
Scalable and Secure Polling in Dynamic
Distributed Networks
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Abstract—We consider the problem of securely conducting
a poll in synchronous dynamic networks equipped with
a Public Key Infrastructure (PKI). Whereas previous dis-
tributed solutions had a communication cost of O(n2) in
an n nodes system, we present SPP (Secure and Private
Polling), the first distributed polling protocol requiring only
a communication complexity of O(n log3 n), which we prove
is near-optimal. Our protocol ensures perfect security against
a computationally-bounded adversary, tolerates ( 1

2
− ε)n

Byzantine nodes for any constant 1
2
> ε > 0 (not depending

on n), and outputs the exact value of the poll with high
probability. SPP is composed of two sub-protocols, which
we believe to be interesting on their own: SPP-Overlay
maintains a structured overlay when nodes leave or join
the network, and SPP-Computation conducts the actual
poll. We validate the practicality of our approach through
experimental evaluations and describe briefly two possible
applications of SPP: (1) an optimal Byzantine Agreement
protocol whose communication complexity is Θ(n log n) and
(2) a protocol solving an open question of King and Saia
in the context of aggregation functions, namely on the
feasibility of performing multiparty secure aggregations with
a communication complexity of o(n2).

I. INTRODUCTION

We define the Polling problem as the one of providing to

all the users the result of a poll that is conducted among

themselves, thus yielding the number of votes for each

candidate. This is an essential functionality of distributed

systems that deal with the computation of global functions

out of the local values held by the nodes. For instance,

polling includes the problem of agreement (as defined

in [1]) as a specific case. In general, polling can also

be extended to compute any global function that is a

linear combination of the local inputs. Such functions are

particularly important in large-scale systems in which they

are typically used to compute global properties of systems

(e.g., for monitoring purposes). While such computations

may be achieved through a trusted central entity gathering

all local inputs [2], distributed variants are appealing for

scalability and privacy reasons.

In this paper, we address simultaneously three funda-

mental issues related to the distributed implementation of a

polling in a dynamic network: namely correctness, privacy
and scalability. The computation of a polling function is

a specific instance of the much broader problem of secure

multiparty computation. Therefore, generic constructions

from this domain can be used [3], [4] to solve the problem

while tolerating up to n/2− 1 Byzantine (i.e., malicious)

nodes, where n is the number of nodes of the system.

However, these constructions are often expensive with a

global communication cost that is quadratic in n [5]. In

addition, most of them assume the existence of a broadcast

channel, which is rarely available in large scale networks.

Simulating such a channel deterministically is possible but

has a communication cost of Ω(n2) [6], [7].

The main motivation of this work is to design a dis-

tributed polling protocol whose communication complex-

ity is close to be linear in the number of nodes of the

system. This is impossible to achieve with certainty (i.e.,
through a deterministic algorithm) in a secure manner by

the following argument: to be certain that a message sent

by a node is not altered by a collusion of m Byzantine

nodes, it needs to be sent at least m + 1 times (since all

Byzantine nodes could simply drop the message), which

induces O(nm) = O(n2) messages when m = O(n).
Therefore, instead of seeking to design a deterministic

algorithm achieving correctness with certainty, we investi-

gate probabilistic algorithms outputting the exact value of

the polling with high probability.

Our first contribution (Section III) is to prove a lower

bound stating that at least Ω(n log n) messages are re-

quired to compute any multiparty function (not only

polling) in an accurate way with high probability. This

lower bound holds whenever the adversary controls a

constant fraction of the nodes. The lower bound proof

leverages on the strategy consisting of the adversary

controlling all the neighbors through which a specific node

transmits its vote while honest nodes select the nodes that

will receive their inputs at random to make it difficult for

the adversary to control them all.

Our second and main contribution (Section IV) is SPP

(Secure and Private Polling), a near-optimal distributed

polling protocol protecting the privacy of individual inputs

and tolerating up to ( 12 − ε)n Byzantine nodes, for any

constant 1
2 > ε > 0 independent of n. SPP is designed

for dynamic networks and precisely leverages the churn

induced by such a network (i.e., when nodes leave and

join the system) to maintain an overlay that can be used

to compute any polling function. SPP outputs the exact

outcome of the poll with high probability as n tends to

infinity, has a global communication cost of O(n log3 n)
bits, and is balanced. In a nutshell, SPP is composed of two

sub-protocols. SPP-Overlay is a novel distributed version

of the protocol presented in [8] that builds and maintains



an overlay of clusters of size O(log n), such that each

cluster contains a majority of honest nodes. The construc-

tion of such an overlay is a necessary condition to ensure

the correctness of SPP. SPP-Computation relies on this

overlay to conduct the poll, using existing cryptographic

techniques [9] within clusters, which would otherwise be

too expensive to run at the level of the entire network.

Although we partially benefit from existing techniques in

distributed systems and cryptography, to the best of our

knowledge, we are the first to adapt and to reunite all of

them in a dynamic distributed system to obtain a scalable

and secure solution to polling.

We further describe two possible applications of SPP

(Section V). First, we demonstrate how it can be adapted

to give a positive answer to an open question by King

and Saia [10] in the context of functions that consist in a

linear combination of inputs. Namely, we show that it is

possible to compute this type of functions in a dynamic

network with a communication complexity of o(n2) bits,

even in the presence of an adversary controlling a constant

fraction of the nodes. Second, we propose an optimal

Byzantine agreement protocol, with a complexity lower

than the state-of-the-art lower bound of n1/3 proved in

the context of static networks [11]. This lower bound

is circumvented by considering the context of dynamic

networks, where it is possible that nodes join or leave. In

that case, we benefit from our distributed construction of

the nodes’ overlay structure, which is further maintained

dynamically.

Finally, we experimentally evaluate our approach

through the implementation of a distributed polling proto-

col and of an agreement protocol on the Emulab testbed

[12] (Section VI).

II. MODEL AND RELATED WORK

A. Related Work

1) Dynamic Overlays: Overlay networks organize

nodes of a distributed system in a logical structure in

order to allow efficient communications and to minimize

the memory overhead. In this work, we are primarily

interested in dynamic overlays tolerating the presence of

Byzantine nodes controlled by an adversary. For instance,

an early work of Scheideler [13] aims at partitioning the

the nodes into clusters, each with a majority of honest

nodes. Scheideler achieves this property by using a trusted

central authority and introducing the concept of k-rotation,

which organizes nodes along a ring so that any set of

consecutive O(log n) nodes has an honest majority. In

a followup work by Awerbuch and Scheideler [14], the

cuckoo rule was introduced, allowing to maintain this

property even when the Byzantine nodes can leave and

rejoin the system at their convenience. Since our own

approach is inspired by this work, thereafter we summarize
the system and adversary models that are also the ones we
adopt in this paper. The system considered by Awerbuch

and Scheideler is composed of n nodes, among which

a constant fraction (less than 1/2 − ε for some constant

ε > 0) is controlled by an active, static adversary choosing

the nodes it wants to corrupt at the time at which they join

the network [15]. The nodes controlled by the adversary

are called Byzantine and can behave arbitrarily, for in-

stance by deviating from the protocol specification. The

adversary has a complete knowledge of the system while

honest nodes only have a local knowledge. Furthermore,

the network is dynamic: at each time step and for a poly-

nomial number of rounds, the adversary can choose any of

the nodes it controls to make it perform a join-leave attack

(i.e., to make it leave and rejoin the system). However, the

number honest nodes changes within a constant factor over

time. In this setting, the cuckoo rule enables to organize

the nodes along a ring of length one, so that any segment

of length O(log n/n) contains O(log n) nodes, among

which a majority are honest with high probability (i.e.

with probability at least 1−1/n). The validity of this rule

was proved under a polylogarithmic number of leave-join

attacks. To simplify their proofs, the authors use the extra

assumption that at initialization, the system is exclusively

composed of honest nodes. Later, this work was extended

by the cuckoo & flip rule [16], which provides resilience

against Denial-Of-Service (DOS) attacks at the expense

of reducing the fraction of Byzantine nodes that can be

tolerated to τ < 1
5 − ε.

Other types of adversaries have also been considered

in the literature. For instance, the Chameleon system [17],

which assumes an adversary capable of blocking a fraction

of nodes, uses a randomized replication scheme to protect

distributed servers against DOS attacks. SHELL [18], also

due to Scheideler, is a dynamic distributed system resistant

to Sybil attacks that is particularly tailored for hetero-

geneous systems. Finally, defense mechanisms working

against an adversary that can lead nodes to crash were

also considered [19]. In that work, the authors propose

a distributed protocol to maintain an overlay when the

number of crashes and joins is of the order of the max-

imum degree of the network, which they prove as being

optimal. However, unlike our work, they assume that all

nodes follow the protocol and that the adversary is fail-
stop.

2) Secure Multiparty Computation: The main objective

of secure multiparty computation is to allow participants

to compute, in a distributed manner, a joint function over

their inputs while at the same time protecting the privacy

of these inputs and ensuring the correctness of the output.

This problem was first introduced in the bipartite setting

by Yao in 1982 [20] and has since become one of the most

active fields of cryptography. Since the seminal paper of

Yao, generic constructions have been developed for the

multiparty setting, and a dichotomy appears depending on

the proportion of nodes controlled by the adversary. On

one hand, as long as the number of Byzantine nodes is

strictly less than n/2, it is possible to securely compute

(in the cryptographic sense) any distributed function [3].

If one requires unconditional security (in the information-

theoretic sense), then the number of Byzantine nodes

should be limited to n/3 [4], [21] unless a broadcast

channel is available [22], [23], [24]. If the broadcast

channel is not available as a resource, the bound of

n/2 still applies. For some distributed functions, these
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protocols were proven to be optimal with respect to the

number of Byzantine nodes that can be tolerated [25], [26].

On the other hand, it is still possible to ensure some

security guarantees when there is a majority of Byzantine

nodes. For instance in [26], the authors have shown that

the only functions that can be securely computed when a

majority of nodes are Byzantine (up to n − 1) are those

that consist in a XOR-combination of n Boolean inputs.

Nevertheless, a weaker notion of security can always be

fulfilled when there is a majority of Byzantine nodes. This

notion still provides privacy and correctness, yet it allows

some nodes to abort the protocol while others obtain the

(correct) output (thus sacrificing the robustness property).

Protocols guaranteeing this notion of security for any

number of corrupted parties can be constructed based on

cryptographic assumptions [27], [3], [28]. Recent work has

been dedicated to protocols achieving full security with

an adversarial minority and the weaker notion of security

with adversarial majority (see for instance [29] for some

impossibility results as well as some positive ones).

In [2], a polling protocol (a specific case of secure

multiparty computation) was proposed that computes the

outcome of an electronic election while providing cryp-

tographic security for a global communication cost of

O(n). However, contrary to our approach, this protocol

requires the availability of a trusted entity during the whole

computation. Our work is also to be compared to [30], in

which the authors propose a protocol computing a
√
n-

approximation of an aggregation function (i.e. functions

that output a linear combination of the inputs). This is

achieved even in the presence of
√
n/ log n rational adver-

sarial nodes (a weaker form of adversary than Byzantine

nodes), with a global communication cost of O(n3/2) and

without relying on cryptographic assumptions. Finally, in

[10], an open question was asked on whether secure multi-

party computation can be achieved with a communication

complexity of o(n2). In our work, we positively answer

this question in the context of functions that output a linear

combination of the inputs.

3) Byzantine Agreement: The problem of Byzantine

Agreement (BA) was introduced originally by Lamport et

al. [1] and consists in having all the honest nodes agreeing

on a bit value among the input bits initially proposed by

them. Clearly, this problem can be solved by running an

election protocol between two candidates (named 0 and

1). Running a secure multiparty computation would give

even more privacy guarantees as it also ensures that the

adversary does not learn any additional information about

the inputs of honest nodes. A lower bound of Ω̃(n1/3)
was proved in the context of static networks. However,

this lower bound does not hold in the dynamic case as

shown by our work.

The most efficient BA protocols that can be found

in the literature are probabilistic and have a communi-

cation complexity of Õ(n3/2) [31]. More precisely, the

protocols proposed in [32] and [31] have sub-quadratic

communication complexity against a Byzantine adversary

controlling less than n/(6 + ε) (for some constant ε > 0)

and n/3 nodes respectively, in the full information model.

However, these protocols assume that all nodes know the

identities of all the other nodes in the system, which

in itself hides an Ω(n2) communication complexity to

propagate this information.

4) Homomorphic encryption: In our work, we rely

on a cryptographic primitive known as homomorphic
encryption. This primitive allows to perform arithmetic

operations (such as addition and/or multiplication) on

encrypted values, thus protecting the privacy of the inputs

of honest nodes. Paillier’s cryptosystem [33] is an instance

of a homomorphic encryption scheme. This cryptosystem

is also semantically secure [15], which means that a

computationally-bounded adversary cannot derive non-

trivial information about the plain text m encrypted from

the cipher text Enc(m) and the public key pk. In this paper,

we use a threshold version of the Paillier’s cryptosystem

[9]. In this version, all nodes get the same public key, with

which they can encrypt messages. However, each node

gets a share of the private key and uses it to produce a

share of the decrypted output. Only upon receiving t− 1
other shares can a node compute the decrypted output.

B. Model

1) System and Adversary: We use the system and

adversarial model of [8], [34] as summarized in Section

II-A). Notice, however, that the assumption that, at the

beginning, all the nodes are honest is only used to apply

the results proved in [8], [34]. We do not need it for any

other reason in this work. In particular, the initialization

of the overlay works in the presence of the adversary.

2) Key Management: We assume that each node gets

assigned a pair of private/public keys for digital signatures

by a (trusted) Certification Authority (CA), which there-

fore corresponds to a form of Public Key Infrastructure

(PKI). When a node joins the network, it receives its

private key as well as a certificate signed by the CA

containing its corresponding public key. The public key

is assumed to be unique and chosen at random and thus

can be considered as the node identifier. Note that this

CA is dedicated to key management and is not used

for any other task. Some decentralized implementations

of such a CA are possible, but they are out of the

scope of this paper. Moreover, these keys are different

from those of the threshold cryptosystem detailed later in

Section IV-D2. We also assume that all nodes in the system

communicate via pairwise secure channels, which means

that all the communications exchanged between two nodes

are authenticated and confidential from the point of view

of an external eavesdropper.

3) Network and Communication: Our protocols work

in the synchronous model in which the communications

between nodes proceed in rounds. We assume that a node

can communicate with any other node as long as the

identifier is known to it. We do not assume that the

nodes know the identities of all the other nodes in the

system, except during the initialization phase (Section

IV-C). In particular, once the initialization phase has been

completed, each node will only need to have a local

knowledge of a polylogarithmic number of other nodes in
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the system (the set of nodes a particular node knows varies

as the protocol proceeds but the size of this set always

remains bounded). Notice that ensuring full knowledge

whenever a node joins the system would have a message

complexity of n, which is not scalable as we consider a

polynomial number of leave-join operations.

4) Polling Computation: Occasionally, the nodes

within the system conduct a poll in a distributed

manner. This poll is performed on the individual in-

puts (x1, . . . , xn) of the nodes, in which xi is taken

from a set of � different possible candidates (i.e.,
xi ∈ L = {ν1, . . . , ν�}). The poll result allows each

node to know the number of votes received by each

candidate. We restrict ourselves to the polling problem for

ease of presentation, but our protocol can be extended to

evaluate any property of the network that can be obtained

by a linear combination of the local inputs. Examples

of such functions include the byzantine agreement and

the computation of the average (or the sum) of inputs

(i.e., f(x1, . . . , xn) = 1
n

∑n
i=1 xi). While our protocol

maintains an overlay under churn, we assume that the

network remains static during the computation of the

polling function. Therefore, any join operation occurring

during such a computation is postponed to the end of the

protocol.

Due to the presence of Byzantine nodes, the com-

putation needs to be achieved in a secure way, in the

sense that it should offer some guarantees on the privacy

(Definition 1) of local inputs of honest nodes and on the

correctness of the output (Definition 2), and this against

any actions that the adversary might do.

Definition 1 (Privacy [15]). A distributed protocol is said
to be private with respect to an adversary controlling a
fraction τ of nodes if this adversary cannot learn (except
with negligible probability) more information from the
execution of the protocol than it could from its own input
(i.e., the inputs of the Byzantine nodes it controls) and the
output of the protocol.

In this work, we want to achieve privacy against a

computationally-bounded adversary that coordinates the

Byzantines nodes but does not have enough computing

resources to break a cryptographic assumption on which

the techniques are based (such as factorizing the product

of two big prime numbers or solving the discrete logarithm

problem). Furthermore, we aim at ensuring correctness

(Definition 2), even if the Byzantine nodes controlled by

the adversary misbehave.

Definition 2 (Correctness). A distributed protocol is said
to be correct with respect to an adversary controlling a
fraction τ of the nodes if the output of the protocol is
guaranteed to be exact with high probability.

Moreover, we are looking for scalable protocols, with

low computational complexity, and with a global com-

munication cost as close as possible to the lower bound

Ω(n log n) that we prove in Section III. In addition, we

also aim at achieving a balanced protocol (Definition 3),

in which each node receives and sends approximately the

same quantity of information.

Definition 3 ((Cin, Cout)-balanced). A distributed proto-
col among n nodes whose communication complexity is
Ctotal is said to be (Cin, Cout)-balanced, if each node
sends O(CinCtotal/n) and receives O(CoutCtotal/n) bits
of information where Ctotal is the total number of bits sent
by all the nodes.

For instance, in a (1, 1)-balanced protocol, each node

sends and receives the same number of bits (up to

a constant factor) whereas, in an (n, n)-balanced pro-

tocol, a single node could do all the work. In this

work, we will say that a protocol is balanced if it is

(Poly(log n), Poly(log n))-balanced.

III. LOWER BOUND ON SECURE MULTIPARTY

COMPUTATION

In this section, we show that no balanced algorithm

(with respect to Definition 3) can compute a polling func-

tion with a global communication complexity of o(n log n)
provided that the number of Byzantine nodes is linear in

the number of nodes in the system. The lower bound is

obtained as a corollary of the following theorem and ap-

plies regardless of the privacy guarantees that the protocol

seeks to achieve.

Theorem 1 (Lower bound on secure multiparty compu-

tation). Consider a distributed protocol that computes a
function whose inputs are held by n nodes, among which
εn are Byzantine for some positive constant 0 < ε < 1
(independent of n). Suppose that a fraction cn of the
nodes sends no more than ω+(n) messages (for some
ω+(n) = o(log n) and constant 1 > c > 0). Assume
further that no node receives more than ω−(n) messages
(with ω+(n)eω

+(n)ω−(n) = o(n)). These conditions im-
ply that, with high probability (in n), there is a node whose
messages are all intercepted by Byzantine nodes.

Proof: We refer the reader to the long version of this

paper [35] for the details of the proof.

Corollary 1. Consider a (Poly(log n), n)-balanced pro-
tocol computing with high probability the exact value of
a function in a distributed manner, such that its inputs
are held by n nodes among which εn are Byzantine (for
some positive constant ε < 1 independent of n). Then this
protocol induces a total of Ω(n log n) messages.

IV. SECURE AND PRIVATE POLLING (SPP)

A. SPP in a nutshell

We now provide a high-level view of our SPP (Secure

and Private Polling) protocol that performs a poll in a

decentralized setting (see also Figure 1). SPP relies on

SPP-Overlay, a distributed version of the protocol in [8],

described in Section IV-B. SPP-Overlay organizes the n
nodes into g clusters, C0, . . . , Ci . . . , Cg−1, of roughly the

same size. The clusters are further arranged into both a

Chord overlay [36] and a binary tree overlay. SPP-Overlay

assumes that a threshold homomorphic cryptosystem [9]

has been set up and that each node knows the public key

pk and its share ski of the secret key of the threshold
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cryptosystem. This is ensured by a precomputation phase

detailed later.

SPP-Computation proceeds as follows:

1) After making its choice, each node does a preprocessing

step (described below), transforming this choice into an

input value that can be added with others. It then encrypts

this new input using pk and securely broadcasts it within

its cluster. Secure broadcast ensures that (1) all honest

nodes receive an identical message, regardless of the ac-

tions of the sender and the Byzantine nodes (consistency),

and (2) this output is the message of the sender, provided

it is honest (validity) [7]. Hereafter, we will be using the

secure broadcast protocol of Dolev and Reischuk [7] to

emulate the broadcast channel.

2) The nodes in a given cluster agree in a distributed

and secure manner on a common random string rand,

which is the randomness injected into the homomorphic

encryption (we refer the interested reader to [15], [9] for

further details). Afterwards, each node adds the encrypted

inputs it received from its own cluster using the addition

operation of the homomorphic cryptosystem. The result of

this addition is called the local aggregate and is the same

for each honest node of the cluster.

3) Starting from the clusters at the leaves of the binary tree,

the nodes of these clusters send their local aggregates to all

the nodes of their parent clusters. The nodes of the latter

add their own local aggregate with the two received ones

from their children, thus forming the partial aggregate.

A partial aggregate is adopted from the child cluster if

and only if the same message was sent by a majority

of nodes from this cluster. This majority decision rule

is used to discard inconsistent messages that have been

sent by Byzantine nodes. The partial aggregates are then

propagated towards the root, by repeating this process

O(log n) times. When the partial aggregates reach C0,

we say that the partial aggregate has become the global
aggregate.

4) The nodes of the root cluster perform a threshold de-

cryption of the global aggregate, thus revealing the output

of the protocol, which is propagated down throughout

the binary tree. Each node then processes the output (as

described later) to discover the polling result.

B. SPP-Overlay

For the purpose of our polling protocol, nodes in SPP

are organized into clusters C0, . . . , Cg−1, each of size

O(log n). To achieve this, we assume that the nodes

join the network according to a distributed version of

the protocol presented in [8], where the original protocol

relied on a trusted central authority (CA). Before showing

how to avoid the CA, we first describe its functionality.

Each node is assigned by the CA a random position on

the segment [0, 1). By inducing artificial churn when a

node joins the system, the protocol of [8] is proven to

ensure that each segment of size c log(n)/n, for some

specific constant c, contains a majority of honest nodes,

under the condition that the adversary controls at most a

fraction of 1
2 − ε of Byzantine nodes, for some constant

1
2 > ε > 0, independent of n. The clusters C0, . . . , Cg−1

a3

a2

a1
A

b1

b2

b3

B

c3

c2

c1

C B C

A

∑
bi

∑
ci

∑
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C

A

B
∑

bi
∑

ci

∑
ai +

∑
bi +

∑
ci

∑
bi

∑
ci

Fig. 1. Main idea of the algorithm. First, all nodes start by encrypting
their inputs and broadcasting them to all the other nodes of the cluster.
Within each cluster, each node computes the local aggregate (

∑
ai,

∑
bi

and
∑

ci), which is then propagated along the binary tree. After this,
the nodes of cluster A know

∑
ai +

∑
bi +

∑
ci. The nodes of the

last cluster (here A) collaborate to perform the threshold decryption and
to output the polling result.

C8

C4

C2
C1

C0

Fig. 2. Chord overlay.

are composed of the nodes whose positions are in the

respective segments [0, c log n/n), . . . , [1− c log n/n, 1).

In order to design an efficient distributed version of SPP,

we first arrange the clusters in a Chord-like overlay [36].

The adapted join-leave protocol must further ensure that,

for all 0 ≤ i ≤ g − 1, the nodes from cluster Ci know all

the nodes from C(i+2j−1) mod g , for all 1 ≤ j ≤ log2 g,

which results in O(log2 n) connections per node (see

Figure 2). Along with this Chord overlay, we consider

a binary tree of depth O(log n) connecting the nodes of

each cluster Ci to those of C2i+1 (for 2i+1 < g−1) and

C2i+2 (for 2i+ 2 < g − 1).

In [8] the authors assume that initially the network is

composed of only honest nodes; instead, we propose a

bootstrapping technique for the construction of the overlay

in Section IV-C. We now describe how to adapt the join

rule, called cuckoo rule [8] and how to maintain the

overlay in a decentralized way. The leave rule of [16],

which is required when the adversary can force any node

to leave the network (for instance through a DOS attack),

can be adapted similarly (the full details of this adaptation

can be found in the long version of this paper [35]).

More precisely, we rely on two following subroutines to

distribute the cuckoo rule.
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1) Inter-cluster communication. A node of cluster C
receiving a message from a node of cluster C ′ accepts it

if and only if C ′ is a neighbor of C in the Chord overlay

or in the binary tree, and at least half of the nodes of C ′

have sent the same message.

2) Random number generation (RNG). This primitive

is used to generate a number at random within some

predefined range (typically between 0 and logd n for

some constant d). For fault-tolerant distributed random

generation, notice that adding any set of numbers in a

finite field F outputs a value taken uniformly at random as

long as at least one element of this set is chosen uniformly

at random, independently from the others. Hence, if each

node commits to a random number without knowing what

the other nodes have selected, the sum of these committed

values is truly random if at least one of them is so. For

this, we rely on the Verifiable Secret Sharing (VSS) notion

introduced in [37]. In its distributed version, t-tolerant

VSS allows a certain party (called the dealer) to spread

shares of a secret s among m parties such that no collusion

of t or less nodes can (1) infer any information about s or

(2) prevent the reconstruction of s out of the shares. VSS

has two phases: sharing and reconstruction. In the sharing

phase, the nodes exchange messages in order to spread

the dealer’s shares. Next, in the reconstruction phase, the

shares are combined by the nodes to either (1) recover the

same secret s or (2) tag the dealer as cheater. In this work,

we use the (n − 1)/2-tolerant probabilistic VSS protocol

of [38]. Accordingly, the RNG protocol in a set S of nodes

proceeds as follows: (1) each node i in S chooses a random

number ri ∈ F. (2) Each node i acts as a dealer and

shares ri using the VSS protocol. (3) For each node i, the

reconstruction phase of the VSS protocol is triggered to

recover ri. If reconstruction fails, the zero element in F is

used. (4) Each node i calculates the sum in F r =
∑

j

rj .

We now explain how the cuckoo rule (i.e., join rule)

is modified in order to avoid a CA. We assume that a

node x joining the network is able to contact one of

the nodes of the network which gives it the identity and

composition of an arbitrary cluster (this cluster is chosen

among the clusters that the contacted node knows). In turn,

x contacts the whole cluster (i.e., all its members) with a

join request. Afterwards, this cluster starts to perform the

cuckoo rule from [8], which corresponds to choosing a

position p at random in [0, 1) for x. The nodes of the

unique cluster containing p, to which we refer as C, are

informed via messages routed using the Chord overlay that

x is inserted at position p. At this point, extra churn is

induced: for a constant k > 1
ε , C chooses a new random

position for all the nodes of C whose positions are in

a segment of length k/n containing p (see [8] for more

details). Whenever a node x of a cluster C ′ is required

to change its position to join a cluster C”, all the nodes

that were adjacent or become adjacent to this node, are

informed of the change by messages sent by the nodes of

C ′ and C” respectively. This step is crucial since all the

nodes of a cluster C adjacent to C ′ in the Chord overlay or

in the binary tree have to know the exact composition of

C ′ in order to decide whether or not to accept a message

from nodes of C ′ during inter-cluster communication.

With high probability, the communication overhead of the
distributed version of this protocol is O(log3 n) per join
operation: for each node to be moved, the overhead can be

proved to be O(log3n) for the random number generation

and O(logn)×O(log2n) for propagating the information

using the Chord overlay. Moreover, the expected number

of nodes in a segment of size k/n is O(k); thus the

protocol needs to move a constant number of nodes with

high probability. This protocol ensures that each cluster

contains Ω(log n) nodes, among which there is a majority

of honest nodes as long as τ the fraction of Byzantine

nodes is less that 1/2− ε.

C. Initialization Phase

In [8], [13], [16], [34], the proofs are done assuming that

initially the network is exclusively composed of honest

nodes. However, we do not use this hypothesis to bootstrap

our protocol as we explain below.

In [10], the authors proposed a protocol for a fully

connected network composed of at least 1/2+ε fraction of

honest nodes, which ensures that all honest nodes agree on

a small representative set C of nodes containing a majority

of honest nodes with high probability. The communication

cost of this algorithm is Õ(n3/2). Once selected, this rep-

resentative set can compute a random partition of the nodes

into g = O(n/ log n) sets of equal size {C0, . . . , Cg−1},

which are organized into a Chord overlay and a binary

tree. This partitioning method has a communication cost

of Õ(n3/2) due to the use of the BA protocol. In addition,

it incurs (1) a cost of Õ(n) for the representative set to

agree on the partition and (2) a cost of Õ(n) to propagate

the partition (i.e., by having the nodes of C sending to

each node x the composition of its cluster (Ci such that

x ∈ Ci) and the composition of its neighboring clusters.

Overall, this results in a global communication cost of

Õ(n3/2) for the initialization phase (note that this phase

is performed only once at the construction of the overlay).

D. SPP-Computation

In this section, we present the second phase of the

SPP protocol during which the polling result is effectively

computed. This protocol (1) is optimal up to a logarithmic

factor in terms of scalability (i.e., communication and

computational complexity), (2) has a round complexity of

O(log n), (3) achieves perfect security (i.e., privacy and

correctness) against a computationally-bounded adversary

controlling at most (1/2 − ε)n Byzantine nodes, for a

constant 1
2 > ε > 0 independent of n, and (4) is balanced.

1) Input pre-processing: We assume that each node

of the network knows the following public parameters: �
(number of possible choices), L (list of possible choices),

and s (taken as the length of the RSA modulus in the

cryptosystem used). Choices are numbered from 0 to

� − 1. We aim at mapping these choices to input values

of an aggregation protocol and to be able to retrieve,

from the aggregate, the number of votes for each choice.

One way to do so is mapping choice i to the input
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value 2ib, where b = s/�. Any input outside the set

M = {1 . . . 2ib . . . 2(l−1)b} for i ∈ {0 . . . l − 1} is

considered invalid.

2) Setting up the threshold cryptosystem: C0 (that we

refer thereafter as the threshold cluster) is in charge of

setting up the threshold cryptosystem. This set-up phase

requires all nodes of the threshold cluster to engage in

a distributed key generation protocol [39] for a threshold

homomorphic cryptosystem [9]. At the end of this key

generation phase, all the nodes of the threshold cluster

receive the same public key pk and each gets a share

of the private secret key (sk1, . . . , skk logn). The thresh-

old cryptosystem is such that any node can encrypt a

value using the public key pk but that the decryption of

a homomorphically encrypted value requires the active

cooperation of at least t of the nodes. In our case, the

parameter t is set to be at least k logn
2 to ensure that

there will be enough honest nodes to cooperate for the

final decryption of the result at the end of the protocol.

The public key pk is then communicated in the network

cluster by cluster by following the structure of the binary

tree. Thereafter, when we say that a cluster communicates
a value to the next cluster, we mean that at least all the

honest nodes in the current cluster communicate the same

value to all the nodes in the next cluster using inter-

cluster communication, which results in a communication

cost of O(log2 n). Once the previous round is over, the

node decides, via a majority rule, on the final value for

this particular round of inter-cluster communication. This

value always corresponds to the unique value sent by all

the honest nodes of the previous cluster, which are by

construction a majority within this cluster (cf. inter-cluster

communication).

3) Local aggregation: Each node within a cluster com-

municates its input encrypted using the public key pk to

all the other nodes of its cluster through a secure broadcast

channel along with a non-interactive zero-knowledge proof

that this input is valid [40]. The complexity of constructing

such a channel is polynomial in the number of nodes of

the cluster, which is here O(log2 n) and can be obtained

for instance by running the broadcast protocol proposed

by Dolev and Reischuk [7]. The main objective of the

non-interactive zero-knowledge proof is to prevent an

adversary from tampering with the output of the protocol

by providing an invalid input. The privacy of the inputs is

preserved by the semantic property of the cryptosystem [9]

that we use. Once all nodes of the cluster have received

the encrypted inputs from the other members, they add

them using the additive property of the homomorphic

cryptosystem. With respect to the randomness used in the

addition operation of the homomorphic encryption, we

assume that all the nodes have agreed on a common value

rand.

4) Global aggregation and threshold decryption: The

global protocol proceeds iteratively during O(log n) iter-

ations. The nodes from leaf clusters in the binary tree

send their local aggregate to their parent cluster. When

a node receives the aggregate from the nodes of both

of its child clusters, it adds its local aggregate and the

two received ones, which gives a partial aggregate. This

partial aggregate corresponds to the aggregation of the

inputs of the nodes in the clusters in the subtree rooted

at the current cluster; this aggregate is further transmitted

to the nodes of the parent cluster. As mentioned previously,

the encrypted value received from the previous cluster can

be decided on by each node of the current cluster using

a majority rule on the O(log n) messages received from

the previous cluster. Once the threshold cluster has been

reached (e.g., the root of the binary tree), the members of

this cluster add their local aggregated values to the partial

aggregates received from the two children, producing an

encryption of the sum of all the values. Finally, the

members of the threshold cluster cooperate to decrypt

this global aggregate by using their private key shares.

Along with their decryption shares, the nodes send a non-

interactive zero-knowledge proof showing that they have

computed a valid decryption share of the final outcome [9].

As the number of nodes needed to decrypt successfully is

t = k logn
2 and that there is a majority of honest nodes in

the cluster, this threshold decryption is guaranteed to be

successful. The final output is forwarded cluster by cluster,

following the binary tree structure of the overlay.

5) Output post-processing: Given the decryption result

r, each node can know the number of voters for choice i
by calculating �(r mod 2b(i+1))2ib�, except for i = l−1,

whose number of voters is �r/2i(l−1)�. To see why this

works, notice that r = k0 + . . . + ki2
ib + ki+12

(i+1)b +
. . . kl−12

(l−1)b, where ki is the number of votes for choice

i. Taking r mod 2b(i+1) gives k0 + . . .+ ki2
ib. Dividing

by 2ib produces k0/2
ib+. . .+ki, whose floor is simply ki.

The special case of i = l − 1 is easy to see. This method

works as long each choice gets less than 2b votes, where b
equals s/l as described previously. Hence, b = s/l should

be chosen such that 2b < n, which is easy to guarantee

with typical values of s.

E. Analysis of SPP-Computation

During an execution of the SPP-Computation protocol,

the messages need to be long enough to encode all the

possible outcomes of the polling. In particular, if the poll is

among � choices, the message need to have at least � log n
bits. The following lemmas summarize the main properties

of SPP-Computation protocol in terms of communication

cost (i.e. number of messages sent by the honest nodes,

messages that all are of identical size).

Lemma 1 (Communication cost). SPP-Computation has
a global communication cost of O(n log3 n). Furthermore,
it is (Poly(log n),Poly(log n))-balanced, in the sense
that no node sends or receives more than Poly(log n)
bits of information, with an average of O(log3 n) bits of
information per node.

Proof: During the setup of the threshold cryptosys-

tem and the threshold decryption, only one cluster is

involved and the communication cost of the primitives

used (threshold cryptosystem setup, secure broadcast, and

threshold decryption) is polynomial in the size of the

cluster, which corresponds to a communication complexity
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of O(Poly(log n)). During the local aggregation, in each

cluster, each node broadcasts its encrypted input and a

broadcast induces a communication cost of O(log3 n).
As there are O(n/ log n) clusters with O(log n) nodes

in each cluster, it results in a communication cost of

O(n log3 n). Finally, the inter-cluster communication re-

quires that all the n nodes send O(log n) messages, each of

size O(log n), to the nodes of the parent cluster, resulting

in a communication cost of O(n log2 n). As a result, the

protocol is dominated by the local aggregation part, which

leads to a global communication cost of O(n log3 n).
Moreover, it is easy to see from the description of the

protocol that it is balanced in the sense that it requires

O(Poly(log n)) communications from each node.
Furthermore, SPP-Computation is near-optimal as its

complexity is O(n log3 n) compared to the lower bound

of Ω(n log n).

Lemma 2 (Security). SPP-Computation ensures perfect
security against a computationally-bounded adversary
controlling up to ( 12−ε)n Byzantine nodes for any constant
1
2 > ε > 0 (not depending on n) and outputs the exact
value of the polling with high probability.

Proof: The privacy of the inputs of individual nodes is

protected by the use of a cryptosystem that is semantically

secure and also by the fact that the adversary cannot

decrypt the partial aggregate because it does not know the

necessary t secret keys of the threshold cryptosystem to do

so. The correctness is ensured by a combination of several

techniques. First, the non-interactive zero-knowledge proof

that each node issues along with the encrypted version

of its value guarantees that the Byzantine nodes cannot

cheat by choosing their values outside the range of the

possible ones. Second, the secure broadcast ensures that

honest nodes in each cluster have the same local aggregate.

Third, the fact that the majority decision rule is used every

time the nodes of a cluster communicate with the nodes of

the next cluster along with the fact that there is a majority

of honest nodes in each cluster (due to the construction

of the structured overlay) ensures that the correctness of

the partial aggregate will be preserved during the whole

computation. Finally, the non-interactive zero-knowledge

proof of the validity of the partial shares during the

threshold decryption prevent the Byzantine nodes from

altering the output during the last step of the protocol.

V. APPLICATIONS OF SPP

In this section, we outline how to adapt SPP to obtain

SPP-BA, an optimal Byzantine Agreement protocol. Note

that the guarantees provided by SPP-Computation are

stronger that what is really needed for a BA protocol, as

it also protect the privacy of inputs of the nodes.

A. Optimal Byzantine Agreement
We first run the protocol SPP-Overlay in order to

construct a partition of the nodes into clusters of size

O(log n) organized in a binary tree, each containing a

majority of honest nodes. Afterwards, the protocol SPP-

BA goes as follows:

1) The nodes from C0 execute a Byzantine Agreement

protocol (such as [41]) among themselves and agree on a

common bit b.
2) Each node from cluster C0 sends b to all the nodes of

C1 and C2 according to the binary tree structure.

3) A node from cluster Ci receiving b from the nodes of

its parent cluster uses a majority rule to select the correct

value of b and forwards it to all the nodes of its cluster’s

children (step 3 is repeated cluster by cluster following

the binary tree structure until the leaves are reached).

We now analyze the communication cost of this pro-

tocol. Step 1 has a communication cost of O(log3/2 n)
as |C1| = O(log n). Step 2, as well as each run of

Step 3, has a communication cost of O(log2 n). Therefore,

as there are O(n/ log n) clusters involved, this results in
a global communication cost of O(n log n) for SPP-BA,
which matches the lower bound of Theorem 1. Moreover,

this protocol is (k, k)-balanced for some constant k and

has a round complexity of O(log n) rounds.

B. Secure Multiparty Aggregation

In [10], King and Saia ask whether or not it is possible

to perform secure multiparty computation using o(n2) bits

of communication. For the specific case of functions com-

puting a linear combination of inputs, SPP-Computation

enables us to answer positively to this question. Indeed, it

is possible to run the initialization phase of SPP-Overlay,

which constructs the overlay from scratch, in the presence

of Byzantine nodes, for a communication cost of Õ(n3/2),
as shown in Section IV-C . Moreover, as SPP-Computation

can be easily extended to compute any linear combinations

of the inputs of nodes (cf. Section IV-D), this gives us the

claimed result.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the practical performances

of (1) SPP-Computation, for a binary poll, which we com-

pare against a protocol based on unstructured networks and

(2) SPP-BA, our optimal Byzantine agreement protocol

based on SPP. More precisely, we will evaluate and com-

pare these protocols by measuring their communication

and computational costs. The experiments were conducted

on the Emulab platform [12], a distributed testbed allowing

the user to choose a specific network topology using NS2

configuration file. In each experiment, we use up to 80

PC3000 machines, which correspond to Dell PowerEdge

2850s systems with a single 3 GHz Xeon processor, 2

GB of RAM, and 4 available network interfaces. Each

machine runs Fedora 8 as its operating system and hosts

10 nodes at the same time. The nodes are connected to the

router in a star topology, setting the maximum network

bandwidth to 1000Mb, and the communication relies on

UDP. We use a reliable broadcast protocol of [42] and the

“Paillier Threshold Encryption Toolbox” [43] for threshold

encryption. The nodes adjust their message sending rate

to be uniformly distributed between 0 and 2 seconds. For

each network size, we do five experimental runs, where

each run involves a significant number of nodes over which

the metrics are averaged. We use 95% confidence intervals,
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displayed on all the figures. Due to the large number of

nodes on which the averages are obtained, the intervals

are very narrow and almost unnoticeable.

We perform the comparisons with the non-layout based

protocol (NL) (i.e. that of unstructured networks), in which

each node 1) securely broadcasts its encrypted input to all

other nodes, 2) combines the values it receives, 3) securely

broadcasts its decryption share to the others, and 4) com-

bines the decryption shares to obtain the final output. Such

a protocol provides privacy and correctness with certainty

against an honest majority but requires a communication

cost O(n3). Therefore, even for medium sized networks

(e.g., 200 to 800 nodes), the communication cost of the

protocol is significant with hundreds of millions of mes-

sages being exchanged. In order to compare this protocol

to ours, we quantify the complexity of single instances of

a secure broadcast. Since the broadcast runs are assumed

to be run sequentially to avoid congestion, we can add

up the cost of each. For ease of implementation, we use a

centralized key generation authority to set up the threshold

version of the Paillier’s cryptosystem, whose modulus is

fixed to 1024 bits. Moreover, we set the cluster size to be

20 ∗ log n, which we found empirically to be adequate for

an adversary controlling a fraction of 3
10 nodes.

1) Communication Cost: This cost is quantified by the

total number of megabytes sent during the execution of

the protocol. Figure 3.a depicts the global communication

cost using a semi-log scale, with a varying network size.

We observe that the polling function SPP-Computation is

much more efficient than NL in terms of communication

cost. For instance, in a network composed of 200 nodes,

NL has a global communication cost of approximately

30GB whereas SPP-Computation communication cost is

approximately 4GB. Figure 3.b further details the commu-

nication cost per node. While it keeps increasing with NL,

SPP-Computation generates a lower cost per node which

is almost independent of the network size. Moreover,

the cost of the Byzantine Agreement protocol (SPP-BA)

is significantly lower than the one of SPP-Computation

because most broadcasts are avoided in SPP-BA.

2) Computational Cost: In this experiment, for each

size of the network, we average over all the nodes the com-

putational cost of the steps in SPP-Computation. Figure 3.c

illustrates the breakdown in terms of computational time.

For each network size (i.e., 200, 400, 600 and 800 nodes),

the durations of the different steps for SPP-Computation

can be seen on the left while those of NL are on the

right. We plot the durations of the vote encryption, share

computation, and vote decryption (i.e., share combination).

This figure highlights the efficiency of our protocol and

indicates that decryption is the most expensive step in both

protocols, thus supporting our approach of delegating this

task to clusters of small size.

VII. CONCLUSION

In this paper, we have proposed SPP, a scalable and

secure distributed protocol to conduct polls in a dynamic

network. Its complexity is drastically lower than those of

previously known algorithms and within a factor log2 n
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Fig. 3. Experimental evaluation of our protocol (SPP) and of the
Byzantine Agreement protocol (BA) against a non-layout based one
(NL).

of the optimal. The experimental evaluation illustrates

that SPP-Computation significantly outperforms classical

protocols in unstructured networks. Furthermore, the im-

plementation shows that the proposed solution is efficient

whereas protocols in unstructured networks cannot be used

in practice in large networks due to scalability issues.

We have also presented two applications of SPP: (1)

an optimal Byzantine agreement protocol for dynamic

networks as well as (2) a protocol for computing functions

consisting in linear combination of inputs whose com-

plexity is Õ(n3/2). We leave as future work the design

of a protocol closing the gap between the lower bound
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of Ω(n log n) and the upper bound O(n log3 n) currently

achieved by SPP as well as the possibility of extending

our algorithms to other secure multiparty computations.
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