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Abstract

Without specialized sensor technology or custom, multi-
chip cameras, high dynamic range imaging typically in-
volves time-sequential capture of multiple photographs.
The obvious downside to this approach is that it cannot eas-
ily be applied to images with moving objects, especially if
the motions are complex.

In this paper, we take a novel view of HDR capture,
which is based on a computational photography approach.
We propose to �rst optically encode both the low dynamic
range portion of the scene and highlight information into
a low dynamic range image that can be captured with a
conventional image sensor. This step is achieved using a
cross-screen, or star �lter. Second, we decode, in software,
both the low dynamic range image and the highlight infor-
mation. Lastly, these two portions can be combined to form
an image of a higher dynamic range than the regular sensor
dynamic range.

1. Introduction

Camera sensors can capture a certain maximum num-
ber of photons before they start to saturate and no longer
register additional light. Although it is possible to increase
the saturation point by increasing the capacity of the sensor
electron well, producing large sensors is excessively expen-
sive and reduces sensor resolution. Such sensors are also
hard to justify for general imaging applications because, on
average, only a small portion of a scene contains very bright
spots and thus needs high capacity sensors.

The human visual system has developed a clever mech-
anism to cope with highly saturated scene regions, such as
highlights or light sources. Like camera sensors, the pho-
toreceptors in the human retina are also prone to saturate.
However, the visual system is able to infer higher brightness
of those saturated regions from glare, which is produced by
the light that is scattered in the ocular �uid and spread over
the retina. The glare surrounding bright areas boosts their
perceived brightness, giving additional information to the
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Figure 1: Capturing a high dynamic range (HDR) image with a
cross-screen �lter. Insets show bright regions at a shorter virtual
exposure. The dynamic range increase is 9:21 f-stops. The ground
truth has been constructed from a series of 16 exposures and hence
has a lower noise level compared to our single exposure result.

brain that this part of a scene is much brighter than the pho-
toreceptor saturation point [25].

In this paper we propose to use a similar approach to im-
prove camera dynamic range without resorting to custom
sensors, multi-sensor cameras, or time-sequential imaging.
Unlike the eye, we are not limited to speci�c optics. In-
stead, we can choose to modify the optical system in order
to the increase the information that is encoded for the satu-
rated areas. Our goal can thus be more ambitious than sim-
ply to estimate the overall brightness of the saturated image

289

http://www.cs.ubc.ca/labs/imager/tr/2011/GlareEncodingHDR/
http://www.cs.ubc.ca/~nasarouf/
http://www.bangor.ac.uk/~eesa0c/
http://www.cs.ubc.ca/~heidrich/
http://www.cs.ubc.ca/~mmt/
http://www.cs.ubc.ca/~cherylsl/
http://www.cs.ubc.ca/
http://www.cs.bangor.ac.uk/


regions. Instead, we would like to reconstruct spatial de-
tail for the pixels in those areas. Speci�cally, we propose a
computational photography approach comprised of the fol-
lowing steps:

� Encoding. Details of bright image regions in a high dy-
namic range (HDR) image, such as highlights and di-
rectly visible light sources, are encoded into specially
shaped glare patterns optically added to the image.

� Capture. The encoded image is captured using a stan-
dard image sensor. Bright regions in the captured im-
age are saturated due to limited sensor dynamic range.

� Decoding. In software, we separate the glare pattern
from the low dynamic range version of the image. The
glare pattern can be used to infer the radiometric inten-
sity distributions in the saturated image regions.

We have experimented with a number of speci�c optical
encodings to implement this general principle. Some ob-
vious candidates are regular lens glare and defocus blur to
spread out energy from saturated image regions to other pix-
els. However, to provide enough information of the high-
light regions for detailed reconstruction, energy spread must
be signi�cantly larger than standard lens �are. Likewise, a
defocus blur implementation would have to use very large
blur radii on the order of dozens of pixels. For such large
blur, even the most recent deconvolution algorithms in com-
bination with coded apertures fail to reconstruct high qual-
ity images [24].

In this paper, we therefore focus on the optical encoding
that we found most successful: a glare pattern that scat-
ters light in a �xed set of discrete directions. Such patterns
are produced by inexpensive photographic cross-screen �l-
ters (also known as star �lters), which are mounted in front
of a camera lens. The scattering pattern of these �lters is
most salient for very bright scene features since the star �l-
ters concentrate most energy in a Dirac peak rather than the
glare rays. Star �lters spread the light in discrete directions,
and therefore one dimensional techniques can be applied
instead of more expensive and less stable 2D techniques.
These properties let us estimate the amount of light spread
from bright image features into several discrete directions
(from 2 to 16), and then reconstruct clipped pixels using a
tomographic reconstruction technique.

2. Related work

Multi-exposure HDR capture: Blending multiple expo-
sures [4] is the most accurate method for acquiring high
dynamic range images with conventional cameras. How-
ever, this approach is limited by ghosting and misalignment
problems [9], which are still largely unsolved for dif�cult
cases such as moving tree leaves or waves on the water.
There are ways of obtaining multiple simultaneous expo-
sures (e.g. [15, 16]), and to design sensors that directly sup-

port multi-exposure capture (e.g. [6]), but such cameras and
sensors are not currently widely available.
LDR to HDR enhancement: Reconstructing an HDR im-
age from a single exposure with clipped values is a chal-
lenging problem that yields only approximate solutions.
Several techniques have been developed (e.g. [3, 21, 14, 5]),
however these are merely heuristics that are used to plausi-
bly guess content that has ultimately not been captured.
Clipped signal restoration: For band limited 1D signals,
reconstruction algorithms have been proposed for situations
where the number of clipped samples is low [1], or where
a statistical model of an undistorted signal is known [17].
However, neither of these approaches can be trivially ex-
tended to images, because natural image statistics are too
weak to restore detailed texture in clipped regions. There-
fore, only special cases have been successfully solved in
the image domain, for example images where only a subset
of the color channels is clipped [26], or noisy images with
pixel values just above the clipping threshold [8].
Deconvolution: A large body of recent work has focused
on the development of new deconvolution algorithms, as
well as special, frequency-preserving convolution kernels
for both motion blur (e.g. [19, 13]) and depth-of-�eld blur
(e.g. [12, 27]). In principle, both motion blur and depth-of-
�eld blur could be used to spread energy of bright pixels in
a fashion similar to what we propose in this paper. How-
ever, a suf�ciently large energy spread can only be achieved
with very large blur kernels. In our experiments, we found
that even the combination of state-of-the-art deconvolution
methods with special kernel shapes fails to recover a high
quality, sharp image for these large radii. This is consistent
with recently published results [24]. Another problem with
using convolution methods is that most recent deconvolu-
tion algorithms cannot reconstruct clipped pixels.

Our approach using a cross-screen �lter avoids these
problems, since the �lter produces a collection of 1D streaks
that can be detected and removed reliably, while encoding
enough information of the saturated regions to allow for de-
tailed reconstruction of clipped pixel values.
Glare removal: Over the years, a number of approaches
have been proposed for removing lens glare. Since we
rely on strong glare for obtaining information about clipped
image regions, the methods that optically suppress glare
(e.g. [23, 20, 11]) are not applicable in our setting. On the
other hand, deconvolution methods that remove the glare af-
ter the fact (e.g. [22, 7]) suffer from the same shortcomings
as the other deconvolution methods discussed above.

3. Image formation model

In the following, we outline the image formation process
for cameras with a cross-screen �lter before we go into the
details of our approach.
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Figure 2: (a) An 8-point cross-screen �lter.(b) A point light
source seen through it.(c) Measured point-spread functions (PSF)
for the 1D slices along glare lines for different cross-screen �l-
ters, taken from images like(b). Exponential approximations are
shown as dashed lines.
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Figure 3: The working principle of a 2-point cross-screen �lter.
Top row: A single horizontal groove systematically spreads out
incoming light only vertically, yet keeps it focused horizontally.
Bottom row: Multiple parallel grooves makes the effect stronger.

A cross-screen �lter is a transparent photographic �l-
ter with parallel scratch marks or grooves on its surface
(Figure 2(a)). When mounted in front of a camera lens,
the grooves disperse and diffract the light, creating a star-
shaped glare – linear streaks (Figure3) in a number of dis-
crete directions. This glare is very faint and hence star-
shaped glare patterns are usually noticeable only around
very bright areas.

A captured imageg can be expressed as a result of apply-
ing a light transport operatorH describing the glare to the
latentimagef , and then clipping the result to the maximum
sensor value:

g(x) = min(1;å
y

f (y)H(x;y)+ n): (1)

Here,x andy refer to two dimensional image coordinates,
andn represents noise. For simplicity, we ignore noisen

in the rest of the derivation and discuss its in�uence on re-
sults in the supplemental material.H can be modeled as a
combination of following components (Figure4),

� a Dirac peak representing the light that does not hit one
of the scratches on the cross-screen �lter,

� a glare functionK which has been empirically found
to be both shift- and depth-invariant1, and

� a zero-mean residual waviness in glare,r , that isnot
shift-invariant, but several orders of magnitude weaker
in intensity.

= + +

log scalelog scalelog scale linear scale

XXXX
Approximate PSF Delta function Exponential falloff Residual component

a + b a

b b 0

Figure 4: The kernel can be approximated by a sum of a Dirac
delta function and an exponential falloff. The residual component
accounts for a shift-variant wavelength-dependent response.

Thus,

H(x;y) = a d (y � x)+ b K(y � x)+ g r (x;y). (2)

For the �lters we used,a � 1, b � 10� 4 andg � 10� 7. The
glare functionK is itself composed of 1D streaks,

K(x � y) =

8
><

>:

p=2

å
i= 1

ki(ui � (x � y)) whenvi � (x � y) = 0

0 otherwise,
(3)

with an exponential falloffki(d) = e� mjdj . Here, ui andvi
form an orthogonal coordinate system aligned along theith

glare direction (see Figure2(b)). Note that the parameters
a , b , g andm can be measured for each cross-screen �lter
by capturing an (almost) point light source and measuring
these statistics. In our experiments, we have observed that
these quantities are independent of focal depth and position.

The scene dependent residual waviness functionr is pri-
marily a function of the (unknown) spectral composition of
the scattered light. Although this function is shift-variant, it
too only distributes energy along radial lines, likeK.

Figure2(c) shows cross-sections along glare streaks of
2D PSFs for several cross-screen �lters we obtained. These
measurements show that an exponential falloff model �ts
the overall shape of the glare quite well. In our application,
this exponential model is suf�cient for glare estimation with
suf�cient precision for saturated pixel reconstruction. The
high-frequency variations captured inr are, however, im-
portant for removing glare from low dynamic range portion

1The glare streaks are, however, created by focusing the glare pattern
through the camera lens, and hence are subject to radial lens distortion. In
our discussion, we assume that radial distortion has been removed.

291



of the image. The overall image formation model is then
given as

g = min(1;a f + b K � f + gr); (4)

wherer(x) = å y r (x;y) f (y) is the result of a “convolution”
of the intrinsic image with the shift-variant residual wavi-
ness pattern.

In summary, our image formation model consists of a
Dirac part and a combination ofp=2 1D functions describ-
ing both an exponential falloff and a residual waviness. In
the following, we can therefore consider the glare removal
problem as a set of independent 1D problems.

4. Decoding method

We now describe our proposed method for decoding both
the low dynamic range image and the highlight details from
a glare photograph taken with a cross-screen �lter.

Considering the light transport (Equation4), we can see
that it is not possible to directly solve for the glare-free la-
tent image, due to sensor saturation. Instead, we split the
problem by separately considering the saturated and the un-
saturated pixels in the observed imageg. We de�ne gU to
be the unsaturated pixels ofg, with the values of all sat-
urated pixels set to 0. We also de�negS = g � gU to be
a mask that is 1 for saturated pixels and 0 for unsaturated
ones. Similarly, we de�nefS = f � gS and fU = f � (1� gS).
Finally, we de�nerS (rU) as only that part of the residual
from Equation4, which is due to scattering of light from
saturated (unsaturated) pixels.

With these de�nitions, we can rewrite the unsaturated
component of Equation4 as follows:

gU = a ( fU + fS) + b K � ( fU + fS) + g(rU + rS) (5)

= a fU + ( b K � fU + grU) + ( b K � fS+ grS) , (6)

sincefS = 0 for unsaturated pixels. As a result, we can now
obtain the latent image by estimating and removing several
kinds of glare:

� Glare generated byunsaturatedpixels that affects
other unsaturatedpixels — �rst bracketed term of
Equation6. This type of glare is fairly weak and does
not contain high spatial frequencies (Section4.1). We
can further simplify this term, sincerU is so small as
to be negligible.

� Glare generated bysaturatedpixels that affectsunsat-
urated pixels can be estimated and removed through
the use of image priors (second bracketed term in the
equation above, Section4.2). The estimated glare also
provides information about the saturated regions from
which it emerges, and can therefore be used to recon-
struct spatial detail within those regions (Section4.3).

� Glare that contributes to already saturated pixels — ei-
ther originating from unsaturated or saturated pixels
— is not measured in the captured image and therefore
does not need to be modeled.

While in essence we do perform a 2D deconvolution, to
make the solution possible and robust, we decompose it into
an `easy' 2D deconvolution (a series of 1D problems) and �-
nally a tomographic reconstruction. The supplemental ma-
terial contains further discussion about the relationshipto
deconvolution.

4.1. Glare due to unsaturated pixels

Because the Dirac peak dominates the PSF of the cross-
screen �lters, the glare due to unsaturated pixels is very
weak. As mentioned above, we can further simplify the sit-
uation by neglecting the shift-variant residualrU, which is
several orders of magnitude weaker than the shift-invariant
part of the PSF. With these observations, we can remove
the glare due to unsaturated pixels using a deconvolution
approach similar to [23]:

g0(x) = g(x) � b (K � fU)(x) for x 2 U (7)

=

 
¥

å
t= 0

�
�

b
a

K
� t

� g

!

(x) from (6), (8)

whereg0 is the image with the unsaturated pixel glare re-
moved, and the operator�t denotest-times convolution.

4.2. Glare due to saturated pixels

The next step is to estimate and remove glare due to satu-
rated pixels. This glare component will also be used for re-
constructing saturated pixel values in Section4.3. As men-
tioned in Section3, we can factor this step into a number of
1D problems along directionsui , whereui ;vi form a coor-
dinate frame aligned with theith glare ray (see Figure5). In
the following, we consider each glare direction separately,
and thus omit thei subscript for notational convenience.
Image priors. Knowing both which pixels are saturated in
the observed image, as well as the direction of the 1D glare
rays, we can determine which image pixels exhibit a glare
contribution from saturated pixels. In order to separate the
latent image information from the glare in these pixels, we
employ results from natural image statistics, speci�callya
sparse gradient prior [12, 18]. We model the distribution of
gradients in the latent image using a Laplace distribution,
which is the best approximation of the heavy-tailed distri-
bution that still leads to a convex problem [2].

Glare rays cause the largest distortion of the image gradi-
ents in the directionorthogonalto the glare rays. According
to the sparse gradient prior, we obtain¶ f

¶v � Laplace(0;b).
Any deviations from a zero mean in the observed image
g are attributed to glare. In the supplemental material we
show that the Maximum Likelihood (ML) estimator for the
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mean of a Laplace distribution is obtained by minimizing
the L1 norm. Therefore, we can solve for the intrinsic im-
age as follows:

argmin
f






¶
¶v

�
g0� b K � fS � grS

�





1
+ R, (9)

whereRgives constraints onrS (see supplemental material,
Section 2.2 for details):

R=
�

l 1krSk2 + l 2






¶
¶v

rS






1
+ l 3






¶
¶u

rS






1

�
: (10)
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Figure 5: Cross-section of the glare due to saturated pixels, form-
ing between a pair of saturated regionsL andR. The cross-section
is extracted from a single line of pixels along the glare direction
(u-axis in the inset). The glare can be split into two components
with an exponential slope in the opposite directions.

Optimization. To actually apply the image prior in the
glare estimation, we consider a single continuous segment
M of unsaturated pixels along a glare directionu. M is
bounded by two sets of saturated pixelsL andR on the left
and on the right, as shown in the inset of Figure5.

We can now use the exponential nature of the 1D glare
streaks (from Equation3), and expand the convolution op-
erator in Equation9:

(k� fSv)(u;v) = `L e� mu+ `R emu for u 2 M, (11)

where

`L = å
i2L

emi f (i;v); `R = å
i2R

e� mi f (i;v): (12)

Note that̀ L and`R have the same value for all unsaturated
pixels u 2 M, and therefore all pixels inM can be used to
robustly estimate these two quantities.

Also note that̀ L and`R represent the amount of energy
present in the glare from the saturated pixels to the left and
to the right ofM. These quantities, which we refer to as

line integralswill be useful for reconstructing detail in the
saturated regions in Section4.3.

Now we can reformulate the glare estimator in terms of
line integrals`L and`R rather than saturated pixel values.
From Equations9, 11and12we obtain

argmin
`L ;`R;r

å
u2M







¶
¶v

g0(u)� b
¶
¶v

�
`L e� mu+ `R emu� (13)

� g
¶
¶v

rS(u)







1

+ R:

This equation allows us to ef�ciently optimize on each seg-
mentM independently. However, to solve for`L and`R, the
partial derivatives¶`L

¶v and ¶`R
¶v must be found for all seg-

ments and then integrated. To solve the minimization prob-
lem ef�ciently, we use several EM iterations. We initially
setg¶r

¶v = 0. Sinceg � b , this provides a reasonable ini-
tial estimate of exponential glare component, but enhances
color artifacts when this monochromatic glare is removed.
In the E-step, we solve for̀L and`R, and in the M-step we
re�ne the estimate ofr. Minimizing Equation13 is suf�-
cient to remove most of the glare (Figure6).

(a) (b) (c)

Figure 6: The glare left by a cross-screen �lter is not monochro-
matic due to diffraction and dispersion effects.(a) Although the
color artifacts seem to be very faint in captured images,(b) they
are strongly enhanced after removing achromatic exponential glare
because it boosts chromatic contrast.(c) Estimating wavelength-
dependent variations can remove most of the color artifacts.

Finally, we prepare line integral estimates for the energy
contributed by individual,continuousregions of saturated
pixels, which will be used in the next section. Each value
`L and`R can contain contributions from multiple saturated
segments on the left and right ofM (not shown in Figure5).
However, isolating glare due to each saturated region is triv-
ial since there are exactly as many line integrals as there are
regionsM along a glare line, and therefore the contributions
for each region can be found with a simple linear system.
For convenience, we shift the origin of(u; v) to the leftmost
or rightmost pixel of each segmentM to get isolated line
integralsb̀L andb̀R.

4.3. Reconstruction of saturated pixels

So far, we have decoded the values of the intrinsic image
f for the previously unsaturated pixels only; the values of
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Figure 7: (a) Glare along discrete directions give different “pro-
jections” of the saturated region.(b) Bilinear sampling along these
directions relates line integrals to saturated pixels in (14) and (15).

the saturated pixels are still unknown. However, glare re-
moval procedure from Section4.2also yields line integrals
alongp discrete directions, as shown in Figure7(a). In the
�nal step of the decoding procedure, we use this informa-
tion to reconstruct the saturated region. To this end, we
need to �nd saturated pixel values that can produce the line
integrals matching the observations. This requires solving a
standard tomographic reconstruction problem [10].

Unlike the glare estimation, the tomographic reconstruc-
tion is inherently a 2D problem. We gather the estimated
line integrals along allp directions in a linear system that
describes the relationship between line integrals and satu-
rated pixelsf . We therefore use a one-index representation
for all line integrals contributing to a given region:b̀i . This
relationship is then expressed as

b̀i = å
j

wi j f j , (14)

where the weight termwi j for line integrali and an unknown
pixel j is the product of exponential falloff and a bilinear
resampling weightai j , as shown in Figure7(b):

wi j = ai j e� mjui � u j j : (15)

Here,ui is the reference location used while computingb̀i .
The absolute value consolidates different signs for glare
falloffs to the left and right.

We solve this tomography problem using Simultaneous
Iterative Reconstruction [10, pp 284]. We start with an ini-
tial guess,f (0) = 0. Then, in each iterationt, the residual
error in the current estimate of line integrals,

Db̀i = b̀i � å
j

wi j f (t)
j , (16)

is backprojected over the participating unknown pixels re-
gardless of distance from the reference location,i.e., energy
distribution is proportional to resampling weight (a) only,

f (t+ 1)
j = f (t)

j � Db̀i
ai j

å k ai k
: (17)

Using a uniform distribution for the backprojected residual,
independent of any falloff, is a standard procedure in to-
mography. One should think of this as a (weak) prior on the
intensity distribution within the unknown region. We em-
ploy a simple two-scale approach which solves the problem
for a low resolution image �rst. Since we know that actual
values at the saturated pixels are larger than the saturation
threshold for the camera, we enforce this simple constraint
during backprojection.

5. Results

Figure8 shows a number of examples of HDR images,
decoded from single images captured as RAW images with
a Canon 40D DSLR camera using 8- and 16-point cross-
screen �lters, and Canon lenses ranging from 50mm to
100mm. In this �gure, the �rst two columns represent two
exposures of the 12-bit input image, while the right two
columns represent two virtual exposures of our reconstruc-
tions. Saturated regions are reconstructed, and glare pro-
duced by the �lter is removed. For color images, we run our
algorithm separately and independently on each color chan-
nel. Radial lens distortion was removed in a preprocessing
step. Insets in the right column show ground-truth com-
parisons for some of the results,i.e. short exposure images
taken without the �lter, using the same camera and lens.
Note that the geometric and photometric alignment may not
be perfect due to the changes in the acquisition setup. These
results demonstrate a number of points:
Glare estimation: Accurate estimation of glare is neces-
sary not only to correctly reconstruct saturated regions, but
also to remove glare. Our sparse-gradient prior was robust
enough to estimate glare both for a multitude of small light
sources (Figure8a), as well as relatively large saturated ar-
eas (Figure8c). The main requirement for successful glare
estimation is that saturated regions be both bright and large
enough (i.e. suf�cient cumulative energy) to produce glare
above the camera noise level.
Highlight reconstruction: Given only 8–16 directional
line integrals, tomographic reconstruction is a challenging
task. Even so, the results demonstrate that our method can
estimate the total energy of the saturated regions as well as
the approximate values of the saturated pixels. This is in
contrast to the previous single-image methods, which could
achieve neither of these two goals. Our method can also
easily distinguish between very bright light sources and dif-
fuse surfaces that are just above the clipping level, thus
making complicated classi�cation methods for the LDR-to-
HDR enhancement unnecessary [5].

Figure 8(a) also demonstrates that the multi-exposure
HDR can exhibit some artifacts due to alignment issues,
particularly at the outline of the light sources. Ours beinga
single exposure method, does not show any such artifacts.
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5.1. Limitations

Our method is not suitable for scenes with large satu-
rated regions, such as a sky, because large saturated regions
do not leave enough unsaturated pixels to register glare pat-
terns, and the gradient distortions too hard to detect. The
method can conceptually handle scenes with light sources
outside the image frame, but we found that the accuracy of
glare estimation is often not suf�cient in such cases.

Finally, our method is also likely to fail if a scene con-
tains color gradients oriented the same way as the glare pat-
terns. It breaks the assumption of a zero-mean gradient dis-
tribution, and results in mis-estimates of the glare. It is usu-
ally possible to avoid such problems by rotating the �lter out
of alignment with image gradients. A synthetic example of
this scenario is analyzed in the supplemental material.

6. Conclusion and future work

The distinctive feature of our proposed single-image
HDR capture method is that the information lost in clipped
pixels is encoded in the remaining portions of an image.
This approach is very different from existing HDR capture
methods, which attempt to register HDR information within
each pixel or a group of closely located pixels. Unlike the
LDR to HDR methods that only enhance clipped pixels, the
proposed method can restore a close approximation of their
original values. Our method does all that without requir-
ing specialized sensor or invasive camera modi�cations, as
it needs only a cross-screen �lter mounted on top of a lens.

Our reconstruction method contains several technical
contributions, including the use of natural image priors to
separate encoded information (glare) from image content.
We also propose a novel application of tomographic recon-
struction.

In the future, we would like to design cross-screen �lters
that produce easily detectable patterns bene�tting from re-
dundancy and sparsity of information in natural images. A
promising application of our method is HDR video capture,
which could be further improved by combining information
from several frames to better reconstruct clipped pixels.
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Figure 8: Results of reconstruction from images captured by a camera with an 8-point cross-screen �lter. The �rst column shows the single-
exposure images captured with the �lter (input to the proposed algorithm).The second column shows the saturated pixels by marking them
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