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Abstract. For biologists studying the morphology of cells, Electron Mi-
croscopy (EM) is the method of choice with its nm resolution, across
increasingly larger volumes. However, the time necessary to acquire such
image series is long and often limits the amount samples are imaged.
This paper presents a strategy for fast imaging and automated selection
of regions of interest that significantly accelerates this process. In partic-
ular, this strategy involves scanning a tissue sample once, finding regions
of interest in which target structures might be located, scanning these
regions once again, and iterating the process until only relevant regions
of the block face have been scanned repeatedly. For mitochondria and
synapses, this approach is shown to produce near equal localization re-
sults to current state-of-the art techniques, and does so in almost a tenth
of the time.

1 Introduction

Focused Ion Beam Scanning Electron Microscopes (FIB-SEM) and their ability
to image with isotropic resolution of up to 4nm per pixel are becoming invaluable
tools in studying cell ultrastructure and model organelles, such as mitochondria,
synapses, and vesicles. Acquiring images such as those depicted in Fig. 1 involves
repeatedly milling a few nm from the surface of a tissue block using a focused
gallium ion beam, scanning each line of a rectangular region of the block face
several times, averaging the results, and milling again.

The resulting images have already yielded many new insights in the structure
and functioning of cells [1, 2], but the acquisition process is desperately slow. For
example, imaging the 10 × 10 × 10µm tissue block of Fig. 1 at full resolution
took approximately 50 hours. Such lengthy processing times are limiting because
neuroscientists now require larger volumes to enable multiple cells, and even
entire tissue samples, to be analyzed, which would currently be prohibitively
slow. Furthermore, because thermal changes can cause the block face to drift
and produce misaligned image series, considerable precision is needed to maintain
consistent imaging. This is difficult to achieve over extremely long periods and
limits the size of the images that can be captured.
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Fig. 1. FIB-SEM Scanning Process. The microscope repeatedly scans the surface of a
sample block until a clear image is produced.

In short, a pressing need exists to reduce scanning time without compromis-
ing the usefulness of the resulting images. Some research has already gone into
achieving such a result. For example, synthetic and real data have been used to
show that Sparse Sampling techniques could potentially help [3]. However, the
current generation of microscopes simply cannot perform the required random
sampling because imaging extremely small and random locations on the block
face would be incredibly time consuming.

In contrast, this paper uses a combination of real and synthetic data to
demonstrate an approach to achieving much faster scanning using existing tech-
nology [4] when the images are intended for automated detection, counting, and
modeling of organelles. The strategy involves scanning each image line of the
block surface once instead of several times, finding rectangular regions of in-
terest in which target structures might be located, scanning these regions once
again, and iterating the process until only relevant regions of the block face have
been scanned repeatedly. This process will be shown to result in much reduced
imaging time at almost no performance loss.

The remainder of this paper is organized as follows. The paper begins by
specifying our approach in Sec. 2, and provides a problem formulation in Sec. 2.1
and an algorithm description in Sec. 2.2. In Sec. 3, the method is validated
experimentally. The paper concludes with final remarks in Sec. 4.

2 Sequential Region Cascades

The following observations are used as the starting point:

1. If the goal is to count or model organelles that occupy only a small fraction
of a tissue block, precisely imaging the entire tissue block is a waste of
time. This concept has long been known and exploited by Computer Vision
researchers [5, 6] but, to the best of our knowledge, has been neglected by
microscopists.

2. Once an organelle has been found in one slice, it will be seen with very high
probability at similar locations in subsequent slices, e.i. organelles are 3D



structures. Similarly, a slice must exist in which an organelle first appears,
as well as a final one.

3. Current microscopes are good at quickly scanning rectangular regions, and
new scanning engines that will make this process entirely programmable
on a slice-by-slice basis will soon be commercially available [4]. In contrast,
microscopes that can quickly and randomly access specific image locations
are likely to remain beyond the state-of-the-art for the foreseeable future,
thus precluding the use of standard Sparse Sampling techniques [3].

4. The microscopes are optimized to scan lines at one particular speed. Total
scanning time, and image quality, are controlled by the number of times
each line of the rectangular regions of interest is scanned. Typically, the
final result is the average of these scans.

Therefore, we propose our Sequential Region Cascades (SRC) approach for
accelerating the scanning process by building a cascade of region classifiers and
sequentially evaluating regions that appear likely to contain a particular intracel-
lular structure. While most cascade systems increase classification accuracy over
levels, given the technical constraints discussed above, classification is instead
performed on images acquired with varying scan counts. To take advantage of
what was found in one slice and accelerate the scanning in the next, target lo-
cations are directly imaged using locations from previous slices with the largest
possible numbers of scans, and new targets are searched for in the remainder of
the slice using the cascade.

In the remainder of this section, the SRC approach is first formalized, and
then its implementation is discussed. Section 3 shows that it allows counting of
both mitochondria and synapses with much reduced acquisition times and at
almost no loss in accuracy.

2.1 Problem Formulation

We formalize our problem as follows. Let the volume to image be denoted by
V = {S1, . . . , ST }, where St corresponds to a slice of the volume. When using
a scanning EM microscope, we consider two sets of parameters when acquiring
images. First, we define a rectangular region to scan, R = (r1, r2), where r1 and
r2 are the upper left and bottom right pixel coordinates, respectively. Second,
the scan count is defined as the number of times the electron beam images one
pixel and denote this value as C = {1, . . . , Cmax}.

Given these two parameters, (R,C), the process of acquiring an image by
scanning a region of a slice can be described by the function f , where f : S ×
R × C 7→ I. That is, evaluating the function f(S,R,C) provides an image IRC
of size R and corresponds to the average of C independently scanned samples.
Typically, the time cost associated with evaluating f(S,R,C) is C × area(R).

As in [7–9], we may train a classifier to verify if a pixel in IRC belongs to
a target organelle. As can be seen in Fig. 1, images acquired using different
scan counts exhibit different statistics and we may train different classifiers for



Algorithm 1 Sequential Region Cascades (SRC)

1: P ← empty queue, Q ← empty queue.
2: for t = 1, . . . , T do
3: Push(([0, 0], [M,N ]), 1) into Q
4: RemoveOverlaps(Q,P)
5: while |Q| > 0 do
6: [R,C]← Top(Q)
7: IRC ← f(St, R, C)
8: R← ExtractRegions(hC(IRC ))
9: if Cmax == C then

10: Push(R, C) into P
11: else
12: Push(R, C + 1) into Q
13: end if
14: end while
15: end for

each. We therefore take a family of classifier to be H = {h1, . . . , hCmax
}, where

hc : IRC 7→ {0, 1}R. Note that these classifiers return binary images.
Finally, let P t to be the set of pixels corresponding to the location of target

structures in slice St. Our goal is to discover these sets {P t}t=T
t=1 for all slices as

efficiently and as quickly as possible.

2.2 Algorithm and Implementation

An outline of the algorithm is shown in Alg. 1. To begin, the user provides
the set of classifiers and the volume to image, H = {h1, . . . , hCmax

} and V =
{S1, . . . , ST }, respectively. The algorithm begins by forming two queues that
will maintain tuples of regions and scan counts, i.e. (R,C). The first, P, main-
tains a set of regions deemed the target structure on a given slice. The second, Q,
maintains an intermediary list of candidate regions that appear likely to contain
target structures within them. Initially, both queues are empty. For each new
slice, we begin by pushing the entire observable domain as a candidate region
using the smallest scan count. The following sequence of steps is then looped,
which is called the refining stage and is depicted by Fig. 2 (lines 5 to 14): A
candidate region and scan count index from the queue Q is retrieved. The as-
sociated image region, IRC , is then acquired and the corresponding classifier is
evaluated by computing hc(I

R
C ). At this point, the binary classification image

is searched for disjoint sets of rectangular regions that indicate potential target
locations. If newly extracted regions were acquired using the highest possible
scan count, these are pushed into the target region queue, P, otherwise, they
are pushed into the candidate region queue, Q. This process iterates until no
candidate region remains.

In addition, before starting the refining stage, the overlapping region that
coexists in both Q and P are removed. This effectively creates a new set of
regions in Q that are disjoint of P and reduces the direct need for searching
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Fig. 2. SRC Refining Stage: For any slice, the queue Q contains a list of tuples (R,C)
that specify a region and scan count with which the microscope should image. Once an
image region acquired, IRC , a dedicated classifier assigns a binary label to each location
in the image for the presence of targets. New tuples are then formed and inserted into
Q or into the permanent queue P.

targets likely to have stayed in the same location. Doing so is one way of encoding
3D information for location of targets in a volume. Obviously, during the first
slice of the tissue block, this step is irrelevant because P is empty.

3 Experiments and Results

We used a Zeiss NVision40 FIB-SEM microscope to mill and scan a rodent
brain sample of 10 × 10 × 1µm, which produced 165, 1024 × 1536 images. We
also collected a second stack of 377, 655×429 images. In both cases, each line was
scanned Cmax = 44 times. This took 5 and 12 hours, respectively. We evaluated
our algorithm for the tasks of localizing two types of organelle: mitochondria
and synapses. Here, we show how the SRC strategy could be used to divide the
scanning time by a factor of 10 to 15 depending on the target type.

Test Data: Given that the scanning engine of our NVision40 microscope was
not designed for this, implementing our approach on it would be very difficult.
However, this will soon change when newer scanning engines come to market [4].
To demonstrate our approach in the meantime, we therefore proceed as in [3]
and synthesized the scans we would have gotten using values of C < Cmax by
appropriately degrading the higher-quality ones. To ensure realism we proceeded
as follows.

Before scanning, and thus destroying, the whole first block, we collected six
independent images {I1, ..., I6} of the first slice using a single scanning pass for
each and a single one, which we denote as Î, using 6 passes. From this, we first
verified that for any pixel location u, the gray-level Ii(u) in any of the 6 single-
scan images is well approximated by a Gaussian of mean Î(u) and standard
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Fig. 3. Reconstructing small scan count images. (left) Relation between Average in-
tensity and standard deviation for pixels acquired with low scan counts. (right) Top
rows shows real images acquired under 1, 4, 12 and 44 scan counts, and the bottom
shows the corresponding reconstructed images.

deviation σu = mÎ(u) + b, where m and b are linear regression parameters, as
illustrated by Fig. 3 where we plot µu against σu for 10’000 randomly selected
pixels. In other words, the gray level variance is directly proportional to the gray
level value.

From this, using an image acquired with a large number of scans, we can
simulate acquiring an image from a smaller number of scans. For example, a pixel
with n scans can be reconstructed by sampling the Gaussian G(Î(u),mÎ(u) +
b) n times and averaging the samples. Fig. 3 shows the true (top row) and
reconstructed (bottom row) images using this process with 1, 4, 12 and 44 scan
counts.

Experimental Setup: We tested four scan count sequences—Cs = {12, 44},
Cs = {6, 12, 44}, Cs = {1, 6, 12, 44}, Cs = {1, 4, 6, 44}—for synapse and mi-
tochondria detection purposes. In all cases we constructed the classifiers hc as
in [7]. That is, we first extracted regularly spaced superpixels [10], from which
we computed both intensity histograms and steerable features. We then used 15
training images for each scan count C to train a different Support Vector Ma-
chine (SVM) classifier with an RBF kernel. In the C = Cmax case, we used the
original images and for all other C < Cmax, we used synthesized images obtained
as discussed above.

Fig. 4 depicts the algorithm’s behavior when attempting to locate mitochon-
dria using the scan sequence Cs = {6, 12, 44}. From left to right, we show the
complete set of regions evaluated with each scan count on the initial slice, S1.
In red, we show C = 6, in green C = 12 and in blue C = 44. The ground truth
regions are also shown. Additionally, for C = 12 and 44, we also display what
regions from the previous step were evaluated.



Fig. 4. SRC Examples. Images depict the algorithm’s behavior when attempting to
locate mitochondria using the scan sequence Cs = {6, 12, 44}. From left to right, we
show the complete set of regions evaluated with each scan count on the initial slice,
S1. In red, we show C = 6, in green C = 12 and in blue C = 44. The ground truth
regions are also shown. Additionally, for C = 12 and 44, we also display what regions
from the previous step were evaluated.

Evaluation: Recall that our goal is to image at full resolution all the regions
containing target structures–mitochondria and synapses in our experiments–
while spending as little time as possible scanning the block faces. In this context,
the proper measure of success is the True Positive Rate (TPR) as a function of
scanning time, which is plotted in Fig 5. The false positive rate is less relevant
as false positives only cause irrelevant parts of the block being scanned, which
implies no loss of information but a time penalty that the increased scanning
time already reflects.

For the purpose of this evaluation, we consider the time cost of one imaging
strategy to be the sum of the number of times each individual pixel is scanned.
For simplicity’s sake, we normalize these numbers by the corresponding count
when scanning the whole block at the maximum scan count. As a result, the
times that appear in Fig 5 are numbers between 0 and 1.

From these results, we can see all the scan count sequences we tested provide
a significant speed increase, mostly at a very small loss in TPR. By choosing
the appropriate sequence we can establish more than five-fold speedups for an
insignificant TPR loss. In practice, this means a neuro-scientist could examine
and gather statistics for five times as many synapses in the same scanning time.

Note that the choice of which specific scan count sequence to use is not in-
nocuous as it implies training different classifiers for each scan count value, some
of which might be more appropriate than others. For example, the {1,4,6,44}
sequence appears to outperform the {1,6,12,44} one, which may imply that ad-
ditional research into optimizing these sequences might lead to further gains.

Also, the gain in time achieved by our approach is highly dependent on the
type of organelle that must be found. In particular, targets that cove smaller
surface areas, such as synapses (roughly 0.05% of the surface) allow higher time
gains then for mitochondria (3 to 5% surface covered).

4 Conclusion

We presented an approach for speeding-up image acquisition when tasked with
localizing specific structures in FIB-SEM imagery. It exploits the fact that low-



Fig. 5. Mean relative time and TPR for localizing Mitochondria and Synapses by tested
methods. Each point indicates a specific scanning strategy. See text for details.

quality images can be acquired faster than higher-quality ones and yet be suffi-
cient for inference purposes. We have demonstrated greater than five-fold speed-
ups at very little loss in accuracy in the context of mitochondria and synapse
detection. Furthermore, the algorithm we propose is generic and applicable to
many imaging modalities that allow trading quality for speed.
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