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Abstract 
 

Locomotion is one of the most important abilities of humans. Actually, gait locomotion provides 

mobility, and symbolizes freedom and independence. However, gait can be affected by several 

pathologies, due to aging, neurodegenerative disease, or trauma. The evaluation and treatment of mobility 

diseases thus requires clinical gait assessment, which is commonly done by using either qualitative 

analysis based on subjective observations and questionnaires, or expensive analysis established in 

complex motion laboratories settings. 

This thesis presents a new wearable system and algorithmic methods for gait assessment in natural 

conditions, addressing the limitations of existing methods. The proposed system provides quantitative 

assessment of gait performance through simple and precise outcome measures.  

The system includes wireless inertial sensors worn on the foot, that record data unobtrusively over long 

periods of time without interfering with subject’s walking. Signal processing algorithms are presented for 

the automatic calibration and online virtual alignment of sensor signals, the detection of temporal 

parameters and gait phases, and the estimation of 3D foot kinematics during gait based on fusion methods 

and biomechanical assumptions. The resulting 3D foot trajectory during one gait cycle is defined as Foot 

Signature, by analogy with hand-written signature. 

Spatio-temporal parameters of interest in clinical assessment are derived from foot signature, including 

commonly parameters, such as stride velocity and gait cycle time, as well as original parameters 

describing inner-stance phases of gait, foot clearance, and turning. Algorithms based on expert and 

machine learning methods have been also adapted and implemented in real-time to provide input features 

to recognize locomotion activities including level walking, stairs, and ramp locomotion. 

Technical validation of the presented methods against gold standard systems was carried out using 

experimental protocols on subjects with normal and abnormal gait. Temporal aspects and quantitative 

estimation of foot-flat were evaluated against pressure insoles in subjects with ankle treatments during 

long-term gait. Furthermore, spatial parameters and foot clearance were compared in young and elderly 

persons to data obtained from an optical motion capture system during forward gait trials at various 
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speeds. Finally, turning was evaluated in children with cerebral palsy and people with Parkinson’s disease 

against optical motion capture data captured during timed up and go and figure-of-8 tests. Overall, the 

results demonstrated that the presently proposed system and methods were precise and accurate, and 

showed agreement with reference systems as well as with clinical evaluations of subjects’ mobility 

disease using classical scores. Currently, no other methods based on wearable sensors have been validated 

with such precision to measure foot signature and subsequent parameters during unconstrained walking.  

Finally, we have used the proposed system in a large-scale clinical application involving more than 1800 

subjects from age 7 to 77. This analysis provides reference data of common and original gait parameters, 

as well as their relationship with walking speed, and allows comparisons between different groups of 

subjects with normal and abnormal gait. 

Since the presented methods can be used with any foot-worn inertial sensors, or even combined with 

other systems, we believe our work to open the door to objective and quantitative routine gait evaluations 

in clinical settings for supporting diagnosis. Furthermore, the present studies have high potential for 

further research related to rehabilitation based on real-time devices, the investigation of new parameters’ 

significance and their association with various mobility diseases, as well as for the evaluation of clinical 

interventions. 

 

 

Keywords: Gait analysis, Elderly, Parkinson’s disease, Cerebral palsy, Ankle osteoarthritis, Amputee, 

Spatio-temporal parameters, Foot clearance, Turning, Real-time, Inertial sensors, Wearable system, 

Validation, Activity classification. 
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Résumé 
 

La locomotion est une des capacités les plus importantes de l’être humain. En effet, la locomotion, et plus 

particulièrement la marche, permet la mobilité, synonyme de liberté et d’indépendance. Cependant, un 

certains nombres de pathologies peuvent affecter la marche, par exemple le vieillissement, les maladies 

neuro-dégénératives, ou encore un traumatisme. L’examen et le traitement de ces pathologies requièrent 

de ce fait une évaluation clinique de la marche. Une telle évaluation se fonde habituellement soir sur des 

analyses qualitatives à base d’observations subjectives et des questionnaires, soit par l’intermédiaire 

d’outils complexes et coûteux dans des laboratoires dédiés à l’analyse du mouvement. 

Cette thèse présente un nouvel outil qui aborde les problèmes des méthodes existantes, en proposant un 

système portable et des méthodes algorithmiques pour l’évaluation de la marche en condition naturelles. 

L’outil proposé quantifie la performance de marche grâce à des métriques simples et précises. 

Le système comprend des capteurs inertiels sans fils se fixant sur le pied et enregistrant des signaux de 

longues durées sans gêner la marche du patient. Les algorithmes de traitement du signal présentés 

permettent une calibration automatique et l’alignement virtuel des capteurs ; la détection des évènements 

temporels et des phases de marche ; ainsi que l’estimation de la cinématique 3D du pied, et ce à partir de 

méthodes de fusion et d’hypothèses biomécaniques. La trajectoire 3D que dessine le pied dans l’espace 

pendant un cycle de marche a été définie comme la Signature du Pied, par analogie avec la signature 

écrite à la main.  

Un ensemble important de paramètres spatio-temporels ont ainsi été extraits de la signature du pied. Cela 

inclu des paramètres classiques utilisés en analyse de marche, comme la vitesse de marche et la durée du 

cycle, mais aussi des paramètres originaux comme les sous-phases constituant l’appui au sol, l’élévation 

du pied, et le virage. Les algorithmes ont également été adaptés et implémentés en temps-réel, pour servir 

d’entrée à des méthodes d’intelligence artificielle capables de reconnaitre les activités telles que la marche 

à plat, en pente, ou en escaliers. 

Les méthodes présentées ont été validées techniquement contre des systèmes de référence à partir de 

protocoles expérimentaux incluant des sujets avec ou sans pathologies liées à la marche. Les aspects 
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temporels et la quantification du temps d’appui à plat ont été évalués contre des semelles de pression chez 

des sujets avec arthrose de cheville pendant des marches longue durées. Les paramètres spatiaux et 

l’élévation du pied ont été comparés chez des jeunes adultes et des personnes âgées avec un système de 

capture optique du mouvement. Enfin l’analyse des virages pendant le test de Timed up and Go et la 

marche en 8 a été validés chez des enfants avec paralysie cérébrale et des personnes atteintes de la 

maladie de Parkinsons. Globalement, les résultats démontrent une bonne justesse et fidélité, ainsi qu’une 

bonne concordance avec les systèmes de référence et les évaluations cliniques. 

Alors qu’aucune autre méthode basée sur des capteurs portables n’a été jusqu’à présent validée pour 

mesurer aussi fidèlement la signature du pied et les paramètres qui en découlent, nous avons ici utilisé le 

système et les méthodes proposées pour une application clinique d’envergure impliquant plus de 1800 

personnes âgées de 7 à 77 ans. L’analyse a permis d’obtenir des données de référence pour  les 

paramètres de marche classiques et originaux. Elle a aussi permis de montrer les associations de divers 

paramètres avec la vitesse de marche, et de les comparer entre différents groupes de sujets avec ou sans 

pathologies liées à la marche. 

Du fait que les méthodes présentées peuvent être utilisées avec n’importe quel système de capteurs 

inertiels sur le pied voire combinées avec d’autres systèmes, nous pensons que le travail présenté ouvre la 

porte à l’évaluation quantitative et objective de la marche en routine clinique, en tant qu’outil de support 

au diagnostic. De plus, l’étude permet d’entrevoir de futures recherches liées aux systèmes de 

réadaptation temps réels, à l’étude de la signification cliniques des nouveaux paramètres avec les 

pathologies de la marche, ou encore à l’évaluation des interventions cliniques. 

 

 

Mots-clefs: Analyse de Marche, Personnes âgées, Maladie de Parkinson, Paralysie cérébrale, arthrose de 

la cheville, amputés, paramètres spatio-temporels, élévation du pied, virage, temps-réel, capteur inertiels, 

systèmes portables, validation, classification d’activités. 
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要旨 
 

運動は人間の能力の中でも重要な能力であり，その中でも特に歩行運動は自身で移動を行うと

いう点で自主独立性の象徴であるとも考えられる．一方で歩行は加齢や神経疾患，外傷などに

影響を受けるため，運動疾患の診断やリハビリテーションの処方に対して歩行機能の評価が必

要である．現在広く用いられている医師による評価は定性的であり，妥当性の面で限界がある．

そのほか，機器を用いた評価が散見されるが，高額な機材や複雑なシステムが必要であること

が多い． 

本研究ではこれらの問題に対し，装着可能な機器を用いた自然な歩行による評価システムの開

発を行う．本システムの開発により，臨床において簡便かつ正確な計測を行うことが可能とな

り，疾患に対して定量的な評価を行うことが可能となる． 

本システムは被検者の歩行動作の妨げにならないような，足部に取り付けられた無線の慣性セ

ンサから構成される．センサ信号から検出された歩行運動中の運動パラメータから歩行相, 足部

の運動特性等のパラメータをオンライン上で自動的に算出する．その際，歩行周期中の三次元

空間上の足部軌跡は，各個人の持つ固有の署名のような“Foot signature”として定義される．

加えて，Foot signature から一般的に用いられる歩行速度，歩行周期などと同様に，本研究で独

自に定義される，インナースタンス，フットクリアランス，回旋歩行特性等のパラメータを算

出する．解析は試行中に実行され，平坦面，階段，斜面における運動を把握する要素として提

供される． 

正常歩行と非正常歩行の計測において，現在広く用いられている手法と比較することにより，

本研究で提案する手法の妥当性の検証を行った．足底接地時の時間相と定量指標を被検者の足

底内圧により評価し，加えて異なる速度で行った直線歩行時の運動特性について光学モーショ

ンキャプチャシステムを用いて高齢者と若年者間での比較を行った．その後，脳性マヒ児童，

パーキンソン病患者において，旋回運動時の特性を評価し，比較した．全実験で，得られた結

果は参照システムと比較し十分な正確性があり，臨床評価とも一致することが確認された．  
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また臨床における実証実験として，本研究で提案するシステムを用いて，異なる疾患を持つ 7

から 77 歳までの 1800 人以上の被検者に対し計測を行い，一般的な運動パラメータと歩行速度

等に関連した独自のパラメータを用いた解析によって異なる被検者群の分類を行った． 

 本研究により提案される慣性センサ，および他の計測システムとの組み合わせによる歩行評

価システムによって，様々な運動障害に対し客観的かつ定量的な歩行評価，および診断やリハ

ビリテーションの処方が可能になると期待される．  

 

 

キーワード：歩行解析，高齢者，パーキンソン病，脳性麻痺，変形性関節症，切断患者，時空

間パラメータ，フットクリアランス，旋回，リアルタイム，慣性センサ，ウェアラブルシステ

ム，妥当性，活動特性  
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Glossary 
 

CP = Cerebral palsy 

PD = Parkinson’s disease 

Elderly = elderly persons 

OA = Osteo-arthritis 

FWS = Foot-worn sensors 

IMU = Inertial measurement unit 

2D/3D = 2-dimensional/3-dimensional 

SAF = Shank-ankle-foot 

PC = Principal components 

PCA = Principal components analysis 

LDA = Linear discriminant analysis 

GMM = Gaussian mixture models 
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Chapter 1  

Introduction 

1 Human locomotion 

As illustrated artistically by the walking man of Alberto 

Giacometti (fig. 1), human terrestrial locomotion, referred as 

gait, is typically achieved by bipedal and biphasic propulsion 

of the body using alternate movements of the lower limbs. 

Human gait can also be seen as a step in evolution [1], and 

although the evolutionary theory of the upright posture and 

gait in human is still discussed [2], bipedalism is one of the 

most obvious characteristic that distinguish us from our apes 

ancestors. Different patterns and strategies are used by 

humans for achieving locomotion. Locomotion modalities 

include normal and natural forward walking gait, but also 

backward, sideward, turning, and running gait. In addition, 

the terrain can vary between level ground, stairs, inclined 

ramps and uneven terrain, etc... Finally, although evolution 

has shaped human body to walk barefoot, most of the people 

are now commonly using various kinds of footwear, 

providing an additional artificial interface between the feet 

and the ground. 

During normal human life, gait is present in most children by the age of eighteen months, and reach a 

good level of maturity at the age of three years [3]. Gait locomotion can therefore be considered as one of 

the most important ability of man, since it guaranties mobility and independence, and therefore social 

integration and freedom. 

Figure 1 - L'Homme qui marche I,  
bronze sculpture by Swiss sculptor 

Alberto Giacometti in 1961 
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2 Mobility diseases 

Like any other ability, gait can be affected by different pathologies. The goal of this paragraph is to 

present a non-exhaustive list of mobility diseases that affect human gait in modern society and which 

were specially considered in the present thesis as clinical issues. Their main symptoms, etiology and 

consequences for the patient are briefly presented, as well as some figures on their prevalence, illustrating 

the global impact on society. 

2.1 Risk of falling in elderly persons 

Falls are a major cause of morbidity and mortality among the older population and thus a major public 

health concern in modern societies with ageing populations [4]. Falling can dramatically affect the quality 

of life and often requires expensive treatments. Consequences can be fracture, or psychological trauma, 

leading to a self-imposed limitation in mobility, that can precipitate further functional decline. Recent 

prospective studies undertaken in community setting have found falls incidence rates around 30% in 

subjects aged 65 years and over [5], fig. 2.  

 
Figure 2 - Incidence of falls in older people : Proportion of older women who took part in the Randwick Falls and 

Fractures Study who reported falling, once, twice or three or more times in a 12-month period. Diagram adapted from 

Lord et al. 2007 

Multi factorial etiology indicates two types of fall risk factors [6], [7]: 

- Intrinsic factors to the individuals. It includes normal or pathologic age related changes. 

Problems can be of different nature: neurologic, sensory (vestibular and vision), musculo-

skeletal, cardio-vascular… 
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- Extrinsic factors, external to the person, include physical environment, medication, non-

adapted assistive device or footwear.  

Actual fall is likely to happen after a balance loss when the neuro-muscular system doesn’t manage to 

maintain balance. Efforts have been done to prevent fall and detect intrinsic risks of fall, by understanding 

and detecting early symptoms that could lead to a fall [8]. 

2.2 Neurological disorders 

Among the various neurological disorders, the present work focuses especially on the study of 

Parkinson’s disease (PD) and Cerebral Palsy (CP). 

After Alzheimer’s, Parkinson’s disease (PD) is the second most common neuro-degenerative disease, 

with estimated 3 to 4 million people worldwide. PD is a degenerative disorder of the central nervous 

system. The motor symptoms of PD result from the death of dopamine-generating cells in the substantia 

nigra, a region of the midbrain; the cause of these cells death is unknown. Early in the course of the 

disease, the most obvious symptoms are related to movement, namely tremor, rigidity and akinesia (lack 

of movement). PD is particularly influencing gait, and various combinations of symptoms generate a 

significant decrease in mobility while the disease progresses [9]. Later, cognitive and behavioural 

problems may arise, with dementia commonly occurring in the advanced stages of the disease. Other 

symptoms include sensory, sleep and emotional problems. PD is more common in the elderly, with most 

cases occurring after the age of 50.  Nowadays, this disease concerns about 180 people over 100 000 for 

Caucasians. Pharmaceutical treatments to Parkinson’s disease include L-dopa which is transformed into 

dopamine in the dopaminergic neurons by L-aromatic amino acid decarboxylase. That treatment is 

effective at managing the early motor symptoms of the disease, but as the disease progresses, these drugs 

become ineffective at treating the symptoms and at the same time produce a complication called 

dyskinesia, marked by involuntary writhing movements. Surgery and deep brain stimulation are used to 

reduce motor symptoms as a last resort in severe cases where drugs are ineffective. In PD, motor changes 

are complex and constantly evolving, and movement features have considerable interindividual 

heterogeneity, making comparison between individual patients difficult.  

Cerebral palsy (CP) is an umbrella term encompassing a group of non-progressive, non-contagious motor 

conditions that cause physical disability in human development, chiefly in the various areas of body 

movement. Cerebral refers to the cerebrum, which is the affected area of the brain, and palsy refers to 

disorder of movement. In the industrialized world, the prevalence of CP is about 2 per 1000 live births, 

with higher incidence in males than in females. CP is caused by damage of the motor control centers in 

the developing brain and can occur during pregnancy, during childbirth or after birth up to about three 
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years old. The definition and classification of CP remains a current topic [10]. CP troubles of movement 

and posture cause activity limitation and are often accompanied by disturbances of sensation, depth 

perception and other sight-based perceptual problems, communication ability; impairments can also be 

found in cognition, and epilepsy is observed in about one-third of cases. CP is often accompanied by 

secondary musculoskeletal problems that arise as a result of the underlying etiology. CP symptomatology 

is very diverse but characterized by abnormal muscle tone, reflexes, or motor development and 

coordination. The classical symptoms are spasticity, spasms, other involuntary movements, unsteady gait, 

and problems with balance. Scissor walking (where the knees come in and cross) and toe walking are 

common among people with CP who are able to walk. 

2.3 Lower limb osteoarthritis 

Osteoarthritis (OA) is a pathology that involves the degradation of joints, and particularly the cartilage 

and bone structure. Symptoms may include joint pain, tenderness, stiffness, locking, and sometimes an 

effusion. In the particular case of lower limb joints, namely hip, knee and ankle joints, lower limb OA 

implies a decreased of locomotion ability, from which potential consequences can be the atrophy of 

muscles and increase of laxity of ligaments, together with the reduction of mobility and subsequent social 

activities. OA is predominately considered as a "wear and tear" process, where there is gradual 

degradation of the cartilage that covers the articulating surfaces of the bones in the joint. In most people, 

the disease is either post-traumatic or hereditary. Treatment generally involves a combination of exercise, 

lifestyle modification, and analgesics. If pain becomes debilitating, joint replacement surgery is 

considered, with different operating techniques and replacement structures for each joint. Prevalence of 

OA varies among countries and is reported in various studies. Typically in the US, using physical 

examination and radiographic measurement on a cohort of 1424 subjects, knee OA was found to concern 

27% of subjects aged 63 to 70 years, and 44% of subjects aged 80 or older [11].  

2.4 Lower limb amputation 

Amputation refers to the loss of body parts either due to injury (traumatic) or missing from birth 

(congenital). Statistics about the number of amputees are rare and sometimes old. For example in France, 

the most reliable estimation of lower limb amputees is 100 000 to 150 000 out of 65.8 million inhabitants. 

This appraisal depends on the definition of the amputation (lower or upper limb) and on its gravity 

(major, partial or distal). A finger or toe amputation is completely different from a complete limb 

amputation which requires the use of prosthesis. A more accurate estimation can be made with the 

activity reports of the health centers. For instance in France, in 1990, the incidence of major amputees of 

a lower limb was approximately estimated to 8300 new cases and the total number of lower limb 

amputees to 90 000. Nowadays, the incidence is appreciably the same: 8203 cases indexed in 2001 and 
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7525 in 2005. The number of trans-femoral amputations, also referred as “below-knee amputations”, 

seems to be slightly inferior to the number of trans-tibia amputations. The issue of gait and locomotion 

for trans-tibia amputees is closely linked to the technology of the prosthesis. From the comparison of 

ankle biomechanics of healthy subjects and trans-tibia amputees, main issues for amputees are balance, 

capacity of performing specific activities such as gait in stairs or hills, energy cost of walking, comfort 

and esthetics (for the integration in society), and the cost of prosthetic devices. 

3 Clinical Gait analysis 

Since human gait can be affected by mobility diseases such as the ones described in paragraph 2, early 

has emerged the interest of analyzing in a rigorous and scientific manner the normal and abnormal gait of 

human beings. A really well-documented history of clinical gait analysis can be found in the book by 

Kirtley [12], and on his website1. Kirtley describes what could have been the first gait analysis report 

from egyptian in 1800 B.C based on qualitative observation and the work of pioneers in gait analysis such 

as Etienne-Jules Marey (1830-1904), who had begun investigating the external motion and movement of 

human gait using ingenious recording devices by 1867. Nowadays, clinical gait analysis still relies on the 

use of observations, but also on clinical scales established upon questionnaires filled by the subject or 

therapist, and quantitative measurements of body movements using various kinds of systems. All those 

tools are more extensively described in chapter 2: State of the art. 

First of all, independently of normal or abnormal status, human gait can be described with a general and 

simplified terminology as follow (fig. 3): 

- The gait cycle starts with the contact of one foot and ends with the next contact of the same foot. 

- Stance (respectively swing) phase is defined as the period where the foot is in contact with the 

ground (respectively in the air). 

- Double support is defined as the period (if any) when both feet are in contact with the ground, as 

in the walking man from Giacometti (fig. 1). In running gait, there is no double support. 

- Step (respectively stride) is defined from the stance of one foot to the next stance of the other 

(respectively same) foot. A stride, being the set of right and left steps, is thus equivalent to gait 

cycle. 

                                                   
1 http://www.clinicalgaitanalysis.com/ 
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4 Thesis rational and objectives 

The introduction has shown the importance of human locomotion, but also that it can be affected by 

several mobility diseases with high impact on people and society. Consequently, gait analysis is important 

for the assessment of gait abnormality due to mobility disease, the assessment of interventions, i.e. 

treatment (fig. 4). Furthermore, gait assessment can contribute to interventions, for example by means of 

real-time devices. 

 
Figure 4 – Gait Analysis: an assessment tool of mobility disease’s symptoms and treatment efficiency 

However, common methods for clinical gait analysis suffer from several drawbacks:  

- Subjective assessment with questionnaires and clinical scores are prone to error due to self-

interpretation of questions or difficulty to recall the truth 

- Kinematics and kinetics analysis assessment using dedicated laboratory measurement tools, suffer 

from being time consuming, high costs, setup complexity, and limited volume of measurement 

- Observations and low tech estimation of walking speed or cadence have limited performances to 

characterize various motor symptoms  

- Controlled/imposed conditions such as walking in straight line, does not reflect natural human 

locomotion and its various modalities in daily-life 

The rational of the thesis is therefore to address those issues with new systems and methods for the 

assessment and treatment of various mobility diseases affecting human gait.  

The primary objective can be summarized as the design and validation of a system and dedicated methods 

that are easy to use in clinical practice, usable in natural and unconstrained walking condition, and still 

technically and clinically valid. The underlying hypothesis, motivated by pilot results, is that it is possible 

to provide such a gait assessment tool using foot-worn inertial sensors (FWS), through the estimation of 
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Chapter 1 (current chapter) introduces the topic of this thesis, through the presentation of human 

locomotion and various mobility diseases, as well as the general background theory behind clinical gait 

analysis. The rational and motivations of the research work are explained together with the objectives and 

outline of the thesis. 

Chapter 2 presents the state of the art in the field of spatio-temporal gait assessment tools, including a 

short description of reference methods, and a review of methods based on wearable technology for both 

offline and online analyses. 

Chapter 3 proposes new methods for temporal analysis of gait using FWS, through temporal events 

detection and the quantitative assessment of foot-flat and inner-stance phases. Results of the technical 

validation of the system and its application to the study of ankle OA treatments are presented.  

Chapter 4 proposes new methods for spatial analysis of gait using FWS, through the estimation of 3D 

foot orientation and displacements and related spatio-temporal gait parameters. Results of the technical 

validation of the system and its application to the study of young and elderly subjects are presented.  

Chapter 5 combines together the finding of temporal and 3D spatial analysis from previous chapters, and 

proposes an original method for automatic estimation of sensor position on foot and estimation of heel 

and toe clearance from FWS. Various solving approaches are presented and results of technical validation 

on healthy subjects are described. 

Chapter 6 extents the methods from 3D spatial analysis to PD and CP subjects and further develops the 

analysis of turning. Original parameters to describe 3D foot trajectory and turning are presented, 

validated, and compared against age-matched control subjects. 

Chapter 7 presents the adaptation implementation of temporal and spatial gait analysis using FWS in 

real-time. New methods are described for the real-time detection of walking phases and features 

extraction. Results obtained with instrumented prosthetics in amputees performing various locomotion 

activities are presented. 

Chapter 8 introduces the general concept of “foot signature”, unifying the gait analysis outcomes 

resulting from all preceding chapters. Its application to recognize walking activity in amputee subjects 

and to characterize mobility diseases on more than 1800 subjects is presented. 

Finally, Chapter 9 provides a general discussion on the achievements of the thesis and the perspectives 

for future research.  
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2 Clinical scales 

In addition to simple background data, consisting of objective figures such as gender, height, weight and 

age, there exists a wide range of clinical scores addressing different mobility diseases and clinical status. 

In this thesis, we used the following scores which are well-known and established in their respective 

medical fields: 

- The American Orthopaedic Foot and Ankle Society (AOFAS) scale is the most widely used 

clinical scale in the foot and ankle literature, and especially in the area of ankle arthritis 

treatments [1].  The total score ranges from 0 to 100 with higher scores indicating better 

condition. Points are allocated to grade fain (40 points), function (50 points), and hindfoot 

alignment (10 points).  

- Foot Function Index (FFI) is another well designed and tested scale measuring the impact of foot 

and ankle pathology in terms of pain (9 items), disability (9 items) and activity limitation (5 

items), quoted using a visual analog scale [2]. The total score ranges from 0 to 100 with higher 

scores indicating greater impairment. 

- Fall Efficacy Scale (FES) is questionnaire asking about subject’s confidence (range, 0 [none]–10 

[full]) in performing 12 activities of daily living without falling, which was validated and is 

typically used in elderly persons to measure fear of falling [3]. 

- The mini–mental state examination (MMSE) is a brief 30-point questionnaire test that is used to 

screen for cognitive impairment, using questions including arithmetic, memory and orientation 

[4]. It is particularly used in older subjects to screen for dementia. 

- Unified Parkinson’s disease rating scale (UPDRS) is commonly used to follow PD subjects, and 

is established from interview about mood and self-evaluation of activity of daily-life as well as 

clinician observations of motor function [5], [6]. 

- Gross Motor Function Classification System for Cerebral Palsy (GMFCS), is a 5 level 

classification system that describes the gross motor function of children and youth with CP on the 

basis of their self-initiated movement with particular emphasis on sitting, walking, and wheeled 

mobility [7]. Distinctions between levels are based on observation of functional abilities, the need 

for assistive technology, including hand-held mobility devices (walkers, crutches, or canes) or 

wheeled mobility, and to a much lesser extent, quality of movement.  

Further details on how to assess each of those clinical scales can be found in the references. Interestingly, 

all scales are established on both subjective and objective data, collected from questionnaires and clinical 
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observations. Observations can be prone to subjectivity, for example the observation of the degree of 

limping, i.e. asymmetry, during gait.  

As part or complementary to those clinical scales, clinician are commonly using functional tests such as 

10m gait test [8] or Timed Up and Go Test [9]. The Rehabilitation Measures Database1 provides a 

summary of such tests which have shown to be reliable and valid instruments used to assess geriatric 

patient’s outcomes during rehabilitation. The database provides concise descriptions of each instrument’s 

psychometric properties, instructions for administering and scoring each assessment as well as a 

representative bibliography with citations. Those tests are usually measured with a simple stop watch 

which allows extracting global information such as average walking speed on a known distance, but are 

prone to error due to the operator’s manual measurement.  

Although the set of clinical scales and functional tests achieved useful findings for discriminating 

pathologic populations, they suffer from the subjectivity of some measure such as pain, and are sensitive 

to the doctor’s observation. Particularly, two main sources of subjectivity can be distinguished: 

- On clinical side, the assessment of subject’s status might differ from one rater to another, due to 

rater’s personal interpretation of observed symptoms. Indeed, inter-rater reliability in structured 

visual gait observation has been found to be moderately reliable, even in experienced raters [10]. 

- On subject’s side, its performance in some test might vary from time to time independently of the 

disease, due to its personal motivation, mood, or fatigue, or if he is used to doing the test. His 

performing can also be influenced by the rater in both good and bad way. 

In addition, the scale or outcome measure of the test might be unable to reflect little changes between 

normal and abnormal condition, or during a long-term follow-up, and it is therefore a lack of resolution 

and discriminative power. Finally, although being practical to use, those clinical test scores usually 

require an operator with expertise and the manual data processing and analysis to obtain the results. 

3 Laboratory systems 

Laboratory systems, using instruments such as optical motion capture and force plates, are now 

considered as the gold standard in the field of motion analysis for assessing joint kinematics and kinetics. 

Measuring body movements in laboratory setting under controlled conditions allow getting precise, 

accurate and reliable measurements of the walking pattern of the subject, and add quantitative and 

objective figures to the clinical gait assessment. 
                                                   
1 http://www.rehabmeasures.org 
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kinematics signals, is not self-interpretable by most clinicians and require further processing and analysis 

by movement science experts or biomechanical engineers. Consequently, the use of those laboratory 

devices in routine clinical practice is limited and it is mostly used for research purpose.  

4 Offline methods with wearable systems 

To overcome the limitation of laboratory settings and clinical scores, and using recent advances in the 

field of Micro-electro-mechanical sensors (MEMS), the last 2 decades have seen the progressive 

development of gait assessment tools based on miniature body-worn sensors. Being ambulatory, they 

allow measuring and recording gait in natural condition for the patient. However, contrary to laboratory 

systems, they do not measure directly orientations or ground reaction forces, but typically accelerations 

(accelerometers), angular velocities (gyroscopes), magnetic field (magnetometers), or pressure acting on 

foot. It implies that they require additional and smart signal processing algorithm to provide useful 

information that can be interpreted in clinical gait analysis. A review of existing system and their 

application to gait assessment in Elderly, OA, PD and CP subjects is presented in this paragraph. 

4.1 Method 

In this review we considered articles and publications (excluding conference proceedings), indexed in 

Scopus2 with the following criteria: 

With a title including at least one of those words, related to locomotion:  

- Walking, Gait, locomotion, Turning 

And at least one of those words, related to assessment:  

- Parameters, algorithm, features, detection, estimation, analysis, assessment, validation 

And at least one of those words, related to the use of wearable devices:   

- Sensors, sensing, inertial measurement unit, IMU, inertial sensors, accelerometer, gyroscope, 

wearable, ambulatory system, body-worn sensors 

With title, abstract or keywords including at least one of those words, related to mobility diseases: 

- Elderly, Parkinson, Cerebral Palsy, Leg, Ankle, Foot 

                                                   
2 http://www.scopus.com/home.url 
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55 Document results were found with the above criteria. After study of the content of each reference, 

some articles were discarded as they were related to: 

- The development of purely hardware sensor systems without dedicated algorithm. 

- The detection and classification of daily activities. Those publications are analyzed in the next 

paragraph focusing on online methods and activity recognition. 

- The black box methods based on gait data for direct pathology classification. In fact those 

methods rather focus on parameters analysis than on their estimation. 

- Robotic instrumented devices, which cannot be used for gait assessment in humans. 

- The work included in the present thesis. 

The 35 remaining articles were considered relevant for spatio-temporal analysis of gait using wearable 

systems, and were chronologically classified. They provided 4 main types of parameters, namely through 

temporal detection, spatial estimation, angle/orientation estimation and other parameters based on raw 

signal properties.  

The following paragraph presents a short description of each paper. A synthesis table of their main 

aspects is then given in the discussion. 

4.2 Results 

Bassey et al. [13] proposed a hip-mounted accelerometer to count the steps and validated it against heel-

resistive pad in 8 healthy and 6 elderly subjects. 

Aminian et al. [14] detected swing and stance and double support based on thigh mounted accelerometers 

and local peak detection algorithm. It was validated against pressure measurements on 5 healthy and 12 

subjects with hip osteo arthritis. 

Jasiewicz et al. [15] detected heel-strike and toe-off from different features of foot and shank inertial 

sensors’ signals (fig. 3), and validated against footswitch in 26 healthy and 14 patients with spinal cord 

injury. 
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Aminian et al. [23] estimated stride length and velocity from pendulum model from signal of gyroscopes 

on shank and thigh in 9 young and 11 elderly subjects against optical motion capture (and temporal 

against foot switches) 

Salarian et al. [24] proposed an algorithm based on double pendulum model from shank and thigh 

gyroscopes and validated stride velocity, stride length, and stance/double support and gait cycle time 

against optical motion capture on 10 PD subjects. 

Sabatini et al. [25] proposed an algorithm for estimating 2D foot kinematics (fig. 4) and subsequent 

spatio-temporal parameters from foot mounted IMU (walking speed, stride length) during walking on 

level ground and incline surfaces. It was validated on a treadmill with 5 healthy subjects. 

 
Figure 4 - reconstructed horizontal velocity component from foot inertial sensing, adapted from Sabatini et al., 2005 

Moore et al. [26], proposed a system base on ankle-mounted IMU to estimate stride length during long-

term daily activity periods (75min) and tested their system on 10 healthy and 7 PD subjects. Stride length 

was estimated based on a regression model, and its association with ON/OFF medication states were 

observed.  

Bamberg et al. [27] developed an instrumented shoe including inertial sensors, force sensors and bend 

sensors. With 2D algorithm similar to [25], common spatio-temporal parameters including speed and 

stride length are estimated and validated in 10 healthy and 5 PD subjects.  

Hartmann et al. [28] compared trunk accelerometers to GAITRite (CIR Systems Inc., USA) systems for 

computing common spatio-temporal gait parameters of walking speed, cadence, step duration and step 

length on 23 elderly subjects. They found moderate agreement on individual step data. 
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Schepers et al. [29] estimated stride length and lateral foot placement (i.e. step width) from force and 

inertial-sensor instrumented sandals with integration algorithm and drift correction by assuming an 

average walking path. It was validated against optical motion capture with 10 healthy subjects.  

Kerr et al. [30] proposed a new optical proximity sensor to assess foot-clearance and validated against 

optical motion capture on 20 young healthy subjects. 

Li et al. [31] proposed a method for estimating walking speed from shank-mouted IMU validated against 

treadmill on 8 healthy subjects. 

Esser et al. [32] estimated stride length in neurological populations (13 healthy controls, 24 PD subjects, 

38 other subjects) using a previously described method by Zjlstra et al. [33] using trunk acceleration and 

compared to a force treadmill on 25 healthy subjects. 

Dobkin et al. [34] estimated average walking speed in patient after stroke from machine learning 

algorithm on ankle-mounted tri-axial accelerometers. System was compared to stop-watch measurements 

on 12 stroke subjects and 6 healthy. 

Peruzzi et al. [35] estimated stride length with IMU and zero-velocity update algorithm in 20 healthy 

subjects with various speed and sensors either located on shank or foot. They conclude that only foot 

position was acceptable for assuming zero-velocity during stance. 

Shin et al. [36], proposed an algorithm based on belt-worn accelerometer for step detection and 

subsequent step length estimation based on walking frequency regression. Estimates on 6 healthy subjects 

are compared to total walked distance with reported error of 4.8%. 

Goulermas et al. [37] proposed a neural network to estimate hip, knee and ankle joint flexion angles from 

IMU mounted on foot and shank. They validate against optical motion capture at different speed on 8 

healthy subjects. 

Takeda et al. [38] described a method for estimating hip, knee and ankle joints from body-worn inertial 

sensors. This was validated against optical motion capture on 3 healthy subjects. 

Cutti et al. and Ferrari et al. [39], [40] described gait analysis system based on inertial and magnetic 

sensors to compute hip, knee and ankle 3D angles. Validated against optical motion capture and tested on 

healthy subjects. 
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Saito et al. [41] proposed a method based on kalman-filter on signal of 6D IMU attached on lower limb 

for estimating 3D joint angle of hip, knee, and ankle, and estimate accuracy of the method on 3 healthy 

subjects. 

Djurić-Jovičić et al. [42] proposed a non-drifted method based on band-pass filtering of leg-mounted 

accelerometers data for estimating 2D knee and ankle angle and validation against goniometer with few 

healthy subjects. 

Mayagoitia et al. [43] have presented an analytical method for estimation of shank and knee angles at 

different walking speed based on shank and thigh 2D IMUs (two accelerometers and one gyroscope). 

System was compared to Optical motion capture during treadmill walking with 10 healthy subjects and 

yielded RMS error below 7%. 

Paquet et al. [44] compared low back side to side acceleration signals between 22 PD subjects and 

controls. Walking speed was measured by stopwatch. 

Karcnik et al. [45] used footswitches and goniometry to assess a stability index during walking and 

validated against optical motion capture on 5 healthy subjects and one amputee. 

Mizuike et al. [46] compared the trunk acceleration pattern from 63 stoke patients and 21 healthy controls. 

RMS of accelerometers recording was used as an outcome measure to discriminate populations. 

Ishigaki et al. [47] analyzed wave shape of acceleration and angular velocity of pelvic mounted sensors 

on 95 elderly persons to identify stability of posture during walking. 

4.3 Discussion 

Table I provides a synthesis of the main aspects of the publications included in this State of the art 

through the wearable sensor configurations, extracted parameters types, and protocols. 
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TABLE I – STATE OF THE ART IN SPATIO-TEMPORAL GAIT ANALYSIS USING WEARABLE SENSORS. SENSOR TYPE INCLUDES 

ACCELEROMETERS (ACC), GYROSCOPES (GYRO), OR COMBINATIONS OF ACCELEROMETERS AND GYROSCOPES (IMU). 

SUBJECT’S TYPE INCLUDE HEALTHY (H), ELDERLY (EL), OSTEO-ARTHRITIS (OA), VESTIBULAR DISORDED (VD), SPINAL CORD 

INJURY (SCI), PARKINSON’S DISEASE (PD) AND STROKE (ST) 

Publication Wearable Sensors Parameters Protocol 

Ref 
n° Authors Year Location Type 

Te
m

po
ra

l 

Sp
at

ia
l 

A
ng

ul
ar

 

O
th

er
s 

subjects
type N Validation 

system 

13 Bassey et al. 1987 Hip Acc x   H + EL 8 + 6 Foot-switches 
14 Aminian et al. 1999 Thigh Acc x H + OA 5 + 12 Foot-switches
15 Jasiewicz et al. 2006 Foot + Shank IMU x   H + SCI 26 + 14 Foot-switches 
16 Lemoyne et al. 2009 Shank Acc x       ? ? - 
17 Liu et al. 2009 Lower-limbs IMU x x   H 10 Mocap 
18 Weng et al. 2009 Foot Pressure x H + VD 23 + 87 - 
19 Yang et al. 2011 Waist Acc x   H + PD 5 + 5 - 
20 Angunsri et al. 2011 Foot Pressure x       H + VD 26 + 92 - 
21 Sant'Anna et al. 2010 Ankle Acc x H 6 GaitRite 

22 Tong et al. 1999 Shank + 
Thigh Gyro x x x   H + SCI 1 + 1 Mocap 

23 Aminian et al. 2002 Shank + 
Thigh Gyro x x x   H + EL 9 + 11 Mocap + Foot-

switches 
24 Salarian et al. 2004 Shank + thigh Gyro x x x   PD 10 Mocap 
25 Sabatini et al. 2005 Foot IMU x x   H 5 Treadmill 
26 Moore et al. 2007 Shank IMU x H + PD 10 + 7 - 

27 Bamberg et al. 2008 Foot IMU + 
Misc x x    H + PD 10 + 5 Mocap 

28 Hartmann et al. 2009 Trunk Acc x x     H 23 GaitRite 

29 Schepers et al. 2010 Foot IMU + 
Force  x    H 10 Mocap 

30 Kerr et al. 2010 Foot Range 
Sensor   x     H 20 Mocap 

31 Li et al. 2010 Shank IMU x   H 8 Treadmill 

32 Esser et al. 2011 Trunk Acc   x     H + PD + 
Misc

13 + 24 
+ 38 - 

33 Zijlstra et al. 2003 Trunk Acc x   H 25 Force Treadmill 
34 Dobkin et al. 2011 Ankle Acc   x     H + ST 6 + 12 Stopwatch 
35 Peruzzi et al. 2011 Foot + Shank IMU x H 20 Mocap 
36 Shin et al. 2011 Back Acc x x H 6 - 
37 Goulermas et al. 2008 Foot + Shank IMU x   H 8 Mocap 
38 Takeda et al. 2009 Full-Body IMU     x   H 3 Mocap 

39 Cutti et al. 2010 Full-Body IMU + 
Mag   x   H 9 Mocap 

40 Ferrari et al. 2010 Full-Body IMU + 
Mag     x   H 4 Mocap 

41 Saito et al. 2011 Lower-limbs IMU x   H 3 Mocap 

42 Djurić-Jovičić et 
al. 2011 Shank Acc     x   H 37 Gonio + 

Treadmill 

43 Mayagoitia et al. 2002 Shank + 
Thigh IMU   x   H 10 Mocap 

44 Paquet et al. 2003 Back Acc x H + PD 22 - 

45 Karcnik et al. 2004 Lower-limbs Pressure + 
Gonio    x H 5 Mocap 

46 Mizuike et al. 2009 Trunk Acc       x H + ST 21 + 63 - 
47 Ishigaki et al. 2011 Trunk IMU x EL 95 - 
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In addition, a recent review paper from Kavanagh et al [48] has described the validity and reliability of 

various accelerometry-based methods for temporal event detection during gait. The evolution of the 

amount of work in being published in this field in the last years shows a really growing interest. 

The bibliographic review of existing wearable systems and offline analysis methods shows that: 

• Various body-worn sensor configurations are used with different performances for gait analysis. 

Some of them use multiple sensor sites or wires, which can be a source of hindrance for the 

subject. It seems preferable to develop a minimal sensor configuration with wireless sensors. 

• Placement of sensors on lower-limb rather than trunk seems preferable for the estimation of 

spatio-temporal gait parameters. In particular, foot appears to be the only location which verify 

zero velocity update condition [35]. 

• Most of the studies do not provide proper validation of their system against references, or uses 

non gold-standard reference systems such as foot-switches. For those that were validated, 

reported accuracy and precision can be further improved. 

• Most of the systems have been only tested on healthy subjects or in small samples of pathological 

subjects. 

• Finally, most of the system provides only basic and 2D spatio-temporal gait parameters, which is 

a strong limitation to describe some motor symptoms of the targeted mobility diseases. 

5 Online methods with embedded systems 

One step further to wearable systems is the use of embedded systems and online methods. It means that 

sensing, algorithm, and processing power is implemented within a real-time working system worn by the 

subject. Some applications typically require such hard real-time condition, in order to perform direct feed-

back to the user or to control active prosthetic devices. The simple adaptation of assessment methods 

described in the previous paragraph is not always possible due to the real-time constraint and processing 

power, and justify an independent approach with dedicated systems and algorithm. A review of the recent 

state of the art for real-time methods of gait assessment is provided in this paragraph. In addition, some 

system only based on wearable sensors with offline methods used for classification of walking activities, 

but with potential adaptation in real-time, are also described in this chapter. 

5.1 Method 

Articles and publications indexed in Scopus were reviewed by searching with no restriction for the date 

and the following criteria: 
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With a title including at least one of those words, related to locomotion:  

 Walking, Gait, locomotion, Stairs, Ramp, Incline 

And with at least one of those words, related to online processing:  

- Parameters, Real-time, recognition, classification, identification, control, algorithm, features, 

detection, active 

And at least one of those words, related to mobility disease:   

- Prosthetic, Prosthesis, Prostheses, Amputee, Ankle, Foot 

With title, abstract or keywords including at least one of those words, related to embedded sensors: 

- sensors, strain gauges, inertial sensors, accelerometers, gyroscopes 

In addition, Google Patent was first used with the same research terms as in scientific publications review, 

and provided 469 results, which was obviously too much to be analyzed in a systematic way. Then review 

was therefore restricted to the patent sources that were identified as relevant by collaborators or known 

from past research. 

5.2 Results 

37 Document results were found with the above criteria. After study of the content, some articles were 

discarded, as they were related to the control of purely robotic systems, Motor-Neural interfaces or 

clinical studies. The 23 remaining documents (17 articles and 6 patents) were classified as Temporal 

Detection of gait events and Features extraction and recognition algorithm. The following paragraphs 

provide their main aspects that are relevant for the present thesis, and a synthesis table of their main 

aspects is given in the discussion. 

5.2.1 Publications 

Kim et al. [49] has used a FSR-based detection of terminal and initial contact for an active ankle foot 

orthosis to prevent foot-drop. 

Kong et al. [50] measured shank angle from accelerometer to detect gait event in barefoot condition and 

tested their algorithm in 5 FES subjects. 
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Lawson et al. [51] described an approach for the real-time detection of stumble, including the real-time 

detection of walking phases using accelerometers and force sensors in a trans-femoral prosthesis. 

 
Figure 5 – States machine for gait phases detection with transition conditions, extracted from Lawson et al- 2010 

More recently, the same authors described a finite-state model (fig. 5) for standing controller of a 

prosthetic knee [52]. 

Kotiadis et al. [53] proposed different algorithm using combinations of shank-mounted accelerometers 

and gyroscopes to detect gait phases in real-time for control of drop foot stimulator. 

Gong et al. [54] used a single potentiometer in an artificial knee joint to predict Swing and stance phase, 

as well as walking speed. (Note: publication in Chinese). 

Lee et al. [55] detected swing and stance phase of gait in quasi real-time using shank gyroscopes by 

adapting methods from Tong et al. [23], validated against footswitches on 5 healthy subjects. 

Catalfamo et al. [56] proposed a method on shank-mounted gyroscope for swing/stance phase detection 

on flat and incline surface compared with pressure measurement on 7 healthy subjects. 

Hanlon et al. [57] compared footswitches and simple detecting initial contact  algorithm determined from 

the second derivative of foot fore-aft acceleration against forceplate, and tested it on 12 healthy 

individuals. 

Pappas et al. [58] presented a method based on a shoe-mounted gyroscope for detecting gait phases and 

tested it against foot switches sensors without validation. They use it with two pathologic subjects 

performing treadmill walking at different inclinations. 
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The global recognition strategy is also described, showing that the ambulation task type is determined 

approximately at mid-swing based on ankle position during the last stance phase and ankle trajectory 

during beginning of swing phase. 

In US7,867,284,B2 from Vitchom Human Bionics, a control method is claimed based on phase 

recognition, trajectory generation and classification by comparison with a look-up table, in order to 

control a knee prosthetic. 

In US 2011 0202144 from Palmer et al., is claimed a method for walking phase detection based on expert 

rules on a sensorized knee prosthetic. The patent also describes per-subject tuning of the thresholds. 

In US6513381 from Dynastream is claimed a method for foot movements estimation based on 

accelerometers. The method is based on integration of signals. 

In US7200517 from Nike, is claimed a method based on foot sensors that detect temporal events (Heel 

strike and Toe-off), and determine spatio-temporal parameters using a regression model from temporal 

events (fig. 8). 

 
Figure 8 – Running Gait events detection on accelerometric signal, from Nike 2007 
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5.3 Discussion 

The following Table II provides a synthesis of the main aspects of the reviewed publications 

TABLE II – STATE OF THE ART IN ONLINE DETECTION AND CLASSIFICATION USING WEARABLE SENSORS. SENSOR TYPE INCLUDES 

ACCELEROMETERS (ACC), GYROSCOPES (GYRO), COMBINATIONS OF ACCELEROMETERS AND GYROSCOPES (IMU), AND FOOT 

SENSITIVE RESISTORS (FSR). SUBJECT’S TYPE INCLUDES PATIENT WITH FUNCTIONAL ELECTRICAL STIMULATION (FES). 

Publication Sensors Method Protocol 

Ref 
n° Authors Year Location Type 

ga
it 

ph
as

es
 

Fe
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es
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tra
ct
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n 

C
la

ss
ifi

ca
tio

n 
O

nl
in
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Subjects N walking 
activity 

49 Kim et al. 2011 Foot FSR x x FES 1 Level 
50 Kong et al. 2007 Shank Acc x     x FES 5 level 
51 Lawson et al. 2010 Knee 

Prosthesis Acc + Force x   x Amputee 1? level 

52 Lawson et al. 2011 Knee 
Prosthesis Acc + Force     x x Amputee 1? level 

53 Kotiadis et al.  2010 Shank IMU x x FES 1? level 
54 Gong et al. 2010 Knee 

Prosthesis Potentiometer x x   x Amputee 1? level 
55 Lee et al. 2011 Shank Gyro x x Healthy 5 level, slope 
56 Catalfamo et al. 2010 Shank Gyro x     ~ Healthy 7 level, slope 
57 Hanlon et al. 2009 Foot Acc + FSR x x Healthy 12 level 
58 Pappas et al. 2004 Foot Gyro + FSR x     x FES 2 level, slope 
59 Jiménez et al. 2011 Foot IMU   x x   Healthy 1 level, slope 

60 Huang et al. 2011 Knee 
Prosthesis EMG + IMU x   x x Amputee 5 level, slope, 

stairs 

61 Sugimoto et al. 2010 Foot Pressure     x   Healthy 2 
level, stairs, 
activities of 
daily-living 

62 Varol et al. 2010 Knee 
Prosthesis IMU, … ?     x x Amputee 1 

level, 
activities of 
daily-living 

63 Nyan et al. 2006 Shoulder Acc     x   Healthy 22 level, stairs 
64 Coley et al. 2005 Shank Gyro     x   Healthy, 

Elderly 20 stairs ascent

65 Lau et al. 2009 Shank + 
Foot IMU x x x   FES 7 

level, slope, 
stairs 

In addition, in a recent review paper from 2010, Rueterbories et al. [66] described the existing methods 

for real-time gait event detection that could be applied to FES and concluded that there was still strong 

limitations for hard real-time implementation of the methods. 
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The study of existing literature shows interesting existing methodologies based on embedded systems and 

online processing algorithm for walking phase detection and activity recognition that can be used in 

active prosthetics or rehabilitation devices. Several conclusions can be made: 

• Various sensor configurations are reported, but inertial sensors, including accelerometers and 

gyroscopes are commonly used in most of the studies, in addition to force and/or moment 

sensors. Some studies report the use of EMG data in addition. 

• Patent describes the overall method of using sensor data fusion for classifying activities, but the 

recognition algorithms which are the critical aspects of the system are not detailed. 

• Temporal detection methods have been mostly tested solely during normal walking on flat 

surface. No studies reported and validated a method that could be robust to different activities 

such as walking in stairs and ramp. 

• For classification, studies describe different classifications algorithm based on sensor data fusion 

with promising results, but mostly with offline methods. We can distinguish the use of statistical 

methods on one side (SVM, GMM), that requires a certain amount of training data, and expert 

rule based methods on the other side. No studies have compared those two types of methods for 

the same problematic. 

• Most of the studies are focused on trans-femoral amputees or people with drop-foot due to stroke. 

Interestingly, no studies were found on trans-tibial amputees. 

• One limitation of this bibliographic study is that the criteria will not return articles focusing on 

the design of active prosthetics, which might also include some aspect for recognition of phases 

and activities. 

• Finally, most of the studies, and particularly the one with online methods, have been tested on an 

extremely small sample size (between 1 to 5 subjects), so there is no evidence of their robustness 

on a wider sample of subjects with potential different walking patterns. 

6 Overall conclusion 

In conclusion, this review of the state of the art outlines the established methods (clinical scores, 

laboratory measurements) and latest researches using on wearable sensors carried out for spatio-temporal 

gait analysis (fig. 1). The focus on spatio-temporal parameters rather than full-body kinematics or kinetics 

can be justified since they are the most useful outcome measures used to assess the mobility diseases 

considered in this thesis. Wearable sensors have several advantages to laboratory devices for spatio-

temporal gait analysis, since they are less cumbersome for patients and allow long-term assessment of 
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walking in natural and unconstrained condition. Compared to subjective clinical scores mostly based on 

qualitative observations, wearable sensors with dedicated algorithm provide quantitative and objective 

assessment of spatio-temporal gait parameters. 

At the present time however, wearable sensors have important limitations to their clinical use in practice. 

Regarding offline methods, most systems have been poorly validated, either with only healthy subjects, or 

in small sample size, or without gold standard reference system. More importantly, most of the devices 

only provide basic spatio-temporal features such as gait cycle time or stride velocity, with limited 

performances to describe the various motor symptoms of mobility diseases. Regarding online methods 

capable of providing real-time monitoring of gait phases and activities, although the recent literature 

described some interesting devices for trans-femoral amputee and FES applications, systems have been 

mostly tested during level walking and with few subjects. Moreover, most of the recognition methods 

have not been implemented in real-time, and some of them rely on statistical classification methods using 

an important set of training data. 

Various types of sensors and locations have been described in literature. Nevertheless, it appears that the 

foot is a particularly interesting location, since it is minimally invasive, allows to include force or pressure 

measurements, and to verify zero-velocity update for correcting inertial sensors drift. Moreover, most of 

spatio-temporal parameters of gait, such as stride length, can be derived from foot movements. 

In the light of this state of the art, the work presented in the following chapter describes the use of foot-

worn inertial sensors and offline methods for the 3D estimation of foot kinematics, and the subsequent 

extraction of both common and new spatio-temporal parameters allowing characterizing mobility 

diseases. Algorithms are technically validated against gold standard reference systems and tested on 

pathologic subjects in clinical condition. In the last chapters of the thesis, the work focus on the design 

and testing of novel real-time methods for gait phase’s detection, features extraction and activity 

recognition, using force and inertial sensors embedded in the prosthesis of trans-tibia amputee subjects. 
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Chapter 3  

Quantitative Estimation of Foot-Flat and Stance Phase of Gait Using 

Foot-Worn Inertial Sensors∗ 

Abstract 

Time periods composing stance phase of gait can be clinically meaningful parameters to reveal 

differences between normal and pathological gait. This study aimed, first, to describe a novel method for 

detecting stance and inner-stance temporal events based on foot-worn inertial sensors; second, to extract 

and validate relevant metrics from those events; and third, to investigate their suitability as clinical 

outcome for gait evaluations. 42 Subjects including healthy subjects and patients before and after surgical 

treatments for ankle osteoarthritis performed 50-m walking trials while wearing foot-worn inertial sensors 

and pressure insoles as a reference system. Several hypotheses were evaluated to detect heel-strike, toe-

strike, heel-off, and toe-off based on kinematic features. Detected events were compared with the 

reference system on 3193 gait cycles and showed good accuracy and precision. Absolute and relative 

stance periods, namely loading response, foot-flat, and push-off were then estimated, validated, and 

compared statistically between populations. Besides significant differences observed in stance duration, 

the analysis revealed differing tendencies with notably a shorter foot-flat in healthy subjects. The result 

indicated which features in inertial sensors’ signals should be preferred for detecting precisely and 

accurately temporal events against a reference standard. The system is suitable for clinical evaluations 

and provides temporal analysis of gait beyond the common swing/stance decomposition, through a 

quantitative estimation of inner-stance phases such as foot-flat. 
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1 Introduction 

In clinical gait evaluation, stance phase is defined as the period of time where the foot is in contact with 

the ground [1]. Stance has been also described as a succession of different sub-phases such as loading 

response, mid-stance, terminal stance and pre-swing [2]. Gait changes in elderly persons have been 

characterized by a longer foot-flat [3]. Those previous studies show that quantitative assessment of sub-

phases of stance (referred as “inner-stance phases”), such as foot-flat, can bring additional insight into 

clinical gait assessment. 

Stance phase has been detected using stationary devices such as optical motion capture, force-plate [4] 

and electronic walkways embedding pressure sensors [5]. Ambulatory devices such as Footswitches [6], 

pressure insoles [7], accelerometers [8,9], gyroscopes [10,11], and combinations of inertial sensors and 

pressures sensors [12,13] were also used for this purpose. Applications range from the real-time triggering 

of electrical stimulators to the estimation of temporal parameters that have shown to be relevant for 

various clinical evaluations such as frailty in the elderly [10,14] or motor symptoms in Parkinson’s 

disease [15].  

Using ambulatory measurements for temporal analysis, information can be reliably derived from large 

datasets collected in natural long-distance gait. Nevertheless, in most previous studies, stance phase was 

considered as a single block without any subdivision from heel-strike to toe-off [6,9–11,16]. On the other 

hand, studies that considered inner-stance phase events [8,12,13], didn’t assess thoroughly the technical 

validity of their method in terms of temporal precision and accuracy against a gold standard. A detailed 

study of the reliability of gait events detection from various inertial sensors was recently proposed [17], 

but the authors mainly focused on the sensitivity and specificity of detection when using Foot Sensitive 

Resistors and on a limited population, rather than on temporal precision and accuracy. 

The goal of this paper was twofold. First, it aimed to show a novel method based on foot-worn inertial 

sensors to detect temporal events based on robust features of foot kinematic patterns, and extract inner-

stance phases defined between pairs of successive events. As a technical validation, the performance of 

our method was compared to force reference measurements on a two-segment foot model. Second, we 

tested the efficacy of inner-stance phase estimates as a potential outcome measure for clinical gait 

evaluations, by using the system to compare healthy control subjects to age-matched patients suffering 

from ankle disease during a 50-m gait test.  
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2 Method 

2.1 Measurement devices and sensor configuration 

Ambulatory pressure insoles (Pedar-X, Novel, DE) were used as a reference system to measure the contact 

time of different regions of the foot with the ground. This pressure sensor technology has shown high 

linearity, low creep, low hysteresis, and low variability for all performances over the whole sensor matrix 

[18]. Additionally, it has been reported as accurate and reliable in gait measurements compared to force-

plate [7] and repeatable in different foot regions and on different days [19]. Finally, Pedar insoles have been 

successfully used instead of force-plate for force measurement during gait [20] and clinical evaluation based 

on temporal and pressure parameters [21]. Therefore, Pedar pressure insoles were considered as a validated 

reference for this study. Subjects wore the pressure insoles embedded in custom-made shoes (fig. 1). One 

inertial measurement unit (IMU) consisting of 3D gyroscopes and 3D accelerometers was installed on the 

forefoot over the bases of first and second metatarsals, such that one gyroscope, referred to as pitch, was 

aligned to foot’s sagittal plane (fig. 1). The IMU was connected to a portable data-logger (Physilog, 

BioAGM, CH) with an internal low-pass analog filter (17Hz). Both pressure insoles and IMU devices 

recorded signals synchronously at 200Hz. 

 
Figure 1 - Sensor configuration worn by a subject with inertial measurement unit (IMU) fixed on forefoot and pressure-

insoles (reference system) beneath the foot. 

2.2 Temporal events detection  

Stance phase is the period between initial contact, referred to as Heel-Strike (HS), and terminal contact, 

referred as Toe-Off (TO). Additionally, stance encapsulates the instant where toes touch the ground and 

make the foot land flat, referred as Toe-Strike (TS), and the instant where the heel rises from the ground, 

referred as Heel-Off (HO). {HS, TS, HO, TO} are defined as the temporal events of stance (fig. 2.a). 
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Figure 2 - a) Temporal events during Stance and corresponding inner-stance phases (in italic). b) Kinematic and force 

signals with the detected features (as listed in table I) at Heel-strike ( ), Toe-Strike (+), Heel-Off (o), and Toe-Off ( ), 

showed for one typical gait cycle of a healthy subject and a c) subject with ankle osteoarthritis. 
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2.2.1 Kinematic features from inertial sensors signals 

During one stride, the two negative peaks of pitch angular velocity of shank are known to be robust 

approximate estimates of HS and TO on both healthy and patient populations [10,22]. Foot pitch angular 

velocity (Ωp) shows similar negative peaks for HS and TO. Consequently, those peaks were detected and 

used to split gait trials into cycles and define limited time windows for further robust detection of the 

kinematic features. Candidate features for detecting HS and TO were identified by the minimum (MIN), 

maximum (MAX) and zero-crossing (ZERO) time sample of the three following signals: Ωp, the norm of 

3D accelerometer signal (||A||) and the derivative of 3D gyroscope signal norm (||Ω||’), where ||X|| is the 

Euclidian norm of vector X. The phase between TS and HO, so-called foot-flat, is characterized by a 

lower amount of movement since the ground constrains the foot. So, candidate features for detecting TS 

and HO were identified by the first and last sample for which signals of ||Ω||’, Ωp, and the absolute value 

of the derivative of accelerometer signal’s norm (|||A||’|), were below a specific threshold. Signals norms 

were preferentially selected in order to be independent of IMU positioning. All these detection rules, and 

the six subsequent kinematic features extracted for each event are detailed in table I and illustrated in fig. 

2.b-c. 

2.2.2 Reference Force features from pressure insole signals 

A foot frame was defined with its X-axis as the horizontal projection of vector from the great tuberosity 

of calcaneus to the head of second metatarsal, Y-axis to the left and Z-axis upwards. The foot was divided 

into two segments: hindfoot and forefoot, and the coordinates of the 99 sensor cells of the insole were 

determined. Sensors cells with X-coordinate lower than the midpoint between bony landmarks of the 

navicular and cuboid bones were assigned to hindfoot, while other sensor cells were assigned to forefoot. 

The vertical force exerted on each segment (F) was calculated based on pressure (P) and sensor cell area 

(A): 

 .
J

j j
j

F P A=∑                (1) 

where j is the sensor cell index and J the set of segment cells. For the vertical force signal on hindfoot 

(Fh) and forefoot (Ff) segments, a threshold of 5% of bodyweight (BW) was used to detect the time of 

each segment’s contact with the ground. HS (respectively TS) was detected on the rising of Fh, 

(respectively Ff), whereas HO (respectively TO) was detected on the lowering of Fh (respectively Ff). 

Those four force features (f1 to f4) constituted the reference values for temporal events (table I). 
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2.3 Inner-stance phases and foot-flat estimation 

Based on detected temporal events, stance and inner-stance phases can be objectively quantified at each gait 

cycle. Thereby, the duration of stance was computed as: 

Stance=t(TO)-t(HS)             (2) 

Where t() is the occurrence instant of the event. Subsequently, the duration of the three inner-stance phases 

composing Stance, namely loading response (Load), Foot-flat and Push-off (Push) were computed as: 

Load=t(TS)-t(HS)             (3) 

Foot-flat=t(HO)-t(TS)             (4) 

Push=t(TO)-t(HO)             (5) 

Absolute values were calculated in milliseconds, and relative values, LoadR, Foot-flatR and PushR, were 

expressed as a percentage of Stance. 

2.4 Measurement protocol 

Both healthy subjects and patients with different degrees of ankle disease were considered to test the 

proposed method’s performance. In total, 42 subjects participated in this study: 10 healthy subjects (HY), 12 

patients with ankle osteoarthritis (AO), 11 patients treated by total ankle replacement (TAR) and 9 patients 

treated by ankle arthrodesis (AA). Both measurement systems were installed on subjects, on the affected 

foot for patients, and they were asked to walk at self-selected speed in a hospital corridor for two trials of 50 

meters. The Foot Function Index (FFI) and the American Orthopedic Foot and Ankle Society scale for 

ankle-hindfoot (AOFAS) were registered to evaluate the degree of ankle disease and illustrate the outcome 

of inner-stance phases (table III). The local ethics committee approved the experimental protocol and the 

subjects gave their informed consent prior to testing. 

2.5 Statistical analysis 

Temporal parameters validation – To compare the temporal event detection ability of the proposed system 

against reference, accuracy (Mean) and precision (STD) were calculated on the data sets of time differences 

between kinematic and force features at each gait cycle. The median absolute deviation (MAD), as a 

measure of statistical dispersion, and the mean absolute error (MAE), were also computed. The set of best 

kinematic features obtained using IMU was finally evaluated for reliability by computing Intraclass 

correlation coefficients ICC(1,1). Furthermore, the mean and standard deviation of the sets of differences 
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between inner-stance phases’ estimates from both the proposed and reference system were computed in each 

subjects’ group. 

Comparisons of subject groups – The median and interquartile range (IQR) were estimated for inner-stance 

phases measured by inertial sensors, clinical scores, and physical characteristics of each population. The 

results of each patient group (AO, TAR, and AA) were compared to the results of the healthy group (HY) 

using the Wilcoxon rank-sum test. Rank-sum test, as a robust non-parametric test, was chosen for pair-wise 

comparisons since population sizes were small and all metrics did not have a normal distribution, and 

possibly included outliers. 

3 Results 

3.1 Temporal events detection 

After discarding the three first and last gait cycles of each trial from all tested subjects, a total of 3193 gait 

cycles were recorded and analyzed. Fig. 2 shows typical samples of recorded signals during stance with 

detected features on kinematic and force signals.  

Table I summarizes the differences between kinematic features and reference force features for each event. 

For HS, k1, detected at Ωp minimum peak showed the best precision (8ms), while the best accuracy (-2ms) 

was obtained with k3, at the minimum peak of ||A||. For TS, the best results were obtained with k10, 

detected at low Ωp, showing an accuracy±precision of -8±39ms; k12, detected at low |||A||’|, showed a 

better accuracy (2ms) but a bigger MAE than k10 (respectively 47ms and 31ms). For HO, the best 

accuracy (4ms) was obtained with k13, at low ||Ω||’, while the best precision (46ms) was obtained with k15 

extracted at low Ωp. Finally for TO, the best results were obtained for k22, detected at the maximum peak 

of ||A||, showing an accuracy±precision of -6±12ms.  

According to table I, the optimal set of kinematic features for detecting {HS, TS, HO, TO}, was obtained 

with the set of rules {k3, k10, k13, k22}. For this set of rules, Coefficients of Intraclass correlation were 

calculated and show fair-to-good reliability for {HS, TS, HO} with ICC(1,1) of respectively {0.72, 0.51, 

0.74}, and excellent reliability for TO with ICC(1,1) of 0.97.  
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TABLE I - LIST OF FEATURES AND THEIR DIFFERENCES AMONG 3193 RECORDED GAIT CYCLES. TEMPORAL EVENTS ARE 

DETECTED BASED ON SIGNAL FROM INERTIAL SENSORS (K1 TO K24) AND PRESSURE INSOLES (F1 TO F4). ΩP AND ||Ω||’ CORRESPOND 

TO THE PITCH ANGULAR VELOCITY OF THE FOOT AND THE DERIVATIVE OF THE NORM OF FOOT ANGULAR VELOCITY. ||A|| AND 

|||A||’| CORRESPOND TO THE NORM OF FOOT ACCELERATION AND ITS ABSOLUTE DERIVATIVE. FH AND FF ARE THE VERTICAL 

FORCE SIGNALS ESTIMATED ON THE HINDFOOT AND FOREFOOT SEGMENTS. MINIMUM VALUE OF DIFFERENCES FOR EACH EVENT 

IS INDICATED IN BOLD ITALIC. 

 Kinematic Force Difference (ms) 
  signal rule feature signal rule feature Mean MAE STD MAD

Heel-
Strike 

Ωp 
MIN k1 

Fh 
> 5% 

of 
BW 

f1 

29 26 8 6 
0 k2 -39 43 17 13 

||A|| 
MIN k3 1 8 13 9 
MAX k4 37 36 14 8 

||Ω||’ 
MIN k5 36 43 32 18 
MAX k6 -6 12 13 10 

Toe-
Strike 

||Ω||’ 
< -0.02 rad/s² k7 

Ff 
> 5% 

of 
BW 

f2 

74 73 52 42 
< -0.06 rad/s² k8 24 44 52 39 

Ωp 
> -1 rad/s k9 -23 41 44 38 
> -2 rad/s k10 -4 31 37 31 

|||A||’| 
< 0.05 m/s³ k11 75 74 49 36 
< 0.2 m/s³ k12 12 47 53 45 

Heel-
Off 

||Ω||’ 
> -0.02 rad/s² k13 

Fh 
< 5% 

of 
BW 

f3 

4 41 54 40 
> -0.06 rad/s² k14 60 73 66 50 

Ωp 
< -1 rad/s k15 76 81 51 36 
< -2 rad/s k16 121 130 63 45 

|||A||’| 
> 0.05 m/s³ k17 113 125 87 61 
> 0.2 m/s³ k18 169 176 71 50 

Toe-
Off 

Ωp 
MIN k19 

Ff 
< 5% 

of 
BW 

f4 

-33 35 14 11 
0 k20 63 65 21 17 

||A|| 
MIN k21 -81 85 15 11 
MAX k22 -3 11 13 9 

||Ω||’ MIN k23 5 22 22 21 
MAX k24 -70 71 18 12 
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3.2 Inner-stance phases estimation 

Using the optimal kinematic features set from temporal events’ detection, inner-stance phases were 

computed. Median values over all gait cycles were then calculated for each subject and compared to the 

reference system (Table II). Globally, the average (mean±std) error was -3±4ms for Stance, -1±10ms for 

Load, 19±14ms for Foot-flat and -16±13ms for Push phases. Relative limit of agreement intervals [23], 

computed as average difference ±1.96 standard deviation in percentage of Stance were -0.6% to 1.8% for 

Load, 1.3% to 4.7% for Foot-flat and -3.6% to 0% for Push, showing good agreement between IMU and 

reference system. 

TABLE II - MEAN (ACCURACY) AND STD (PRECISION) OF DIFFERENCE BETWEEN INNER-STANCE PHASES OBTAINED FROM 

INERTIAL SENSORS SYSTEM WITH THE SET OF KINEMATIC FEATURES {K3,K10,K13,K22} FOR {HS,TS,HO,TO}, AND REFERENCE 

SYSTEM IN DIFFERENT GROUPS OF SUBJECTS (HY: HEALTHY, AO: WITH ANKLE OSTEOARTHRITIS, TAR: AFTER TOTAL ANKLE 

REPLACEMENT, AA: AFTER ANKLE ARTHRODESIS). 

  AO AA HY TAR ALL 
 Phase  Difference Mean STD Mean STD Mean STD Mean STD Mean STD
Stance  ms -5 5 -3 3 -2 2 -3 2 -3 4 

Load 
ms 12 11 -8 4 -3 4 -3 3 1 10 

% of Stance 1.9 1.3 -0.6 0.3 0.0 0.6 0.6 0.1 0.6 1.2 

Foot-flat ms 15 25 16 6 25 3 21 3 19 14 
% of Stance 3.2 3.1 2.5 0.6 3.3 0.4 3.0 0.2 3.0 1.7 

Push ms -29 18 -7 3 -12 2 -14 2 -16 13 
% of Stance -3.7 2.4 -0.5 0.3 -1.1 0.1 -1.2 0.2 -1.8 1.8 

 
 
 

3.3 Group comparisons 

Table III presents Median±IQR of physical characteristics, clinical scores, and inner-stance phases 

obtained for the four populations. No significant differences were observed for age and height. All three 

patient groups showed significant difference (p<0.01) with the healthy group for both clinical scores. The 

healthy group showed significantly shorter Stance compared to all patient groups, shorter Load compared 

to AO and AA, and shorter Foot-flat compared to TAR and AA. This is also qualitatively illustrated in the 

typical example given in fig. 2 where a patient with ankle osteoarthritis (fig. 2.c) showed a longer foot-flat 

than a healthy subject (fig. 2.b). Although a tendency for longer PushR and shorter Foot-flatR in healthy 

subjects was observed, it was not significant. 
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TABLE III - PHYSICAL CHARACTERISTICS, CLINICAL SCORES (FFI AND AOFAS) AND INNER-STANCE PHASES DURATIONS IN 

DIFFERENT GROUPS OF SUBJECTS (HY: HEALTHY, AO: WITH ANKLE OSTEOARTHRITIS, TAR: AFTER TOTAL ANKLE 

REPLACEMENT, AA: AFTER ANKLE ARTHRODESIS) PRESENTED AS MEDIAN (IQR). SIGNIFICANT DIFFERENCES WITH HEALTHY 

SUBJECTS ARE INDICATED WITH *(P-VALUE<0.05) AND **(P-VALUE<0.01). 

 HY AO TAR AA 

Physical 
characteristics 

Age (years) 59.0(27.0)  60.5(17.0) 67.0(20.3) 65.0(13.0) 

Height (cm) 166.0(13.0)  169.0(9.0) 170.0(9.0) 177.0(11.3) 

Weight (kg) 66.6(12.6)  79.4(22.4) 82.6(12.5)** 87.7(9.2)** 

Sex 3M,7F 10M,4F 8M,3F 8M,1F 

FFI 

Total 0(0)  45.8(22.0)** 8.9(18.7)** 6.8(24.7)** 

Pain 0(0)  55.0(26.1)** 10.6(18.2)** 5.4(48.9)** 

Disability 0(0)  51.4(33.3)** 10.1(17.8)** 17.1(19.5)** 

Activity 0(0)  17.6(29.2)** 10.0(18.6)** 5.0(15.7)** 

AOFAS 

Total 100(0)  46.0(18.8)** 78.0(8.0)** 67.0(26.0)** 

Pain 40(0)  20.0(20.0)** 30.0(0.0)** 30.0(25.0)* 

Function 50(0)  28.0(12.5)** 38(7.8)** 30.0(6.3)** 

Alignment 10(0)  5.0(5.0)** 10.0(0.0) 10.0(0.0) 

Stance (s) 0.60(0.06)  0.68(0.05) ** 0.69(0.04) ** 0.71(0.04) ** 

Load (s) 0.09(0.01)  0.11(0.03)* 0.09(0.04) 0.12(0.03) ** 

LoadR (%) 13.45(3.67)  15.55(5.63) 13.28(4.49) 15.20(4.29) 

Foot-flat (s) 0.27(0.10)  0.32(0.09) 0.33(0.10)* 0.33(0.04)* 

Foot-flatR (%) 44.07(9.2)  46.02(10.27) 49.82(14.89) 49.21(5.31) 

Push (s) 0.24(0.03)  0.27(0.05) 0.24(0.06) 0.26(0.04) 

PushR(%) 39.94(7.03)  38.09(7.45) 36.85(12.59) 36.73(6.76) 

 

4 Discussion 

In this study, we showed that main temporal events during stance phase can be detected precisely and 

accurately using a single IMU attached to the foot. Based on these events, the corresponding inner-stance 

phases were computed to estimate loading response, foot-flat and push-off durations in normal and 

pathological gait. These metrics give promising perspective in ambulatory gait analysis, through the 

analysis of stance phase composition between more active (Load and Push) and passive (Foot-flat) 

periods. They allow quantitative analysis of the different temporal strategies among healthy subjects and 

patients with gait disorder. 
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4.1 Technical validity 

The comparison between features obtained from foot-worn inertial sensors and reference systems showed 

a high accuracy and precision for detecting HS and TO, and slightly lower but acceptable performance for 

detecting TS and HO. Our study revealed an important limitation of previous methods for HS and TO 

detection based on negative peaks of Ωp, which showed a systematic bias leading to an underestimation of 

stance phase duration. Additionally, the proposed method showed smaller errors than results reported in 

previous studies using vertical foot velocity (16±15ms for HS and 9±15ms for TO [16]), or shank angular 

velocity (-8.7±-12.5ms for HS and -2.9±26.8ms for TO [22]). Moreover, we observed that foot angular 

velocity signals were particularly useful for detecting TS and HO events (i.e., Foot-flat), whereas 

accelerometers provided better results for detecting HS and TO events (i.e., Stance). 

Although the pressure insole was validated for force measurement, errors in location measurement of 

bony landmarks (the midpoint between navicular and cuboid bones) used to assign sensor cells to foot 

segments may influence the detected TS and HO moments. However, the dispersions of landmarks’ 

location measurement errors have been shown to be much smaller than sensor cells’ length [24]. 

Advantageously, the detection of TS and HO moment using IMU is not affected by this source of error. 

Although threshold values were selected empirically to detect TS and HO, limited movement and low-

pass filtering of signal prevented sensitivity to signal artifacts. Proposed thresholds were robust in all 

healthy subjects and patients with ankle dysfunction. Still, as inertial sensors can present a bias due to 

extrinsic factors such as temperature and humidity, the threshold values given in table I, except for the 

detection of minimal and maximal values, might require some tuning. Finally, the use of adaptive 

thresholds such as those proposed recently [25], could further enhance the detection’s robustness.  

By using the norm of signals, the detection algorithm is less sensitive to misalignment of the sensors 

relative to the foot, making it more repeatable without a specific sensor positioning, and generally 

applicable to any other foot-mounted IMU. 

The use of single sensor configurations on the foot is also possible since we have proposed and validated 

the detection of temporal events using only kinematic features of one gyroscope around pitch 

(k{1,2,9,10,15,16,19,20}), or only the use of a single 3D accelerometer (k{3,4,11,12,17,18,21,22}). 

4.2 Clinical applications 

Since it was technically validated, the proposed system can then be miniaturized and integrated in the 

footwear as a fully wearable device and be used in clinical evaluations. This study also investigated the 

proposed system’s clinical suitability. 
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Inner-stance phases results obtained for healthy subjects were in agreement with reference normative 

values reported [2], with 16.7% for Loading Response, 33.3% for Mid-stance, and 50 % for the sum of 

Terminal Stance and Pre-Swing in percentage of Stance, where we found respectively 13±4%, 44±9% 

and 40±7% for LoadR, Foot-flatR and PushR. The slight differences are due to the subdivision of stance 

into three phases rather than four.   

Similar performances were obtained for estimating inner-stance phases among the different subject 

groups, showing that the selected kinematic features were robust to the various healthy and pathological 

gait patterns recorded. Load, foot-flat, and push durations showed different tendencies in patient groups 

compared to healthy subjects. However, a dedicated clinical protocol with higher sample size is needed to 

confirm the clinical significance of these parameters.  

Detection algorithms proposed in this paper were based on simple rules that could be further implemented 

for real-time rehabilitation applications, where precise and accurate triggers of stimulation sequences 

during walking are needed [13]. Finally, the presented method can be combined with other methods that 

estimate spatial gait parameters using IMU [26] to provide a simple, wearable, and reliable tool for 

objective and quantitative evaluation of both spatial and temporal gait parameters. The clinical utility of 

inner-stance phases should be further confirmed in other populations, and particularly in subjects whose 

gait is characterized by a longer foot-flat, such as elderly at risk of fall, or people with early phases of 

Parkinson’s disease. Nevertheless, the application to other severe pathological gait patterns, such as those 

characterized by toe landing at initial contact due to foot-drop after stroke [27] or increased tone (without 

foot-flat during stance) would require further investigation 
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Chapter 4  

3D Gait assessment in young and elderly subjects using foot-worn 

inertial sensors∗ 

Abstract 

This study describes the validation of a new wearable system for assessment of 3D spatial parameters of 

gait. The new method is based on the detection of temporal parameters, coupled to optimized fusion and 

de-drifted integration of inertial signals. Composed of two wirelesses inertial modules attached on feet, 

the system provides stride length, stride velocity, foot clearance, and turning angle parameters at each gait 

cycle, based on the computation of 3D foot kinematics. Accuracy and precision of the proposed system 

were compared to an optical motion capture system as reference. Its repeatability across measurements 

(test-re-test reliability) was also evaluated. Measurements were performed in 10 young (mean age 

26.1±2.8 years) and 10 elderly volunteers (mean age 71.6±4.6 years) who were asked to perform U-

shaped and 8-shaped walking trials, and then a 6-minute walking test (6MWT). A total of 974 gait cycles 

were used to compare gait parameters with the reference system. Mean accuracy±precision was 

1.5±6.8cm for stride length, 1.4±5.6cm/s for stride velocity, 1.9±2.0cm for foot clearance, and 1.6±6.1° 

for turning angle. Difference in gait performance was observed between young and elderly volunteers 

during the 6MWT particularly in foot clearance. The proposed method allows to analyze various aspects 

of gait, including turns, gait initiation and termination, or inter-cycle variability. The system is light 

weight, easy to wear and use, and suitable for clinical application requiring objective evaluation of gait 

outside of the lab environment. 
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1 Introduction 

In clinical setting, gait and mobility is commonly evaluated using questionnaire, observation or simple 

functional performance assessments [1], [2]. These evaluations do not require sophisticated equipments 

and have the advantage of being easy to perform by trained evaluators. However, they are often subjective 

and dependant on the experience of evaluator. Furthermore, these measures do not allow evaluating 

specific spatio-temporal gait parameters that have been associated with frequent geriatric syndromes, such 

as falls, dementia, or frailty [3–5]. Generally, spatio-temporal gait analysis requires dedicated laboratories 

with complex systems such as optical motion capture. Recently, ambulatory devices have overcome some 

of these limitations by using body-worn sensors measuring and analyzing gait kinematics. Unlike 

standard optical motion capture that requires a dedicated working volume, body worn sensors can be 

linked to a light data-logger carried by the subject performing his activities outside the lab with minimal 

hindrance. Nevertheless, recorded data require appropriate algorithms to compute relevant parameters for 

clinical use [6]. 

Most common gait parameters, such as stride length or gait cycle time, can be obtained from the analysis 

of foot kinematics. Systems based on Micro-Electro-Mechanical Systems (MEMS) gyroscopes and 

accelerometers suffer from measurement errors and integration drifts, which limits position and 

orientation assessment during long-term measurements. However, by placing sensors on foot, drift can be 

corrected periodically by assuming null velocity of foot during foot-flat period of stance [7]. Using this 

hypothesis, [8] proposed a 2D analysis method with periodic linear drift correction at each stance, and [9] 

used a similar approach with wireless hardware. However, both studies were restricted to analysis in 

sagittal plane. Subsequently, [10] used a 3D approach using quaternion for foot orientation and position. 

[11] suggested a method for 3D foot kinematics estimation using ambulatory device for drop-foot 

stimulator with drift and azimuth resetting at each step. Using additional force sensors, [12] applied 

similar algorithms, focusing on foot placement in forward and lateral directions. Yet, these previous 

studies were limited to few subjects and the proposed methodologies were not evaluated against any 

reference instrumentation or only in "optimal" conditions, i.e. during straight walking. Some other studies 

have been published to track position wearing additional magnetometers [13] and/or GPS [14], but results 

remain essentially qualitative and were not validated for use in clinical field.  

This study describes a new wearable system based on inertial sensors and dedicated algorithms for precise 

and accurate assessment of 3D gait spatial parameters. The system is validated in young and elderly 

subjects during straight walking and turning. The method is based on temporal parameters detection, 

coupled to an optimized fusion of inertial signals in order to assess 3D gait features outside lab and 

particularly new parameters such as foot clearance and turning angle.  
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2 Method 

2.1 Foot-worn sensors 

A wireless 6 Dimensional-Inertial Measurement Unit (6D-IMU) referred as “S-Sense” has been designed 

[15]. S-Sense module is a small (57x41x19.5mm³) and low power (18.5mA@3.6V) stand-alone unit 

integrating microcontroller, radio transmitter, memory, three-axis accelerometer (ADXL, Analog Device, 

range 3g), three-axis gyroscope (ADXRS, Analog Device, roll, yaw with 300deg/s range, pitch with 

800deg/s range), and batteries. In this study two S-Sense modules were fixed on shoes at hind foot position 

using a compliant foam structure and double sided Velcro straps (fig. 1). Raw sensor data was low-pass 

filtered at 17Hz, sampled on 12bits at 200Hz, and wirelessly transmitted in real time to a PC using “S-Base” 

receiver plugged in USB. Signals from two S-Senses were synchronized by considering the absolute real 

time clock sent by the base station to each module at the start of recording. Raw data were preliminary 

processed to extrapolate some missing data due to wireless data loss or sensor’s output saturation [15]. Data 

from the two feet were finally converted to physical units (g or °/s ) using in-field calibration method [16]. 

 
Figure 1 - S-Sense module with compliant foam attached to shoe 

2.2 Reference system 

An optical motion capture system (Vicon, Oxford Metrics) with sub-millimeter accuracy was used as 

reference system (fig. 2.a). Motion capture volume was materialized by a black area of 2.5x5.5m (fig. 2.b). 

A dedicated lightweight and rigid structure was designed to attach 3 reflective markers to each S-Sense 

module (fig. 2.c) in order to measure 3D position and orientation of the module attached on foot. At each 

time frame, 3D position of S-Sense module (Pref) was obtained in fixed frame (XYZ) by arithmetic mean of 

the position of each marker (M1, M2, and M3). Velocity (Vref) was obtained by simple time derivative of 

Pref, high frequency noise obtained with this numerical differentiation was further cancelled since only 

mean velocity over a single gait cycle was considered. Reference 3D orientation of S-Sense mobile frame in 

XYZ was then expressed as a 3D orientation matrix (Rref) derived from the dimensions of the structure and 

the vectors defined among markers’ positions (fig. 2.d). 3D orientation was also expressed using quaternion 

representation obtained from matrix representation by classical conversion formulae [17].  



 

Figure 2 - Experimental Protocol with (a) 
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Temporal detection of gait cycles was done using angular velocity of foot (Ω) to identify stance phase, 

adapted from [18]. For each stance phase, foot-flat was defined as the continuous period where angular 

velocity norm was bellowing an empirical threshold. The median of foot-flat period (tffn) was chosen to 

separate each gait cycle n.  

Initial conditions were updated for each cycle n at tffn, where the foot was considered motion-less. Initial 3D 

orientation of S-Sense module (R0n) was obtained by using 3D acceleration (an) as inclination (i.e. by 

aligning z axis with Z), and azimuth was set at the value derived from the orientation at last sample (N) of 

previous step (Rn-1(N))).  

Gravity cancellation was achieved by aligning the accelerometers’ axes (xyz) with fixed frame (XYZ) and 

subtracting gravity vector. From initial orientation R0n, the orientation of the foot relative to fixed frame 

(Rn(i)) was updated at each time frame (i=1, 2, …, N) by a quaternion-based time integration of angular 

velocity vector Ωn between two successive foot-flats (tffn-1, tffn) [10], [19]. At each time frame i of cycle n, 

using measured accelerations (an(i)), gravity-free component of acceleration in fixed frame (An(i)) can be 

summarized by (1). 

An(i)=an(i)*Rn(i)-g,  where g=(0,0,1)  (1) 

De-drifted single and double-integration of gravity-free acceleration (An) allowed obtaining 3D velocity and 

position of foot at each gait cycle n. By assuming that foot velocity is null at each tffn [7], estimation of 

velocity (Vn) was obtained by trapezoidal integration of An. However, this operation involves some drift. 

Instead of a classic linear de-drifting at each gait cycle, the drift was removed by subtracting a sigmoid-like 

curve modeled based on a p-chip interpolation function [20]. The p-chip interpolation function (PIF), is 

defined between the value of An-1(tffn-1) and An(tffn)), (fig. 4). Position (Pn) was finally deduced by simple 

trapezoidal integration of velocity (Vn). 
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Figure 4 - De-drifted integration of vertical acceleration (A) to obtain vertical velocity (V) using linear function versus p-

chip interpolation function (PIF) 

2.4 Validation protocol and gait parameters 

Ten young healthy volunteers (age 26.1±2.8 years), referred as “Young” group, and ten fit elderly 

volunteers (age 71.6±4.6 years), referred as “Elderly” group, took part in the study. Among the 20 subjects, 

there were 9 males and 11 females with height 170±9cm. Measurements were scheduled over 2 weeks and 

protocol was approved by the University of Lausanne ethical committee. 

Each subject wearing S-Sense modules on shoes performed three different gait tasks. First, participants 

walked 5 meters straight, turned around a mark, and walked back 5 meters (referred as “U-turn”). Second, 

participants walked around two marks spaced out by 3 meters, following a 8 pathway [21] (referred as “8-

turn”). Finally, a 6-Minute Walk Test (referred as “6MWT”) [22] was performed in a 25 meters long 

corridor. U-turn and 8-turn tasks were performed in optical motion capture volume (fig. 2.b). S-Sense was 

synchronized with reference by maximizing inter-correlation between both estimated trajectories. 

Measurements of each task, except 6MWT, were evaluated a second time after removing completely the 

system and attaching it again to determine test-retest reliability. 

From the 3D foot kinematics, the following four gait parameters were extracted at each cycle n for both 

reference system and S-Sense using (2), (3), (4) and (5), where N represent the last sample of cycle n: 

Stride length (SL) was defined as the distance measured between two successive foot-flat positions of the 

foot. This calculation is valid for curved and turning path as well [23]: 

SLn=|Pn(N)-Pn(1)|   (2) 
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systems was calculated, and Student paired t-test was also performed to evaluate the existence of a 

systematic error. 

Repeatability – The test-retest reliability of S-Sense was evaluated by comparing the results of the first and 

the second trial of each walking tasks. Coefficient of intraclass correlation ICC(1,1) was calculated [25].  

Comparisons of groups – Unpaired two-sample t-tests were used to investigate any significant differences 

between the mean, STD and CV of gait parameters in Elderly and Young group during 6MWT performed 

with S-Sense.  

Significant differences were considered if the null hypothesis can be rejected at the 5% level (p<0.05). 

3 Results 

3.1 Instrument comparison 

1009 gait cycles were obtained with both S-Sense and reference system (corresponding to 

20subjects*2tasks*2tests*2feet*6~7gait cycles per task), 35 gait cycles (i.e. 3 %) were discarded because 

of reflective markers loss. A total of 974 gait cycles were used consequently for comparison. Table I 

summarizes the differences between the four 3D gait parameters obtained from S-Sense and reference 

system for the different tasks, tests, groups and foot sides. Fig. 6 shows the comparison between the 

parameters obtained from both systems in Elderly and Young group.  

TABLE I - CORRELATIONS AND ABSOLUTE AND RELATIVE DIFFERENCES BETWEEN S-SENSE AND REFERENCE SYSTEM FOR STRIDE 

LENGTH (SL), FOOT CLEARANCE (FC), STRIDE VELOCITY (SV), AND TURNING ANGLE (TA) 
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mean std

cm % cm % cm % cm % cm/s % cm/s % ° °
U-

turn       493 95.8 0.9 0.7 6.9 6.4 91.5 2.0 8.1 2.0 8.6 97.0 0.9 0.9 5.7 5.7 99.2 1.6 6.1

8-turn       481 96.2 2.1 1.9 6.6 6.5 91.7 1.7 6.9 1.9 8.1 97.3 2.0 2.1 5.4 5.8 99.4 1.5 6.0

  test     452 95.8 1.9 1.7 6.7 6.4 92.1 1.8 7.1 2.0 8.2 96.8 1.7 1.9 5.5 5.8 99.1 0.8 6.0

  retest     522 96.3 1.1 0.9 6.8 6.5 91.1 2.0 7.9 2.0 8.5 97.5 1.2 1.2 5.6 5.7 99.5 2.4 6.1

    Elderly   492 96.0 0.7 0.4 6.1 6.1 92.7 1.2 5.2 1.7 8.1 96.9 0.6 0.7 5.0 5.4 99.5 1.9 4.7

    Young   482 96.0 2.4 2.1 7.5 6.8 90.5 2.6 9.8 2.3 8.6 97.3 2.2 2.4 6.2 6.1 99.1 1.3 7.4

      Right 483 95.2 -0.4 -0.5 6.9 6.8 91.0 1.0 3.7 1.9 7.6 96.9 0.0 0.0 5.7 6.0 99.4 -2.2 6.1

      Left 491 96.8 3.4 3.0 6.6 6.2 92.2 2.8 11.3 2.1 9.1 97.3 2.9 3.0 5.4 5.5 99.2 5.4 6.1

Overall 974 96.0 1.5 1.3 6.8 6.5 91.6 1.9 7.5 2.0 8.4 97.1 1.4 1.5 5.6 5.8 99.3 1.6 6.1
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Figure 6 - Comparison of Stride Length (SL), Foot clearance (FC), Stride Velocity (SV), and Turning Angle (TA), 

estimated by Foot-worn sensors (S-sense) against reference system for 974 gait cycles in Young (•) and Elderly (•) subjects 

Agreement between proposed system and reference was shown in fig. 7. We found a significant 

difference (p<0.05) between the two systems, confirming the existence of a small bias (accuracy) in 

estimating the given gait parameters. We obtained an accuracy±precision of 1.3±6.5% for SL, 1.5±5.8% 

for SV, 7.5±8.4% for FC and 1.6±6.1° for TA. Note that TA estimation error was not evaluated as 

percentage since its value is sometime null. Similar differences (ε) were found during U-turn and 8-turn, 

showing the robustness of the system to turning condition. 
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Figure 7 - Bland-Altman plot with mean (x-axis) and difference between (y-axis) between the two values estimated by the 

wearable system (S-Sense) and reference system across 974 gait cycles in young and elderly subjects. Limits of agreement 

are specified as average difference (dashed line) ± 1.96 standard deviation of the difference (dotted line). 

3.2 Repeatability 

From the mean gait parameters of each subject, (20 “test” and 20 “re-test” samples), ICC(1,1) with 95% 

confidence intervals were computed for each of the given gait parameters. Results reported in table II 

show excellent repeatability of mean values (ICC values above 0.9), according to benchmarks suggested 

by [26]. 

TABLE II - TEST-RETEST RELIABILITY OF STRIDE LENGTH (SL), FOOT CLEARANCE (FC) AND STRIDE VELOCITY (SV) DURING 

U-TURN AND 8-TURN TASKS 

    SL FC SV 
ICC (1,1) 0.91 0.96 0.93 
CI of ICC [0.79-0.96] [0.91-0.99] [0.83-0.97] 
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3.3 Comparison of elderly and young subjects 

Gait performances of elderly and young subjects were compared during 6MWT. A total of 10,515 gait 

cycles were recorded among 20 subjects. Turning Angle was used to separate turning periods (every 25 

meters) and straight walking for analysis. The three other gait parameters were averaged and reported in 

fig. 8. Whereas relatively small, non significant-differences (p>0.05), between mean value of SL and SV 

were observed, FC appeared to significantly discriminate performance between the two groups (p=0.02 

for straight walking, p=0.003 during turns). Moreover, during turns, SL, SV, and FC were significantly 

reduced in all subjects compared to period straight walking (p<0.015 for all mean, STD, and CV of those 

parameters). Interestingly, differences in mean gait parameters between Young and Elderly groups were 

larger during turns. We also observed that elderly subjects walked slightly faster than young subjects in 

straight walking whereas an opposite trend was observed during turning. In addition, mean and STD 

values obtained during straight walking were consistent with values reported in literature for this 

population [27]. 

 
Figure 8 - Comparison of mean Stride Length (SL), Stride Velocity (SV), and Foot clearance (FC) for Elderly and Young 

subjects during 6-Minute Walk Test. Significant differences (p<0.015) are observed between straight walking (a) and 

turning (b) for all parameters. 

4 Discussion 

In this paper we propose a new wearable system with dedicated algorithm for 3D gait assessment and 

describe validation of its performance against a reference optical motion capture system. A set of original 

gait parameters is provided that can be measured when performing normal activity, straight and curved 

trajectory or during outdoor condition. These parameters show promising preliminary discriminative 

performance, as they make it possible to distinguish young and elderly subjects. 

Hind-foot position of the module was chosen for practical reason, but the proposed algorithm does not 

require an exact positioning on foot, as illustrated by the high test-retest reliability reported in table II. 
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Consecutively, the proposed method could also be applied with sensor worn on other foot positions such 

as the forefoot. Regarding wireless functionality, frame loss was assessed to 2% during validation 

protocol, which didn’t seem to have any influence on the results. However, if consecutive frames were 

lost, error would become important, so we believe recording of signal on the modules should be better for 

practical use. We also observed few cases of sensor’s saturation with accelerations above 3g at heel-

strikes during active walking, especially in the young group. This observation could explain the smaller 

error observed among elderly subjects (Table I).  

Azimuth (or Heading) is tracked from initial position with no correction, thus it is subject to drift. 

Nevertheless, it has negligible influence on the gait parameters computed at each gait cycle separately, as 

only overall long-term trajectory is affected. In practice, the proposed system could be used to study 3D 

foot trajectory during object avoidance, but it would require additional hypothesis or sensors such as 

magnetometer or GPS for long-term navigation. Even though these sensors might improve orientation 

estimation [28], they are sensitive to nearby mass of iron in the floor for magnetometer, and to satellites 

occlusion for GPS. Moreover we found that main source of error seems to be mostly in acceleration 

measure, which may be physically explained by the influence of centrifugal acceleration generated by 

rotation [29].  

By considering subjects with various performance and including gait initiation and termination cycles we 

obtained a wide range of parameters with SL from 30cm to 160cm, turning angle from -150° to 150° 

etc…(fig. 6). This provided a robust evaluation of method’s performance in a wide range of possibilities, 

and the assessment of various aspects of gait ability such as turning. Compared to other inertial-based gait 

analysis system [8], [12], [18], [30], similar or slightly better accuracy and precision was obtained for SL 

and SV. The method also provides stride-to-stride variability of gait, and previous systems with similar 

precision were shown to be sensitive enough to identify significant associations between gait variability 

and various syndromes associated with aging, such as frailty [5], and fear of falling [31]. However, 

variability estimations, as well as influence of age or gender, should be further investigated in larger 

population. 

The method allows analyzing curved trajectories, it requires fewer sensors’ sites and provides new 

parameters such as TA and FC. Actually, TA is an important outcome to evaluate gait in Parkinson 

disease [32] and FC, which was the most discriminative parameters between our young and elderly 

subjects, could also be an important new gait parameter to estimate risk of fall in elderly [33], [34]. 

Finally, the system is lightweight and it can be worn directly on user’s casual shoes, thus minimizing 

intrusiveness and interference with normal gait conditions. As a result, volunteers gave a good qualitative 
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feedback on the system, telling they forgot about it while walking. We therefore believe that such a fully 

wearable device is especially adapted and practical for objective study of gait impairment and daily use in 

research or rehabilitation centers. 

5 Conclusion 

The proposed foot-worn system and its outcome parameters were evaluated on a wide range of gait cycles 

obtained in young and fit elderly subjects, and showed good suitability for clinical gait evaluation. 

Additional studies are needed to further investigate the applicability of this system when studying frailer 

elderly subjects with gait impairment. Nevertheless, the current study makes an important contribution to 

this field of research because this new system provides original gait parameters, such as turning angle and 

foot clearance, while still maintaining good accuracy and precision for other, commonly used gait 

parameters (i.e. stride length and stride velocity). The system can be used as an objective tool in many 

applications requiring gait evaluation in real conditions. It might prove particular relevance to study gait 

abnormalities during long-term measurements or to investigate the significance of irregularity during 

turns for outcome evaluation of medical and rehabilitation interventions. 
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Chapter 5  

Heel and Toe Clearance Estimation for Gait Analysis Using Wireless 

Inertial Sensors∗ 

Abstract 

Tripping is considered a major cause of fall in older people. Therefore foot clearance (i.e. height of the 

foot above ground during swing phase) could be a key factor to better understand the complex 

relationship between gait and falls. This paper presents a new method to estimate clearance using a foot-

worn and wireless inertial sensor system. The method relies on the computation of foot orientation and 

trajectory from sensors’ signal data fusion, combined with temporal detection of toe-off and heel-strike 

events. Based on a kinematic model that automatically estimates sensor position relative to the foot, heel 

and toe trajectories are estimated. 2D and 3D models are presented with different solving approaches, and 

validated against an optical motion capture system on 12 healthy adults performing short walking trials at 

self-selected, slow, and fast speed. Parameters corresponding to local minimum and maximum of heel and 

toe clearance were extracted and showed accuracy±precision of 4.1±2.3cm for maximal heel clearance 

and 1.3±0.9cm for minimal toe clearance compared to the reference. The system is lightweight, wireless, 

easy to wear and to use, and provide a new and useful tool for routine clinical assessment of gait outside a 

dedicated laboratory. 
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1 Introduction 

Among community-dwelling people older than 65 years, one third falls each year. Falls have many 

adverse consequences in older people, including major injuries, functional decline, activity restriction and 

reduced quality of life. Foot clearance, defined as the foot’s height during the swing phase, seems an 

important gait parameter related to the risk of falling. Contrary to other gait parameters, there is an 

unambiguous mechanism that links impaired foot clearance to falls. During walking, insufficiency or 

fluctuations in foot clearance could lead directly to tripping, a major cause of fall in older people. In 

previous studies investigating circumstances of falls in community-dwelling older people, tripping was 

the most frequent condition causing falls [1], [2]. In these studies, tripping accounted for up to 50% of all 

falls. 

Surprisingly, despite this intuitive relationship, only few studies investigated so far the characteristics of 

foot clearance pattern, and only in small selected population. Therefore, several major gaps remain in our 

knowledge about the clinical significance of foot clearance in older persons. Some studies have evaluated 

specific features of foot clearance during level walking, mostly Minimum Toe Clearance (MinTC), also 

referred as Minimal Foot Clearance (MFC) which can be defined as the minimal vertical distance 

between the shoe sole and ground during the swing phase [3], [4]. A recent systematic review on the 

association between falls history and MinTC concluded that greater MinTC variability was observed in 

older fallers compared to older non-fallers [5]. A recent study showed increased MinTC variability in 10 

older people reporting a fall in previous year compared with older people without fall history [6]. 

Theoretical models based on MinTC variability to predict the risk of falling have also been proposed 

recently [4], [6].  

These promising preliminary clinical results have several limitations, mostly due to technical issues. First, 

foot clearance was evaluated only in very small samples of young and elderly subjects due to the 

complexity of the measurement protocol in gait laboratory, using camera based motion system and 

treadmills. Systems using these technologies provided information for a limited number of gait cycles and 

could be used only in a closed environment. In addition, analyses then had to assume that observed 

performance corresponds to usual performance, even though walking requires several steps to reach a 

steady state [7], and aspects such as variability of gait requires extended periods of time to be assessed 

[8]. Finally, results can be strongly influenced by reflective markers’ placement on the foot by the 

operator. 
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 In the past years, technical progress made possible the development of wearable sensors featuring 

combinations of accelerometers, gyroscopes and force sensors fixed to lower-limbs to measure gait 

characteristics [9–13]. Due to very low energy consumption, these sensors can be battery powered and 

thus have a potential application for extended ambulatory monitoring. They allow mobile as well as 

outdoor motion capture and can provide information over extended periods of time. In addition, since 

there is no localization marker, signals can be continuously recorded without any trajectory loss due to 

marker hiding. Lately, a new generation of miniature wireless sensors fixed directly on foot was 

developed and was able to estimate sagittal [11] and global 3D foot kinematics [14]. Those methods rely 

on periodical corrections of sensors drift based on biomechanical assumptions such as motionless during 

stance. 

So far, only few attempts have been made to apply this inertial sensors technology to estimate a limited 

set of foot clearance parameters, such as minimal toe clearance [15], [16] or maximal foot clearance [14]. 

This study aims at addressing those technical limitations in order to investigate various aspects of foot 

clearance in clinical studies. The paper presents a method based on a portable and wireless foot worn 

inertial sensor system, and dedicated biomechanical model to estimate both heel and toe clearance 

patterns during gait in real world conditions. To this end, two independent models relying on 2D and 3D 

movement hypothesis, and 3 solving approaches are presented and compared, and validated against a gold 

standard system composed of optical motion capture. Several parameters are then introduced to 

characterize foot clearance and their changes according to different walking speeds are analyzed and 

discussed. 

2 Method 

2.1 Inertia-based measurement system 

A stand-alone Physilog® unit integrating microcontroller, memory, three-axis accelerometer 

(MMA7341LT, Freescale, range ±3 g), three-axis gyroscopes (ADXRS, Analog Device, range ±600 deg/s), 

and battery (3.7 V, 595 mAh) was designed. Physilog module is small (50 mm × 40 mm × 16 mm) and low 

power (71 mA in recording, 51 mA in standby mode), lightweight (36 g) and was conveniently fixed in few 

seconds on the front foot of subjects using elastic strap (fig. 1) with shape memory foam beneath the system 

to guaranty a stable position together with easy manipulations. The kinematics data (3D acceleration and 3D 

angular velocity) was low-pass filtered at 17Hz [13], [14], sampled on 16 bits at a frequency fs of 200 Hz, 

converted to physical units (g or °/s) and recorded on micro SD cards before transferring to the PC. Signals 

from two modules were synchronized wirelessly. Preliminary, by assuming that during walking, pitch 
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angular velocity was maximal in sagittal plane; each sensor was aligned with the principal axis of the 

measured angular velocity. In addition, in the absence of foot movement (e.g. standing posture), the vertical 

gravity axis was determined from accelerometer. Subsequently, sensor inclination was corrected so that the 

pitch angle (θY) was null at rest. The components of angular velocity (pitch: Ωp, yaw: Ωy and roll: Ωr) and 

acceleration (forward: af, vertical: av and lateral: al) were aligned accordingly. This way, measurement was 

not influenced by the sensor location on foot. 

 
Figure 1 - Physilog wireless unit with embedded inertial sensor attached on foot. Internal (in) and external (out) markers 

fixed on heel and toe for reference optical motion capture. 

2.2 Foot kinematics estimation 

Foot kinematics was estimated from sensor data fusion using method inspired from previous work in 2D 

[11] and in 3D [14]. Principal steps and equations of the process are presented in this paragraph. At first, 

for each cycle n temporal events were detected on pitch angular velocity (Ωp), namely time of foot-flat 

(tffn), heel-strike (thsn) and toe-off (tton). Foot-flat was detected as the minimum of absolute value of Ωp, 

whereas heel-strike (respectively toe-off) was detected as the negative peak of Ωp, before (respectively 

after) foot-flat. Gait cycle was defined as the interval between two consecutive foot-flat [tffn:tffn+1].  

In 2D, for each cycle n, the pitch angle or inclination in sagittal plane (θY), as illustrated in fig. 2, was 

obtained from periodic integration Ωp between two successive foot-flat events (tffn and tffn+1) : 
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Estimated pitch angle Yθ̂ was linearly de-drifted assuming a flat orientation of foot at foot-flat. 
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Accelerations were then aligned in fixed frame and the gravity component was cancelled on Z axis: 

1)(*))(ˆcos()(*))(ˆsin()( −+−= tatθtatθta vYfYZ   (3) 

By considering gravity (g), vertical velocity in fixed frame was estimated by integration and linear de-

drifting of acceleration: 
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Finally vertical trajectory was obtained by integration and linear de-drifting, assuming locomotion on flat 

ground. 
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(5) 

In 3D, the orientation of the sensors was represented by a 3D rotation matrix (M(t)) relative to the fixed 

frame (XYZ) [14], and was updated at each time frame by a quaternion-based time integration of angular 

velocity between two consecutive foot-flat [tffn:tffn+1]. Then M(t) was used to express the accelerations in 

XYZ from (af, av al). Double time integration using a p-chip interpolation function was performed to find 

the 3D position of the foot sensor, and its projection on Z axis DZ 3ˆ  [14]. 

2.3 Heel and Toe trajectory estimation 

From previous paragraph, sensor trajectory has been estimated in 2D and 3D. Considering the sensor 

location relative to heel and toe (coordinates {a, b, c} in fig. 2), the vertical trajectory of Sensor, Heel and 

Toe can be computed as follow in 2D: 
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And in 3D: 



70 

)(*)(*)()(

)(*)(*)()(

)1,0,0(*)(|)()(

)0,0,1(*)(|)()(

)(ˆ)(

33

33

33

tUctWbtZtZ
tUatWbtZtZ

tMtMtW
tMtMtU
btZtZ

D
Sensor

D
Toe

D
Sensor

D
Heel

T
Z

T
X

DD
Sensor

+−=

−−=

==

==

+=

   (7) 

Nevertheless, in (6-7), the values of a, b and c are unknown. That could have been manually measured 

after the sensor placement on foot, but that would be practically cumbersome and could lead to important 

errors due to an imprecise manual operation. Thus an automatic method independent of sensor placement 

was proposed to estimate those three unknown variables at cycle n {an, bn, cn} by the following three 

hypotheses: 

- At Heel-strike, vertical coordinate of estimated heel trajectory should be equal to 0: 

0)()( 23 == n
D

Heeln
D

Heel thsZthsZ    (8) 

- At Toe-off, vertical coordinate of estimated toe trajectory should be equal to 0: 

0)()( 23 == n
D

Toen
D

Toe ttoZttoZ    (9) 

- Heel to toe distance is equal to shoe size which can be measured by shoe size (Ssize): 

Ssizeca nn =+    (10) 

For each cycle n, we obtain a system of 3 equations {(7), (8), (9)} with three unknown variables {an, bn, 

cn}. Three different ways to solve those equations systems were considered. The first solving approach 

was to analytically find the solution at each cycle n, this is referred as the per-cycle (PC) approach. In a 

second time, by assuming that the sensor position remains fixed on the foot during one gait trial, it 

implies that {an, bn, cn} = {a, b, c}. Considering all cycles of a gait trial, {a,b,c} was estimated by the 

median of the set of solutions {an, bn, cn}, this is referred as the median (ME) approach. Finally by using 

all cycles, it was also possible to consider having multiple equations with three unknowns, and that 

overestimated system was solved using least square criteria, this is referred as the least-square (LS) 

approach. 

- During [tffn:tton], it was assumed that the toe is in contact with the ground and therefore: 
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- During [thsn:tffn+1], it was assumed that the heel is in contact with the ground and therefore: 
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speed a 15m corridor while wearing the two Physilog units on their feet. The middle 5-meters of the 

corridor, where gait could be considered as steady-state, were tracked by a reference optical motion 

capture system (Mocap) with sub-millimeter accuracy [13], including 7 cameras (Vicon, UK). The Mocap 

tracked the position of four reflective markers placed manually on internal and external side of the shoe at 

the toe and heel extremities of subject’s shoe according to fig. 1. Shoe’s heel and toe trajectories and 

related foor clearance parameters estimated from Mocap were considered as reference data (REF) and 

used for the validation of the Physilog based system. The protocol was approved by local ethical comity. 

2.6 Data Analysis 

Shoe size (Ssize) was obtained directly from the measure of the distance between heel and toe markers 

and used for heel and toe trajectory estimation based on Physilog system. To compare the extracted 

parameters at each recorded gait cycle within the frame limited by Mocap volume, the clearance pattern 

given by Mocap was temporally delayed to match clearance pattern estimated with Physilog, using the 

maximum of cross-correlation between the two clearance patterns. That provided juxtaposed clearance 

curves, as in fig. 2. The same dely was applied to toe clearance pattern. Accuracy and precision were then 

computed as the mean and STD value for the difference between foot clearance parameters extracted with 

Mocap reference system (REF) and each of the algorithms (3D and 2D), and for each approach of solving 

sensor’s position (PC, ME, LS). Accuracy and precision were reported in millimeters (absolute value), 

and in percentage of average parameter values (relative value). The reference itself was assessed through 

the difference between parameters extracted on internal and external side of the shoe. Bland and Altman 

plots were investigated to estimate the limit of agreement between proposed system and reference. 

Finally, walking velocity was estimated using the same inertial sensors configuration [14] to check 

significant changes between low, normal and fast speed. Two-sample t-tests were performed on speed and 

foot-clearance parameters to investigate the significance of foot clearance changes with speed, and 

observe the influence of walking speed on the error in foot clearance estimation. 

3 Results 

3.1 Comparison with reference system 

Fig. 2 shows a good correspondence between ZHeel
3D and ZHeel

REF (respectively ZToe
3D and ZHeel

REF) patterns 

during a typical recorded gait cycle. Four parameters were extracted from these patterns. Heel pattern 

reached its maximal value (MaxHC), right after toe-off. Before heel-strike, a local minimum and 

maximum of heel clearance were sometimes observed (fig. 2), but it was not consistent in all subjects, so 
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it was not considered in the analysis. Regarding toe-clearance, right after toe-off, a first local maximum 

was reached (MaxTC1). It corresponded to the highest position of the foot during swing phase. Then toe 

clearance reached a minimum (MinTC) around mid-swing time, and then a second maximum (MaxTC2) 

prior to heel-strike. 

Table I provides a quantitative one-by-one comparison of foot clearance parameters obtained with 2D and 

3D models and different equations solving approaches (PC, ME and LS) and the reference system (REF). 

Due to the limited capture volume of the reference system and the variation of heel and toe clearance 

patterns among subjects, the sample size for the different parameters was not always the same but ranged 

between 154 and 378 cycles. MaxHC was obtained with an error of 40.6±22.5 mm for 3D and LS 

approach and 42±22.6 mm for 2D and LS approach. Best absolute accuracy and precision (expressed as 

mean±STD of the set of difference with the reference system) were observed for MinTC, with 0.4±12.6 

mm and -12.7±9.1 mm respectively for 2D and 3D models solved with LS criteria. Other toe clearance 

parameters, namely MaxTC1 and MaxTC2, showed absolute accuracy between 13.7 mm and 19.6 mm 

depending on the different models and approaches. However, when looking at relative error, we observed 

that MaxHC and MaxTC2 showed the best performances with minimal random error below 10%, whereas 

this random error was between 30% and 40% for MaxTC1 and MinTC, due to the small quantity being 

measured. The intrinsic variations of the heel and toe clearance reference estimation were evaluated by 

the difference obtained between the markers placed on the internal and external side of the shoe (REF, 

ext/in in Table I). Those intrinsic variations were 4.0±5.4 mm for MinTC and 10.5±10.6 mm for MaxHC. 

Results were comparable among the different solving approaches (table I). Regarding precision in 

particular, which can be interpreted as the random error, slightly better results were obtained with LS 

criteria for MaxHC, MinTC and MaxTC1 on 3D model. Only MaxTC1 showed better precision with PC 

approach (14.1 mm) compare to LS (14.5 mm). Results obtained with 2D model showed lower 

performances in terms of precision than 3D model, except for MaxTC2. Therefore, in the following, only 

the 3D model with LS approach (3D_LS) was used for further analysis. 
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TABLE I  
ACCURACY (MEAN) AND PRECISION (STD) OF FOOT CLEARANCE 

PARAMETERS WITH 3D AND 2D MODEL AND AUTOMATIC ESTIMATION OF 
SENSOR LOCATION USING PER-CYCLE (PC), MEDIAN (ME) AND LEAST-
SQUARE (LS) APPROACHES, COMPARED TO MOTION CAPTURE (REF)  

  Accuracy (mean) Precision (STD)
      mm % mm % Samples 

M
ax

H
C

 

REF ext/in 10.5 3.9 10.6 4.0 

378 
3D 

PC 43.4 16.2 23.9 8.9 
ME 47.6 17.7 25.6 9.6 
LS 40.6 15.1 22.5 8.4 

2D 
PC 45.9 17.1 25.1 9.4
ME 48.1 17.9 24.0 8.9 
LS 42.0 15.7 22.6 8.4 

M
ax

TC
1 

REF ext/in 4.0 10.7 5.4 14.4 

169 
3D 

PC 21.0 56.0 14.1 37.6 
ME 25.6 68.3 17.7 47.0 
LS 20.5 54.5 14.5 38.6 

2D 
PC 27.8 74.0 15.3 40.7 
ME 30.4 81.1 16.2 43.2
LS 27.3 72.6 15.1 40.1 

M
in

T
C

 

REF ext/in 4.0 15.5 4.4 16.7 

154 
3D 

PC -14.3 -54.8 9.5 36.4 
ME -12.7 -48.7 9.0 34.5 
LS -12.7 -48.8 9.1 35.0 

2D 
PC -0.9 -3.6 13.5 51.7 
ME 0.2 0.6 12.7 48.5
LS 0.4 1.7 12.6 48.1 

M
ax

T
C

2 

REF ext/in -7.5 -5.1 6.1 4.2

182 
3D 

PC -20.2 -13.8 19.6 13.4 
ME -22.0 -15.1 18.0 12.3 
LS -23.6 -16.2 17.8 12.2 

2D 
PC -9.6 -6.6 13.7 9.4 
ME -10.4 -7.1 14.1 9.7 
LS -13.9 -9.5 13.7 9.4 

 

Fig. 3 shows Bland & Altman plot for all parameters obtained with 3D_LS against reference and the limit 

of the 95% confidence interval (±1.96 SD) around perfect agreement. We can observe systematic biases 

in accordance with accuracy measure of Table I. Moreover, fig. 3 shows that the differences between 

reference and proposed system increases as the average of MaxTC1 increases, whereas opposite tendency 

is observed for MaxTC2. 

Values are expressed in 
mm and % of average 
parameters. REF ext/In 
corresponds to the 
intrinsic error of 
reference system 
obtained by the 
difference between 
external and internal 
side of the shoe. 
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Figure 3 - Bland and Altman plots of the mean (dotted line) ± 1.96 STD limit of agreement (dashed line) of the difference 

between the 3D model with Least-square approach and reference for Foot clearance parameters. 

3.2 Influence of walking speed on foot clearance parameters 

Table II provides the values of speed and foot clearance parameters for instructed walking speed. The 

walking speed of subjects was significantly different (p<0.01) between slow (0.83±0.14 m/s), fast 

(1.46±0.35 m/s) and normal (i.e. self selected) speed (1.18±0.26 m/s). The variation of foot clearance 

parameters with speed was investigated through mean and STD value of each parameter (Table II). 

TABLE II 
FOOT CLEARANCE PARAMETERS AT DIFFERENT WALKING SPEEDS 

  Slow Normal Fast 
    mean STD p mean STD mean STD p 

Speed (m/s) 0.82 0.10 0.00 1.19 0.20 1.62 0.15 0.00 

M
ax

H
C

 
(c

m
) REF 25.3 2.3 0.00 27.6 2.1 28.7 2.2 0.00 

3D_LS 30.2 3.1 0.00 31.5 3.3 31.2 3.4 0.52 
Error 5.0 1.7 0.00 3.9 2.1 2.5 2.5 0.00 

M
ax

T
C

1 
(c

m
) REF 3.5 0.9 0.00 4.1 0.7 3.8 0.7 0.10 

3D_LS 5.6 1.9 0.00 6.5 1.5 5.3 1.7 0.00 
Error 2.1 1.4 0.08 2.5 1.2 1.5 1.6 0.00 

M
in

T
C

 
(c

m
) REF 2.5 0.7 0.06 2.7 0.7 2.7 0.8 0.88 

3D_LS 1.1 0.7 0.05 1.4 0.7 1.7 1.1 0.11 
Error -1.3 1.0 0.94 -1.3 0.8 -1.0 1.0 0.15 

M
ax

T
C

2 
(c

m
) 

REF 13.5 1.8 0.00 15.0 1.6 16.4 1.5 0.00 

3D_LS 10.7 2.4 0.00 12.9 2.4 14.5 2.6 0.00 

Error -2.8 1.7 0.01 -2.1 1.8 -1.9 1.8 0.64 
Significant change of parameters compared to Normal (i.e self-selected) 
speed is shown with the p value. 
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The influence of speed on the error for estimating foot clearance parameters was found to be significantly 

higher at slow speed for MaxHC and MaxTC2, whereas it was significantly lower at fast speed for 

MaxHC and MaxTC1. Estimation of MinTC however, was not affected by changes in walking speed 

(p>0.05). Overall, the mean error was found to be smaller for all parameters at fastest walking speeds, 

while STD error was smaller at self-selected speed for MaxTC1 and MinTC, and at slow speed for 

MaxHC and MaxTC2 (Table II). Those changes can be interpreted by a higher signal-to-noise ratio 

compensated by a lower accuracy of temporal detection at higher speeds. 

In fig. 4, significant changes in clearance parameters were observed for MaxTC2, which was increasing 

with speed. MaxTC1 was higher at normal speed, and MaxHC was smaller at slow speed. Although a 

tendency for increased MinTC with speed was observed, this was not statistically significant. We 

observed MinTC ranging from 1.1 cm at slow speed to 1.4 cm at self-selected and 1.7 cm at fast speed. 

 
Figure 4 - Foot clearance parameters at slow, self-selected and fast walking speed. *Significant differences with self-

selected speed (p<0.01). 

4 Discussion 

Primary aim of the study was to propose a wearable and wireless system with a model to obtain relevant 

parameters characterizing foot clearance. To our knowledge, this is the first study that used wireless 

inertial sensors and shows technical validity against a reference system for estimating foot clearance 
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parameters. The methods consider both temporal detection and kinematic estimation with models based 

on biomechanics of foot movements. 

Overall results show a good agreement between both 3D and 2D based model and reference, and allow 

observing different foot clearance patterns changes with velocity in a group of healthy subjects. Those 

tendencies were similar to the ones observed with reference system, showing face validity. In addition, 

our method for foot clearance parameters estimation showed better accuracy and precision than previous 

studies using inertial-based systems [14], [16]. Previous studies on foot clearance have shown that MinTC 

values in older people were similar to those found in younger people and ranges between 1.1 and 1.5 cm 

[4], which is congruent with the results we obtained. However, intra-individual or inter-cycle variability 

in MinTC was shown to be significantly increased in older people compared to younger [4–6]. Results for 

MinTC showed a random error of 9 mm (34.5 %) compared to the reference Mocap, which showed itself 

a difference of ±5.4 mm (16.7 %) between internal and external marker. So, our system seems to be 

acceptable to observe change of minimal toe clearance. Nevertheless that requires further confirmation in 

clinical setting. No other bibliographic data was found for the other foot clearance parameters obtained in 

this study, but interestingly they show better precision below 10 % (Table I). 

This study establishes a proof of concept that the proposed methods can quantitatively assess heel and toe 

clearance characteristics during gait, with no relevant difference of performance. Nevertheless, we could 

expect that 3D model would perform better than 2D model in case of turning, which should be further 

evaluated with an adequate protocol. Since the full trajectory of heel and toe was obtained with the 

proposed method, other foot clearance-related parameters could have been investigated such as the time 

duration were toe clearance is below a certain threshold or the foot velocity at minimal toe clearance as an 

important factor in tripping and fall risk. Using longer gait trials, and since the system assess foot 

clearance at each gait cycle, it could also be used to assess the inter-cycle variability of foot clearance 

parameters. All together, we believe that the presented method has a very promising potential for further 

investigations of foot clearance. 

Proposed algorithm assumes a heel-strike at initial contact and a toe-off at terminal contact, as in normal 

gait and even in many type of abnormal gait [17], [18]. However, in specific diseases where this 

assumption is not valid, the algorithm needs adaptation. Moreover, important factors and potential sources 

of errors have to be carefully considered for the successful implementation of the proposed method. First, 

the error of sensors calibration can be improved by using more efficient sensors. Second, the double 

integration of gravity-free acceleration signals produces some drift which was minimized in this study by 

periodical updates of the signal at motion-less period (foot-flat), which validity has been recently 
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evaluated [19]. Third, an additional source of error using our model was the time detection of heel-strike 

and toe-off event. While [20] proposed a validated inertial sensors-based time detection algorithm, other 

sensors such as pressure insoles could be used to increase the accuracy [21], [22], with the drawback of 

having more sensors. Fourth, the location of the sensor was prone to error since it was automatically 

estimated during gait. In per-cycle (PC) approach, this location estimation does not require multiple gait 

cycles. Nevertheless, we still observed a better robustness with solving approaches using the information 

of all cycles together (ME and LS). Finally, other sources of error comes from the manual placement of 

markers on the shoe, and our rigid single segment model of the foot, whereas its shape is modified during 

stance due to shoe and soft tissue deformation and the rotation of metatarsal joint. 

One of the main advantages of the proposed system is the possibility to perform gait analysis out of the 

laboratory and in natural conditions. The system being lightweight and wireless, it is easy to use and 

attach on feet. Gait parameters are automatically computed in few seconds by the proposed algorithm 

after data transfer to PC. All participants reported wireless system was convenient to wear and did not 

disturb their walking. Our method offers new applications for clinical assessment of mobility associated 

with different pathologies or conditions, such as frailty in elderly persons [9], or neuro-rehabilitation 

studies focused on foot clearance alteration with obstacle avoidance [23], without requiring complex 

system such as optical motion capture. The proposed system has been consequently used for gait 

evaluation on a cohort of more than 1800 elderly persons, and results will be further analyzed. 

5 Conclusion 

New methods have been proposed and described for estimating heel and toe clearance using foot-worn 

wireless inertial sensors. The position of the sensor on foot was automatically estimated and foot 

clearance parameters were extracted and validated against a reference motion capture system. This study 

provides new insight into foot clearance signature at different walking speed in a healthy population. The 

results prove that small distances can be estimated with inertial sensors with adequate models and 

hypothesis on the movement. The proposed system adds new relevant features for spatio-temporal gait 

analysis and offers a promising tool for routine clinical assessment of walking outside laboratory. 
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Chapter 6  

On-shoe wearable sensors for gait and turning assessment of 

patients with Parkinson’s disease∗ 

Abstract 

Assessment of locomotion through simple tests such as Timed Up and Go (TUG) or walking trials can 

provide valuable information for the evaluation of treatment and the early diagnosis of people with 

Parkinson’s disease (PD). Common methods used in clinics are either based on complex motion 

laboratory settings or simple timing outcomes using stop watches. The goal of this paper is to present an 

innovative technology based on wearable sensors on shoe and processing algorithm, which provides 

outcome measures characterizing PD motor symptoms during TUG and gait tests. Our results on 10 PD 

patients and 10 age-matched elderly subjects indicate an accuracy±precision of 2.8±2.4cm/s and 

1.3±3.0cm for stride velocity and stride length estimation compared to optical motion capture, with the 

advantage of being practical to use in home or clinics without any discomfort for the subject. In addition, 

the use of novel spatio-temporal parameters, including turning, swing width, path length, and their inter-

cycle variability, was also validated and showed interesting tendencies for discriminating patients in ON 

and OFF states and control subjects. 

Note: the validation and application of the same methods for gait and turning assessment of children with 

Cerebral Palsy is given in appendix. 
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1 Introduction 

Parkinson’s disease (PD) is a neurodegenerative disorder that can cause multiple impairments, notably in 

motor function due to different symptoms: Tremor, Rigidity, Bradykinesia/Akinesia, Postural instability. 

Nowadays, this disease concerns about 180 people over 100 000 for Caucasians. Pharmacological 

treatments for Parkinson’s disease include L-dopa which is transformed into dopamine in the 

dopaminergic neurons by L-aromatic amino acid decarboxylase. During the ON state, the medication is 

active and motor performance is improved while in OFF state the effects of the medication wear off. 

Outcome evaluation and ON-OFF monitoring in PD is mainly based on clinical score such as Unified 

Parkinson’s Disease Rating Scale (UPDRS) [1] and common techniques including posturography [2], gait 

analysis [3] and Timed Up and Go test (TUG) [4]. 

Gait analysis and TUG have shown to be powerful tools to assess motor symptoms in PD. However, gait 

analysis is usually performed in laboratory, which does not replicate natural conditions for the subject. In 

addition, long-term variability of gait parameters, which has shown to be a particularly relevant outcome 

in PD [5], cannot be assessed unless a treadmill is used. TUG is a simple and practical test, but its 

outcome is limited to time measured by stop-watch. 

Recently, using motion sensors, effort has been done toward the instrumentation of TUG [6], [7] and gait 

[8], [9]. For instance, trunk sensor allowed to characterize different phases of TUG, and showed that the 

turning phase was particularly relevant in PD analysis [7]. Regarding gait analysis, wearable sensor 

technology has been so far limited to the 2D assessment of walking with limited outcome measures [9], 

whereas 3D aspects have shown to be important in PD analysis [10]. 

The goal of this paper is to present and validate the use of on-shoe wearable sensors and dedicated 

algorithm, which can assess both TUG and long-distance walking in PD patients. The method provides 

outcome measures which quantify objectively 3D gait spatio-temporal parameters and allow detecting 

gait initiation, steady-state, turning and termination. The potential of the method is illustrated by 

comparing PD patients in ON and OFF states and control subjects. 

2 Method 

2.1 Wearable measurement system  

A stand-alone Physilog® module integrating micro-controller, memory, three-axis accelerometer 

(MMA7341LT, Freescale, range ±3 g), three-axis gyroscopes (ADXRS, Analog Device, range ±600 

deg/s), and battery (3.7V, 595 mAh) was designed. Physilog module is small (50 mm x 40 mm x 16 mm), 
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lightweight (36 g) and low power (71 mA in recording, 51 mA in standby mode). One module was 

conveniently fixed on each upper shoe using elastic strap (fig. 1) with shape memory foam beneath the 

system to guaranty a stable position together with easy manipulations. Signals were low-pass filtered at 

17Hz, sampled at 200 Hz on 16 bits, converted to physical units (g or °/s), and recorded on micro SD 

cards before transferring to the PC. Signals from two modules were synchronized wirelessly during 

measurements. 

 
Figure 1 - (a) Physilog inertial sensing module, (b) on-shoe fixation, (c) Spatio-temporal parameters extracted from foot 

trajectory with fixed (XYZ) and walking frame (FLV) 

2.2 Spatio-temporal analysis of gait 

Based on angular velocity signal around pitch axis of foot, midswings were first detected as positive 

peaks above a threshold. Initial (respectively terminal) contact was then detected by the first zero-crossing 

after (respectively before) midswing. This way of detecting gait cycles from initial and terminal contact 

(i.e. stance) using zero-crossing rather than negative peaks of angular velocity was robust to PD gait 

pattern. A method for assessing 3D foot kinematics with periodic drift correction at each foot-flat (ff), was 

previously validated on elderly subjects [11], and was used for obtaining at each time frame t: 3D 

orientation M(t), 3D velocity V(t), and 3D position P(t), expressed in fixed frame XYZ (fig. 1). 

Finally, spatio-temporal parameters were extracted at each cycle n between successive foot-flats (ffn, 

ffn+1). Stride Velocity was obtained by the average of V(t) projection in XY plane: 
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Since subject’s locomotion was unconstrained in XY plane, walking direction was expressed at each cycle 

n by azimuth angle (AAn), the projection of linear displacement on X axis: 
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Position in Frontal-Lateral-Vertical (FLV) frame of walking can then be expressed by the rotation of 

position in XYZ frame around Z axis with a value of AAn: 
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Stride Length was thus defined as the relative linear distance between two successive foot-flat positions in 

frontal axis:  

2
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In order to assess the amount of circumduction of lower limb, Swing Width was defined as the maximum 

of lateral deviation of foot trajectory during swing:  

{ } ))((max
1: tPWidthSwing Lfffftn nn +∈=    (5) 

The rectification of the 3D curve P(t), was normalized to Stride Length, and defined as Normalized Path 

Length : 
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Finally to assess Turning Angle, the change of azimuth between two successive foot-flat orientations was 

computed by the Euler axis/angle:  

)2/)1)(arccos(( −= nn RtrAngleTurning    (7) 

tr(Rn) being the trace of the rotation matrix between M(ffn) and M(ffn+1).  

Parameters extracted using (1) to (7) are illustrated in fig. 1. 

2.3 Gait initiation, termination, turning and steady phases 

Gait cycles were automatically classified into Transition, Steady, and Turning phases, by using specific 

spatio-temporal parameters. Transition cycles were defined by analogy to system response time as the gait 
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cycles with a Stride Length below 63% of steady state value, estimated by the median over all cycles. The 

first and the last Transition cycles were classified as Gait Initiation and Termination. Turning cycles were 

defined by Turning Angle over a threshold of 20° [11]. Finally, after discarding Turning, Initiation and 

Termination, the remaining cycles were classified as Steady gait. For each phase, the number of cycles 

were detected and total duration was computed by the sum of gait cycles time. 

2.4 Experimental set up and validation 

This study included 10 PD patients with mild to moderate disease (UPDRS=15.7±7.6, mean age 64±7 

years) and 10 age-matched control subjects (UPDRS= 1.2±1.3, mean age 66±7 years) who were asked to 

perform a standard 3m TUG and gait tests with Physilog® inertial units attached on both feet (fig. 1). Gait 

was performed at self-selected speed in hospital through a long and wide corridor on moderate (2x20m) 

and long (4x50m) distance, including 180° turns between straight walking periods. The protocol was 

approved by local ethical comity. All the patients were evaluated in ON state, under their current 

medication, and four of them also consented to perform the same trials in practically OFF condition (at 

least 8 hours off medication). 

During TUG tests, four reflective markers were attached to the shoe and tracked by the reference optical 

motion capture system (Mocap) including 7 cameras (Vicon, UK). Spatio-temporal parameters were also 

estimated from Mocap trajectories using (1) to (7), and constituted reference data for the validation of the 

on-shoe system. TUG tests were realized two times, first on self-selected turning side and second by 

asking the subject to turn on the opposite side. That was repeated twice by removing and fixing again the 

shoe sensors to assess test-retest repeatability of the system and methods. 

3 Results 

3.1 Comparison with reference system and validation 

Accuracy and precision of extracted spatio-temporal parameters were estimated by the mean and standard 

deviation (STD) of the set of difference between proposed and reference systems, among 1243 recorded 

cycles from both control subjects and PD patients. Compared to reference system, Stride Velocity and 

Stride Length showed an accuracy±precision of 2.8±2.4cm/s and 1.3±3.0cm. For Normalized Path length, 

Swing Width and Turning Angle, accuracy±precision was 4.5±3.6%, 0.15±2.13cm and 0.12±3.59°. 

Test/retest repeatability of spatio-temporal parameters obtained by the wearable system during each TUG 

phase was evaluated using intraclass correlation coefficients ICC(1,1) and interpreted using standard 

benchmarks [12]. Overall PD patients and control subjects, TUG total duration, step count, mean Stride 
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Velocity and Stride Length during Steady gait, and number of steps during Turning phase, obtained 

excellent repeatability (ICC(1,1)>0.75). The other parameters during Steady gait and Turning phases all 

showed fair to good repeatability (ICC(1,1)>0.4), whereas parameters during Transition phases were least 

repeatable (ICC(1,1)<0.4). 

3.2 Analysis of Timed Up and Go test 

Using Wilcoxon rank-sum test as a robust non-parametric statistical test for pair wise comparison, 

significant differences (p<0.05) were found between most of parameters obtained on self-selected and 

opposite turning side in both PD patients and control subjects. Nevertheless, Stride Length was not 

significantly affected by turning side in control group (p=0.091) contrary to PD group (p=0.016), showing 

a lower ability of PD patients to change turning side. Normalized Path Length was not significantly 

influenced by turning side in both PD (p=0.08) and control group (p=0.55). 

TUG phases were detected in the three groups of subjects (fig. 2). All TUG phases duration were 

increased in ON and OFF PD patients compared to control subjects. Turning (including the 180° pivot 

and the final sit-to-stand transition) was the longer phase during TUG in control and ON group, but not in 

OFF group. Finally, total TUG durations obtained were comparable to the one reported in literature for 

PD subjects [13]. 

 
Figure 2 - TUG phase’s duration estimated from on-shoe wearable sensors 

3.3 Short, moderate, and long-distance gait analysis  

Turning and Transition cycles were discarded during TUG, 2x20m and 4x50m gait tests, to obtain 

parameters representing short, moderate and long distance gait respectively. Mean and variability of those 

parameters were computed for the different groups of subjects (fig. 3). Inter-stride gait variability was 

estimated by the coefficient of variation (CV=Mean/STD in %) except for Swing Width, which variability 

was reported using STD, due to small mean.  
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Figure 3 - Mean and variability of spatio-temporal gait parameters obtained from shoe-sensors versus walking distance 

and subjects groups. 

In all groups, mean Stride Velocity was increased with walking distance, while its variability was 

decreased. Mean Stride Velocity was similar between control and ON groups for all tests but lower in 

OFF group. Stride Velocity variability was increased in ON and OFF groups compared to control group. 

Same tendencies were observed for Stride Length (not reported in fig. 3). Both mean and variability of 

Swing Width tended to be smaller in OFF group compared to control and ON groups, independently of 

walking distance. On short and moderate walking distance, Normalized Path length showed both higher 

mean and variability in OFF group compare to control and ON groups, though such changes were not 

observed during long-distance gait. 

4 Discussion 

In this study, on-shoe wearable sensors were used to instrument two commonly used motor function tests 

for PD, namely TUG and Gait tests. TUG and Gait were assessed through standard spatio-temporal 
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parameters such as Stride Velocity and Stride Length beside new parameters, i.e. Turning Angle, Path 

Length and Swing Width. These parameters were validated during TUG against a gold standard Mocap 

system and results indicate their technical validity in terms of accuracy and precision. Particularly, for 

Stride Velocity and Stride Length, our results showed better accuracy (2.8cm/s and 1.3cm) and precision 

(2.4cm/s and 3.0cm) than previously reported system based on inertial sensors, which reported an 

accuracy (precision)  of 3cm/s (7.6cm/s) for Stride Velocity and 3.5cm (8.5cm) for Stride Length [9]. The 

system is simple to attach on shoe, and allows automatic calibration and estimation of parameters. It 

offers therefore a practical tool to assess objectively TUG and Gait in people with movement disorder 

such as PD at home or clinics. 

The proposed method confirmed the pertinence of the turning analysis and novel parameters quantifying 

3D foot trajectory during swing phase (Swing Width and Path Length) for discriminating PD and control 

subjects. Interestingly, whereas Stride Length changes were strongly associated with Stride Velocity 

changes in the different subjects groups, it was not the case for Swing Width and Path Length. In 

particular, the lower Swing Width obtained in OFF group could be interpreted as a consequence of axial 

rigidity. We believe those novel parameters bring a new insight into PD motor signs quantification during 

gait. This study offers new perspectives with regard to the feasibility of home monitoring of patient with 

movement disorder, by the implementation of those tests in home and field setting using wearable devices 

[14]. Nevertheless further clinical research is needed to confirm the tendencies observed in the novel gait 

parameters. 

5 Appendix: application to gait and turning assessment in children 

with cerebral palsy∗ 

5.1 Introduction 

Generally, spatio-temporal gait analysis requires dedicated laboratories with complex systems such as 

optical motion capture. It is likely that a child's natural gait pattern may be affected by a short distance 

walkway and the laboratory setting. Recently, ambulatory devices have overcome some of these 

limitations by using body-worn sensors measuring and analyzing gait kinematics. The aim of this study 

was to explore the use of foot-worn inertial sensors and dedicated method described in this chapter, as a 
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phases, with an increase in double support in children with CP (24.8±4.7% vs 20.3±1.7%, P=0.001). For 

spatial parameters stride length (1.07±0.18 m vs 1.32±0.14, P<0.001), speed (1.13±0.23 m/s vs 1.39±0.11 

m/s, P<0.001) and peak angular velocity during swing (385±74°/s vs 450±41°/s, P<0.001) were decreased 

in paretic limbs, with significant differences in foot pitch at both heel-strike and toe-off (P<0.001). Both 

maximal heel clearance (22.7±3.1 cm vs 25.6±3.5 cm, P=0.004) and maximal toe clearance (7.6±2.9cm 

vs 13.4±1,6cm, P<0.001) were lower in paretic limbs. 

5.4 Discussion & conclusions 

Foot-worn inertial sensors allowed us to analyze gait kinematics outside a laboratory environment with a 

good accuracy and precision. The case control comparison yielded results which were congruent with 

what is known of gait variations in children with cerebral palsy who walk independently. Participants 

found the system light weight and easy to wear and use. While not substituting for complete 3D gait 

analysis, portable sensors provide precise information about gait in conditions that are closer to the child's 

habitual environment and motor behaviour, and could therefore prove to be a useful complement. 
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Chapter 7  

Real-time analysis of amputee daily-locomotion using instrumented 

shank-ankle-foot prosthesis∗ 

1 Introduction 

1.1 Gait in trans-tibia amputees 

The issue of gait and locomotion for trans-tibia amputees (also referred as “below-knee amputees”) is 

closely related to the design of shank-ankle-foot (SAF) prosthesis which replaces the missing joint and 

limb. In fact, during normal gait, the dorsiflexion and the plantiflexion of the ankle should be adapted to 

the type of walking activity, such as incline or stairs locomotion. For instance, while walking on level 

ground, non-amputee subjects usually hit the floor with the heel first (the so-called “heel-strike” event), 

whereas during stair climbing it is generally the toes that hit the ground first (referred as “toe-strike” 

event). Daily locomotion can be subdivided in 5 main walking “activities”: Level walking, slope ascent, 

slope descent, stairs ascent, stairs descent. Main changes and issues for trans-tibia amputees in those 

activities are presented here according to literature. 

Level walking consists in walking in forward direction on flat or quasi-flat ground surface. It may include 

turns as well as gait initiation and termination. Early in the past, studies have compared the differences 

between amputee and healthy gait [1], demonstrating notably compensatory motor patterns from the 

residual muscles at the hip and knee.  

Slope ascent (respectively Slope descent), consists in walking up (respectively down) any ramp or slope. 

Past studies have focused on different ramp inclination from 3° to 10° and the comparison to reference 

pattern observed in level walking  [2–4]. During ramp ascent, the ankle angle at the beginning of stance is 

increased compare to level ground, whereas it is increased at the beginning of swing phase in ramp 

descent. Those studies are consistent together and show important changes of ankle biomechanics during 
                                                   
∗ Patent pending, PROTEOR, 2012 
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ramp locomotion which could be particularly challenging for trans-tibia amputee since they cannot adapt 

the ankle angle to the terrain. 

Stairs ascent (respectively Stairs descent), consists in walking up (respectively down) any type of stairs. 

Stairs are construction designed to bridge a large vertical distance by dividing it into smaller vertical 

distances, called steps. Although stairs offer a flat surface at each step, the biomechanics is strongly 

influenced by the need to deal with change of potential energy while going up or down. Ankle 

biomechanics of healthy subjects has been shown to be completely different than during level ground 

during ramp ascent and descent, with notably a different pattern of dorsi/plantar flexion angle within the 

gait cycle [5–7]. So, it represents one of the most challenging activities for amputees. In addition, in 

studies about stair ambulation using prosthetic feet, it has been observed that trans-tibia amputees have a 

slower velocity and asymmetrical gait pattern compared to non-amputees [8]. This asymmetry between 

limbs was shown to be more significant in stair ambulation than level walking. Other studies has shown 

that the limitation in the prosthetic ankle motion required compensatory functions at hip and knee [9].  

So, the question arises as to how an amputee subject can manage the various locomotion activities, 

depending on the prosthesis he is using? Whereas some amputees are able to perform almost all 

locomotion activities with adapted strategies and changes in biomechanics, some other subjects prefer to 

restrain their activities due to a weakness in musculo-skeletal system or to avoid risky situations.  

1.2 State of the art in SAF prosthesis 

Some general elements are common in all types of ankle-foot prostheses. First of all, the interface 

between amputee’s body and the prosthesis is made with silicon or rubber materials and handcrafted by a 

specialist for each particular subject, since the result of surgical operation or malformation that leads to 

amputation is always different. In addition, amputees generally use plastic envelopes, referred as 

“cosmetics”, so that their artificial limb looks like a real limb in terms of size and shape. Regarding the 

functionalities offered by the devices, the state of the art in SAF prosthesis can be subdivided in two 

different categories: “passive” prostheses, which only feature a specific mechanical structure with various 

materials and designs, and “active” prostheses, which include various kinds of sensors, electronics, 

mechatronics, and which have been developed recently by research laboratories and companies.  

1.2.1 Passive SAF prostheses 
“Passive” lower-extremity prosthetic devices have been around for centuries, if not millennia. However, 

until very recently, there were few attempts at applying new technologies to improve mechanism function 

[10]. External devices were first made from crude materials such as wood and leather, making them 

heavy, non-adaptive and difficult to use. In the 1970s some researches lead to advance the prosthetic knee 
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In research, past studies have tried to address the limitation of passive designs by introducing “active” 

prosthetic designs able to change the ankle angle and/or dynamic properties by means of actuators [11–

13]. Yet, those studies focused their attention on particular activities, such as level walking and stairs 

descent [11] or slopes [12]. Those prostheses prototypes are controlled by means of different sensing 

configurations. Li et al. used only one potentiometer to control the ankle angle [13], whereas Svenson et 

al. used a system based on inertial sensors and the real-time computation of kinematics features such as 

the ground inclination or foot elevation [12]. Svenson et al. also used strain sensors in order to determine 

stance and swing phases [12]. Au et al. has introduced a system based on myoelectric measure of the 

subject’s residual limb [11], with the advantage of giving the control to the subject himself instead of 

having a robotic artificial intelligence. Nevertheless, to our knowledge, none of those control algorithms 

and systems were fully validated against references in terms of classification performance nor tested in 

real daily locomotion. 

1.3 Rational and objectives 

From the comparison of ankle biomechanics of healthy subjects and trans-tibia amputee, and with the 

limitation of existing prosthetic designs, the main issues for amputees during locomotion can be 

summarized as balance, capacity of performing specific activities such as gait in stairs or hills, energy 

cost of walking, comfort and esthetic (for the integration in society), and cost. 

In this context, the ambulatory gait analysis methods (chapter 2) and the use of foot-worn inertial sensors 

can provide strong insight into foot motion, by quantifying spatio-temporal parameters of gait such as 

foot-clearance or walking speed during level walking in various kind of subjects (chapter 3 to 6). Our 

hypothesis is therefore that it is possible to adapt and extend those methods to the real-time analysis of 

daily-locomotion of amputee subjects, and that it could further provide an input for the control of active 

prostheses. In order to verify our hypothesis, the objectives of this chapter can then be summarized as 

follow: 

- Design an instrumented SAF prosthesis prototype featuring embedded inertial and force sensors 

- Design real-time algorithm for temporal detection and kinematics estimation 

- Evaluate the performances of the system during a measurement protocol involving daily-

locomotion activities performed by amputee subjects with instrumented SAF prosthesis 

That leads to the design of a classifier able to recognize the type of locomotion from the real-time 

analysis, which is addressed in chapter 8. 
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While integrating inertial signals during long period, such as to estimate orientation angle from angular 

velocity, there is an important drift which is a source of constantly increasing error. To avoid that issue 

during walking, integration of foot inertial signal can be done only between two successive motionless 

periods [15], [16]. First hypothesis was that signals should be integrated during swing phase only and 

reset to static values during stance. However, in healthy subjects, at the end of stance phase, the foot has 

already started to rotate around metatarsal joint. In our measurements with prostheses, we also observed 

that the end of stance phase was characterized by an important motion of the foot even if prostheses were 

still in contact with the ground. That can be explained by the deformation of the prosthetic foot structure 

during stance, whereas it is explained by the rotation of metatarsal joint in non-amputee subjects. So, a 

more adequate hypothesis is that inertial signals should be integrated as soon a significant motion is 

detected. Therefore a new intermediate state, referred as “Heel-off” (HO) [17], was added between 

MidStance and Terminal Contact into walking phase detection algorithm. 

Finally, timing conditions were also used in the transition rules of the state machine. It avoids successive 

wrong transitions between states when the signal stays around the necessary condition. Threshold values 

for detecting loading (between FF/HO and TC) were set to a slightly higher value than for detecting 

unloading (between TC/MS and IC). Again, this avoids detecting too rapid and false successive 

transitions between states. In addition, the Midstance state was delayed by implementing a prior 

PreMidStance state with a fixed duration, because inertial signals presents noisy signals due to Heel-

strike during early stance phase, which could lead to wrong estimation of inclination if Midstance if 

detected too early.  

A shortcut between MidStance and Terminal Contact was added to be robust to the case where terminal 

contact would occur without heel-off motion. This was observed in some subjects during stairs 

locomotion. Other direct transitions are also implemented in the model for robustness purposes. 

The final Walking Phase Detection algorithm, including PreMidStance, Midstance (FF), Heel-off (HO), 

Terminal Contact (TC), Midswing (MS) and Initial contact (IC) states, was implemented in a state-flow 

chart (fig. 7). 
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- Signals: all raw sensor signals and output signals of kinematic estimation algorithm are used, 

namely Pitch Angular Velocity, Pitch Angle, Frontal Acceleration, Vertical Acceleration, Frontal 

Speed, Vertical Speed, Frontal Displacement, Vertical Displacement, Vertical Force, Sagital 

Torque 

- Time events: all events detected by walking phase detection algorithm are taken into account, 

namely Heel-Off, Terminal Contact, MidSwing, Initial Contact, and MidStance.  

First, value of signal at each time event were extracted and constituted an initial set of 52 raw features at 

each gait cycle. Minimum and maximum values of each signal for the whole gait cycle were also 

extracted.  

Second, dependant features were extracted by measuring the value of one signal when a specific criterion 

on another signal was met. In particular, a torque observer state flow was introduced, sending a flag when 

torque value was above a threshold and all signal values were measured at this instant. The choice of 

those dependant features was based on empirical observations of Leg angle versus torque signals which 

qualitatively discriminate slope and level activities. In addition, non-linear features were computed by 

combination (such as division or multiplication) of existing features. The ratio between Torque and Leg 

Angle was computed as well as the ratio between vertical and frontal displacement.  

Common spatio-temporal parameters of gait are actually included in the extracted features with the 

present method. For example, the stride length is by definition the amount of forward displacement 

between two MidStance events. 

Overall, a set of 153 features is extracted at each gait cycle using those criteria, and the extraction method 

was finally implemented in a SIMULINK model to work in real-time (fig. A.3-5 in annexes). 

3 Results 

3.1 SAF prosthesis instrumentation 

Instrumented prostheses were able to record autonomously the signals of 5 healthy subjects wearing the 

orthoses, and 5 trans-tibia amputees with during measurement protocol including level walking, slope and 

stairs locomotion. Amputee subjects reported that the system was not disturbing them. The force and 

inertial signals were successfully measured with the proposed instrumented SAF prosthetic system, and 

the real-time processing and analysis of signals were simulated on the PC. 
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3.2 Sensitivity and specificity of real-time walking phase detection 

The output of walking phase detection algorithm is illustrated on fig. 8. 

 
Figure 8 - Output of walking phase detection algorithm based on the fusion of angular velocity and vertical force signals 

Sensitivity (SNS) and Specificity (SPC) of the algorithm for detecting each of walking phases in the 

different activities was assessed on the measurements with healthy subjects using the following formulas: 

N = total number of gait cycles recorded 

True Positive (TP) = number of phases detected correctly 

False Positive (FP) = number of phases detected wrongly 

SNS = TP / N, given in % 

SPC = 1- FP/N, given in % 

From past studies [18], we know that Midswing event detected in real-time by the positive peak of pitch 

angular velocity, is the most robust parameters for detecting gait cycles. It was therefore taken as 

reference to validate the sensitivity and specificitw of walking phase detection algorithm.  

Results for each subject and each activity are reported in table I. 
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TABLE I - TRUE POSITIVE (TP), SENSITIVITY (SNS), FALSE POSITIVE (FP) AND SPECIFICITY (SPC) OF WALKING PHASE 

DETECTION VERSUS ACTIVITIES: NON-WALKING (1), LEVEL WALKING (2),  SLOPE ASCENT (3), SLOPE DESCENT (4), STAIRS 

ASCENT (5), STAIRS DESCENT (6). 

ac
tiv

ity
 Heel-off Terminal Contact Initial contact MidStance 

N TP SNS
(%) FP SPC 

(%) TP SNS
(%) FP SPC

(%) TP SNS
(%) FP SPC

(%) TP SNS 
(%) FP SPC

(%) 

1 6 4 50 9 -22 4 50 5 22 4 50 2 78 4 50 5 33 

2 1190 1190 100 9 99 1190 100 9 99 1190 100 9 99 1190 100 11 99 

3 120 120 100 2 98 120 100 2 98 120 100 1 99 120 100 4 97 

4 343 343 100 0 100 343 100 1 100 343 100 2 99 343 100 4 99 

5 119 119 100 3 97 119 100 2 98 119 100 1 99 119 100 2 99 

6 92 91 98 1 98 91 98 3 96 91 98 2 97 91 98 3 96 

Walking 1864 1863 99.9 15 99.2 1863 99.9 17 99.1 1863 99.9 15 99.2 1863 99.9 24 98.7 

Overall 1870 1867 99.8 24 98.7 1867 99.8 22 98.8 1867 99.8 17 99.1 1867 99.8 29 98.4 

 

Overall the 1870 recorded cycles, we obtain really high sensitivity (>99.9% for all phases) and specificity 

(>98.4% for all phases). Moreover we cannot see differences in the performances of the algorithm for a 

specific activity or subject, indicating that the walking phase detection algorithm is robust to activity and 

subject change. Only the non-walking activity (#1) shows poor sensitivity and specificity but sample size 

in small in that category and that was not the main focus of the present work. 

3.3 Real-time Kinematics estimation 

2D foot kinematics was obtained in all performed activities using the real-time adapted algorithm. We 

qualitatively observed that although there was no drift modeling and correction within the gait cycle due 

to real-time constrain, vertical displacement at the end of the gait cycle was positive (respectively 

negative) while going up (respectively down), and close to 0 during level walking. Moreover, pitch angle 

during motionless periods was congruent with slope angle (fig. A.6 in annexes).  

3.4 Comparison of features  

The output of features extraction algorithm is illustrated by the example of pitch angle signal in fig. 9. 
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Figure 9 –Pitch Angle with seven subsequent features extracted in real-time,comprising value at Heel-Off (HO), value at 

Terminal Contact (TC), value at Midswing (MS), value at Initial Contact (IC), value at Midstance (FF), maximum (Max), 

and Minimum (Min). 

Using the recorded signals from instrumented prostheses, median and inter -quartile range (IQR) were 

calculated for each feature among the datasets of each activity (table A.I in annexes). That provides an 

insight into the average value of each feature as well as its inter-subject and intra-subject variability. 

Statistical comparison between datasets from each activity was done using a two-sided Wilcoxon rank 

sum test. Median, IQR and p-values are reported in Annexes. To deeper investigate locomotion pattern, 

rank-sum test was also calculated in pair wise comparison of activities. Fig. 10 provides a subset of the 

most significant results obtained in the different activities, selected as the main representative examples. 

Values are reported in percentage of the mean obtained during level walking, so that parameter changes 

among activity can be compared with each other. 
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Figure 10 - median+/-IQR among all subjects recorded cycles (N=1870) for a subset of features expressed in % of mean 

measured during level activity. All parameters show significant differences (p-value <0.01) in various activities compared 

to level walking 

Results show that vertical displacement estimated at MidSwing is higher in slope and stairs up activities, 

and lower in slope and stairs down compare to level walking. Frontal displacement is comparable 

between level and slope locomotion, but is diminished in stairs walking. Ankle joint torque measured by 

strain gauges at MidStance shows particular increase in slope up and stairs up activity, whereas Pitch 

angle at terminal contact is strongly decreased in stairs up activity. 

4 Discussion 

Overall, this chapter showed that most of the concept introduced in temporal (chapter 3) and spatial 

(chapter 4) gait analysis were adaptable to real-time application. The only limitation comes from the drift 

resetting strategy which cannot be optimized such as to measure foot clearance. However, the results 

obtained in kinematics estimation and resulting extracted features showed that performances were 

acceptable to significantly discriminate the kinematics of activities including level walking, slope ascent, 

slope descent, stairs ascent, and stairs descent. The validation of those real-time methods in terms of 

accuracy and precision against a reference should be further analyzed if applications of those real-time 

methods are foreseen for clinical gait analysis. 
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Physilog III was used as a practical system to conduct the measurement and to realize a prototype in fast 

delay for data logging and inertial signals sensing, and real-time processing of signals was simulated 

offline. Nevertheless, the developed algorithm was designed to work with any other equivalent sensor 

configuration. The use of lower sampling frequency such as 100Hz is also a realistic alternative to reduce 

power consumption without affecting too much the performances of the algorithm. In this study, the 

preliminary alignment of sensor’s axis to foot or SAF prosthesis axis, as well as the calibration of force, 

moment and angular sensors, was done offline. In future practical application in real-time active 

prosthetic device, two solutions are possible, either based on factory calibration and alignment, or based 

on online implementation of alignment methods and calibration protocols presented. 

Walking phase detection method yielded excellent performances which were only quantified in healthy 

subjects with orthoses. Comparable performances were also observed with amputee subjects. It shows 

that orthotic devices were good alternatives for simulating amputee gait, and that our criteria for state 

temporal transitions were robust to the different types of activities and subjects.  

Features extracted directly from raw inertial signals without any processing showed statistical differences 

in some cases (notably at MidSwing), but they were less robust to characterize activities since their inter-

subject variability was big. Speed however seems to be a good tradeoff as it requires one less integration 

than displacement in its estimation process, and thus is less prone to drift errors. Globally, most of the 

features were showing highly significant differences between each other. Kinematic features were most 

suited for finding differences during swing phase of gait (at MidSwing and Initial contact), whereas 

Kinetic features, and especially Torque, were most suited during stance (at MidStance, Heel-off and 

Terminal contact). Those results obtained quantitatively show a good potential in characterizing 

unambiguously the different activities, and results were in accordance with common sense and literature. 

The perspective of this study would be to test the real-time implementation of the methods into prototype 

prosthesis by implementing the proposed method into a micro-controller. Then it would open the door of 

the active control a prosthetic Shank-Ankle-Foot complex to adapt the behavior of the prosthesis to the 

terrain.   

Finally, the presented methods could be further adapted to be used for prosthetic knee. However, in that 

case, the kinematic estimation phase should be adapted as it is using the particular foot motion to reset the 

drift periodically. Other application requiring real-time detection of phases and/or estimation of 

kinematics with capability of foot sensing could also benefit from that research, notably functional 

electrical stimulation [19] or active rehabilitation devices [20] 
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5 Conclusion  

An instrumented prosthesis, including Force sensors, a potentiometer, inertial measurement unit and a 

datalogger was developed and successfully used on 5 amputee subjects performing different locomotion 

including level walking as well as stairs and ramps. Algorithm capable of detecting in real-time the 

walking phases and estimating 2D foot kinematics of the subject has been designed and implemented into 

a real-time simulation program. The walking phase detection algorithm is based on the fusion of force and 

inertial signals. It showed excellent robustness to all subjects and various types of locomotion recorded on 

the amputee subjects tested in this study. A feature extraction algorithm has been finally designed and 

implemented, which is able to compute a wide range of parameters describing the kinetic and kinematic 

of the amputee subject. The algorithm includes signal processing method combined with the output of 

walking phase detection to extract parameters of interest. Within those parameters, we found significant 

difference between different types of locomotion. 
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Foot signature, i.e. 3D foot trajectory during one gait cycle, constitutes the guideline of this chapter. Foot 

signatures are estimated using foot-worn sensors and can be qualitatively observed as in fig.1. To further 

analyze foot signature changes among various activities and mobility diseases, this chapter presents the 

use and statistical comparison of raw features, e.g. parameters, which are subsequently extracted from 

foot signatures. Finally, machine learning classification tools are also used based on normalized features 

and principal components (PC). 
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- Establish a pattern model for each activity, based on a transformation and selection of relevant 

parameters extracted from foot signature, referred as features (in accordance with data mining 

terminology). This is done on a subset of recorded data, referred as training data.  

- Recognize activities at each gait cycle, by classifying the extracted features, referred as testing 

data, with the model.  

- Assess the performance of the recognition algorithm by comparing the recognized activities to the 

real activities performed by the subject. 

A factor analysis is also proposed to identify the most relevant features of foot signature that can be 

extracted in real-time during locomotion. 

Constraints for the algorithm can be summarized as: 

- ability to recognize at least 5 main walking activities: level walking, slope up and down, stairs up 
and down (Additional activities such as sitting could be considered in the future) 

- robustness to inter-subject variability  
- implementability on an embedded micro-controller to work in real-time (typically the code and 

algorithm must be translatable to C) 
- understandability for the user, with the possibility for further tuning and modification. It means an 

expert classification method is preferable to a “black box” method which behaviour cannot be 

interpreted. 

2.1 Method 

2.1.1 Features normalization 
With the method of chapter 7 using the signal measured on instrumented prosthesis, 153 raw features are 

extracted at each gait cycle. Prior to classification, it is important to normalize the features dataset so that 

they are equally considered. Two types of normalization are considered. Using linear normalization (L-

norm), each feature i range in [-1 1] after normalization using the following equations: 

l=min(FEATURES(:,i)), u=max(FEATURES(:,i)),  (1) 

FEATURES_L-Norm(:,i)=2*(FEATURES(:,i)-(u+l)/2)/(u-l)  

With Standard Score normalization (S-norm), each feature i has a mean of 0 and STD of 1: 

mu=mean(FEATURES(:,i)), sigma=std(FEATURES(:,i)),  (2) 

FEATURES_S-Norm(:,i)=(FEATURES(:,i)-mu)/sigma 

Linear normalization might be strongly influenced by an outlier, but will perfectly match ranges between 

data features. Standard Score is based on the distribution of data, so if the number of training data is 
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been used in a wide range of application in literature, and demonstrated good performances for specific 

classification problems. Consequently, they were considered a reference for our study. In addition, the 

method presented here consists in using principle components as the inputs for a classifier, which has 

demonstrated significantly better classification performance compared to using original features as the 

inputs [2]. The second approach consists in defining expert rules on extracted features, based on prior 

knowledge and observations to manually classify activities. It presents the advantage of being 

interpretable, easily adjustable and tunable to a subject, and allows having criteria that match realistic 

biomechanical hypotheses. Its performances on a per-subject basis are finally compared with the first 

reference approach, based on the data recorded on 5 amputee subjects. 

2.1.3.1 Training and Testing Data 
For classification purpose, most of machine learning techniques require a certain amount of data to be 

used for training the classifier. In literature, it is common to split collected data with a certain percentage 

between training and testing data. In this study, using the measurements performed on amputee subjects 

during the study of chapter 7, training data was constituted from separate trials of pure activities, whereas 

testing data was constituted from daily-activity scenario including the succession of activities.  

2.1.3.2 Reference methods 
Different reference methods, including Linear Discriminant Analysis (LDA), K-nearest neighbor (KNN), 

and Decision Tree (TREE) are briefly presented in this section and were considered for this study. Such 

methods consist in classical data mining tools that have respectively demonstrated good classification 

performance in past studies focusing on speech recognition [2], text categorization [3], and activity 

classification [4], [5]. LDA [6], consists in defining linear boarders in the space of features for each 

activity. The algorithm can be adjusted with different distance measures. An improvement can consist in 

using Support Vector Machines, which constructs a hyperplane or set of hyperplanes in a high-

dimensional space used for classification. A good separation is achieved by the hyperplane that has the 

largest distance to the nearest training data point of any class [6]. KNN method [7], consists in counting 

the majority number of training neighbor of a tested sample within a defined area. Again, this algorithm 

can be tuned by changing the number of neighbor to take into account, and the type of distance measure 

which is used to define the area around the tested sample. The decision tree [8], consists in a simple yet 

powerful classification technique applying successive comparisons of single features to reach terminal 

states (called leafs). Different path can lead to the same results. 

 

 



 

2.1.3.3 Expert method 
Expert classification, also referred as

distinguish activities from each other

normalization or PCA. So, to reduce t

features are particularly relevant. Tw

based on decision tree, and the second

2.2 Results 

2.2.1 Reference methods 
Reference classification methods wer

extracted from foot signatures. LDA

whereas KNN with 3 neighbors (KN

illustrated on fig 6.b. An example of d

6.c. Tree can be pruned (fig. 6.d), i.e. 

Figure 6 - Illustration of reference activity c

(b), full decision tree (c), and pru

a) 

c) 

120 

s rule-based classification, implies to have hypothe

. In this approach, the set of extracted features is u

the dimensionality of input features, it is necessary

wo methods are proposed to select the relevant fea

d on empirical observation of feature space. 

re applied on the set of principal components of no

A is illustrated on the first two principal compo

NN3) using Euclidean distance on 2D principal co

decision tree generated on nine principal componen

reducing the number of terminations to a near-optim

 

 
classification methods of Linear Discriminant Analysis (a),

uned decision tree (d) on a reduced set of principal compon

-3 -2 -1 0 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

PC1

P
C

2

 

b) 

d) 

eses on criteria to 

used without prior 

y to identify which 

atures. The first is 

ormalized features 

onents (fig. 6.a.), 

omponent space is 

nts is given in fig. 

mal value. 

 

 
, K-nearest neighbor 

nents (PC) 

2 3 4

Level
Slope Up
Slope Down
Stairs Up
Stairs Down



121 
 

2.2.2 Expert method 

2.2.2.1 Features space investigation using decision tree 
By using the decision tree method described previously on the whole set of features, the algorithm 

automatically generates a classification tree that can be pruned to get only one termination per activity in 

order to identify relevant features. A tree was then automatically generated for each subject’s training 

data. This investigation provides a good insight into the 153 features space, and provides the four most 

relevant features selected on the criteria that they appeared in at least 2 per-subject generated trees. These 

four features are further used in the expert method. 

The list of features identified as relevant was then: 

- to @ FF: the torque at midstance 

- PI @ HO: the pitch orientation at Heel-off 

- DV @ FF: the vertical displacement at foot-flat 

- a1 @ FF: the frontal acceleration value 

 
Using this restricted list of features, per-subject tree and their coefficients were generated, as in the 

example of fig. 7. Generated trees obtained for all other subjects are given in fig. A.7-10 in annexes. 

 
Figure 7 – Expert classification tree of activities for subject 9 using ankle torque (to), vertical displacement (DV) and 

frontal acceleration (a1) signals at Midstance (FF), and pitch angle signal at heel-off (PI@HO). 

2.2.2.2 Feature space investigation using qualitative observations 
Based on a-priori hypothesis obtained from literature, other relevant features were identified. Further 

observation of those features in the training set allowed confirming their pertinence for discriminating 

activities (fig. 8). 
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Figure 8 - Qualitative observation of activity-discriminant features including inclination angle at Midstance (IN@FF), 

minimum of ankle angle (anMin), and minimum of torque/leg angle ratio (toLAMin) in amputee subjects. 

Out of our observations on the different subjects, an empirical list of particularly relevant parameters was 

identified as: 

- anMin: minimum value of ankle angle 

- DV@MS: the vertical displacement of the foot at midswing 

- IN@FF: the foot inclination at midstance (i.e the slope angle is foot is flat-landed) 

- toLA Min:the minimum value of the ratio between Torque and Leg angle 

 

This list is obviously non-exhaustive and features can be easily exchanged with the other highly 

correlated ones. For example, the inclination at foot-flat is computed from acceleration value, so those 

two metrics are strongly associated and can replace each other as input of the expert classification 

method. Moreover, according to the results of the PCA, we know that less than 10 independent features 

are needed to explain 90% of the Variance of data. 

Finally, the list of features included features obtained from decision tree and qualitative observation. The 

expert method was based on the decision tree algorithm which was run again to set automatically the 

optimal per-subject threshold based on Training data. The expert method (Optimal Tree) is then 

implemented in SIMULINK for real-time simulation. 

2.2.3 Comparison of classification Performance 
For reference classification methods (LDA, KNN3, TREE) and expert method (Optimal Tree), the 

confusion matrix was established by counting the number of training and testing data assigned to each 
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activity by the algorithm against the reference video-labeled activity. The confusion matrix was computed 

both in absolute values and in percentage of sample for each activity. The diagonal values of the 

confusion matrices represent the correctly classified samples. The global average error (AE) and the 

correct rate of classification (CR) were computed on the relative confusion matrix (CM_pct) and the 

absolute confusion matrix (CM): 

AE=100-average(diag(CM_pct))    (3) 
CR=100*sum(diag(CM)) / total number of samples 

 
If the number of samples is the same for each activity, then CR=1-AE. 

The global average error rate decreases and rapidly converges when the number of principal components 

increases (fig. 9). In consequence, it was decided to use only nine principal components. Table I provides 

the performance assessment of the different methods for both training and testing data. 

 
Figure 9 – Per-subject (dashed line) and Mean (plain line) classification performance measured by global average error 

versus number of principal components used.  

 

 

2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

number of Principal Components

G
lo

ba
l A

ve
ra

ge
 E

rro
r (

%
)

Comparison of Reference Classifier Performances

 

 
LDA Training
LDA Testing
KNN Training
KNN Testing
TREE Training
TREE Testing



124 
 

TABLE I – COMPARATIVE ACTIVITY CLASSIFICATION PERFORMANCE (CONFUSION MATRICES) OF REFERENCE METHOD (LDA, 

KNN3, TREE) AND EXPERT METHOD (OPTIMAL TREE) ON TRAINING AND TESTING DATA FROM 5 AMPUTEE SUBJECTS. 
    

Training Data Testing Data 
    

L
D

A
 

% 

Average Error (%) classified as Average Error (%) classified as 
  1.4   Level Slope Up Slope Down Stairs Up Stairs Down   24.0   Level Slope Up Slope Down Stairs Up Stairs Down

ac
tiv

ity
 

Level 100 97.6 0.0 2.4 0.0 0.0 

ac
tiv

ity
 

Level 100 46.0 18.2 30.9 1.3 3.6 
Slope Up 100 2.4 97.6 0.0 0.0 0.0 Slope Up 100 26.4 71.4 0.0 0.0 2.2 

Slope Down 100 2.4 0.0 97.6 0.0 0.0 Slope Down 100 1.8 2.2 96.0 0.0 0.0 
Stairs Up 100 0.0 0.0 0.0 100.0 0.0 Stairs Up 100 6.7 6.7 0.0 80.0 6.7 

Stairs Down 100 0.0 0.0 0.0 0.0 100.0 Stairs Down 100 0.0 0.0 13.3 0.0 86.7 

Sa
m

pl
es

 

Correct Rate (%) classified as Correct Rate (%) classified as 
  98.6   Level Slope Up Slope Down Stairs Up Stairs Down   57.8   Level Slope Up Slope Down Stairs Up Stairs Down

ac
tiv

ity
 

Level 83 81 0 2 0 0 

ac
tiv

ity
 

Level 302 142 52 94 4 10 
Slope Up 83 2 81 0 0 0 Slope Up 44 11 32 0 0 1 
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Regarding testing data, composed of a succession of activity in daily-life scenario, Optimal Tree, which 

can be seen as the best possible expert tree for a subject, provide better performances (Average Error 

12.3%, Correct Classification Rate 89.6%) than the reference methods. This can be explained by the over-

fitting of the reference methods to the training data. Reference methods perform well to classify training 

data but are not robust to slight modifications that occur with testing data. Indeed, during the daily-life 

protocol, subjects are performing transitions between activities which are not specifically labeled in the 

training dataset. For example, the foot signature of the first step of stair climbing following level walking 

remains similar to the one of level walking, and thus the features that appear in the first selected principal 

components might be unable to discriminate those two activities.  

A limitation of this comparative study comes from the fact that the number of collected samples was 

small. In particular, the number of sample for stairs activity was limited to 3 steps per subject. Yet, the 

results show that the use of an expert method to classify the extracted features from foot signature is 

possible for recognition of activities in real-time, with comparable performances to the reference 

methods. A complete evaluation of its performance would require a bigger number of subjects. 

An opportunity for further improvement is to better identify the important misclassifications in order to 

avoid risky situation. Three approaches are then possible to avoid such situation:  

- the manual tuning of the thresholds to prioritize certain path of the decision tree 

- the instruction to the subject to pay attention to his locomotion pattern in order to respect the 

decision tree criteria 

- the use of a cost matrix during threshold optimization on training data, i.e. each classification 

branch will not have the same weight, and we can prioritize some state based on assumptions.  

Interestingly, the observation of the confusion matrix obtained by Optimal Tree shows that only level 

walking was misclassified with other activities. There are no other types of errors (every term except the 

diagonal, the first line and first column are null in confusion matrices of table I). One could observe that 

the misclassified samples are not the same through reference methods, and notably, KNN3 is the only 

method confusing stairs with the other activities. Other reference classification techniques such as neural 

networks could have been also considered, but the reference methods considered in this study already 

yielded excellent recognition performances. Moreover, neural networks reveal little information about 

their classification mechanism compare to decision tree, since they only provide a black box of weights 

[9]. 
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3 Characterization of Mobility Disease 

This section aims at inter-subject comparison of foot signatures. From the results obtained in chapters 3 to 

6, we have seen that the following parameters significantly discriminate subjects with reduced mobility 

against control subjects: 

- In temporal analysis (Chapter 3), a longer stance and foot-flat on arthritic ankle 

- In spatial analysis (Chapter 4),  a lower stride velocity and maximal heel clearance in elderly 

subjects 

- In turning analysis (Chapter 6), a longer turning phase duration during TUG and higher 

variability in stride velocity and a longer path length during gait in PD subjects in ON and 

OFF state, a smaller stride velocity and heel-strike pitch angle on affected side of CP children 

during straight walking gait. 

Indices for assessing overall gait deviations have been reported in literature under the generic term “gait 

analysis summary measure”. Notably, the Gillette Gait Index (GGI) is a summary measure incorporating 

16 clinically important kinematic and temporal parameters [10]. It has been mostly validated in children 

with cerebral palsy, but also evaluated in adults with gait abnormalities [11]. Yet, those methods require 

dedicated laboratories and have not been applied to compare various populations.  

Following the methodological concept introduced in fig. 2, this section aims to compare foot signature in 

various populations with mobility diseases, through statistical comparison of subsequent extracted gait 

parameters (e.g. features), and then to improve the discriminative power using normalization and 

principal components analysis.  Finally, a method is proposed for using a subset of principal components 

in an index measure constituted by a visual foot signature map. 

3.1 Method 

3.1.1 Measurements Database 
In the frame of the present thesis work, and based on the measurement protocols that were performed in 

the studies of chapters 3 to 6, a wide range of gait data has been collected using foot-worn inertial sensors 

on 1854 subjects with various mobility disease (Table III). All those measurements have been performed 

at self-selected walking speed using the exact same sensor configuration with 6D-IMUs attached to the 

foot. Parts of those data were performed in laboratory setting and used for the technical validation of 

parameters described in chapters 3 to 6. The remaining data includes clinical trials that were performed in 

free living condition outside of the laboratory, typically in hospital corridors. 
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TABLE III - MEASUREMENT DATABASE OF FOOT SIGNATURE USING FOOT-WORN INERTIAL SENSORS 

Population 
Group 

Label 
study Gait Tasks 

Sample

Size 

Control adults & elderly - Spatial Validation fo8, U-turn, 5m gait 20 

Europe Community-dwelling elderly - Clinical trials 6 minutes walking test 70 

Control adults 25-39 Clearance Validation fo8, U-turn, 5m gait 12 

Lausanne Community-dwelling elderly 
65+ 

Clinical trials 
TUG, 20m gait under single task, 

cognitive and motor dual task 

673 

71+ 983 

PD ON/OFF medication & age-

matched controls 
PD 

Turning validation TUG 
21 

Clinical trials 40m gait, 200m gait 

Ankle OA treatments & age-matched 

controls 
- Temporal Validation 50m gait test 40 

CP childs & age-matched controls 16- 

Spatial/Turning 

validation 
fo8, U-turn, 5m gait 

35 

Clinical trials 200m gait test 

The following groups of subjects were thus considered in the following with different conditions: 

- Older community-dwelling persons with age over 65 years (65+) and 71 years (71+), who 

performed a 20m gait trial at self-selected speed in the following conditions: single task walking 

(ST), walking while counting backward (DTc), walking while carrying a glass of water (DTm) 

and walking while carrying a glass of water and counting  backward(DTcm). 

- People with Parkinson’s disease (PD), who performed a 2*20m (e.g. 40m) gait and a 4*50m (e.g. 

200m) gait test under ON and OFF medication. 

- Children under the age of 16 year (16-), including controls and children who were followed in 

tertiary outpatient neurorehabilitation unit for Cerebral palsy and whom were graded GMFCS I 

(CP I) or graded GMFCS II (CP II). 

- Control adults with age between 25 and 39, recruited among students and colleagues, with no 

previous gait pathology, who performed short walking trial on 5m in laboratory setting. This 

group was originally only used for technical validation but we used the results in clearance 

analysis to get some reference data. 

All measurements protocols received approval from local ethical comity. 

The gait parameters were automatically extracted from foot-worn sensors signals at each gait cycle using 

the methods described in chapters 3 to 6, leading to get for each trial of each subject the exhaustive list of 

common and original parameters classified in three categories as follow: 
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- Temporal parameters: 

o Gait cycle time, Cadence, Swing and Stance in percentage of gait cycle, Load, Foot-flat 

and Push in percentage of stance, total Double-support in percentage of gait cycle.  

- 3D Spatial parameters: 

o Stride Velocity (walking speed), Stride Length, Swing width, 3D Path length in 

percentage of Stride Length, Peak swing angular velocity, Foot pitch angle at terminal 

contact (Toe-off) and initial contact (Heel-strike). 

- Clearance parameters: 

o Maximal Heel Clearance, Minimal Toe Clearance, 1st and 2nd Maximal Toe Clearance, 

Toe and Heel clearance Area, Foot velocity at Minimal Toe Clearance 

3.1.2 Descriptive statistics 
Walking trials recorded in each population were analyzed with the same algorithm. The first three and the 

last three strides, corresponding to gait initiation and termination were discarded from the analysis. 

During long-term measurement including pivot, turning strides were also discarded using a threshold of 

20° on turning angle [12], [13]. The remaining gait cycles were considered as steady-state gait and their 

mean, standard deviation (STD), and coefficient of variation (mean/STD) were calculated for each trial 

and subject.  

3.1.3 Reference parameters of foot signature in older adults 
Among elderly subjects, data from 65+ and 71+ groups during Single Task were putted together, leading 

to a sample of 1490 subjects measured in the same condition on a 20m gait task. Reference gait values 

were computed from the mean and STD of gait parameters extracted on foot signature on a representative 

sample of subjects with age between 65 and 77 years. Moreover, average walking speed is the easiest gait 

parameters that can be simply estimated from measuring the time taken by a subject to walk a known 

distance. It has been shown in literature that this provide an indicator of frailty in elderly. It is therefore 

interesting to see whether the other gait parameters, that are estimated using foot-worn sensors and 

proposed method, are directly associated with walking speed or not 

For the quantitative description of parameters distribution, measures of skewness and kurtosis were 

considered, as respective numerical analysis of the asymmetry and the “peakedness” of data distribution. 

A pure normal distribution corresponds to a skewness and kurtosis of 0. 

The correlation coefficient (R), as a measure of linear association, was computed between the set of mean 

stride velocity and all the other parameters estimated for each subject. Variability value of parameters 
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were taken as CV for most parameters except in the case of Minimal toe clearance and Swing width, for 

which STD was used instead since they are close to 0.   

3.2 Results 

This section presented the statistical comparison of foot signature parameters in each population group 

during steady-state walking at self-selected speed. 

3.2.1 Temporal Analysis 

Fig. 11 provides the results of temporal analysis, obtained in the different groups of subjects using foot-

worn sensors. 

 

 
Figure 11 - comparison of subjects groups using mean+/-STD of sorted gait cycle time (a) and mean of inner stance phases 

ordered by foot-flat ratio (b) 
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Children show a smaller gait cycle time and a shorter foot-flat than any other groups, although it tends to 

be longer in CP condition. PD subjects have comparable gait cycle time to age-matched elderly 

populations but tend to have a longer foot-flat, especially in OFF condition. Regarding elderly subjects, 

we could see comparable results for the group 65+ and 71+ for all temporal parameters. Moreover, there 

is no clear influence of motor dual task (DTm) on temporal gait parameters, whereas it is affected by 

cognitive dual task (DTc and DTcm), which shows longer gait cycle time and foot-flat. 

3.2.2 Spatial Analysis 

Fig. 12 provides the results of spatial analysis, obtained in the different groups of subjects using foot-

worn sensors, and sorted by increasing walking speed. 
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Figure 12 - comparison of mean+/- STD of gait parameters in subjects groups ordered by self-selected wlaking speed 

Among the different groups of subjects, the patients with strong neurological disorders (PD OFF and CP 

II) show the slower walking speed, with high dispersion within the group though. On average, the 

younger our sample subjects are, the faster they walk at self-selected speed. Contrary to temporal 

analysis, the influence of both motor and cognitive dual task is visible in spatial analysis with a decrease 

of speed with task complexity. Interestingly, we can see that PD subject in ON state and CP child with 

moderate symptoms have comparable walking speed than 65+ elderly subjects. The comparison of 65+ 

and 71+ elderly subjects groups shows that the influence of 5 years of aging is equivalent to adding a 

motor task, with comparable speed between 71+ ST and 65+ DTm group. 

The results obtained in fig. 12 also allow observing the various factors that lead to speed changes through 

the other gait parameters. The most remarkable ones are the diminished Load foot pitch angle (i.e. heel-

strike) in neurologic populations (CP and PD). 

3.2.3 Clearance Analysis 

The measurement of shoe size, and thus the clearance analysis, was only done on 16-, 25-39, 65+ and 71+ 

groups of subjects. Results of the three main clearance parameters, namely maximal heel and toe 

clearance, and minimal toe clearance, are shown in fig. 13 for the different age groups.  
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Figure 13 – Mean+/- STD of Foot Clearance parameters comparison with age groups 

Assuming a reference foot clearance pattern with 25-39 years old group, we can see that children have a 

lower maximal heel clearance, which can be easily explained by their lower height. In addition, children 

show a higher minimal and maximal toe-clearance, which can be interpreted as a non-mature control of 

clearance during gait, contrary to adults 25-39. On the other side, elderly subjects show a tendency to 

decrease maximal heel clearance and increase minimal toe clearance.  A decrease in maximal heel 

clearance can be interpreted as a lack of force for lifting the foot, notably due to a decrease in knee or hip 

muscles power, which is even more noticeable in older group 71+. The increase of minimal toe clearance 

in 65+ and even more in 71+ subjects can be interpreted as a safety strategy used to avoid tripping.  

In order to refine the analysis of foot clearance in elderly, and to investigate it as a risk factor for falls or 

indicator of frailty, comparative analysis between single and dual-task conditions were done (fig. 14). 

 
Figure 14 - Comparison of mean+/-std of foot clearance parameters during 20m gait tests in elderly subjects 65+ and 71+ 

under single and dual-task condition 
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older subjects. Low fluctuations can be observed on foot clearance among the different conditions, but we 

can observe a reduction of maximal heel and toe clearance with task complexity. For minimal toe 

clearance, there is a slight tendency for an increase in DTc and decrease in DTcm, compared to ST. 

3.2.4 Variability Analysis 

Gait variability expresses the stride-to-stride fluctuations in walking. It was quantified by standard 

statistics based on mean and standard deviation of gait parameters, through the coefficient of variations 

expressed by the ratio between the STD of parameter and its mean. Results of variability analysis for one 

typical parameter in each category (Temporal, Spatial, and Clearance) are given in fig. 15. 

 
Figure 15 - Coefficient of variations (CV) of main temporal (Gait cycle time), spatial (Stride velocity), and clearance 

(Maximal heel clearance) parameters among the different groups of subjects ordered by walking speed)) 

Results show strong changes of gait variability parameters in our different group of subjects, increasing 

together with severity of motor symptoms of mobility diseases. In particular, variability is strongly 

increased in PD OFF and CP groups, and associated with a cognitive dual task in elderly. It is particularly 

interesting to observe that PD ON group has much higher gait variability than other elderly subjects 

groups, whereas the average value of gait parameters such as walking speed and stride length were 

comparable between those groups. That confirms gait variability parameters provide additional 

discriminative information to the common average parameters. 

3.2.5 Gait parameters distribution among older adults 

This section presents the distributions of the various gait parameters extracted from foot signature of older 

persons. 
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3.2.6 Association of gait parameters with walking speed in older adults 

Table IV provides the correlation coefficients of the various gait parameters extracted from foot signature 

of elderly subjects with walking speed. 

TABLE IV - CORRELATION COEFFICIENTS OF MEAN AND VARIABILITY OF GAIT PARAMETERS EXTRACTED FROM FOOT 

SIGNATURE AGAINST MEAN WALKING SPEED. CORRELATION WITH ABSOLUTE VALUES OF R>0.5 ARE HIGHLIGHTED IN GREY, AS 

WELL AS SIGNIFICANT CORRELATIONS FOR P-VALUES < 0.001.  

Statistics Parameter R p-value 

Mean 

Te
m

po
ra

l 

Gait Cycle Time -0.59 0.000 
Swing 0.49 0.000 
Stance -0.49 0.000 
Cadence 0.57 0.000 
Load 0.49 0.000 
Foot-flat -0.68 0.000 
Push 0.56 0.000 
total Double support -0.52 0.000 

Sp
at

ia
l 

Walking speed 1.00 0.000 
Stride Length 0.86 0.000 
Swing Width -0.21 0.000 
3D Path Length -0.13 0.000 
Peak Swing Angular Velocity 0.42 0.000 
Foot Pitch angle at Toe-off -0.57 0.000 
Foot pitch angle at heel-strike 0.54 0.000 

C
le

ar
an

ce
 

Maximal Heel Clearance 0.41 0.000 
Minimal Toe Clearance -0.15 0.000 
1st Maximal Toe Clearance 0.07 0.009 
2nd Maximal Toe Clearance 0.48 0.000 
Toe Clearance Area 0.24 0.000 
Heel Clearance Area 0.22 0.000 
Foot velocity at Minimal Toe Clearance 0.95 0.000 

Variability 

Te
m

po
ra

l 

Gait Cycle Time -0.16 0.000 
Swing -0.33 0.000 
Stance -0.26 0.000 
Cadence -0.26 0.000 
Load -0.18 0.000 
Foot-flat 0.18 0.000 
Push -0.15 0.000 
total Double support -0.03 0.205 

Sp
at

ia
l 

Walking speed -0.33 0.000 
Stride Length -0.25 0.000 
Swing Width -0.08 0.002 
3D Path Length -0.12 0.000 
Peak Swing Angular Velocity -0.22 0.000 
Foot Pitch angle at Toe-off 0.33 0.000 
Foot pitch angle at heel-strike -0.44 0.000 

C
le

ar
an

ce
 

Maximal Heel Clearance -0.29 0.000 
Minimal Toe Clearance 0.17 0.000 
1st Maximal Toe Clearance 0.04 0.123 
2nd Maximal Toe Clearance -0.31 0.000 
Toe Clearance Area -0.01 0.577 
Heel Clearance Area -0.12 0.000 
Foot velocity at Minimal Toe Clearance -0.31 0.000 
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Most of the parameters shows significant correlations with speed except for those which correlation 

coefficient are close to 0. However, a low correlation with speed should not be interpreted as irrelevance 

of the parameter since it could express other gait features less influenced by speed. Considering an 

absolute threshold of R=0.4, we can see that parameters which are positively associated with speed are: 

Swing ratio, Cadence, Load and Push ratios, Stride Length, Peak Swing Angular Velocity, Heel-strike 

pitch angle, Maximal Heel and Toe clearance and speed at minimal toe-clearance. With the same 

threshold, the parameters which are negatively associated with speed are Gait Cycle time, Stance ratio, 

foot-flat ratio, total double-support, Toe-off pitch angle, and heel-strike pitch angle CV. 

Interestingly, most of the other parameters, and especially all variability parameters as well as swing 

width, path length and minimal toe clearance, show little association with walking speed. We could then 

assume that they contain additional information for describing the gait characteristics. Finally, for the 

parameters that showed the stronger association with walking speed (R>0.5), linear and cubic regression 

were done in order to provide a model for the estimation of those parameters from the simple measure of 

walking speed in elderly subjects (fig  A.11 in annexes).  

3.3 Foot Signature Map 

In previous sections, gait parameters extracted from foot signature have been compared between the 

various groups of subjects. Although such results provide an interesting and interpretable insight of gait 

performance, it is difficult to synthesize the information given by all the various parameters. So, a similar 

approach to recognition of locomotion activity is applied, in order to discriminate subjects groups based 

on a reduced and transformed set of features, using normalized features and principal components (fig. 2).  

Since the sample size of recorded measurements varies from one group to another, a fixed number of 50 

samples in each group were generated randomly from the mean and STD of each parameters, assuming 

normal distribution within the group. All features were then normalized and transformed using PCA.  

By comparing the first two principal components in all groups of subjects whose foot signatures have 

been measured, we can establish a 2D diagram that shows differences between subjects groups, and 

which constitutes the foot signature map. This is illustrated in fig. 17 with a subset of groups 71+, PD 

subjects ON and children with or without CP, together with a cluster analysis performed using Gaussian 

Mixture models  [14]. 
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3.4 Discussion 

We performed measurements using foot-worn inertial sensors during clinical trials obtained in free 

walking condition at self-selected speed, and including elderly subjects, people with Parkinson’s disease 

and children with or without cerebral palsy. The application of the previously designed and validated 

algorithm from chapters 3 to 6, provided strong insight into the gait characteristics of those populations, 

by describing the statistical distribution of common parameters such as gait cycle time or walking speed, 

and also new parameters such as foot clearance, inner-stance phases and inter-cycle variability. To our 

knowledge, this is the first study including such amount of spatio-temporal gait parameters obtained with 

body worn sensors in more than 1800 subjects in free walking conditions.  

As an opportunity for future investigations, we could subdivide the population group, and particularly the 

elderly group which has a large sample size, based on background data such as age or clinical score such 

as fear-of-falling and number of falls, to study their relationships with gait parameters, and notably foot 

clearance as in recent studies by [15]. That was not possible at the time of this thesis work since that data 

is being processed by our clinical collaborators, but it represents an interesting field of further research. In 

addition, the normalization of gait parameters to gender and/or height could provide a comparison of 

subjects groups which is independent of anthropometric data, as it was done in other recent studies [16]. 

The counterpart of such normalization is that results then become difficult to interpret with non-self-

explanatory units. 

The analysis of gait parameters association with walking speed demonstrated that the various original 

parameters which were introduced in this thesis provided additional information to what is commonly 

being measure with inertial sensors. Results obtained in our sample of subjects for self-selected walking 

speed were congruent to what is commonly reported in PD [17], CP [18], and adults and elderly subjects 

[19]. On the other hand, our statistical results including distributions and regression models can be used 

as reference gait data for other applications such as robotics or simulation. 

The foot signature map obtained from 2 principal components of normalized features has shown 

interesting capabilities for separating populations, and can be used as an intuitive visual tool for clinical 

gait comparison. However, to really describe foot signatures variance among mobility diseases, we have 

seen that more principal components should be taken into account. Yet, few other limitations are still 

important to consider before its application to clinics: 

- The validity of foot signature map relies on the amount of collected data used to establish the 

principal components coefficients. In our case, although there is a solid amount of data in elderly 

group, it was not the case in other pathologic groups. More measurements are needed to get 
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reference data in those remaining group of subjects and in other potentially interesting pathologic 

groups 

- The direct interpretation of the axis of the foot signature map is not possible since they are 

constituted of linear combinations of gait parameters. That pitfall is of course common for all 

summary measure or scores established on different items. 

4 Conclusion 

The novel concept of foot signature, defined by the 3D foot trajectory during one gait cycle, has been 

introduced in this chapter. A general methodology for foot signature analysis was proposed based on the 

extraction of features, their normalization and the computation of principal components. We believe that 

the foot signature measured using foot-worn inertial sensors, and its subsequent features and principal 

components, have an interesting potential as a simple yet powerful gait assessment tool with true clinical 

significance and interpretability. It combines all the methods and finding of the previous chapter into a 

single unified concept. Its application to the real-time recognition of activity has shown excellent 

performances with correct classification rates of 89.6% using expert tree algorithm. Its application to 

discriminate mobility disease has provided reference gait data and statistical comparison among various 

groups of subjects. For a new subject, foot signature analysis procedure can be fully automatized, and 

clinician can therefore observe foot signature, compare it with reference data provided in this thesis, and 

see on foot signature map to which cluster the subject better fits in. That provides him an easy and fast 

gait assessment tool to support his clinical diagnosis, for instance following a medication treatment or 

rehabilitation intervention.  
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Chapter 9  

Conclusion 

1 General results and main contributions 

The research presented in this thesis consists in a multidisciplinary work involving electronics, signal 

processing and drift modeling, biomechanics and movement science, human experimental protocols, data 

analysis and statistics, and finally machine learning. By considering existing technology of inertial 

sensors, this thesis focused on gait analysis. Based on embedded wireless and wearable units worn on the 

foot, we propose a practical tool which is easy to use in clinics. The general result of this dissertation can 

be summarized as: 

- The design, technical validation, and clinical application of algorithmic methods for measuring 

objectively and quantifying foot signature with wearable sensors. Foot signature was defined by 

analogy to hand-written signature by the 3D foot trajectory during one gait cycle. It was 

quantified and analyzed by extracting relevant gait parameters in subjects who suffer from 

various mobility diseases. 

The main contributions of this work can be summarized as: 

1. The estimation of 3D foot kinematics from foot-worn inertial sensors, and its technical validation 

against optical motion capture reference. The method is based on online calibration and 

alignment, detection of gait cycles and motionless periods, quaternion-based strap-down 

integration of inertial signal, and drift modeling. It provides automatic estimation of 3D foot 

orientation, velocities and trajectory patterns during unconstrained walking without the need for 

specific positioning of foot sensors. It was validated in terms of accuracy, precision, agreement 

and repeatability against reference system in children with cerebral palsy, people with 

Parkinson’s disease ON and OFF medication, elderly persons, and healthy control subjects. 
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2. The detection of main temporal events of gait using foot-worn inertial signals, and its validation 

against force measurements with pressure insoles. The method is based on the detection of 

various characteristics of inertial signals and their derivate, such as peaks and flat regions. Results 

shows the most precise and accurate characteristics for detecting gait events of heel-strike, toe-

strike, heel-off and toe-off, and provide objective quantification of subsequent gait phases, 

including swing, stance and inner-stance phases (load, foot-flat, push). It was validated during 

long-distance walking in control subjects and patients with osteoarthritis and ankle treatments. 

 

3. The extraction of common and original spatio-temporal parameters of gait from 3D foot 

kinematics estimated from foot-worn inertial sensors, its technical validation against optical 

motion capture, and its clinical validation against clinical scores and subjects’ status. The 

method is based on the fusion of temporal detection of gait events and the estimation of 3D foot 

kinematics, the modeling of sensor position on the foot, and the quantification of relevant metrics 

describing gait abnormalities. Spatio-temporal parameters provided include a precise and accurate 

estimation of common parameters such as stride velocity and stride length, with the advantage of 

being robust to turning condition or gait abnormality. Moreover, it provides new and original 

quantification of circumduction through parameters such as 3D path length and swing width, 

turning through turning angle, and clearance through parameters such as minimal and maximal 

toe and heel clearance. That allows estimating clinically relevant gait parameters and their inter-

cycle variability during walking tests such as “6 minutes walking test” or “timed up and go test”. 

It was successfully validated against reference and showed face validity against clinical diagnosis 

to compare children with cerebral palsy and people with Parkinson’s disease against age-matched 

control subjects, and to compare healthy adults and elderly persons. 

 

4. The implementation of instrumented prosthesis system and algorithm to extract gait features in 

real-time during amputee locomotion. The method is based on the fusion of force and inertial 

signals into a state-machine for walking phase detection and the real-time implementation of a 2D 

kinematic estimation algorithm. That provides a real-time estimation of various gait features such 

as vertical and frontal displacement or ankle torque during unconstrained locomotion of amputee 

subjects, and was successfully tested with a high robustness during activities including level 

walking, slope and stairs ascent and descent.  
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5. The definition of foot signature concept and its quantification using parameters obtained from 

foot-worn sensors, applied to the recognition of locomotion activity of amputee subjects. The 

method is based on both machine learning techniques and expert rule-based decision tree to 

classify activities from real-time extracted gait features obtained using instrumented prosthesis. 

The real-time expert classification provided is one of the first reported methods able to recognize 

locomotion activity after a single stride with performances up to 89.6% of correct classification. 

Furthermore, it presents the advantage of being adjustable and interpretable, contrary to “black 

box” systems such as neural networks. It could be further implemented into an active prosthetic 

device.  

 

6. The application of foot signature measurement and its quantification using parameters to provide 

reference gait data and discriminate various mobility diseases. The method is based on statistical 

comparison, analysis of distributions, and principal components analysis of gait parameters 

measured by foot-worn sensors on a population of more than 1800 subjects, including children 

with and without cerebral palsy, adults, elderly persons and people with Parkinson’s disease. The 

comparison of 1800 subjects with various mobility disease which is proposed is unique in the 

field,  and provides a strong insight and reference data for common and original gait parameters, 

their variability, as well as their inter-dependant relationship and association with speed. 

2 Improvement of algorithm performances 

The potential limitations and possible improvements of methods presented in this dissertation have been 

discussed in respective chapters. Nevertheless, some general recommendation for further improvement 

can be formulated. One of the critical point which was identified as having a direct impact on the 

performance is the inertial sensor calibration. Indeed, since foot kinematics estimation relies on the 

integration of both gyroscopes and accelerometers signals, it is prone to error due to small deviation of the 

gain and offset of those sensors. Indeed, those errors can be corrected with specific hypothesis, such as 

the offset being null during static position, or zero-velocity update, but still it remains impossible to 

correct all sources of error including electronic noise and non-linear effects. Solution could come from 

better drift models, or with new sensors with better signal-to-noise ratios. Another important source of 

errors in each validation phase is how the reference itself is used. In fact, comparing 3D orientation or 

displacement measured by optical motion capture and foot-worn sensors rely on the knowledge of the 

relative position and orientation of markers to sensor module. That is a source of overestimation of 

differences between the two systems since they do not measure exactly the motion of the same points.  
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3 Sensor development and use of other technologies 

Industry and manufacturing progress might continue reducing the size, weight and power consumption of 

MEMS sensors in the upcoming years, thus leading to miniaturized sensor units with equivalent, if not 

better, measurement specifications. That opens the doors to the integration of foot worn sensors into foot-

wear such as shoe or socks. In addition, the use of wireless communication technology could improve the 

practical usage of sensors by streaming directly the data measured on the patient to the doctor’s computer 

or hospital database. In fact with the automatic methods proposed in this thesis, data transfer remains the 

only step requiring manipulation in the process between the measurement on the subject level, and the 

outcome result at the clinician level. That raises the issue of data security though. 

This work has shown that we were able to provide a good assessment tool for gait analysis from foot-

worn inertial sensors. However, inertial sensors have limited performances for providing relative distances 

and orientations on a long-term basis due to drift, which justify the use of additional sensors on the shoe. 

Magnetic sensors have been extensively studied but suffer from being sensitive to environment, and 

strongly perturbed by any metallic material nearby, thus making impossible to apply them in daily 

activity or clinical environment. Yet, other technologies could be used such as Ultrasonic (US) and 

infrared (IR) telemetry. For example, we proposed recently, a novel method for ambulatory gait 

assessment using a micro-infrared camera based on Wiimote technology and IR LED-tracking, and its 

fusion with inertial sensor for estimating step parameters [1]. That study laid the first groundwork for 

ambulatory estimating relative step parameters during walking based on the fusion of portable IR-LED 

tracking with inertial sensors, and has a good opportunity for complementing inertial sensor technology in 

other applications for posture and gait research, since it could be adapted to other limbs. 

4 Extension to other types of human locomotion 

The present thesis focused on forward gait on level ground, turns, as well as incline and stair walking. 

Although being the most common and studied aspects of human locomotion, daily activity actually 

encapsulate other locomotion modalities such as running, side and backward walking. 

Backwards walking (BW) is more challenging than natural forward walking (FW). BW test may reveal 

balance disorders, due to diminished visual feedback and modified motor scheme. Past studies showed 

changes in temporal parameters between FW and BW [2], and investigated age-related decrease in spatial 

parameters [3]. However, they investigated only a small number of subjects and used laboratory devices. 

We proposed recently, the use of foot-worn sensors to provide spatio-temporal parameters during a 5m 

BW test by adapting the methods presented in the present thesis [4]. In particular, changes between FW 
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and BW (i.e. the cost of BW) discriminated better young and elderly subjects groups than single FW test. 

Further studies with a higher number of subjects are needed to confirm these interesting findings.  

The extension of the present method to running gait has been also investigated in the study of people with 

hip resurfacing [5]. In fact in patients with hip resurfacing, whether or not regular sporting activity should 

be limited or even prohibited because of the risk of implant loosening has been discussed early in the 80s 

by [6] and is still discussed nowadays [7]. Being independent of type of motion, the strapdown integration 

algorithm was directly adapted to running. However, temporal detection of gait event was redesign since 

foot-strikes during running were different than during walking. Particularly, whether an acceptable 

motionless condition during running stance is met for updating drift model should be further investigated 

to validate the method and potentially identify pathologic and healthy running patterns in the future. 

5 Clinical perspectives 

Some clinical application of foot-worn sensors and dedicated algorithm for foot signature estimation and 

quantification have been already presented in this thesis, such as the characterization of gait parameters in 

elderly and the relationship with walking speed. Yet, several other clinical applications of the present 

work can be foreseen, as well as the application of those methods to other populations with gait 

abnormalities.  

First, the use of real-time walking detection can be used as a tool to trigger active rehabilitation device or 

real-time feedback systems. In fact, a simplified version of the presented algorithm for real-time walking 

phase detection only based on a single gyroscope has been successfully used to trigger actuators of a shoe 

providing chaotic perturbation to elderly subjects [8]. The method was successfully used in more than 90 

elderly subjects trained during 4 weeks (twice a week) by this instrumented shoe. Preliminary results 

show some decline in fearful subjects with the instrumented shoe while confident subjects improve. 

While results about the specific effect of the shoe should be interpreted cautiously, it is likely that this 

training shoe should target specific population of elderly. 

Second, although the interplay between new parameters such as swing width and foot clearance and 

classic parameters such as gait speed has been investigated in this study, several major gaps remain in our 

knowledge about the clinical significance of those parameters. For instance, the association between foot 

clearance while walking over ground and prospective falls has not yet been evaluated in a large sample of 

older people. Similarly, the relationship between foot clearance and fear of falling, a prevalent factor 

associated with gait performance and falls in older people, has never been evaluated previously. Finally, 

we have found that the effect of dual tasking didn’t induce significant changes of foot clearance in elderly 
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subjects. Nevertheless, investigating more deeply the extent to which dual-tasking conditions could affect 

foot clearance in certain subgroup such as fallers will certainly extend our knowledge about mechanisms 

linking dual-tasking and an increased risk of falling in older people. 

Finally, the system and methods presented in this thesis could be further used as a practical tool for 

routine clinical gait assessment and have a strong impact by providing a simple yet powerful tool for 

objective and quantitative gait assessment. For instance, foot signature parameters obtained in CP child 

can provide information about the effect of Botox injection interventions. Moreover, clinician could be 

interested in the evolution of foot signature and related parameters pre/post orthopedic surgery or any 

rehabilitation intervention. Since our methods have been validated and provide outcome measures 

automatically, the next step toward a large scale clinical application of this research is a commercially 

available product with data management solution and clear user interface. 

  



149 
 

6 References 
[1] B. Mariani, G. Lisco, and K. Aminian, “New Gait Analysis Method Based On Wiimote Technology And 

Fusion With Inertial Sensors,” in Proceedings of the 1st Joint World Congress of ISPGR & Gait and Mental 
Function, 2012. 

[2] J. Vilensky and E. Gankiewicz, “A kinematic comparison of backward and forward walking in humans,” 
Journal of Human Movement Studies, 1987. 

[3] Y. Laufer, “Effect of age on characteristics of forward and backward gait at preferred and accelerated 
walking speed.,” The journals of gerontology. Series A, Biological sciences and medical sciences, vol. 60, 
no. 5, pp. 627-32, May 2005. 

[4] B. Mariani, A. Garrido, and K. Aminian, “Backward vs. forward walking in young and elderly subjects 
measured by foot-worn inertial sensors,” in Proceedings of the XX Conference of the International Society 
for Posture & Gait Research, 2011. 

[5] B. Mariani, C. Moulin, G. Gremion, H. Huber, and K. Aminian, “Analysis Of Running Using Shoe Sensors 
And Emg, Application To The Study Of People After Hip Resurfacing,” in Proceedings of the 1st Joint 
World Congress of ISPGR & Gait and Mental Function, 2012. 

[6] L. Dubs, N. Gschwend, and U. Munzinger, “Sport after total hip arthroplasty.,” Archives of orthopaedic and 
traumatic surgery. Archiv für orthopädische und Unfall-Chirurgie, vol. 101, no. 3, pp. 161-9, Jan. 1983. 

[7] N. Fouilleron, G. Wavreille, N. Endjah, and J. Girard, “Running activity after hip resurfacing arthroplasty: a 
prospective study.,” The American journal of sports medicine, vol. 40, no. 4, pp. 889-94, Apr. 2012. 

[8] K. Aminian et al., “Foot worn inertial sensors for gait assessment and rehabilitation based on motorized 
shoes,” in Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of 
the IEEE, 2011, pp. 5820-5823.  

 

  



150 
 

 



 

 

Annexes 

Figure A.1 - Block Diagram of system and m

151 

methods for 3D gait assessment using foot-worn sensors. Pa

submitted by EPFL, 2012 

 
atent WO2012007855 



 

Figure A.2 – Block Diagram of system and

prosthesis. E

152 

 

 

 

d methods for real-time recognition of locomotion activity u

Enveloppe Soleau submitted by PROTEOR, 2011. 

 
using instrumented 



153 
 

 

Figure A.3 SIMULINK model for real-time features extraction and classification of activity based on instrumented 

prosthesis 
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Figure A.4 – Real-time features extraction SIMULINK block from model of fig. A.3 
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Figure A.5 – Real-time 2D kinematics estimation SIMULINK block from model of fig. A.3 
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Figure A.6 - Orientation, Accelerations, Speeds and Displacement assessed by kinematic estimation algorithm based on 

inertial sensors for the different activities including level walking (a), slope ascent (b), solpe descent (c), stairs ascent (d) 

and stairs descent (e) 
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TABLE A.I - STATISTICAL COMPARISON OF FEATURES EXTRACTED ON PITCH ANGULAR VELOCITY (G), PITCH ANGLE (P), 

FRONTAL ACCELERATION (AF), VERTICAL ACCELERATION (AV), FRONTAL SPEED (SF), VERTICAL SPEED (SV), FRONTAL 

DISPLACEMENT (DF), VERTICAL DISPLACEMENT (DV), VERTICAL FORCE (VF), SAGITAL TORQUE (ST), FROM EACH ACTIVITY. 

event Heel-off 
Signal G P AF AV SF SV DF DV VF ST 

Median 

A
ct

iv
ity

 2 -20.93 2.57 0.01 -0.03 0.00 0.00 0.00 0.00 2.43 2.19 
3 -20.89 5.99 0.00 0.00 0.00 0.00 0.00 0.00 2.48 2.39 
4 -20.72 -2.44 0.00 -0.02 0.00 0.00 0.00 0.00 2.35 2.03 
5 -20.82 3.51 0.01 0.00 0.00 0.00 0.00 0.00 2.49 2.17 
6 -20.69 1.32 0.00 -0.02 0.00 0.00 0.00 0.00 2.26 2.01 

IQR 

A
ct

iv
ity

 2 1.38 3.40 0.02 0.03 0.00 0.00 0.00 0.00 0.18 0.23 
3 1.26 4.67 0.02 0.02 0.00 0.00 0.00 0.00 0.20 0.27 
4 1.01 2.84 0.01 0.02 0.00 0.00 0.00 0.00 0.18 0.24 
5 1.63 4.38 0.03 0.03 0.00 0.00 0.00 0.00 0.31 0.31 
6 0.99 2.39 0.02 0.02 0.00 0.00 0.00 0.00 0.27 0.22 

p-values 

C
om

pa
re

d 
A

ct
iv

iti
es

 

2 vs 3 0.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 vs 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 vs 5 0.08 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.21 0.13 
2 vs 6 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3 vs 4 0.02 0.00 0.19 0.00 0.19 0.00 0.19 0.00 0.00 0.00 
3 vs 5 0.18 0.00 0.26 0.01 0.26 0.01 0.26 0.01 0.25 0.00 
3 vs 6 0.06 0.00 0.21 0.00 0.21 0.00 0.21 0.00 0.00 0.00 
4 vs 5 0.96 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 
4 vs 6 0.77 0.00 0.58 0.89 0.58 0.89 0.58 0.89 0.00 0.03 
5 vs 6 0.96 0.00 0.06 0.00 0.06 0.00 0.06 0.00 0.00 0.00 

event Terminal Contact 
Signal G P AF AV SF SV DF DV VF ST 

Median 

A
ct

iv
ity

 2 -301.85 -16.80 0.56 0.62 0.34 0.25 0.02 0.01 1.53 1.85 
3 -264.57 -13.84 0.40 0.56 0.26 0.29 0.01 0.01 1.52 1.83 
4 -262.20 -21.58 0.50 0.48 0.33 0.17 0.01 0.00 1.52 1.83 
5 -127.52 -2.08 0.25 0.35 0.09 0.07 0.00 0.00 1.52 1.80 
6 -186.52 -21.96 0.30 0.17 0.12 0.06 -0.01 0.00 1.52 1.83 

IQR 

A
ct

iv
ity

 2 60.19 6.86 0.25 0.29 0.13 0.11 0.01 0.00 0.03 0.20 
3 55.52 6.03 0.22 0.27 0.13 0.11 0.01 0.00 0.02 0.21 
4 74.61 9.06 0.27 0.27 0.18 0.15 0.01 0.01 0.02 0.26 
5 62.67 7.21 0.24 0.32 0.14 0.09 0.01 0.00 0.03 0.16 
6 42.81 6.01 0.29 0.30 0.22 0.11 0.04 0.01 0.02 0.11 

p-values 

C
om

pa
re

d 
A

ct
iv

iti
es

 

2 vs 3 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.08 0.39 
2 vs 4 0.00 0.00 0.01 0.00 0.10 0.00 0.00 0.00 0.01 0.36 
2 vs 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.61 0.00 
2 vs 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.01 
3 vs 4 0.28 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.91 0.08 
3 vs 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.43 0.01 
3 vs 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.64 0.06 
4 vs 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.26 
4 vs 6 0.00 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.17 
5 vs 6 0.00 0.00 0.07 0.00 1.00 0.05 0.00 0.00 0.75 0.63 
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event MidSwing 
Signal G P AF AV SF SV DF DV VF ST 

Median 

A
ct

iv
ity

 2 226.83 -7.13 -0.31 0.45 2.94 0.08 0.71 0.11 1.14 1.49 
3 165.14 -7.94 -0.26 0.11 2.34 0.21 0.59 0.18 1.13 1.49 
4 220.52 -10.00 -0.24 0.46 2.77 -0.15 0.68 0.04 1.14 1.48 
5 150.20 -16.99 -0.20 -0.44 1.51 -0.12 0.28 0.38 1.17 1.52 
6 149.44 -17.09 0.12 -0.15 1.22 -0.36 0.18 -0.01 1.11 1.51 

IQR 

A
ct

iv
ity

 2 42.57 9.67 0.40 0.25 0.54 0.38 0.18 0.07 0.17 0.06 
3 54.12 11.51 0.30 0.26 0.80 0.31 0.34 0.09 0.10 0.13 
4 37.12 8.22 0.35 0.29 0.67 0.27 0.22 0.06 0.26 0.08 
5 52.52 9.36 0.22 0.39 0.82 0.45 0.28 0.07 0.09 0.09 
6 93.67 19.98 0.60 0.56 0.68 0.53 0.27 0.05 0.09 0.07 

p-values 

C
om

pa
re

d 
A

ct
iv

iti
es

 

2 vs 3 0.00 0.07 0.17 0.00 0.00 0.00 0.00 0.00 0.98 0.00 
2 vs 4 0.00 0.00 0.00 0.62 0.00 0.00 0.00 0.00 0.09 0.06 
2 vs 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 vs 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.87 0.01 
3 vs 4 0.00 0.07 0.19 0.00 0.00 0.00 0.09 0.00 0.20 0.00 
3 vs 5 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.41 
3 vs 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.02 
4 vs 5 0.00 0.00 0.13 0.00 0.00 0.45 0.00 0.00 0.08 0.00 
4 vs 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49 0.14 
5 vs 6 0.16 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

 
event Initial Contact 
Signal G P AF AV SF SV DF DV VF ST 

Median 

A
ct

iv
ity

 2 -203.49 12.21 -0.81 0.51 0.01 -0.52 1.13 0.13 1.57 1.42 
3 -17.53 10.05 -0.26 0.01 -0.01 -0.42 0.95 0.20 1.57 1.64 
4 -226.87 9.38 -0.51 0.17 0.22 -0.60 1.12 0.02 1.57 1.41 
5 34.21 0.42 -0.21 0.01 -0.19 -0.39 0.43 0.31 1.58 1.67 
6 -40.19 5.83 0.07 0.05 -0.61 -0.70 0.37 -0.29 1.50 1.54 

IQR 

A
ct

iv
ity

 2 140.45 7.02 1.19 1.04 0.57 0.33 0.19 0.12 0.04 0.05 
3 160.32 8.35 1.27 0.97 0.55 0.25 0.37 0.12 0.03 0.34 
4 148.08 5.72 1.03 0.88 0.50 0.35 0.31 0.08 0.04 0.07 
5 96.15 6.97 1.14 0.65 0.94 0.31 0.44 0.08 0.04 0.20 
6 65.42 4.84 1.37 1.15 0.89 0.36 0.44 0.15 0.16 0.12 

p-values 

C
om

pa
re

d 
A

ct
iv

iti
es

 

2 vs 3 0.00 0.00 0.00 0.00 0.89 0.00 0.00 0.00 0.41 0.00 
2 vs 4 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.01 0.78 
2 vs 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 
2 vs 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3 vs 4 0.00 0.33 0.06 0.07 0.00 0.00 0.00 0.00 0.45 0.00 
3 vs 5 0.00 0.00 0.82 0.55 0.00 0.95 0.00 0.00 0.55 0.21 
3 vs 6 0.03 0.00 0.00 0.71 0.00 0.00 0.00 0.00 0.00 0.00 
4 vs 5 0.00 0.00 0.06 0.19 0.00 0.00 0.00 0.00 1.00 0.00 
4 vs 6 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 
5 vs 6 0.00 0.00 0.00 0.76 0.00 0.00 0.01 0.00 0.00 0.00 
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event MidStance 
Signal G P AF AV SF SV DF DV VF ST DFd DVd 

Median 

A
ct

iv
ity

 2 -8.69 5.13 -0.19 0.14 -0.40 -0.10 1.11 0.11 2.17 1.41 1.31 0.15 
3 -15.05 7.82 -0.12 0.05 -0.10 -0.31 0.94 0.18 2.13 1.77 0.97 0.31 
4 -9.84 0.43 -0.16 0.16 -0.20 -0.11 1.11 0.00 2.24 1.38 1.21 0.05 
5 -2.57 2.38 -0.01 0.02 -0.24 -0.37 0.43 0.28 2.06 1.80 0.50 0.45 
6 -9.22 1.54 -0.18 0.09 -0.56 -0.60 0.33 -0.35 2.26 1.62 0.67 0.08 

IQR 

A
ct

iv
ity

 2 13.97 5.19 0.22 0.19 0.67 0.24 0.22 0.12 0.31 0.10 0.23 0.15 
3 8.84 6.73 0.19 0.07 0.67 0.32 0.39 0.11 0.45 0.47 0.43 0.23 
4 13.78 4.44 0.22 0.21 0.59 0.26 0.35 0.09 0.33 0.10 0.27 0.13 
5 21.92 6.42 0.30 0.06 0.86 0.36 0.52 0.08 0.40 0.24 0.28 0.11 
6 14.13 4.45 0.17 0.11 0.82 0.43 0.49 0.18 0.38 0.17 0.21 0.17 

p-values 

C
om

pa
re

d 
A

ct
iv

iti
es

 

2 vs 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 
2 vs 4 0.38 0.00 0.03 0.24 0.00 0.02 0.98 0.00 0.00 0.00 0.00 0.00 
2 vs 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2 vs 6 0.59 0.00 0.90 0.00 0.01 0.00 0.00 0.00 0.08 0.00 0.00 0.00 
3 vs 4 0.00 0.00 0.01 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3 vs 5 0.00 0.00 0.06 0.00 0.19 0.01 0.00 0.00 0.13 0.88 0.00 0.00 
3 vs 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 
4 vs 5 0.00 0.00 0.00 0.00 0.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
4 vs 6 0.31 0.00 0.29 0.00 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.35 
5 vs 6 0.00 0.20 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

 

  



162 
 

 

 

Figure A.7 - Optimal Tree, subject 6 

 

Figure A.8 - Optimal Tree, subject 7 
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Figure A.9 - Optimal tree, subject 8 

 

Figure A.10 - Optimal tree, subject 10 
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Figure A.11 - Correlation coefficients, Linear and cubic regressions of gait parameters, including gait cycle time (a), total 

Double support (b), Foot pitch angle at Heel-strike (c), foot-flat ratio (d), and stride length (e), with walking speed. 
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