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Abstract—We discuss a novel sparsity prior for compressive where W' denotes the adjoint operator #f. The aforemen-

imaging in the context of the theory of compressed sensing thi
coherent redundant dictionaries, based on the observationhat
natural images exhibit strong average sparsity over multife
coherent frames. We test our prior and the associated algatim,
based on an analysis reweighted; formulation, through exten-
sive numerical simulations on natural images for spread spgrum
and random Gaussian acquisition schemes. Our results shoumat
average sparsity outperforms state-of-the-art priors tha promote
sparsity in a single orthonormal basis or redundant frame, o
that promote gradient sparsity. Code and test data are avadble
at https://github.com/basp-group/sopt.

Index Terms—Compressed sensing, sparse approximation.

|. INTRODUCTION

Compressed sensing (CS) introduces a signal acquisition
framework that goes beyond the traditional Nyquist sangplin

paradigm [1]. Consider a complex-valued sigaalc CV,
assumed to be sparse in some orthonormal bsisCV >V,
ie. x = Va for a« € CV sparse.

tioned work [6] extends the standard CS theory to coheraht an
redundant dictionaries, providing theoretical stabitjtyaran-
tees based on a general condition of the sensing meirix
coined the Dictionary Restricted Isometry Property (D-RIP
The D-RIP is a natural extension of the standard RIP. In fact
many random matrices that obey the standard RIP also obey
the D-RIP, like Gaussian or Bernoulli ensembles. Also, the
subsampled Fourier matrix multiplied by a random sign matri
satisfies the D-RIP [7], which provides a fast sensing operat
Interestingly, this approach falls within the spread speunt
framework proposed in [8]. I satisfies the D-RIP an¥ is

a general frame, Candes et al. prove in [6] that the solution

(1), denotedz, satisfies the following error bound:
& — x|l < Coe + CLE 2 || Wiz — (Wiz)k|,, (2

where(Viz)x denotes the begt -term approximation o¥ Tz
andC, andC; are numerical constants. Similar properties to

Also consider thethe D-RIP coined)-RIP are introduced in [9] in the context

measurement modgl = ¢z + n, wherey € C denotes the of the co-sparsity analysis model.

measurement vecto, € CM*N with M < N is the sensing

In [10] some of the authors of this paper proposed a novel

matrix, andn € C* represents noise. The most commoBparsity analysis prior in the context of Fourier imaging in
approach to recover from y is to solve the following convex radio astronomy. Our approach relies on the observatian tha

problem [1]: mingeen [|@[|1 subject tolly — dWal; < e,

natural images are simultaneously sparse in various frames

wheree is an upper bound on th& norm of the noise and in particular wavelet frames, or in their gradient, so that

I |l denotes thé, norm. The signal is recovered &s= V&,

where & denotes the solution to the above problem. Suc¢ie a powerful prior.

promoting average signal sparsity over multiple framesikho
In the present work, the average

problems, solving for the signal representation in a sparskparsity prior is put in the generic context of compressive
basis, are known as synthesis-based problems. Standardifg&ging within the theory of CS with coherent redundant
provides results if® obeys a Restricted Isometry Propertyictionaries. The associated reconstruction algorithased
(RIP) andV is orthonormal [1]. However, signals often exhibiion an analysis reweightety formulation, is dubbed Sparsity

better sparsity in a redundant dictionary [2]-[4].

Averaging Reweighted Analysis (SARA). We evaluate SARA

Recent works have begun to address CS with redund@ffough extensive numerical simulations for spread spattr

dictionaries, i.e. wheray € CN*P with N < D, so that

and Gaussian acquisition schemes. Our results show that the

x = Vo with o € CP. Rauhut et al. [5] find conditions on average sparsity prior outperforms state-of-the-artrprio

¥ such thatdéW¥ obeys the RIP to recovet in a synthesis
formulation. Candes et al. [6] provide a theoretical as@lpf

the ¢, analysis-based problem. As opposed to synthesis, th

analysis formulation solves for the signal itself:
min ||WZ||; subject to|jy — x|z <, (1)
zcCN
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Il. SPARSITY AVERAGING REWEIGHTED ANALYSIS

eNa’[ural images are often complicated and include several
types of structures admitting sparse representationdgfareint
frames. For example piecewise smooth structures exhibit
gradient sparsity, while extended structures are betteamgn
sulated in wavelet frames. Therefore, in [10] we observadtl th
promoting average sparsity over multiple bases rather ¢han
single basis is an extremely powerful prior. Here, we prepos
using a dictionary composed of a concatenatiory dfames

v, with 1 < i < ¢. We focus on the particular case of
concatenation of Parseval frames, creating the Parseakfr

v e CV*P with N < D, as:

L
NG

V= [V, U, ... V) 3)



The analysis-based framework is a suitable approach to pveeighted/; problem, by the functiorf (v, a) = y(y+|a])~! €
mote average sparsity and thus we propose the following, prif0, 1], wherea denotes the coefficient value estimated at the

proportional to the average sparsity: previous iteration and # 0 plays the role of a stabilization
q parameter, avoiding undefined weights when the signal value
[WiE|o= Z ||\|11Tj”0_ (4) is zero. Note that ag — 0 the solution of the weighted
i—1 ¢; problem approaches the solution of the problem. We

Note that in this setting each frame contains all the siéf—se a homot_opy strategy z_;md solve a sequence of We'iﬂ“ed
nal information. Such a prior cannot be formulated in Broblems using a decreasing sequefig€}, with ¢ denoting
synthesis-based perspective. Previous works considerig M€ itération time variable. The resulting algorithm, detb
tiple frames, e.g. [2], [3], consider a component sepanatiépars,'ty av?raglng reweighted analy§|s (SARA), is defimed i
approach, decomposing the signal as= > !_, x;, where Algorithm 1°. See [10] for more details.
each componenk; is sparse in the-th frame. This is a i :
completely different problem, where each component bedtgorithm 1 SARA algorithm
only part of the signal information, which can be addressdaput: y, ®, €, g, 8, 7 and Niax.
either in an analysis or in a synthesis framework. Output: Reconstructed image.
Also note on a theoretical level that a single signal caneot b1: Initialize ¢ = 1, W(® =l andp = 1.
arbitrarily sparse simultaneously in a set of incohereatnfes 22 Compute
[11]. For example, a signal extremely sparse in the Dirac &0 = Ay, ®, W ), 4O = o ("’Tf&(o))-
basis is completely spread in the Fourier basis and thus (2 while p > n and? < Npax do
does not provide a good error bound. As discussed by Candés UpdateWS) =f (W(t_1)7 dEH) 0ijs
et al. in [6], what is important is that the columns of the fori,j=1,...,D with ¢t~V = wiglt-1),
Gram matrix WTW are reasonably sparse such thltz is 5. Compute a solutio:® = A(y, &, W® ¢).
sparse wher admits a sparse representat@mwith z = Va. 6. Updatey® = max{37¢ D, 0.}
This requirement is nothing else than a coherence condition  Updatep = &® — &E=D, /|2 D],
on V. In our case of concatenations of frames, this leadg. + ¢4+ 1
to the condition that eacl; is highly coherent with itself g. end while
and mutually coherent with the other frames. The component
separation approaches in [2], [3] use incoherent frames for
the decomposition, while our average sparsity prior takes
the opposite direction. The concatenation of the first eight lIl. EXPERIMENTAL RESULTS
orthonormal Daubechies wavelet bases (Dbl-Dp8w= 8) In this section we evaluate the reconstruction performance
represents a good and simple candidate for a dictionary g SARA by recovering a 256256 pixel version of the
imaging applications. The first Daubechies wavelet basisena test image from compressive measurements following
Dbl, is the Haar wavelet basis, which can be used as f@@ measurement model presented in Section I. We use the
alternative to gradient sparsity (usually imposed by dt@g- suggested Db1-Db8 concatenation as the dictionary for SARA
ation (TV) prior [12]) to promote piecewise smooth signalgn order to have a fast measurement operator that obeys the
The Db2-Db8 bases provide smoother sparse decompositiqnsRiP, we use for a first experiment the spread spectrum
All Daubechies bases are mutually coherent thanks to th@bhnique described in [8] Spread spectrum incorporates a
compact support and identical sampling positions. modulating sequence on top of Fourier sampling, defining the
In order to promote average sparsity through the prior (fleasurement operator &s= MFC, whereC € RV*V is a
we adopt a reweighted, minimization scheme [13]. The diagonal matrix with elements with unit norm and random-
algorithm replaces thé, norm by a weighted’; norm and ized sign,F ¢ CN*V is the discrete Fourier operator and
solves a sequence of weighted problems with weights M ¢ RM* is a binary mask defining the random selection
essentially the inverse of the values of the solution of thsperator. For a second experiment we consider Gaussian
previous problem: random measurement matrices.
(5) We compare SARA to analogous analysis algorithms, and
their reweighted versions, changing the sparsity dictipnia
in (1) and (5) respectively. The three different dictioeari

min |[WW'Z|, subject to]y — dZ||s < e,
zeCN

whereW € RP*P is a diagonal matrix with positive weights.

Assuming Li.d. complex Gaussian noise with variange the 1A rate parameter3 € (0,1) controls the decrease of the sequence

{5 norm term in (5) is identical to a bound on thé with 2/ () = g,(t-1) |n practice4(*) should however not reach zero. The

degrees of freedom governing the noise level estimatorréFhenoise standard deviation in the sparsity domain= /M /Doy, with oy,

fore. we set this bound a& = (2M +4 /M)02/2 where the noise standard deviation in measurement space, is & @atgnate for
' ne a baseline above which significant signal components coelddbntified.

o2 /2 is the variance of both the real and imaginary parts @fnce we sety®) = max{B~y(=1), o4} so thaty® is lower-bounded by
the noise. This choice provides a likely bound fez||> [10]. .. As a starting point we set(®) as the solution of the!; problem and

To solve (5), we use the Douglas-Rachford splitting algonit 7 = s (W1@®)), wherea.(-) takes the empirical standard deviation of
a signal. The re-weighting process stops when the relatviation between

[14]. The solution is d.enOt?d EIS.(y,CD,W,e). The weights successive solutions is smaller than some boynd& (0,1), or after a
are updated at each iteration, i.e. after solving a compleb@ximum number of iteration®Vmax. We fix n = 10-3 and 3 = 101,
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Figure 1. Reconstruction quality results for Lena and sprgaectrum measurements. @GNR as a function of the number of bases in the dictionary
for decomposition depthdé = 1,4,8 (M = 0.3N, ISNR = 30 dB). (b) SNR results against the undersampling rati8SNR = 30 dB). (c) SNR as a
function of ISNR (M = 0.2N). (d) Results for random random Gaussian measurem&N® against the undersampling ratio for cropped Lena image
(ISNR = 30 dB).

are: the Daubechies 8 wavelet basis, the redundant curv®letably, BPSA achieves bett8NR than BPDb8, curvelet and
frame [4] and the Db1-Db8 concatenation. The associatdtbir reweighted versions for all undersampling ratiosal$io
algorithms are respectively denoted BPDb8, Curvelet aaghieves similaSNR to TV in the range 0.4-0.9.

BPSA for the non reweighted case. The reweighted ver-The following experiment studies the robustness of SARA
sions are respectively denoted RW-BPDb8, RW-Curvelet aadainst measurement noise in the spread spectrum acojuisiti
SARA. We also compare to the TV prior [12], where the T\éetting. We fixM = 0.2N and vary thelSNR in the range
minimization problem is formulated as a constrained pnoble0 to 40 dB. The results are summarized in Figure 1(c). As
like (1), but replacing the/; norm by the image TV norm. expected from the bound in (2), the relationship betw&sR.
The reweighted version of TV is denoted as RW-TV. Sincand ISNR is linear with slope 1 for lowISNR until it is

the image of interest is positive, we impose the additionhigh enough and the reconstruction quality is dominated by

constraint thate ¢ Rf for all problems. the undersampling effect. Notably, SARA outperforms the
We use as reconstruction quality metric the stamenchmark methods for dlbNR, achieving arSNR of 20 dB
dard signal-to-noise ratio SNR), defined asSNR = foranISNR of 0 dB. Again, BPSA yields a better performance

201ogy, (J|x||2/ ]|z — 2||2), wherex and& denote the original than BPDb8, Curvelet and their reweighted versions.
and the estimated image respectively. Average values dver 3 Next we present a visual assessment of the reconstruction
simulations and associatdd error bars are reported for allquality of SARA compared to the benchmark methods, still
experiments. The measurements are corrupted by compiexhe spread spectrum acquisition setting. Figure 2 shows
Gaussian noise. The associated inSNR is defined as the reconstructions fod/ = 0.2N and ISNR = 30 dB for
ISNR = 201log;(/lyoll2/|Im]|2), whereyy identifies the clean the three best algorithms iENR: SARA (28.1 dB), RW-
measurement vector. TV (26.3 dB) and BPDb8 (21.4 dB). SARA provides an
We start by evaluating SARA for spread spectrum acquimpressive reduction of visual artifacts relative to théest
sition. Prior to our main analysis, we study the reconstrumethods in this high undersampling regime. In particularRW
tion performance of SARA as a function of the number ofV exhibits expected cartoon-like artifacts. BPDb8 does no
wavelet bases in the dictionary. We test depths= 1,4,8 yield results of comparable visual quality.
in the Daubechies decomposition for all dictionaries, fixin We now study the performance of SARA with Gaussian
M = 0.3N andISNR = 30 dB. We add bases in parametricandom matrices as measurements operators. Due to compu-
order, i.e., one basis means Dbl alone, two bases Dbl aatibnal limitations for the use of a dense sensing matox, f
Db2 and so on until we reach the eight bases from Dbthis experiment we use a cropped version of Lena, around
Db8. The results for Lena are summarized in Figure 1(ahe head, of dimension 12828 as test image. We compare
We can observe that the best performance is obtained wWI®ARA against all the benchmark methods for this sensing
L = 4 and the worst wher. = 1. We can also observe thatmodality. We fixISNR = 30 dB and vary the undersampling
the reconstruction quality improves as the number of basedio in the range 0.1 to 0.9. THENR results are reported in
increases until it saturates between 4 to 8 bases. Thedesredtigure 1(d). These results confirm the performance of SARA
corroborate our choice for 8 bases, ahd-= 4. for compressive imaging with a different sensing matrix,
Having validated the dictionary choice, we now proceed wutperforming the benchmark methods fof > 0.3N. For
evaluate the reconstruction quality of SARA as a function df/f = 0.1N SARA is 1 dB below TV and RW-TV and for
the undersampling ratid//N. We fix ISNR = 30 dB and A = 0.2N it achieves the samgNR.
vary the undersampling ratio from 0.1 to 0.9. T$€R results As final experiment, we present a magnetic resonance (MR)
comparing SARA against all the other benchmark methodsaging illustration. We reconstruct a 22468 positive brain
are shown in Figure 1(b). The results demonstrate that SARAage from standard variable density Fourier measurements
outperforms state-of-the-art methods for all undersamggli for an adverse undersampling ratio 8f = 0.05N, well
SARA achieves gains between 0.9 and 1.9 dB with the largdsyond current state of the art in the field. TI¥&\NR is set
gains observed for undersampling ratios in the range ®2-0to 30 dB. In this case, the sparsity dictionary for SARA is



augmented with the Dirac basis as the brain is quite loadlizetate-of-the-art priors, based on single frame or gradient
in the field of view. Figure 3 shows a zoom of the originasparsity, both in terms oSNR and visual quality. An
brain image and reconstructed images for SARA and TWJR imaging illustration also corroborates these conclusio
which yield the two best reconstructions$iNR. In addition for Fourier imaging. Code and test data are available at
to an SNR gain of 1.5 dB, SARA achieves an impressivelhttps://github.com/basp-group/sopt.
better reconstruction from the visual standpoint. Future work will concentrate on finding a theoretical frame-
work for the average sparsity model. Specialized results ar
i1 indeed needed in the particular case of concatenation mifsa
for an estimate of the number of measurements required for
accurate image reconstruction. It would be interesting to
explore the connections between average sparsity and the co
sparsity model, which proposes a general framework for gen-
eral analysis operators (see [9] and references therelad, A
it was recently shown in [15] that combinations of convex
relaxation priors do not yield better results than exphgitbnly
one of those priors, while non-convex approaches can éxploi
multiple models. Those results suggest that the re-weighti
approach in SARA to approximate the non-conv¥gxnorm
is fundamental to exploit average sparsity, as observellan t
simulation results.
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