Files

Abstract

A parsimonious model of flow capable of simulating flow in natural/engineered catchments and at WWTP (Wastewater Treatment Plant) inlets was developed. The model considers three interacting, dynamic storages that account for transfer of water within the system. One storage describes the ``flashy'' response of impervious surfaces, another pervious areas and finally one storage describes subsurface flow. The sewerage pipe network is considered as an impervious surface and is thus included in the impervious surface storage. In addition, the model assumes that water discharged from several CSOs (combined sewer overflows) can be accounted for using a single, characteristic CSO. The model was calibrated on, and validated for, the Vidy Bay WWTP, which receives effluent from Lausanne, Switzerland (population about 200,000), as well as for an overlapping urban river basin. The results indicate that a relatively simple approach is suitable for predicting the responses of interacting engineered and natural hydrosystems.

Details

Actions

Preview