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1. INTRODUCTION

We are grateful to the discussants for their positive
and interesting comments. In an area moving so rapidly
it is to be expected that our review overlooks some
work, and all the contributions helpfully supplement
our paper. Our remarks focus on points of possible dis-
agreement or where expansion seems useful.

2. COOLEY AND SAIN

Cooley and Sain bring to the discussion wide experi-
ence of statistical applications in atmospheric science,
in addition to innovative methodological work. We en-
tirely agree with them that the analysis of annual or
seasonal maxima is often unsatisfactory from the sta-
tistical point of view: it fails to make full use of the
available data, which typically comprise numerous si-
multaneous time series, and by reducing daily or even
hourly data to annual maxima does not allow detailed
modeling of the underlying process. In some cases it
is useful to follow Stephenson and Tawn (2005) and to
incorporate information on the occurrence times of an-
nual maxima; Davison and Gholamrezaee (2012) show
that this is quite feasible in the present context, and find
some improvement in precision of estimation from do-
ing so. There is a close relationship between models
for annual maxima, as considered in our paper, and
those for peaks over thresholds (Smith, 1989; Davison
and Smith, 1990), and max-stable models of both types
share the deficiencies mentioned at the end of Section 8
of our paper. Huser and Davison (2012) extend the
ideas used for annual maxima in the present paper to
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a space-time treatment of extreme hourly rainfall data
using the threshold approach. The use of pairwise like-
lihood poses some tricky issues in that context, how-
ever, because of the multiplicity of pairs, which can
correspond to simultaneous events in different time se-
ries, events at different times in a single series, or at dif-
ferent times in different series. The application consid-
ered by Huser and Davison (2012) involves 10 hourly
rainfall time series for 27 summers, around 580,000
observations giving 7 billion possible pairs, of which a
subset of only around 30 million were used! Although
heavy computational burdens arise also in other spa-
tial modeling contexts, better approaches are clearly
needed to deal with larger settings for spatial extremes,
as Cooley and Sain remark. As an aside, the choice of
subsets of observations that contribute to the compos-
ite likelihood can be more subtle than at first appears:
Huser and Davison (2012) find that although one might
think it best to include only strongly-dependent pairs,
it can be preferable to include some for which observa-
tions are independent or nearly so, in order to get rea-
sonable estimates of the ranges of extremal phenom-
ena.

We entirely agree that the goals of analysis may dif-
fer, and that it may not be worthwhile to fit a spatial (or
space-time) extremal model when a map of quantiles
is the intended output. However, naive use of a latent
variable model that ignores the correlations between
the events may provide uncertainty measures that are
overly precise, as pointed out in the discussion contri-
bution by Gabda et al. Thus, building some form of
spatial dependence between events, and not merely be-
tween model parameters, seems wise. A pragmatic way
to do this may be the use of a Gaussian copula, as in
Sang and Gelfand (2010).

Cooley and Sain’s final comment concerns a cru-
cial part of extremal modeling, namely, the incorpo-
ration of subject-matter knowledge. While the gener-
alized extreme-value distribution, max-stable process
and the like rest on elegant and mathematically com-
pelling theory, the real world is a messy place to which
the relevance of that theory may be unclear. Very of-
ten extremal data show much greater variation than a
simplistic view of the theory might suggest, perhaps
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due to unsuspected dependencies or to underlying het-
erogeneous phenomena. Garavaglia et al. (2010) and
Süveges and Davison (2012) suggest two approaches
to modeling in such cases, the first based on a decom-
position into weather types, with a different extremal
model fitted for each, and the second using a more
conventional statistical approach based on a mixture
model. If sufficiently full data are available, the first ap-
proach incorporates substantive information more fully
and therefore seems preferable, but the second may be
a useful backstop.

3. GABDA, TOWE, WADSWORTH AND TAWN

Tawn and his co-workers have made many innova-
tive contributions to statistics of extremes, and their
discussion contribution does not disappoint. They are
quite correct to say that despite its mathematical at-
traction, the max-stability of classical multivariate
extreme-value distributions is often inappropriate for
data, and for that reason we welcome their suggested
diagnostic, which is useful beyond the spatial setting.
It is related to plots such as Figure 5 of the paper,
which compares observed maxima for selected groups
of stations with corresponding maxima for simulations
from a fitted max-stable model. The main difference is
that the proposed diagnostic compares maxima for data
from many more groups of stations, all of the same
sizes, directly with a fitted Gumbel distribution. One
might therefore expect it to have greater power, and to
get a feeling for this we applied it to our data. These
have both fewer replicates and fewer stations than used
in the simulations of Gadba et al., who generate 1000
replications at 100 stations on a grid, whereas we have
47 replications at 36 irregularly-spaced stations in the
data we use for fitting. The resulting diagnostic plots,
with |D| = 2, 3, 4, 36, are shown in Figure 1. We

use all 630 pairs of sites for |D| = 2, 620 randomly-
chosen triplets and quadruplets for |D| = 3 and 4, and,
of course, just one set when |D| = 36. Although the
power of the diagnostic will be much lower than in the
simulations of Gadba et al., the figure does not sug-
gest that the max-stability assumption is unreasonable
for our data—indeed, it seems to give a surprisingly
good fit. In other settings we have mixed experience
with rainfall data: in a very detailed but short-term
data set from a high Alpine watershed, max-stability
seems appropriate for stations just a few hundred me-
ters apart, while in a longer-term data set from South
Africa, near-independence seems to apply, though at
longer distances.

There is clearly scope for further investigation here,
and for the construction of different diagnostics, for ex-
ample, developing ideas of Naveau et al. (2009) beyond
max-stability.

4. SEGERS

Segers has made some important theoretical con-
tributions, and his discussion nicely supplements our
rather incomplete treatment of the copula approach
to modeling extremes. While we agree that the non-
parametric methods he describes are valuable for ex-
ploratory analysis and for assessing the quality of fit of
parametric models, we feel that further development is
likely to be needed before they can be routinely used in
settings like that discussed in our paper. One reason for
this is the apparent restriction to max-stable models.
Although such models seem to fit our data, they may
be unrealistic in other settings, and spatial models for
near-independence (Wadsworth and Tawn, 2012) are
clearly an important development that greatly enlarges
practical modeling possibilities. More fundamentally,
we can’t see how the nice theory for estimating the

FIG. 1. Rescaled P-P plot for ZD derived from the annual maximum rainfall data, with bootstrap pointwise 95% confidence sets. From left
to right: k = 2, 3, 4, 36.
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Pickands dependence function that Segers describes
deals with the spatial element: how does one make pre-
dictions at ungauged stations, or simulate realizations
for entire regions, based on nonparametric fits for the
data at gauged stations? Moreover, and since the avail-
able time series in environmental applications are often
much shorter than the periods for which extrapolation
is required, why would it be useful to avoid modeling
the marginal behavior, since in that case extrapolation
beyond the data would not be possible? Finally, we sus-
pect that a nonparametric estimate of a 35-dimensional
extremal dependence function based on 47 indepen-
dent observations, as would be necessary in our ap-
plication, is unlikely to be useful—it seems clear that
some sort of strong structural constraints would have to
be applied, perhaps using ideas of empirical likelihood
(Einmahl and Segers, 2009).

5. SHABY AND REICH

These authors’ Bayesian approach to fitting the
Smith model is a nice contribution, and its appearance
in print will certainly stimulate work on fitting more
general models—as mentioned above, fitting methods
that can deal with the complexities and size of cli-
matic and atmospheric data sets are badly needed for
applications. We entirely agree that viewing extreme-
value problems, where moments are of doubtful utility,
through Gaussian spectacles, is not typically helpful,
and that scale-invariant quantities such as the Brier
score are more valuable. Our feelings about quantile
regression are mixed: Northrop and Jonathan (2011)
suggest using this approach to specify a covariate-
dependent threshold, but as mentioned in its discus-
sion (Chavez-Demoulin, Davison and Frossard, 2011),
it seems to us that in many cases it will be preferable
to base inference on the largest few order statistics at
each site; this implicitly specifies a threshold but with-
out having to fit a quantile regression model separate
from a peaks over threshold model, and then having to
pull together uncertainties from these two estimators.
Using a Bayesian approach for individual series seems
reasonable, though expanding a model using any avail-
able substantive knowledge seems preferable to naive
use of a nonparametric Bayes approach, but the diffi-
culty in specifying asymptotically-justified joint densi-
ties for extremes at different sites again raises its ugly
head, if a model consistent with known theory for ex-
tremes is required.

6. CONCLUSION

Given the degree of current research activity in the
area, it seems reasonable to hope that some of the prob-
lems raised above will be solved fairly soon. This is de-
voutly to be wished, since flexible but mathematically
justified inferences for spatial and spatio-temporal ex-
tremes are urgently needed in applications.

We thank the Editor for organizing the discussion.
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