo∑
j

Λj (xi,k)
∂Φf (xj,k, t)

∂n

=
zo∑
j

Λy
j (xi,k) · ẏj (t) +

zo∑
j

Λα
j (xi,k) · α̇j (t) (3.17)

Replacing eq. 3.17 in eq. 3.13, one obtains:

cp (xi,k, t) = c̄p + cRSIp

− 1

E

zo∑
j

(Λy
j (xi,k) · ÿj (t) + Λα

j (xi,k) · α̈j (t)

+ ∇Φ̄ (xi,k, t) ·
(
∇Λy

j (xi,k) · ẏj (t) +∇Λα
j (xi,k) · α̇j (t)

)
) (3.18)

From eqs. 3.3, 3.6 and 3.18, the force acting on the guide vane Oi may be expressed
as:

Fi (t) = F̄i + FRSI
i (t)

− Kf,α
i · αi (t)

−
zo∑
j

(
Ifi,j · ÿj (t) + If,αi,j · α̈j (t)

)
−

zo∑
j

(
Cf
i,j · ẏj (t) + Cf,α

i,j · α̇j (t)
)

(3.19)

Kf,α
i being the fluid torsion stiffness acting on the guide vane Oi; I

f,α
i,j , the added mass

on the guide vane Oi due to the torsion motion of the guide vane Oj; I
f
i,j, the added

mass on the guide vane Oi due to the bending motion of the guide vane Oj; C
f,α
i,j , the

hydrodynamic damping constant on the guide vane Oi due to the torsion motion of the
guide vane Oj and Cf

i,j, the hydrodynamic damping constant on the guide vane Oi due to
the bending motion of the guide vane Oj.

For the torque, the same procedure may be followed and the hydrodynamic torque is
expressed as:

Ti (t) = T̄i + TRSI (t)

− Lf,αi · αi (t)

−
zo∑
j

(
Jfi,j · ÿj (t) + Jf,αi,j · α̈j (t)

)
−

zo∑
j

(
Df
i,j · ẏj (t) +Df,α

i,j · α̇j (t)
)

(3.20)

where Lf,αi is the fluid torsion stiffness acting on the guide vane Oi; J
f,α
i,j the added mass

on the guide vane Oi due to the torsion motion of the guide vane Oj; J
f
i,j the added
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mass on the guide vane Oi due to the bending motion of the guide vane Oj; D
f,α
i,j the

hydrodynamic damping constant on the guide vane Oi due to the torsion motion of the
guide vane Oj; D

f
i,j the hydrodynamic damping constant on the guide vane Oi due to the

bending motion of the guide vane Oj.

Using eqs. 3.1, 3.2, 3.19 and 3.20 together, the dynamics of the guide vane cascade is
governed by the following set of equations:

[I] ÿ + [C] ẏ + [K] y = F (3.21)

with y = (y1 ... yzo α1 ... αzo)
T , F =

(
F̄1 + FRSI

1 ... F̄zo + FRSI
zo T̄1 + TRSI1 ... T̄zo + TRSIzo

)T
,

the matrix [I], [C] and [K] being defined as follows:

[I] =



IS1 + If1,1 If1,2 . . . If1,zo If,α1,1 If,α1,2 . . . If,α1,zo

If2,1 IS2 + If2,2 . . . If2,zo If,α2,1 If,α2,2 . . . If,α2,zo
...

...
. . .

...
...

...
. . .

...

Ifzo,1 Ifzo,2 . . . ISzo + Ifzo,zo If,αzo,1 If,αzo,2 . . . If,αzo,zo
Jf1,1 Jf1,2 . . . Jf1,zo JS1 + Jf,α1,1 Jf,α1,2 . . . Jf,α1,zo

Jf2,1 Jf2,2 . . . J2,zo Jf,α2,1 JS2 + Jf,α2,2 Jf,α2,zo
...

...
. . .

...
...

...
. . .

...

Jfzo,1 Jfzo,2 . . . Jfzo,zo Jf,αzo,1 Jf,αzo,2 . . . JSzo + Jf,αzo,zo


(3.22)

[C] =



CS
1 + Cf

1,1 Cf
1,2 . . . Cf

1,zo Cf,α
1,1 Cf,α

1,2 . . . Cf,α
1,zo

Cf
2,1 CS

2 + Cf
2,2 . . . Cf

2,zo Cf,α
2,1 Cf,α

2,2 . . . Cf,α
2,zo

...
...

. . .
...

...
...

. . .
...

Cf
zo,1 Cf

zo,2 . . . CS
zo + Cf

zo,zo Cf,α
zo,1 Cf,α

zo,2 . . . Cf,α
zo,zo

Df
1,1 Df

1,2 . . . Df
1,zo DS

1 +Df,α
1,1 Df,α

1,2 . . . Df,α
1,zo

Df
2,1 Df

2,2 . . . Df
2,zo Df,α

2,1 DS
2 +Df,α

2,2 Df,α
2,zo

...
...

. . .
...

...
...

. . .
...

Df
zo,1 Df

zo,2 . . . Df
zo,zo Df,α

zo,1 Df,α
zo,2 . . . DS

zo +Df,α
zo,zo


(3.23)

[K] =



KS
1 0 . . . 0 Kf,α

1 . . . . . . 0

0 KS
2 . . . 0 0 Kf,α

2 . . . 0
...

...
. . .

...
...

...
. . .

...
0 . . . . . . KS

zo 0 . . . . . . Kf,α
zo

0 . . . . . . 0 LS1 + Lf,α1 . . . . . . 0

0 0 . . . 0 0 LS2 + Lf,α2 . . . 0
...

...
. . .

...
...

...
. . .

...
0 . . . . . . 0 0 . . . . . . LSzo + Lfzo


(3.24)
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Münch et al. [56] found that a single hydrofoil immersed in a flow and exhibiting
torsion motion may be seen as a 2nd order mechanical system. The hydrodynamic loading
is modeled as a combination of inertia, damping and stiffness effects. In eq. 3.21, these
terms are modeled by the diagonal terms of the matrices [I], [C] and [K].

The experimental investigation in the present document is devoted to the identification
of the non-diagonal terms of the matrices. Therefore, it aims to show that the guide vane
cascade behaves as a 2nd order mechanical system. Moreover, as reported in [49], the
non-diagonal terms depend on the vibration phase, the distance between the vibrating
structure and the amplitude of the vibrations. In addition to these parameters, Basak
and Raman [7] found that the Reynolds number has also an influence on the coupling
between two neighboring vibrating structures. The present study intends to highlight
the dependency of these parameters in the case of the guide vane cascade. Faced to the
complexity of the entire cascade, the mechanical system is first reduced to a simple 2
DOF system by considering only two neighboring guide vanes. Then, we will show that
this approach allows to analyze the dynamics of the entire cascade. Finally, solutions are
proposed to prevent damage to the guide vanes.

3.4 Eigenmodes of the guide vanes

To conclude this introductive part, the theory of complex eigenmodes is concisely given.
The free motion of the guide vane cascade is obtained by imposing F = 0 in eq. 3.21:

[I] ÿ + [C] ẏ + [K] y = 0 (3.25)

The Caughey condition is necessary and sufficient for the mechanical system to feature
2zo real modes. This condition is expressed:

[C] [I]−1 [K] = [K] [I]−1 [C] (3.26)

If the Caughey condition is not satisfied, the modes are complex and the formulation
of the problem may be established using the Duncan transformation [28]. Therefore, the
eq. 3.25 may be written as follows:

[H] ż + [G] z = 0 (3.27)

with zT =
(
ẏT yT

)
and żT =

(
ÿT ẏT

)
. The matrices [H] and [G] are defined as:

[H] =

[
[0] [I]
[I] [C]

]
(3.28)

[G] =

[
− [I] [0]
[0] [K]

]
(3.29)

Applying the change of variables z = [B] q, the system of equations in eq. 3.27 may
be decoupled:

[B]T [H] [B] q̇ + [B]T [G] [B] q = [Ho] q̇ + [Go] q = 0 (3.30)
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where [B] is the change of base matrix and where [Ho] = [B]T [H] [B] and [Go] =
[B]T [G] [B] are diagonal matrices.

Multiplying by [Ho]−1, the eq. yields to:

q̇ + [Ho]−1 [Go] q = q̇ + [∆] q = 0 (3.31)

where [∆] is the diagonal matrix containing the eigenvalues of the matrix [Ho]−1 [Go].

The system regroups 4zo independent equations:

q̇p + δpq = 0 , p = 1, 2, ...4zo (3.32)

The integration of eq. 3.32 gives the following solutions:

qp = Qpe
δpt (3.33)

In the z-coordinates, the solution may be written as follows:

zp = BpQpe
−δpt (3.34)

The complex eigenvalues δp are found by solving the characteristic equation:

| [H]−1 [G]− δp [I] | =
∣∣∣∣[I]−1 [C] [I]−1 [K]
− [I] [0]

∣∣∣∣ = 0 (3.35)

where [I] is the 2zo × 2zo identity matrix.

The 4zo eigenvalues δp are complex conjugated:{
δp = λp + iω0,p

δ∗p = λp − iω0,p

(3.36)

where λp is the damping coefficient and ω0,p = 2πf0,p, the eigenpulsation.

The 4zo eigenvectors Bp associated to the eigenvalues may be obtained by solving:[
[H]−1 [G]− δp [I]

]
Bp = 0 (3.37)

and may be written as follows:{
Bp = {βlpeiφlp} , for l = 1, 2, ...(2 · 2 · zo)
B∗p = {βlpe−iφlp} , for l = 1, 2, ...(2 · 2 · zo)

(3.38)

Each eigenmode has not only different amplitude βlp but also different phase φlp. The
eigenshape must therefore be defined in the phase space. For dissipative motion with
complex modes, the solution finally yields:

y =
2·zo∑
p

βipYpe
−λptcos (ωpt− ψip − φp), for i = 2zo + 1, 2zo + 2...4zo (3.39)

where φp and Yp are defined by the initial conditions y (0) and ẏ (0).

Taking into account the periodicity condition of the guide vane cascade, the phase
shift between two adjacent components of the eigenvector is expressed as:

∆φp = φl+2,p − φl,p =
2π

zo
· p (3.40)
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Chapter 4

Investigated pump-turbine

4.1 Pump-turbine characteristics

The fluid-structure coupling in the guide vane cascade is investigated in the Hydrodyna
pump-turbine reduced scale model, see Figure 4.1. This low specific speed ν = 0.17,
[42], pump-turbine features the characteristics listed in Table 4.1. The relative efficiency
η/ηmax hill chart in turbine mode for opening angles αo ranging from 12◦ to 34◦ is given
in Figure 4.2. In Figure 4.3, two cross section views of the pump-turbine are shown, on
which the narrowest width of the guide vane channel W, the height of the distributor
channel Bo, and the two diameters D1e and D1̄e are defined.

Figure 4.1: Hydrodyna pump-turbine reduced scale model.
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30 II. Investigation methodology

Table 4.1: Characteristics of the Hydrodyna pump-turbine reduced scale model.

Characteristics Value
Specific speed ν 0.17
Number of impeller blades zb 9
Number of guide vanes zo 20
Outer impeller diameter D1e 527 mm
Impeller diameter at low pressure side D1̄e 250 mm
Height of the distributor channel Bo 36 mm
Narrowest width of guide vane channel W 25 mm

0.2 0.3 0.4 0.5 0.6
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4.5

5.0
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0.98

0.96

0.94

0.92

0.88

0.84

12
°

18
°

34
°

1e

1e

BEP

Figure 4.2: Relative efficiency η/ηmax hill chart in generating mode for opening angles αo
ranging from 12◦ to 34◦.

The Best Efficiency operating Point, BEP, is reached at 18◦ opening angle and corre-
sponds to a discharge coefficient ϕ1̄e = 0.36 and an energy coefficient ψ1̄e = 5.3. These
coefficients are defined in [42] as follows:

ϕ1̄e =
Q

π2

4
D3

1̄e
n

= 0.36 (4.1)

ψ1̄e =
E

π2

4
D2

1̄e
n2

= 5.3 (4.2)

Q being the discharge and E the specific energy of the machine.

The specific speed ν is expressed from these two coefficients as follows:

ν =
ϕ0.5

ψ0.75
= 0.17 (4.3)

The guide vanes O10 and O11, see Figure 4.3, are modified, their stems being more
flexible than those of the usual guide vanes. The material is similar (CuSn12) for all the
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W

Guide vane channel
narrowest width

D  =1e 250 mm

D  =1e 527 mm

B
 =

36
 m

m

O11

O10

o

Figure 4.3: Sections of the Hydrodyna pump-turbine reduced scale model.

guide vanes. The assembly of the two types of guide vanes in the pump-turbine model is
shown in Figure 4.4. The drawings of the modified guide vane featuring a flexible stem
and the usual guide vane having a stiff stem are given in Figures 4.5 and 4.6, respectively.
As may be observed, the span width of the modified guide vanes is 0.2 mm smaller.
Therefore, we avoid any contact of the modified guide vanes with the upper or lower
flange, and we ensure reliable measurement of bending and torsion motions. Moreover,
the modified guide vanes are loosened from their lever and held in place with stiff stainless
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steel clamp, see Figure 4.7.

Cross-section B-B
Modified guide vane

Cross-section A-A
Usual guide vane

Guide vane stem

Clamp

B

B

A

A

Impeller blade

Guide vane

Stay vane

Actuating ring

Stay vane

Guide vane

Figure 4.4: Assembly of the two types of guide vanes in the pump-turbine model.
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Cross section view A-A

Figure 4.5: Working drawing of the modified guide vane featuring a flexible stem.
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Figure 4.6: Working drawing of the usual guide vane having a stiff stem.
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Figure 4.7: Clamping system to hold the modified guide vane in place.
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Chapter 5

Test facility

The pump-turbine reduced scale model is placed in the EPFL PF2 test rig, see Figure
5.1, featuring a maximum specific energy E = 1.25 · 103 J·kg-1, a maximum discharge
Q = 1.4 m3·s-1; the rotation speed being limited to N = 2.5 · 103 rpm. The test rig
fulfills the IEC standards 60193 [42] and reaches 0.2 % accuracy for the shaft torque, the
discharge and the differential pressure measurements. The closed loop circuit is made up
of one circulating pump, driven by a 1000 kW power electric motor, a valve controlling
the head losses, an air vessel for controlling the Net Positive Suction Head, NPSH. The
pump-turbine reduced scale model is coupled to a 300 kW electrical generator.

Figure 5.1: EPFL PF2 test rig.

The specific energy E is measured using ROSEMOUNT 3051SCD4A differential pres-
sure sensors placed on the high and low pressure sides of the machine. They are calibrated
from 0.1 up to 0.6 MPa by increasing and, then, decreasing the pressure value. The cal-
ibration curve is given on the left hand side in Figure 5.2. The relative error ε′dp is less
than 1 ‰ and is defined as follows:

ε′dp =
pref − adp · Sdp

pref
(5.1)

EPFL - Laboratory for Hydraulic Machines



38 II. Investigation methodology

Sdp being the output voltage signal of the sensor and adp the calibration coefficient
obtained with a linear regression on the measured values.
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Figure 5.2: Calibration of the Rosemount differential pressure sensors for specific energy
E measurement (left) and calibration of the electromagnetic flow meter (right)

The flow discharge is measured using an electromagnetic flow meter. It is calibrated
up to 1 m3·s-1. The calibration curve is given on the right hand side in Figure 5.2. Again,
the relative error ε′Q is less than 1 ‰ and is defined as follows:

ε′Q =
Qref − aQ · SQ

Qref

(5.2)

SQ being the output voltage signal of the flow meter and aQ the calibration coefficient
obtained with a linear regression on the measured values.

Finally, the impeller rotation speed N is measured with the help of a tachometer:
the HEIDENHAIN ERA 180-1AK.1003-9000 counter provides 9000 impulses per impeller
revolution to the HEIDENHAIN IBV 600 electronic converters.
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Measuring apparatus

6.1 Impulse excitation system

6.1.1 In air

To proceed to modal analyzes in air, an instrumented hammer Dytran 5850B is used.
It has the role of giving an impulse excitation to the guide vanes. A wide range of
frequency is thereby excited. The force sensitivity may be chosen among 1, 10 and 100
mV·lbf-1(pound-force).

6.1.2 In water

To create an impulse excitation in water, a non-intrusive system is used, see [67]. A
BOSCH Super W7DC spark plug, see Figure 6.1 is flush mounted on the wall of the
bottom flange in a guide vane channel at the location SP, see Figure 6.2.

Figure 6.1: BOSCH Super W7DC spark plug used as a non-intrusive system to get the
impulse excitation in water

The discharge of 1.55 µF capacitor under a 4.3 kV voltage supply in a very short time
(∆t < 25 µm) generates a discharge energy of 14.3 J producing a rapid increase of the
water temperature. The explosive growth of a vapor bubble produces a strong pressure
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wave traveling towards the hydrofoil at the speed of sound. The hydrofoil is, thereby,
impulsively excited on a wide band frequency range. Several collapses and rebounds of
the bubble occur, but the first pressure wave is the strongest.

SP

Figure 6.2: Spark plug location SP

The visualization of the spark generated bubble is obtained with an ultra high speed
PHOTRON FASTCAM SA1.1 video system at 8’000 frames per second with a resolution
of 832x608 pixels. The growing and then collapsing vapor bubble can be observed in
Figure 6.3

0.000 0.125 0.375 0.625 0.875 1.125 1.375 1.625

Figure 6.3: Spark generated bubble visualization at zero flow velocity (time in [ms])

6.2 Structural vibration measurement

The two guide vanes having a flexible stem are equipped with two full Wheatstone bridges
of semi-conductor strain gages; one being sensitive to bending and the other to torsion
motion, see Figure 6.4. A 5 V input voltage supplies each Wheatstone bridge. The
properties of the strain gages Kyowa KSN-2-120-F3-11 are given in Table 6.1.

First, the guide vanes are statically calibrated by applying a reference bending force
ranging from -150 N to 150 N, in the direction perpendicular to a line inclined by 2.3◦

from the guide vane chord. Then, the guide vanes are statically calibrated by applying a
torsion torque ranging from -33 N·m to 33 N·m, on the guide vane stem. The direction
of positive force and torque is shown in Figure 6.5.
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F1F2 T1
T2

F4
F3

T3

T4

Bending strain gage 
Wheatstone bridge

Torsion strain gage 
Wheatstone bridge

Full Wheatstone bridges:

5V

-
-

+

+

F1 F2

F4 F3

S    Oi,y

Bending:

5V

-
-

+

+

T1 T2

T4 T3

S    Oi,α

Torsion:

Figure 6.4: Strain gage Wheatstone bridges for torsion and bending monitoring.

Table 6.1: Characteristics of Kyowa KSN-2-120-F3-11 semi-conductor strain gages.

Gage Gage Gage Max. allowable Max. allowable
length resistance factor strain current
2 mm 120 Ω ∼ 100 3000 µm 20 mA

2.3°

F
y

T
α

Figure 6.5: Direction of positive force and torque.

The force and torque calibration diagrams are drawn in Figure 6.6.

The calibration curves for the guide vanes O10 and O11 are given in Figures 6.7 and
6.8, for force and torque, respectively.

In these figures, the output voltage values of the two Wheatstone bridges, SOi,y and
SOi,α, corresponding to the reference forces Fref and torques Tref applied to the guide
vanes are plotted. The absolute measurement uncertainty, εFref and εTref are also given
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490 490

F

490 490

F F -F

a) b)

Figure 6.6: Force a) and Torque b) calibration diagrams (lever arm units: [mm]).
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Figure 6.7: Bending force calibration for the guide vane O10 (left) and O11 (right).

and are expressed as follows:

εFi = Fref − Fi (6.1)

εTi = Tref − Ti (6.2)

with Fi and Ti being computed as follows:(
Fi
Ti

)
=

(
aOi bOi
cOi dOi

)(
SOi,y
SOi,α

)
(6.3)

where the sensitivity coefficients aOi , bOi , cOi and dOi are obtained with a multivariate
linear regression.

On the one hand, the output voltage signals SO10,α and SO11,α are 283 and 117 times
less sensitive than SO10,y and SO11,y, respectively, when applying a bending force. On the
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Figure 6.8: Bending force calibration for the guide vane O10 (left) and O11 (right).

other hand, the output voltage signals SO10,y and SO11,y are 4 and 11 times less sensitive
than SO10,α and SO11,α, respectively, when applying a torsion torque.

Using the expression Fi = Ks · yi and Ti = Ls · αi, Ks and Ls being the structural
bending stiffness and torsion stiffness, respectively, the bending displacement and torsion
angle may be linked to the Wheatstone bridge output signals:(

yi
αi

)
=

(
aOi
Ks

bOi
Ks

cOi
Ls

dOi
Ls

)(
SOi,y
SOi,α

)
=

(
a∗Oi b∗Oi
c∗Oi d∗Oi

)(
SOi,y
SOi,α

)
(6.4)

where a∗Oi =
aOi
Ks , b∗Oi =

bOi
Ks , c∗Oi =

cOi
Ks and d∗Oi =

dOi
Ks are the sensitivity coefficients for

bending displacement and torsion angle. These coefficients may be used for displacement
and angle monitoring during dynamic tests, since the Wheatstone bridge output voltage
is proportional to the structural strain, which is proportional to the bending deflection
and torsion angle.

The characteristics of the guide vanes equipped with strain gages are given in Table
6.2.

6.3 Flow pressure measurement

To monitor the dynamic pressure in the pump-turbine stator, 22 miniature piezoresistive
pressure sensors are used. A unit consists of a deformable membrane-like part on which
a Wheatstone bridge made up of 4 semi-conducting thin layers placed in such a way that
the effect of pressure stretches or compresses them. The overall unit has a diameter of
5.55 mm. The units are flush mounted on the wall of the head cover at different locations,
see Figure 6.9. The pressure sensors gi are located in the rotor-stator gap at the angular
position corresponding to the guide vane Oi. The pressure sensors denoted by si are
positioned in the guide vane channel on the pressure side of the guide vane Oi.
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Table 6.2: Characteristics of the guide vanes O10 and O11 equipped with strain gages.

O10 O11

Static force range ±150 N ±150 N
Static force abs. uncertainty 0÷ 2.3 N 0÷ 1.4 N
Static torque range ±33 N·m ±33 N·m
Static torque abs. uncertainty 0÷ 1.5 N·m −1.1÷ 1.1 N·m
Sensitivity coefficient aOi -195.5 N·V−1 -178.7 N·V−1

Sensitivity coefficient bOi -41.7 N·V−1 -15.7 N·V−1

Sensitivity coefficient cOi 0.1 N·m·V−1 -0.1 N·m·V−1

Sensitivity coefficient dOi -21.9 N·m·V−1 -16.3 N·m·V−1

Static displ. range ±0.117 mm ±0.117 mm
Static displ. abs. uncertainty 0÷ 2 · 10−3 mm 0÷ 1 · 10−3 mm
Static angle range ±9.1 · 10−3 rad ±9.1 · 10−3 rad
Static angle abs. uncertainty 0÷ 0.4 · 10−3 rad −0.3 · 10−3 ÷ 0.3 · 10−3 rad
Sensitivity coefficient a∗Oi -1.53·10−4 mm·V−1 -1.4·10−4 mm·V−1

Sensitivity coefficient b∗Oi -0.33·10−4 mm·V−1 -0.12·10−4 mm·V−1

Sensitivity coefficient c∗Oi 0.28·10−4 rad·V−1 -0.28·10−4 rad·V−1

Sensitivity coefficient d∗Oi -60.66·10−4 rad·V−1 -45.15·10−4 rad·V−1

Bandwidth < 25 kHz < 25 kHz

The pressure sensors are statically calibrated up to 0.5 MPa absolute pressure. The
same conditioning electronics as for measurement is used, in order to include the condi-
tioning effects in the sensitivity coefficients. The sensors are placed in a vessel in which
the pressure, measured with a high precision reference sensor, may be modified. Ten
pressure values ranging from 0.1 to 0.5 MPa are tested by increasing and decreasing the
pressure. The calibration sensitivity coefficients are identified using a linear regression.
The absolute measurement uncertainty is defined as follows:

εpsi = pref − asi · Ssi (6.5)

where asi is the pressure sensor si sensitivity coefficient and Ssi is the output voltage.

The calibration curve of the pressure sensor s10 is given, as an example, in Figure 6.10.
The characteristics of the pressure sensors are given in Table 6.3.

Table 6.3: Characteristics of the pressure sensors.

Value
Range 0.5 MPa

Abs. uncertainty ±0.5 kPa
Sensitivity 70 kPa·V-1

Bandwidth < 25 kHz
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Figure 6.9: Locations of the flush mounted pressure sensors on the head cover.

6.4 Measuring chain

The measuring chain is shown in Figure 6.11. The discharge, the specific energy and
the impeller rotation speed are measured using an electromagnetic flowmeter, differential
pressure sensors and a tachometer, respectively. These measurands are simultaneously
recorded using HBM MGC+ digitizers with 24 bits A/D resolution at 2’400 Hz sampling
frequency over 20 s. The opening angle value is measured with an incremental coder and
is directly connected to the command PC. The pump-turbine operating points data are
transferred from the command to the storage PC. Then, the vibrations of the guide vane
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Figure 6.10: Pressure calibration curve of the sensor s10.

and pressure fluctuation signals are simultaneously recorded using NI PXI digitizers with
24 bits A/D resolution at 5 kHz sampling frequency over 15.36 s, keeping the operating
conditions of the pump-turbine constant.
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Figure 6.11: Measuring chain for the experiments.

EPFL - Laboratory for Hydraulic Machines





Part III

Guide vane cascade dynamics

EPFL - Laboratory for Hydraulic Machines





Chapter 7

Rotating pressure modes in the
stator due to the RSI

The interaction of zb = 9 impeller blades with zo = 20 guide vanes makes apparent an
infinite number of pressure rotating modes as analytically shown in Appendix E; the prop-
erties of the first m and m′ combinations being given in Table 7.1. For each combination,
the number of diametrical nodes, k− and k+ are firstly given. The frequency f of the
pressure fluctuations monitored in the stator is then indicated by the ratio f/n. The
rotating frequency ratio, n−/n = f

k−n
and n+/n = f

k+n
are also mentioned. The predom-

inance of one mode on the other for a given combination of m and m′ is evaluated as
well, based on the acoustic wave propagation approach: the value of the Bessel functions,

J−

(
m′zb2πn

co
R1

)
and J+

(
m′zb2πn

co
R1

)
, appearing in eq. E.17 quantifies the predominance.

Finally, the phase shift between two pressure signals monitored at two angular positions
distant by ∆θ = 2π

zo
, defined in eq. E.18, is also given.

In this table, the first five most predominant RSI modes are highlighted in gray.
Moreover, according to the acoustic wave propagation approach, the main mode features
k = −2 diametrical nodes, rotates at a frequency n− = 9n and, therefore, this mode,
at a fixed location in the stator, exhibits a frequency f = 18n. Franke et al. [34] and
Zobeiri [90] have notably studied this mode for the same configuration of impeller blade
and guide vane numbers.

These authors have also analyzed the mode oscillating at f = 9n. It is nonetheless
always confused with the mode featuring the same frequency but having k− = −11 dia-
metrical nodes. The acoustic wave propagation approach predicts the presence of k− = 9
diametrical nodes for this pressure mode oscillating at f = 9n, which actually reflects
the impeller blade passage. Nevertheless, this approach underestimates the effect of this
mode. Close to the rotor-stator gap, as already mentioned in Appendix E, the convective
effect predominates and, therefore, the impeller passage frequency f = 9n is more signif-
icant that the prediction based on the acoustic wave propagation approach. This mode
spins at the impeller rotation frequency n− = n.

Three other RSI pressure modes oscillating in the stator at f = 27n, f = 36n and
f = 45n are highlighted in Table 7.1. They feature k− = 7, k− = −4 and k− = 5 and
spin at n− = 3.86n, n− = −9n and n− = 9n, respectively. The shape of these five most
predominant RSI rotating pressure modes is shown in Figure 7.1.
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Table 7.1: RSI pressure mode in the stator corresponding to the first m and m′ combi-
nations, for a pump-turbine featuring zb = 9 impeller blades and zo = 20 guide vanes:
Numbers of diametrical nodes k− and k+; dimensionless frequency f/n of the modes
monitored in the stator; phase shift ∆φk between two pressure signals monitored at two
angular positions distant by ∆θ = 2π

zo
; dimensionless rotating frequencies, n−/n and n+/n;

Bessel function values, Jk− and Jk+, in the acoustic wave propagation approach.

m m′ k− k+ f/n n−/n n+/n Jk− Jk+ ∆φk
[-] [-] [-] [-] [-] [-] [-] [-] [-] [rad]
0 1 9 9 9 1.00 1.00 0.32 · 10−22 0.32 · 10−22 2.83
0 2 18 18 18 1.00 1.00 5.47 · 10−45 5.47 · 10−45 -0.63
0 3 27 27 27 1.00 1.00 1.08 · 10−66 1.08 · 10−66 2.20
0 4 36 36 36 1.00 1.00 2.27 · 10−88 2.27 · 10−88 -1.26
0 5 45 45 45 1.00 1.00 4.90 · 10−110 4.90 · 10−110 1.57
1 1 -11 29 9 -0.82 0.31 −4.99 · 10−29 3.01 · 10−86 2.83
1 2 -2 38 18 -9.00 0.47 3.44 · 10−4 1.62 · 10−105 -0.63
1 3 7 47 27 3.86 0.57 2.91 · 10−14 3.65 · 10−126 2.20
1 4 16 56 36 2.25 0.64 1.59 · 10−34 3.00 · 10−147 -1.26
1 5 25 65 45 1.80 0.69 1.72 · 10−55 1.56 · 10−168 1.57
2 1 -31 49 9 -0.29 0.18 −5.57 · 10−93 1.01 · 10−155 2.83
2 2 -22 58 18 -0.82 0.31 1.48 · 10−56 8.68 · 10−171 -0.63
2 3 -13 67 27 -2.08 0.40 −8.78 · 10−29 2.08 · 10−189 2.20
2 4 -4 76 36 -9 0.47 3.16 · 10−7 2.86 · 10−209 -1.26
2 5 5 85 45 9 0.53 1.01 · 10−8 1.00 · 10−229 1.57

These rotating pressure modes are experimentally highlighted in the following lines.
One focuses on the pressure fluctuations in the rotor-stator gap at the BEP, see Figure
4.2. The specific energy of the pump-turbine is set to E = 435 J·kg-1 and the impeller
rotation speed at 16.3 Hz. The 20 guide vanes feature a stiff stem in order to get rid of
any fluid-structure coupling.

The pressure fluctuations are monitored using the 20 pressure sensors located in the
rotor-stator gap, namely gi (1 < i < 20), during 2.56 s. The sampling frequency is 51.2
kHz.

In Figure 7.2, the phase average of the pressure fluctuations monitored by the two
adjacent pressure sensors, g10 and g11, is plotted. The phase average is obtained over 42
impeller revolutions representing 2.56 s.

The two pressure signals are phase shifted by 3.5 rad. The frequencies f = 9n and
f = 18n predominate in both signals.

The FFT is applied to signals which are 214 samples long. A hamming window is
used. The spectra are averaged over 8 records. In Figure 7.3, the waterfall diagram of
the amplitude spectra of the pressure factor fluctuations is plotted against the angular
position θ of the pressure sensors in the rotor-stator vaneless gap. Most of the spectral
density energy is concentrated at the frequencies f = mzbn revealing the RSI modes.
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Figure 7.1: Shape of the five most predominant RSI rotating pressure modes for the case
of zb = 9 impeller blades and zo = 20 guide vanes.

Nevertheless, the pressure fluctuations are predominant at the frequencies corresponding
to the fundamental f = 9n and the second harmonic f = 18n of the RSI.
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Figure 7.2: Phase average of the pressure factor fluctuations monitored by the sensors g10

and g11 over 42 impeller revolutions.
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Figure 7.3: Waterfall diagram of the amplitude spectra of the pressure factor fluctuations
against the angular position θ of the pressure sensors in the rotor-stator vaneless gap,
namely gi (1 < i < 20).

In Figure 7.4, the spectra amplitude value of pressure fluctuations |ĉ′p| at the frequen-
cies f = mzbn corresponding to the RSI fundamental and the harmonics are represented
against the angular position θ in the rotor-stator gap. The standard deviation indicating
the variation from the mean value is represented by intervals.
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The low standard deviations highlight the reliability of the measurements. The pres-
sure fluctuations amplitude at the RSI 2nd harmonic is slightly higher than the one at the
fundamental. At the 5th harmonic f = 45n, the pressure fluctuations amplitude is more
than 8 times inferior to the amplitude at the 2nd harmonic frequency f = 18n.
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Figure 7.4: Values of the amplitude spectra of the pressure factor fluctuations |ĉ′p| at the
frequencies f = mzbn corresponding to the RSI fundamental and the first four harmonics,
against the angular position θ in the rotor-stator gap.

In Figure 7.5, the pressure fluctuations are radially represented at 20 equidistant
angular positions in the rotor-stator gap during a period corresponding to 1

9
of the impeller

rotation period 1
n
. The frame rate is set to FPS = 10 · 9n. The pressure fluctuation

factor is normalized so as to get a qualitative visualization of the circumferential pressure
evolution.

The circumferential evolution of the pressure fluctuations is rather disorganized, but
one may nevertheless distinguish a pressure mode rotating at f = 9n in the opposite
direction to the impeller rotation.

In a similar way, in Figures 7.6 to 7.10, the pressure fluctuations at the RSI funda-
mental, 2nd, 3rd, 4th and 5th, harmonics are represented, respectively. The magnitude and
phase of each of these RSI modes are extracted from the Hamming windowed FFT and
the corresponding “filtered” time signals are reconstructed. The values are monitored at
20 equidistant angular positions in the rotor-stator gap during a period corresponding
to 1

2
, 1

18
, 1

9
, 1

18
and 1

18
of the impeller rotation period 1

n
, respectively. The frame rate is

chosen in order to fulfill the Shannon-Nyquist theorem and it is set to FPS = 10 · 2n,
FPS = 10 · 18n, FPS = 10 · 9n, FPS = 10 · 18n, FPS = 10 · 18n, respectively. As for
the pressure fluctuations raw signal, in Figure 7.5, these filtered signals are normalized so
as to get a qualitative visualization of the circumferential pressure evolution.

As predicted at the beginning of the section, the circumferential evolution of the
pressure fluctuations at the RSI fundamental f = 9n exhibits a 9-nodal diameter mode
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: impeller rotation
  direction

: impeller revolution

Figure 7.5: Qualitative circumferential evolution of the pressure fluctuations in the rotor-
stator gap during 1

9n
s at a frame rate FPS = 10 · 9n.

rotating at the same frequency as the impeller n− = n, see Figure 7.6. As already
mentioned above, in the literature, some authors mention the presence of a 11-nodal
diameter mode at this frequency. It is certainly a confusion, since the 9-nodal diameter
mode clearly predominates in this study. Moreover, the combination of zb impeller blades
with zo guide vanes induces a spatial modulation which might erroneously be confused
with a 2-nodal diameter mode. Finally, the small number of monitoring points compared
to the number of diametrical nodes may make erroneously believe that the mode is rotating
in the opposite direction to the impeller.

At the RSI 2nd harmonic, the circumferential shape of the pressure mode is a 2-nodal
diameter mode rotating at n− = 9n in the opposite direction to the impeller, see Figure
7.7, as forecasted by the theory. This mode may already be observed in the pressure
fluctuations circumferential evolution without filtering, see Figure 7.5.

At the RSI 3rd harmonic, the circumferential shape of the pressure mode is a 7-nodal
diameter mode rotating at a rotating frequency slightly inferior to n− = 4n, as predicted,
see Figure 7.8.

At the RSI 4th harmonic, the pressure mode features 4-nodal diameters and rotates
at n− = −9n in the opposite direction to the impeller, see Figure 7.9.

At the RSI 5th harmonic frequency, the circumferential shape of the pressure mode
features 5-nodal diameters rotating at the frequency n− = 9n in the same direction as the
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Figure 7.6: Qualitative circumferential evolution of the pressure fluctuations at the RSI
fundamental f = 9n in the rotor-stator gap, during 1

2
of impeller revolution at a frame

rate FPS = 10 · 2n.

impeller, see Figure 7.10.

Finally, this study of the rotating pressure modes due to RSI successfully agrees with
the theoretical prediction in terms of frequency. At each f/n ratio, the pressure mode
featuring k− nodal diameters predominates, whereas the mode with k+ nodal diameters
is not energetic enough to be observed.

EPFL - Laboratory for Hydraulic Machines



58 III. Guide vane cascade dynamics

: pressure mode 
  rotation direction

: impeller rotation
  direction k=-2

f=18n

n=-9n-: number of 
  diametrical nodes

: oscillation frequency
  in the stator

: pressure mode 
  rotation frequency

: impeller revolution : diametrical node

Figure 7.7: Qualitative circumferential evolution of the pressure fluctuations at the RSI
2nd harmonic f = 18n in the rotor-stator gap, during 1

18
of impeller revolution at a frame

rate FPS = 10 · 18n.
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Figure 7.8: Qualitative circumferential evolution of the pressure fluctuations at the RSI
3rd harmonic f = 27n in the rotor-stator gap, during 1

2·3.86
of impeller revolution at a

frame rate FPS = 10 · (2 · 3.86n).
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Figure 7.9: Qualitative circumferential evolution of the pressure fluctuations at the RSI
4th harmonic f = 36n in the rotor-stator gap, during 1

18
of impeller revolution at a frame

rate FPS = 10 · 18n.
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Figure 7.10: Qualitative circumferential evolution of the pressure fluctuations at the RSI
5th harmonic f = 45n in the rotor-stator gap, during 1

18
of impeller revolution at a frame

rate FPS = 10 · 18n.
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Chapter 8

Impulse response

The results reported in this chapter are related to the impulse response in air, in water,
model at rest, and model in operation. They are all the more relevant since the study of
the guide vane cascade forced response, see Chapter 9, is based on them.

The modal analysis in air aims to detect the eigenmodes of the guide vanes and to
compare them to the theoretical eigenmodes. The eigenfrequencies, the eigenshape and
the structural damping related to the mode are studied.

The modal analysis in water, model at rest, intends to detect the eigenmodes of the
guide vanes immersed in still water and, therefore, to identify the added mass as well as
the hydrodynamic damping.

The impulse response of the guide vanes placed in the operating machine highlight the
interaction between the vibrating guide vanes. It is the necessary preliminary approach
to the guide vanes forced response study reported in the Chapter 9.

8.1 Guide vanes in place, dewatered model

The guide vanes are mounted in the pump-turbine model and clamped. The draft tube,
the lower flange and the impeller are removed in order to have access to the guide vanes.
They are hit with the help of an instrumented hammer, see Section 6.1.1, at the trailing
edge in the direction perpendicular to the chord. This aims to excite, at least, the first
bending and the first torsion eigenmodes. The sampling frequency is 30 kHz. The FFT is
used to find the eigenfrequencies. The FFT is applied to 214-sample-long signals, which
represents 0.546 s. The frequency resolution is therefore 1.83 Hz. 16 impacts are done
which allow the spectra to be averaged.

To study the impulse response of the guide vanes, the bending displacement y and
the torsion angle α are normalized with their maximum absolute value, |y|max and |α|max,
respectively. This scaled values do not deteriorate the identification of neither the damping
coefficients nor the eigenfrequencies.

8.1.1 Eigenfrequencies

In Figure 8.1, the first 0.25 s of typical normalized bending displacement and torsion angle
impulse response signals of the two guide vanes, O10 and O11, are plotted.
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Figure 8.1: Impulse response in air: time signal of normalized bending displacement (left)
and torsion angle (right).

In Figure 8.1, one may observe that the torsion signal is damped more than the bending
signal. A single frequency predominates in the bending signal, whereas the torsion signal
contains more frequencies.

In Figure 8.2, the amplitude spectra of the normalized bending displacement and
torsion angle of the two guide vanes, O10 and O11, are plotted.
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Figure 8.2: Impulse response in air: amplitude spectra of the guide vane O10 and O11

normalized bending displacement (left) and of the normalized torsion angle (right).

In Appendix B.4.1, the first bending and the first torsion eigenfrequencies are analyt-
ically estimated using the Rayleigh-Ritz method, R-R. The 1st bending eigenfrequency is
found to be fR−R0,y = 306 Hz and the 1st torsion eigenfrequency is estimated at fR−R0,α = 645
Hz. Two main frequencies, around 300 Hz and 740 Hz, are present in the bending and
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torsion signals, see Figure 8.2. In the following lines, it is shown that these two frequencies
correspond to those of the eigenmodes analytically estimated.

Both analytical and experimental eigenfrequencies are reported in Table 8.1. The
inertia, IS and JS, related to the first bending mode and to the first torsion mode,
respectively, are also given. They are deduced from the stiffness constant, KS and LS ,
analytically determined in Appendix B.3 as follows:

IS =
KS

(2πf0,y)
2 (8.1)

JS =
LS

(2πf0,α)2 (8.2)

The relative difference between experimental and analytical frequencies, εfS0,y and εfS0,α ,

and mass/inertia, εIS and εJS , are also given in Table 8.1.

Table 8.1: First bending and first torsion eigenfrequencies of the guide vane O10 and
O11 placed in air, fS0,y and fS0,α; relative difference εfS0,y and εfS0,α from the theoretical

eigenfrequencies; corresponding structural mass/inertia, IS and JS; and relative difference
from theoretical values, εIS and εJS .

O10 O11 Analytical
fS0,y 302 Hz 297 Hz 306 Hz
εfS0,y -1.3 % -2.9 % -

IS 0.33 kg 0.34 kg 0.32 kg
εIS 3.1 % 6.3 % -
fS0,α 740 Hz 736 Hz 645 Hz
εfS0,α 14.7 % 14.1 % -

JS 1.75 · 10−4 kg ·m2 1.77 · 10−4 kg ·m2 2.31 · 10−4 kg ·m2

εJS -24.2 % -23.3 % -

The εfS0,y absolute value is less than 3% for both guide vanes and, therefore it may

easily be concluded that the 302 Hz and 297 Hz frequencies correspond to the first bending
eigenfrequency of the guide vanes O10 and O11, respectively.

The εfS0,α values are comprised between 14% and 15%. Nevertheless, one may state

that the 740 Hz and 736 Hz frequencies are those of the first torsion eigenmode of the
guide vanes O10 and O11, respectively, for three main reasons. First, no other frequency
predominates in the corresponding frequency range. Second, the torsion signal is much
more responsive at this frequency than the bending signal. Finally, the identification of the
analytical torsion eigenfrequency is based on the balance between the deformation and the
kinetic energies, see Appendix B.4.1. For simplicity reason, these energies are determined
for a pure torsion motion. In the real case, the eccentricity of the hydrofoil center of
gravity from the stem neutral axis should make the deformation energy slightly higher
and, at the same time, should increase the theoretical value of the torsion eigenfrequency.
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Concerning the impulse response spectra plotted in Figure 8.2, the amplitude of the
peaks must be put into perspective. One should keep in mind that the Fourier transform
is applied to an exponentially decreasing oscillating signal. The bending mode is much
more energetic than the torsion mode; the former being even present in the torsion signal.
The torsion mode is much more damped and, therefore, only the bending one remains on a
vast range of the torsion signal length, making its amplitude high in the averaged spectra.
Finally, on both angle and displacement spectra, a smaller peak appears at f = 264 Hz
and f = 270 Hz for the guide vane O10 and O11, respectively. We suppose the presence of
the frequency of the bending eigenmode in the direction perpendicular to the y-direction.
The torsion strain gage bridge is indeed more sensitive to this motion type. The peak
hardly appears in the bending displacement signal; the bending strain gage bridge being
theoretically not sensitive to this type of motion.

8.1.2 Structural damping

The structural damping of the two guide vanes, O10 and O10, is identified from the impulse
response signals. Because the time signal contains many frequencies, it is first filtered. A
Butterworth band-pass filter centered on the corresponding eigenfrequency is used. The
characteristics of the filters are given in Table 8.2.

Table 8.2: Characteristics of the Butterworth band-pass filters.

Mode Filter order Cut-off frequencies
Bending 3 [250 Hz;350 Hz]
Torsion 3 [690 Hz;790 Hz]

The frequency response magnitude and phase of the Butterworth filters for the cases of
bending and torsion modes are plotted in Figure 8.3. It may be observed that the filters
may alter the time signals in terms of phase if the cut-off frequencies are not equally
positioned on both sides of the concerned frequency. Nevertheless, in terms of amplitude,
the signals are not modified so long as the cut-off frequencies are sufficiently far from each
other and, therefore, the filter has no repercussion on the damping identification accuracy.

Then, by applying the Hilbert transform [68], the envelope of the filtered signal is
obtained. Finally, an exponential fitting of the envelope is applied for estimating the
damping value. The fitting curve h (t) is expressed as:

h (t) = h0 · e−λ·t (8.3)

where h0 is the fitting curve y-intercept and λ, the damping coefficient.

In Figure 8.4, the identification procedure of structural damping of the bending mode
and of the torsion mode is illustrated for the case of the guide vane O10. The original
signal, the filtered signal, the envelope and the fitting curve are plotted.
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Figure 8.3: Butterworth filter frequency response magnitude and phase for the bending
and the torsion modes.

The damping constants, CS and DS and damping factors, hSy and hSα are defined as
functions of the damping coefficients as follows:

CS = 2ISλSy (8.4)

h
S
y =

λSy
2πfS0,y

(8.5)

DS = 2JSλSα (8.6)

h
S
α =

λSα
2πfS0,α

(8.7)

(8.8)

The damping values are averaged over 16 records. The mean values of the damping
constants and factors are listed in Table 8.3. The standard deviations are also indicated.

Table 8.3: Structural damping constants and factors of the guide vanes O10 and O11.

O10 O11

damping factor hSy (0.40± 0.01) % (0.51± 0.05) %

damping constant CS (5.00± 0.12) kg · s−1 (6.57± 0.44) kg · s−1

damping factor hSα (1.50± 0.07) % (1.46± 0.09) %
damping constant DS (0.024± 0.001) kg ·m2 · s−1 (0.024± 0.002) kg ·m2 · s−1

The two guide vanes O10 and O11 feature relatively similar damping constant values.
The damping of the guide vane O11 bending mode is nevertheless 30% higher than the
guide vane O10, whereas the damping of the guide vane O11 torsion mode is 3% lower
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Figure 8.4: Identification procedure of structural damping of the bending mode (left) and
of the torsion mode (right) for the case of the guide vane O10 in air.

than the guide vane O10. The low standard deviation values indicate fair measurements
and reliable damping results.

8.2 Guide vanes in place, still water

The guide vanes are excited with the help of an immersed spark plug, flush mounted in
the lower flange in a guide vane channel, producing a strong shock wave, see Section 6.1.2.
The guide vanes are mounted in the model and clamped. To avoid any influence of the
neighboring guide vanes, these are completely removed from the model. The signals are
recorded at 20 kHz. The Fast Fourier Transforms are applied to 214-sample-long signals,
which correspond to 0.819 s, leading to 1.22 Hz frequency resolution. The spectra are
averaged over 8 records for the two guide vanes.

8.2.1 Eigenfrequencies

In Figure 8.5, the first 0.25 s of typical normalized bending displacement and torsion angle
signals, for the two guide vanes, O10 and O11, placed in water, model at rest, are plotted.
The bending and torsion signals are damped more than in air. Moreover, the guide vane
O10 presents a higher damping than the guide vane O11. One may also remark the lower
frequency of the vibrations, at least in the bending displacement signal.

In Figure 8.6, the amplitude spectra of the normalized bending displacement and of
the normalized torsion angle are plotted. In the torsion angle amplitude spectra, the am-
plitude at the bending eigenfrequency is lower than the one observed in the corresponding
amplitude spectra in air, because of the higher damping of the vibrations in water, model
at rest, and because of the added mass.

The Table 8.4 lists the eigenfrequencies of the guide vanes O10 and O11 placed in still
water, the added mass/inertia for the bending and torsion modes and the ratio of added
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Figure 8.5: Impulse response in water, model at rest: time signal of normalized bending
displacement (left) and torsion angle (right).
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Figure 8.6: Impulse response in still water: magnitude of amplitude spectra of the guide
vane O10 and O11 normalized bending displacement (left) and of the normalized torsion
angle (right).

to structural mass/inertia. The fluid mass motion induced by the vibrations of the guide
vanes reduces the value of the eigenfrequencies. The added mass/inertia, If and Jf , is
deduced from the structural inertia, IS and JS, and from the eigenfrequencies in air and
in water, model at rest. The eigenfrequencies in air may be estimated as follows:

fS0,y =
1

2π

√
KS

IS
(8.9)

fS0,α =
1

2π

√
LS

JS
(8.10)
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Table 8.4: Guide vanes first bending and first torsion eigenfrequencies in water, model
at rest, f f0,y and f f0,α, added mass/inertia, If and Jf , for the bending and torsion modes,
respectively, and ratio of structural inertia to added mass/inertia.

O10 O11

f f0,y 231 Hz 233 Hz
If 0.23 kg 0.21 kg
If/IS 69.7 % 61.8 %

f f0,α 626 Hz 630 Hz
Jf,α 6.95 · 10−5 kg ·m2 6.45 · 10−5 kg ·m2

Jf,α/JS 39.7 % 36.4 %

and the eigenfrequencies in water, model at rest, are expressed as:

f f0,y =
1

2π

√
KS +Kf

IS + If
(8.11)

f f0,α =
1

2π

√
LS + Lf

JS + Jf
(8.12)

The fluid stiffness in still water is zero, see Section 3.3, and using eqs. 8.9 to 8.12, one
obtains the expression for the added mass If and the added inertia Jf,α:

If = IS ·

(fS0,y
f f0,y

)2

− 1

 (8.13)

Jf,α = JS ·

(fS0,α
f f0,α

)2

− 1

 (8.14)

For the bending and the torsion modes, the added mass and the added inertia are
significant and, thus, strongly affect the eigenfrequencies. The influence is nevertheless
higher for the bending mode than for the torsion mode. For the bending mode, the added
mass represents 69.7% and 61.8% of the structural mass for the guide vanes O10 and O11,
respectively. For the torsion mode, the added inertia represents 39.7% and 36.4% of the
structural inertia for the guide vanes O10 and O11, respectively.

8.2.2 Hydrodynamic damping

The damping of the two guide vanes, O10 and O11 placed in still water, is identified from
the impulse response signals, as in the case in air. Because the time signal contains
many frequencies, it is first filtered. A Butterworth band-pass filter centered on the
corresponding eigenfrequency is applied. The characteristics of the filters are given in
Table 8.5.

The frequency response magnitude and phase of the Butterworth filters for the cases of
bending and torsion modes are plotted in Figure 8.7. As in the case in air, the time signals
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Table 8.5: Characteristics of the Butterworth band-pass filters.

Mode Filter order Cut-off frequencies
Bending 3 [180 Hz;280 Hz]
Torsion 3 [580 Hz;680 Hz]

may be modified in terms of phase if the cut-off frequencies are not positioned equally on
both sides of the concerned frequency. No alteration in terms of amplitude should occur
so long as the cut-off frequencies are sufficiently far from each other. Therefore, the filters
have no repercussion on the damping identification accuracy.
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Figure 8.7: Butterworth filter frequency response magnitude and phase for the bending
and torsion modes in still water.

Then, the similar procedure as in air is followed for estimating the damping of the
guide vane in water, model at rest.

In Figure 8.8, the bending and torsion eigenmodes damping identification procedure
is illustrated for the case in water, model at rest. The original signal, the filtered signal,
the envelope and the fitting curve are plotted for the guide vane O10.

The damping values are averaged over 8 records for the two guide vanes. The damping
constant and factor mean values are listed in Table 8.6. The standard deviations are
also indicated. The hydrodynamic damping constants, Cf and Df,α, are determined
by subtracting the structural damping constants, CS and DS, from the total damping
constants, C = 2Iλy and D = 2Jλα, by assuming the linearity of damping with the
frequency. Therefore, the hydrodynamic damping may directly be expressed as function
of the inertia terms, the total damping coefficients, λy and λα and the structural damping
constants, CS and DS, as follows:

Cf = C − CS = 2Iλy − CS = 2
(
IS + If

)
· λy − CS (8.15)

Df,α = D −DS = 2Jλα −DS = 2
(
JS + Jf

)
· λα −DS (8.16)
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Figure 8.8: Damping identification procedure of the bending mode (left) and the torsion
mode (right) for the case of the guide vane O10 placed in still water.

Table 8.6: Damping constant and factor values for the guide vanes O10 and O11 in still
water.

O10 O11

total damping factor hy (1.79± 0.03) % (1.67± 0.22) %

total damping constant C (29.2± 0.4) kg · s−1 (26.8± 3.6) kg · s−1

hydro. damp. const. Cf (24.2± 0.5) kg · s−1 (20.2± 4.0) kg · s−1

total damping factor hα (1.31± 0.23) % (1.15± 0.06) %
total damping constant D (0.025± 0.004) kg ·m2 · s−1 (0.022± 0.001) kg ·m2 · s−1

hydro. damp. const. Df,α (0.001± 0.005) kg ·m2 · s−1 (−0.002± 0.003) kg ·m2 · s−1

In Table 8.6, it may be observed that the damping factor of the bending motion
is higher than the one of the torsion motion, whereas it was the inverse in air. The
two guide vanes feature relatively similar damping values. The low standard deviation
indicates reliable results. On the one hand, for the torsion mode, the hydrodynamic
damping constant value is found to be negligible, which agree with the potential flow
approach. At zero mean flow velocity, only the fluid inertia terms remain in eq. 3.20; the
dissipative terms vanishing. On the other hand, for the bending mode, the hydrodynamic
damping constant value is 4.8 and 3.0 times higher than the structural damping constant
value for the guide vanes O10 and O11, respectively. In the absence of mean flow velocity,
the energy dissipation is certainly due to the viscosity of the fluid.

8.3 Guide vanes in place, model in operation

Should the pump-turbine be operating, one encounters many difficulties in the eigenfre-
quencies and damping identification. On the one hand, the RSI and the turbulent noise
perturb the simple impulse response of the guide vanes. The RSI is well known and the

EPFL - Laboratory for Hydraulic Machines



Chapter 8. Impulse response 73

operating conditions have been chosen in order not to have neither the RSI fundamen-
tal frequency nor the harmonics close to the guide vanes eigenfrequencies. Therefore,
keeping the machine operating at the BEP at 18◦ opening angle, the specific energy is
set to E = 98 J·kg-1 and the rotation frequency to n = 7.4 Hz. The discharge is thus
Q = 0.108 m3·s-1. The flow turbulence noise must be dealt with. One will see in the
following sections that it is still present in the filtered signals. On the other hand, the
excitation procedure which consists of the rapid growth of a vapor bubble produced by
an immersed spark plug, providing a strong shock wave in the fluid, see Section 6.1.2, is
limited by the operating head. Above the specific energy value E = 98 J·kg-1, the static
pressure in the stator is too high for the shock wave to be energetic enough in order to
excite the guide vanes. Sometimes, the vapor bubble is not even formed. The signals are
recorded at 20 kHz. The Fast Fourier Transforms are applied to 214-sample-long signals,
which correspond to 0.819 s, leading to 1.22 Hz frequency resolution. The spectra are
averaged over 8 records for the two guide vanes.

R3

Cref,m

Cref,u

Cref

α0

Figure 8.9: Definition of the reference flow velocity Cref at the radius R3.

The reduced frequency, comparing the oscillating period 1
f

with the advection time
L

Cref
, is defined as follows [56]:

κ =
2πfL/2

Cref
=
πfL

Cref
(8.17)

where L is the chord length and Cref , a reference flow velocity defined as follows, see
Figure 8.9:

Cref =
Cref,m
sin (αo)

=
Q

A · sin (αo)
=

Q

2πR3Bosin (αo)

=
0.108

2π · 0.325 · 0.036 · sin (18◦)
= 4.8m · s−1 (8.18)

A being the surface crossed by the flow and Bo, the guide vane channel width.

The reduced frequency takes the values κy = 15 and κα = 41 for the bending and the
torsion modes, respectively, which show the relevance of the unsteady effects.
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8.3.1 Eigenfrequencies

In Figure 8.10, the first 0.25 s of typical normalized bending displacement and torsion
angle signals, for the two guide vanes, O10 and O11, placed in the operating machine,
are plotted. One may distinguish the response to a permanent excitation in the bending
displacement time signals after the impulse response is damped. The guide vane O10 is
damped less rapidly than O11; the response of the former to the permanent excitation
featuring an even higher amplitude. In the torsion angle time signals, the permanent
excitation is negligible compared to the impulse response.
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Figure 8.10: Guide vane impulse response, model in operation: time signal of normalized
bending displacement (left) and torsion angle (right).

In Figure 8.11, the averaged amplitude spectra of the normalized bending displacement
and of the normalized torsion angle are plotted. The permanent excitation observed in
the time signals is clearly observed at 67 Hz, 134 Hz and 200 Hz with peaks representing
the response to the fundamental, the 2nd and the 3rd harmonics of the RSI, respectively.
In the torsion angle amplitude spectra, the peaks at the two eigenfrequencies are much
higher than the one related to the RSI fundamental. That is, the guide vanes are excited
by the RSI more in terms of bending than in terms of torsion.

The Table 8.7 lists the guide vanes O10 and O11 eigenfrequencies in the model in
operation, the added mass/inertia for the bending and torsion modes and the ratio of
added to structural mass/inertia. The added mass and inertia are found using eqs. 8.13
and 8.14.

The eigenfrequencies are slightly higher when operating the machine than those in
water, model at rest. The bending eigenfrequency of the guide vane O10 is 1.3% higher
than the value in still water, whereas the torsion eigenfrequency is 2.4 % higher. In the
bending eigenfrequencies range, the guide vane O11 responds to two frequencies: 226 Hz
and 236 Hz, see Figure 8.11. The guide vane O11 torsion eigenfrequency is 1.9 % higher
than in still water. According to Conca et al. [22] and Brennen [17], the added mass and
inertia should not vary between the cases in water, model at rest, and model in operation.
These terms should actually be independent of the flow velocity. Therefore, the added
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Figure 8.11: Guide vanes impulse response, model in operation: amplitude spectra of
the guide vane O10 normalized bending displacement (left) and of the normalized torsion
angle (right).

Table 8.7: Guide vanes first bending and first torsion eigenfrequencies in the model in
operation, f0,y and f0,α, added mass/inertia, If and Jf , for the bending and torsion
modes, respectively, and ratio of added to structural mass/inertia.

O10 O11

f f0,y 234 Hz 226/236 Hz
If 0.22 kg 0.25/0.20 kg
If/IS 66.7 % 73.5 %/58.8 %

f f0,α 641 Hz 642 Hz
Jf,α 5.82 · 10−5 kg ·m2 5.56 · 10−5 kg ·m2

Jf,α/JS 33.2 % 31.4 %

mass and inertia observed here must be brought by the vibrations of the neighboring guide
vanes. The Chapter 9 is incidentally devoted to the identification of the contributions of
the neighboring vibrating guide vane.

8.3.2 Hydrodynamic damping

The damping of the two guide vanes, O10 and O11 placed in the model in operation, is
identified from the impulse response signals. As already mentioned, because the time
signal contains many frequencies, it must first be filtered. Aiming to filter the maximum
of flow turbulence noise, the very narrow frequency bandwidth is chosen for the bending
mode. The characteristics of the filters are given in Table 8.8.

The same procedure mentioned in the preceding sections is used to identify the damp-
ing values.

In Figures 8.12 and 8.13, the damping identification procedure of the bending and
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Table 8.8: characteristics of the band-pass filters in the case of the machine being operated.

Mode Filter type Cut-off frequencies
Bending Butterworth (3rd order) [213 Hz;253 Hz]
Torsion Butterworth (3rd order) [580 Hz;680 Hz]

torsion eigenmodes is illustrated for the guide vanes O10 and O11, respectively. The
original signal, the filtered signal, the envelope and the fitting cure are plotted.
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Figure 8.12: Guide vane O10 damping identification procedure, model in operation.
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Figure 8.13: Guide vane O11 damping identification procedure, model in operation.

The damping coefficient values is averaged over 8 records for the guide vanes O11 and
O10. The damping constants and factors mean values are listed in Table 8.9. The standard
deviation is also indicated.
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Table 8.9: Damping constant and factor values for the guide vanes O10 and O11 in the
machine being operated.

O10 O11

total damping factor hy (1.6± 0.2) % (3.0± 0.2) %

total damping constant C (25.1± 3.1) kg · s−1 (49.4± 3.7) kg · s−1

hydro. damp. const. Cf (20.1± 3.2) kg · s−1 (42.8± 4.1) kg · s−1

total damping factor hα (1.5± 0.0) % (1.0± 0.0) %
total damping constant D (0.030± 0.001) kg ·m2 · s−1 (0.020± 0.000) kg ·m2 · s−1

hydro. damp. const. Df,α (0.006± 0.002) kg ·m2 · s−1 (−0.004± 0.002) kg ·m2 · s−1

As may be qualitatively seen in Figures 8.12 and 8.13, the filtered bending signal
still contains turbulent noise. The hydrodynamic damping values are therefore underes-
timated.

As a conclusion, one may expect a similar behavior of the two guide vanes between the
case in still water and the case in the machine in operation. But the results prove that
the guide vanes respond differently in the pump-turbine in operation. At these reduced
frequency values, κy = 15 and κα = 41, the dissipation due to the fluid advection should
be close to zero and the total dissipation should be similar to the one measured in water,
model at rest, [71]. On the one hand, it may be observed that the guide vane O10 features
a lower hydrodynamic bending damping constant Cf = 20.1 ± 3.2 kg · s−1 than in still
water Cf = 24.2± 0.5 kg · s−1 and, on the other hand, it may be seen that the guide vane
O11 presents a much higher hydrodynamic bending damping constant Cf = 42.8 ± 4.1
kg · s−1 than in still water Cf = 20.2 ± 4.0 kg · s−1, see Table 8.9. By all evidence, the
guide vanes are mutually interacting. With the study of the guide vane forced response
reported in the next chapters, we will quantify the added mass and inertia as well as the
hydrodynamic damping brought by the vibrations of the neighboring guide vanes.
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Chapter 9

Forced response of the guide vanes

This chapter is devoted to the study of the forced response of the two modified guide
vanes, O10 and O11, to the excitation due to RSI. The testing conditions are first given.
Then, the pressure vibrations of the guide vanes are analyzed in detail as well as the
pressure fluctuations in the proximity of the vibrating guide vanes.

9.1 Testing conditions

The forced response of the guide vanes and the flow pressure in the rotor-stator vaneless
gap are monitored over a wide frequency range by varying the frequency f of the main
RSI modes. The pump-turbine is operated at the Best Efficiency Point, BEP, see Figure
4.2, in turbine mode, corresponding to α0 = 18◦ guide vane opening angle, a discharge
coefficient ϕ1̄e = 0.36 and an energy coefficient ψ1̄e = 5.3, defined in eq. 4.2. The impeller
rotating frequency varies from Nmin = 700 rpm (nmin = 11.7 Hz) to Nmax = 910 rpm
(nmax = 15.2 Hz). The specific energy E and discharge Q are adjusted to keep the
pump-turbine model at the BEP operating conditions. On the one hand, the frequency
f = 18n of the RSI mode with k = −2 diametrical nodes ranges from 210 Hz to 273 Hz
and contains, thereby, the 1st bending eigenfrequency of the guide vanes O10 and O11 in
water, model at rest, 231 and 233 Hz, see Table 8.4. On the other hand, the frequency
f = 45n of the RSI mode with k = 5 diametrical nodes ranges from 525 to 683 Hz and
contains, consequently, the 1st torsion eigenfrequency of the guide vanes, 626 and 630 Hz.
The impeller rotating speed and frequency as well as the corresponding RSI frequencies
are summarized in Table 9.1.

Table 9.1: Minimum and maximum impeller rotating frequencies as well as the corre-
sponding RSI frequencies for the investigated frequency range sweep.

Impeller frequency RSI frequencies
N n 9n 18n 27n 36n 45n

minimum 700 rpm 11.7 Hz 105 Hz 210 Hz 315 Hz 420 Hz 525 Hz
maximum 910 rpm 15.2 Hz 137 Hz 273 Hz 410 Hz 546 Hz 683 Hz

In Figure 9.1, the experimentally measured values of the specific energy Eexp and the
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discharge Qexp that maintain the operating conditions at the BEP are plotted against the
impeller rotational frequency n. Eexp ranges from 223 J·kg-1 to 372 J·kg-1 and Qexp, from
0.162 m3·s-1 to 0.211 m3·s-1. In addition, the figure gives the values of the specific energy
E and discharge Q, if the expected value of ϕ1̄e and ψ1̄e have been reached. These values
are obtained as follows:

E =
π2

2
·D2

Īe · ψĪe · n
2 (9.1)

Q =
π2

4
·D3

Īe · ϕĪe · n (9.2)

The relative differences εϕ1̄e
and εψ1̄e

are defined as:

εϕ1̄e
=
ϕ1̄e − ϕ1̄e,exp

ϕ1̄e

(9.3)

εψ1̄e
=
ψ1̄e − ψ1̄e,exp

ψ1̄e

(9.4)

with ϕ1̄e,exp = Qexp
π2

4
D3

1̄e
n

and ψ1̄e,exp = Eexp
π2

4
D2

1̄e
n2

With the relative differences εϕ1̄e
and εψ1̄e

, the offset between the experimental and
expected values of the coefficients, which is less than 1% for all investigated impeller
rotational frequencies n, is also illustrated in Figure 9.1.
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Figure 9.1: Experimental and expected values of specific energy, Eexp and E, and dis-
charge, Qexp and Q, versus impeller rotational frequency n to ensure BEP operating
conditions.

The Reynolds number Re related to the flow in the guide vane channel is defined as
follows:

Re =
Cmax ·Dh

ν
=

Q ·Dh

zo · (W · Bo) · ν
(9.5)
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where Cmax is the maximum absolute flow velocity in the guide vane channel, W, the
narrowest width of the guide vane channel, Bo, the channel height, ν, the kinematic
viscosity and Dh, the hydraulic diameter, [74], defined as:

Dh =
2 ·W · Bo

W + Bo

(9.6)

The Reynolds number is comprised between 2.7 · 105 and 3.5 · 105. The high Reynolds
number indicates the dominance of the inertial effects on the viscous effects. Moreover, at
BEP, the turbulence effects may be neglected and, therefore, the potential flow approach
given in Section 3.3 is appropriate.

Finally, the reduced frequency defined in eq. 8.17 takes the constant values κy=9.3
and κα=23.1 over the entire frequency range corresponding to the RSI 2nd harmonic and
over the frequency range related to the RSI 5th harmonic, respectively. In other words,
this means that the unsteady effects are important.

9.2 Pressure fluctuations and guide vane vibrations

The value of the guide vane Oi bending displacement yi is made dimensionless by intro-
ducing the bending displacement factor:

cyi =
yi
W

(9.7)

W being the narrowest width of the guide vane channel defined in Figure 4.3.

The torsion angle factor of the guide vane Oi is defined as follows:

cαi =
αi · L2

W
(9.8)

L being the guide vane chord length.

The RMS-values of the displacement and angle factors, c̃yi and c̃αi , of the guide vanes
O10 and O11 are plotted on a logarithmic scale against the impeller rotating frequency n
in Figure 9.2.

The guide vane O10 experiences a maximum RMS-value c̃y10 at n = 12.9 Hz. At this
impeller frequency, the RSI 2nd harmonic value is close to the 1st bending eigenfrequency,
231 Hz, in water, model at rest, see Section 8.2.1. As for the guide vane O11, its maximum
RMS-value c̃y11 is reached at n = 12.5 Hz. The corresponding RSI 2nd harmonic is 225 Hz.
Therefore, this guide vane does not preferably respond at the 1st bending eigenfrequency
in water, model at rest, but at a 3% lower frequency.

The RMS-value of guide vane O11 torsion angle c̃α11 presents two maxima at n =
12.7 Hz and n = 14.6 Hz. The first maximum is linked to the bending mode excited
by the RSI 2nd harmonic. The second maximum is reached at an impeller frequency
whose corresponding RSI 5th harmonic is 660 Hz, being close to the 1st torsion eigenmode
frequency in water, model at rest, 626 Hz. The RMS-value of the guide vane O10 torsion
c̃α10 presents a maximum at n = 13.0 Hz and a minimum at n = 14.6 Hz. The first
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Figure 9.2: Displacement and angle factors RMS-values against the impeller frequency.

maximum is linked to the bending mode excited by the RSI 2nd harmonic. The minimum
may be caused by the guide vane resonance close to its 1st torsion eigenmode frequency.

The RMS-values of the pressure factor, c̃p, monitored with the sensors s10, s11, g10,
g11 and g15 are plotted against the impeller rotating frequency n in Figure 9.3.
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Figure 9.3: Pressure factor RMS-values against the impeller frequency.

The pressure sensor g15 experiences a fairly constant RMS-value around c̃p = 0.010.
The pressure factor fluctuations at this angular position are therefore not influenced by
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the impeller frequency sweep, while the pressure factor fluctuations monitored by the
sensors g10 and g11, located close to the flexible guide vanes O10 and O11, respectively,
are strongly influenced. After a maximum reached at n = 12.5 Hz, these RMS-values
decrease. The relative difference between the maximum and the minimum RMS-values
for the pressure sensors g10 and g11 is 50% and 30%, respectively. Thereby, a transfer of
energy occurs locally from the flow to the vibrating guide vanes, O10 and O11.

The pressure sensors, s10 and s11, placed in the guide vane channel are also subject
to the influence of the vibrations, since their RMS-values vary according to the impeller
frequency. The pressure factor fluctuations monitored by these sensors feature a higher
amplitude close to the resonance of the guide vanes. The increase of the fluctuations is
nevertheless higher for the sensor s11 positioned between the two vibrating guide vanes.

The waterfall diagrams of the power spectral density of the pressure factor monitored
by the pressure sensors g10, g11, g15, s10 and s11 are plotted in Figures 9.4, 9.5 and 9.6,
respectively, against the impeller frequency n. The frequency is normalized with the
impeller frequency n to highlight the RSI fundamental frequency and its harmonics with
the multiples of the impeller blade number f

n
= mzb. The power spectral densities are

averaged over 8 blocks of 0.32 s, windowed with a Hamming function, each overlapping
by 50%.
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Figure 9.4: Waterfall diagrams of power spectral density of the pressure fluctuation factor
monitored by the pressure sensors g10 (left) and g11 (right) against the impeller frequency
n.

Most of the spectral energy is concentrated at the frequencies f = mzbn revealing
the RSI modes. Moreover, the two main RSI modes oscillating at f = 9n and f = 18n,
present, as expected, a larger amplitude than the modes oscillating at higher f/n = mzb
ratios. The amplitude of the pressure fluctuations at f/n = 18 and f/n = 45 for the
pressure sensors s10, s11, g10 and g11 greatly varies depending on the impeller frequency
n. Nevertheless, the variations of the pressure fluctuation amplitude at f/n = 45 are
very small for the sensors g10 and g11. In Figures 9.4 and 9.6, the concerned pressure

EPFL - Laboratory for Hydraulic Machines



84 III. Guide vane cascade dynamics

n
[Hz] f / n

-8

-6
[-]

[-]

-12

-10

|c'  |
15g

^ 2
p-4

Figure 9.5: Waterfall diagrams of power spectral density of the pressure fluctuation factor
monitored by the pressure sensors g15, against the impeller frequency n.
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Figure 9.6: Waterfall diagrams of power spectral density of the pressure fluctuation factor
monitored by the pressure sensors s10 (left) and s11 (right) against the impeller frequency
n.

sensors monitor a higher amplitude at two fixed frequencies for all the impeller frequencies
investigated. These frequencies correspond to the guide vane eigenfrequencies. Therefore,
the guide vanes reaching resonance are strongly modifying the pressure fluctuations, when
the eigenfrequencies corresponds to either the 2nd or the 5th RSI harmonics.

The waterfall diagrams of the power spectral density of the displacement factor fluc-
tuations for the guide vanes O10 and O11 are plotted in Figure 9.7, against the impeller
frequency n.

The waterfall diagrams of the power spectral density of the fluctuating angle factor
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Figure 9.7: Waterfall diagrams of the power spectral density of the guide vanes O10 and
O11 displacement factor fluctuations, against the impeller frequency n.

for the guide vanes O10 and O11 are plotted in Figure 9.8, against the impeller frequency
n.
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Figure 9.8: Waterfall diagrams of the power spectral density amplitude of the guide vanes
O10 and O11 angle factor fluctuations, against the impeller frequency n.

Due to RSI excitation, most of the spectral energy is concentrated at RSI modes
frequencies f = mzbn. The response of the guide vanes to the two main RSI modes, f = 9n
and f = 18n, is nevertheless the highest. On the one hand, the 1st bending eigenmode is
clearly observed in Figure 9.7, its frequency crossing the RSI 2nd harmonic frequency at
n = 12.9 Hz. When the RSI 2nd harmonic frequency approaches the eigenmode frequency,
the response of the guide vanes greatly varies. The response of the guide vanes to the RSI
2nd harmonic depends, thus, on the impeller frequency n, because of their 1st bending
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eigenmode. On the other hand, the 1st torsion eigenmode may clearly be identified in
Figure 9.8. The eigenmode frequency crosses the RSI 5th harmonic frequency and the
response of the guide vanes is severely perturbed.

One may state that the two eigenmodes appear in both the bending displacement and
the torsion angle waterfall diagrams. Nevertheless, the bending eigenmode predominates
in the displacement waterfall diagrams, whereas the torsion eigenmode predominates in
the torsion angle waterfall diagrams.
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Figure 9.9: Averaged Fourier transform magnitude of pressure factor fluctuations, mon-
itored by the pressure sensors g10, s10, g11, s11, g15, at the RSI fundamental frequency
f = 9n, for the investigated impeller frequency range.

The magnitude of the averaged Fourier transform of the pressure factor fluctuations
monitored by the pressure sensors s10, s11, g10, g11 and g15 at the RSI fundamental and the
2nd to 5th harmonic frequencies is plotted against the corresponding harmonic frequency
in Figure 9.9 to 9.13, respectively, for the investigated impeller frequency range.

The magnitude of the pressure factor fluctuations monitored by each of the five sensors
does not vary with the impeller frequency at the RSI fundamental, see Figure 9.9. It stays
constant around |ĉ′p| = 0.007 for the whole investigated impeller frequency range.

The magnitude of the pressure factor fluctuations |ĉ′pg15
|, monitored close to stiff guide

vanes, at the RSI 2nd harmonic frequency remains constant around 3.8 ·10−3 for the inves-
tigated impeller frequency range, whereas the others present variations, see Figure 9.10.
The magnitude of the pressure factor fluctuations monitored by the sensor |ĉ′pg11

| features

a maximum to minimum ratio of 5, while the ratio reaches 12 for the pressure sensor |ĉ′pg10
|.

Concerning the pressure sensors positioned in the guide vane channels, the magnitude of
the pressure factor fluctuations monitored by the sensor |ĉ′ps11

| features a maximum to

minimum ratio of 4.5, while the ratio reaches 1.5 for the pressure sensor |ĉ′ps10
|. The pres-

sure sensors monitor very different pressure fluctuation along the investigated frequency
range.
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Figure 9.10: Averaged Fourier transform magnitude of pressure factor fluctuations, mon-
itored by the pressure sensors g10, s10, g11, s11, g15, at the RSI 2nd harmonic frequency
f = 18n, for the investigated impeller frequency range.

At the frequency corresponding to the RSI 3rd harmonic, the three pressure sensors
positioned in the rotor-stator gap do not vary according to the investigated impeller
frequency, see Figure 9.11. Moreover, the pressure sensor s11 monitors lower fluctuations
at the frequencies f = 27n ranging from 338 to 380 Hz, whereas the pressure sensor s10

seems not to be subject to the vibrations of the guide vanes, its value staying constant
along the impeller frequency range investigated. A surplus of energy is dissipated in a
unknown manner in the flow at the position of the sensor s11. Since no variation of the
vibrations is monitored at the RSI 3rd harmonic frequency, see Figure 9.16, one knows
that this decrease of pressure fluctuations does not have any influence on the vibrating
motion of the guide vanes.

At the frequencies f = 36n corresponding to the RSI 4th harmonic, the pressure
fluctuations do not undergo any variation along the whole impeller frequency range, see
Figure 9.12. The pressure sensors in the rotor-stator gap monitor fluctuations 10 times
stronger than the pressure sensors in the guide vane channel.

The magnitude of the pressure factor fluctuations recorded at the frequencies f = 45n
corresponding to the RSI 5th harmonic in the rotor-stator gap does not vary according to
the investigated impeller frequency n, see Figure 9.13. Nevertheless, the pressure sensors
in the guide vane channel monitor variations for frequencies ranging from 625 to 683 Hz.
The magnitude of the pressure fluctuations factor monitored by the sensor |ĉ′ps11

| features
a maximum to minimum ratio of 12, while the ratio reaches 4.5 for the pressure sensor
|ĉ′ps10

|.

The magnitude of the averaged Fourier transform of the fluctuating displacement and
torsion angle factor, for the guide vanes O10 and O11 at the RSI fundamental and the 2nd to
5th harmonic frequencies is plotted against the corresponding frequencies on the left hand
side of Figure 9.14 to 9.18, respectively, for the investigated impeller frequency range.
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Figure 9.11: Averaged Fourier transform magnitude of pressure factor fluctuations, mon-
itored by the pressure sensors g10, s10, g11, s11, g15, at the RSI 3rd harmonic frequency
f = 27n, for the investigated impeller frequency range.
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Figure 9.12: Averaged Fourier transform magnitude of pressure factor fluctuations, mon-
itored by the pressure sensors g10, s10, g11, s11, g15, at the RSI 4th harmonic frequency
f = 36n, for the investigated impeller frequency range.

The phase shifts between the vibrating motions of the two guide vanes ∆φy10,y11 (f) =
φy10 (f)−φy11 (f) and ∆φα10,α11 (f) = φα10 (f)−φα11 (f) at the corresponding frequencies
f = mzbn are given on the right hand side of the five figures.

For small amplitudes, the torsion angle factor definition, see eq. 9.8, may be seen as
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Figure 9.13: Averaged Fourier transform magnitude of pressure factor fluctuations, mon-
itored by the pressure sensors g10, s10, g11, s11, g15, at the RSI 5th harmonic frequency
f = 45n, for the investigated impeller frequency range.
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Figure 9.14: Averaged Fourier transform magnitude of displacement and torsion angle
factors (left) and phase shift between the displacement signals and between the angle
signals (right) at the RSI fundamental frequency, f = 9n, for guide vanes O10 and O11,
for the investigated impeller frequency range.

a displacement factor of the guide vane leading- or trailing edge as follows:

cαi =

(
αi · L2

)
δ

≈ ytipi
δ

(9.9)

where ytipi is the local displacement of the guide vane leading- or trailing edge in the
direction perpendicular to the chord. In this way, the two factors, cyi and cαi , may easily
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be compared with each other.

At the RSI fundamental frequencies, see Figure 9.14, the bending displacement factor
is found to be 4 times higher than the torsion angle factor. The phase shift between the
displacements and the torsion angle of the two guide vanes remains constant at ∆φy10,y11 =
2.90 rad and ∆φA10,A11 = 3.16 rad. Theoretically, as given in Table 7.1, the phase shift
between the pressure signals monitored at the angular position of two adjacent guide
vanes is ∆φk=9 = 2.83 rad. The relative differences are 2% and 10% for the displacement
and the torsion angle, respectively. One may state that the vibrating motion of the guide
vanes is clearly forced by the pressure fluctuations arising from the RSI. Since guide vane
resonances are far away from the exciting frequency, the phase shift between the motions
is close to the pressure phase shift.
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Figure 9.15: Averaged Fourier transform magnitude of displacement and torsion angle
factors (left) and phase shift between the displacement signals and between the torsion
angle signals (right) at the RSI 2nd harmonic, f = 18n, for guide vanes O10 and O11, for
the investigated impeller frequency range.

At the RSI 2nd harmonic frequencies, see Figure 9.15, the bending displacement factor
of the guide vane O10 and O11 even exceeds 10 times the torsion angle factor. The
eigenfrequency of the guide vanes found when placed in water, model at rest, is included
in the frequency range constituted by the RSI 2nd harmonic during the impeller frequency
sweep. Nevertheless, as already pointed out with the RMS-values observation, the guide
vanes O10 and O11 do not preferably respond at the same frequency, see Figure 9.15,
as would be presumed by the modal analyzes in water, model at rest. Moreover, when
the guide vane O10 is at resonance, the amplitude of the vibrations of the guide vane
O11 clearly seem to be attenuated. The phase shift between the pressure monitored at
the location of the guide vanes O10 and O11 imposed by the RSI mode at f = 18n
is ∆φk=−2 = −0.63 rad. Therefore, ∆φy10,y11 and ∆φα10,α11 are close to this value at
f = 18nmin: ∆φy10,y11 (18nmin) = −0.47 rad (ε∆φ = 25%) and ∆φα10,α11 (18nmin) = −0.30
rad (ε∆φ = 52%). The high value of the relative differences ε∆φ is due to the proximity
of the bending eigenmode. When increasing the impeller rotating frequency, the phase
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shifts are strongly modified across structural resonance. The maximum phase shift value
is reached at 230 Hz.
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Figure 9.16: Averaged Fourier transform magnitude of displacement and torsion angle
factors (left) and phase shift between the displacement signals and between the torsion
angle signals (right) at the RSI 3rd harmonic, f = 27n, for guide vanes O10 and O11, for
the investigated impeller frequency range.

At the RSI 3rd harmonic frequencies, see Figure 9.16, the bending displacement factor
of the guide vanes O10 and O11 is of the same order of magnitude as the torsion angle
factor, see Figure 9.16. Nevertheless, through the frequency range, one may observe
that the displacement factor increases, whereas the torsion angle factor decreases, by a
factor 1.5. The reason is that, by increasing the impeller frequency, the RSI 3rd harmonic
frequency moves away from the 1st bending eigenfrequency, 230 Hz, decreasing the bending
displacement, whereas it comes closer to the 1st torsion eigenfrequency, 630 Hz, increasing
the torsion angle. As to the phase shift between the displacement and torsion motions, it
is close to the phase shift imposed by the RSI: ∆φk=7 = 2.20 rad.

At the RSI 4th harmonic frequencies, see Figure 9.17, the torsion angle factor value
triples by increasing the excitation frequency from 36nmin to 36nmax, whereas the displace-
ment factor presents a relatively constant amplitude throughout the frequency range, see
Figure 9.17. Nevertheless, between 450 and 460 Hz, one may observe a local decrease of
the displacement factors. One presumes the influence of the 1st higher harmonic of the
1st bending eigenfrequency. It is interesting to see an attenuation of the vibrations at
this eigenfrequency harmonic, whereas the vibrations are severely amplified at the prox-
imity of the bending eigenfrequency, see Figure 9.15. The phase shift between the torsion
motions remains constant at ∆φk=−4 = −1.26 rad, whereas the phase shift between the
bending motions greatly varies due to the influence of the 1st higher harmonic of the 1st

bending eigenfrequency already mentioned above.

Finally, at the RSI 5th harmonic frequencies, see Figure 9.18, the maximum value of the
torsion angle factor of the guide vanes O10 and O11 is 50 times higher than the respective
displacement factor value because of the proximity of the 1st torsion eigenfrequency. The
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Figure 9.17: Averaged Fourier transform magnitude of displacement and torsion angle
factors (left) and phase shift between the displacements and between the torsion angle
signals (right) at the RSI 4th harmonic, f = 36n, for guide vanes O10 and O11, for the
investigated impeller frequency range.
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Figure 9.18: Averaged Fourier transform magnitude of displacement and torsion angle
factors (left) and phase shift between the displacement signals and between the torsion
angle signals (right) at the RSI 5th harmonic, f = 45n, for guide vanes O10 and O11, for
the investigated impeller frequency range.

guide vane O11 responds preferably at 657 Hz, whereas the amplitude of the guide vane
O10 vibrations at this frequency is strongly attenuated. The latter responds preferably
at 646 Hz and 666 Hz. The amplitude of the guide vane O11 vibrations at the frequency
f = 45n is amplified by a factor 42 in the impeller frequency range investigated, whereas
the factor is 17 for the guide vane O10. The phase shift values between the torsion motions
present a relatively high standard deviation. Nonetheless, one may observe that, away
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from resonance, the phase shift is close to ∆φk=5 = 1.57 rad. Throughout the resonance,
the phase shift greatly varies to get closer to zero near 45n = 650 Hz. At 657 Hz, the
phase shift is 2 rad and, at higher frequencies, the phase shift returns to 1.57 rad. The
phase shift between the bending displacement is not possible to get in a reliable manner,
because of the too low displacement values at these frequencies.

The waterfall diagrams of the coherence functions between the pressure factor fluc-
tuations and vibrations of the guide vanes against the normalized frequency f/n are
presented for the whole range of impeller frequencies n in Figures 9.19 to 9.23. The
coherence functions are averaged over 8 blocks of 0.32 s, each overlapping by 50%.
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Figure 9.19: Waterfall diagrams of the coherence functions between the pressure factor
monitored by the sensor g15 and the guide vane O11 displacement factor (left) and between
the pressure factor monitored by the sensor g15 and the guide vane O11 torsion angle factor
(right) against the impeller frequency n.

In these figures, the RSI modes clearly appear, while the correlation is poor in between.
The coherence functions value tends to 1 at RSI modes frequencies f = mzbn, for 1 ≤
m ≤ 3. Because of the low response of the strain gages and the pressure sensors to higher
RSI harmonics, the coherence functions do not exactly reach 1 at these frequencies. At the
4th harmonic, the value of the coherence functions is the worst when the harmonic value
comes closer to twice the value of the bending eigenfrequency. In Figure 9.17, one has
already mentioned an influence of the 1st higher harmonic of this guide vane eigenmode.
At the 5th harmonic, the coherence functions take low values when the harmonic frequency
comes closer to the torsion eigenfrequencies.

Therefore, linear relations between these pressure, displacement and torsion angle
factors might be built at RSI modes frequencies. Nevertheless, the accuracy of these
linear relations will be higher for the harmonic up to the third one. The following chapter
is devoted to the identification of the hydrodynamic parameters, namely the added mass
and the hydrodynamic damping brought by the vibrations of the neighboring guide vanes.
These parameters are deduced from influence matrices which is nothing else but a linear
relations between a force and a displacement.
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Figure 9.20: Waterfall diagrams of the coherence functions between the pressure factor
monitored by the sensor g15 and the guide vane O10 displacement factor (left) and between
the pressure factor monitored by the sensor g15 and the guide vane O10 torsion angle factor
(right) against the impeller frequency n.
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Figure 9.21: Waterfall diagrams of the coherence functions between the displacement
factors of the guide vane O10 and O11 (left) and between the torsion angle factors of the
guide vane O10 and O11 (right) against the impeller frequency n.
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Figure 9.22: Waterfall diagrams of the coherence functions between the displacement
factor of the guide vane O11 and the torsion angle factor of the guide vane O10 (left) and
between the displacement factor of the guide vane O10 and the torsion angle factor of the
guide vane O11 (right) against the impeller frequency n.
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Figure 9.23: Waterfall diagrams of the coherence functions between the displacement
factor of the guide vane O10 and the torsion angle factor of the guide vane O10 (left) and
between the displacement factor of the guide vane O11 and the torsion angle factor of the
guide vane O11 (right) against the impeller frequency n.
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Chapter 10

Identification of the hydrodynamic
parameters

After having analyzed the dynamics of the guide vanes and the pressure fluctuations at
the frequency of the RSI modes in Chapter 9, the aim of the present chapter is to identify
the hydrodynamic parameters to determine the unknown components of the matrices[
If
]
,
[
Cf
]

and
[
Kf
]

in eq. 3.21. The methodology is exposed prior to the analysis
of the bending and torsion modes. In Appendix D, the procedure used to identify the
hydrodynamic parameters is summarized.

10.1 Identification methodology

Among the guide vanes placed in the cascade, two have a flexible stem, whereas the others
have a stiff one. In Appendix B.3.2, it is shown that the bending and torsion stiffness of
the usual guide vanes is 2.30 and 2.15 times higher than the corresponding stiffness of the
modified guide vanes O10 and O11, respectively. The bending and torsion eigenfrequencies
are shown in Appendix B.4.2 to be 1.34 and 1.47 times higher than the corresponding
eigenfrequencies of the modified guide vanes O10 and O11, respectively. Therefore, the
vibrating displacement of the usual guide vanes is negligible, and consequently, the dis-
placement/angle vector y in eq. 3.21 established in Section 3.3 may be simplified as
follows:

y = (y10 y11 α10 α11)T (10.1)

In a similar manner, the force/torque vector F yields:

F = (F10 F11 T10 T11)T (10.2)

Therefore, the consideration of a 4 Degrees of Freedom mechanical system permits the
system of equations given in eq. 3.21 to be reduced to only four equations.

Based on the approach used in Section 3.3, one decomposes the restricted system of
equations as follows:{[

IS
]
ÿ (t) +

[
CS
]
ẏ (t) +

[
KS
]
y (t) = F (t)

F (t) = F̄ + FRSI (t)−
([
If
]
ÿ (t) +

[
Cf
]
ẏ (t) +

[
Kf
]
y (t)

) (10.3)
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In the spectral domain, the eq. 10.3 yields:{(
−ω2

[
IS
]

+
[
KS
]

+ iω
[
CS
])

ŷ (ω) = F̂ (ω)

F̂ (ω) = F̂RSI (ω)−
(
−ω2

[
If
]

+ iω
[
Cf
]

+
[
Kf
])

ŷ (ω)
(10.4)

The structural stiffness matrix [Ks] is known from the analytical estimation given in
Appendix B.3 and is expressed as:

[Ks] =


1.28 · 106 kg · s−2 0 0 0

0 1.28 · 106 kg · s−2 0 0
0 0 3610 kg ·m2 · s−2 0
0 0 0 3610 kg ·m2 · s−2


(10.5)

From Table 8.1, the structural mass/inertia matrix may be filled up:

[Is] =


0.33 kg 0 0 0

0 0.34 kg 0 0
0 0 1.75 · 10−4 kg ·m2 0
0 0 0 1.77 · 10−4 kg ·m2

 (10.6)

From Table 8.3, the structural damping matrix may be built:

[Cs] =


5.00 kg · s−1 0 0 0

0 6.57 kg · s−1 0 0
0 0 0.024 kg ·m2 · s−1 0
0 0 0 0.024 kg ·m2 · s−1

 (10.7)

By substituting these matrices in the first equation of 10.4 and since we know the
displacement/angle vector ŷ from the forced response measurements, one may obtain the
total dynamic force/torque vector F̂ applied to the guide vanes O10 and O11. The Fourier
transform is applied to eight 214-sample-long signals y (t) overlapping by 50%, each of the
eight sequences being windowed with a Hamming function. The Fourier transforms are
not averaged to keep phase information.

At this stage of the identification procedure, the force/torque vector F̂ may be placed
in the second equation of eq. 10.4 to identify the unknown components of the matrices[
If
]
,
[
Cf
]
,
[
Kf
]
.

The fluid mass and inertia matrix in eq. 10.4 is expressed as:

[
If
]

=


If10,10 If10,11 If,α10,10 If,α10,11

If11,10 If11,11 If,α11,10 If,α11,11

Jf10,10 Jf10,11 Jf,α10,10 Jf,α10,11

Jf11,10 Jf11,11 Jf,α11,10 Jf,α11,11

 (10.8)
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where the boxed components are known from Table 8.4 given in Section 8.2.1.

The hydrodynamic damping matrix in eq. 10.4 may be written as:

[
Cf
]

=


Cf

10,10 Cf
10,11 Cf,α

10,10 Cf,α
10,11

Cf
11,10 Cf

11,11 Cf,α
11,10 Cf,α

11,11

Df
10,10 Df

10,11 Df,α
10,10 Df,α

10,11

Df
11,10 Df

11,11 Df,α
11,10 Df,α

11,11

 (10.9)

where the boxed components are known from Table 8.6 given in Section 8.2.2.

The fluid stiffness matrix in eq. 10.4 is expressed as follows:

[
Kf
]

=


Kf

10,10 0 Kf,α
10,10 0

0 Kf
11,11 0 Kf,α

11,11

Lf10,10 0 Lf,α10,10 0

0 Lf11,11 0 Lf,α11,11

 (10.10)

We finally obtain four equations with 36 unknowns which consists of the non-diagonal
terms of the matrices

[
If
]

and
[
Cf
]
, the non-zero elements of the matrix

[
Kf
]

and

the fluctuating force and torque due to RSI, F̂RSI . In the two following sections, the
methodology for dealing with this underdetermined system of equations, and to finally
identify the missing components of the matrices

[
If
]
,
[
Cf
]
,
[
Kf
]
, is consecutively given

for the 1st bending and torsion eigenmodes.

10.1.1 Bending eigenmode

As may be observed in Figure 9.15, the bending displacement factor at the RSI 2nd

harmonic frequency is 10 times higher than the torsion angle factor at the same frequency.
In other words, as shown in eq. 9.9, this mean that the bending displacement is 10 times
higher than the leading/trailing edge displacement due to torsion. Therefore, one may
neglect the influence of the torsion at this RSI harmonic frequency and the vector ŷ is
reduced to:

ŷ (ω) = (ŷ10 (ω) ŷ11 (ω))T , for ω = 2π · 18n. (10.11)

At the frequencies of the RSI fundamental and the other harmonics, the displacement
factor does not exceed the torsion angle factor in such a way to reduce the vector ŷ
to this simple formulation. Therefore, one may only focus on the identification of the
hydrodynamic parameters for the vibrating behavior at the RSI 2nd harmonic frequency
f = 18n.

The eq. 10.4 is reduced to a system of 2 equations:
(
−ω2

[
IS
]

+
[
KS
]

+ iω
[
CS
])

(ŷ10 (ω) ŷ11 (ω))T =
(
F̂10 (ω) F̂11 (ω)

)T(
F̂10 (ω) F̂11 (ω)

)T
= F̂RSI (ω)−

[
Ĥf
]

(ŷ10 (ω) ŷ11 (ω))T
(10.12)
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where the influence matrix
[
Hf
]

is expressed as follows:

[
Ĥf
]

=

[
Ĥf

10,10 Ĥf
10,11

Ĥf
11,10 Ĥf

11,11

]
=

[
−ω2If10,10 + iωCf

10,10 +Kf
10,10 −ω2If10,11 + iωCf

10,11

−ω2If11,10 + iωCf
11,10 −ω2If11,11 + iωCf

11,11 +Kf
11,11

]
(10.13)

For high ω, the stiffness terms, Kf
10,10 and Kf

11,11, being negligible in comparison to the

inertia terms, disappear. Münch et al. [56] show that when ω → ∞, Kf

Ifω2 ≈ 10−3 � 1.

As a consequence, only the 2 non-diagonal components of the influence matrix
[
Ĥf
]

and

the fluctuating force due to RSI, F̂RSI , remain unknown.

To approximate the force contributions due to the RSI excitation, F̂RSI , two assump-
tions are successively made. First, it is assumed that the guide vane O11 bending dis-
placement amplitude, |ŷ11|, is not high enough to induce any influence on the guide vane
O10 at the RSI 1st harmonic frequency corresponding to the lowest impeller frequency of
the investigated range fmin = 18nmin. Therefore, the force spectral value acting on O10

due to the RSI at fmin = 18nmin may be written from the 2nd equation of Eq. (10.23):

F̂RSI
10 (fmin) = F̂10 (fmin) +

(
− (ωmin)2 If10,10 + i (ωmin)Cf

10,10

)
· ŷ10 (fmin) (10.14)

with ωmin = 2π18nmin.

The value of the force due to the RSI acting on the guide vane O11 at this frequency
is assumed to be phase shifted by ∆φk=−2, given in Table 7.1, as follows:

F̂RSI
11 (fmin) = F̂RSI

10 (fmin) · e−i∆φk=−2 (10.15)

The force due to the RSI excitation may be linearly linked to the pressure monitored
in the guide vane channel on its pressure side as follows:{

F̂RSI
10 (f = 18n) = L̂s,10 · p̂RSIs10

(f = 18n)

F̂RSI
11 (f = 18n) = L̂s,11 · p̂RSIs11

(f = 18n)
(10.16)

where L̂s,10 and L̂s,11 are complex numbers which are supposed to be constant on the
whole impeller frequency range. To determine the force due to the RSI excitation in the
whole impeller frequency range, these constants as well as the pressure contribution from
the RSI must be known and the following procedure is followed. At the location of the
pressure sensors s10 and s11, the guide vane vibrations influence the measurement and the
contribution due to RSI may not be isolated. Therefore, the only pressure sensor which is
not influenced by the guide vane vibrations is the sensor g15. During measurements where
all the guide vanes of the cascade feature stiff stem, avoiding in this way the contribution
from the guide vane vibrations, the pressure monitored by the sensor g15 is supposed to
be linearly linked to the pressure monitored by the sensor s10 and s11 with the complex
constants Lsg,10 and Lsg,11, respectively.
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In the case with the two modified guide vanes, the forces due to the RSI may then be
known from the pressure monitored by the sensor g15 as follows:F̂

RSI
10 (f = 18n) = L̂s,10

L̂sg,10
· p̂g15 (f = 18n) = L̂10 · p̂g15 (f = 18n)

F̂RSI
11 (f = 18n) = L̂s,11

L̂sg,11
· p̂g15 (f = 18n) = L̂11 · p̂g15 (f = 18n)

(10.17)

Finally, the complex numbers L̂10 and L̂11 are derived from the system of equations
in Eq. (10.17) at the frequency f = fmin, at which the forces due to the RSI, F̂RSI

10 (fmin)
and F̂RSI

11 (fmin) are already known from Eqs. (10.14) and (10.15). Assuming that the
complex numbers remain constant in the whole impeller frequency range, the forces due
to the RSI excitation at all these frequencies may be obtained using Eq. (10.17).

The hydrodynamic parameters, namely the added mass terms, If10,11 and If11,10 and the

hydrodynamic damping terms, Cf
10,11 and Cf

11,10, may then be obtained from eq. 10.13 as
follows:

If10,11 (f = 18n) = −
<
(
Ĥf

10,11

)
ω2

18n

(10.18)

If11,10 (f = 18n) = −
<
(
Ĥf

11,10

)
ω2

18n

(10.19)

Cf
10,11 (f = 18n) =

=
(
Ĥf

10,11

)
ω18n

(10.20)

Cf
11,10 (f = 18n) =

=
(
Ĥf

11,10

)
ω18n

(10.21)

10.1.2 Torsion eigenmode

As may be seen in Figure 9.18, the torsion angle factor at the RSI 5th harmonic frequency
is 50 times higher than the bending displacement factor at the same frequency. As already
mentioned, this means that the displacement at the leading/trailing edge due to torsion
angle is 50 times higher than the bending displacement. Therefore, one may neglect the
bending displacement and the vector ŷ is reduced to:

ŷ (ω) = (α̂10 (ω) α̂11 (ω))T , for ω = 2π · 45n. (10.22)

¡¡ At the frequencies of the RSI fundamental and the other harmonics, the torsion angle

factor does not exceed the displacement factor in such a way to reduce the vector ŷ
to this simple formulation. Therefore, one may only focus on the identification of the
hydrodynamic parameters for the vibrating behavior at the RSI 5th harmonic frequency
f = 45n.
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The eq. 10.4 is reduced to a 2 DOF system of equations:
(
−ω2

[
IS
]

+
[
KS
]

+ iω
[
CS
])

(α̂10 (ω) α̂11 (ω))T =
(
T̂10 (ω) T̂11 (ω)

)T(
T̂10 (ω) T̂11 (ω)

)T
= T̂RSI

i (ω)−
[
Ĝf
]

(α̂10 (ω) α̂11 (ω))T
(10.23)

[
Ĝf
]

being an influence matrix expressed as follows:

[
Ĝf
]

=

[
Ĝf

10,10 Ĝf
10,11

Ĝf
11,10 Ĝf

11,11

]
(10.24)

=

[
−ω2Jf,α10,10 + iωDf,α

10,10 + Lf,α10,10 −ω2Jf,α10,11 + iωDf,α
10,11

−ω2Jf,α11,10 + iωDf,α
11,10 −ω2Jf,α11,11 + iωDf,α

11,11 + Lf,α11,11

]

As mentioned in Section 10.1.1, for high ω, the stiffness terms Lf,α10,10 and Lf,α11,11 are
neglected compared to the inertia terms. As a consequence, only the 2 non-diagonal

components of the influence matrix
[
Ĝf
]

and the fluctuating torque due to RSI, T̂RSI
i ,

remain unknown.

To approximate the torque contribution due to the RSI, T̂RSI , one firstly assumes the
guide vane O11 torsion angle α̂11 being not high enough to induce any influence on the
guide vane O10 at the RSI 5th harmonic frequency corresponding to the lowest impeller
frequency of the investigated range fmin = 45nmin. Therefore, the torque acting on O10

due to the RSI at fmin = 45nmin may be written from the 2nd equation of eq. 10.23:

T̂RSI10 (fmin) = T̂10 (fmin) +
(
− (ωmin)2 Jf,α10,10 + i (ωmin)Df,α

10,10

)
· α̂10 (fmin) (10.25)

with ωmin = 2π45nmin.

The torque value acting on the guide vane O11 at this frequency is assumed to be
phase shifted by ∆φk=5 given in Table 7.1 as follows:

T̂RSI11 (fmin) = T̂RSI10 (fmin) · e−i∆φk=5 (10.26)

The same procedure as for the bending case is followed to determine the torque due to
the RSI excitation in the whole impeller frequency range. Once this torque contribution

known, the non-diagonal components of the influence matrix
[
Ĝf
]

may be obtained from

eq. 10.23:

Ĝf
10,11 =

(
T̂10 − T̂RSI10

)
α̂11

(10.27)

Ĝf
11,10 =

(
T̂11 − T̂RSI11

)
α̂10

(10.28)
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The hydrodynamic parameters, namely the added inertia terms, Jf,α10,11 and Jf,α11,10, and

the hydrodynamic damping terms, Df,α
10,11 and Df,α

11,10, may then be obtained from eq. 10.25
as follows:

Jf,α10,11 (f = 45n) = −
<
(
Ĝf

10,11

)
ω2

45n

(10.29)

Jf,α11,10 (f = 45n) = −
<
(
Ĝf

11,10

)
ω2

45n

(10.30)

Df,α
10,11 (f = 45n) =

=
(
Ĝf

10,11

)
ω45n

(10.31)

Df,α
11,10 (f = 45n) =

=
(
Ĝf

11,10

)
ω45n

(10.32)

10.2 Hydrodynamic parameters for the bending eigen-

mode

The added mass on the guide vane O10 by the vibrations of the guide vane O11, If10,11; the

added mass on the guide vane O11 by the vibrations of the guide vane O10, If11,10; the added

masses If10,10 and If11,11; each being normalized by the corresponding structural mass IS10

or IS11, are plotted in Figure 10.1 against the RSI 2nd harmonic frequency f = 18n for the
whole impeller frequency range investigated. The standard deviations are also indicated
by intervals.

The added mass on the guide vane O11 by the vibrations of the guide vane O10, If10,11,
varies according to the excitation frequency f = 18n. It represents between 8.2% and
21.5% of the structural mass of the guide vane O10, IS10. The added mass on the guide
vane O10 by the vibrations of the guide vane O11, If11,10, is lower than If10,11 and fluctuates
between -4.4% and 5.0% of the structural mass of the guide vane O11, IS11. As mentioned in
Section 8.2.1, the added mass If10,10 and If11,11 represent 69.7% and 61.8% of the structural
mass of the guide vane O10 and O11, respectively.

The hydrodynamic damping constant acting on the guide vane O10 due to the vi-
brations of the guide vane O11, Cf

10,11, the hydrodynamic damping constant acting on

the guide vane O11 due to the vibrations of the guide vane O10, Cf
11,10, the hydrodynamic

damping constant Cf
10,10 and Cf

11,11, each being normalized by the corresponding structural
damping constant CS

10 or CS
11, are plotted in Figure 10.2 against the RSI 2nd harmonic

frequency f = 18n for the whole impeller frequency range investigated. The standard
deviations are also indicated by intervals.
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Figure 10.1: Added mass on the guide vane O10 by the vibrations of the guide vane O11,
If10,11; added mass on the guide vane O11 by the vibrations of the guide vane O10, If11,10;

added masses If10,10 and If11,11; each being normalized by the corresponding structural mass
IS10 or IS11, at the RSI 2nd harmonic frequency f = 18n for the whole impeller frequency
range investigated.

We may observe high variations of the hydrodynamic damping due to the vibrations
of the neighboring guide vanes throughout the investigated impeller frequency range. The
hydrodynamic damping constant Cf

10,11 is from 0 up to 11.7 times higher than the struc-

tural damping constant CS
10 and the hydrodynamic damping constant Cf

11,10 represents
between 0 and 461% of the structural damping constant CS

11. As already mentioned, the
damping constants Cf

10,10 and Cf
11,11 are assumed constant throughout the investigated

impeller frequency range and correspond to 510% of CS
10 and 330% of CS

11, respectively.

The amplitude of the total force |F̂10| acting on the guide vane O10; the contribution
from the RSI, |F̂RSI

10 |; the contribution from O10 vibrations, |F̂ f
10,10|; and the contribution

from O11 vibrations, |F̂ f
10,11|; at the frequency corresponding to the RSI 2nd harmonic

frequency are normalized by F̂RSI
10 and plotted in Figure 10.3. The standard deviations

are also indicated by intervals.

The amplitude of the total force acting on the guide vane O11, |F̂11|; the contribution
from the RSI, |F̂RSI

11 |; the contribution from O11 vibrations, |F̂ f
11,11|; and the contribution

from O10 vibrations, |F̂ f
11,10|; at the frequency corresponding to the RSI 2nd harmonic

frequency are normalized by F̂RSI
11 and plotted in Figure 10.4. The standard deviations

are also indicated by intervals.

On the one hand, it may be seen that the force acting on the guide vane O10 due to
the guide vane O11 vibrations is between 14 and 100 times lower than the force due to
the guide vane O10 vibrations. On the other hand, the force acting on the guide vane O11

due to the guide vane O10 vibrations is between 2 and 10 times lower than the force due
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Figure 10.2: Hydrodynamic damping constant acting on the guide vane O10 due to the
vibrations of the guide vane O11, Cf

10,11; hydrodynamic damping constant acting on the

guide vane O11 due to the vibrations of the guide vane O10, Cf
11,10; hydrodynamic damp-

ing constants Cf
10,10 and Cf

11,11; each being normalized by the corresponding structural
damping constant CS

10 or CS
11, at the RSI 2nd harmonic frequency f = 18n for the whole

impeller frequency range investigated.

to the guide vane O11 vibrations. The force amplitude |F̂ f
11,10| is between 2 and 10 times

higher than the force amplitude |F̂ f
10,11| and, consequently, the assumption leading to the

eq. 10.14 is verified. Finally, whereas the amplitude of the force due to the adjacent guide
vane vibrations remain inferior to the amplitude of the force due to RSI, the amplitude
of the force acting on a guide vane due to its vibrations may exceed the amplitude of the
force due to the RSI by a factor 7 at resonance.

In Figure 10.5, the phase shift at the RSI 2nd harmonic frequency f = 18n between
the displacement of the guide vanes O10 and O11 and the external force due to the RSI
acting on the guide vane O10 and O11, respectively, is plotted against the corresponding
frequency. The standard deviations are also indicated by intervals.

One may see that, throughout the guide vane resonance, the phase shift at the RSI
2nd harmonic frequency f = 18n between the displacement and the external force due to
the RSI greatly varies. Theoretically, a resonance modifies the phase shift by −π. Here,
the resonance already occurs at a lower frequency than fmin = 18nmin and, therefore, on
the investigated impeller rotating frequency range, the phase shift varies by -2.8 rad and
-2.4 rad for the guide vanes O10 and O11, respectively. Moreover, between 18n = 230 Hz
and 18n = 240 Hz, the phase shift between the displacement of the guide vane O11 and
the external force due to the RSI locally varies due to the influence of the vibrations of
the guide vane O10.

In Figure 10.6, the ratio of the Fourier transform magnitude of the guide vane O10

EPFL - Laboratory for Hydraulic Machines



106 III. Guide vane cascade dynamics

210 220 230 240 250 260 270 280
10

−2

10
−1

10
0

10
1

[Hz]

18n

[-] |F|/ 10

10,10 10,11

10|F  |/ |F   |/
|F     |/

RSI

|F     |/f f10|F   |RSI
10|F   |RSI

10|F   |RSI

10|F   |RSI

10|F   |RSI

^ ^ ^ ^

^ ^

^ ^

^ ^

Figure 10.3: Fourier transform magnitude of normalized total force |F̂10|/|F̂RSI
10 | acting

on the guide vane O10 at the 2nd harmonic frequency and each of its contributions: the
normalized contribution from RSI, |F̂RSI

10 |/|F̂RSI
10 |; the normalized contribution of the own

vibrations, |F̂ f
10,10|; and the normalized contribution from the vibrations of the guide vane

O11, |F̂ f
10,11|.

bending displacement to the Fourier transform magnitude of the guide vane O11 bending
displacement is plotted at the RSI 2nd harmonic frequency f = 18n, for the investigated
impeller frequency range. At resonance, the guide vane O10 vibrates with an amplitude 3
times higher than the guide vane O11, whereas far from resonance, the ratio is 1.

As mentioned in Section 3.3, regarding the Figures 9.15 and 10.6, one may assume
that at least three parameters are able to play a role in the added mass terms, If10,11 and

If11,10, and in the hydrodynamic damping terms, Cf
10,11 and Cf

11,10: the phase shift between
the displacement of the guide vanes O10 and O11, ∆φy10,y11 , the relative amplitude of the

vibrations, |ŷ10|
|ŷ11| , and the reference flow velocity Cref . The added mass and hydrodynamic

terms are approached by the following expressions:

I∗f10,11 =

(
0.5 kg · s ·m−1 · Cref + 1.4 kg · |ŷ10|

|ŷ11|
· sin (∆φy10,y11 − 0.5)− 2.1 kg

)
· 10−2

(10.33)

I∗f11,10 =

(
2.75 kg · s ·m−1 · Cref + 3.25 kg · |ŷ11|

|ŷ10|
· sin (∆φy10,y11 + 1.7)− 20 kg

)
· 10−2

(10.34)

C∗f10,11 = 25 kg ·m−1 ·Cref + 22 kg · s−1 · |ŷ10|
|ŷ11|

· sin (∆φy10,y11 + 1)− 185 kg · s−1 (10.35)
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Figure 10.4: Fourier transform magnitude of normalized total force |F̂11|/|FRSI
11 | acting

on the guide vane O11 at the 2nd harmonic frequency and each of its contributions: the
normalized contribution from RSI, |F̂RSI

11 |/|F̂RSI
11 |; the normalized contribution of the own

vibrations, |F̂ f
11,11|; and the normalized contribution from the vibrations of the guide vane

O10, |F̂ f
11,10|.
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Figure 10.5: Phase shift between the displacement and the force at the RSI 2nd harmonic
frequency f = 18n.

C∗f11,10 = 5 kg ·m−1 ·Cref + 50 kg · s−1 · |ŷ11|
|ŷ10|

· sin (∆φy10,y11 + 0.4)− 21 kg · s−1 (10.36)
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Figure 10.6: Ratio of the Fourier transform magnitude of the guide vane O10 bending
displacement to the Fourier transform magnitude of the guide vane O11 bending displace-
ment at the RSI 2nd harmonic frequency f = 18n, for the investigated impeller frequency
range.

The eqs. 10.33 to 10.36 are assumed to be valid for the investigated ranges, namely
−0.7 ≤ ∆φy10,y11 ≤ 0.3 and 1 ≤ |ŷ10|

|ŷ11| ≤ 3.

In Figure 10.7, the measured values, If11,10, of the added mass on the guide vane O11

due to the vibrations of the guide vane O10 at the frequency f = 18n, are compared with
the approximated values I∗f11,10. Both are normalized with the structural mass IS11 and
plotted against the corresponding frequency f = 18n. The standard deviations are also
indicated by intervals.

In Figure 10.8, the measured values, If10,11, of the added mass on the guide vane O10

due to the vibrations of the guide vane O11 at the frequency f = 18n, are compared to
the approximated values I∗f10,11. Both are normalized with the structural mass IS10 and
plotted against the corresponding frequency. The standard deviations are also indicated
by intervals.

In Figure 10.9, the measured values, Cf
11,10, of the hydrodynamic damping constant

acting on the guide vane O11 due to the vibrations of the guide vane O10 at the frequency
f = 18n, are compared to the approximated values C∗f11,10. Both are normalized with the
structural damping constant CS

11 and plotted against the corresponding frequency. The
standard deviations are also indicated by intervals.

In Figure 10.10, the measured values, Cf
10,11, of the hydrodynamic damping constant

acting on the guide vane O10 due to the vibrations of the guide vane O11 at the frequency
f = 18n, are compared to the approximated values C∗f10,11. Both are normalized with the
structural damping constant CS

10 and plotted against the corresponding frequency. The
standard deviations are also indicated by intervals.
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Figure 10.7: Measured values, If11,10, and approximated values, I∗f11,10, of the added mass
on the guide vane O11 due to the vibrations of the guide vane O10 at the RSI 2nd harmonic
f = 18n, normalized with the structural mass IS11, against the corresponding frequency.
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Figure 10.8: Measured values, If10,11, and approximated values, I∗f10,11, of the added mass
on the guide vane O10 due to the vibrations of the guide vane O11 at the RSI 2nd harmonic
f = 18n, normalized with the structural mass JS10, against the corresponding frequency.

The approximated added mass and the hydrodynamic damping constants fit the mea-
sured values adequately. For the bending case, the guide vane cascade is therefore shown
to behave as a 2nd order mechanical system whose parameters are dependent of the flow
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Figure 10.9: Measured values, Cf
11,10, and approximated values, C∗f11,10, of the hydrody-

namic damping constant acting on the guide vane O11 due to the vibrations of the guide
vane O10 at the RSI 2nd harmonic f = 18n, normalized with the structural damping
constant CS

11, against the corresponding frequency.
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Figure 10.10: Measured values, Cf
10,11, and approximated values, C∗f10,11, of the hydrody-

namic damping constant acting on the guide vane O10 due to the vibrations of the guide
vane O11 at the RSI 2nd harmonic f = 18n, normalized with the structural damping
constant CS

10, against the corresponding frequency.
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velocity, the vibration phase shift between two adjacent guide vanes and the relative
amplitude of their vibrations.

10.3 Hydrodynamic parameters for the torsion eigen-

mode

The added inertia on the guide vane O10 by the vibrations of the guide vane O11, Jf,α10,11;

the added inertia on the guide vane O11 by the vibrations of the guide vane O10, Jf,α11,10;

the added inertia Jf,α10,10 and Jf,α11,11, each being normalized by the corresponding structural
inertia JS10 or JS11; are plotted in Figure 10.11 against the RSI 5th harmonic frequency
f = 45n for the whole impeller frequency range investigated. The standard deviations
are also indicated by intervals.
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Figure 10.11: Added inertia on the guide vane O10 by the vibrations of the guide vane O11,
Jf,α10,11; added inertia on the guide vane O11 by the vibrations of the guide vane O10, Jf,α11,10;

added inertia Jf,α10,10 and Jf,α11,11; each being normalized by the corresponding structural
inertia JS10 or JS11, at the RSI 5th harmonic frequency f = 45n for the whole impeller
frequency range investigated.

The added inertia on the guide vane O11 by the vibrations of the guide vane O10, Jf,α10,11,
varies slightly according to the excitation frequency f = 45n. It represents between -5%
and 5% of the structural mass of the guide vane O10, JS10. The added inertia on the
guide vane O10 by the vibrations of the guide vane O11, Jf,α11,10, varies more than Jf,α10,11 and
fluctuates between -45% and 30% of the structural mass of the guide vane O11, JS11. As
mentioned in Section 8.2.1, the added mass Jf,α10,10 and Jf,α11,11 represent 39.7% and 36.4%
of the structural mass of the guide vane O10 and O11, respectively.
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The hydrodynamic damping constant acting on the guide vane O10 due to the vi-
brations of the guide vane O11, Df,α

10,11; the hydrodynamic damping constant acting on

the guide vane O11 due to the vibrations of the guide vane O10, Df,α
11,10; the hydrody-

namic damping constant Df,α
10,10 and Df,α

11,11; each being normalized by the corresponding
structural damping constant DS

10 or DS
11, are plotted in Figure 10.12 against the RSI 5th

harmonic frequency f = 45n for the whole impeller frequency range investigated. The
standard deviations are also indicated by intervals.

550 600 650 700
−30

−20

−10

0

10

20

30

40

[Hz]
45n

i,j[-] D i/D S (i,j)=(10,11) (i,j)=(11,10)

(i,j)=(10,10) (i,j)=(11,11)

f,α

Figure 10.12: Hydrodynamic damping constant acting on the guide vane O10 due to the
vibrations of the guide vane O11, Df,α

10,11; hydrodynamic damping constant acting on the

guide vane O11 due to the vibrations of the guide vane O10, Df,α
11,10; hydrodynamic damp-

ing constants Df,α
10,10 and Df,α

11,11; each being normalized by the corresponding structural
damping constant DS

10 or DS
11, at the RSI 5th harmonic frequency f = 45n for the whole

impeller frequency range investigated.

We may observe variations of the hydrodynamic damping due to the vibrations of
the neighboring guide vanes throughout the investigated impeller frequency range. The
hydrodynamic damping constant Df,α

10,11 is from 0 up to 2 times higher than the structural

damping constant DS
10 and the hydrodynamic damping constant Df,α

11,10 represents between
0 and -12% of the structural damping constant CS

11. As already mentioned, the damping
constants Df,α

10,10 and Df,α
11,11 are assumed constant throughout the investigated impeller

frequency range and correspond to 4% of DS
10 and 8% of DS

11, respectively.

The amplitude of the total torque |T̂10| acting on the guide vane O10; the contribution
from the RSI, |T̂RSI10 |; the contribution from O10 vibrations, |T̂ f10,10|; and the contribution

from O11 vibrations, |T̂ f10,11|; at the frequency corresponding to the RSI 5th harmonic

frequency are normalized by T̂RSI10 and plotted in Figure 10.13. The standard deviations
are also indicated by intervals.
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Figure 10.13: Fourier transform magnitude of normalized total torque |T̂10|/|T̂RSI10 | acting
on the guide vane O10 at the 5th harmonic frequency and each of its contributions: the
normalized contribution from RSI, |T̂RSI10 |/|T̂RSI10 |; the normalized contribution of the own
vibrations, |T̂ f10,10|; and the normalized contribution from the vibrations of the guide vane

O11, |T̂ f10,11|.

The amplitude of the total torque |T̂11| acting on the guide vane O11; the contribution
from the RSI, |T̂RSI11 |; the contribution from O11 vibrations, |T̂ f11,11|; and the contribution

from O10 vibrations, |T̂ f11,10|; at the frequency corresponding to the RSI 5th harmonic

frequency are normalized by T̂RSI11 and plotted in Figure 10.14. The standard deviations
are also indicated by intervals.

It may be seen that the torque acting on the guide vane O10 due to the guide vane O11

vibrations is 5 times lower than the torque due to the guide vane O10 vibrations. Similarly,
the torque acting on the guide vane O11 due to the guide vane O10 vibrations is 5 times
lower than the torque due to the guide vane O11 vibrations. The torque amplitude |T̂ f11,10|
is 5 times higher than the torque amplitude |T̂ f10,11| and, consequently, the assumption
leading to eq. 10.25 is verified. Finally, the amplitude of the torque due to the adjacent
guide vane vibrations may exceed the amplitude of the torque due to RSI by a factor 10
at resonance.

In Figure 10.15, the phase shift at the RSI 5th harmonic frequency f = 45n between
the torsion angle of the guide vanes O10 and O11 and the external torque due to the RSI
acting on the guide vane O10 and O11, respectively, is plotted against the corresponding
frequency. The standard deviations are also indicated by intervals.

The phase shift between the torsion angle and the external torque varies by −π
throughout the resonance, namely from 625 Hz to 683 Hz. Between 45n = 650 Hz
and 45n = 660 Hz, the phase shift between the torsion angle of the guide vane O10 and
the external torque due to the RSI locally varies due to the influence of the vibrations of
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Figure 10.14: Fourier transform magnitude of normalized total torque |T̂11|/|T̂RSI11 | acting
on the guide vane O11 at the 5th harmonic frequency and each of its contributions: the
normalized contribution from RSI, |T̂RSI11 |/|T̂RSI11 |; the normalized contribution of the own
vibrations, |T̂ f11,11|; and the normalized contribution from the vibrations of the guide vane

O10, |T̂ f11,10|.
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Figure 10.15: Phase shift between the torsion angle and the torque at the RSI 5th harmonic
frequency f = 45n.

the guide vane O11.
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In Figure 10.16, the ratio of the Fourier transform magnitude of the guide vane O10

torsion angle to the Fourier transform magnitude of the guide vane O11 torsion angle at
the RSI 5th harmonic frequency f = 45n, for the investigated impeller frequency range.
At resonance, the guide vane O10 vibrates with an amplitude 9 times lower than the guide
vane O11, whereas, far from resonance, the ratio tends to 1.
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^
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Figure 10.16: Ratio of the Fourier transform magnitude of the guide vane O10 torsion
angle to the Fourier transform magnitude of the guide vane O11 torsion angle at the RSI
5th harmonic frequency f = 45n, for the investigated impeller frequency range.

As for the bending motion case, three parameters are able to play a role in the added
inertia, Jf,α10,11 and Jf,α11,10, and in the hydrodynamic damping, Df,α

10,11 and Df,α
11,10: the phase

shift between the torsion angle of the guide vanes O10 and O11, ∆φα10,α11 , the relative

amplitude of the vibrations, |α̂10|
|α̂11| , and the reference flow velocity Cref . These terms are

approached by the following expressions:
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J∗f10,11 =

(
1.5 kg ·m2 · |α̂10|

|α̂11|
· sin (∆φy10,y11 − 1.5) + 0.10 kg ·m2

)
· 10−5 (10.37)

J∗f11,10 =

(
1 kg ·m · s · Cref + 1.5 kg ·m2 · |α̂11|

|α̂10|
· sin (∆φy10,y11 − 1.0)− 9 kg ·m2

)
·10−5

(10.38)

D∗f10,11 = 0.03 kg·m·Cref+0.08 kg·m2 ·s−1 · |α̂10|
|α̂11|

·sin (∆φy10,y11)−0.27 kg·m2 ·s−1 (10.39)

D∗f11,10 = −0.06 kg·m·Cref +0.08 kg·m2 ·s−1 · |α̂11|
|α̂10|

·sin (∆φy10,y11 − 3.1)+0.54 kg·m2 ·s−1

(10.40)

In Figure 10.17, the measured values, Jf,α11,10, of the added mass on the guide vane O11

due to the vibrations of the guide vane O10 at the frequency f = 45n, are compared to
the approximated values J∗f,α11,10. Both are normalized with the structural inertia JS11 and
plotted against the corresponding frequency. The standard deviations are also indicated
by intervals.

550 600 650 700
−1.5

−1.0

−0.5

0

0.5

1.0

[Hz]
45n

i,j[-] J f,α
11,10J *f,α

11,10J f,α
i/J S

11/J S /J S
11

Figure 10.17: Measured values, Jf11,10, and approximated values, J∗f11,10, of the added inertia
on the guide vane O11 due to the vibrations of the guide vane O10 at the RSI 5th harmonic
f = 45n, normalized with the structural inertia JS11, against the corresponding frequency.
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In Figure 10.18, the measured values, Jf,α10,11, of the added mass on the guide vane O10

due to the vibrations of the guide vane O11 at the frequency f = 45n, are compared to
the approximated values J∗f,α10,11. Both are normalized with the structural inertia JS10 and
plotted against the corresponding frequency. The standard deviations are also indicated
by intervals.
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Figure 10.18: Measured values, Jf10,11, and approximated values, J∗f10,11, of the added inertia
on the guide vane O10 due to the vibrations of the guide vane O11 at the RSI 5th harmonic
f = 45n, normalized with the structural inertia JS10, against the corresponding frequency.

In Figure 10.19, the measured values, Df,α
11,10, of the hydrodynamic damping constant

acting on the guide vane O11 due to the vibrations of the guide vane O10 at the frequency
f = 45n, are compared to the approximated values D∗f,α11,10. Both are normalized with
the structural inertia DS

11 and plotted against the corresponding frequency. The standard
deviations are also indicated by intervals.

In Figure 10.20, the measured values, Df,α
10,11, of the hydrodynamic damping constant

acting on the guide vane O10 due to the vibrations of the guide vane O11 at the frequency
f = 45n, are compared to the approximated values D∗f,α10,11. Both are normalized with
the structural inertia DS

10 and plotted against the corresponding frequency. The standard
deviations are also indicated by intervals.

The approximated added inertia and the hydrodynamic damping constants fit the
measured values adequately. For the torsion case, the guide vane cascade is therefore
shown to behave as a 2nd order mechanical system whose parameters are dependent of
the flow velocity, the vibration phase shift between two adjacent guide vanes and the
relative amplitude of their vibrations.
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Figure 10.19: Measured values, Df
11,10, and approximated values, D∗f11,10, of the hydro-

dynamic damping constant acting on the guide vane O11 due to the vibrations of the
guide vane O10 at the RSI 5th harmonic f = 45n, normalized with the structural damping
constant DS

11, against the corresponding frequency.
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Figure 10.20: Measured values, Df
10,11, and approximated values, D∗f10,11, of the hydro-

dynamic damping constant acting on the guide vane O10 due to the vibrations of the
guide vane O11 at the RSI 5th harmonic f = 45n, normalized with the structural damping
constant DS

10, against the corresponding frequency.
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Chapter 11

Eigenvalue problem

The aim of this chapter is to consider the eigenvalue problem linked to the bending motion
and the torsion motion. The associated eigenvalues being complex, the eigenvectors are
complex as well and defined in the phase space. The eigenfrequencies determined in this
chapter are compared with the frequencies at which the guide vanes respond preferably
in the tests.

11.1 Bending eigenmode

In this section, the bending eigenmode is considered. The relative residual [δC], measuring
the satisfaction of the Caughey condition, given in eq. 3.26, is defined as follows:

δCi,j =

[
[C] [I]−1 [K]− [K] [I]−1 [C]

]
i,j[

[C] [I]−1 [K]
]
i,j

(11.1)

The Caughey condition is satisfied if [δC] = 0. The four elements of the relative
residual [δC] matrix at the RSI 2nd harmonic frequency are given in Figure 11.1. The
standard deviations are indicated by intervals.

In Figure 11.1, it may clearly be observed that the Caughey condition is not satisfied.
The two diagonal terms of the [δC] matrix present a value of 10% around the bending
eigenfrequency value. At higher frequencies, the matrix components δC10,10 and δC11,11

are rising up to -0.4 and 0.3, respectively. One has to mention the small values of the
standard deviation, except for frequencies where the denominator in eq. 11.1 is close to
zero and for frequencies close to f = 18nmax.

Since the Caughey condition is not satisfied, the eigenfrequencies of the mechanical
system are found by following the procedure given in Section 3.4. The eigenfrequencies of
the 2 DOF mechanical system are plotted in Figure 11.2 against the excitation frequency
corresponding to the RSI 2nd harmonic frequency f = 18n, for the investigated impeller
frequency range.

In Figure 11.2, one may see that the eigenfrequencies vary depending on the impeller
rotation frequency. As the mechanical system has two DOF, two eigenfrequencies exist
for each impeller rotating frequency. Nevertheless, the resonance of the guide vanes is
reached when the linear curve f0,y,i crosses one or the other eigenfrequency curves. As
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Figure 11.1: Component of the relative residual matrix [δC] measuring the satisfaction
of the Caughey condition for the case of bending motion, against the RSI 2nd harmonic
excitation frequency f = 18n.

210 220 230 240 250 260 270 280
220

225

230

235

240

245

250

[Hz]

18n

f[Hz] f f0,y,1 0,y,2

f  
  =

18
n

0,y,i

0,
y,i

Figure 11.2: Eigenfrequencies of the 2 DOF system, against the RSI 2nd harmonic exci-
tation frequency f = 18n.

may be observed in the figure, in the present case, resonance occurs at 228 and 234 Hz,
which corroborate the results, see Figure 9.15: the guide vane O10 reaches resonance at
234 Hz, whereas the amplitude of the vibrations of the guide vane O11 at this frequency
is attenuated. The latter responds preferably at 228 Hz.
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The eigenfrequencies of the corresponding conservative mechanical system are obtained
imposing [C] = 0 in eq. 3.25. They are plotted in Figure 11.2 against the excitation
frequency corresponding to the RSI 2nd harmonic frequency f = 18n. Comparing Figure
11.3 with Figure 11.2, one may see that the eigenfrequencies are not very shifted due to
the dissipation effect.
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Figure 11.3: Eigenfrequencies of the corresponding 2 DOF’s conservative system, against
the RSI 2nd harmonic excitation frequency f = 18n.

11.2 Torsion eigenmode

In this section, one focuses on the torsion eigenmode. The four elements of the relative
residual [δC] matrix, defined in eq. 11.1, at the RSI 5th harmonic frequency are given in
Figure 11.4

As may be observed the Caughey condition is not satisfied. At low frequencies, the
large standard deviation values are due to the low torsion angle measured values. Above
630 Hz, the diagonal components of the relative residual [δDα] matrix diverge from the
zero value and rise up to -0.6. Therefore, the procedure explained in Section 3.4 must be
followed to identify the eigenfrequencies.

The eigenfrequencies of the mechanical system are plotted in Figure 11.5 against the
excitation frequency corresponding to the RSI 5th harmonic frequency f = 45n.

At low frequencies, the standard deviation values are great because of the low torsion
angle measured values. The linear curve f0,α,i = 45n crosses the eigenfrequency curves
around 610 Hz and 655 Hz. In Figure 9.15, the torsion angle factor fluctuations of the
guide vane O11 are amplified at 655 Hz, whereas the torsion angle factor fluctuations of the
guide vane O10 are attenuated. The guide vanes have reached resonance. Nevertheless,
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Figure 11.4: Component of the relative residual matrix [δD] measuring the satisfaction
of the Caughey condition for the case of torsion motion, against the RSI 5th harmonic
excitation frequency f = 45n.
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Figure 11.5: Eigenfrequencies of the 2 DOFs system against the RSI 5th harmonic exci-
tation frequency f = 45n.

the torsion angle factor fluctuations of the two guide vanes do not show any resonance at
610 Hz.

The eigenfrequencies of the corresponding conservative mechanical system are plotted
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in Figure 11.6 against the excitation frequency corresponding to the RSI 5th harmonic
frequency f = 45n. According to Figure 11.6, the resonance of the corresponding conser-
vative mechanical system should be reached between 625 and 650 Hz. The shift of the
eigenfrequencies due to dissipation is greater for the torsion than for the bending mode.
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Figure 11.6: Eigenfrequencies of the corresponding conservative 2 DOFs system against
the RSI 5th harmonic excitation frequency f = 45n.
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Chapter 12

The entire guide vane cascade

This chapter aims to predict the behavior of the entire cascade if all the zo = 20 guide
vanes feature a flexible stem, from the measurements on two instrumented guide vanes in
the case where the others present a stiff stem. The structural inertia/mass, damping and
stiffness of each guide vane are supposed to be identical.

12.1 Bending eigenmode

The zo × zo influence matrix
[
Ĥf
]

is constructed with the hydrodynamic parameters

obtained from the measurements. Each guide vane present similar stiffness, damping and
mass terms. Therefore, a guide vane influences itself and its neighbors similarly to another
one. Moreover, based on the results obtained in Appendix C.3, one assumes that only the

guide vanes placed adjacently influence each other; the influence matrix
[
Ĥf
]

being thus

tri-diagonal. Therefore, one has:

[
Ĥf
]

Ĥf
i,j = Ĥf

10,10 , if i = j

Ĥf
i,j = Ĥf

10,11 , if j = i+ 1

Ĥf
i,j = Ĥf

11,10 , if j = i− 1

(12.1)

The zo = 20 eigenvectors are identified following the procedure exposed in Section 3.4.
We restrict the investigation to the p values (0 ≤ p ≤ 3) corresponding to the measured
phase shifts, since the eqs. 10.33 to 10.36 are valid in the investigated range of the phase
shift between two adjacent guide vanes. The relative amplitude ŷ10

ŷ11
is 1. In Figure 12.1,

the real part of the first four displacement eigenvectors Bp for 0 ≤ p ≤ 3 are normalized
with their maximum value and plotted.

According to eq. 3.40, each p value features a particular phase shift ∆φ = 2π
zo
· p

between two adjacent guide vanes of the cascade. Assuming a permanent response, one
may compute the resulting displacement as follows:

ŷ (18n) =
[
−ω2

18n [I] + [K] + ı · ω18n [C]
]−1

F̂RSI (18n) (12.2)

In Figure 12.2, the eigenfrequency and the eigenvalue real part of the bending eigen-
modes 0 ≤ p ≤ 3 at the RSI 2nd harmonic frequency f = 18n are plotted against the
corresponding frequency.
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Figure 12.1: Real part of the first four displacement eigenvectors Bp for 0 ≤ p ≤ 3
normalized with their maximum value.
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Figure 12.2: Eigenfrequency (left) and eigenvalue real part (right) of the bending modes
0 ≤ p ≤ 3, against the RSI 2nd harmonic excitation frequency f = 18n.

The frequency at which the guide vanes respond preferably varies from 221 Hz to
222 Hz according to the different eigenmodes, which is between 2% and 3% lower than
the frequency at which the guide vanes respond preferably in the tests made with two
adjacent flexible guide vanes. The real eigenvalue of each eigenmode is positive, that is
the mechanical system is stable. Since the RSI pressure mode at this frequency features
a phase shift ∆φp=2 = 2π

20
· 2, all the evidence suggests that the eigenmode p = 2 is most
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likely.

In Figure 12.3, the amplitude of the displacement factor of a guide vane in the cascade
at the RSI 2nd harmonic frequency f = 18n is plotted for the mode p = 2. It may be
observed that when considering the entire guide vane flexible, the vibration amplitude is
twice lower than when considering only two flexible guide vanes, the others being stiff.

210 220 230 240 250 260 270 280

1.0

5.0

x10
−3

0.5

2.0

0.2

[Hz]

18n

[-] |c |y
^ entire guide vane cascade

O O10 11

Figure 12.3: Measured values of displacement factor amplitude of the guide vanes O10

and O11 during the measurements and predicted values of displacement factor amplitude
of a guide vane in the cascade if each one features a flexible stem and identical structural
mass, damping and stiffness, at the RSI 2nd harmonic frequency f = 18n, for the mode
p = 2.

12.2 Torsion eigenmode

In a similar manner as for the bending mode, the zo × zo influence matrix
[
Ĝf
]

is con-

structed assuming that each guide vane influences itself and its adjacent neighbors sim-
ilarly to another one. Moreover, based on the results obtained in Appendix C.3, one
assumes that only the guide vanes placed adjacently are influencing each other; the influ-

ence matrix
[
Ĝf
]

being thus tri-diagonal. Therefore, one has:

[
Gf
]

Ĝf
i,j = Ĝf

10,10 , if i = j

Ĝf
i,j = Ĝf

10,11 , if j = i+ 1

Ĝf
i,j = Ĝf

11,10 , if j = i− 1

(12.3)

The zo = 20 torsion angle eigenvectors are identified following the procedure exposed
in Section 3.4. As for the case of the bending eigenmodes, one restricts the investigation
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to the p values corresponding to the measured phase shifts, since the eqs. 10.37 to 10.40
are valid in the investigated range of the phase shift between two adjacent guide vanes.
The relative amplitude ŷ10

ŷ11
is 1. In Figure 12.4, the real part of the first six torsion angle

eigenvectors for 0 ≤ p ≤ 5 are normalized with their maximum value are plotted.
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Figure 12.4: Real part of the first six torsion angle eigenvectors for 0 ≤ p ≤ 5 normalized
with their maximum value.

According to eq. 3.40, each p value features a particular phase shift ∆φ = 2π
zo
· p

between two adjacent guide vanes of the cascade. Assuming a permanent response, one
may compute the resulting torsion angle as follows:

ŷ (45n) =
[
−ω2

45n [I] + [K] + ı · ω45n [C]
]−1

F̂RSI (45n) (12.4)

In Figure 12.5, the eigenfrequency of the torsion eigenmodes 0 ≤ p ≤ 5 at the RSI 5th

harmonic frequency f = 45n are plotted against the corresponding frequency.

In Figure 12.6, the real part of the eigenvalues corresponding to the torsion eigen-
modes 0 ≤ p ≤ 5 at the RSI 5th harmonic frequency f = 45n are plotted against the
corresponding frequency.
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Figure 12.5: Eigenfrequency of the guide vane cascade, corresponding to the modes
0 ≤ p ≤ 2 (left) and the modes 3 ≤ p ≤ 5 (right) against the excitation frequency
corresponding to the RSI 5th harmonic frequency f = 45n.
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Figure 12.6: Eigenvalue real part of the guide vane cascade, corresponding to the modes
0 ≤ p ≤ 2 (left) and the modes 3 ≤ p ≤ 5 (right) against the excitation frequency
corresponding to the RSI 5th harmonic frequency f = 45n.

The frequency at which the guide vanes respond preferably varies between 650 Hz and
695 Hz, see Figure 12.5, which is slightly different from the frequency at which the guide
vanes respond preferably in the experiments: up to 8% frequency shift. The real part
of the eigenvalues is strongly varying depending on the mode p. Since the RSI pressure
mode at this frequency features a phase shift ∆φp=2 = 2π

20
· 5, all the evidence suggests

that the eigenmode p = 5 is most likely. Above 660 Hz, the real eigenvalue of this mode
becomes negative, that is the mechanical system is unstable. If all the guide vanes feature
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flexible stem, premature failures of the guide vanes are expected if the pump-turbine is
operated at BEP above n = 14.6 Hz.

In the following lines, we propose two different ways to prevent damage to the guide
vanes. On the one hand, by multiplying the structural damping constant by a factor of
2, the mechanical system becomes stable. In Figure 12.7, the real part of the modified
guide vane cascade eigenvalues is plotted for the eigenmode p = 5. It may be seen that
the eigenfrequencies are not shifted due to the higher damping. Moreover, the real part
remains positive in the whole impeller frequency range, which means that the mechanical
system is stable.
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Figure 12.7: Eigenfrequencies (left) and eigenvalue real part (right) of the eigenmode
p = 5, against the excitation frequency corresponding to the RSI 5th harmonic frequency
f = 45n. The guide vanes feature a structural damping constant twice higher than the
initial one.

On the other hand, the instability leads to high vibration amplitude when the shape of
the excitation, that is the RSI pressure mode, is similar to the eigenmode of the cascade.
If all the guide vanes feature similar structural parameters, the shape of the RSI pressure
mode is identical to the shape of the cascade eigenmode. By multiplying by a factor
0.8 the inertia of 10 guide vanes and placing them alternately between the guide vanes
featuring the initial inertia, the mechanical system is mistuned. In such a case, the phase
shift between the vibrations of the guide vanes Oi and Oi+1 is different from the one
between the vibrations of the guide vanes Oi+1 and Oi+2. The shape of the structural
eigenmode is thereby changed, both in terms of amplitude and phase, and does not match
anymore the shape of the pressure mode.

Considering the eigenmode presenting 5 diametrical nodes, the phase shifts between
the eigenvector components corresponding to the guide vanes Oi and Oi+1 as well as
between the eigenvector components corresponding to the guide vanes Oi+1 and Oi+2 for
the mistuned cascade are plotted against the RSI 5th harmonic frequency f = 45n in
Figure 12.8.
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Figure 12.8: Phase shifts between the eigenvector components corresponding to the guide
vanes Oi and Oi+1 as well as between the eigenvector components corresponding to the
guide vanes Oi+1 and Oi+2, against the excitation frequency corresponding to the RSI 5th

harmonic frequency f = 45n.

In Figure 12.9, the complex visualization of the eigenvectors components associated to
the guide vanes Oi, Oi+1 and Oi+2 corresponding to the tuned cascade and the mistuned
cascade is plotted for the BEP at n = 13.3 Hz. As it may clearly be seen, the eigenvectors
phase are shifted.
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Figure 12.9: Complex visualization of the eigenvectors components associated to the guide
vanes Oi, Oi+1 and Oi+2 corresponding to the tuned cascade and the mistuned cascade.

In Figure 12.10, the eigenfrequencies and the real part of the mistuned guide vane
cascade eigenvalues are plotted for the eigenmode with 5 diametrical nodes. By mistuning
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the cascade, the eigenvalues are increased and the range of negative eigenvalue real part
is shifted to slightly higher excitation frequencies compared to the tuned cascade.
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Figure 12.10: Eigenfrequencies and real part of the mistuned guide vane cascade eigen-
values for the eigenmode with 5 diametrical nodes, against the excitation frequency cor-
responding to the RSI 5th harmonic frequency f = 45n.
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Chapter 13

Conclusions

Experimental investigations of the guide vane cascade dynamic response to the excitation
due to the Rotor-Stator Interaction in a low specific speed pump-turbine reduced scale
model are reported. The investigated pump-turbine features 9 impeller blades and 20
guide vanes and is operated at the Best Efficiency operating Point at 18◦ opening angle.
The bending and torsion vibrations of the guide vanes are studied. The influence of
the adjacent guide vane vibrations are pointed out. A methodology is given to reliably
identify the hydrodynamic parameters of the mechanical system, which is shown to be of
the 2nd order. The entire guide vane cascade dynamic response is studied based on the
measurements on two guide vanes equipped with strain gages and three pressure sensors
adequately placed in the stator.

The impulse response of immersed guide vanes is obtained using a spark plug flush
mounted on the bottom flange in a guide vane channel. This type of measurements are
successfully undertaken in water, model at rest, and model in operation.

Keeping the operating conditions of the Best Efficiency Point constant, the impeller
rotation frequency is swept and the guide vanes are therefore excited by the Rotor-Stator
Interaction, RSI, over a wide frequency range. The combination of zb impeller blades
with zo guide vanes makes apparent many different spinning diametrical pressure modes.
Nevertheless, the guide vanes are mainly excited at the frequencies f = zbn and f = 2zbn,
but also respond up to the RSI 5th harmonic.

The amplitude of the fluctuating bending displacement and torsion angle of the guide
vanes is strongly varying across the impeller frequency range. The ranges of the 2nd and
the 5th RSI harmonic frequency contain the frequency of the 1st bending eigenmode and
the 1st torsion eigenmode, respectively. The pressure fluctuations close to the vibrating
guide vanes are strongly varying and may even decrease by 50% at resonance. Therefore,
a transfer of energy between the vibrating structure and the flow pressure should occur.

The influence of an adjacent guide vane on the vibrations of a guide vane is found
to vary significantly between its position on the pressure side and suction side of the
latter. Regarding the guide vane bending vibrations, the hydrodynamic force acting on a
guide vane induced by its neighboring guide vane on the pressure side is up to 10 times
higher than the force induced by its suction side neighbor. As for the guide vane torsion
vibrations, the hydrodynamic torque acting on a guide vane induced by its neighboring
guide vane on the pressure side is up to 5 times higher than the force induced by its
suction side neighbor.
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The hydrodynamic damping coefficient and the added mass corresponding to the vi-
brations of the adjacent guide vanes are successfully identified and an influence matrix is
built. These two terms are shown to depend strongly on the relative amplitude of their
vibrations, the absolute flow velocity and the phase shift between their vibration signals.

Taking into account the periodic condition, the influence matrix is built in order to
predict the dynamics of the entire guide vane cascade. Four and six different eigenmodes
are investigated for the case of bending and torsion motions, respectively. On the one
hand, the bending modes feature eigenfrequencies varying from 221 Hz to 222 Hz, which
is between 2% and 3% lower than the frequency at which the guide vanes respond prefer-
ably in the tests made with two adjacent flexible guide vanes. The eigenvalue real part of
each eigenmode remains positive on the investigated impeller frequency range, that is the
mechanical system is stable. On the other hand, the torsion modes feature eigenfrequen-
cies varying from 650 Hz to 695 Hz. Above 660 Hz, the eigenvalue real part of the mode
which is the most likely to be excited by the RSI becomes negative. This means that the
mechanical system is unstable and premature failures of the guide vanes are expected if
the pump-turbine is operated at BEP above n = 14.6 Hz.

Finally, two different ways to prevent damage to the guide vanes excited at the RSI
5th harmonic frequency are proposed. On the one hand, it is shown that by increasing
the structural damping constant by a factor 2, the mechanical system becomes stable.
On the other hand, the modification of the shape of the cascade eigenmode is achieved
by mistuning the cascade, such that its shape does no longer match the shape of the RSI
pressure mode. This way, even if the mechanical system remains unstable, the risk of
damaging the guide vanes is reduced.
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Perspectives

The present document does not pretend to clarify all the pending issues of fluid-structure
coupling occurring in hydraulic machines. Incidentally, it gives rise to several questions
whose answer would contribute greatly to the further development of these machines. In
addition to opening the way for further experiments, the present study proposes complete
results of a case study which may constitute a benchmark for the validation of numerical
tools.

Entire guide vane cascade

The study intends to predict the vibrating behavior of the entire cascade featuring similar
flexible guide vanes from the local measurements on two isolated flexible guide vanes. It
would be interesting to place flexible guide vanes in the entire cascade to validate the
forecasted results. Nonetheless, the difficulty lies in manufacturing guide vanes featuring
exactly similar structural properties.

Mistuned guide vane cascade

At the end of the present document, two solutions to prevent guide vane damage are
shortly investigated. Mistuning the cascade is one of the solutions, and we show that this
way, we are able to shift the shape of the structural eigenmode and, thus to reduce the
risk of damaging the guide vanes. This technique is already used in gas turbine, [45] and
[10]. It needs further attention: by optimizing the type of mistuning, a reduction of the
guide vane vibration amplitude should be possible.

Parameters influencing the coupling

After having shown the relevance of the vibration phase, amplitude and the flow velocity
on the coupling terms, it is necessary to investigate all these parameters in a simpler
case. For instance, two vibrating plates immersed in a uniform flow would allow a deeper
investigation of the mentioned parameters. Moreover, the dependence of the distance
between the vibrating structures could easily be analyzed.
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Pressure fluctuations

At guide vane resonance, a transfer of energy occurs from the flow to the vibrating struc-
ture. Therefore, the pressure fluctuations in the rotor-stator gap decrease. By reaching
the resonance of the guide vanes, the periodic loading due to the RSI acting on the impeller
blades might be minimized and, as a consequence, the risk of crack appearance on the
impeller might be lowered. A more detailed study of the relation between the vibrations
of the guide vanes and the decrease of the pressure fluctuations might be undertaken.

Validation of numerical tools

As already mentioned, the case study of the present work may constitute a benchmark
for the validation of numerical tools. Following the procedures used by Munch [56], one
might successively study the forced motion of a single guide vane in the cascade and its free
motion, by neglecting the RSI excitation. The effect of its vibrations on the neighboring
guide vane may be quantified by an influence matrix. Then, the forced response due to
the RSI excitation might be studied and the results might be compared to experimental
data.

Recommendations for hydraulic machine design

This chapter is not concluded without proposing recommendations for the assessment of
hydraulic machine dynamics. Assessments tend to occur at the early stage of the product
development. Manufacturers are often compelled to verify the vibrating behavior by using
numerical tools. Modal analyzes of machine components both in air and in still water are
usually made. The present study highlights the dependence of the phase shift and the
relative amplitudes of the vibrations on the influence matrix. These parameters have to
be considered in the assessment of components that might be influenced by others: guide
vanes, impeller blades, stay vanes, etc.

The relevance of the hydrodynamic damping on the vibration amplitude highlighted
in the present experimental work should urge the researchers to develop reliable numerical
tools for dealing with fluid-structure coupling. Highly dissipative numerical codes might
be a source of wrong dynamic behavior assessment.

Finally, as already mentioned above, mistuning techniques to minimize the risk of
guide vane damage should be taken into account in the design process. Nevertheless
further studies are needed to optimize the type of mistuning.
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Appendix A

Signal processing

A.1 Random data spectral analysis

Let q simultaneously recorded discrete signals, featuring M samples, be given by [52]:

xk (m) , 1 < k < q & 1 < m < M. (A.1)

The values of the signals {xk,i} are associated with equally spaced time tm = m∆t in
such a way that

xk (m) = xk (tm) (A.2)

According to the Shannon theorem, the sampling frequency fs = 1/∆t is assumed
superior to the double of the highest frequency contained in the signal. Let the signals
xk (t) also be divided into nd segments, each of length Mj, which may overlap. xk,j (t)
denotes the function xk (t) being restricted to the jth segment.

The discrete frequency at which the Fourier components may be computed is defined
as:

fi =
i

T
(A.3)

The discrete Fourier transform components related to the jth segment are expressed
as:

x̂k (fi) = ∆t ·
Mj−1∑
mj=0

(xk,j (mj)− xk,j)Wh (mj) e
−i2πfimj (A.4)

with Wh (mj), the Hamming windowing function, being defined as:

Wh (mj) = 0.54− 0.46 · cos
(

2π
mj

Mj − 1

)
, 0 < mj < Mj − 1 (A.5)

and xk,j (mj), the signal time average, computed as:

xk,j =
1

Mj

Mj−1∑
mj=0

xk,j (mj) (A.6)
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The averaged magnitude of the discrete Fourier transform of the signal xk (t) is ex-
pressed as:

|x̂k (fi)| =
1

nd

nd∑
j=1

|x̂k,j (fi)| (A.7)

The power spectral density estimate of the signal xk (t) is defined as follows:

|x̂k|
2

(fi) =
1

nd

nd∑
j=1

|x̂k,j (fi)|2 (A.8)

The cross power spectral density estimate between the signals xk (t) and xl (t) is defined
as:

|x̂kx̂l|
2

(fi) =
1

nd

nd∑
j=1

x̂∗k,j (fi) · x̂l,j (fi) (A.9)

The coherence function between the signals xk (t) and xl (t) is defined as follows [9]:

Γ2
xkxl

(fi) =
|x̂kx̂l|2 (fi)

|x̂k|2 (fi) · |x̂l|2 (fi)
(A.10)

In the present document, for readability reason, the ¯ sign for averaged magnitude of
Fourier Transform, power spectral density and cross power spectral denstity is omitted.
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Appendix B

Analytical identification of the guide
vane dynamics

B.1 Deflection and rotation of a beam due to simple

bending

According to the simple bending theory [27], an embedded beam, subject to a concentrated
force F at its free end, see Figure B.1, features the following elastic line equation:

yF (x) =
F

6EIz
(3lx2 − x3) (B.1)

E being Young’s modulus, Iz, the moment of inertia and l, the lever arm length.

The rotation βF of the free extremity is obtained as follows:

βF =
Fl2

2EIz
(B.2)

F

y
β

x
l

F

Figure B.1: Embedded beam deflection yF and rotation βF due to a concentrated force
F at its free end.

The effect of a concentrated torque T applied at its free end, see Figure B.2, provides
the following elastic line equation:

yT (x) =
T

2EIz
x2 (B.3)
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The rotation βT of the extremity is obtained as follows:

βT =
T l

EIz
(B.4)

T

x

y

β

l

T

Figure B.2: Embedded beam deflection yT and rotation βT due to a concentrated torque
T at its free end.

B.2 Angular deflection of a beam due to simple tor-

sion

An embedded circular beam, subject to a concentrated torque T around its neutral axis,
see Figure B.3, features the following angular deflection α [27]:

TT α

x

Figure B.3: Embedded beam deflection due to concentrated torque around the neutral
axis.

α (x) =
T

GIp
x (B.5)

G being the shear modulus and Ip the polar moment of inertia
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B.3 Guide vane stiffness identification

B.3.1 Modified guide vanes

The stem of the modified guide vane is simplified and partitioned into four different
segments, see Figure B.4, featuring the dimensions, the moment of inertia and the mass
per unit length µ given in Table B.1. The guide vane is assumed to be ideally embedded
at the beginning of the segment 1. The hydrofoil inertia Jm = 2.3 kg·m2 and its mass
m = 0.4 kg are concentrated at the end of segment 4. The moment of inertia in the
direction normal to the stem axis Iz and the polar moment of inertia Ip for circular
segment are obtained as follows:

Iz =
π (D4

ext −D4
int)

64
(B.6)

Ip =
π (D4

ext −D4
int)

32
(B.7)

1 2 3 4

m

Figure B.4: Guide vane partitioning, hydrofoil concentrated mass and embedding location.

Table B.1: Guide vane dimensions, Dext, Dint and l, moment of inertia, Iz and Ip, and
mass per unit length µ.

Units Segment 1 Segment 2 Segment 3 Segment 4
Dext [m] 0.020 0.022 0.016 0.021
Dint [m] 0.008 0.008 0.008 -
l [m] 0.021 0.052 0.039 0.014
Iz [m4] 7.65 · 10−9 1.13 · 10−8 3.02 · 10−9 9.55 · 10−9

Ip [m4] 1.53 · 10−8 2.26 · 10−8 6.03 · 10−9 1.91 · 10−8

µ [kg · m] 2.27 2.84 1.30 2.98

Denoting the segment number by i and considering small rotations at extremities, the
total deflection y obtained when applying a concentrated force F at the free extremity of
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the guide vane, may be expressed as follows:

y =
4∑
i=1

(yF,i + yT,i) +
3∑
i=1

(
sin (βi) ·

4∑
j=i+1

Lj

)

≈
4∑
i=1

(yF,i + yT,i) +
3∑
i=1

(
βi ·

4∑
j=i+1

Lj

)
(B.8)

Using eqs. B.1 to B.4, the guide vane bending stiffness Ks is finally recovered by
dividing the force F by the deflection y as follows:

Ks =
F

y
= 1.28 · 106 N·m-1 (B.9)

The total angular deflection α due to a torque T around the neutral axis may be
expressed as the sum of the angular deflection αi of each of the four segments as follows:

α =
4∑
i=1

αi (B.10)

Using eq. B.5, the torsion stiffness Ls is then obtained as follows:

Ls =
T

α
= 3610 N·m·rad-1 (B.11)

B.3.2 Usual guide vanes

The usual guide vane stem is simplified and partitioned into three different segments,
see Figure B.5, featuring the dimensions, the moment of inertia and the mass per unit
length µ given in Table B.2. The guide vane is assumed to be ideally embedded at the
beginning of the segment 1. Similarly to the modified guide vanes, the hydrofoil inertia
Jm = 2.3kg ·m2 and its mass m = 0.4 kg are concentrated at the end of segment 4.

m

1 2 3

Figure B.5: Usual guide vane stem partitioning, hydrofoil lumped mass and embedding
location.
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Table B.2: Usual guide vane dimensions, Dext, Dint and l, moment of inertia, Iz and Ip,
and mass per unit length µ.

Units Segment 1 Segment 2 Segment 3
Dext [m] 0.022 0.021 0.022
Dint [m] 0 0 0
l [m] 0.024 0.060 0.020
Iz [m4] 1.15 · 10−8 9.55 · 10−9 1.15 · 10−8

Ip [m4] 2.30 · 10−8 1.91 · 10−8 2.30 · 10−8

µ [kg · m] 3.27 2.98 3.27

In the same manner as for the modified guide vanes, the bending Ks
usual and torsion

Lsusual stiffness yields:

Ks
usual = 2.94 · 106 N·m-1 (B.12)

Lsusual = 7749 N·m·rad-1 (B.13)

The bending stiffness of the usual guide vanes is 2.3 higher than the one of the modified
guide vanes and the torsion stiffness of the usual guide vanes is 2.15 higher than the one
of the modified guide vanes.

B.4 Identification of the guide vane bending and tor-

sion eigenfrequencies

B.4.1 Modified guide vanes

The Rayleigh-Ritz method [80] is used to estimate the first bending and torsion eigen-
frequencies of the guide vane. The dynamic motion of the guide vane is supposed to be
similar to the static motion. This assumption is valid for the study of the 1st bending
and torsion modes. The system is assumed to be conservative and, thus, the maximal en-
ergy of deformation must equal the maximal kinetic energy. Therefore, the first bending
eigenfrequency fR−R0,y is approximated as:

fR−R0,y =
1

2π

√√√√∑4
i=1

EIx,i
2
·
∫ Li

0

(
d2

dx2yF,i (x)
)2

+
(
d2

dx2yT,i (x)
)2
dx

1
2

∑4
i=1

∫ Li
0
µi · yi,tot (x)2 dx+ 1

2
·m · (y4,tot (L4))2

= 306Hz (B.14)

with

yi,tot (x) =
i−1∑
j=1

(yF,j(Lj) + yT,j(Lj) + (βF,j−1 + βT,j−1) · Lj)

+ (βF,i−1 + βT,i−1) · x+ yF,i(x) + yT,i(x) (B.15)
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The first torsion eigenfrequency fR−R0,α is evaluated as follows:

fR−R0,α =
1

2π

√
1
2
T
∑4

i=1 αi
1
2
· J∗

= 645Hz (B.16)

with

J∗ =
4∑
i=1

∫ Li

0

ρ(αi (x) +
i−1∑
j=1

αj (Lj)

)2 ∫ D1,ext

D1,int

π
D4

16
dD

 dx
+

(
4∑
i=1

αi (Li)

)2

· Jm (B.17)

B.4.2 Usual guide vanes

Using the same approach as for the modified guide vanes, the bending fR−R0,y,usual and torsion

fR−R0,α,usual eigenfrequencies of the usual guide vanes yields:

fR−R0,y,usual = 411Hz (B.18)

fR−R0,α,usual = 945Hz (B.19)

The bending eigenfrequency of the usual guide vanes is 1.34 higher than those of the
modified guide vanes and the torsion eigenfrequency of the usual guide vanes is 1.47 higher
than those of the modified guide vanes.

B.5 Identification of the guide vane mass and inertia

B.5.1 Modified guide vanes

The modified guide vane bending and torsion inertia are analytically found as follows:

Is =
Ks(

2πfR−R0,y

)2 = 0.47 kg (B.20)

Js =
Ls(

2πfR−R0,α

)2 = 2.20 · 10−4 kg ·m2 (B.21)

B.5.2 Usual guide vanes

The usual guide vane bending and torsion inertia are analytically found as follows:

Isusual =
Ks
usual(

2πfR−R0,y,usual

)2 = 0.44 kg (B.22)
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Jsusual =
Lsusual(

2πfR−R0,α,usual

)2 = 2.20 · 10−4 kg ·m2 (B.23)

On the one hand, the structural mass of the usual guide vanes Isusual is 6.4% lower
than the one of the modified guide vanes. On the other hand, the structural inertia of
the usual guide vanes Jsusual is similar as the one of the modified guide vanes.
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Appendix C

Green functions for solving potential
flow

C.1 Potential flow

One is interested in solving the potential flow Φ in the fluid volume V bounded by the
surface A. The approach is treated for a simply-connected domain, which drastically
simplifies the problem without loss of generality. The potential flow problem is expressed
by the following Laplace equation [26]:

4Φ = 0 , in V (C.1)

A Neumann condition is imposed on the boundary A:

∂Φ

∂n
= g , on A (C.2)

g being a function defined on the boundary A

C.2 Green functions

To solve the potential flow problem, an auxiliary function is defined, a Green function Θ
of the Laplace operator. By definition, the function Θ is the solution of:

4Θ (x− x′) = δ (x− x′) (C.3)

δ (x− x′) being the Dirac delta function centered at x′ It may easily be demonstrated

that in 2D:

Θ (x− x′) =
1

2π
ln r (C.4)

with r = |x− x′|
The Green’s second identity is expressed as follows:∫

V

Φ4Θ−Θ4ΦdV =

∫
A

Φ
∂Θ

∂n
−Θ

∂Φ

∂n
dA (C.5)
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According to the Green’s function properties, one may express the potential at any
position in V as a function of the conditions imposed on the boundary A from eq. C.5:

Φ (x) =
1

2π

(∫
A

Φ (x′)
∂ ln r

∂n
dA−

∫
A

ln r
∂Φ (x′)

∂n
dA

)
, if x ∈ V and x′ ∈ A (C.6)

When x ∈ A, one has [50]:

Φ (x)

2
=

1

2π

(∫
A

Φ (x′)
∂ ln r

∂n
dA−

∫
A

ln r
∂Φ (x′)

∂n
dA

)
, if x, x′ ∈ A (C.7)

We use the notation of the boundary elements method to express the relation between
the potential and the boundary conditions, in which the Einstein summation convention
is used. In this method, the boundary A is first discretized and then a collocation method
is applied, see Figure C.1.

x j
x j+1

x k

nk

V

A

x k+1

Figure C.1: Boundary discretization according to the boundary elements method.

Using this notation, the eq. C.7 is expressed as follows:

Θkj

(
∂Φ

∂n

)
j

= Υ′kjΦj (C.8)

with

Υ′kj = Υkj −
1

2
δkj (C.9)

and where Θij and Υij are defined as:

Θkj =
1

2π

∫ xj+1

xj

ln rdx (C.10)

Υkj =
1

2π

∫ xj+1

xj

∇x ln r · ndx , with r = |xk − x| (C.11)
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From eq. C.8, the potential at each position xj of the boundary A may be found as
follows:

Φj = Υ
′−1
kj Θkj

(
∂Φ

∂n

)
j

(C.12)

Writing the eq. C.6 in a discretized formulation, the potential in the whole domain V
is expressed:

Φi = ΞijΦj − Πij

(
∂Φ

∂n

)
j

(C.13)

where

Ξij =
1

2π

∫
∂Ω

ln rdx (C.14)

and

Πij =
1

2π

∫
∂Ω

∇x ln r · ndx , with r = |xi − x| (C.15)

Finally, one may express the potential Φ at any position in V by replacing eq. C.12
in eq. C.13:

Φi =
(

ΞijΥ
′−1
kj Θkj − Πij

)(∂Φ

∂n

)
j

= Λij ·
(
∂Φ

∂n

)
j

(C.16)

C.3 Application to the guide vane cascade

In this section, the influence level undergone by a guide vane due to the vibrations of its
neighbors is considered. For that matter, the problem is simplified in such a way that
the cascade is represented linearly. Each guide vane is simplified by a linear segment dis-
cretized by three points xj, xj+1, xj+2. The midpoint rule method is used to approximate
the integrals in eq. C.16. Two intermediate points xk, xk+1 are used to take into account
the term Υ

′−1
kj Θkj.

Assuming that all the guide vanes exhibit a bending motion whose rate ẏ is the same
for each guide vane and according to eq. C.16, one defines the influence coefficient Λi,i−J
of the guide vane Oi−J vibrations on the potential flow Φi at the position xi as follows:

Φi = Λi,i−J · ẏ =
∑
j

Λij · ẏ (C.17)

This coefficient finally indicates the influence of the guide vane Oi−J on the guide vane
Oi, since the potential flow Φi at the position xi is directly related to the pressure at the
wall of the guide vane Oi, see eq. 3.18 and, consequently, to the force applied on the guide
vane Oi.

In Figure C.3, the influence coefficient Λi,i−J of the guide vane Oi−J vibrations on the
potential flow Φi at the position xi is plotted for the first five neighboring guide vanes.
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xi

xj

xj+1

xj+2

xk

xk+1

Oi-1Oi
Oi-2

xj

xj+1

xj+2

xk

xk+1

α  =18°O

2πR2
zO

2πR2
zO

L

L
2

y y

Figure C.2: Simplified guide vane cascade represented linearly.

The influence of the guide vanes Oi−2 and Oi−5 on the guide vane Oi is found to
be 3.7 and 12.3 times lower than the influence of the guide vane Oi−1. In the reality,
one certainly observe a lower influence of the guide vanes Oi−J (J ≥ 2), because of the
intermediate guide vanes. In this approach, the intermediate guide vanes are neglected
for the sake of simplicity.

EPFL - Laboratory for Hydraulic Machines



C. Green functions for solving potential flow 155

0

0.2

0.4

0.6

0.8

1.0

Oi-1

Λi,Oi-J
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Oi-2 Oi-3 Oi-4 Oi-5

[-]

Figure C.3: Influence coefficient Λi,i−J of the guide vane Oi−J vibrations on the potential
flow Φi at the position xi, normalized by Λi,i−1 for the first five neighboring guide vanes.
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Appendix D

Procedure for hydrodynamic
parameter identification

1) Newton's law governing the guide vane cascade

    with                                                                        
    
    
    
    and the matrices whose components are built from the potential flow theory

2) The guide vanes O   and O   having a flexible stem, the others being stiff, the system is reduced to:

    with                                               is known from the measurements                                               
    and                                                is unknown.

3)        is analytically estimated from the simple bending and torsion theory
4)       is experimentally estimated from the modal analysis in air and from
5)        is experimentally identified from the impulse response in air 
6) Knowing these matrices, the vector      may be computed with
7) The matrices       ,        and         are expressed as follows:

10 11

s[K ]
s[I ] s[K ]

s[C ]
F

1
2

1
f[I  ] f[C  ] f[K  ]

^ ^ ^ ^ ^
^ ^ ^ ^^

^
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8) The outlined diagonal terms are known from the modal analyzes in water, model at rest.
9) Focus on the response to the frequency            at which the torsion response is negligible compared to the bending: 

   
    where                          and

10)      is assumed not strong enough to have any influence at the lowest value of the impeller frequency shift, and, 
therefore, the force due to RSI acting on O    may be known:

11) The force due to RSI acting on O   is known by taking into account the phase shift of pressure mode k=2:

12) The force due to RSI on the entire impeller frequency range investigated is known by solving:

      where           and          are assumed constant over the frequency range. The pressure terms are then linearly linked
      to the pressure monitored by the sensor       which is not influenced by the guide vanes vibrations.  
13) The non diagonal components of the influence matrix        are known by using       :

14) The hydrodynamic parameters are finally known as follows: 

15) Focusing on the response to the frequency            at which the bending response is negligible compared to
      the torsion, and repeating the steps from 10) to 13) accordingly, the corresponding hydrodynamic parameters are
      known as follows: 

2

f=45n

f=18n

y
11
^

10

11

2
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Appendix E

Rotating pressure modes due to the
RSI - an acoustic approach

The spinning pressure modes resulting from RSI have been theoretically approached in
axial gas turbomachines. Blake [12] summarizes the different studies on spinning pressure
modes made in the past. Basically, the fluid in the stator is considered as an acoustic
medium. The rotating and fluctuating forces exerted on rotor blades due to RSI induce
pressure fluctuations in the stator. The combination of the stator and rotor blade numbers
makes apparent different pressure modes. Lowson [51] theoretically analyzes the noise
of an axial compressor and preliminary agreements with experiments are demonstrated.
Kaji and Okazaki [46] investigate the effects of the Mach number, the rotor-stator axial
clearance, the blade spacing ratio and the drag coefficient of upstream airfoils on the
sound generated by RSI.

The theoretical approach applied to axial gas turbomachines is adapted here to the
case of a radial hydraulic pump-turbine. The water is taken as a compressible fluid.
Recently, Yan et al. [89], [88], have launched both compressible and incompressible simu-
lations for understanding the RSI phenomenon in hydraulic machines. The results of the
compressible simulation corroborate the experimental results. The effect of compressibil-
ity has thereby a significant influence on the RSI. The influence level is strongly linked
to the length scale. The higher the length scale, the stronger the influence. The incom-
pressibility assumption often made in hydraulic machines means that the acoustic waves
travel at an infinite speed. The pressure fluctuations in the rotor-stator gap may also be
instantaneously observed in the spiral casing.

The Figure E.1 shows the rotating impeller where each blade consists of a source S of
acoustic wave, which is assumed to be located at the blade leading edge. The stay- and
guide vanes are removed and, therefore, the sound is assumed to propagate rectilinearly
from the rotating source of sound positioned at x (t) to an observer placed in the acoustic
medium at the fixed location x. The waves are propagating in the plane (x1, x2) normal
to the impeller rotation axis. According to Blake [12], the pressure p (x, t) coming from
the source S is expressed as a function of the force Fi exerted by the blades on the fluid
in the direction i:

[p′ (x, t)]S = − 1

4π

∂

∂xi

(
Fi (t− rS/co)S

rS

)
(E.1)
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x1

x2

R r

rS

n

S

F

FR

Fθ

θ
θS

x(t) x

1

Figure E.1: Rotating acoustic source of pressure.

where the Einstein summation convention is used and co denotes the speed of sound and
rS, the source-observer vector which may be approximated as follows:

rS (t) =
√
r2 +R2

1 − 2R1rcos (θ − θS (t))

≈ r −R1cos (θ − θS (t)) (E.2)

where θS (t) denotes the angular position of the sound source S and is expressed as follows:

θS (t) = θ0 + S
2π

zb
− 2πn · t (E.3)

zb being the number of impeller blades and n the impeller rotation frequency.
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From eq. E.1, the following approximation may be established:

[p′ (x, t)] =

zb−1∑
s=0

− 1

4π

 1

rS

∂ (Fi (t− rS/co))S
∂xi

+ Fi (t− rS/co) ·
∂
(

1
rS

)
∂xi


=

zb−1∑
s=0

− 1

4π

(
1

rS

(∂Fi (t− rS/co))S
∂t

∂t

∂rS

∂rS
∂xi
− 1

r2
S

Fi (t− rS/co)
∂rS
∂xi

)

≈
zb−1∑
s=0

1

4π · co · rS
(∂Fi (t− rS/co))S

∂t

∂rS
∂xi

≈
zb−1∑
s=0

1

4π · co · rS
(∂Fi (t− rS/co))S

∂t

∂ (r −R1cos (θ − θS))

∂xi

=

zb−1∑
s=0

1

4π · co · rS
(∂Fi (t− rS/co))S

∂t
· ri
r

(E.4)

The fluctuating force is dependent on the impeller inflow velocity field. Respecting
the spatial periodicity condition and taking into account the number of guide vanes zo in
the cascade causing the impeller inflow velocity field to periodically present defects in the
wake of the guide vanes, the fluctuating force may be written as follows:

(Fi (t− rS/co)) ·
ri
r

=

zb−1∑
s=0

∞∑
m=−∞

(
|F̂i|s,m ·

ri
r

)
ei(mzoθS(t)+korS) (E.5)

Taking eqs. E.2 and E.5, one can write:(
Fi (t− rS/co)

rS

)
· ri
r

=

zb−1∑
s=0

∞∑
m=−∞

|F̂i|s,m · rir
rS

e
i
(
mzo

(
θ0+s 2π

zb
−2πn·t

))
· eik0r

· e−ik0R1cos(θS−θ)

=

zb−1∑
s=0

∞∑
m=−∞

∞∑
q=−∞

|F̂i|s,m · rir
rS

e
i
(
mzo

(
θ0+s 2π

zb
−2πn·t

))
· eik0r

· (−i)q eiq
(
θ0−θ+s 2π

zb
−2πn·t

)
· Jq (koR1) (E.6)

where Jq (koR1) is the qth order Bessel function evaluated at koR1.

From Figure E.1, one may write the components of the vectors r and F on the two
axis x1 and x2:

r1 = r · cos (θ)

r2 = r · sin (θ)

F1 = F · cos (θS + γ)

F2 = F · sin (θS + γ)

(E.7)

where γ refers to the mean impeller blade inflow incidence angle.
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Therefore, one has:

|F̂i|s,m ·
ri
r

= |F̂1|s,m · cos (θ) + |F̂2|s,m · sin (θ)

= |F̂ |s,m · (cos (θS + γ) cos (θ) + sin (θS + γ) sin (θ))

= |F̂ |s,m · cos (θS + γ − θ) (E.8)

The rather complex summation in eq. E.6 is simplified using the following relation:

zb−1∑
s=0

e
i(mz0+q) 2π

zb
·s|F̂i|s,m ·

ri
r

=

zb−1∑
s=0

e
i(mz0+q) 2π

zb
·s|F̂ |s,m · cos (θS + γ − θ)

= zb · |F̂ |m ·
∞∑

m′=−∞

δ (mz0 + q −m′zb) (E.9)

assuming that the amplitude of the unsteady loading on each blade is the same |F |s,m =
|F |m.

Moreover, in the following lines, the problem is restricted to the case where r > R1

leading to the simplification in the denominator rS ≈ r.(
F (t− rS/co)

rS

)
· ri
r
≈

∞∑
m=−∞

∞∑
m′=−∞

(−i)m
′zb−mzo |F̂ |m · zb

r
e−im

′zb2πnteim
′zbθ0

· ei(mzo−m
′zb)θeikorJm′zb−mzo (koR1) (E.10)

On the one hand, according to eq. E.4, the pressure due to the RSI is written:

p′ (x, t) ≈ 1

4π

∞∑
m=−∞

∞∑
m′=−∞

(−i)m
′zb−mzo+1 |F̂ |m · zb

r

m′zb2πn

co
e−im

′zb2πnteim
′zbθ0

· ei(mz0−m
′zb)θeikorJm′zb−mzo (koR1) (E.11)

On the other hand, from eq. E.1 and using eq. E.10, one may write the pressure due
to the RSI as:

p′ (x, t) =

zb−1∑
s=0

− 1

4π

∂

∂xi

(
Fi (t− rS/co)S

rS

)

=

zb−1∑
s=0

− 1

4π

∂

∂r

(
Fi (t− rS/co)S

rS

)
· ∂r
∂xi

=

zb−1∑
s=0

− 1

4π

(
1

rS

∂Fi (t− rS/co)S
∂r

− 1

r2
S

∂ri
∂r

)
∂r

∂xi

≈ − 1

4π

1

rS

∂Fi (t− rS/co)
∂r

ri
r

≈ 1

4π

∞∑
m=−∞

∞∑
m′=−∞

(−i)m
′zb−mzo+1 |F̂ |m · zb

r
koe
−im′zb2πnteim

′zbθ0

· ei(mz0−m
′zb)θeikorJm′zb−mzo (koR1) (E.12)

EPFL - Laboratory for Hydraulic Machines



163

Comparing eqs. E.11 and E.12, one finds:

ko =
m′zb2πn

co
(E.13)

Moreover, the Bessel function features the following property:

∞∑
m′=−∞

Jm′zb−mzo (koR1) = 2 ·
∞∑

m′=1

Jm′zb−mzo (koR1) (E.14)

Therefore, the pressure fluctuations due to the RSI may be written as follows:

p′ (x, t) ≈
∞∑
m=0

∞∑
m′=1

(−i)m
′zb−mzo+1 |F̂ |m · zb

r

m′zb2πn

co
e−im

′zb2πnte±im
′zbθ0

· ei(mz0±m
′zb)θeikorJm′zb±mzo

(
m′zb2πn

co
R1

)
(E.15)

The pressure fluctuations may then be expressed as the summation of the m and m′

harmonics:

p′ (x, t) ≈
∞∑
m=0

∞∑
m′=1

(p′ (x, t))m,m′ (E.16)

where

(p′ (x, t))m,m′ =

(
|F̂ |m · zb

r

2m′zb2πn

co

)
·

(Jk+

(
m′zb2πn

co
R1

)
· cos

(
k+ · θ −m′zb2πn · t+ φk+

)
+ Jk−

(
m′zb2πn

co
R1

)
· cos

(
k− · θ −m′zb2πn · t+ φk−

)
) (E.17)

with k+ = m′zb +mzo and k− = m′zb−mzo being the number of diametrical nodes of the
spinning modes.

The pressure fluctuations monitored at the angular positions corresponding to two
adjacent guide vanes are phase shifted by an angle ∆φk expressed as follows:

∆φk = 2π
k

zo
, (E.18)

where k refers either to k− or k+.
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des Forêts, 1968.

[19] Chatelain, J., Jufer, M., and Périllard, A. Groupes de pompage. Atelier de
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[52] Max, J. Méthodes et techniques de traitement du signal et applications aux mesures
physiques, Tome 1 & 2. Masson, 1985.

[53] Mei, Z.-Y. Mechanical Design and Manufacturing of Hydraulic Machinery. Avebury
Technical, 1991.

[54] Meier, W., and Jaquet, M. Single and multi-stage pump-turbines for high head
storage plants. In ASME-CSME Pump-Turbine Schemes: Planning, Design and
Operation (Niagara Falls, June 1979).

[55] Mount, A., and Stipanovic, A. Development of improved francis pump-turbine
runner for existing installations. In ASME-CSME Pump-Turbine Schemes: Planning,
Design and Operation (Niagara Falls, June 1979).

[56] Muench, C., Ausoni, P., Braun, O., Farhat, M., and Avellan, F. Fluid-
structure coupling for an oscillating hydrofoil. Journal of Fluids and Structures 26
(2010), 1018–1033.

[57] Naudascher, E., and Rockwell, D. Flow-Induced Vibrations. Dover Publica-
tions, Inc, 2005.

[58] Nennemann, B., and Parkinson, E. Yixing pump turbine guide vane vibrations:
problem resolution with advanced cfd analysis. In Proceedings of the 25th IAHR
Symposium on Hydraulic Machinery and Systems (2010).

[59] Nowicki, P., Sallaberger, M., and Bachmann, P. Modern design of pump-
turbines. In Proceedings of the IEEE Electrical Power & Energy Conference (2009).

EPFL - Laboratory for Hydraulic Machines



REFERENCES 171

[60] Nüssli, W., and Engel, A. Design considerations of pump/turbine installations
with regard to reliability and availability. In ASME-CSME Pump-Turbine Schemes:
Planning, Design and Operation (Niagara Falls, June 1979).
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En parallèle des études

Evaluation de divers accidents d’équipements de construction

2006 SebSchmidt, Genève, Suisse
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