Alaeddine El Fawal, Jean-Yves Le Boudec, Adel Aziz

Empirical Performance Evaluation of Data Dissemination Mechanisms for Spot Applications

Objectives

Find/Design a package of mechanisms that delivers dissemination service to *spot applications*

Consider all challenging scenarios...

Evaluate the performance through *measurements* on a realistic testbed composed of 50 wireless devices

Spot Applications:

FÉDÉRALE DE LAUSANNE

Spot Applications:

Traffic info, social networks, car sharing, mobile concierge....

Ad-hoc Flash Sales: Typical Spot Application

Three Building Blocks Based on Blind Mechanisms:

We consider only <u>blind mechanisms</u>, no handshaking, no network information, no communication overhead... only local observation is considered

Forwarding Factor Control: minimizes redundant transmissions.

Virtual-rate based FF control: penalizes over-sent/over received packets.

Upon sent/receive event of pkt X VRx ← C * a^rcvCount * b^sendCount Send pkt X at currentTime + 1/VRx (0 < a, b < 1; C = [pkt/s])

New encounter detection:** (for dynamic networks)

Upon any receive event If source-id is a new encounter Schedule all packets for transmission

- First time evaluated in this context and while inter-acting with the remaining of the mechanisms
- ** New mechanism that we propose

Buffer Management: cleans the buffer in order to keep space for new incoming packets.

TTL*:

1- Drop pkt if TTL > maxTTL 2- If buffer is full: drop pkt with largest TTL

TTL with Head Drop**: similar to TTL but If buffer is full: drop head pkt

Aging: adapts packet life time based on the netwrok activity.

1- Upon any send or receive event loop: over all packets age ← age + K If age > maxAge: drop packet end loop 2- If buffer is full: drop pkt with largest age

Lightened Aging **: A light version of aging

Flow Control: controls the application injection rate.

MAC-based flow control:** adapts the application rate to the MAC rate

Implicit Ack-based flow control: adapts the application rate to the forwarding capacity of the network; ensures a scalable dissemination.

	Adaptability	Disseminatior control	Resource con- serving	Co-existence with other applications	Fairness
Forwarding factor control	X	X	X	X	
Flow control	X	X		X	X
Buffer management	X	X	X		

Testbed, Prototypes and Measurements:

Testbed:

Realistic testbed: Wireless nodes are distributed over 5 buildings. Each dot corresponds to a node.

Resource constrained device:

- **■** C++
- Device: ASUS WL-500GP v1
- Flash: 8MB; RAM: 32MB; processor: 266MHz
- Firmware: OpenWrt

Prototypes:

Recommended Package:

Forwarding Factor Control

Virtual-rate based FF control New encounter detection

Buffer Management

TTL with *small* buffer size (1000 pkts)

Flow Control

Implicit Ack-based flow control

Some Measurement Results:

Resource conserving

Disconnected island are fully connected in time, due to mobility. Forwarding factor adapts to the node density. Adaptability, resource conserving

Spot applications co-exist well with TCP traffic. **Co-existence with TCP applications**

