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ABSTRACT

One of the basic characteristics of every living system is the ability to respond to
extracellular signals. This is carried out through a limited number of protein-based signaling
networks, whose function is not based only on simple transmission of the received signals,
but incorporates the processing, encoding and integration of both external and internal
signals. The results than lead to different changes in gene expression and regulate cell
growth, mitogenesis, differentiation, embryo development, and stress responses in
mammalian cells, whereas the malfunction is in correlation with diseases such as cancer,
asthma and diabetes.

In signaling networks, the basic units are covalent modification cycles, which comprise the
activation and deactivation of proteins by other proteins. Protein modification in cell
signaling — typically a phosphorylation and dephosphorylation — is a general mechanism
responsible for the transfer of a wide variety of chemical signals in biological systems.
Although the concept does not seem to be complex from a biochemical point of view, these
simple systems can nevertheless provide a large diapason of dynamical responses and are
therefore ubiquitous building blocks of signaling pathways. These cycles are often linked,
forming multiple layers of cycles, the so-called cascades.

Commonly observed instance of signal transduction through a series of protein kinase
reactions are the kinases of the mitogen-activated protein kinase (MAPK) cascades. These
pathways, which are found in almost all eukaryotes, play an important role in controlling
different cellular processes, including fundamental functions. The activation of the cellular
response by MAPK pathways typically involves at least three phosphorylation steps.

In order to better understand the nature of this regulation and to gain greater insight into
the mechanisms that determine the function of cells, signaling modules have been intensively
studied using mathematical modeling and computational simulations, through the fast
growing field of systems biology and its disciplines. The primary aim is to faithfully describe
the system and to be able to predict the system behavior. Synergistically with experimental
analysis, the reported observations have allowed one to identify properties of these
pathways, such as fast signal propagation, large amplification, short signal duration and noise
resistance.

Since biochemical parameters in signaling pathways are not easily accessible experimentally,
it is necessary to use advanced mathematical tools for their correct estimation. Using the
paradigm of man-made optimal signal transduction systems, we chose to take the research
path for discovering optimal design of cellular signaling modules.

To approach the main thesis objective, we first identified the key system parameters
through global sensitivity analysis. Comparative analysis of differences and similarities within
different system architectures revealed some insights for initial parameter classification and
starting point for optimal system design.
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In order to be able to interpret a broader range of phenotypes, we take into account both
steady-state and dynamic properties simultaneously. Furthermore, we investigated the
trade-offs between optimal characteristics. As a result, we found the biochemical and
biophysical parameters that determine these trade-offs and we analyzed if there exist
conditions under which we can simultaneously achieve optimal steady-state and dynamic
performance. We first analyze what are the design principles that lead the system to have
the minimal signaling times, subject to a certain level of amplification gain. In this setup, we
bring out our main research question: are there any trade-offs and interplay between
different steady-state and dynamic properties? Furthermore, we include the property of
ultrasensitivity and eventually solve multi-objective optimization problems. A particularly
insightful finding of this work is that, upon judicious selection of the kinetic parameters, a
simple covalent modification cycle is able to meet multiple objectives simultaneously. In
particular, this analysis may help explain why signaling cycles are so ubiquitous in cell
signaling. The enhancement of ultrasensitivity and faster signal propagation in the multicyclic
systems clearly show the advantages of the natural choice of designing signaling pathways in
the form of signaling cascades.

The thesis concludes with the potential research steps that could be taken along the same
path, and that would gather more quantitative knowledge about signaling pathways.

Keywords: Systems Biology, signal transduction, mathematical modeling, parametric
analysis, optimization, sensitivity analysis, stochastic simulations.
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RESUME

Une des caractéristiques de base de tout systéme vivant, c'est la capacité a réagir aux
signaux extracellulaires. Ceci est réalisé par l'intermédiaire d’'un nombre limité de protéines
a la base de réseaux de signaux, dont la fonction ne se limite pas a la simple transmission des
signaux regus, mais incorpore aussi le traitement, le codage et l'intégration des signax
externes et des signaux internes. Ceci engendre différents changements dans I'expression
des geénes, et permet la régulation de la croissance cellulaire, la mitogenése, la
différenciation, le développement embryonnaire, ainsi que les réponses au stress dans les
cellules de mammiferes, alors que le dysfonctionnement est en corrélation avec les maladies,
comme le cancer, I'asthme et le diabéte.

Dans les réseaux de signalisation, les unités de base sont les cycles de modification
covalente, qui comprennent l'activation et la désactivation des protéines par d'autres
protéines. La modification des protéines dans la signalisation cellulaire — typiquement une
phosphorylation et déphosphorylation — est un mécanisme général responsable du transfert
d'une grande variété de signaux chimiques dans les systemes biologiques. Bien que le
concept ne semble pas étre complexe d'un point de vue biochimique, ces systéemes simples
peuvent néanmoins fournir une large gamme de réponses dynamiques et forment donc des
blocs de construction importants pour les voies de signalisation. Ces cycles sont souvent
liés, formant des couches de cycles multiples, appelées « cascades ».

Mitogen-activated protein kinase (MAPK) sont des instances communes observées dans la
transduction des signaux a travers une série de réactions protéine-kinases. Ces voies se
retrouvent dans presque tous les eucaryotes et jouent un role important dans le controle
de différents processus cellulaires, y compris les fonctions fondamentales. En général,
l'activation de la réponse cellulaire par la voie des MAPK implique au moins trois étapes de
phosphorylation.

Afin de mieux comprendre la nature de cette régulation, ainsi que les mécanismes
déterminant la fonction des cellules, des modules de signalisation ont été intensivement
étudiés en se servant de modéles mathématique et de simulations informatiques, dans le
domaine de la biologie des systemes et de ses disciplines. L'objectif principal est de fournir
une description authentique du systéme dans la mesure du possible et d'étre capable de
prédire son comportement. En accord avec les analyses expérimentales, les observations
ont permis d’identifier les propriétés de les voies du systéme, telles la propagation rapide du
signal, de fortes amplifications, un temps de signal court, et une résistance au bruit.

Etant donné que les parametres biochimiques dans les voies de signalisation ne sont pas
facilement accessibles expérimentalement, il est nécessaire d'utiliser des outils avancés de
mathématiques pour une estimation correcte. Nous utilisons le paradigme de I'optimisation
de systémes artificiels pour la transduction du signal pour découvrir les conditions optimales
de modules de signaux cellulaire.

Pour atteindre I'objectif principal de cette thése, nous avons d'abord identifié les paramétres



clés du systeme a travers des analyses de sensibilité globale. L'analyse comparative des
différences et des similitudes au sein des architectures de différents systéemes, a fourni les
points de départs pour la classification des paramétres et la conception optimale du
systéme.

Afin de pouvoir interpréter un large éventail de phénotypes, nous considérons a la fois les
propriétés statiques et dynamiques. En outre, nous avons étudié des compromis entre les
différentes caractéristiques optimales. Ainsi, nous avons trouvé les parameétres biochimiques
et biophysiques qui permettent d’obtenir ces compris et analysons s‘il existaient des
conditions dans lesquelles nous pouvons simultanément réaliser une performance optimale,
en état stationnaire et en régime dynamique. Nous analysons les principes de conception qui
conduisent le systéme a avoir un temps minimal de signalisation, et également un certain
niveau de gain d'amplification. Dans cette configuration, nous abordons problématique de
recherche principale: y a t-il une relation entre I'état d'équilibre et des propriétés
dynamiques? En outre, nous tenons en compte les propriétés d’ultra-sensibilité déja
analysées et résolvons les problémes d'optimisation multi-objectifs. Grace a ce travail, nous
avons pu constater que lors de la sélection judicieuse des paramétres cinétiques, un simple
cycle de modification covalente est en mesure de répondre a plusieurs objectifs
simultanément. En particulier, cette analyse pourrait aider a expliquer pourquoi les cycles de
signalisation sont si omniprésents dans la signalisation cellulaire. L'amélioration de l'ultra-
sensibilité et la propagation rapide du signal dans les systemes multi-cycliques montre
clairement les avantages du choix naturel de la conception des voies de signalisation en
cascade.

La thése se conclue par une discussion sur les prochaines étapes potentielles de recherche,
et rassemble des connaissances plus quantitatives sur les voies de signalisation.

Mots-clés: biologie des systémes, la transduction du signal, modélisation mathématique,
analyse paramétrique, optimisation, analyse de sensibilité, simulations stochastiques.
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Chapter |

Background and Scope

I.I Systems theory + Biology = Systems Biology

Whether in prokaryotic or multicellular arrangement, the cell has been the subject of
intense investigation and prolific scientific undertaking. While imaging techniques continue
to be developed for scrutinizing cellular mechanisms at deeper levels both in vivo and in vitro,
computer simulations have summoned forth a new tool that has allowed for the
interrogation of the cell's inner-workings.

Despite its infancy to be widely noted by the biological community, simulation begins
to find its place among the leading methods of inquiry. While results from experiments
remain the empirical standard, there seems to be an increase in the number of research
groups using simulation to formulate hypotheses and make predictions about cellular
mechanisms. Putting aside the rising cost of wet-lab materials and the comparatively
inexpensive cost of software and hardware, one would expect to find more and more labs
moving in this direction since computer simulations are an excellent way to gain quantitative
insight into rather complicated phenomena.

Emerging from this collaboration between experiment and the theory is a field
generally known as systems biology, which has already made substantial breakthroughs in
understanding some of the major problems in biology and chemistry.

Field of systems biology aims at investigating the behavior and relationships of all
elements in a particular biological system (l). The central task is to comprehensively gather
information from each of the distinct levels of organization for individual biological systems
and to integrate these data to generate predictive mathematical models of the system.
System level understanding of biological system can be derived from insights into system
structure, system dynamics and control and design methods (2). Progress in any of these
components requires collaborative efforts from computational sciences, genomics and
measurement technologies, and integration of discoveries with collected knowledge.

Some of the questions that fall into the scope of systems biology are:
* How does life behave as a system?
* How does each cellular constituent act within its environment!?
* How do cellular constituents interact with each other?
* Do cellular constituents exhibit any particular features?
* Is there any predictability of the behavior of different cellular constituents?



1.1.1 Computational systems biology

One sub-discipline of systems biology is computational systems biology. It is focused on the
development of efficient algorithms, customized data structures, visualization and
communication tools and much more, all with the goal of improved use of computer
simulations of biological systems (3). Improvements in both algorithm efficiency and
computer power are likely to increase our capabilities in tackling massive computation tasks
in the future. The daunting task for analysis is the increasing complexity of models
approaching complexity of the biological systems, which these models are used to
approximate.

Computational systems biology has two distinct directions: knowledge discovery,
which extracts the patterns from huge quantities of experimental data, forming hypotheses
as a result; and simulation-based analysis, which tests hypotheses with in silico experiments,
providing predictions to be tested by in vitro and in vivo studies (4).

In order to engage systems theory and biology in a long-lasting relation, both involved
sides need to be ready to compromise and accept the advantages of the partnership.
Systems specialists need to realize that biology is not just another application area of
standard systems theory and that the transfer of the concepts from physical to living
systems is not so straightforward (5). On the other hand, the biologist should gain more
confidence and accept the view that theoretical models and computer simulations can be
useful to address the dynamic behavior of complex regulatory networks in biological
systems (6). Only this way the overall objective of collecting the knowledge in a symbiotic
way and closing the loop of a collaborative efforts as a foundation of systems biology
approach can be achieved.

The systems biology approach, with its combination of computational, experimental
and observational enquiry, is also highly relevant to drug discovery and the optimization of
medical treatment regimes for individual patients (4). Indeed, a more widespread
collaboration between mathematicians, computer scientists, physicians and experimental
scientists is constantly improving drug discovery (7). Furthermore, this will allow
pharmaceutical companies to both increase their lead compound and clinical candidate
portfolios and satisfy market demands for continued innovation, leading to revenue growth
(8). Fig. 1.1 illustrates the simplified cycle of systems biology steps in drug discovery.

Therefore, it is easy to understand why Systems Biology has become such an
intensive field of research, enabling to understand the key functions of gene transcription,
metabolic pathways and signal transduction. The latter will be the focus of this thesis.

1.1.2 Cellular signaling and its place in systems biology

Cells, like all living organisms, must be able to receive, transmit, and emit information
through signals. Whether it is an isolated prokaryote or a part of a tissue, all cells must be
able to accept signals from their external environment, process this signal and make
decisions based on it. Over the years, biologists have shown that these processing
mechanisms oftentimes take place in the form of signaling pathways (9). The activity of these
protein-based networks further influence gene expression, regulate cell growth,
mitogenesis, differentiation, embryo development, and stress responses in mammalian cells,
whereas the malfunction is in correlation with diseases, such as cancer, asthma
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Figure 1.1: The role of systems biology in drug discovery. The application of systems
biology in drug discovery and the design of multiple drug therapies and therapeutic
gene circuits is believed to be the future of the medicine (4). Imposing the system-
oriented view, this iterative cycle of hypothesis and simulation-driven processes is
changing the way treatments are conducted.

and diabetes (10).

Within the cohort of subfields that now comprise systems biology, one finds the
subject of cellular signaling. A stand-alone subject within cellular biology, signaling is an
excellent candidate for computational analysis, for, at its core, cell signaling deals with the
cellular mechanisms of information processing. The latter has been the privileged study of
electrical engineers and computer scientists for nearly half of a century, and all the
techniques and methods accumulated under those banners are set to make — and to a large
extent already have made — an enormous contribution to our knowledge about the cell
functioning.

Cellular signal processing generates a vast amount of interesting properties and it
can be highly complex. Until recently, cellular signaling was only analyzed through linear
pathways, connecting the cellular periphery to the metabolic and genetic machinery.
Nevertheless, some of these pathways have been shown to interact with each other. This
phenomenon is called signal crosstalking. As increasingly large numbers of signaling
components are being identified, it has become clear that these pathways are not isolated
and crosstalking is nothing more but a synonym for signaling network (11). Modeling these
systems is not always straightforward; there is a high level of uncertainty, which cannot be
neglected when building assumptions for a mathematical model.

From a system point of view, one can envision cell signaling as simplified input/output
constellation (Fig. 1.2). Different external stimuli, such as signals from other cells, different
hormones, survival factors, growth factors or cytokines, are sensed by receptors that are
situated on cell surface. The complex network of signaling pathways do not only transmit
the received signals, but process, encode and integrate both external and internal signals.
Depending on their specificity, the output signals affect different cellular processes. The
three elements receptors, signaling pathways and gene transcription are described
subsequently.
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Figure 1.2: Simplified input/output paradigm applied on signal transduction. Activation
of a signaling pathway usually involves binding of a ligand — hormones, mitogens,
growth factors or neutrotransmitters — to its cognate receptor, followed by
phosphorylation or dephosphorylation of a target protein on tyrosine, serine or
threonine residues by the appropriate downstream protein kinases or phosphatases.
Modules of protein kinases further control cellular processes, such as gene expression,
cell growth, mitogenesis, differentiation, embryo development, and stress responses.

Receptors. The receptors are the entry points of the signal to the cell. There are several
families of receptors, each triggering different functions (12):

* lon channels are transmembrane proteins that enable small molecules, usually ions, to
cross the membrane. Their main function is to regulate the electric potential across the
membrane, which is used to carry fast information mainly in neurons.

* G-protein coupled receptors (GPCR) are coupled with G-proteins, as their name
indicates. The G-protein is activated with the binding of a ligand to the GPCR and can in
turn activate or inhibit an intracellular enzyme.

» Receptors tyrosine kinases (RTK) are activated by cytokines, interferons and human
growth factors. They lack intrinsic activity, but the ligand binding stimulates the formation of
a dimeric receptor, which can then activate several protein kinases.

* Receptors with intrinsic catalytic activity are transmembrane proteins, which gain
intracellular catalytic properties upon a binding of a ligand. They can act as phosphatase,
kinase, or convert GTP to ¢cGMP. They are common receptors for growth factors and
insulin.

Intracellular signaling pathways. The internal signal carries the information to the
genes. It can be described as a huge network of different pathways. A pathway can be
activated by different receptors and the same pathway can activate different functions.
There are large numbers of pathways and a selected set of them is presented here:

» The Akt signaling pathway can be activated by multiple receptors. The Akt is also called
protein kinase B, which can bind to phospholipids, enabling anchoring to the cell membrane.
The complex then triggers the phosphorylation of many downstream kinases. The Akt
pathway is involved in processes regulating the glucose metabolism, growth and apoptosis. It
has become an important target for the treatment of cancer, diabetes, stroke and
neurodegenerative disease (13, 14).

* The NF-kB signaling pathway plays a key role in regulating the immune response to
infection. It is composed of NF-kB| proteins and, when the cell is not stimulated, they




remain inhibited by the protein IkB. The signal can be triggered from many receptors,
usually by cytokines and growth factors. The receptor activates and IKK protein, which is an
IxB kinase. The phosphorylation of the IkB releases the NF-kB from its inhibited state and
enters the nucleus where it promotes the expression of specific genes. This pathway is
involved in adaptive immunity, inflammations, stresses and B cell development (15, 16).

* The Jak/Stat signaling pathway is an important part of the cytokine signaling, but many
other molecules can trigger it, as well. Like the NF-kB signaling pathway, it is also an
important signaling pathway of the immune system. Jaks (just another kinase or Janus kinase)
are attached to the membrane receptors and can phosphorylate tyrosines. The binding of
ligand provokes the dimerization of the receptor and the activation of Jak proteins. These
latter phosphorylate themselves and the receptor, creating docking sites for Stats proteins,
which will be also phosphorylated by Jak proteins. Stats then dimerize and migrate to the
nucleus, regulating the gene expression (17, 18).

* MAPK signaling pathway is a highly studied and very important pathway in most cells. The
mitogen-activated protein kinase (MAPK) pathway, also known as the MAPK protein
cascade since the pathway looks like a cascade in which key enzymes flow down the
waterfall to yield a final output quantity. Alongside a whole host of other very significant
pathways, MAPK has been found to regulate cell death (also known as cell apoptosis), cell
differentiation, and cell division. All three of these cellular processes are crucial to the
development of cancers, which explains why the MAPK cascade has found itself at the cross-
hairs of nearly every drug company that is interested in cancer medication (19, 20). The
focus of this thesis will be wrapped around investigation of design principles in prototypical
MAPK pathways and its constitutive elements. More details about these pathways will be
given in subsequent chapters.

Gene transcription. The ability to adapt to environmental constrains is a matter of
survival and the expression of genes has to be adjustable. The nucleus is, therefore, the
destination of most of the signal transduction pathways. The regulation of genes is a
complex field and possesses a large variety of mechanisms. The signal transduction is mainly
controlling the expression of the genes at the initiation step and it happens in different ways.
For example, to replace the initiation complex by the elongation complex, covalent
modification, such as phosphorylation, are needed. This is often performed by a kinase,
which is activated by signal transduction. Regulatory proteins described for the initiation
phase are sometimes called transcription factors. They can bind to specific sequences of
DNA, and promote or enhance the transcription of a particular gene, and they are often the
downstream element of a signaling pathway.

1.2 Parameter estimation, optimization and research motivation

“If one way be better than another, that you may be sure is nature’s way.”
Aristotle

Systems biology and related disciplines opened a whole new avenue of possibilities for using
different mathematical tools in order to facilitate further understanding of cellular processes
and drug development. Since Systems Biology as a field was born, lots of attention was
placed on simulating the results of experimental measurements or output variables for a



given system with some given set of parameters. However, the development of the systems
biology predictive models requires the information about real kinetic parameters and
species that exists in signaling pathways. Unfortunately, it is very difficult or sometimes even
impossible to gather information about values of kinetic parameters or concentration
profiles of species in an experimental setting. Furthermore, some of the mentioned entities
can be prone to large variations, depending on how the experimental setting was
performed. Therefore, there emerges a need of utilization of powerful mathematical
methods for successful parameter estimation. Up to date, little effort has been devoted in
this direction.

A common routine applied in systems biology consists in using available experimental
data (so called “dose-time matrix” data), in order to calibrate mathematical model so that it
mimics these data in the best possible way. This parameter identification task is often
formulated as optimization problem with the objective of minimizing the difference between
predicted and experimental values. To compare model results with experimental data, one
first has to simulate the mathematical model to produce these results — the forward
problem; and then to estimate the parameters — the inverse problem (21). Unfortunately,
there are a number of difficulties involved, mostly arising from the fact that models are quite
complex. Thus, there exists a need for superior time integrator in order to simulate the
model properly. This integrator should be able to fulfill its task fast, since the model will be
evaluated many times. Furthermore, it should be robust, giving the fact that a large
parameter and state space will be explored and there is a high probability of different
numbers and ranges of time scales involved. Nevertheless, these difficulties are just the
starting point along the path of successful parameter estimation. Identifiability analysis aims
of providing important information whether the parameters for the mathematical model can
be determined at all, after obtaining an infinite number of observations from it (22). The
data fitting process typically starts with an arbitrary guess about parameter values (nominal
set) and then changes those values to minimize the mentioned discrepancy between model
and data. Minimization of this difference is set as optimality criterion. The criterion selection
will depend on the assumptions about the data disturbance and on the amount of
information provided by the user. One of the main pitfalls occurring in inverse part of the
problem is that, in general, models in systems biology have multiple sets of parameters that
could satisfy the desired behavior and some of those sets are pinpointing to local solutions in
contrast to global (unique) solutions that would be of interest. This comes as a
consequence of the nonlinear and constrained nature of the systems dynamics. In
mathematical jargon, problems of such a nature are said to be multimodal (non-convex).
Thus, lot of methods may fail to identify the global solution and may converge to a local
minimum when a better solution is just a small distance away. Moreover, in the presence of
a bad fit, there is no guarantee whether this is the aftereffect of a wrong model formulation
or simply due to local convergence.

Described process of model calibration a priori assumes at least some existence of
experimental data. The high disbalance between available measures and unknown entities
makes the whole problem of parameter estimation even more complex. For instance, some
of the signaling networks consist of around 100 species and parameters, whereas the
experimental data set is composed of dose-time matrices for 2—3 quantities. But, what to do
when experimental data is not available at all? What is the right way to, at first, formulate
such a problem, and then to solve it? These and much more other questions and challenges,
both from the perspective of biology and systems theory, were intriguing enough to
conceive the idea of this thesis.

It was stated many years ago that any approach towards the explanation of the kinetic
parameters and the structural design of biological systems are the outcome of evolution



(23). An enormous literature exists on the natural selection and evolution of biological
systems ranging from the reconstruction of evolutionary mutation trees up to the study of
forces acting on evolution of whole organisms or populations. In many of these studies
evolution is considered as an optimization process (24-26). Minimizing investment cost,
maximizing profit, minimizing risks, maximizing effectiveness, minimizing energy, maximizing
yield and much more are the phrases that are frequently used in everyday vocabulary.
People are constantly trying to find the best strategy, given the specific constraints, in order
to reach a goal. Optimization — the framework for defining this whole process — becomes
omnipresent in different areas of human activity and interest. The base premise of this
thesis is that the nature, as an ultimate designer, constructed cellular processes so that they
also tend to behave optimally.

If we were about to assemble the electronic device that transduces signals, we would
have good idea of its functionality. Signal processing, as an area of systems engineering,
electrical engineering and applied mathematics, would give theoretical and practical guidance
for implementation of such a device. Observing different kind of signals that we are
encountering in our everyday lives, such as sounds, images, videos, telecommunication
signals etc., we could define how a good or a perfect signal should look like. The signal
should be clear (noise-free), it should be amplified enough so that we can be aware of it, it
should arrive at its destination in reasonable time, etc. Even though the biochemical signals
are occurring through chemical reactions and conformational change of species is
considered as information that the signal is carrying, the same paradigm could be applied.
Thus, our research path is leading to the discovery of optimal design in cellular signaling
modules. We perform the full parameter estimation, which means that we did not use any
available experimental data in order to guide the parameter search. Instead, we use
engineering archetype for signals and we define desired systems behavior accordingly.
Furthermore, we aim at exploring design principles that determine the dynamics of signal
transduction, which adds additional complexity toward achieving the goal.

State-of-the-art approaches and efforts made with different tools from systems
biology arsenal will be commented throughout subsequent chapters.

1.3 Thesis outline

The thesis is organized in two main parts. The first part (chapters |1-3) serves as extended
description of different ways of defining the models in systems biology and introduces the
signaling modules that are addressed during our study. The second part (chapters 4-6)
presents the results and findings that emerge from our analysis.

The structure is as follows:

* In chapter 2, we describe main modeling concepts for signaling networks, which are
extensively used through the scope of Systems Biology. In particular, we focus on
approaches and methods that will be further used to answer our different research
questions.

* Chapter 3 gives a general introduction to the covalent modification cycle and
prototypical MAPK cascade — the two signaling patterns that will be explored
throughout the thesis. The derivation of the models for these instances is presented,
as well as the properties that we are interested in.



In chapter 4, we start utilizing optimization framework to identify the design principles
for optimal ultrasensitive signaling modules. Optimization applied here considers
analysis of steady state, so the overall problem complexity remains within acceptable
limits. The difficulties arise when we try to gain knowledge about the design principles
of the signaling modules that are set to satisfy specific optimality criteria in dynamic
regimes.

In order to achieve the main thesis objective, we first proceed with identification of
the key system parameters, done through global sensitivity analysis in chapter 5.
Comparative analysis of differences and similarities within different system
architectures reveals some insight for initial parameter classification.

In chapter 6 we return back to the optimization framework. We first analyze what are
the design principles that lead the system to have the minimal signaling times, subject
to a certain level of amplification gain. In this setup, we bring out our main research
question: are there any trade-offs and interplay between different steady-state and
dynamic properties!? Furthermore, we include already analyzed property
ultrasensitivity and eventually solve multi-objective optimization problems.

Discussion and outlook are given in closing chapter 7.



Chapter 2

Modeling in Signal Transduction

2.1 Model building

Being able to provide predictions of emergent network properties and to uncover the
principles of cellular networks by merging prior knowledge with experimental data and
model simulation, brought systems biology to become a powerful tool for studying the
dynamics of the biological systems. Mathematical formalism and its ability to describe nature
in a comprehensive way to humans allowed Systems Biology to persist in its role of helping
us better understand complex network of metabolic and signal transduction pathways.

The collaborative process of model building (Fig. 2.1) consists of repetitive
communication steps between experimental scientists and modelers. Once it is clear what
the scientific question should answer, the best practice for the first step in model building
considers pen-and-paper model representation. All the involved scientific sides should be
able to articulate their perspective on the biological phenomena, so that biological and
physiological data and knowledge can be translated into universally understandable version
of the model. For instance, if we are considering a mechanistic model then ultimately the
model should describe all biochemical reactions that determine the observed biological
process. Next, the hypotheses that should be tested need to be integrated into the model.
Comparison of model outputs with available experimental data is the iterative procedure
that is employed in different steps of model building. Another important phase includes
exposing the model to different tests. This should mature the infantile stage of the model
and improve the model relevance.

One more benefit of this ping-pong communication could lead to improved
experimental design and eventually decrease the overall cost and time invested in
experiments.

2.2 Models in systems biology

Most models in systems biology can easily be located within the space that is spanned by
four dimensions of modeling, namely, qualitative vs. qualitative; continuous vs. discrete;
stochastic vs. deterministic, and static vs. dynamic (27). These dimensions are not entirely
independent nor are they exclusive. Many modeling approaches are hybrid
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Figure 2.l: Systems biology research cycle: the closed-loop interaction between
model building and experimental verification.

as they combine these different modeling aspects.

Literature offers large spectra of models of signaling pathways (28). Research groups
of Peter Sorger and Douglas Lauffenburger have high reputation in scientific circles dealing
with signaling. Over the years, they have shown quite a number of studies. Among other
approaches, they proposed using Bayesian network analysis (29). The network model is a
probabilistic graphical model that represents a set of random variables and their conditional
dependencies via a directed acyclic graph. Also, they have been using Boolean logic to
convert literature-derived signed protein signaling networks into a computable model (30).
Furthermore, this group of scientist developed fuzzy logic modeling tailored to biologic
networks (31). Modeling efforts done by other researchers will be noted in consecutive
sections.

2.2.1 Qualitative vs. quantitative

Often the lack of quantitative data motivates the use of qualitative methods. Qualitative
methods are usually built as a first step to develop a quantitative model. This way, one gains
useful structural information by determining what variables play a role for certain kinetics
and whether there exists any correlation between variables. Another motivation for the
application of qualitative methods is that they are aimed at answering different kinds of
questions than quantitative methods and offer different possibilities for analysis.

Models of signal transduction were addressed qualitatively (32, 33) but in a rather
inferior frequency than quantitatively (i.e. (34)). Our analysis will be based on simulations of
quantitative models.
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2.2.2 Deterministic vs. stochastic

The most realistic way of simulating a chemically-reacting system is to use molecular
dynamics, which involves keeping track of the spatial position and velocity of each particle
and allowing for chemical reactions whenever two chemical species are within the same
binding radius of each other (35, 36). The reactions involved may be unimolecular (meaning
that a single species transforms into another) or bimolecular (meaning that two species
combine to form a third, or a third and forth), while any reaction of higher order
(trimolecular, for example) can usually be reduced to sets of bimolecular and unimolecular
reactions (37).

The reason that molecular dynamics simulations are not used in every situation is that
they are computationally quite intensive. Even with the world's best super-computers,
simulations can barely exceed the mark of several thousand particles over a simulation time
that exceeds a few microseconds (depending on the type of system being simulated) (38).

As a substitute for molecular dynamics, many chemists and biologists have turned to
the so-called deterministic or classical approach. Our study will be dealing with deterministic
models. A brief demonstration of stochastic modeling in the same domain will be given as a
part of future research.

The classical formalism for chemically-reacting systems is to treat the number of
molecules of a set of species §,, for i=1,2,...,N, as a continuously-varying X,(z) that

satisfies a set of coupled ordinary differential equations (ODEs) of the form:

d);ft(’) = L0, X, (0,0, Xy (1)), Vi€ {1,2,..,N}

where the specific f; are taken from the system. This set of differential expressions is called a
reaction-rate equation (RRE) (36, 37). Astonishingly enough, simulations based on the RRE
work quite well.

However, there are at least three good reasons to withhold from using the RRE:

* Quantum mechanics play a not-altogether-trivial role in unimolecular and
bimolecular reactions, in so much as quantum effects can alter the isomeric form of
the resulting product. This effect results in some noisiness in the output data (36).

* Chemical systems are in thermodynamic equilibrium within some kind of heat bath.
By contributing thermal fluctuations, the heat bath makes the overall species
populations look less like smooth curves and a lot more like the index of a stock
exchange (36).

* As often happens in biology, the number of molecules of a certain species may be no
more than a few tens or hundreds. In these cases, the former expression is
inaccurate since it does not take into account the stochasticity of the molecular
species (39).

Stochastic chemical kinetics emerged nearly thirty years ago as a series of methods for
considering these reactions in a way that is analogous to the RRE but somehow accounts for
the inherent noise. Beginning with the same species S,, i=1,2,...,N, and M chemical

reactions R,R,,...,R,, it considers the number of molecules X,(t) for a specific i in a
volume V and analyzes the state vector X(t) =[X,(?),X,(?),....,X,(¢)], given the initial
conditions X(7,) =X, (37).

Instead of treating each molecule as an independent unit with a unique position and
velocity at a certain time, the stochastic approach only deals with the total number of
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molecules of a given species. It can disregard the position and velocity computations since
thermal equilibrium guarantees that positions are uniformly distributed while velocities
stabilize around the Maxwell-Boltzmann distribution. This assumption of thermal equilibrium
is what makes stochastic chemical kinetics much faster than the usual molecular dynamics
approach and still scientifically accurate: molecular dynamics simulations spend most of their
computation time on non-product-yielding molecular collisions while the stochastic
approach only focuses on events that can change the overall molecular population.

Each reaction R;, j=12,..,M, is going to depend on two quantities:

I. The state-change vector: A state-change vector v, =[v, v, ;,...v, ;] indicates how a

state should change when a reaction R; takes place. In particular, v, ; is the number
of molecules that species §; obtains from reaction R; (this number may be negative).
So, if the system is in state x and reaction R, occurs, then the system changes its
state to X+V,.

2. The propensity function: A propensity function a; is defined so that a;(x)dr is the

probability that one R; reaction will take place in a volume V and in the next

infinitesimal interval [7,#+df], given X(f)=x. For unimolecular reactions, the
quantum mechanics of molecular collisions gives the probability for a reaction
S,—> g to be c,xdt, for some constant c¢; that depends on the reaction. The result
for bimolecular reactions is similar: ¢,x,x,dt. The propensities for unimolecular and

bimolecular reactions are therefore ¢ x; and c,x.x, , respectively.

The formula for propensity is probabilistic, so it is natural to ask if we can find a formula for
P(x,t1x,,t,) (37). The time evolution of that probability is called the Chemical Master

Equation (CME):
M
W%LXOJO)= E[aj(x—vj)P(x—vj,tIxo,to)—aj(X)P(X,tIXO,IO)] (2.1)
j=1
A priori, the CME gives the whole time evolution of the conditional probability P(x,71x,,,).

Since it is a set of coupled ODEs, it is not tractable in most cases except for a few
analytically well-defined cases. Interestingly, in the case of a completely noiseless process,
the CME becomes the RRE, which shows that the stochastic kinetic approach is really the
more general case of the deterministic approach. But since the CME is quite difficult to
solve, it is better to look for numerical schemes capable of approximating the state vector
X(#) . To that end, it is valuable to build a slightly different conditional probability
p(7,jlx,t)dt which can be defined as the probability that a reaction will take place in an
infinitesimal time interval [+ 7,7+ T +d7t] and that the reaction will be R;. Formally, this

function is the joint probability density function of the two random variables time to the
next reaction () and index of the next reaction (j), given that the system is currently in
state X. A more explicit version of this same formula can be found with basic probability
(37):

p(z, jlx,0dt =a,(x)e ™" (2.2)

a,(x) = Y a;(x) (23)

j=1
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Many different algorithms can be built from this stochastic formulation, but there are three
basic families, namely, fully stochastic, stochastic differential equations (SDE), and spatial-
stochastic algorithms (40). Some of the representative methods of these classes are given in
Fig 2.2. More details about fully stochastic methods will be given subsequently.

First reaction Next reaction
Logarithmic method method
direct method
NG | / Explicit
Stochastic Simulation First familly tau-leaping
Diect  —  Algorithm (SSA) ~ method fethod Binomial

method | tau-leaping

method
Tau-leaping /
methods

Stochastic

me for
chemi actin

systems

Stochastic differential

equations
Chemical Chemical
Fokker-Planck Langevin
equation equation

Figure 2.2: Stochastic methods for chemically reacting systems.

Stochastic differential equations (SDE) are often used when the formulation with ordinary of
even partial differential equations does not reflect the nature of the simulated system so
well (40). SDE maintain the appearance of an ODE or PDE but add a noise term in order to
achieve a higher level of realism. The noise term may either be intrinsic (meaning that it
emerges from the system) or extrinsic (meaning that it comes from external perturbations).
The two popular implementations for biochemical reaction networks are the Chemical
Langevin Equation (41) and the Chemical Fokker-Planck Equation (CFPE) (40).

Spatial stochastic methods are defined by their use of space as an analytical tool. As a
general rule, these methods have been developed by biologists interested in simulating
networks within the cell, where macromolecular crowding and other spatial effects are very
important (42). Most of the available software that implement the techniques come from
academia and are open-source. The advantages of this type of simulation are that the
dynamics of the system are realistic and that larger systems can be simulated than can be
with pure molecular dynamics. On the flip side, the spatial-stochastic simulations are among
the most computationally intensive because even though they do not compute the position
and velocity, they still keep track of the position and velocity for later statistical analyses.
However, these methods seem to be the future of biological computing in the cell, since
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spatial effects seem far too important to be neglected (42).

In past years, researchers have been exploring influence of stochastic noise in signaling
pathways. In year of 2000, Paulsson et. al. presented the concept of stochastic focusing in
order to see how the signal noise influences the sensitivity amplification of threshold
mechanism (43). Following the study of Goldbeter and Koshland (44), later same year this
group of authors showed that zero-order ultrasensiitivity is invariably coupled to large
number of fluctuations in systems with low number of molecules (45). Thattai and
Oudenaarden showed that these fluctuations could be attenuated if the signaling
architecture includes cascades (46). Bhalla combined stochastic and diffusion effect on
individual pathways and synaptic network properties (47, 48). Morishita and coworkers
identified the optimal number of molecules for signal amplification and discrimination and
they have been studying transient behavior of linear signaling cascade (49). Recently, Koeppl
and colleagues proposed unified framework for estimation of stochastic rate constants,
accounting for extrinsic and intrinsic noise (50).

2.2.2.1 The Gillespie algorithm

The fully stochastic methods are all derivatives of the same algorithm, popularly known as
the Gillespie algorithm after its inventor, but also widely referred as the SSA for Stochastic
Simulation Algorithm or the direct method (37). Relying on central ideas of Monte Carlo
theory, it draws two random numbers r, and r, from the uniform distribution on the unit
interval, and uses them to compute t and j as follows:

1 1
= In(— 2.4
! a,(x) n(rl) 24)
.]=.]I E'ai(x)> rzao(x) (25)

Then the full-blown SSA follows along these lines (Fig. 2.3):
I. Start the system simulation at time 7 =7, and x=Xx,

For a state x at time ¢, evaluate all the propensities a,(x) and their sum q,(x)

2

3. Compute ¢ and j using the aforementioned methods

4. Produce the next reaction by allowing the time (# —¢+7) and the state-vector (
X —>x+V;) to change

5. Record (x; t) if needed, and start again at step | until the simulation time T is
reached.

In his landmark 1977 article, Gillespie himself points out the strengths and weaknesses of his
algorithm:

Strengths
* The SSA is exact, meaning that it is not based on averaging or other heuristics.
* There are no approximations of infinitesimal time steps. Instead, the time steps are
as small as is necessary to allow for the next reaction to take place.
* Relatively easy to code
* Information about the individual ensemble behavior is not hard to extract.
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Figure 2.3: The Gillespie algorithm.

Weaknesses

* It requires long simulation time (not memory).

* The number of particles that one can simulate is limited. Beyond a certain number,
the simulation may never converge.

* The SSA requires a good random-number generator. It may even require multiple
number generators for crosschecking purposes.

* For statistics, multiple runs of a single SSA execution may be needed, which adds to
the overall simulation time.

In an attempt to keep the strengths and remove some of the weaknesses — especially the
long simulation time — many researchers have introduced modifications changes to the SSA,
but at the expense of accuracy. Fig. 2.2 summarizes the main classes of stochastic methods.

Our clear requirement that all stochastic simulations should be exact made the choice of
stochastic methods easier. Out of these methods, the Gillespie approach was by far the
simplest to code and the best established of all the SSA-based algorithms, even though it is
computationally inefficient. Though it was originally feared that the intracellular medium
does not satisfy the assumptions of the Gillespie algorithm (namely, thermal equilibrium and
mass-action kinetics), it was decided that these assumptions could be made for the sake of
simplicity.

2.2.3 Continuous vs. discrete

The most common way of defining the entities of the model accounts for the representation
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of the state of a molecular component as its concentration in some cellular compartment
(cytoplasm, plasma membrane, etc.), which is treated as a function of time. The temporal
dynamics are then described by an ordinary differential equation (ODE) for the net rate of
production of the species. The model will comprise differential algebraic equations (DAEs)
as well, but only in case when conservation relations are explicitly involved in its
description. The model designed under this fashion is called a continuous model. Inspiration
for this kind of modeling was taken from how the biochemistry of enzymes has been
modeled (51).

Mass action kinetics. For example (52), the reversible reaction with three species
involved:

+

S +S, 2P (2.6)

=
-
k_
will, in the most general notation, result in three differential equations:

ﬁ=—v,%=—v and d—P=2v. (2.7)

dt dt dt
The change of concentrations of each substance, expressed by the derivative over time ¢ is
on the left hand side and the net rate is on the right hand side. This net rate accounts for
the sum of forward and backward reaction rates

v=v,-v_=kSS, kP’ (2.8)

k, and k_ are proportional factors, called rate constants. The power of each substance in

the reaction depends on its molecularity. The following equation can be used to generate
the net rate for reversible reactions in general:

v=k s -k]]P" (2.9)
i J

where S, are substrate concentrations and P, product concentrations and m; and m;
denote the respective molecularities of S, and P, (53). Solving the system results into a

time dependent trajectory for each substance.

Enzyme kinetics. Enzymes are the proteins that catalyze chemical reactions and they are
involved in metabolism and signal transduction. A typical enzyme reaction can be written as
ky

b kz
E+S  ES—E+P (2.10)

<«
k_y

It reflects the conversion of an initial species, the substrate, into a resulting species, the
product. The species dynamic read:

d—S=—k1E'S+k_1ES (2.11)
dr
ddiS =kE-S—-(k,+k,)ES (2.12)
t
i—E=—k1E-S+(k_l+k2)ES (2.13)
t
dP
— =k ES. 2.14
5k (2.14)

First, Michaelis and Menten assumed that the conversion of £ and § to ES and vice versa
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is much faster than the decomposition of ES into £ and P, which leads to k,k_ >>k,
(52). Second, Briggs and Haldane assumed that during the course of reaction a state is
reached where the concentration of the ES complex remains constant. This assumption is
justified only if the initial concentration of the substrate is much larger than the
concentration of the enzyme, so that dES/dt =0 . With these simplifications, we can derive
the reaction rate at steady state. Adding Eq. (2.12) and Eq. (2.13) lead to:

dES dE

—+—=0

de dr
This also means that the total amount of enzyme stays constant, £, , = E+ES.

(2.15)

Combining this conservation, Eq. (2.12) and steady-state assumption gives

ES=—EwS 2.16)

sikathk
kl

and for the reaction rate

V= _kE,S . (2.17)

sekith
kl

This reaction rate is typical for kinetics of many enzymes (Fig. 2.4). It is called Michaelis-
Menten equation. Usually, it is written in the following form

v S
"S+K,
is the maximum reaction rate that is reached for very high substrate

y= (2.18)

where V. =k,E

tot

concentrations (saturation) and

(2.19)

is the Michaelis-Menten constant.

Ligand binding and Hill coefficient. Every molecule that binds to a protein is a ligand.
The ligands bind to the subunits of the protein called binding sites, with the rule: one per
subunit. Proteins are called monomers if they consist of only one subunit and oligomers if
they consist of several subunits. The binding reactions of ligands under specific assumptions
show different rate equations than simple mass action kinetics of Eq. (2.9) (52).

The binding reaction of a ligand S to a monomer E can be written as

E+S<ES, (2.20)
with binding constant
ES
=—. 2.21
= (221)

Since the enzymes are proteins, the assumption that the complex ES converts S to a
product and releases the product afterwards can be used. Also, we assume that initial
concentration of the ligand is much higher than initial concentration of the protein.
These assumptions lead to the conclusion that the reaction rate is proportional to
ES (ES is converted to product E') and it holds that
v By (2.22)
% E

max tot
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Figure 2.4: Michaelis-Menten kinetics. For very low substrate concentrations v
follows first-order kinetics because of approximately linear change. For high §,
reaction rate follows zero-order kinetics because there is almost no change of v in
that region (52).

where v is the reaction rate and Y the fraction of protein-ligand complex. Using Eq. (2.21),
we can also write that

y-EB__B _ K5 (2.23)

E ES+E 1+K,-S

tot

which leads to
pov  Kn'S (2.24)
1+K,-S

There are oligomers that show unexpected behavior in ligand binding. So-called allosteric
proteins change their affinity to binding of further ligands depending on the number of
ligands that are already bound to the protein. Hill discovered this behavior for hemoglobin.
This protein, responsible for transport of oxygen in the blood, has got four binding sites.
Depending on the oxygen partial pressure, hemoglobin binds either on all sites to oxygen if
the pressure is high (like in the lungs) or on none of the sites if the pressure is low (like in
the blood). States where there are still free binding sites do only rarely occur. This behavior
can be represented in a sigmoid function, which is approximated by the Hill equation

yoy K5 (2.25)
1+K,-S™
where n,, is the Hill coefficient which corresponds to the number of binding sites of the

protein.

We distinguish between three cases:

I. If n, =1, affinity to further ligand binding is independent of ligands bound to the
protein. The Hill equation is equivalent to Michaelis-Menten Eq. (2.18) and there is
no cooperativity.

2. If n, >1, affinity to further ligand binding increases if more ligands are bound to the

protein. v behaves like the sigmoid function with respect to S. The bigger n,,, the
steeper is the curve and this is the case of positive cooperativity.
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3. If n, <1, affinity to further ligand binding decreases if more ligands are bound to the

protein. Since v behaves less sensitive with respect to S than Michaelis-Menten, this
is the case of negative cooperativity.

Hemoglobin shows positive cooperativity with Hill coefficient of n,, =2.9. The discrepancy
to the number of binding sites of hemoglobin is based on the fact that the Hill equation is
only valid for complete cooperativity, which means that every protein is either empty or
fully bound to ligands.

Another way of defining the states of the integral components of the system could
be using the discrete description, in a Boolean fashion as on or off, low or high, or with
multiple discrete levels. This brings us to discrete models, which are mostly used to describe
gene expression (54). One should be convinced that discrete representations of the
biological phenomena is indeed relevant or otherwise lots of assumptions would be
integrated into the model, which as such might not be able to answer its predefined
questions.

224 Static vs. dynamic

Dynamic models are simplified representation of some real-world entity, in equations or
computer code, and they describe how system properties change over time (55). On the
contrary, static models represent isolated moment in time (snapshot) and therefore carry
limited (but also useful) information about the system. The most common time point for
system exploration is, for sure, the point where the system is in steady state.

Dynamic models in Systems biology are applied to areas such as cellular physiology,
disease prevalence and extinction of endangered species (55).

In the context of cellular signaling, both static and dynamic models are able to reveal
insights about system design and regulation. Depending of the properties of interest (steady-
state or dynamic), one can use either of the two models or even both of them
simultaneously for extended analysis.

Throughout this thesis, we have used steady-state representation of the model for
part of the studies, but the main focus is placed on dynamic model and appropriate
techniques tailored for its efficient exploration.

2.2.5 Modularity in cellular signaling

A functional unit that is integral part of more complex system and is devoted to perform a
specific task is called a module. No matter what the overall nature of the whole system is,
modular analysis can be successfully applied. Nevertheless, it is not always so
straightforward to isolate these functionally independent subunits.

Coming from this systems theory concept, modularity is also widely utilized in signal
transduction (56, 57). Typical examples for assignment of modules in cellular environment
are the DNA-mRNA-enzyme-metabolism cascade and signal transduction cascades
consisting of covalent modification cycles (52). In this thesis, we are following the idea of
analyzing the simple module first and then proceeding to further analysis of more complex
systems. In this context, the thesis consists of two parts: the study about covalent
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modification cycle and the study about signaling cascades. The draw back of this kind of
approach is that in every step of defining the modules at least some level of connectivity is
neglected. Knowing that signaling networks posses a large number of already identified, as
well as not identified, positive or negative feedbacks and feed-forward regulatory loops, one
needs to be conscious about the significant information loss.

2.3 Parametric sensitivity analysis

Many studies have been based on parametric sensitivity analysis, which provides a powerful
framework to relate the complex network structure to functions. There exist two types of
parametric sensitivity: the direct sensitivity analysis, often referred simply as sensitivity
analysis (58) and the inverse sensitivity analysis that relies on numerical optimization (59). The
two approaches have been used for the analysis of both metabolic and signal transduction
pathways. The direct sensitivity analysis — the consideration of changes in the system due to
a variation in the model parameters — is widely applied (60-65). The inverse sensitivity
analysis approach — the identification of the corresponding parameter values needed to
achieve a desired functional behavior — is occasionally used for studies of metabolic
networks to identify the relationship between model parameters and functions (23, 66-68).
The later approach involves solving constrained optimization problems and it is well adapted
for studying biochemical networks, as it makes it possible to deal with large-scale models
(69-71). Moreover, the inverse approach leads to efficient parametric analysis and
identification, contrary to an exhaustive parameter search.

2.3.1 Direct approach

Sensitivity analysis provides valuable insights about robustness of the observed model
outputs with respect to the changes of model parameters. Even more, this tool can classify
model parameters according to their influence on model outputs. It can also facilitate model
development, model reduction, and it can guide parameter estimation and experimental
design. As such, this powerful tool has a significant role in the arsenal of methods for System
Biology (72).

Gutenkunst et al. (73) investigated the sensitivities of |7 published systems biology
models, including few for signaling pathways, and studied the model output variations to the
parameter changes. They found that systems biology models exhibit sloppy sensitivity
spectra. This was one more proof of a common opinion that biological models seem to be
quite robust. These findings again indicate the difficulty of uniquely determining the model
parameters by fitting to a few experimental data.

Generally speaking, parametric sensitivity is usually performed as a series (of
significantly high number) of trials for different parameter values, with observation on how
the change in parameters causes a change in model outputs (74). Such procedure allows
determining what level of accuracy is necessary for a parameter to make the model
sufficiently useful and valid. If results reveal that the model is insensitive, then it may be
possible to use an estimate rather than a value with greater precision for a concrete
parameter.

There are two types of sensitivity analysis approaches: local and global sensitivity
analysis. Local sensitivity analysis is a common approach, where the sensitivity of a model
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output is performed by computing the first-order partial derivatives of the system output
with respect to the parameters, which can be viewed as the gradients around the
multidimensional reference parameter space (72). The second type of methods is global
sensitivity analysis, which is used to quantify the overall effects of the parameter changes on
the model output by perturbing the parameters within large ranges (58).

Since most of the models in systems biology are nonlinear, non-additive and non-
monotonic, and in addition have numerous parameters, local sensitivity analysis might not be
the most relevant approach for addressing the sensitivity questions. Accordingly, we
performed global sensitivity analysis investigating the sensitivity over the entire parameter
space.

There exist quite a number of different sensitivity analysis methods (72, 75) and some
of them have been applied to the analysis of signaling networks. For example, using Monte
Carlo method, Cho et al. performed multi-parametric global sensitivity analysis on the
TNFa-mediated NF-kB pathway for experimental design (76). Using the same approach, Zi
and coworkers studied IFN-g induced JAK-STAT signaling pathway (65). Chu and colleagues
used four different techniques to identify key steps in the mathematical model of IL-6
signaling pathway (77). Coming from the same idea of using few methods and comparing
their results, Zhang and Rundell addressed similar questions in TCR-activated Erk-MAPK
signaling pathway (78).

2.3.1.1 The Sobol method

The Sobol method is a variance-based global sensitivity analysis approach that makes no
assumptions on the relationship between the model inputs and outputs (79).
Let system be described as

Y=f(x), (2.26)
where x=(x,x,,....x,) is a vector of p input variables that influence the behavior of the

system, Y is the model output and f the structure of the model. In this case, model inputs
are equivalent to the parameters under study.

The main idea behind Sobol method is the decomposition of the variance of the model
output function f(x) into summands of variances in combinations of input parameters of

increasing dimensionality:

[ = fo+ P L+ D [ (X)) ot fi(5,2500000K,) - (2.27)

i=l j=i+l

Total variance D is defined as

D= [ fx)dx-f7 = [ £ 0de=([ f(x)dx)* (2.28)

The partial variances are computed from each item in Eq. (2.27) and defined as
D, =[] P x nx ) dx, dx doy (2.29)

Furthermore, these variances, D and D,, . can be approximated by Monte Carlo

g
integrations.
The partial variance divided by the total variance is called first-order sensitivity index:
D,
==t (2.30)

D

and it quantifies the contribution of parameter x, to the output variance.

The total sensitivity indices are defined as
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In order to reduce computational effort, the following algorithm proposed by Saltelli et al.
(58) offers an efficient way to approximate sensitivity indices, and as such can be easily

implemented (Fig 2.5):

I. Generate two (N x p) matrices of random numbers, A and B, in the range that
is valid for the variables (or parameters), where p is the number of input variables

and N is the number of samples (experiments) per input variable. N should be
carefully chosen, usually from hundreds to thousands, in order to achieve

statistically relevant results.

[ xl(l) xél) x,'(l) X;l) ]
x1(2) x;Z) xi(2) x;Z)
A=| : : :
xl(N—l) x;N—l) Xi(N—l) x;N—l)
xl(N) x;N) xi(N) x;N)
) < ]
B R X2
B= : : : :
XU e e
X

2. Define matrix C; that is identical to B, except for the i-th column, which is taken

from A.iis the variable under study.

S
c-=| : : :
R
E

3. Compute model output for each row of input variables in A, B, C, which gives

three vectors of model outputs of dimension (N x1):
Ya=S(A), yy=f(B), y., = f(C).
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Figure 2.5: The Sobol method.

4. The first-order sensitivity indices can be estimated by

Eygny(cn 2 )
Si= N with  f = Ey(”

E (J)

Jj=1

5. Total-effect estimates can be computed by

(D4, 2
Eyg v -

E(y(n)

Saltelli et al. (58) suggested using the variance-based sensitivity analysis approaches when
such application is possible. The main strengths of Sobol method lie around the facts that it
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accounts for full sampling of parameter space, without requirement neither of any
assumption about the model nor of parameter relations, allowing the interaction effects
among parameters. It provides probability distribution of the output, given probability
distributions of the input. The main drawback of all variance-based approaches is their high
computational cost because they require more model evaluations than other types of
methods. In case of complex models with significant number of parameters and state
variables, this can become an issue, which will lead the choice of global sensitivity analysis
method in some other direction.

Our systems were within the limits of not having extensively high computational
cost, so we defined our sensitivity analysis framework around Sobol method.

2.3.2 Inverse approach

As introduced before, using optimization framework — the “per aspera ad astra” with all its
challenges — is the core thread of the thesis. Furthermore, the motivation to explore trade-
offs between different properties of cellular signals pointed to optimization as indispensible
tool to relate system structure and functions.
In simple words, the setting of the optimization problem includes the minimization or
maximization of an objective function:
min f(x) (2.32)
xeEX

where X is a subset of R™ and f:X —R.
This can be any quantified measure of the performance of the system under study. The
objective depends on the different input parameters, which are called decision variables:
x=(x1,x2,...,xnv). (2.33)

If x,, i=1,2,...,n are independent of time, than the problem is called static optimization
problem. Otherwise, these problems fall into the scope of dynamic optimization. In any
case, the goal is to identify these variables in order to optimize the objective. Very often,
the variables or even system performance are restricted, or constrained (i.e. positive values
of molecular concentration) with inequality or equality constraints:

8:(x)=0, i=1,2,...,ng (2.34)

h(x)=0,  i=12,..n,, (2.35)

where g: X —=R™ and h: X - R".
A vector x € X satisfying all the constraints is called a feasible solution of the problem and
the collection of all such points forms the feasible region. Once the whole problem is set,
the optimization algorithm aims at finding such a feasible point x* so that:

fO= f(x). (2.36)
X is then called an optimal solution. Depending on whether the Eq. (2.36) is valid only for

the feasible points x that are in the neighborhood of X, or for all the points x in the
feasible set, we can distinguish between local and global optimum, respectively.

Nowadays, strong and efficient mathematical programming techniques are available for
solving a great variety of optimization problems, which are based on solid theoretical results
and extensive numerical studies (80). Some of them are summarized in Fig. 2.6. The term
“programming” does not have any correlation with
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Figure 2.6: Numerical methods for nonlinear programming problems.

computer programming, but is rather associated with the history of optimization as
mathematical discipline.

There are different ways to classify main subfields of optimization:

* Depending on whether the variables of the system can take any value or their values
can be chosen only from the predefined set, we distinguish between continuous and
discrete optimization, respectively. Widely used approach is integer programming,
where the variables are constrained to have integer values. A hybrid case, where only
some of the variables need to be integers, is called mixed-integer programming (59).

* The next classification criteria take into account the nature of constraints and
objective function. Thus, there exist unconstrained and constrained optimization
problems.

* Furthermore, there is a distinction between linear programming, where one studies
the case in which the objective function is linear and the set of constraints is specified
using only linear equalities and inequalities, and nonlinear programming, which is the
general case in which the objective function or the constraints or both contain
nonlinear parts. Quadratic programming allows the objective function to have
quadratic terms, while the feasible set must be specified with linear equalities and
inequalities.

* A subclass of optimization methods called convex optimization, which studies only
convex functions over convex sets, has a very complete theory and arises in a variety
in applications (81). The fact that any local optimum in a convex set is at the same
time global optimum makes this class of methods very efficient and not so expensive
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computationally. Unfortunately, models of signal transduction in general do not belong
to this class.

* Depending on the way the model is defined, the optimization can be deterministic or
stochastic, which is the case in which some of the constraints or parameters depend
on random variables. Robust programming attempt to capture uncertainty in the data
underlying the optimization problem, and, unlike in the case of stochastic
programming, the problem is solved taking into account inaccuracies in the input data
rather than dealing with random variables.

* Heuristics and metaheuristics methods make few or no assumptions about the
problem being optimized. Usually, heuristic approach does not guarantee that any
optimal solution need be found. On the other hand, heuristics are used to find
approximate solutions for many complicated optimization problems.

* A very important classification of optimization methods is local versus global. The
fastest algorithms seek only a local solution, but these methods are not always able to
find the best point of the whole search space, the global solution. Even though global
solutions are difficult to be identified, they are highly desirable.

Numerous state-of-the-art algorithms for numerical optimization of nonlinear problems are
used in Systems biology. Among them, quite a number of methods are gathered in the class
of iterative methods. Their main characteristic is that after a given initial point x°, a sequence
of points {x} is obtained by repeated application of an algorithmic rule, with the objective to

make this sequence converge to the point X in a pre-specified solution set. The algorithm is
said to be globally convergent if the previous statement holds for any initial point x°. Global
convergence is a very desirable property of an optimization algorithm.

Depending whether a method requires only the evaluation of the function values,
gradients or Hessian, we can distinguish between zero-, first- and second-order optimization
methods. The advantage of calculating the first and second derivatives improves the rate of
convergence, but increase the computational cost, that can sometimes be the unsolved
issue.

Such a vast number of methods do not make the initial step of choosing the
appropriate algorithm so straightforward. The wrong choice could lead to increase of
computational cost and time, or even to not being able to find a solution at all. Since one of
the main goals of this work is to gain the knowledge of inherent dynamics of signaling
modules, the dynamic optimization methods (versus static optimization methods) would suit
better. Dynamic programming, together with calculus of variations and optimal control, is
one of the main subfields of the optimization approaches that are designed primarily for
optimization in dynamic contexts, where the decision making process is occurring over the
time (82).

The choice of the appropriate method in our studies was already established through
some previous collaboration. Similar approach was proven to be adequate in other studies
of signaling networks (69) and that was assuring enough for us not to focus on comparing of
different methods and developing new ones. More details are given in the section Materials
and methods of chapter 4.
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Chapter 3

Covalent Modification Cycle and
Prototypical MAP Kinase Cascade

3.1 Covalent modification cycle — monocylic system

The control of cellular processes is a consequence of the evolution of an extremely
complex system of regulatory mechanisms. One of the main aims of Systems biology is to
elucidate the interplay of specific components and their characterization, which will in turn
improve general understanding of cell regulation. There are many processes of cell
regulation whereby a protein is reversibly and covalently modified by the enzyme-catalyzed
transfer of a group from a donor to a specific amino acid residue usually located at the
active site of the acceptor (83-85). Specific converter enzymes, often protein kinases and
phosphoprotein phosphatases, catalyze these covalent modification and demodification
reactions. The modification of the protein by a converter enzyme and the opposite reaction,
in which the modified protein is “demodified” by another converter enzyme, forms a
monocyclic enzyme cascade system. The converter enzymes for both the modification and
demodification reactions also undergo a modification process (activation or inactivation)
induced by an allosteric effector. Both allosteric effectors may be the same substance.

Monocyclic enzyme cascades are ubiquitous in biological systems. They play an
important role in the regulation of many physiological processes involving the cyclic
interconversion of enzymes between phosphorylated and unphosphorylated forms, e.g., the
repair of lesions, differentiation, growth, evolution metabolism and motility (86, 87) the
regulation of neurotransmitter receptor function and the efficiency of synaptic transmission
(88). Almost all proteomic signaling networks in prokaryotes and eukaryotes are based on
phosphorylation—dephosphorylation monocyclic cascades (89). Phosphorylation of the
enzyme is catalyzed by a specific kinase, whereas dephosphorylation is catalyzed by a specific
phosphatase, the activities of the converter enzymes being controlled by numerous
allosteric effectors (84).

The special significance of enzyme cascades is their ability to impose upper and lower
boundaries on the rates of a biological process and to act as physiological switches (90).
Furthermore, the abundance of design features in enzyme cascades provides many
possibilities for response and adaptation to environmental cues and challenges. Such
cascades are therefore essential for the success of evolutionary systems. Accordingly, our
study will place equal attention to monocyclic cascade systems, as it will be done for the
more complex systems later.
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3.1.1 Mechanistic modeling framework

The prototypical monocyclic system under consideration consists of three elements: i) a
kinase, ii) an activating enzyme, which can be a receptor stimulated by a ligand or an
activated kinase, and iii) a deactivating enzyme, usually a phosphatase. The active receptor
initiates the internal signaling cascade, including a series of protein phosphorylation state
changes, which, as mentioned, represents the basic mechanism in signal transduction
networks.

The complicated structure of many enzyme cascades renders their kinetic analysis
difficult (91). However, such knowledge is a prerequisite for understanding biological
regulation at a high level. In order to facilitate the kinetic analysis of monocyclic enzyme
cascades a considerable number of simplifying assumptions must be made. Obviously, the
more assumptions are made, the simpler the results obtained. The gain in simplicity means a
loss of accuracy in the results.

The development of our model relies on the following assumptions:
* the activation step involves the reversible binding of the activating enzyme to inactive
kinase and the complex is irreversibly released;
* the inactivation step involves the reversible binding of the deactivating enzyme to
active kinase and the complex is irreversibly released;
* the total amount of kinase is taken to be constant for the signaling time scale
considered;
* the rates of the various processes follow mass-action kinetics;
* the dynamics can be described by ordinary differential equations.
A commonly used simplification considers that the concentrations of intermediate enzyme-
substrate complexes are small compared to the substrate concentrations and can therefore
be neglected (44, 92, 93), leading to simpler mathematical models. This simplification has
been used mainly to reduce the computational effort or to obtain an exact analytic solution
to the problem. However, it has been shown and we found in our studies that if we neglect
the so-called substrate sequestration in the form of intermediate enzyme-substrate
complexes, the analysis leads to incorrect model predictions in some cases (94-96). Besides
its effect on model prediction accuracy, substrate sequestration has been shown to induce
both positive and negative feedback mechanisms in signaling cascades (97, 98). One of the
advantages of our computational approach is that it does not require such simplifications
and, accordingly, substrate sequestration will be considered in this work.

3.1.2 Mathematical model of monocyclic system

The covalent modification cycle represented in Fig. 3.1 comprises 7 species S, S°, X, X',
P,, X:S and X :P,. The receptor changes its own state from susceptible S to active S .

Since we will focus our interest on the dynamics of the internal module, this event of tuning
on/off the receptor is assumed to occur under very fast kinetics. The kinetic mechanism and

the initial conditions for the system will be defined later. The variables X and X  represent
the two interconvertible forms of one protein, e.g. the phosphorylated and

dephosphorylated forms of a kinase. Proteins §° and P, catalyze the activation and

deactivation reactions, respectively. In the following, they will be called enzymes. The
activation steps proceed through the formation of intermediate enzyme-substrate
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complexes X:S” and X :P,. The enzyme S  can be either the activating kinase of an

upstream cycle or the receptor responding to an external input signal (e.g. growth factor or
hormone level), while the enzyme P, corresponds to a phosphatase.

S

. X . S&
5 o
A%
S*

o

>

Figure 3.l: Schematic representation of a covalent modification cycle. A cycle is
composed of two states of the same protein, namely the inactive state X and the

active state X . The activation and deactivation reactions are catalyzed by the
enzymes S  and P,, respectively.

The system consists of 2 reversible and 3 irreversible reactions, which gives 7 reactions in
total (Table 3.1).

The total amount of interconvertible protein X, , as well as the total amounts of the
activation/deactivation proteins S, and P,,, are considered being constant in the time scale

considered. The corresponding conservation equations relating the concentrations of the
seven species read

[X], =[X]+[X ]+[X :S"]+[X": P,], with d[dit]uo 3.1)
[S], =[S]+[S"]+[X :S"], with d[d%w (32)
d[P,1,

[P, ], =[P, ]+[X : P,], with P =0. (3.3)

The conservation laws Eq. (3.1-3.3) relate the concentrations of the species in the system.
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No. Reaction

Reaction Rate

Notes

| v

v-S

Activation of signaling enzyme

S—S
O s v-S Deactivation of signaling enzyme

2 X+S*3>X:S* a, XS Formation of complex

3 X S*2X+S* dy-X:S Degradation of complex

4 X S*iX* " ky-X:S Degradation of complex

5 . b a. X P Formation of complex
X +P, =X :P, x x

6 i de d.- X :P Degradation of complex
X :P,—X +P, X X

7 . ke k.-X:P Degradation of complex
X :P,>X+P, x X 8 P

Table 3.1: Reactions in monocyclic system.

Four additional (independent) relations can be obtained by writing mass-balance equations

for X', X:S"and X : P, as

=—a [X [P ]+ky[X:S1+d .[X :P]

=a . [X I[P ]-(d . +k )X :P]

d[X']

dt
w:ax[xus*]—(dx+kX)[X:5*]
d[x :P]

dr X

d[S] )
=[S

4 V[S]

(3.4)
(3.5)
(3.6)

(3.7)

where aX,dX,kX,aX#,dX*,kX* and v are the parameters of the mass-action kinetic laws, as

indicated in Table 3.1.

The basic structure of signaling modules of interest is well conserved in cells, even
though it can generate a high variety of biological responses. In order to facilitate the
discovery of more general features of the system, it was proposed that model assumes
dimensionless parameters, rather than to be related to a particular parameter set (44). For
that purpose, we introduce the set of dimensionless variables and parameters used in all of

our system analysis (later in Table 3.4). In addition, the time is scaled as 7:=kx"t.

1 Depending on which property is the focus of our analysis, the reaction describing the steps
between active and inactive state of signaling enzyme and corresponding differential

equation will be defined accordingly. More details will follow by the end of this chapter.

30



The dynamic model Eq. (3.1-3.7) becomes the following differential-algebraic equation

(DAE) system:
d *

d—xr=pS’Xlch{x:s*}+pPX/X(c~1x*{x* :pX}—gzx*x*pX)
dix:s } =c~1x xs —(c~z’x+l;x){x:s*}
dr
P _ e py—(de + 1) 1 pyd
dr
45y
dr

I=x+x +p"{x:5 }+p"*{x" : p}
l=s+s +{x:s}

1=pX+{x*:pX}.

The compact notation of the system is defined as:

F(&(1),5(7),p.r) =0,

(3.8)
(3.9)
(3.10)

G.11)

(3.12)
(3.13)
(3.14)

(3.15)

where & is the vector of state variables: &:=(x" s {x:s'} {x :p,})", p is the vector of

kinetic parameters: p:=( ax ax dx dx kx )" ,and r is the vector of concentration ratios:

SIX _PIX \T
) .

r=(p" p

If we assume that the entire signaling enzyme is already in its active form at steady state (i.e.

s =0), then the model can be shown to reduce to the set of algebraic equations:

O={x:s}-— —
Kx+x

*

0={x":p}-

Kx+x
0={x" :p}—ax{x:s*}

1=)_C+F+pS/X{x:s*}+pP/X{x* :p}

1=?+{x:s*}

I=p+{x":p},
where (-) indicates a steady-state value and

Ky - dx~+ kx
ax
Ky = di("+1
ax”
SIX
. P
Oy =KX 5%
0
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(3.17)
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(3.19)
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(3.21)

(3.22)

(3.23)
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3.2 Prototypical MAP kinase cascade — multicyclic cascade system

Monocyclic patterns form the backbone of most signaling systems and they are often linked,
forming multiple layers of cycles, the so-called cascades (referred as bi-, tri-, multicyclic
cascade systems). Commonly observed instance of signal transduction through a series of
protein kinase reactions are the kinases of the mitogen-activated protein kinase (MAPK)
cascades (99).

MAP kinase is the collective term for the serine/threonine (Ser/Thr)-specific protein
kinases generating the output signals of the MAP kinase modules. They are by no means
activated only by mitogenic signals, but also are involved in cell differentiation and cell death
(100).

MAP kinase modules are complexes of three protein kinases that are interconnected
in series, known as MAP kinase, MAPKK kinase, and MAPKKK kinase (9). Each of these
kinases exists in various isoforms, which are integrated in individual modules. The core of
each module is the pair of MAP kinase and MAPKK kinase, and they interact with each
other in a highly specific manner. In contrast, the interaction between MAPKK kinases and
MAPKKK kinases is much less specificc many protein kinases may function as MAPKKK
kinases, thus transmitting a wide variety of input signals to the module. The same holds for
MAP kinases, which are firmly wired with the MAPKK kinases, but are not choosy as far as
their substrate proteins are concerned. Thus, MAP kinase modules transform a wide variety
of input signals into a comparatively large variety of output signals. As such, they play a key
role in cellular data processing ranging from yeast to humans (101). While the input signals
are mainly derived from signal receptors, the output signals address metabolic reactions, the
architecture and mobility of cells, and gene transcription (102), which may account for its
evolutionary success throughout the tree of life.

All MAPK pathways share a common structure, namely, the sequential activation of
three protein kinases in a kinase cascade (19). At the very top of the cascade, the first
protein kinase is activated by a molecular signal received from an upstream activator, while
at the very bottom of the cascade, the output protein kinase serves as a signal to
transcription factors or to other protein kinases. Getting the cascade started may be the
result either of a signal relayed to the cascade by a member of the family of the Ras proteins
or of a response to some form of physical or chemical stress. When the last kinase is
activated, it binds to a substrate that will either go on to activate a transcription factor
within the nucleus or activate another protein kinase. Coordinating and organizing this
process is the protein scaffold, a multiprotein complex whose importance will be highlighted
later.

MAPKKKSs: The starting points of the protein cascades are the MAPKKKs (also called
MEKKSs). These kinases are usually activated by small GTPases, like many of the members of
the Ras superfamily of proteins. Without getting into many details, the activation of
MAPKKKSs is a complex procedure that requires membrane translocation, phosphorylation,
oligomerization, and binding to a scaffold protein - the actual details of which are not well
known.
Individual MAPK modules are associated with distinct MAPKKK type:

* RAF kinases of ERK1,2 modules and the related mixed-linear kinases (MLKs) of JNK

and p38 modules
* MEK kinases (MEKKs), mainly JNK and p38 modules
* A heterogeneous collection of other kinases named ASKI, TAKI, TPL2, NIK and
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MAPKKSs: The MEKs that phosphorylated MAPK are known as dual-specificity protein
kinases because they can accept two different kinds of amino acids at the phosphorylation
site of the MAPK/ERK they bind. As the intermediate step of a tricyclic cascade, the MEKs
are phosphorylated by the MEKKs or MAPKKKSs at two serine residues that make up part
of a conserved sequence in all known MEK proteins - perhaps an indication of the long
evolutionary history of this pathway.

MAPKSs: The activation of MAPK/ERK proteins by MEK occurs via a phosphorylation
reaction at the tyrosine and threonine residues of the activation loop. In addition to
relieving a steric hindrance to substrate binding, the phosphorylation makes it possible for
homodimers to form. Without these homodimers, MAPK would be unable to penetrate
inside the nuclear envelope where gene expression takes place.

The mammalian (human) genome encodes 14 MAPK’s and 8 MAPKK’s. The MAP
kinases have been arranged in several subfamilies, each of which is named according to the
protein kinase that emerges at the end of the cascade:

* ERKI,2 family (Extracellular signal-Regulated Kinases), including isoforms ERKI and

ERK2

* JNK family (cJun N-terminal Kinases, also called SAPK, Stress-Activated Protein

Kinases), including isoforms JNKI-3

* p38 family (molecular mass of 38kDa), including isoforms p38a, -b, -g, -d

* ERKS3,4 family and ERKS5 family (known as big MAP kinases).
Each family, even each isoform, organizes the module of its own.
In mammals, the ERK1,2, JNK, and p38 kinases pathways happen to be the most important
ones (103).

Phosphatases: There are many enzymatic proteins that intervene in the cascade to
regulate the amount of signal output. Of these, the most researched are the phosphatases,
which preferentially dephosphorylate MAPK, MAPKK, or MAPKKK depending on where
they bind in the protein scaffold. It is interesting to note that the MAPK phosphatases also
constitute a regulatory network that may either amplify or degrade the output signal via
activation or negative feedback, respectively.

Given the limited number of MAPK constellations and impressively large number of
functions they are involved, there arises the question of how individual module can
distinguish its functions. A scaffold protein that interacts with each of the protein kinases
may mediate the organization of the module. As such, scaffolds play an important role in
producing specificity in these signaling mechanisms (104-106).
The attributes of the protein scaffold, as pertain to MAPK signaling, include:

* contribution to selectivity by assembling distinct kinases into distinct modules;

* allosteric activation these distinct kinases, which enhances signaling efficiency;

* reduction the cross-talk between various cycles;

* recruitment of proteins phosphatases for feedback mechanisms;

* contact between the protein scaffold and the signal effectors maintains the flow

through the cascade.
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3.2.1 Mechanistic modeling framework

Accumulating evidence of role of MAPK modules in cancer development and growth (107)
was yet one more reason why these modules are focus of extensive research in recent
years (108). Systems biology also tries to decode their complexity through mathematical
modeling and prediction in order to gain a deeper insight into the inner works of signaling
networks (109). There are quite a number of computational models that, in some way,
incorporate MAPK module (I110). The three most cited models that focus on investigation
of the properties and behavior of the core cascade itself are: Huang and Ferrell’s model
from 1996 (I11), Kholodenko’s model from 2000 (93) and Heinrich et al. model from 2002
(112). The choice of prototypical MAPK module architecture in this study lies somewhere in
between modeling frameworks of these three models. Since the activation of the cellular
response by MAPK pathways typically involves three phosphorylation steps (113), we will
limit our analysis to the systems that have up to three joined cycles. Furthermore, we
assumed the simple module concatenation with single phosphorylation events (unlike in
(1'11)), but with assumed intermediate complex formation (unlike in (112)), and without any
feedback loops (unlike in (93)).

3.2.2 Mathematical model of multicyclic system
Tricyclic cascade (Fig. 3.2) repeats the fundamental network motif of one-step enzymatic
modification and reverse modification reaction. Similar to the single interconvertible

cascade, the input signal S activates the cascade and each kinase then activates the next level
kinase. At each level, a separate phosphatase deactivates the active kinase.

Kinase

B
. e /
i

/y/ \

Phosphatase ﬁ/\

Phosphatase

T
///

Figure 3.2: Schematic representation of tricyclic cascade. X, X, X:S and X : P,
denote the species/complexes relative to the first level of cascade, with S and P,
being the upstream kinase and phosphatase, respectively; Y, Y, Y:X and Y :P,
denote the species/complexes relative to the second level of cascade, with X and P,

being the upstream kinase and phosphatase, respectively; and Z, Z', Z:Y" and
Z": P,denote the species/complexes relative to the third level of cascade, with ¥~
and P, being the upstream kinase and phosphatase, respectively.
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The system reactions are given in Table 3.2.

Model No. Reaction Reaction Rate | Notes
I S;S* v-S Activation of  signaling
enzyme
O S*—V>S v-S Deactivation of signaling
enzyme
g 2 X+S*3>X g a, XS Formation of complex
Z‘ 3 X5 2X+S* d,-X:S Degradation of complex
S|4 e X: S Degradation of comple
- g X:S =X +S kXXiS g.IOOOPX
g Zo 5 X 4P, _x)X " a. X P Formation of complex
> " -
; 6 . p ZX* P d.-X":P Degradation of complex
5 X X
o> k .« * N
= 7 X':P, ;X+PX kX :P Degradation of complex
8 . . Y-X F ti f I
983 Ve X oy.x a,-Y-X ormation of complex
S 9 VX iY+X* d, Y:X Degradation of complex
- :
S 10 SR Y X Degradation of comple
5 YiX SV +X ky Y:X gracation of complex
o a vF H
= I v ap v P a,. Y P, Formation of complex
12 v p d—y>Y WP d,. Y :P, Degradation of complex
Y Y
k « * H
13 v P, —Y>Y+ P, kY* Y':P, Degradation of complex
14 Z+Y*ZZ Ly a,"Z-Y" Formation of complex
I5 7 Y*LZZ+Y* d,"Z:Y Degradation of complex
16 7 Y*EZ* LY k, Z:Y" Degradation of complex
17 7" 4 P, a—Z>Z P, a, VA P, Formation of complex
d_« i .
18 - P % P dz* Z :P, Degradation of complex
k * .
19 Z P, L. P, k,-Z :P, Degradation of complex

Table 3.2: Reactions in monocyclic system and multicyclic cascade systems.

The time dependent behavior described by a set of differential equations and additional
conservation relations derived from stoichiometry, build a mechanistic model of the
prototypical MAPK cascade (Table 3.3). As mentioned before, Table 3.4 defines
dimensionless variables and parameters. Following the same steps as in the case of
monocyclic system, dimensional model is further transformed into dimensionless model
(Table 3.5).
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A[X*]/dt = —ax+[X*][Px] + dx+[X* : Px] + kx[X : $*] —

—ay [Y][X*]+ (dy + ky)[Y : X¥]

d[X : §*]/dt = ax [X][S*] — (dx + kx)[X : S*]

d[X* : Px]/dt = ax=[X"|[Px] = (dx+ + kx=)[X™ : Px]

d[Y*)/dt = —al [Y* ][Py] VALY Pyl 4 kylY s X7 -
—az[Z][Y” (derkz)[ZiY*]

d[Y X*]/dt = ay [Y][X*] = (dy + ky)[Y : X¥]

d[Y* : Py]/dt = ay«[Y*][Py] — (dy+ + ky«)[Y* : Py]

d[Z*]/dt = —az+[Z*|[Pz] + dz=[Z* : Pzl + kz[Z : Y*]

d[Z Y*]/dt = az[Z][Y*] — (dz+kz)[z Y]

d[Z* : Pz]/dt = az«[Z*][Pz] — (dz+ + kz=)[Z" : Pz]

Conservation relations:

[X]lr = [X] + [X*] + [X : S*] + [X™ : Px]| +[Y : X*]
[S]r = [S] + [S*] + [X : S*]

[Px]r = [Px] + [X* : Px]
Ylr=[Y]+[Y*]+[Y : X*]+[Y*: Py] +[Z : Y]
[Pylr = [Py] +[Y™ : Py]
Zlr=1Z]1+[Z*]+[Z:Y*|+[Z2*: Pz]

[Pzlr = [Pz] +[Z7 : Pz]

Table 3.3: Kinetic equations comprising the mechanistic models: monocyclic system
(green), addition for bicyclic system (magenta), addition for tricyclic system (blue).

3.3 Design parameters

Steady-state analysis identifies dimensionless Michaelis-Menten constants, which have been
shown to determine the most important features of steady-state responses. They are in
turn nonlinear combinations of the dimensionless kinetic rates and as such they constraint
the allowable ranges of parameters for desired dynamic performance. This relationship is
the important link between dynamic and the steady-state characteristics.

Furthermore, the parameter o, represents the activation potential of the first cycle
and describes the balance between activation and deactivation of the first kinase. It has been
shown that in special case, where all the corresponding parameters of the upper and lower
branch in the covalent modification cycle are the same and «, =1, the system is at or very
close to its inflection point (44).

Concentration ratios emerge from transformation of the system into dimensionless
form, and thus will be analyzed as parameters of the system.
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Model Concentrations Kinetic Concentration Michaelis-Menten Activation
constants ratios constants potentials
~ ~ ~ ~ SIX
o= [X] ax ;=a_X[X]T SIX —[S]T ~ dx+kx ay =kx—p
[X], k.. [X], Kx =— PR
ax
X = [X ] (;x = k[X]T = i3 Ky = C}X“Fl
(X1, B (X1, X ==
ax’
£ -
g S = 5] dx = d—X
= [S], kx*
U ¥
S s = LS ] dx =%
§ [S1, kx*
ZO x:s*:=[X:S*] /;x1=k—x
[S]T kx*
_ [A]
g R,
:;; *
b - [X :P]
1Py =—
3 AR,
o ~ ~ ~
fa) = Y] Y =—Y[Y]T XY —[X]T ~ dy+ky ky pX/Y
Y1, ¥ Y1, Ky =— Oy =——"Fw
ay Y" o
£ F Y] Ny =_Y[Y]T By :=—[PY]T k . &y"+/;y
£ (Y1, v Y], y=—
b ar’
5)\ . * - d
= y:x*=[Y'X] dy =L~
g\ [X]T kxx
= P - d.
(= Py = [A] P
1B, k.
[Y':B] -k,
Y ipy= ky =—-
"R, Y
X
~ k..
ky =1
kX‘,
= —[Z] ;lz = a—Z[Z]T Yz . —[Y]T ~ &z+ /;z ];z pY/Z
(Z], k. [Z], Kz=— e
az z
»_ 2] az .=E[Z]T p = P ) By dr+kz
(Z], k.. [Z], Z=T=
az
Z:y*.=[Z:Y] ‘}Z;d_z
[Y]T kx*
P ~ d..
LA 0y
[P,], k.
Z=[Z :P,] l;z.=k—z
[P, ], kx“
~ k..
kz =%
kx*

Table 3.4: Definition of dimensionless variables and parameters.
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Transient model: Steady-state model:

da” /X o+ 5%} + pPX X (A fa  px} — axeapx) Hdy + )y 2} — avaty 0={r:s") - i
d{(r‘%} =axzs* — (dx + kx){z:s*} 0={z":px}— ﬁ
7(1{”7(1:"\’} =ax*x*px — ((iX’ + 1){z* : px} 0=ax{zr:s"} —{z* :px}
% :*ﬂX/Y/;’Y{yiI*}+PI)V/Y(JYx{y* ipy} —ay=y*py) +(d~z+l~€2){z:y*}7{zzy*z ():yI*7R'§'{y:(E*}
My} = Gyya* — (dy +hy){y: 27} R A R
—d{yd;py} =ay-y*py — (dy* + ky+){y* : py } O=ay{y:z"} —{y" :py}
4= = Y/ 2k y* ) + pP2/ 2 (dge{z* i pz} — az-2"p2) 0= 2y — Kp{z:y*}
1{z:y™ ~ 7 7. " N * z*

M=) — gy — (dz +kz){z:y*) 0={y":pz} - 7,5~
—(1{2(1;7’7'} =ag2*py — (kze +dz){z* : pz} 0=az{z:y*"} —{y" :pz}

Conservation relations:
0=1—a—a*—p5/ Xz s} — pPx/X{z* . px} —{y: 2*}
0=1—s—s"—{z:s*}
0=1-—px —{z* : px}
0=1—y—y* —p* Y {y:a*} = p/Y{y* ipy} —{z:9"}
0=1-py —{y" :py}
0=1—z—z*—p¥/2{z:y*} — pFz/Z2{z* . py}
0=1-pz—{z" :pz}

Table 3.5: Dimensionless mechanistic models: monocyclic system (green), addition
for bicyclic system (magenta) and addition for tricyclic system (blue).

3.4 Design criteria

Several criteria have been considered to assess signal transduction properties.
Ultrasensitivity (Fig. 3.3A) and gain amplification (Fig. 3.3B) are steady-state criteria, whereas
rise time (Fig. 3.3C) and decay time (Fig. 3.3D) are transient criteria.

3.4.1 Ultrasensitivity

Signaling pathways with ultrasensitive input-output characteristics convert gradual changes in
all-or-nothing type decisions. This property is defined as the response of a system that is
more sensitive to the input concentration than a normal hyperbolic Michaelis-Menten
response. For instance, to increase the reaction rate 9-fold from 10% to 90% of the
maximum activation, a typical Michaelis-Menten response requires 81-fold increase in input
concentration. An ultrasensitive response should need less ligand concentration change to
accomplish the same. The degree of ultrasensitivity depends on the size of the input window
within which the response changes from nothing to all.

The ability of signaling modules to produce ultrasensitive response has been observed
experimentally, and many physiological phenomena such as cancer progression and
morphogenesis are associated with it (see, e.g. (I11)). Several mechanisms can lead to
switch-like stimulus-response curves: cooperative allosteric effect of multisite protein (114),
saturation of enzymes (44) and positive feedback (I15). When combined with negative
feedback loop, ultrasensitive modules can lead to oscillations (93), but these modules make
system more robust against stochastic fluctuations (46).
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Figure 3.3: Design criteria. (A) The ultrasensitivity coefficient 1, provides a measure
of the sensitivity of output activity to changes in input signal activity, at steady state.
(B) The amplification gain I' is a measure of the strength of the response to a given
input level, at steady state. (C) The rise time 7, is a measure of the speed at which
stimulation is transduced. (D) The decay time 7, provides a measure of the speed at
which an activated state vanishes upon canceling the stimulation.

Goldbeter and Koshland (44) introduced a quantification of ultrasensitivity in signaling cycles
based on the similarity of the ultrasensitive response with the sigmoidal (Hill) kinetics of
allosteric proteins. They quantified ultrasensitivity by the apparent Hill coefficient n, of the
output response as

B In(81)
(@) -In(@)’
where the variables «)’, a; are the activation potentials of the signaling kinase required to
achieve 10% and 90%, respectively, of the maximal activation of the output (Fig. 3.3A):

a0’ (@) =0.1x lim o' (a,) (3.26)

(3.25)

H
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al 0" (@)=09x lim o () (3.27)

where @ represents the last activated kinase in the system, o" € {x",y",7 }.
The larger the apparent Hill coefficient in Eq. (3.25), the more ultrasensitive the cascade.

3.4.2 Amplification

The amplification gain in signaling modules defines a measure of response strength. It is a
relevant biological characteristic because the response produced by a signaling pathway
must exceed a certain magnitude in order to trigger downstream reactions. However, a
very large amplification may not always be warranted for a signal to be transmitted to its
final target.

The amplification gain is defined as the ratio of activated substrate concentration to
input concentration at steady state. We consider that the relevant input concentration
accounts for the active form of the receptor, either free or in the complex with the kinase
(Fig. 3.3B).

3.4.3 Signaling times

Signaling time is the time needed for an output to reach a certain threshold with respect to
a reference state after input activation. This is an important characteristic of signal
transduction pathways, and short signaling time has been proposed as a desirable biological
characteristic in these systems (112, 116). The signaling time also depends on the input
activation levels. We define this characteristic time as the time from the initial state to 90%
of the corresponding steady state for a step change in the input signal (Fig. 3.3, C and D).
Specifically, we consider the signaling time in two different cases:

* The rise time T, — a measure of how fast an activation signal propagates through a
cycle. In this study, we specifically define it as the time needed to reach 90% of the steady-
state substrate activation in response to sustained step activation of the input, starting from
the ground state (Fig. 3.3C):

7.0 (1,)=09%xw (r,), with © (0)=0, (3.28)
where the coefficient 0.9 denotes that the system needs to reach 90% of its maximal
activation @ and the ground state corresponds to the no-signal case. Note that this
definition of signaling time differs from the one in (112), which corresponds to the average
time needed to activate the substrate. The latter definition cannot be considered here since
it grows to infinity in the case of a permanently activated pathway.

* The decay time 7, — the time needed for the substrate activity of interconvertible
kinase, starting from a stimulated state ' (0), to decrease to within 10% of this initial
activity after the stimulus has been removed (Fig. 3.3D):

7,:0 (1,)=0.1x0"(0), with ® (0)=0". (329)
The above definitions assume step inputs. Alternatively, one could consider
exponential, impulse or rectangular inputs, which would require redefining Eq. (3.28) and Eq.
(3.29).
According to our definition of inputs, we can use two different formulations of the
fraction of inactive receptor, namely:
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m={1’ 7=0 (3.30)

0, 7>0
and
sz O T=0 (3.31)
1, >0

The event of the tuning on/off the receptor is assumed to occur under very fast kinetics (i.e.
v =1000) and in the two cases of different inputs it can be defined as:

ds

—=-Vs 3.32

e (3.32)
and

ds

—=vs 3.33

I (3.33)

We incorporate Eq. (3.32), when analyzing signaling rise time and Eq. (3.33), when analyzing
signaling decay time, into transient model.
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Chapter 4

Optimal Design for Ultrasensitivity

>
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=z

Our computational framework for optimal design is wrapped into Simulation and
Optimization Collection — SOC (117), a collection of C++ classes for definition and solution
of simulation and optimization problems. DAEOC is the main exploited class and it serves
for the definition and numerical solution of optimal control problem in differential-algebraic
equations (DAEs). In DAEOC, the control profiles are approximated by Lagrange
polynomials (control parameterization) to yield a finite-dimensional optimization problem
with parametric DAEs in the constraints.

The class DAEOC allows the definition and solution of optimal control problems with
index-1, multistage, nonlinear DAEs embedded that conform to the following general
formulation:

(D
dolx (t,(cj)),x(j)(t,(cj)),y(j)(t,((j)),u(j)(t,((j)),p,t,(cj)]A

_ min il
w0 (1), Y
At(”E[AtU)’L,AtU)’U], s
pelp”.p¥1

subject to:
gilx @)V G @) pt ", ==z 0ii=1n,

k=1,..nY
with the following initial value problem in DAEs in the constraints:

(D)
FOlxe 0.2,y @).uV @), p.1=0.Vt € (1§ 1)), j =1....om,,

(D)
GOlx (@), x(t).y(@$).u @), p1=0

.(-D NO)]
j j-1 1) (-1 1) ¢ (j-1 j i) (j i) ((j i) ((j .
GPLx  (ID. AV D @)V ) ) @), p1= 0. = 2.0,

(-1
§ nsj
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where 1, denotes the number of modes, n) the number of stages in the | mode, and n,
the number of (equality or inequality) constraints. In this formulation, x”and y’ stand for

the differential and algebraic state variables, respectively, in the mode |; 4, for the
(infinite dimensional) control variables in the " mode; p, for the time-invariant parameters;

and 7\/), for the k™ stage time in the | mode. The numbers of state variables n'/’, algebraic
variables n§;/), control variables 1!/’ and control stages 1"’ are allowed to change from one

mode to the other. Continuity of the differential state variables is automatically enforced
from one time stage to the next in a given mode.

The solution of such optimal control problems relies on the parameterization of the
infinite-dimensional control profiles u(f) using Lagrange polynomials. For flexibility, the
order of the Lagrange polynomial used to approximate each control variable can be set
separately, and different orders can be used from one mode to the other. Continuity of the
control variables at the time stages of a given mode can also be enforced during the solution
process.

The organization of the framework, considering top-level user functions, is
demonstrated in the Fig. 4.1.

Myfunction Residuals

- Time stages + Residual functions

+ Objective function « Corresponding derivatives

« Constraints and sparsity-pattern functions

specifi

- State variables
« DAE model Options
» User parameters
- Time stages « Available solvers for
- Control variables (optional) different computational
- Time-invariant paarmeters tasks

- State functionals
« Optimized stages
» Optimized parameters

Solve

« Allocate new DAEOC problem
- Calculate state trajectories
+ Solve

Figure 4.1: Computational framework for optimal design.

Systems of DAEs that build the models of observed signaling modules are both sparse and
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stiff. The sparsity pattern comes from the fact that time derivatives of state variables depend
only on a small number of other state variables. Considering the parameter ranges of six
order of magnitude again brings the stiffness issues, so appropriate solver should be chosen.

Ideally, the optimization problem with embedded dynamics should be solved with a
deterministic global optimization method. Local optimization of variables was carried out
from the large number of random starting points (multi start). The local optimization was
carried out with the nonlinear programming (NLP) solver SNOPT (118), which implements
a sequential quadratic programing (SQP) algorithm (80). SQP is one of the most effective
methods for nonlinearly constrained optimization and it generates its steps by solving
quadratic subproblems. SNOPT terminates each local optimization when a Karush-Kuhn-
Tucker point is reached, to within a numerical tolerance 10°. Local optimization from a
large set of random initial parameter values was used and the best optimum was taken as
the global optimum. As a check of convergence, we required this global optimum to occur
multiple times starting from different initial conditions.

We have used the solver DSL48S (119), which is part of DAEPACK (120), for solving
the initial value problems in DAEs. This package is particularly suited for large-scale
problems. DAEPACK is also used for consistent initialization and for calculating first-order
parametric sensitivities and for all the necessary differentiations (of the model objective and
constraint functions).

4.2 Optimal design for ultrasensitive monocyclic system

The ultrasensitivity of covalent modification cycles has been studied extensively, since it was
first discussed by Goldbeter and Koshland (44). Their classical results suggest that a
monocyclic cascade can display ultrasensitive responses even when the interconversion
steps follow Michaelis-Menten kinetics. Here, we perform inverse sensitivity analysis in
order to identify the subdomains of the parameter space that lead to ultrasensitive
responses.

The calculation of apparent Hill coefficients in complex signaling cycles can be
computationally expensive, especially considering that the study of design criteria involves
exhaustive parameter search. To automate the computations, the problem can be
reformulated and rearranged as a set of DAEs in a,, using numerical continuation (121).

Then, steady-state model Eq. (3.16-3.21) is differentiated with respect to a,:

O=d{x35*}+ Kx (dx* +p5/x d{X3S*}+pPX/X d{x*3px})

- 4.1
da, (K x+x)? da, da, day
0=d{x :pX}_ _ Kx*_ dx 42)
da, (Kx+x ) day
O=d{x :pX}_aXd{x:s}_{x:S*} (4.3)
da, da,
l=x+x +p" {xis 1+ p% {x  p,} (4.4)
1=E+s_*+{x:s*} (4.5)
1=py+{x 1 py}. (4.6)
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The values of @) and «; are identified via Eq. (4.1-4.6), e.g. using state event detection
techniques (122).
The compact notation of the steady-state model is represented as:
G(&,le,q, P) =0, (47)
with the parameters that explicitly appear in this formulation and which are linear

combination of model parameters: q :=( IN(x IN(x* ).

We measure how the input signal s* affects the relative concentration of protein in

active state x . We identify the dimensionless Michaelis-Menten constants Kx, Kx* and

SIX Py/X

the concentration ratios p”*, p as parameters responsible for the coupling of the

network. First, we observe how ultrasensitivity is determined by the values of Kx and Kx
for fixed values of p** and p™'* (Fig. 4.2).

A B nH C nH
100 100 Iy
10 8
] oo 8
Kx 1 Kx 1 g
4
0.1 0.1 3
201 ; 001l ’ 1
001 041 1 10 100 00101 1 10 100 001 01 1 10 100
Kx Kx Kx

Figure 4.2: Landscape of Hill coefficient values n,, versus dimensionless Michaelis-

Menten constants Kx and Kx for two different values of concentration ratios: (A)
pS/X _ pPX/X =102 , (B) pS/X _ pPX/X =10 ’ (C) pS/X _ pPX/X -1.

This analysis is in good agreement with main conclusions of Goldbeter and Koshland,
namely:
. Ultrasensitivity is promoted by low values of dimensionless Michaelis-Menten

constants Kx and Kx'.
. Ultrasensitivity is only feasible when the total concentration of activating enzyme
[S], and the total concentration of deactivating enzyme [P, ], are small compared to

Py/X

the total concentration of the interconvertible protein [X],, i.e. p** and p"™* <<1.

«  The system response is symmetric if: Kx = Kx' and p*, p""* = 0.
A number of studies have since elaborated on these results (123, 124). We propose to
study this property using the inverse sensitivity approach. To determine the optimal values

of dimensionless Michaelis-Menten constants { Kx , Kx* }, the following optimization
problem is considered:

find Kx,Kyx that P,
maximize n,, Eq. (3.25)
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subject to steady-state model, Eq. (4.14.6).

The parameters Kx and Kx are taken in the range [107,10%], which was found to be
wide enough from comparisons with larger parameter ranges. Moreover, following the
observations in Fig. 4.2, the concentration ratio space is set to {p**, " *}&€[107,1].

The mathematical formulation reads:

In(81
max, i ®)
q.ay .0y ln(OtX )_(aX)
subjectto 2845 L 96§ hca, <a”, G(E©).0,q,5)=0,
0§ da, doy *

x () =0.1x"(a), x(ay)=09x" (%),

10 90 L -2 2
Osay =ay=a , 107 =<q=<10".

As noted, initial conditions £(0) are determined from G(£(0),0,q,r)=0. The two latter

equations give x (0)={x :p,}(0)=0 and p,(0)=1; the remaining initial concentrations

x(0), s°(0) and {x:5 }(0)depend on the kinetic constant Kx and concentration ratio p**
only, and are given by:

0=x(0)2 + (K x+ p** =1)x(0) - K x (4.8)
(x5 0)= 1220 (4.9)
0
5 (0)=1-1730) (4.10)
0

The results, which are given in graphical form in Fig. 4.3, lead to the following observations:
* Significant ultrasensitivity (n,, >6) can only be achieved i) for values of dimensionless

Michaelis-Menten constants Kx and Kx* lower than 10" and ii) for small values of the

SIX Py/X

two concentration ratios p°", 0¥ <<1.

* Ultrasensitivity can accommodate higher fluctuations in phosphatase level (p”* <0.5)
than in activating enzyme level (p** <0.1).

The first observations is not a new result for it was suggested as a design criterion for
ultrasensitivity already by (44). On the other hand, the interplay and relative effect of the
activation and deactivation steps constitutes a new observation that follows from the
proposed optimization methodology. In particular, this result also suggests that
overexpression in activating proteins, such as receptors relative to target kinases, might lead
to (pathological) loss of ultrasensitivity.
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dimensionless Michaelis-Menten constant Kx* (right plot).

4.3 The longer, the better: Optimal design for ultrasensitive tricyclic system

Early work on modeling these cascades revealed that they are capable of displaying switch-
like activation of the third level kinase (MAPK) in response to activation of the top-level
kinase (MAPKKK), without including any cooperative kinetic mechanism (I | I). The ability of
an interconvertible enzyme cascade to generate an ultrasensitive response is important for
the regulation of the various processes under control of the MAPK pathways. Ultrasensitive
systems will be insensitive to small fluctuations in stimuli, with no response elicited until the
threshold is crossed. With a hyperbolic response, the cell partially responds to any change
in stimulus level. Thus, all-or-none responses of ultrasensitive cascades are advantageous for
regulating processes such as cell differentiation or division.

Coupling in the tricyclic signaling networks is occurred through the formation of
kinase-kinase complexes. The concentration of these complexes, and consequently the

strength of interactions, are determined by two classes of dimensionless parameters: i) the

Y

ratios of concentrations of the first to the second stage kinases o™ and the second to the

third stage kinases of the cascade p"’”, and ii) the affinities of complex formation, i.e. the

dimensionless Michaelis-Menten constants of the three kinases Kx, Ky, Kz.
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Figure 4.4: Maximum Hill coefficient n,, of tricyclic cascade system, for specified

concentration ratios p*",p"” and corresponding Michaelis-Menten dimensionless

constants Ky and Kz. (A) p** =107, (B) p** =107", (C) p** =1.

The ratios of phosphatases to their substrate kinase concentrations were fixed at { o™,

o™, p™*} ={0.1, 0.1, 0.1} and their dimensionless Michaelis-Menten constants at {Kx",
Ky, Kz }={0.1,0.1, 0.1}.

As in previous subsection, we perform inverse sensitivity analysis in order to identify
parameter landscape that leads to ultrasensitive response. The problem is structured as:

find Kx,Kv, K7 that (P,)
maximize ultrasensitivity n,,, Eq. (3.25)
subject to steady-state model,

X 0?3 €[0.01,10]. The focus is to determine how the input signal

for given values of {p
s* affects the relative concentration of the activated protein of the last cycle 7.
We analyze the cases with p** fixed to the three different values: 0.01, 0.1 and |

(Fig. 4.4). The graphs for the Michaelis-Menten constants which will bring the system to
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maximal ultrasensitivity, display almost the same trends in Fig. 4.4A and Fig. 4.4B. The only
effect that different values of concentration ratio have is reflected on values of n,,, which is

slightly higher if p** decreases. In both cases, the global optimum is placed approximately
around the point {p*", p"*} = {3, 6}. Fig. 4.4C though clearly shows the significant
decrease in the value of n,, still preserving the similar trends for Michaelis-Menten
constants.

In order to achieve values of n,, > 6, the system should operate in the region of 0.5 <
p" < 10 and 0.5 < p"# < 10. Furthermore, the best possible combination of kinase
affinities can be achieved when the first kinase is saturated and the other two are

unsaturated by their target kinases. Interestingly, the Michaelis-Menten constant Kx keeps

the minimal possible value along the whole concentration ratio space (Kx = 0.l), again
suggesting the obvious sensitivity of the pathway to the upstream activator (data not
shown).

4.4 Step back: Optimal design for ultrasensitive bicyclic system

Using the same ideas as in the previous sections, we further explored the optimal design for
the ultrasensitive bicyclic cascade. The purpose is to complete the analysis and to make an
optimal design bridge between monocyclic and tricyclic systems.

Following the same patterns as before, we fixed the ratios of phosphatases to their

substrate kinase concentrations at { p™'*, p®"} = {0.I, 0.1} and their dimensionless

Michaelis-Menten constants at {IN(x*, IN(y*} = {0.1, 0.1}. We formulated the optimization
problem in order to get the best possible combination of kinase affinities, for the whole

concentration ratio space. The results obtained by varying p** and p*" in the range

[0.01,10], while optimizing the rate constants IN(x and I~(y in the range [0.1,10], are shown
in Fig. 4.5.

n, Kx Ky
10 10 10
10 10
5
1 4 1 1
SIX
p X s ] S 1
0.1¢ 0.1 0.1
2
0.01 1 0.01 0.1 0.01 0.1
0.01 0.1 1 10 0.01 041 1 10 0.01 0.1 1 10
XY XY pXY

Figure 4.5: Maximum Hill coefficient n,, of bicyclic cascade system, for specified

Xy

concentration ratios p**, p*" and corresponding values of Michaelis-Menten

dimensionless constants Kx and Kr.
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This time, region of the global maximum is in between 0.0l < p** < 0.1 and | < p*" < 10,
and as before the first kinase should be saturated and the second should be unsaturated
with its target kinase. Unlike it was the case in the tricyclic system, first-level kinase affinity
does not keep the lowest value in the whole concentration ratio space. The values of ny
produced that way are not superior if compared with the corresponding monocyclic
cascade. This suggests that, even if the optimal design dictates the certain arrangement, it
does not necessarily mean that the overall improvement of ultrasensitivity is satisfied.

4.5 Modular differences and similarities

The ability of signaling pathways and other enzymatic cascades to generate a switch-like
response through ultrasensitivity has been widely debated in recent years (I 11, 114, 123-
126). However, the idea remains attractive as a mean of regulating cellular responses to
stimuli, and genetic circuits capable of displaying Hill coefficients up to 7.5 have been
constructed (127). Therefore, there should be increasing interest in the future in the
rational design of genetic circuits and further quantitative analyses of existing signaling
pathways with increasingly sophisticated experimental tools. However, the rational design
or analysis of an ultrasensitive network requires an understanding of how the different
network components couple together and interact. Here, we have systematically explored
the parameter space for simple ultrasensitive cascade networks and studied their emerging
properties when all the interactions are explicitly included. The conditions shown for global
maxima in the Hill coefficients for tricyclic cascade models are not similar to conditions in
single cascades. The minimum ratio of kinase concentrations and most saturated kinase
affinities resulted in Hill coefficients of less than three. This demonstrated the importance of
accounting for the formation of intermediate complexes and considering the actual network,
rather than just the core module of the network.

4.6 Optimal design as entry point for sensitivity analysis

As we have concluded from this section, optimization techniques gave precise answers on
how to design signaling modules in order to achieve maximal ultrasensitivity. Problem
solving in steady state was not computationally very expensive, providing the parameter
space was relatively small.
Proceeding toward more challenging tasks, such as optimal design in dynamic regime,

we encounter a larger number of parameters. The questions that arise are:
Are all the parameters equally important?

*  What are the key parameters that drive certain behaviors?

*  Are there any parameters that we can neglect when doing parameter estimation?

*  What are the relations between different parameters?
Also, very important: are there some clear patterns for parameter values that drive the
system to have optimal behavior. All this and much more can be addressed using global
sensitivity analysis techniques.
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We follow the idea from (96) and attribute semi-quantitative description of Michaelis-
Menten constants as one of the three forms: saturated (IN{ = 0.1), mildly saturated (IN( =1),

or unsaturated (K = 10). Their simulation results are aligned with our results obtained
with the optimization approach, therefore the derived conclusions still hold.

For the demonstration purposes, the simulations of our monocyclic and tricyclic
models with described values of Michaelis-Menten constants are presented. Setting the
parameters of monocyclic system into predefined arrangement give the notable
ultrasensitivity only when the system operates close to saturation (Fig. 4.6)

0.9
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x* 05 Ky =1 n,~1.84
o K7 =10 w1, ~ 1.57
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Figure 4.6: Ultrasensitive responses of monocyclic system, with different values of

dimensionless Michaelis-Menten constant Kx, and fixed Kx = 0.1, p** = p"* =

0.1.

Considering all possible combination of the defined Michaelis-Menten constants (27
combinations in total) led to similar findings about the significant enhancement of
ultrasensitivity in tricyclic model, as well as different design rules. Fig. 4.7 summarizes all n,,
> 5 with the sets of kinase affinities that generate these maximal Hill coefficients.

Having in mind the conclusions that monocyclic system needs to be saturated and the
first kinase in multicyclic system should be saturated, whereas the others should be
unsaturated by their target kinases, we proceed to our next investigation which aims at
identifying the important kinetic parameters that can ensure satisfying ultrasensitivity.
Furthermore, Table 4.1, which summarizes maximal values of Hill coefficient for each of 27
combinations, provides initial idea about the critical parts for ultrasensitivity in tricyclic
system. Without any dilemma, Michaelis-Menten constant attributed to the first level of the

signaling cascade Kx, influences the value of Hill coefficient the most. Michelis-Menten
constant attributed to the second cascade level Ky follows in the ranking. The only
exception from this sequential rule is that the combinations with {Ky, Kz} = {10, 0.1}

seem to be less favorable than combinations with {Ky, Kz} = {l, 1}. Interestingly, the
whole pattern for ranking of these two parameters is preserved independently of the value

of [N(X
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Figure 4.7: Maximum Hill coefficient of tricyclic system (n, € (6, 9)), with the
corresponding sets of kinase affinities. Contours represent the maximum possible n
for each {p*", p"?} pair and ordinal numbers indicate the particular n, of the
contour. The set of kinase affinities that produce each ny, region are indicated by

Roman Numerals: | — {Kx, Kv, Kz} = {0.1, 10, 10}; Il — {Kx, Kv, Kz} = {0.1, 10,

I, M={Kx, Ky, Kz}={0.1, I, 10}; IV—{Kx, Kv, Kz}={0.1, I, I}.
Kz
0.1 / 10 0.1 I 10 0.1 I 10
2.46 3.38 | 3.65 2.12 2.75 2.92 1.97 | 2.55 2.71 0.1
4.09 | 5.6l 6.1 2.96 3.92 4.2 2.64 3.42 3.66 l Ky
484 | 659 | 7.15 3.34 4.38 4.68 | 291 3.79 | 4.01 10
0.1 I 10
Kx
2.87 1.84 .57 Monocyclic

Table 4.1: Maximal Hill coefficient from semi-quantitative analysis. 27 sets of
Michaelis-Menten constants for tricyclic system and comparison with monocyclic
system.
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Chapter 5

Sensitivity Analysis of Signaling Modules
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In order to gain insights about how robust the biological responses are with respect to
changes in parameters and which parameters are the key factors that affect the model
outputs, we have used software package sbtoolbox2 (128) as a base of our computational
framework for sensitivity analysis. Sbtoolbox2 operates on MATLAB and it is specialized for
the creation and analysis of biological models. Models can also be imported and exported in
Systems Biology Markup Language (SBML) (129), which increases the portability and
generality of all studies. In its wide range of analysis tools, sbtoolbox2 offers different
algorithms for parameter sensitivity analysis, including the implementation of the Sobol
method (79).

A schematic of the framework is presented in Fig. 5.I. The main file prepares the
model and gives simulation specification (time, number of runs, etc.). The model is simulated
with each given parameter set and each property of interest is observed. The file containing
the implemented procedure for sensitivity analysis generates N = |0 000 pairs of random
parameter sets, chosen in the range [10°, 10’]. The matrices of output values for each
property are finally used to calculate first-order (Eq. (2.30)) and total sensitivity indices (Eq.
(2.31)).

We observed steady-state properties (amplification and ultrasensitivity), as well as
dynamic properties (rise and decay times), using dynamic representations of monocyclic and
tricyclic models (Table 3.5). The models were simulated for the time up to 10’ and the final
output values were considered to be at steady state. In case no steady state had been
reached after 107, the corresponding parameter set was discarded, assuming that such a
scenario is not of interest. Numerical integration of all models was done with MATLAB
function odel5s, particularly designed to solve stiff differential equations and DAEs, with the
relative and absolute tolerances of 10. Computational time for the study of monocyclic
system was approximately |3 hours, whereas for tricyclic system it could be as long as 10
days. The time cost accounts for the simulations done on a single desktop machine.
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Figure 5.1: Computational framework for sensitivity analysis.

5.2 Sensitivity analysis of monocyclic system

The dynamic model of monocyclic system (Eq. (3.8-3.14)) comprises five kinetic parameters

ax,ax',dx,dx ,kx and two concentration ratios p**,p"’*. Since we do not use any prior

knowledge about parameter values, we chose to fix them all to |. Defining the nominal
parameter set in such a way, we aim to perform unbiased identification of key parameters
(reactions) in the system. The variation of three orders of magnitudes on both sides around
the nominal parameter value, resulting in the variation range of six orders of magnitude, is
assumed to be representative enough to display parametric sensitivities. Both concentration
ratios are set to be equal to 0.l. This will be the base setting for our first parameter scan
and classification. Simulation of the system with chosen nominal set gives values for
amplification gain of 4.8, signaling rise time of 35.8, signaling decay time of 52.2 and Hill
coefficient of |.1. As seen in previous chapter, this value of Hill coefficient is situated far in
suboptimal region. Beside the purpose of the sensitivity analysis to identify the most
influential parameters, we will focus on identifying the parameter ranges that will push the
system from suboptimal to optimal regime. Namely, our objective is to further explore the
design that could allow system to achieve simultaneously high ultrasensitivity, high
amplification and short signaling times (fast response).
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5.2.1 Influence on ultrasensitivity

Fig. 5.2 shows total sensitivity indices (A) of all five parameters and scatter plots (B) give
direct relations between parameters and ultrasensitivity. Results suggest that the kinetic rate

ax has a significant influence on the change of Hill coefficient, closely followed by ax* . This
is expected, taking into account the knowledge from optimal design of this property. These

two kinetic rates are inversely proportional to Michaelis-Menten constants Kx (Eq. (3.20))
and Kx' (Eq. (3.21)), which are the key parameters that drive the ultrasensitivity in the

system. Scatter plots for ax and ax® clearly show how ultrasensitivity becomes highly
promoted when these two parameters are increased and how their low values restrict Hill

coefficient to be smaller than two. On the other hand, kinetic rates dx and dx*

insignificantly influence ultrasensitivity. Parameter kx is not taken into account, since it is in
direct relation with ay , which is used to determine value of n; (Eq. (3.23)).

Interestingly, random sampling of the parameter space performed during all
simulations statistically favors small Hill coefficient values between | and 2.
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Figure 5.2: (A) Total sensitivity indices and (B) scatter plots for each parameter of
monocyclic system, with respect to ultrasensitvity. The concentration ratios are set to

{p**,p""*} = {0.1, 0.1}. The nominal parameter set {ax,ax,dx,dx ,kx}={I, I, I, I,
I} determines the Hill coefficient n,, = I.1I.

57



5.2.2 Influence on amplification

As mentioned before, we define the amplification gain as the ratio of activated kinase
concentration to input concentration at steady state. If the relevant input concentration
accounts for the active form of the receptor (either free or in the complex with the kinase),
then the amplification gain of monocyclic system can be written in a dimensionless form as:

r:=W (5.')

where x* stands for the steady-state kinase activity corresponding to a given level of
signaling enzyme (Fig. 3.3B). From this definition, it is clear that high amplification is favored

by a small signaling enzyme-to-substrate ratio, p** << I. This also suggests that the models
that ignore intermediate complex formation tend to overestimate amplification (44). Since
all the concentration ratios, including p%*, are fixed to the value of 0.1 throughout this

chapter, the maximal possible gain that can occur in the system would be 10.

Given the diversity of signals in cells, one cannot just simply describe what would be
the expected signal amplification. Therefore, the scatter plots on Fig. 5.3B show interesting
natural system design: intermediate levels of amplification gain are less likely to occur.
Independently of the parameter values, the density is very high near the bottom and top
lines, but low in the middle of range of possible amplification outcomes. This means that, in
most experiments, the kinase gets either fully phosphorylated or stays fully
unphosphorylated after activation of the pathway — half phosphorylated kinases rarely occur.
Furthermore, this coincides with the ultrasensitive behavior of covalent modification cycles.

The scatter plot for parameter ax itself even reflects the shape of this none-or-all type of
steady-state response.

Parameters ax and ax* are again the parameters that have the highest influence on

amplification. For values of ax > |, the activation of the kinase is more likely to be a
dominant process. This will in turn accumulate more of the active kinase form x™ , resulting

in higher amplification gain. The same applies to kinetic rate kx, which directly leads to x
production. As expected, trend is the opposite for values of ax < | and in the case of
parameter ax" .

As in the case of ultrasensitivity, parameters dx and dx* have lower sensitivity
indices.
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Figure 5.3: (A) Total sensitivity indices and (B) scatter plots for each parameter of
monocyclic system, with respect to amplification. The concentration ratios are set to

{p**,p""*} = {0.1, 0.1}. The nominal parameter set {ax,ax,dx,dx ,kx}={I, I, I, I,
I} determines the amplification gain I'= 4.8.

5.2.3 Influence on rise time

Random sampling of parameter space revealed high variation in signaling rise time values,
from 10" s up to 10° s (Fig 5.4B).

Parameters ax’ and dx' are the most sensitive parameters with almost equal values

followed by parameters ax, dx and kx, which also have about the same values of total
sensitivity indices. This kind of classification of parameters into two groups underlines that
the kinetic rates involved in deactivating reactions are the ones that perturb the values of
the rise time the most. On the other hand, the direction of parameter change that
increase/decrease rise time can only be assessed based on statistical observation. According

to that perspective, high values of ax, ax and kx lead to a significant decrease in rise time.
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Figure 5.4: (A) Total sensitivity indices and (B) scatter plots for each parameter of
monocyclic system, with respect to rise time. The concentration ratios are set to {

0%, p™*} ={0.1, 0.1}. The nominal parameter set {CNIX,CNZX*,CNZX,ZZ’X*,]NCX} ={l, 1, 1, 1,
I} determines the signaling rise time 7, = 35.8.

5.2.4 Influence on decay time

Fig. 5.5A clearly show that only parameters ax* and dx influence the signaling decay time,
with scatter plots on Fig. 5.5B confirming this observation.

Since the decay time is measured after signal withdrawal, it is not surprising that only
the deactivating branch of the cycle plays a role in bringing the output of the system to the
zero-state. In other words, the simulation for signaling decay time is equivalent to the
simulation of the system that consist of only one set of Michaelis-Menten reactions. The
above mentioned is still to be proven and compared for all the cases.

In the same way as for rise time, high values of ax* and low values of dx* restrict
decay times to < 10°.
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Figure 5.5: (A) Total sensitivity indices and (B) scatter plots for each parameter of
monocyclic system, with respect to decay time. The concentration ratios are set to {

0%, p™*} ={0.1, 0.1}. The nominal parameter set {gzx,gzx*,glx,glx*,l;x} ={l, 1, 1, 1,
I} determines the signaling decay time 7,= 52.2.

5.3 Sensitivity analysis of tricyclic system

The role of sensitivity analysis in the exploration of the models of signal transduction was
quite recognized in recent years and MAPK cascade was part of these studies. Birtwistle and
coworkers were analyzing ligand-dependent responses of the ErbB signaling network and
their effects on ERK regulation (130). They performed linear sensitivity analysis by making a
|% change in each model parameter and looking at the fractional effect on each observable.
Their analysis was analogous to calculating the control coefficients and response coefficients
in metabolic control analysis. Zhang and Rundell were interested in the sensitivity to
parameter variation in T-cell receptor-activated Erk-MAPK signaling pathway model (78).
Here we perform the global sensitivity analysis on the isolated module of prototypical
MAPK cascade. Total sensitivity indices for all the parameters and all four properties are
illustrated in Fig. 5.6.

Defining that in nominal set of parameters all the values are fixed to | (as we have
done in the previous subsection as well), leads to the values of Hill coefficient 1.1,
amplification gain of 8.64, signaling rise time of 21.2, and signaling decay time of 232.13.

Computational cost of our analysis was approximately 10 times more expensive than
it was the case for the global sensitivity analysis of monocyclic system. Except for the higher
system complexity and larger number of parameters, this is mainly due to the fact that
random choice of parameters would not lead to successful system simulation; either the
system would not reach the steady state during the predefined simulation time, or the
numerical issues arising from the stiffness of the system would be more promoted. More
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than 10% of all simulations (combinations of parameters) needed to be discarded, as they
were not contributing to the calculation of the sensitivity indices. Nevertheless, this “failed”
set of parameters can potentially be used for further analysis, such as mapping the
conditions under which the system becomes “broken” — an analogy with the diseased state
of the cell. Since we aim to identify the conditions under which the system works
“perfectly”, we are closing this subsection.
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Figure 5.6: Total sensitivity indices for tricyclic system on (A) ultrasensitivity, (B)
amplification gain, signaling (C) rise and (D) decay times.

5.3.1 Influence on ultrasensitivity

Having in mind the observation from the optimal design (Table 4.1), one would expect that
the most sensitive part of the tricyclic model with respect to ultrasensitivity is the first level
of the cascade, precisely the parameters that are lambed into the Michaelis-Menten constant

i{x. Global sensitivity analysis does not underline this fact very clearly (Fig. 5.6A), but the
scatter plots of the most influential parameters (Fig. 5.7) confirm the design rules for
parameter values identified in the study of optimal ultrasensitive tricyclic systems. Indeed,

higher values of parameters ax and ax (and lower values of Kx and IN(x*) lead the first

level to the kinase saturation, and lower values of ar and az (and higher values of Ky and
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K 7) directly dictate that the second and the third level of the cascade are unsaturated with
the signaling kinase. Another important observation that arises from global sensitivity
analysis for ultrasensitivity is that the group of parameters directly related to Michaelis-

Menten constant Ky* has the overall most important ranking. In chapter 4, this parameter
was fixed to one value, which prevented the determination of its influence on the Hill
coefficient.
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Figure 5.7: Scatter plots of the most influential parameters on ultrasensitivity of
tricyclic system. The concentration ratios are set to { p**,p*",p"*} ={0.1, 1, 1} and {
e, P p™*} ={0.1, 0.1, 0.1}. The nominal values for all the parameters are set to
[, and such a set determines the Hill coefficient n, = I.1I.

5.3.2 Influence on amplification

As introduced before, the amplification gain is the ratio of activated kinase concentration to
input concentration at steady state. In the case of the tricyclic system, output of interest is

the last activated kinase in cascade, 7 . Following the definition for the dimensionless form
of amplification in monocyclic systems, we arrive to the one valid for tricyclic systems:
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Z*
U=———7 (5.2)

pp P
where ? stands for the steady-state kinase activity corresponding to a given level of
signaling enzyme (Fig. 3.3B). In order to keep amplification gain comparable in both mono-

and tricyclic systems, we fixed concentration ratios to the values: p**=0.1 and

X" = p"? =1. Thus, the highest level of amplification gain is kept to the value 0.

If we gather parameters into 3 groups according to the level of the cascade they
belong, we see that amplification of the signaling kinase 7  is mostly influenced by the
parameters directly related to its synthesis and degradation (Fig. 5.6B). The single sensitivity
ranking of each parameter in all the groups remains fairly similar within each level. These
rankings correspond to the ones revealed by global sensitivity analysis of monocyclic system
(Fig. 5.3A). Furthermore, the sensitivity indices gradually increase in each subsequent level of
the cascade. Important finding is that overall sensitivities are quite decreased, comparing
tricyclic with monocyclic systems. This might be yet one more incentive for having multiple
cycles versus one cycle as signaling mechanism, since the overall robustness of the system is
largely improved.

Intermediate amplification gains are again less likely to happen, and parameters az and

az determine the amplification level of 7 the most, followed by k2 and k7.
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Figure 5.8: Scatter plots of the most influential parameters on amplification of

tricyclic system. The concentration ratios are set to { p**, p*",p"*} ={0.1, 1, I} and {

o™ p"" o ={0.1, 0.1, 0.1}. The nominal values for all the parameters are set to

I, and such a set determines the amplification gain I' = 8.64.
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5.3.3 Influence on rise time

The classification of the key parameters influencing the dynamics of the tricyclic system is

not straightforward. Even though global sensitivity analysis pinpoints on parameters ar and

ky as the most influential ones, there could be also other groups of equally important
parameters for determining signaling rise time (Fig. 5.6C). We are underlining the six
parameters that are most likely to contribute to the low values of signaling rise time in Fig.

5.9. Those are three pairs of corresponding a and k kinetic rates at each level of the
cascade. Their high value is in a direct relation with fast signal propagation through the
cascade, also suggesting that information flow is downstream.
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Figure 5.9: Scatter plots of the most influential parameters on signaling rise time of
tricyclic system. The concentration ratios are set to { p**, """, p"*} ={0.1, 1, I} and {

o™, p""" p™*}=10.1, 0.1, 0.1}. The nominal values for all the parameters are set to
I, and such a set determines the signaling rise time 7, = 21.2.

5.3.4 Influence on decay time

It is striking that ax, dx and kx have sensitivities almost equal to zero, as it is the case for
monocyclic system (Fig. 5.6D). It is also obvious that parameters of the second cycle have

much more influence on decay time of 7 than parameters of the third cycle, indicating on
the gradual decrease of sensitivity by going down the cascade. We can observe that the
group of kinetic rates from the lower branches of each cycle (deactivation of the kinase) is
promoted with the highest sensitivity indices.

Scatter plots in Fig. 5.10 display the direct dependence of short signaling decay time
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with respect to high values of parameters a: of each level in the cascade. Introducing more

levels in the system architecture, parameters ky+ and kz: come forward as the influential
ones and their high value promote fast signal decay. Since these two parameters are directly
leading to accumulation of inactive form of the apparent kinase, the question whether the
same pattern would occur also in the first level of the cascade or isolated monocyclic

system if the parameter kx: were the part of the study, still remains open.
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Figure 5.10: Scatter plots of the most influential parameters on signaling decay time
of tricyclic system. The concentration ratios are set to {p**, ™", p"*} = {0.1, I, 1}

and { ™", p"",p"*} ={0.1, 0.1, 0.1}. The nominal values for all the parameters are
set to |, and such a set determines the signaling decay time 7,= 232.13.

5.4 Sensitivity analysis as prelude for dynamic optimal design

Table 5.1 summarizes the main results for global sensitivity analysis of monocyclic and
tricyclic system. The influence of at least two key parameters on each property is indicated
with the arrow, showing the direction of the change of parameter value that would lead to
optimal value of the property.

Red arrow in increasing direction suggests high values of parameters and blue arrow in
decreasing direction suggests low values of parameters in order to achieve desired system
performance: high ultrasensitivity, high amplification gain and low signaling rise and decay
times. With these results in hand, we are ready to proceed to more challenging tasks —
identifying design principles and parameter values that ensure the optimal performance.
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Monocyclic system
QY
)
N

Tricyclic system
oY
~

Table 5.1: Modular differences and similarities: global sensitivity analysis of
monocyclic and tricyclic systems. Red arrows represent the value on the upper bound
and blue arrows represent the value on the lower bound of variation range.
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Chapter 6

Optimal Design for Dynamic Properties

6.1 Optimal recipes for signaling times

The optimal performance of a signaling network or its integral part mostly depends on a
particular biological context. Typically, it is determined by a relationship between the size of
the network, the amplitude of the signal and its duration. Heinrich et al. posed an interesting
question of whether signaling cascades can respond with sharp signals, i.e., signals with short
duration and high amplitude (l12). Their model of interest included simple linear signaling
cascade and neglected the formation of intermediate complexes. Chaves and coworkers
further expanded the seminal study and demonstrated mathematical conditions for sharp
signals (67).

In this chapter, we first show that a simple system, consisting only of covalent
modification cycle, can simultaneously achieve the mentioned desired performance.
Furthermore, we identify the rules that lead a tricyclic cascade towards the system that
provides sharp signals.

6.1.1 Optimal design for signaling times under amplification constraints
in monocyclic system

In this subsection, we follow the inverse approach and formulate an optimization problem
to identify the kinetic parameter values that minimize the response time, while at the same
time satisfying a given amplification level I'. Separate formulations are considered for the rise
time 7, (P,) and for the decay time 7, (P;),

These optimization problems are formulated as follows:

find ax,ax,dx,dx kx  that (P,)
minimize rise time 7., Eq. (3.28)
subject to amplification gain I', Eq. (5.1)

transient model, Eq. (3.8-3.14)
and
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Figure 6.1: Dynamic responses of monocyclic system for different levels of
amplification. (A) Positive and (B) negative step function as the input. Fixed
amplification gain takes values from I' € {l, 2, 4, 6, 8, 9} respectively (direction of the
arrows).

find ax,ax,dx,dx kx  that (P,
minimize decay time 7,, Eq. (3.29)
subject to amplification gain I', Eq. (5.1)

transient model, Eq. (3.8-3.10, 3.33, 3.12-3.14).

The model parameters ax,ax",dx,dx",kx are all taken in the range [107°, 10°] subsequently.
Recall that the transient model was made dimensionless, and so a kinetic parameter whose
value is either at its lower bound 107 or at its upper bound 10’ reflects a very small or very
large value relative to other parameters. To confirm that this parameter range is large
enough to reveal the actual set of behaviors, we performed similar computations with wider
parameter ranges as [10°, 10°] (data not shown). It was found that the general trend is
conserved in that the parameters that were at their lower/upper bounds remained at their
bounds, and those taking intermediate values too remained intermediate; moreover,
optimization with wider parameter ranges only leads to marginal improvements in signaling
times. We also performed additional computations with more narrow parameter ranges as
[107% 10%], which again led to essentially the same trade-offs and minor differences in
signaling times.

The optimization routine was repeated for a range of amplification gain I" and for two
sets of concentration ratios: p** = p”* =107 and p** = p"* =10"".

Mathematically, these two optimization problems read:
min T (P,)

p.7, "

subjectto  F,(&(7).5(1),p.r)=0, 0=s7=<7", £(0)=§,,
x(1,)-09x (z7)=0,
" -x(r")=0,
107 <p=<10°,

and

min T, (Ps)
P.7,

subjectto  F,(&(7),5(r).p.r)=0, 0=s7=7", £0)=§, ,
x'(r,)-0.1x"(t7)=0,
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I -x'(0)=0,

107 <p=<10°.
Fig. 6.2 displays the optimal signaling times as a function of the amplification gain I', together
with the optimal kinetic parameters CNIX,&X*,C}X,CNIIX*,INCX. Figs. 6.2A and 6.2C correspond to
operating regime p**=p”*=10" and Figs. 6.2B and 6.2D to operating regime
pS/X — pP/X =10—1 .
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Figure 6.2: Design for minimal signaling rise time 7, (A and B) and decay time 7, of
monocyclic system (C and D), subject to given amplification. Optimal signal propagation

times (left plots), corresponding kinetic parameters ;lx,glx*,&x,c}x*,/;x (middle plots)
and calculated Hill coefficient n,, (right plots) versus amplification gain I', for the

concentration ratio regime p** =p”* =107 (A and C) and concentration ratio
regime p** = p”*=10"" (B and D).
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Qualitatively, the optimization results seem to be very similar in both regimes. The feasible
range of amplification gains is much wider with the lower values of concentration ratios — as
expected from the theoretical analysis, Eq. (5.1). The rise time 7, (Figs. 6.2A and 6.2B) first

increases monotonically with I' for low amplification. Beyond a certain amplification
threshold, the rise time decreases monotonically with I, thus indicating that the system can
respond faster while achieving higher levels of amplification. This amplification threshold

depends on the concentration ratios 0** and p”*; it is close to I' = 40 in the operating
regime p** = p”* =107 (Fig. 6.2A) and around T = 3.3 in the regime p** = p”* =10"
(Fig. 6.2B). On the other hand, the decay time 7, (Figs. 6.2C and 6.2D) increases linearly

with the amplification gain I'. This is due to the fact that higher amplification leads to higher
concentrations in activated protein form, which in turn takes more time to return to
inactive state. Moreover, higher concentration ratios p** and p*’* lead to lower maximal
possible levels of free active protein and, consequently, decay times are almost 10 times
shorter in the regime p** = p”* =10"" compared to the regime p** = p”* =107 (Figs.
6.2B and 6.2D vs. Figs. 6.2A and 6.20).

Non-monotonic correlations between various objectives demonstrate the usefulness
of optimization methods to study signaling pathways in a systematic way. In order to better
understand these relationships, we investigate the combination of parameters that lead to
the minimum signaling times using optimization methodology. The results indicate that the
optimal values for certain parameters are on the extreme bounds of the variation intervals
for all values of the amplification gain, while the optimal values vary with I" for others.

Both dissociation rate constants dx and kx of the kinase complex X :S" into x and

x , respectively, stay at their upper bounds and the rate constant dx* of the phosphatase
complex X" :P, into x remains at its lower bound in all cases and regardless of the
amplification level I'. Particularly counter-intuitive is the finding that minimum response

times are not achieved when the rate of formation ax of the kinase complex X:S" is
maximum, which suggests that faster signal propagation with amplification is promoted by a

more unstable complex X:S° . These findings are in good agreement with the
computational results for a covalent modification cycle obtained in (69). It is also observed
that higher levels of amplification together with shorter rise and decay times are achieved

for an increasing value of the complex formation rate constant ax, which suggests that ax
is the primary determining parameter for minimal signaling times under amplification
constraints.

For sure, the choice of parameters would be determined by the relative importance of
the different objectives, as they have evolved in the system or designed in the context of
synthetic biology.

If we now compare our results from previous chapter, we see that sensitivity analysis
nicely predicted some of the parameter regimes in order to have minimal signaling rise and
decay times (Figs. 5.4 and 5.5). Even though we now combine signaling times with the
certain amplification level, there seems to be a correlation of design rules for amplification
on its own, with the cases when also other properties are taken into account. Namely, the

kinetic rates ax and ax' are identified as the ones that have the biggest influence on
amplification gain (Fig. 5.3). We hypothesize that the change of these two parameters in
optimal design for signaling times is due to the change of amplification gain level, whereas
the other parameters make sure that system transmits input signal very fast. This is done by
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having the minimal values of kinetic rate dx* and maximal values of kinetic rates dx and kx.
The same emerged from Fig. 5.4 and Fig. 5.5.

Nevertheless, monocyclic cascades designed to achieve minimal signaling times do not
promote high ultrasensitivity (Fig. 6.2 right plots). In these studies, the constraints imposed

on the kinetic parameters correspond to profiles of Kx and Kx* that can lead to maximal
n, =2. In the case of rise time (Figs. 6.2A and 6.2B, right plots), any loss of ultrasensitivity

occurs in the range of amplification where 7, is increasing. Hence, it is important to take

the signaling times and ultrasensitivity together into account when investigating the design of
signaling modules in cells.

6.1.2 Optimal design for signaling times under amplification constraints
in multicyclic systems

Using the same framework, we further analyze the optimal design for signaling times in
multicyclic systems. The optimization problem that aims at minimizing the rise and the decay
times in tricyclic (but also in bicyclic) systems, significantly grows in complexity and brings
many numerical issues. In this case, the decision variables set consists of |7 members, which
are presumably varied in the large range [10°, 10°]. Multi-modality becomes much more
obvious and it increases computational cost dramatically. In order to overcome some of
these issues, we first solved the problems within the ranges [10, 10'] and [10? 10%]. Such
an approach allowed to classify the parameters into three groups: i) the ones that stay at the
lower bound of the interval, ii) the ones that take intermediate values and iii) the ones that
stay at the upper bound of the varying interval. Interestingly, the patterns were consistent
regardless of the range. As expected, the optimal values of signaling times were smaller
when considering larger range. In the case of monocyclic system, going from the range [107,
10?] to [10?, 10°] did not improve the overall quality of signaling times and in the case of
bicyclic and tricyclic systems the improvement was for an order of magnitude (data not
shown).

Solving the problem (P;) for the minimization of rise time, subject to an appropriate
dynamic system representation (bicyclic and tricyclic systems) and amplification gain,
resulted into the design rules presented in Fig. 6.3. As it was the case in chapter 5, the
concentration ratios are fixed to the values: p** =0.1 and p*" = p"* =1. The first striking
observations are the quantitative and qualitative improvements of the optimal values of
signaling rise time in tricyclic system, with respect to the different levels of amplification
gain. Parabolic (concave) dependence is flattened out and the rise times are more than 300
times lower, compared to the rise time of monocyclic system. This is yet one more
advantage of the naturally occurring
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Figure 6.3: Design for minimal signaling rise time 7, of monocyclic, bicyclic and
tricyclic systems subject to given amplification.

architecture through the cascades. Therefore, not only that the response will be faster in
multicyclic systems, but also all amplification levels could be reached without losing the
transduction velocity.

The discussion about the kinetic rates, comparing differences and similarities for
parameter values across different system architectures, is summarized in Table 6.1. This
comparison is based on a qualitative analysis, whereas Fig. 6.3 summarizes the results of a
quantitative analysis. It is interesting to notice how the same patterns are preserved
regardless of whether the kinetic rates are compared horizontally (across the three
systems) or vertically (in each system separately, but across their different levels). For
example, the kinetic rates associated with the formation of the complex between the last
inactive kinase in the cascade and active kinase from the previous cascade level (or in the
case of monocyclic systems, the complex between the inactive kinase and signaling enzyme),

namely ax in monocyclic, ar in bicyclic and az in tricyclic system,
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Table 6.1: Modular differences and similarities: optimal design for signaling rise time
of monocyclic, bicyclic and tricyclic systems. Red arrow represents the value on the
upper bound of variation range, the blue arrow represents the value on the lower
bound of variation range and three dots represent intermediate values.

always have the intermediate values. Beside these parameters, the kinetic rates associated
with the degradation of the corresponding complexes in the second to last cascade level,

dx in bicyclic and dy in tricyclic system are at the upper bound. This again suggests the
instability of these complexes. However, the corresponding kinetic rates that degrade the

active form of the kinase in the same levels, ax* in bicyclic and ay* in tricyclic system are
somewhere in between the bounds of variation interval. Consequently, we can assume that
the two groups of parameters, that are on neither bound, are responsible to determine
different values of the amplification gain and the rest are ensuring fast signal propagation, as
we have hypothesized in the previous subsection for monocyclic system. Fast signal
propagation is occurring upon maximizing the forward reaction rates of the upper branch of
each cycle — the ones that convert kinases to their active forms — and minimizing all the
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other rates. This finding also suggests the one-directional information flow through the
cascade system.

6.2 The trade-offs and interplay

We finally arrive to the central question of this thesis: are there any trade-offs between
different system properties! Can signaling modules respond fast to the input signals, have
high amplification and high ultrasensitivity at the same time? Answers to these questions will
arise after solving optimization and multi-objective optimization problems in the following
subsections.

6.2.1 Optimal design for signaling times under amplification and
ultrasensitivity constraints in monocyclic system

The ability of monocyclic cascades to achieve a high Hill coefficient for small values of the
Michaelis-Menten constants is one of the basic findings of (44). However, under these same
conditions the system might exhibit excessively long response times, as well as poor
amplification capabilities. We investigate next whether a simple covalent modification cycle
can achieve fast signaling, high amplification and high ultrasensitivity simultaneously.

Previous analysis has underlined that ultrasensitivity strongly depends on the two

parameters Kx and Kx , which themselves are functions of five parameters of the dynamic
model (Eq. (3.22-3.23)).

The incorporation of ultrasensitivity objective together with response time and amplification
objectives can be done in either one of the two ways:

I.  Optimize the steady-state and transient kinetic parameters jointly and enforce the
constraints Eq. (3.22) and Eq. (3.23) directly. This requires accounting for both the
transient model Eq. (3.8-3.14) and the reformulated steady-state model Eq. (4.1-
4.6) in the optimization problem;

2. Optimize the transient kinetic parameters only, while enforcing an ultrasensitivity
target indirectly via constraining the values of Michaelis-Menten constants to fixed

values l;‘x, Kx' as:
C}x+l~€x—l~(x;lx=0 (6.|)
dx +1-Kx ax =0. (6.2)
The latter approach is considered next. It does not require the reformulated steady-state
model Eq. (4.1-4.6) in the optimization problem, and the constraints Eq. (6.1-6.2) are linear.
Note also that there remains flexibility in the choice of the kinetic parameters despite these

two constraints (3 remaining degrees of freedom out of 5). In particular, the same dynamic
optimization problems as before can be used, with the additional two constraints:

find ax,ax,dx,dx kx  that (P,)
minimize rise time 7., Eq. (3.28)
subject to amplification gain I', Eq. (5.1)
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target n,, Eq. (6.1-6.2)
transient model, Eq. (3.8-3.14)

and
find CNZX,CNIX*,CNZX,C}X*,/NCX (Ps)
minimize decay time 7,, Eq. (3.29)
subject to amplification gain I', Eq. (5.1)

target n,, Eq. (6.1-6.2)
transient model. Eq. (3.8-3.10, 3.33, 3.12-3.14).

The Michaelis-Menten constant l;x is set to 10? and the value of l;‘x is chosen in order to
meet a desired ultrasensitivity target n, € {3, 4, 6, 8, 10, 12, 16} (Fig. 6.4). The influence of

the amplification and ultrasensitivity constraints on the minimal signaling times is considered

in the operating regime p** = p”* =10"" and for kinetic parameters ax,ax',dx,dx ,kx
varying in the range [10°, 10°] (Fig. 6.5). From the section 6.1.l, we have learned that
operating in different regimes of concentration ratio space does not give additional
information about design principles. Accordingly, the following studies will concern one
isolated combination of concentration ratios, which will be representative enough to
capture the systems behavior.

pS/X = pP/X = ]0—1
1 My
16 =
12 —
0.1 110
~ 8
Kx 6
4 —
0.01 E 3
0.001 - w_,{KX,Kx*}

0001 001 01 1
Kx
Figure 6.4: Optimal design for ultrasensitivity in monocyclic system. Contour graphs

of Hill coefficient values n,, versus dimensionless Michaelis-Menten constants Kx and

Kx .

The optimal rise time 7, exhibits a non-monotonic relationship with respect to the

amplification gain and it increases with the Hill coefficient target for a constant gain. In
contrast, the ultrasensitivity requirement has a limited effect on the design for minimal

decay time 7,. The kinetic parameters ax and ax stay at their upper bounds and dx at
its lower bound in all cases (Fig. 6.5). On the other hand, the optimal values of the

dissociation rate constant dx of the kinase complex X:S° decrease significantly with

increasing n,, , unlike those of the dissociation rate constant kx
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Figure 6.5: Design for minimal signaling rise time 7, (upper plots) and decay time 7,

(lower plots) of monocyclic system, subject to given amplification and ultrasensitivity.
The amplification gain I is varied in the range [0, 9] and the Hill coefficient is chosen

in the set n,, € {3,4,6,8,10,12,16}. The concentration ratios are p** = p”* =107,

This is attributed to the fact that high ultrasensitivity requires small values of the Michaelis-
Menten constant Kx (since the value of Michaelis-Menten constant Kx' is fixed to 107),

which in turn requires that dx <<ax—kx (see Eq. (3.22)).

Perhaps the most striking finding from this inverse sensitivity analysis is that simple
covalent modification cycles can be designed in such a way that they achieve high
amplification and high ultrasensitivity, along with relatively short signaling times, on the

order of 10 to 100 times the characteristic time (kx)™' of the dissociation of the X : P,
complex. It has often been postulated that multiple cascades are needed to achieve multiple
objectives. Interestingly, our results show that even a single interconvertible cycle is in fact
capable of meeting several goals simultaneously.

6.2.2 Optimal design for signaling times under amplification and

ultrasensitivity constraints in multicyclic systems

Since there are no conceptual barriers for applying the same methodology to multicyclic
systems, we investigated next how they satisfy multi-objective performance. As an
illustrative example on how the optimization framework allows comfortable environment
for setting different research questions, we formulate the problem in a slightly different
manner:

find kinetic rates that (P,)
minimize sum of the rise time and decay time, Egs. (3.28-3.29)
subject to amplification gain I'

target n,, Egs. (6.1-6.2)
transient model.
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Here, we gather both signaling times and we minimize their sum. We have seen in the case
of monocyclic system that different rules should be applied to minimize each of these two
properties. In any case, the motivation to explore the design patterns of the systems that
simultaneously meet optimal performance for different properties makes this formulation
legitimate. Alternatively, one can assign different weight factors to each signaling time and
thus underline the non-equivalent importance of each objective, if needed.

To be able to compare the performance and design principles across different system
architectures, we use semi-quantitative description of Michaelis-Menten constants and
incorporate them directly to Egs. (6.1-6.2). We follow the rule: the first kinase is saturated
and the rest of them are unsaturated by their signaling kinases. This arrangement gives the
maximal Hill coefficient values of ~ 2.87 in monocyclic, ~ 5 in bicyclic and ~ 7.15 in tricyclic
system.

For example, the optimization problem for tricyclic system in a mathematical form
reads:

min Tt 7T, (P,)

P.7,. 7y

subjectto  F,(§(7).5(1),p.r)=0, 0=s7=7", £(0)=§,,
z2(r,)-097(z")=0,
F,(£(1).&(1).p.r)=0, 0=s7=<7", £0)=§,,
7 (1,)-09z"(t7)=0,
Tpp™ " -2/ (x")=0,
dx+kx=0.lax =0, dy+1-0.1ax =0,
dv+ky=10ay =0, dy +kv=0.lay =0,

c}z+/;z—1()c~lz =0, c}z*+/;z*—0.lc~lz* =O,
107 <p=<10°.

Solution of this problem was computationally less expensive than problems (P;) and (P,) for
multicyclic systems, given the fact that the parameter space is quite constrained. Fig. 6.6
displays the results. Once more, our results show the superiority of the multicyclic system
structure, as opposed to the monocyclic one. Even though the multicyclic systems exhibit
significantly higher ultrasensitivity, their times to response are still significantly lower than in
the case of monocyclic system. The more apparent difference between monocyclic and
bicyclic system is again valid, whereas the difference between bicyclic and tricyclic remains
minimal. Therefore, our results prove the functional superiority of a cascade versus a single
cycle composition. Given the fact that cascades found in prokaryotes tend to be much
shorter than those found in eukaryotes (34), our results could be widely applied on different
living entities.
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Figure 6.6: Design for minimal signaling rise time 7, and decay time 7, subject to

given amplification and ultrasensitivity: comparison of monocyclic, bicyclic and tricyclic
systems.

A qualitative comparison of the values of kinetic rates is given in Table 6.2. Unlike in the
previous subsection, the horizontal scan (across different system architectures) reveals the
same trends for every parameter. This is due to the fact that, clear requirements for
ultrasensitivity, imposed through the Michaelis-Menten constants, limits the degrees of
freedom during the optimization search. The way the problem is formulated predetermines
the optimal design. As discussed previously, an alternative formulation could include taking
into account both steady-state and dynamic representation of the system and solve them
simultaneously, thus allowing more flexibility in choosing the appropriate combination of
Michaelis-Menten constant that leads to a certain ultrasensitivity. In this case, it is important
to clearly state the reference point when comparing the three different systems. Imposing
one discrete level of ultrasensitivity as constraint on all three systems would not be so
relevant, because of the inherent differences in the systems performances. For instance, as
seen in chapter 4, tricyclic system always has a better performance than monocyclic system
in terms of ultrasensitivity, even when we compare the worst desirable combinations of
Michaelis-Menten constants.
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Table 6.2: Modular differences and similarities: optimal design for minimal signaling
rise and decay times and maximal ultrasensitivity of monocyclic, bicyclic and tricyclic
systems. Red arrows represent the value on the upper bound of variation range, blue
arrows represent the value on the lower bound of variation range and three dots
represent intermediate values.

6.3 Lessons learned from direct and inverse approach for parametric
sensitivity analysis

All the results presented in chapters 4-6 can be wrapped into a big bundle of parametric
sensitivity analysis. Approaching the same systems from different sides and addressing the
different questions with the same goal, we completed the challenging task of parameter
estimation for the optimal design. Beside the fact that our results contribute to quantitative
knowledge on mathematical and computational analysis of signaling networks, we have also
underlined the advantages of transducing the signals via cascades. A wide spectrum of
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system functions that could be observed in tricyclic system are not just more superior than
in the case of monocyclic system, but also the fact that the overall sensitivity indices for all
properties of interest are lower in tricyclic than in monocyclic system, suggests that the
system performance is more robust to parameter variations.

82



Chapter 7

Discussion and Outlook

7.1 Thesis summary

Mitogen-activated protein kinase cascade is one of the most studied cellular signaling
pathways. It plays an important regulatory role in controlling cell proliferation,
differentiation, cell survival and apoptosis, from yeast to mammals.

Systems biology literature accounts for a large number of studies of isolated MAPK
module, as well as the studies that include numerous mechanism external to the cascade.
Yet, a bundle of various questions about underlying principles of these networks still remain
open for research. This thesis pursued towards identifying the conditions under which the
MAPK module satisfies the demand for optimal system design. The optimality was defined
through the analogy with man-made systems for signal transmission. Namely, the criterion
accounts for fast signal propagation, large amplification and high sensitivity with respect to
the input signal.

Prior to analysis of the prototypical MAPK cascade, we imposed all our research
questions on the covalent modification cycle (referred to as monocyclic system), the integral
motif found repeatedly (usually three times) throughout the structure of MAPK (referred as
tricyclic system). This allowed for mapping of design patterns for the two signaling instances
and their comparison.

Our study began with the optimal design for the steady-state property
ultrasensitivity. Sigmoidal steady-state characteristic has been suggested as the preferred
pattern over the hyperbolic response. The ability of the signaling module to operate in a
truly all-or-none fashion has been explored both experimentally and theoretically. Setting
the problem of identifying the rules for maximal ultrasensitivity into the optimization
framework revealed new insights about the design of tricyclic systems that are not in line
with the findings in monocyclic system.

Continuing the journey in the direction for optimal design of signaling modules in
dynamic regime, we made a stopover and performed global sensitivity analysis. The aim was
to identify the most influential parameters for a given system performance. Such analysis
underlined the weak and the strong system nodes. Namely, we explored the way
parameters contribute toward the transmission of sharp signals — the signals with high
amplification, high ultrasensitivity and short propagation times. Modular analysis and
comparison resulted in an important observation: a system composed of multiple cycles
tends to be more robust to parametric uncertainty. Robustness of biological networks has
often been postulated as one of the nature’s design criteria. Our results quantitatively testify
how the transition of robustness of signaling modules travels from one system architecture
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to another. This work adds mechanistic insight to the contribution of key pathway
components, and thus may support the identification of biomarkers for pharmaceutical drug
discovery processes.

Finally, the last lap of the thesis elucidates the optimal design of signaling modules in
the optimal regime, under the predefined criteria for steady-state behavior. We assembled
the objective criteria as the mosaic of different system properties and investigated whether
there are any compromises that are forced on the system, to simultaneously achieve
minimal signal propagation times, maximal amplification and maximal ultrasensitivity. The
arrangement of enzymatic cycles into multistep cascades again demonstrated admirable
improvement in overall system behavior. Not just that the tricyclic system transduces the
signal faster, but the same signal has higher amplification and higher ultrasensitivity. The
benefit of assessing the research questions through optimization framework was a
prerequisite to enhance the comprehensive knowledge about the complex dynamics of
signaling modules.

7.2 Follow-up work and perspectives

Expanding the focus of analysis towards more complex signaling systems would result in
reconsideration of the methods used to survey research questions presented in this thesis.
Furthermore, congregation of all results produces a new starting point for further analysis.
In the next subsections, the possible extensions and similar applications of this work are
presented.

7.2.1 Timing matters for sensitivity

Among the many existing parameter sensitivity analysis approaches, global sensitivity analysis
is one of the widely used methods to obtain parameter sensitivities within a large region
about the nominal values. Sensitivity indices computed for persistent parameter changes,
which means that parameters are constantly changed over time. However, as the impact of
model parameters on the model output changes over time, time-dependent parameter
sensitivity analysis has been proposed to study the effect of parameter variation on model
output at different time (72). A parameter may have positive impact on the change of model
output at early stage, but its effect can switch from positive to negative due to the complex
interactions in the biological network. Therefore, one needs to know not only which
parameters are critical for affecting a model output, but also at which time point they are
important.

In chapter 5, we investigated the global sensitivities defining the arbitrary nominal
parameter set. Such a setup was leading the system to operate in far suboptimal region.
Chapter 6 brought forth the parameter values that accommodate optimal system behavior.
The question that appears is whether the sensitivity indices of the parameters identified in
chapter 5 still remain the same under the new conditions. More concretely, we are
interested to see whether the same conclusions sustain along the wide spectra of possible
scenarios.

To illustrate how this could be done and to obtain one more time-point snapshot for
system analysis, we chose the parameter set that would bring the monocyclic system to
have the amplification gain of 7, Hill coefficient of 6 and the sum of the two signaling times

84



would not exceed 35. The results in a graphic form are given in the Supplementary Results
section. In the same manner as before, we observe the parametric sensitivities towards
ultrasensitivity (Fig. A.l), amplification (Fig. A.2), signaling rise (Fig. A.3) and decay times (Fig.
A.4.). Change of variation ranges of parameters significantly perturbed the influence of
parameters on each property of interest. Random parameter sampling around the optimal
point conveys the hypothesis that all-embracing robustness of the system is improved. In
addition, the possible outcomes in this setting are restricted to more narrow stripes than it
was the case in chapter 4.

All together, these new results and the results from chapter 4 imply that the more
complex approach for sensitivity analysis needs to be chosen. Other researchers also
recognized the need of using time-dependent sensitivity analysis. For instance, Schwacke and
Voit presented a Taylor integration method for the efficient computation of time-dependent
sensitivities for generalized mass-action systems (61). They investigated the effects of
different initial species concentrations on the system dynamics. Yue and colleagues
proposed the use of local dynamic sensitivity analysis and demonstrated how this framework
could be used on NF-kB signaling pathway model (63). Hu and Yuan used the same
approach and revealed that the role of PI3K branch in the coupled pathways is to enhance
the robustness of the MAPK pathway (131).

To close this subsection, we reiterate and emphasize the advantages of studying the
systems dynamics with time-dependent sensitivity analysis. This framework can provide the
information about multiple time scales existing in a complex signaling networks, the signs
and strengths of responses to perturbations and more relevant identification of weak nodes
in the pathway, as potential drug targets.

7.2.2 Avant-garde motif: noise

The question regarding which modeling framework, either differential equations or
stochastic simulations, is more suitable for cellular signaling pathways has been the topic of
numerous scientific discussions. Many authors would point out that signaling molecules exist
in high number of copies and therefore proceed with deterministic modeling. Others would
deny this fact and promote the stochastic simulation as the relevant one. Wolkenhauer and
coworkers highlighted subtle differences and relationships of mathematical basis between
generalized mass-action models and stochastic simulation (132). They concluded with the
statement that one should not argue one way or the other regarding the numerically
accurate representation, but whether a biological principle is reflected by the model or not.
In any case, various assumptions are made about the physical context, including a constant
volume, temperature, rapid diffusion, etc. Table 7.1 summarizes some of the experimentally
observed concentration of different MAPK protagonist (48, |11, 133-137). For the
comparison, the number of molecules is given beside the concentration values.

We were also interested to explore how the intrinsic fluctuations, coming from the
low copies of signaling molecules, influence the optimal design identified in previous
chapters. Does the system performance sustain despite the large stochastic influence! We
formulated three concrete questions related to signaling cycles, aiming at demonstrating the
utilization of stochastic modeling:

* How does the switching ability of the cycle depend on the number of molecules and
the kinetic parameters?
* How can the cycle work as an intrinsic noise filter?

85



Fujioka et al. 2006 Schoeberl et al. 2002 Bhalla 2004

Hela Cos7 Hela n.d.
volume 1.2e-12 2.5e-12 1.2e-12 le-16
units uM  molecules uM  molecules uM  molecules uM molecules
(upstream) 04  2.88e+05 0.53 7.95e+05 1.6  9.6e+05 0.2 1.2e4+01
MAPKKK 0.013 9.36e+03 0.054 8.1e+03 0.0057 3.62e+03 0.2 1.2e+01
MAPKK 1.4 1.01e+06 1.8 2.7e+06 3.1 1.86e+06 0.18 1.08e+01
MAPK 096 6.91e+05 0.81 1.22e+06 2.1 1.26e+06 0.36 2.16e+01
Huang and Ferrell 1996 Hatakeyama et al. 2003
Budding yeast CHO Xenopus oocyte CHO
volume 1e-13 le-12 5e-07 le-12
units uM  molecules uM  molecules uM  molecules uM molecules
(upstream) 0.12 7.2e+04
MAPKKK 0.003 1e+09 0.1 6e+04
MAPKK 0.035  2e+03 1.3 8e+05 1.2 3.5e+10 0.12 7.2e+04
MAPK 0.1 5e+03 2.8 1.7e+06 0.33 Te+11 1 6e+05

Brightman and Fell 2000  Bhalla and lyengar 1999

PC12 PC12
volume 1.2e-12 1e-12
units uM  molecules uM molecules
(upstream) 0.033 1.98e+04 0.1 6e+04
MAPKKK 0.017 1.02e+04 0.5 3e+05
MAPKK 0.6  3.6e+05 0.68  4.08e+05
MAPK 1.25 7.5e+05 0.26  1.56e+05

Table 7.1: Concentrations of different protagonists of MAPK signaling pathways,
obtained experimentally in various cell types.

*  What is the influence of kinetic parameters and the number of molecules on the
transient behavior of the system?

From our results, we have learned that the stochastic nature has an effective influence on
systems behavior. Beyond this, we identified the approximate number of molecules that
could serve as the inflection point between the stochastic and deterministic modeling.

A chemical reaction is occurring when a molecule happens to collide with another, carrying
sufficient energy. Deterministic formulation of chemical kinetics considers chemical
constants as “rates” and the concentration of species are represented by single-valued
functions of time. When the number of molecules in a system becomes very small, the
probability, and not the rate at which a molecule will meet another one and react, generates
high fluctuations. Considering a volume V, which contains a pair of molecules, it is possible
to compute the probability of the two molecules colliding and reacting, using statistical
mechanics (37). Intuitively, the probability of reaction is inversely proportional to V.
Changing the volume in a deterministic formulation would have the result of reducing or
increasing the concentration of each of the reacting species. In our study of monocyclic
system, the volume is held constant to 10"® L, which is the approximate volume of bacteria
or some Yyeast. The results will assume numbers of molecules, rather than concentrations.
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Hence, for comparison proposes, Table 7.1 shows some useful conversions.

Number of M
Molecules H

10 0.02

100 0.17

500 0.83

1000 |.66

Table 7.2: Relation of number of molecules and concentrations in our study of
monocyclic system.

In a system where R,R,,...,R,, reactions can take place, involving §,,S,,...,S, chemically
active species, the chemical reaction R, (u =1, 2, ..., M) is associated with a stochastic
rate constant ¢,. The relation between the stochastic and deterministic rate constant can

be derived from statistical mechanics and depends on the order of the reaction:
o Zeroorder: c¢=N,"V-k

o First order: c=k
k

N,V
Here, N, is the Avogadro number and k is the classical deterministic kinetic rate constant.
Higher orders of reaction are not considered, knowing that the probability of three
molecules colliding simultaneously is very low. Those are not often used in stochastic
models.

The aim of the stochastic formulation is to define the probability of a reaction
occurring at a certain time. For that purpose, we define the reaction probability density
function P(7,u) as the probability at time ¢ that the next reaction in V will occur in the
differential time interval [z,7+7], and that the reaction will be the R, reaction. This

o Second order: ¢ =

probability depends on the number of molecules of each chemical species at time t and on
the way they can be combined. Therefore, a state variable £, is defined as the number of

distinct molecular reactant combinations for a reaction R, at time 7. This state variable has
to take in account the order of the reaction as follows:

o Zero order: h,=1

o First order: h,=X,

o Second order: h, =X X,

Here, X,X,,....X, represent the current numbers of molecules of the chemical species
S8, 8y in V.

All the previous definitions were prerequisites for successful implementation of the
direct stochastic method (37), which is the methodological framework for our stochastic
simulations. The choice of the algorithm was prioritized to drawing of realistic distribution
functions, without caring too much about computational cost. The reaction scheme for
monocyclic system (Table 3.1) is the basis that is incorporated into stochastic framework by
converting the deterministic reaction rates into stochastic reaction rates and using the
number of molecules instead of concentrations.
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Design criteria. The degree of fluctuations in the systems is quantified with noise. In most
of the cases, a simple standard deviation o is enough to quantify fluctuations but it is more
suited to see the percentage of the mean w. Thus, we can introduce the coefficient of
variation 1):

n=< 7.1)
u

The larger the coefficient of variation, the noisier the response will be. This measure is used
in signaling theory to evaluate how much noise is carried in the signal.

Noise is the only additional property that arises from stochastic analysis. We apply the
same rules and definitions for quantification of ultrasensitivity and signaling rise and decay
times (Fig. 7.1). The simulations are performed on the time interval [7,,7,], which is divided

into N subintervals Ar. Hence, 10° simulations were performed for each t, and the
arithmetic mean was calculated over the simulation outcomes. In each simulation, the
system is activated with a step function enabling to measure 7, (Fig. A.5A). When the
system reaches steady state, it is pushed back to inactivated state with an inverse step
function, which allows the measurement of 7, (Fig. A.5B). Steady-state values were

collected in order to calculate ultrasensitivity (Fig. A.5C).
The total number of molecules X; is fixed and the concentration is acquired by simple
conversion:

XT
V-N,
In order to limit the number of simulations (and without loosing the generality), two
concentration ratios, as well as Michaelis-Menten constants will be held equal and simply
referred to as p and K, respectively. Using the correlation of deterministic kinetic constants
from the definition of Michaelis-Menten constants, the require balance between the
parameters is ensured by:

if a=# then: ay=a-b, dy=d-b, ky=k-b, a.=a,d, =d, k. =k.

[XT] =

(7.2)

X X
T

In this model, d and k are fixed to |. From the definition of «, (Eq. (3.24)), we have o, =b.

The measures were taken at t > 10° s in order to be sure that steady state has been
reached. The mean u,. and the standard deviation o,. were calculated over a number of
reactions that has reached a set of N = 10° as follows:

N *
2X A
MX* = ’=1N—
S At, (7.3)
N - 1/2
(X)) At
o=t
X N X
>At, (7.4)
i=1

Hereafter, the mean will simply be represented as x".
Our study of ultrasensitivity affirms that, if the system is held to work outside of the

ultrasensitive regime (K =1), the mean response of the system does not depend on the
numbers of molecules and all the responses overlap with the deterministic simulation (Fig.

88



A.6). However, as K is decreased, the responses diverge and systems with small numbers
of molecules have a reduced steepness compared to deterministic ones, whereas a system
with 1000 molecules is close to the deterministic simulation. In other words, the restriction
in the number of molecules causes the sensitivity to a threshold stimulus to decrease,
therefore lowering the Hill coefficient of the system (Fig. A.7). At the same time, the
complex sequestration has a more promoted dampening effect on ultrasensitivity when the
number of molecules is limited (Fig. A.8). However, taking only maximal activation into
account, the signal remains clear (Fig. A.9). This comes as a result of the inherent noise
filtering property of ultrasensitivity (Figs. A.l11 and A.12). Our hypothesis that the maximally
activated ultrasensitive cycles are less noisy than hyperbolic ones again captures the
importance of switch-like steady-state responses. As seen in chapter 6, the Hill coefficient
has significant effect on the signaling rise time. Fig. A.I3 gives more light for a parabolic
dependence of the rise time and amplification gain: the intermediate levels of activation can
hardly be achieved due to long rise time around the switching point and large deviations
(Fig. A.l11). Analysis for decay time confirms the advantage of the system being in the
ultrasensitive regime, with additional requirement for the system being fully activated (Fig.
A.14). The parameters in Fig. 6.6B resembles this case and accordingly the moderate
influence of Hill coefficients on decay time is a consequence of such a setup.

In summary, the stochastic modeling of signaling cycle resulted into additional
observations that could not be supposed intuitively. The question whether stochastic
modeling in the scope of cellular signaling is justified still remains open. The fact that
pharmaceutical companies mostly use deterministic modeling as the essential framework for
model development might give it the practical role (60, 138-140).

7.2.3 Optimal control for drug delivery

Cancer occurs when there is a disturbance in normal cell growth regulation. Such
breakdown is often associated to accumulation of defects in one or more signaling
pathways. Ras proteins, upstream of MAPK pathway, are among the first molecules that
were identified as oncogenes. Studies show that about 30% of all human tumor growth is
related to mutations of the Ras protein (141). This number is likely to be even higher, if one
considers all effectors in the Ras-related signaling pathways.

Systems biology uses an integrated approach to study and understand the function of
biological systems, but, at the same time, it inquires how perturbations of such systems, for
example the administration of a therapeutic drug, affect their function. An increasing
appreciation of the functional disregulation of protein interactions as the underlying cause of
cancer has promoted the development of therapeutic agents that target specific signaling
pathways involved in tumor development. These agents are supposed to activate or inhibit
specific disease targets (usually proteins), while having as few side effects as possible, as
opposed to the conventional chemotherapeutic agents that perturb different cell functions.
In particular, drug intervention can be seen as control of signaling in cellular networks.
Identification of control parameters presents an extreme challenge due to the combinatorial
explosion of control possibilities in combination therapy and to the incomplete knowledge
of the systems biology of cells.

In this section, we discuss the application of optimization framework for drug delivery.
Concretely, optimal control (80, 142), as the subdiscipline of dynamic optimization, seems
well suited to address this kind of problems. A solution of optimal control problem,
referred just as optimal control, is a set of differential equations describing the trajectories of
the control variables that minimize the cost functional. The cost functional to be minimized
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can be chosen to take into account different factors: the toxicity of some reactants, the
drug action, the costs of the drug itself, etc.
As a very simple and general example, we define the drug delivery problem as
follows:
* the system consists of the prototypical MAPK cascade (Fig. A.15);
* the system is supposed to directly influence cancer progression;
* protein X (i.e., Raf protein) in its inactive form is identified as target and the inhibitor
(drug) I is introduced in the system to act on it;
* the initial distribution of the drug is supposed to linearly increase over time of 100
arbitrary units;
* the concentration profile of the last activated kinase Z* is observed as the system
output and its effect on, for instance, cell proliferation, needs to be turned off;
* the cost functional is the minimization of the drug concentration.

Intuitively, one would envision that the more drug is introduced in the system, the overall
effect would be more prominent (Fig. A.16). In this kind of unconstrained setting, the trivial
solution of using the maximal possible drug concentration would probably kill the patient
and therefore the set of constraints should be applied. For instance, one should precisely
define the upper and lower bounds for drug intake, and the time regimen for drug
administration.

The optimal control problem is formulated as follows:

find drug administration regime that (Pg)
minimize the drug concentration
subject to transient model

the given time interval
turning-off the last activated kinase.

This problem sketch-up can be comfortably translated into mathematical form and Optimal
Control could be used as a reliable mathematical tool for pharmacological pre-clinical
research. The mathematical formulation reads:

. 11X ¢ P
min () (Pg)

subject to F,,(E(r),é(r),p,r)=0, O<t<t,, §&0)=§,,
dp"™ () /dt=u(t), 107 <u(t) <10°,
Z(t,)<0.001.

The effect of a drug can be simulated by varying one or more parameters simultaneously,
and comparing the response of the system to a reference (“health”) dynamical state of the
cell. Finally, the solution of optimal control problem is quantifying the optimal drug
administration protocol (Fig. A.17).

The exploitation of optimal control techniques for simulating and tuning drug effects
has just recently drawn some attention (143, 144). We believe that these techniques offer
wide diapason of opportunities for a better drug development and disease curing initiatives.
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7.3 Closing intermezzo

In the intracellular signaling networks that regulate important cell processes, the base
pattern comprises the cycle of reversible phosphorylation of a protein, catalyzed by kinases
and opposing phosphatases. Concatenation of these cycles into a cascade has been identified
as the underlying structure of mitogen-activated protein kinase cascades — a very important
signaling motif found in all organisms.

Mathematical modeling and analysis have been used for better understanding of the
functions of signaling modules and to capture the rules governing systems behavior.
However, since biochemical parameters in signaling pathways are not easily accessible
experimentally, it is necessary to explore possibilities for either steady-state or dynamic
responses in these systems. A number of studies have focused on analyzing these properties
separately. In order to be able to interpret a broader range of phenotypes, it is necessary to
take into account both of these responses simultaneously.

In this thesis, we investigated the trade-offs between optimal characteristics of both
steady-state and dynamic responses. As a result, we found the biochemical and biophysical
parameters that determine these trade-offs and we analyzed if there exist conditions under
which we can simultaneously achieve optimal steady-state and dynamic performance.
Remarkably, we discovered that even a single covalent modification cycle could
simultaneously achieve high ultrasensitivity, high amplification and rapid signal transduction.
Furthermore, the arrangement of cycles in a cascade significantly improves the systems
performance, increases the robustness and provides multiple nodes for potential regulation.

The closing statement of this thesis goes along the often-cited words of Sutherland
(145):

“Optimization: this beguilingly simply idea allows biologists not only to

understand current adaptations, but also to predict new designs that may yet

evolve”.
We believe that the presented study contributes to the quantitative knowledge about
underlying principles of cellular signaling and the overall approach represents the
indispensible framework to expand this knowledge further.
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Appendix

Supplementary Results

A.l Global sensitivity analysis in optimal regime
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Figure A.l: (A) Total sensitivity indices and (B) scatter plots for each parameter of
monocyclic system, with respect to ultrasensitivity in optimal regime. The

concentration ratios are set to {0**,p""*} = {0.1, 0.1}. The nominal parameter set {
ax,ax,dx,dx ,kx} = {1000, 1000, 53, 0.001, |.42} determines the Hill coefficient n,, =
6. Higher values of parameters ax and ax still contribute to higher Hill coefficients.
The shift to the right of variation range for parameter dx and the shift to the left of
variation range for parameter dx underline the importance of low values of these
parameters. This is resulting in the increase of sensitivity index for dx and the
decrease for dx. Comparison with Fig. 5.2 suggests the threshold value of 10° for

parameter dx : if dx' < 10° this parameter does not have the influence on Hill
coefficient.
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Figure A.2: (A) Total sensitivity indices and (B) scatter plots for each parameter of
monocyclic system, with respect to amplification in optimal regime. The concentration

ratios are set to { p**,p"™* } = {0.I, 0.1}. The nominal parameter set {
ax,ax',dx,dx ,kx} = {1000, 1000, 53, 0.001, 1.42} determines the amplification gain T
= 6. Allowing the parameters ax and ax' to have higher values, global sensitivity

analysis highlights the parameter kx as the most important. Higher values of this
parameter will lead to faster accumulation of the active form of the kinase x", leading

to higher amplification gain. Lower values of kx allow the complex {x:s'} to stay

more stable. Random parameter sampling in the optimal regime favors high
amplification.
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Figure A.3: (A) Total sensitivity indices (A) and scatter plots (B) for each parameter of
monocyclic system, with respect to rise time in optimal regime. The concentration ratios

Px/X }

are set to {p*,p = {0.1, 0.1}. The nominal parameter set {ax,ax',dx,dx ,kx} = {1000,

1000, 53, 0.001, 1.42} determines the signaling rise time 7, = 26.7. As seen for amplification
in optimal regime, parameter kx strikes out as the most important to determine signaling
rise time. Parabolic shape of rise time versus kx is most probably the artifact of the
interplay between this parameter and parameters ax and ax . Higher values of these two

parameters allow for the fast response of monocyclic system, thus letting kx to be the
tuning factor.
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Figure A.4: (A) Total sensitivity indices and (B) scatter plots for each parameter of
monocyclic system, with respect to decay time in optimal regime. The concentration

ratios are set to { p**,p"™* } = {0.I, 0.1}. The nominal parameter set {

ax,ax',dx,dx ,kx} = {1000, 1000, 53, 0.001, .42} determines the signaling decay time

7,= 6.4. As in all previous cases, parameter dx* does not effect the signaling decay

time. Low values of this parameter are ensuring high ultrasensitivity, high amplification
and short signaling rise and decay times. An interesting point is that global sensitivity
analysis in optimal regime points out on the parameters that had sensitivity indices

almost zero in the analysis in chapter 5. Random parameter sampling favors decay time
equals to |0.
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A.2  Avant-garde motif: Noise
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Figure A.5: Design criteria for stochastic modeling. Stochastic simulations and
calculation of (A) signaling rise time, (B) signaling decay time and (C) ultrasensitivity.
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Figure A.6: Stochastic influence on steady-state responses in monocyclic system. The
mean activation was plotted as a function of the activation potential ¢, for different
number of total molecules in the system X, =10,20,100 and 1000 . Deterministic
simulation is also presented to enable comparison. The concentration ratios are both
held to p** =p™* =p=0.1. The Michaelis-Menten constants are fixed as: (A)

Kx=Kx=K=1, (B) Kx=Kx=K=01, () Kx=Kx=K=001 , (D)

Kx=Kx =K=0.001. When the system is held to work outside of the ultrasensitive
regime (K =1), the mean response of the system does not depend on the number of
molecules and all the responses overlap with the deterministic simulation. However, as
K is decreased, the responses diverge and systems with small nhumber of molecules
have a reduced steepness with respect to deterministic ones. The system with 1000
molecules is always close to the deterministic simulation, suggesting that stochastic
fluctuations do not affect this system in steady state.
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Figure A.7: Stochastic influence on Hill coefficient values in monocyclic system.
When X, =1000 molecules, the Hill coefficient highly increases as Michaelis-Menten
constants are reduced, whereas a system composed of |0 molecules has only a slow
change in ultrasensitivity. The regime with values of Michaelis-Menten constants higher
than unity is considered being hyperbolic and there is no stochastic dampening in this
region. This steady-state behavior reveals a very interesting property of the system: if
the system operates at enzyme saturation, the lower the number of molecules, the
higher the loss of ultrasensitivity. The fact that ultrasensitivity is decreasing as the total
number of molecules gets restricted is in line with studies done in (45).
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Figure A.8: Stochastic influence on effects of sequestration in monocyclic system. The
stochastic dampening is measured with the Hill coefficient n, as a function of the
number of molecules X, for different enzyme/kinase concentration ratios
p=0.1,02,0.5,1. The Michaelis-Menten constants were fixed as: (A) K=1, (B)
K=0.1,(C) K=001, (D) K=0.001. As we have seen in chapter 4, the accumulation
of substrate protein in the complex has a very important dampening effect on the
ultrasensitivity. This dampening depends on the ratio between protein and enzymes
concentration p. Even a change from p=0.1to p=0.2 introduces a five-fold decrease
of the Hill coefficient when the number of molecules equals 1000. Nevertheless, when
the number of molecules is reduces, this trend is conserved with diminished
differences. If the number of protein kinases is equal to the number of enzyme
molecules (i.e. p=1), the ultrasensitivity is lost.
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Figure A.9: Stochastic influence on maximal activation in monocyclic system.
Concentration ratios are fixed to p=0.1. As seen in Fig. A.7, the influence of the
complex formation is quite important, since the increase of enzyme to kinase
concentration ratios p reduces the ultrasensitivity dramatically. However, it also
reduces the maximal activation achievable and, therefore the amplification of the signal.
So far, it is not known if the stochasticity can modify this maximal activity. In
deterministic model, changing the values of the Michaelis-Menten constants with
respect to maximal activation makes the system switch from ultrasensitive to
hyperbolic regime. The transition between these regimes for 10, 100 and 1000
molecules and p=0.1 lead to overlapping responses. In the ultrasensitive regime (i.e.
K <0.1), the maximal achievable activation is around 0.9, since the kinetic rates
directly related to the complex formation, a, and a,., are much faster than the other

ones and this generates complex sequestration. These results indicate that maximal
activation is completely independent on intrinsic noise and that it is only a function of
kinetic parameters.
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Figure A.10: Probability density functions of activation in monocyclic system.
Measures were done for a, =0.25,0.5,0.75,1,1.25,1.5,1.75,2 for: (A) X, =10, (B)

X, =20, (C) X, =100 and (D) X, =1000 molecules. The densities were generated

with 10° samples and K =0.01. By definition, stochastic simulation generates a set of
outcomes following a certain distribution function. The probability distribution function
for a small number of molecules X, =10 is naturally very discrete and displays heavy

tails. The number of possible outcomes is increasing around «, = | and this is also the
point where the variability is the largest. Moving towards X, =1000, the distribution is

much closer to a normal distribution, displaying small or no tails. As in the previously
mentioned case, the largest variation is occurring around «, = |. However, this

variation is much smaller than the one displayed by the system containing 10
molecules. The systems containing 20 and 100 molecules have intermediate

distribution and the probability of the substrate being inactivated (P(X =0)) is high
for a, < |. These differences in probability distribution function show the usefulness

of using exact stochastic algorithm. Intuitively, one would assume a normal distribution
for all the cases, which could lead to undesirable mistakes.
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Figure A.l1: Stochastic influence on standard deviation in monocyclic system. The
standard deviation O,. is measured as a function of the activation potential «, for
X, =10,20,100,1000 molecules and fixed Michaelis-Menten constants to: (A) K =1,

(B) K=0.1, (C) K=001, (D) K=0.001. So far, only the mean results of the
stochastic simulations were presented, without performing an explicit computation of
the noise and discussing its qualitative characteristics. The standard deviation o, could
be recognized as a qualitative measure of fluctuations in the system. Although the
results from Fig. A.10 indicate that an assumption about normal distribution was not
relevant for modeling; it is sufficiently descriptive to use it in the context of qualitative
visualization of standard deviation. For a full quantitative study, the calculation of

quintiles should be carried out. The highest fluctuations are generated when a, = |

(i.e. the summarized rate of substrate activation equals to the summarized rate of
substrate deactivation) forming the top of a peak. Small numbers of molecules are
generating more fluctuations and therefore a greater standard deviation. These
fluctuations are increasing as the Michaelis-Menten constants are decreased.
Therefore, ultrasensitive systems are generating a higher standard deviation values
compared to hyperbolic systems at switching point, but the standard deviation is
smaller for high activations.
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Figure A.12: Coefficient of variation in monocyclic system, as a function of the
activation potential a,, for different Michaelis-Menten constants K =0.001,0.01,0.1,1.
Number of molecules are held to: (A) X, =10, (B) X, =20, (C) X, =100 and (D)
X, =1000. The coefficient of variation 1 is a quantitative measure of the noise, as it
gives the ratio of fluctuations regarding the mean value of activation. The first
noticeable fact is that, as ultrasensitivity is increasing (i.e. by reducing K), the cycle
becomes much noisier in the region of a, < I. Intrinsic fluctuations, arising from

stochastic chemical reactions, behave differently in four cases of total number of
molecules. For 10 molecules, the noise does not display any abrupt change as we
enhance the activity, and it is gradually decreasing. On the other hand, for 1000

molecules, there arise a steep attenuation of the noise after the switching point (o, =
), leading to low noise for highly activated systems. Since the noise-free signal is
preferred from signal transduction point of view, the results suggest that the signal has
to reach high activation in order to be clear. Therefore, ultrasensitive cycles can truly
work as noise filter devices. Thattai and van Oudenaarden came up with the similar
conclusion in their study of generic stochastic cascade, where they used Langevin
technique to model random fluctuations (46).
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Figure A.13: Stochastic influence on signaling rise time. Rise time is presented as a
function of activation potential o, and Michaelis-Menten constants K. The measures
are carried out for different number of molecules: (A) X, =10 and (B) X, =1000.
From our deterministic analysis, we have learned that there is a significant trade-off
between signaling rise time and ultrasensitivity. The first interesting observation is
presence of the peak at switching point (around a, = 1). The size of the peak is
decreased if the number of molecules is reduced. All of this suggests that the switching
area brings higher fluctuations and instability, as seen in Fig. A.10. The effect of
stochastic fluctuations in dynamic regime is aligned with the findings from steady-state
analysis: number of molecules modifies the ultrasensitivity for K <1, resulting in
increasing values of signaling rise time. The signaling rise times are equivalent after the
switching point, regardless of the number of molecules in the system, but also
regardless of the value of Michelis-Menten constants K. Even more, they are barely
detectible for this region of high activation. In the unsaturated regime, a system
promoting small activation of kinases will need more time to reach steady state, which
is in a direct relation with higher values of signaling rise time. This latter result could
show another benefit of operating in the ultrasensitive regime. Indeed, if the number of
signaling molecules is not sufficient to make the system overpass the switching point,
then the signal will take too much time and could be brought back to initial state.
However, this is still to be proved.
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Figure A.l4: Stochastic influence on signaling decay time. Decay time is presented as
a function of activation potential &, and Michaelis-Menten constants K . The measures
were carried out for different number of molecules: (A) X, =10 and (B) X, =1000.

First noticeable conclusion is that there are quite a number of dissimilarities between
signaling rise and decay times, but the overall recommendation of operating under high
activation and with high ultrasensitivity is still valid. Switching point of activation
potential does not perturb signaling decay time, as it was the case with signaling rise
time. Nevertheless, after the switching point, in the region of high activation, decay
time increases when the system is less ultrasensitive. This is in a direct connection

with the fact that the only way of degradation of X  is through the kinetic rate a,.,
which becomes higher how Michaelis-Menten constant K . decreases. Region of low

activation brings increase in decay time, especially with the higher copy of molecules.
Analysis of intermediate number of molecules (i.e. X, =50 and X, =100) shows that

this increase is consistent (data not shown).
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A.3 Drug delivery as an optimal control problem

Figure A.15: Example of therapeutical action in prototypical MAPK cascade. The
inhibitor (drug) I is introduced in the system and specified to react only on the
inactive form of signaling protein X . The overall drug effect on the signaling pathway is
observed through the concentration of the last activated kinase Z". The trajectory of
concentration ratio between the total concentration of the drug and the total

concentration of the signaling protein X, p"* is defined as the control variable.
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Figure A.16: Effect of different inhibitors on the dynamic responses of signaling
network. The inhibitors (drugs) are distributed in linearly increasing manner over time.
The difference between inhibitors 1—4 is the dynamics of their administration.
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Figure A.17: Drug delivery as optimal control problem: therapeutic effect on the
specified target (left plot), optimal control profile (middle plot) and the concentration
profile of the inhibitor being added in the system (right plot).
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