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Abstract
We introduce a novel framework for image-based 3D reconstruction of urban buildings based on symmetry priors.
Starting from image-level edges, we generate a sparse and approximate set of consistent 3D lines. These lines are
then used to simultaneously detect symmetric line arrangements while refining the estimated 3D model. Operating
both on 2D image data and intermediate 3D feature representations, we perform iterative feature consolidation
and effective outlier pruning, thus eliminating reconstruction artifacts arising from ambiguous or wrong stereo
matches. We exploit non-local coherence of symmetric elements to generate precise model reconstructions, even in
the presence of a significant amount of outlier image-edges arising from reflections, shadows, outlier objects, etc.
We evaluate our algorithm on several challenging test scenarios, both synthetic and real. Beyond reconstruction,
the extracted symmetry patterns are useful towards interactive and intuitive model manipulations.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling— I.4.5 [Image Processing and Computer Vision]: Reconstruction—

1. Introduction

Reconstruction of geometric models from a small set of im-
ages is an easy, flexible, and economic method for large scale
3D content creation. The simplicity of the acquisition pro-
cess, however, comes with stronger demands on the process-
ing algorithms. Fundamentally, any such algorithm that uses
triangulation to infer 3D information from the images has
to address the difficult and often ambiguous correspondence
problem, i.e., identify the point-pairs that represent the same
world space location between any image pair.

Advances in camera technology and multi-view stereo
methods have lead to significant improvements in the quality
of the reconstructed models (see [FP09, AFS∗10] and ref-
erences therein). Despite this success, many challenges re-
main in the acquisition and reconstruction of clean, precise,
and high-quality models of complex 3D objects, in particular
when intuitive post-processing and editing of the acquired
geometry is desired (see survey [VAW∗10]).

Most multi-view stereo (MVS) methods use local fea-
ture or window-based matching in combination with local
smoothness priors to produce 3D samples. Such local pro-
cessing makes it fundamentally difficult to resolve ambi-
guities and can lead to high noise levels and a significant
amount of outliers. This is particularly true for models with
a large number of repetitive elements, where stereo methods
are easily confused due to a multitude of locally consistent

Figure 1: The integration of structure-discovery and line-
based 3D reconstruction yields high-quality 3D models even
for complex surface materials that pose severe problems for
existing methods. (Bottom-right: shows geometry+texture
for one plane to indicate alignment quality.)
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feature matches. On the other hand, for models with strong
reflective faces, local-correlation based matching often pro-
duces only a sparse set of points as output (see Figure 13).

We address these shortcomings and introduce a novel ap-
proach for image-based reconstruction of piecewise planar
objects containing symmetric parts, such as building facades
(see Figure 1). Specifically, we incorporate structural pri-
ors at two levels: (i) We fit geometric primitives, such as
lines and planes, to capture small and medium scale spatial
coherence in the data, and (ii) we extract reflective, trans-
lational, and rotational repetitions to provide reconstruction
priors that exploit non-local coherence. These priors explic-
itly capture the dominant symmetries of the acquired object.
While line and plane features represent continuous symme-
tries, repetitive elements model discrete symmetries.

We simultaneously operate on the input 2D images and
intermediate 3D reconstructions, and couple the two using
the extracted symmetries. Note that the symmetry priors are
not specified a priori, but are directly learned from the input.
Finding stable symmetries in 3D data, however, is a diffi-
cult problem, particularly from sparse and incomplete MVS
data. In practice we face a cyclic dependency: to remove
noise and outliers and fill holes, we need to find reliable
symmetries; yet to robustly estimate symmetries, we need
clean and complete data sets. We bootstrap the process by
allowing the user to roughly indicate an arbitrary repeated
instance on one of the images. Subsequently, we formulate a
combined reconstruction-detection algorithm that iteratively
propagates geometric and structural information to reinforce
symmetries and 3D sample locations.

Intuitively, we exploit large scale symmetries among lin-
ear elements, e.g., window frames on building facades, to
improve reconstruction quality. In traditional MVS recon-
struction, widely spread repetitions can be a source of con-
fusion: in wide-baseline MVS, such repetitions can result in
large misalignments due to ambiguous matches; alternately,
employing a series of narrow-baseline symmetries leads to
accumulation error during the stitching phase. Instead, we
exploit symmetries as non-local priors via a coupled symme-
try extraction and 3D reconstruction to produce high quality
outputs starting from noisy and sparse linear features. Note
that, unlike other approaches such as [FCSS09a], we do not
make a Manhattan assumption or expect the model to be
axis-aligned (see Figure 2). The final output explicitly en-
codes the detected repeated structures producing a factored
facade model, making subsequent image- or model-space
editing operations easy and intuitive.

We evaluate our framework on a range of synthetic and
real scenarios, under large scale reflections, spurious objects,
and strong shadows. Since the success of our approach de-
pends on symmetries in the acquired object, we focus on
man-made structures such as architectural scenes that are
important for large-scale urban reconstruction. Our method
is not targeted towards organic shapes such as trees or other

highly irregular objects. For such objects, our framework ef-
fectively degenerates to traditional MVS reconstruction.

Contributions: Our key contribution is the integration of
structure discovery and geometry consolidation into a 3D
reconstruction algorithm for urban scenes from images. The
main technical novelty is a coupled optimization that com-
bines low-level geometric feature extraction with symme-
try detection both on the input 2D images and intermediate
3D representations. Detected symmetries are used to itera-
tively refine the confidence and spatial location of initially
unreliable geometric features, which in turn leads to more
complete and precise symmetry transformations. As a result,
we obtain consistent and accurate 3D models that explicitly
represent the semantic structures of the acquired buildings,
which is beneficial for rendering and post-editing.

2. Related Work

Fast and accurate reconstruction of urban facades and build-
ings has received significant attention from researchers in
computer vision and computer graphics. We discuss the
main strategies that have been explored.

Multi-view stereo (MVS): A multitude of successful MVS
algorithms have been developed in recent years [SCD∗06,
GSC∗07,FP09]. These approaches naturally benefit from the
continuous improvement and increase of resolution of digital
cameras. With modern GPUs some of these algorithms even
run in real-time. For the reconstruction of man-made ob-
jects an additional prior may be incorporated: most objects
in the scene consist of piecewise planar elements. Mičušík
et al. [MK10] employ a super-pixel segmentation approach
with MRF-plane labeling instead of pixel-wise depth label-
ing for more accurate and consistent reconstructions. Werner
et al. [WZ02] additionally try to fit specific models such
as roof windows or doors. Based on the even stronger as-
sumption that all planes are axis-aligned (Manhattan-world),
Furukawa et al. [FCSS09a] propose a method for image-
based modeling ensuring local photometric consistency and
enforcing global visibility constraints. Subsequently, they
extend the method to model building interiors [FCSS09b].
Potential plane candidates are either found using vanishing
lines [KZ02] or estimated from a sparse point-cloud recon-
struction [FCSS09a]. This typically works well for the three
dominant directions, but small local planar regions are often
lost. We therefore use 3D lines [SZ97, WZ02] that can be
reconstructed reliably and also allow the recovery of smaller
planar patches without imposing an orthogonality constraint
that would often be violated in real scenes (see Figure 2).

Procedural modeling: In one of the early efforts, Wonka et
al. [WWSR03] use split grammars and an attribute match-
ing system to synthesize buildings with a large variety
of different styles. Given architectural footprints, Kelly et
al. [KW11] demonstrate how buildings can be interactively
modeled using procedural extrusions. These methods, how-
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Figure 2: Algorithm pipeline. We first perform 2D edge detection on a set of input images. Edge-based stereo matching then
yields a sparse set of consistent 3D lines, from which a set of candidate planes for image segmentation is computed. For each
plane, a joint optimization refines the parameters for the candidate line segments and their coupling symmetry transforms to
produce a symmetry-factored 3D reconstruction. Stages in red optionally involve user guidance.

ever, are not directly useful for model acquisition. Ear-
lier, Müller et al. [MZWG07] explore auto-correlation based
analysis of rectified images combined with shape grammars
towards urban reconstruction. They propose a clever mix of
user interaction and image analysis for rule-based procedu-
ral modeling. The method, however, fails to handle large dif-
ferences due to reflective surfaces or interleaved repetitions
(e.g., multiple repetitive patterns in Figure 10).

3D guided model synthesis: Multiple data sources (e.g.,
photographs, LiDAR scans, aerial images, GIS data) have
been combined to improve the quality of 3D models [FJZ05,
LZS∗11]. Such methods, however, require precise alignment
across the multiple modes making data acquisition challeng-
ing. Directly working with incomplete LiDAR scans, Zheng
et al. [ZSW∗10] use model scale repetitions to create consol-
idated point clouds, while Nan et al. [NSZ∗10] propose an
interactive framework for quick architectural modeling us-
ing 3D point cloud data for guidance. One can directly detect
symmetries from good quality 3D inputs using a transform
domain analysis [PMW∗08], slippable features [BBW∗09],
or learned line features [SJW∗11], but the methods fail on
sparse MVS point sets. Instead, we couple MVS reconstruc-
tion and symmetry recovery through a tight 2D-3D optimiza-
tion to produce high quality outputs, even when using only a
handful of input images.

Interactive model synthesis: Debevec et al. [DTM96] use
manually marked lines in photographs for image-based mod-
eling of buildings. Chen et al. [CKX∗08] interpret freehand
sketches to create texture-mapped 2.5D building models us-
ing a database of geometric models to fill in plausible details.
Sinha et al. [SSS∗08] present an interactive system to gen-
erate textured piecewise-planar 3D models of urban build-
ings from unordered photo-collections based on informa-
tion from structure from motion on the input photographs.
Similarly, Xiao et al. [XFT∗08] use the output of a MVS
system for facade reconstruction in street-level imagery. In
their follow-up work [XFZ∗09] they replace the necessary
interactive strokes by a fully automatic scheme. Image level
translational symmetry has also been used for non-local im-

age repair [MWR∗09]. Wu et al. [WFP11] demonstrate that
repetitive structures can be used for dense reconstruction
from a single image by directly enforcing depth consistency
between repetitive structures during the optimization (see
Figure 12). Similarly, Jiang et al. [JTC09] perform camera
calibration from a single image by exploiting symmetry, and
allow the user to interactively annotate architectural com-
ponents using the reconstructed 3D points as anchors, pro-
ducing a textured polygonal reconstruction. In contrast, we
require a few guiding strokes from the users to resolve ambi-
guity, while the coupled 2D-3D optimization enables a fac-
tored facade level model reconstruction.

3. Overview

We first provide an overview of our processing pipeline as
illustrated in Figure 2. Our algorithm takes as input a set
of images of a (static) 3D scene. We start by performing
image-space edge detection on each individual image. These
detected 2D edges, however, do not all correspond to rel-
evant 3D edges of the geometry. They contain many out-
liers arising due to shadows, texture patterns, occluding ob-
jects, reflections, or depth discontinuities (see Figure 3). We
therefore collect the 2D line features across all the images
and apply multi-view stereo matching directly on the lines
to obtain a set of candidate 3D line features. Note that in this
stage we aggressively prune out potential mismatched edges,
and later recover and consolidate the edges in the symmetry-
based inference stage. Yet we retain sufficiently many cor-
rect 3D lines to create a set of candidate 3D planes that allow
a consistent segmentation of the images. Using the planes as
labels, we employ a Markov Random Field (MRF) formula-
tion that directly incorporates the feature lines by assigning
attribute data costs only to the pixels corresponding to the
projections of the 3D lines. Symmetry detection is then per-
formed on the projections of these 3D lines onto the planes,
using a line- and region-based correlation with respect to in-
plane translations and reflections.

At this stage, we simply extract a collection of candidate
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Figure 3: Edges detected directly on images often contain
outliers from reflections, shadows, occluding elements, etc.
(middle). We employ edge-level MVS to prune out such out-
liers (right). Note that we also lose many valid edges, which
are later recovered via a symmetry-aware optimization.

line segments approximately coupled by the corresponding
symmetry transforms. Subsequently, in a crucial step, we
simultaneously refine the parameters for the candidate line
segments and their coupling symmetry transforms via an it-
erative optimization. The resultant factored symmetric parts
still lie on the corresponding embedding planes and lack
depth variations. Hence, based on user prescribed procedu-
ral depth offsets, we extrude or retract the corresponding
features to fine tune their depth offsets. Finally, we explore
a range of editing options, where symmetric parts are non-
locally coupled, using the recovered factored symmetry rep-
resentation of the input models.

4. Algorithm Details

In this section we provide details for the individual stages
of our pipeline. From the given set of input images I :=
{I1, . . . In} we first estimate camera calibration information
using the method of Snavely et al. [SSS06]. We perform
image-space edge detection (we use open-source EdgeLink†

based on Canny edge detector) on each individual image Ii
to get a collection of 2D edges L2(Ii). Multi-view stereo
matching using edge-based consistency validation then pro-
duces a set of candidate 3D line segments L3 := {l1, l2, . . .}.

4.1 Candidate Plane Construction: By searching for sets
of coplanar lines in L3, we compute a set P of candidate
planes for 3D model segmentation. We test if line segments
li := (v1,v2) and l j := (v3,v4) are coplanar as(v1 +v3

2
− v2 +v4

2

)T (v1−v3)× (v2−v4)

‖(v1−v3)× (v2−v4)‖
≈ 0, (1)

i.e., the diagonals of quad (v1,v2,v3,v4) intersect (we test
for both orders of v3,v4 and v4,v3). Initially we mark all
lines as unclaimed. If a randomly selected unclaimed line

† http://www.csse.uwa.edu.au/∼pk/research/matlabfns/#edgelink.

pair passes the coplanarity test, we compute the correspond-
ing plane normal as n = (v1−v2)× (v3−v4)/‖(v1−v2)×
(v3− v4)‖ and intercept as d = −nT v1. If such a plane Pi j

has sufficient inlier (witness) lines l ∈ L3 that satisfy l ∈ Pi j,
we include Pi j in the set P of candidate planes and mark the
detected inlier lines as claimed. In our experiments, we used
an inlier count greater than 3− 5% to mark sufficiency. We
unmark any claimed lines if they are close to the intersection
of plane pairs in P since such lines can potentially belong to
multiple planes.

4.2 Consistent Image Segmentation: We now segment
each image Ii using the 3D line set L3 and plane set P by
assigning the pixels of Ii to the most likely planes in P . For
this purpose, we introduce two terms for each pixel p ∈ Ii:

(i) Data term: We note that edge-based multi-view stereo
matching helps to distinguish between pixels for which ro-
bust depth estimates can be made. Specifically, pixels that
do not lie on the projected lines from L3 are more likely
to be found in regions where stereo matching fails. Hence,
if p /∈ l ∀l ∈ L3→2

i , we set Edata(p,P j) = e0.0 ∀P j ∈ P .
On the other hand, it is easy to estimate the inconsistency
of plane labelings for the pixels that lie on the projected
lines. Therefore, if p ∈ l for some l ∈ L3→2

i we can deduce
the 3D position of this pixel from the line l. Now for each
plane P j ∈ P we project this 3D point onto the plane P j
say p′j, and then project p′j back to the image Ii to get a
2D coordinate p′′j . If d(p, p′′) > r, where d(p, p′′) denotes
2D Euclidean distance and r is a threshold distance (usu-
ally set to 1% of image width in our experiments) the plane
assignment is inconsistent with the known 3D position: so
we set a high data cost, Edata(p,P j) = e1.0. If d(p, p′′) is
below the threshold, we use a multi-view photo-consistency
measure similar to Sinha et al [SSS09]. We project the 3D
point p′j to neighboring views of Ii and set the data cost
Edata(p,P j) = e−s where s is the (average) NCC matching
score of local windows centered at p in image Ii and the pro-
jection pixels in the neighboring views.

ii) Smoothness term: We use a smoothness term to enforce
consistent plane neighbors [FCSS09a]. For this purpose, not
all lines in any set of coplanar lines in L3 are relevant — we
only expect abrupt changes in pixel labeling across intersec-
tions of planes. Hence, we leave out lines from L3 that do
not lie near intersections of plane pairs from P (with slight
abuse of notation we still call this reduced set L3). For any
neighboring pixels p,q we add a constant-weight smooth-
ness term, but set the smoothness weight to zero if the points
p,q lie on two sides of a line in l ∈ L3→2 (to handle ras-
terization, we work with a small approximation margin). We
combine the two terms and solve the pixel-plane labeling
problem using a standard Markov Random Field (MRF) for-
mulation based on the sequential tree-reweighted message
passing algorithm [Kol06].

Once the plane labeling has been computed for each im-
age, we project the 3D lines to the segmented images and

c© 2012 The Author(s)
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Figure 4: We use an MRF-based plane labeling method to
segment the input images. The segmentation is cleaned using
the intersection lines obtained by neighboring 3D planes.
User input resolves regions of insufficient feature lines.

extract accurate edges across noisy segment boundaries (see
Figure 4). At this stage, if necessary the user can manually
make corrections on wrong segment boundaries that may
arise due to insufficient reliable 3D lines. These corrections
are made by sketching rough strokes on the images which
are then snapped to the 2D edges to form the final image
segmentation. This new boundary is propagated across the
images using the 3D plane and the calibration. Finally, for
each candidate plane the corresponding image segments are
composited to produce a rectified plane texture. During this
composition, for each plane, images that have a smaller fore-
shortening factor are favored to discard any possible incon-
sistency in the assignment of the plane across the images.

4.3 Symmetry-based Optimization: For each 3D candidate
plane P j ∈ P a rectified texture is composited as described
in the previous section. We perform in-plane symmetry de-
tection and refinement for each of the rectified composites.
In cases of simple facades, we can automatically detect sym-
metric elements using current methods [WFP10, JTC11].
However, often there is ambiguity in the choice of re-
peated elements and the relevant scale (see Figure 6). Fur-
ther, image-based similarity measurements become unreli-
able for reflective or textureless surfaces. Hence, we use a
few user-annotated rough strokes denoting elements of in-
terest to search for similar elements across the (rectified)
images (Figure 5). We perform the image-level matching us-
ing a combination of two attributes: (i) normalized cross-
correlation (NCC) to compare the local images based on
the user-marked region as a template, and (ii) the extracted
edges to compare the gradient maps. In this initialization
step, we use 2D edges obtained by projecting the 3D lines
onto the rectified image. Let {lt

i} be the lines from the user
(template) strokes and letL′ := {l′j} denote all the lines con-
taining the edge segments of the projected 3D lines. For each
line lt ∈ {lt

i} we select all lines l ∈L′ with dist(l, lt)≤ ε us-
ing a suitable threshold ε. The distance is measured in the
line-space parameterized by (n,d) (see [LZS∗11]). The se-

Figure 5: A rough sketch by the user (red) is computation-
ally refined using a symmetry guided optimization allowing
robust extraction of useful features (green) even in presence
of significant outliers and approximate features.

lected lines are then projected onto {lt
i}. We measure the

percentage of the line lengths covered by the feature lines
in L′ and compute a similarity score as a weighted combi-
nation of line compatibility and (absolute) NCC scores. We
accept a match if this final score is above a threshold (0.8
in our experiments; In the table and mirrored glass building
examples in Figure 10 we only used line matching scores).

In man-made objects, especially in building facades, reg-
ularity is predominant not only across element-pairs but also
across their mutual arrangement – typically in the form of
1D and 2D grid-like arrangements. This is not surprising
since architectural guidelines give strong preference to such
grid-structures both for aesthetic and economic considera-
tions [DS08]. We use a non-linear grid fitting approach to
generate estimates of corresponding grid generators along
with the potential repeated elements [PMW∗08]. Note that
at this stage certain grid elements can be missing. These are
recovered in a later stage.

Symmetry refinement: For any rectified plane, let
{l1, l2, . . .} denote a collection of lines linked by an ini-
tial symmetry estimate T , i.e., li ≈ T i−1(l1) and let line
candidate li be represented in the normal-intercept form as
li := {p|nt

ip+ di = 0}. At this stage both the line parame-
ters {(ni,di)} and the estimated transform generator T are
imprecise, and our goal is to improve the initial estimates
of the lines and the coupling transform. Subsequently, we
use the consolidated information to perform a symmetry-
guided search to pick up initially missed features. Note that
in this process we perform line detection based on a prior, but

c© 2012 The Author(s)
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user-guided contour detection Wu et al.

Figure 6: Roughly marking a single repeating element helps
to find the correct semantic symmetry (left). Fully automatic
methods such as Wu et al. [WFP10] often merge semanti-
cally separate parts into one symmetric element (right).

these priors are learned from the data in the form of symme-
try. Thus we look for a base line parameter l′1 = (n,d) and
a coupling symmetry transform that best explains the ob-
served data. For simplicity we explain the optimization using
translations, the most dominant symmetry type in buildings.
Translational symmetry encodes the line offset o such that
any other line is represented as l′i = (n,d + (i− 1)o). Let
any of the original lines li have end points p1

i and p2
i . Then

extracting the best line parameters along with the coupling
symmetry transform amounts to minimizing

E(n,d,o) = ∑
i
‖p1

i −p2
i ‖((nT p1

i +d +(i−1)o)2

+(nT p2
i +d +(i−1)o)2) (2)

with the side constraint ‖n‖ = 1. We alternate between the
computation of the transform parameter o and the line pa-
rameters (n,d) using a least squares and an eigen-value for-
mulation, respectively. Once converged (typically 2 to 5 iter-
ations), we recompute the set of close lines to the optimized
template strokes and repeat the entire symmetry-based opti-
mization procedure k = 3 times. (see Figure 7). The analysis
is similar in case of a 2D translational grid. Note that this
process is effectively performing symmetrization [MGP07]
in the space of lines.

Structure completion: So far, we use the projected 3D
MVS edges for structure discovery, but left out the original
detected edges in each image, since such edges are typically
noisy and corrupted with outliers. Now we use the detected
regularity among the repeated elements to identify the out-

line and transformation
initialization

initial repetition
detection

repetition 
completion

detected edges

line 
optimization

transformation 
optimization

close edges

inner
&

outer
loop

initial alignment

iteration 1

iteration 2

iteration 3

Figure 7: Symmetry based optimization is performed on
the initially detected repetitions to initialize the line and the
transformation parameters for grid fitting. After the missing
elements are detected the optimization procedure is repeated
to get the final alignment. This procedure contains an inner
loop of successive iterations of line and transformation opti-
mizations and an outer loop of updating the template strokes
and reselecting the close edges.

lier edges, and make use of the remaining 2D edges. Let L2

denote the set of image-level edges for any rectified image.
Specifically, assuming the detected regularity is a pattern re-
peated under a 1D or 2D grid structure, we propagate the
detected grid structures and also test in regions of missing
elements but with reduced threshold margins (75% in our
implementation) as compared to the previous stage. Note
that instead of projected 3D MVS edges we now make use
of edges from L2. After the missing elements are detected,
we reperform the simultaneous line and transformation opti-
mization using all the repeating elements to refine the shape
of the repeating elements and the symmetry relation among
them. See Figure 7 for a typical example.

c© 2012 The Author(s)
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Figure 8: User-guided depth refinement based on the ex-
tracted symmetry pattern helps to recover shallow depth fea-
tures (top: geometry, bottom: textured model).

4.4 Procedural Depth Refinement: At the end of the
symmetry-based consolidation we have a set of elements
with respective repeating patterns on each of the rectified
planes. In practice, however, such patterns typically are off-
set surfaces from their embedding planes. Hence, we still
require depth offsets for such extrusions to produce a 3D
model. We recover this depth information in two ways:
(i) For each element, we perform a 1D depth search in an
offset range of [−δ,δ], render the element boundaries using
camera parameters of image Ii and compare with the source
image Ii based on the 2D-edges L2(Ii). In case of insuffi-
cient image resolution, however, the method fails to recover
shadow depth elements. (ii) Hence we also allow the user to
manually prescribe a depth assignment for a single element,
and the depth is then propagated to all the other symmetri-
cally coupled elements (see Figure 8).

5. Evaluation

We evaluate our framework on a variety of challenging real
and synthetic scenarios such as non-Lambertian surfaces,
abrupt changes in lighting, and small planar patches (see
Figures 9 and 10). Table 1 summarizes the performance
statistics for the intermediate steps of our approach for each

input image reconstruction  

Figure 9: A shiny coffee table with reflective and rotational
symmetries reconstructed with our approach. The repeating
elements and a realistic rendering are shown on the right.

dataset. Please note that these computationally heavy steps
are carried out as preprocessing before an interactive recon-
struction session begins.

We have tested our approach on synthetic examples to
measure the accuracy of the symmetry-based optimization
step in recovering the correct boundaries of the repeating el-
ements. In Figure 11, we provide a comparison between a
ground truth model and our reconstruction obtained by op-
timizing for the boundaries of the repeating windows and
extruding them to the correct depth. We set the maximum
distance to 0.5% of the height of the building and provide a
color-coded distance measure between the models. We ob-
serve small error around the boundaries of the windows and
slightly higher error inside the windows due to the depth
changes in these regions in the ground truth model. The
highest error is produced at the door region where we have
missing planes. In this example, the user prescribed only the
relevant scale of elements, i.e., windows, and the extrusion
depth. Note that the same window element was found and
consolidated across multiple planes.

Figure 12 compares our approach with the method of Wu
et al. [WFP11] that considers the significantly more chal-
lenging scenario of single-view reconstruction. This exam-
ple illustrates the benefits of our multi-view approach that
couples feature and symmetry information across multiple
images, leading to more faithful reconstructions in general.

We consider discrete symmetries as multiple observations
of the same piece of geometry to reduce noise and per-
form (moderate) hole filling. Effectively, we integrate infor-
mation across different symmetric pieces into one consis-
tent representation that is then copied across all instances.
We compare this symmetry-aware reconstruction approach
with a state-of-the-art MVS algorithm in Figure 13. We pro-
vide both the original reconstructed point clouds generated

Tower 3-Sided SoHo Mirror Black Table Syn.
#Ni 25 26 13 9 27 13 24
res 5.7 6.2 7.6 6.2 5.0 5.7 3.0
Ne 2600 1200 2000 2400 1500 750 3400
Nl 2891 1570 457 1128 1822 173 3763
Np 2 3 2 6 1 7 5
N′

p 4 0 2 0 0 0 0
N′

r 1 2 1 4 3 2 1
Nr 102 80 300 156 57 8 300
Tl 55 25 35 40 40 3 45
Tp 6 5 4 6 - 16 6

Table 1: The table shows the number of input images (Ni),
the resolution of the images in megapixels (res), the average
number of 2D edges detected per image (Ne), the number
of 3D lines reconstructed (Nl), the number of automatically
fitted planes (Np), the number of manually selected planes
(N′p), the number of elements marked by the user (N′r), and
the total number of repeating elements detected (Nr) for each
data set. The computation times for 3D line reconstruction
(Tl) and plane-based image segmentation (Tp) are given in
minutes measured on a 3.33 MHz 24-core machine.

c© 2012 The Author(s)
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Figure 10: Urban buildings with complex symmetries and non-trivial textures. The middle row shows the optimized repetition
patterns with different colors indicating separate structures. The final reconstructions are shown in the bottom row, where the
red planes have been added with user assistance due to a lack of stable line features.

by the MVS algorithm and surfaces obtained by Poisson
Surface Reconstruction (PSR) [KBH06]. The MVS algo-
rithm produces noisy and sparse point sets, especially for
non-Lambertian surfaces, and PSR creates a smooth surface
while filling in the holes with blobs. To our knowledge, no
competing method can robustly handle such challenging sce-
narios. In contrast, our initial edge-based stereo approach en-
ables to distinguish between the spurious features due to re-
flections and the actual features and initializes a consistent
reconstruction that preserves the sharpness. By incorparat-
ing this distinction into the symmetry detection process, in-
formation is also propagated across the (detected) repeating
elements. Additionally, we obtain a compressed representa-
tion that enables not only efficient data storage, but can di-
rectly be used for structure-aware edits of the geometry.

Our 2D-3D coupled repetition detection algorithm
uses a weighted score of image-based normalized cross-
correlation (NCC) score and line-based similarity to com-
pare elements. For examples where there are sufficient im-
age features, e.g. black, SoHo in Figure 10, NCC match-
ing provides a good initialization of the present regularity.

On the other hand, as the surfaces become more reflective
and textureless, e.g mirror and table datasets, image-based
comparisons become inaccurate, while 3D linear features
provide a more reliable result. Hence, we normally use an
equally weighted combination of image- and line-based sim-
ilarity measures but rely only on line-based similarity for
highly reflective surfaces to initialize our regularity discov-
ery. The symmetry-based optimization aids the initialization
and helps to discover the remaining missing repeating ele-
ments, which are otherwise challenging to detect.

User interactions: We support three types of user inter-
actions: (i) After the automatic computation of the plane-
based image segmentation, there might be mislabeled re-
gions or missing planes due to insufficient 3D lines, espe-
cially for regions with little support (e.g., thin planes). In
both cases, the user can indicate rough strokes on the im-
ages that get snapped to the 2D edges either to define new
segment boundaries or to fit new planes. In order to fit new
planes, we require the user to mark two edges to define the
plane in two images which are converted to 3D lines to com-
pute the plane parameters in 3D. Finally, intersections with

c© 2012 The Author(s)
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Figure 11: Computations with a synthetically rendered
building demonstrates the accuracy of our method.

the current planes are used to define the boundaries of the
new plane. In our examples, this mode was only necessary in
the mirror dataset to define new plane boundaries (see Fig-
ure 4) and for the tower and the Soho datasets to indicate
additional planes (see pink regions in Figure 10). The 3D
line densities were sufficient for the other examples for the
algorithm to correctly fit 3D planes. Note that the 3-sided
building or the table contain non-axis aligned planes, which
do not satisfy the Manhattan-world assumption [FCSS09a].
(ii) Often there is an ambiguity between semantically correct
element boundaries and the scale of the repeating elements
that is difficult to resolve automatically (see Figure 6). For
humans, however, it is trivial to roughly mark a representa-
tive element of the intended regularity. Therefore we allow
users to roughly indicate a single element, which is then used
to detect the other repetition instances. As seen in Table 1,
with only a few user marked elements our algorithm can de-

input image

Wu et al. (a) Wu et al. (b)

Wu et al. (c) our method

Figure 12: The method of [WFP11] fails to recover the
depth of the repeating elements if the depth change with re-
spect to the main plane is too small. Depth assignments ob-
tained by different weighting of the repetition and smooth-
ness terms are provided ((a) no repetition term, (b) repeti-
tion and smoothness terms weighted equally, (c) smoothness
term weighted more) in comparison to our method.

PMVS our reconstructionPMVS + Poisson

Figure 13: The comparison with the patch-based MVS
method of [FP09] illustrates that symmetry priors and non-
local consolidation are essential for the objects with com-
plex materials and repetition patterns (see supplementary).

tect almost a complete set of repetitions. (iii) We also allow
the user to indicate shallow extruded feature depth similar to
Müller et al. [MZWG07] (see Figure 8).

Limitations: Even when exploiting symmetry priors, sur-
face reconstruction from images remains an ill-posed prob-
lem, hence our method will fail if 2D edge detection, 3D
line estimation, or 3D candidate plane computation do not
provide sufficient geometric information. Similarly, symme-
try detection will be ineffective in cases of limited repetition
or strong variations in the repeating elements (e.g. due to
weathering). Our current pipeline focuses on piecewise pla-
nar surfaces bounded by straight edges, as are mostly com-
mon in modern urban buildings. Curved edges or surfaces
are currently not handled by our method. Integrating such
features offers interesting opportunities for future work.

6. Conclusions and Future Work

We presented a coupled formulation for detecting symmet-
ric line arrangements and 3D reconstruction for producing
factored facade models. Unlike most competing approaches,
we benefit from large-scale model repetitions, and can ro-
bustly handle inputs with strong reflections, shadow ele-
ments, or outlier objects, which are impossible to disam-
biguate with only local reasoning. We bootstrap the recon-
struction using rough image-space user markings, and sub-
sequently use the factored facades to allow symmetry cou-
pled non-local 3D edits. In the future, we plan to handle
not just buildings, but also large city blocks and building

c© 2012 The Author(s)
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colonies where large-scale repetitions are abundant. In our
current formulation, we assumed the initial camera calibra-
tion to be fixed — we plan to refine the calibration using a
generalized formulation coupling calibration, symmetry de-
tection, and 3D modeling.
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