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Abstract—

We propose a novel algorithm for source signals estimation
from an underdetermined convolutive mixture assuming known
mixing filters.

Most of the state-of-the-art methods are dealing with anechoic
or short reverberant mixture, assuming a synthesis sparse prior
in the time-frequency domain and a narrowband approximation
of the convolutive mixing process. In this paper, we address the
source estimation of convolutive mixtures with a new algorithm
based on i) an analysis sparse prior, ii) a reweighting scheme so
as to increase the sparsity, iii) a wideband data-fidelity term
in a constrained from. We show, through theoretical discus-
sions and simulations, that this algorithm is particularly well
suited for source separation of realistic reverberation mixtures.
Particularly, the proposed algorithm outperforms state-of-the-art
methods on reverberant mixtures of audio sources by more than
2 dB of signal-to-distortion ratio.

I. INTRODUCTION

Most audio recordings can be viewed as mixtures of several
audio signals (e.g., musical instruments or speech), called
source signals or sources, that are usually active simultane-
ously. The sources may have been mixed synthetically with
a mixing console or by recording a real audio scene using
microphones.

The mixing of N audio sources on M channels is often
formulated as the following convolutive mixing model:

N
T (t) = (amn*$a)(t) +em(t), 1<m<M, (1)
n=1
where s,(t) € R and z,,(t) € R denote sampled time
signals of respectively the n-th source and the m-th mixture
(t being a discrete time index), a,,(t) € R denote the
finite (sampled) impulse response of some causal filter, and
* denotes convolution.

The goal of the convolutive Blind Source Separation (BSS)
problem is to estimate the N source signals s,(t) (1 <n <
N), given the M mixture signals x,,(t) (1 < m < M).

When the number of sources is larger than the number
of mixture channels (N > M), the BSS problem is said to
be underdetermined and is often addressed by sparsity-based
approaches [1]-[4] consisting in the following two steps: i)
at the first step the mixing parameters are estimated as in [3],
[5]-[7], and ii) at the second step, the source are estimated e.g.
using a minimum mean squared error (MMSE) or a Maximum

The authors are with the Signal Processing Laboratory LTS2, Electrical
Engineering Department, Ecole Polytechnique Fédérale de Lausanne (EPFL),
Station 11, CH-1015 Lausanne, Switzerland. This work was supported in
part by the European Union through the project SMALL (Sparse Models,
Algorithms and Learning for Large-Scale data). The project SMALL acknowl-
edges the financial support of the Future and Emerging Technologies (FET)
programme within the Seventh Framework Programme for Research of the
European Commission, under FET-Open grant number: 225913.
E-mail:simon.arberet@epfl.ch.

A Posteriori (MAP) estimator given a sparse source prior and
the mixing parameters.

Since audio signals are usually not sparse in the time
domain, the estimation of the source coefficients is done in
some time-frequency (TF) domain, where they are sparse, by
using for example the short time Fourier transform (STFT).
The mixing equation (1) is then approximated by the so-called
narrowband approximation [8], as follows [9]:

x(t, f) ~ A(f)5(t, f) +&(t, f) 2)

where x(t, f) € CM, 5(t, f) € CV and é(t, f) € CM are the
vectors of mixture, source and noise STFT coefficients in TF
bin (¢, f), and A(f) = [amn(f)]ﬁf;jf:l isan M x N complex-
valued mixing matrix with elements @, (f) being the discrete
Fourier transforms of the m x n filters a,,, (t), Vt.

More recently, the limitation of the narrowband approxima-
tion for reverberant source separation has been pointed out,
and some approaches have been proposed to overcome it for
the mixing filter estimation [7] and the sources estimation
[10]-[12]. In [10] and [11], the narrowband approximation has
been circumvented via a statistical modeling of the mixing
process, while in [12], Kowalski et al. proposed a convex
optimization framework based on a wideband {5 mixture
fitting cost.

While synthesis sparse priors have been widely used for the
source modeling including ¢, cost (i.e. binary masking) [3] ¢4
cost [2], [12], [13], £, cost [14], and mixed norm {; o cost
[12], analysis sparse prior has to our knowledge never been
used in audio source separation.

In this article, we focus on addressing the source estimation
task, assuming that the mixing filters a,,, are known. We
propose a novel algorithm, for convolutive source separation
which is based on a reweighted scheme of an analysis sparse
prior. This algorithm introduces three important contributions
with respect to the state-of-the-art, and which will be carefully
evaluated in the experimental section: i) The algorithm is
based on an analysis sparsity prior, which is fundamentally
different than the synthesis prior when the analysis operator
is a redundant frame (such as a redundant STFT), ii) the
algorithm is based on a reweighting scheme that mimics the ¢
minimization behaviour and thus promotes a stronger sparsity
assumption than the ¢; cost, and iii) the algorithm is based
on a wideband mixture fitting constraint, and thus first avoid
the narrowband approximation, and secondly offers a strong
fidelity term (in a new constrained formulation) without the
need to fix a regularization parameter (in a standard regularized
formulation).

The organization of the remainder of the paper is the
following. In section II, we introduce our notations and
the state-of-the-art approaches. In section III, we discuss
convex optimization approaches for sparse inverse problems.



In section IV, we introduce our algorithm for audio source
separation, and in section V, we provide numerical results of
our algorithm compared to the state-of-the-art methods.

II. STATE OF THE ART
A. The convolutive mixture model in operator and matrix form

The mixture model (1) can be written as:

x = As) +e. 3)

where x € RM*T s the matrix of the mixture composed of
T, (t) entries, s € RV*T is the matrix of sources composed
of the s,(t) entries, e € RM*T is the matrix of the noise
composed of e, (t) entries, and A : RVXT — RM*T jg the

discrete linear operator defined by

N
Z(amn *8,)(2).

n=1

The adjoint operator A* : RM*T 5 RNXT of A is ob-
tained by applying the convolution mixing process with the
ajoint filters a Et) 2 ayn(—t),Vt instead of a,,,, that is:

n
["4* (X)]’nﬂf = Zm:l (a:nn *me)(t)
Note that Eq. (3) can be written in the following a matrix
form:

[A(8)]m.+ =

Xvec = ASyec + €vec,

where Xyee € RMT | 50 € RVT and eyee € RMT are the
unfolded vectors of the matrices x, s and e, respectively, and
A is a matrix of size MT x NT composed of M x N Toeplitz
blocs A, of size T x T.

B. Time-frequency transform

Underdetermined source separation is an ill-posed inverse
problem, which needs additional assumptions to be solved.
As stated in the introduction, a powerful assumption is the
sparsity of the sources in some representation. Audio signals
are known to be sparse in the time-frequency (TF) domain,
and a popular TF representation is obtained via the Short Time
Fourier Transform (STFT).

The STFT operator ¥ € CT*5 transforms a multichannel
signal s of length T, into a matrix § € CV*B of B time-
frequency coefficients per channel:

S=sU, 4)

and the ISTFT is obtained by applying the adjoint operator
U* € CBXT on the STFT coefficients §:

s=8U*. &)

C. Narrowband methods

a) Binary masking: The DUET method [3], as most of
the convolutive source separation methods [2], [13], [14] is
based on the narrowband approximation (2). DUET exploits
the assumption that at each TF point, there is approximately
one active source, meaning that the ¢y quasi-norm of the
source vector §(t, f), i.e. the number of nonzero entries of
S(t, f), is equal to one: ||S(¢, f)|lo = 1. The DUET method

minimizes, for each TF point, a narrowband data fidelity term
under a ¢y constraint on the source vector:

1%(t, f) = A(NSE N5 ©)

argmin
(t,f)€C st |Is(t,f)llo=1
As there is only one possible active source, this problem can
be efficiently minimized with a combinatorial optimization
strategy, where the data fidelity cost associated with each
possible active source is computed, and the selected source
is the one leading to the lowest cost.

b) £, norm minimization: Other methods relax the {
cost with an /¢, norm, with p > 0, which is defined for a
vector or a matrix z with I entries as ||z, = (Zi[:l |zs|P) /P,
The ¢, norm promotes sparsity when p < 1 but is not convex
when p < 1. As a consequence the ¢; norm is often preferred.
Experiments [12] show that the DUET method is more robust
than the ¢; norm minimization in reverberant situations.

D. Wideband Lasso

Kowalski et al. [12] proposed a variational formulation of
the source estimation problem where the data fidelity term
used in (6) which is based on the narrowband model (2) is
replaced with a wideband data fidelity term according to the
time mixing model (1) (equivalently (3)). This leads to the
following Wideband Lasso (WB Lasso):

argmin 1Hx — ABBTY)|3 + AP(3). (7)
SECNxB 2
The first term is the wideband data fidelity term measuring
the fit between the observed mixture x and the mixing model
(3) obtained with the source STFT coefficients S given the
mixing system A, and the second term P(S) is a sparse
synthesis regularization term. The parameter A\ € R, governs
the balance between the data term and the regularization term.
Kowalski et al. [12] proposed to minimize problem (7) for an
{1 cost P(8) = ||3]|1 and a mixed norm cost P(8) = [|8]|7 , (in
order to promote disjointness of the source in the TF domain
without constraining the number of active sources per TF bin)
using a forward backward scheme (ISTA) [15], [16] and its
accelerated versions [17] (FISTA and the Nesterov scheme).

Experimental results in [12] showed that, in reverberant
situations, the Wideband Lasso (WB Lasso) was significantly
better than the Narrowband Lasso (i.e. problem (7) with the
narrowband data fidelity term of (6)) and that the /; 5 mixed
norm regularization on the sources was not performing better
than the /1 norm regularization.

ITII. OPTIMIZATION
A. Constrained vs unconstrained problems
The Lasso (also called Basis pursuit denoising (BPDN))

problem (7) with P(8) = ||§]|; has an alternative constrained
formulation:

argmin ||§||;
gG(CNXB

subject to ||x — A(ST")|2 <, (8)

which is equivalent to the unconstrained formulation (7) for
some (unknown) value of A and e. It follows that determining



the proper value of A in (7) is akin to determining the power
limit of the noise [18]. However, there is no optimal strategy
to fix the regularization parameter A even if the noise level
is known, therefore constrained problems, such as (8), offer a
stronger fidelity term when the noise power is known, or can
be estimated a priori.

Moreover, as stated in [12], [19], algorithms to optimize
(8) such as FISTA, have some convergence issue for small
values of A\, which is the case in our problem where the
noise is very small or null. Indeed, for small A, FISTA
requires a larger number of iterations to reach convergence,
and secondly, its convergence speed strongly depends on the
chosen initialization. So as to let the algorithm converge in
practice, it is possible to use a continuation trick [12], [20] also
known as warm start, which consists in running the algorithm
multiple times, first with a large value of A, and then iteratively
decrease the value of A and initialize the algorithm with the
result of the previous run. This continuation trick is quite
efficient in practice, but requires a significant computational
effort specially when A is small (i.e. when the noise is small).

B. Analysis vs synthesis problems

The BPDN (constrained (8) or unconstrained (7)) defines
the optimization in the sparse representation domain finding
the optimal representation vector s and then recovering the
true signal trough the synthesis relation s = §U*. These
methods are known as synthesis based methods in the liter-
ature. Synthesis-based problems may also be substituted by
analysis based problems, where instead of estimating a sparse
representation of the signal, the methods recover the signal s
itself [21]:

argmin |[[s ¥ |
sERNXT

subject to ||x — A(s)||2 <, )

In the case of orthonormal bases, the two approaches are
equivalent. However, when U is a redundant frame or an over-
complete dictionary, the two problems are no longer equiva-
lent. The analysis of the geometry of the two problems, studied
in [21], [22], show that there is a large gap between the two
formulations. One remark to make is that the analysis problem
does not increase the dimensionality of the problem (relative
to the signal dimension) when overcomplete dictionaries are
used. Empirical studies have shown very promising results for
the analysis approach [21]. [23] provides a theoretical analysis
of the ¢; analysis problem coupled with redundant dictionaries
in the context of compressed sensing.

C. Reweighted {1 vs {1 minimization

As discussed above, the /1 minimization problem is equiv-
alent to ¢y minimization when the forward operator A (in
Eq. (3)) satisfies certain conditions defined in the context of
compressed sensing. The main difference between these two
problems, is that the ¢y minimization does not depend on
the magnitudes of the coefficients, while the ¢; does. One
way to mimic the minimization behavior of the ¢y cost is
to replace the ¢; norm in (8) by a weighted ¢; norm [24],

which is defined, for a vector or a matrix z with I entries
Zi, as Zle w;|z;|. The idea behind the weighted ¢; norm,
is that large weights will encourage small components while
small weights will encourage larger components. Moreover,
if the non-zero components have very small weights, the
weighted norm will be independent of the precise value of
the non-zero components. The appropriate weights can be
computed by solving a sequence of weighted ¢; problems,
each using as weights essentially the inverse of the values
of the solution of the previous problem. However, in order to
avoid infinite weights, a small parameter has to be added to the
signal values when computing the inverse. This procedure has
been observed to be very effective in reducing the number of
measurements needed for recovery, and to outperform standard
¢1-minimization in many situations, see e.g. [23], [24].

D. Source recovery guarantees

The literature on Compressed Sensing (CS) and sparse
recovery gives some insight about the theoretical guarantees
to recover the sources from a mixture by solving problem (9).

The sufficient recovery condition for the analysis problem
(9) depends [23] both on the analysis sparsity of the sources
(k = |ls¥|lo) and on properties of the forward operator A,
more precisely its matrix form A. The analysis dictionary ¥
is supposed to be a tight frame and can be highly coherent. A
sufficient condition for accurate recovery, is that the matrix A
satisfies the so-called D-RIP and that the signal has a sparse
representation in W. We do not have any proof of the validity
of the D-RIP for matrix A, but there are some clues about the
conditions of its validity.

Indeed, A is a matrix composed of M x N Toeplitz blocks,
each of them corresponding to the convolution with the filter
Gmn- It has been shown [25] that Toeplitz matrices satisfy, with
an overwhelming probability, the restricted isometry property
(RIP), for filters of length P having i.i.d. Gaussian (or zero
mean bounded distribution) entries, when the sparsity k of
the signal of length T is such that & < ¢/ P/log(T), for a
constant c. Other results [23] show that a lot of matrices that
satisfy the RIP (e.g. matrices with Gaussian, subgaussian, or
Bernoulli entries) also satisfy the D-RIP. If we assume it is also
the case for random Toeplitz matrices, we see that, in the case
of a single-channel, single-source “mixture” (M = N = 1),
the longer the filters, the larger the sparsity of the sources can
be. This discussion suggests that the source estimation, solving
problem (9), should be better in reverberant conditions, where
the filters are long (large P) and where the coefficients of
the filters can be relatively well modeled by an i.i.d. Gaussian
distribution or zero mean bounded distribution. This trend will
be confirmed in the experimental section V-D.

IV. REWEIGHTED ANALYSIS ALGORITHM

Our proposed algorithm is based on a reweighted ¢; analysis
method.
Let us define the weighted ¢; problem
argmin ||s U ||w 1
SGRM xXT

subject to ||x — A(s)||2 <, (10)



where W € Rf *B is a matrix with positive entries w;;, and
lzllwi = > Wijlzij| is the weighted /1 norm and € is a
bound on the /> norm of the noise e.

Assuming i.i.d. real Gaussian noise with variance o2, the /5
norm term in (10) follows a x? distribution with MT degrees
of freedom. Thus we can set €2 = (MT +2v2MT)o2, where
o2 is the variance of the noise. This choice provides a likely
bound for ||e||2, since the probability that ||e||3 exceeds €2 is
the probability that a x2 with M T degrees of freedom exceeds
its mean, MT', by at least two times the standard deviation
V2MT, which is very small.

In the noise-free case, we can choose a very small value of
€ (¢ — 0), or replace the /5 constraint by the linear equality
constraint x = .A(s). The solution to (10) is denoted as
A(x, A, W, ¢), which is a function of the data vector x, the
mixing operator .4, the weights matrice W, and the bound e
on the noise level estimator.

Recall that in the reweighting approach a sequence of
weighted ¢; problems is solved, each using as weights essen-
tially the inverse of the values of the solution of the previous
problem. In practice, we update the weights at each iteration,
i.e. after solving a complete weighted ¢; problem, by the
function 5

6+
applied entrywise on the weights w;;, Vi, j.

So as to approximate the ¢y norm, we used the reweighted
{1 algorithm with a homotopy strategy [20] which consists in
solving a sequence of weighted ¢; problems with a decreas-
ing sequence {5(k)} (k denoting the iteration variable) and
warm start initialization. This process is then repeated until a
stationary solution is reached [20].

f(&')

Y

A. The SSRA algorithm

The resulting algorithm defined in Algorithm 1 is similar
to the Sparsity Averaging Reweighted Analysis (SARA) algo-
rithm recently proposed by part of the authors for compressive
imaging [26], [27]. The main difference is that our redundant
sparsity operator ¥ is not built as concatenation of orthonor-
mal bases and that the forward operator A involved in (10) to
compute A(x, A, W, ¢) are different.

A rate parameter 3, with 0 < 8 < 1, controls the decrease
of the sequence %) = 36(*=1) = 5§, such that §(*) — 0
as k — oo. However, if there is noise, we set a lower
bound as 6%) > oz, where oz is the standard deviation of
the noise in the representation domain and is computed as
05 = 0,1/ MT/2NB, which gives a rough estimate for a
baseline above which significant signal components could be
identified.

As a starting point we set s(?) as the solution of the ¢; prob-
lem and §(9) = std(s(®) W), where std(-) stands for the empiri-
cal standard deviation of the signal, fixing the signal scale. The
reweighting process ideally stops when the relative variation
between successive solutions [|s®) — =[5 /[|s*=D]|5 is
smaller than some bound 7, with 0 < 7 < 1, or after the
maximum number of iterations allowed, K., is reached. In
our implementation, we fixed 7 = 1072 and 8 = 107!,

Algorithm 1: SSRA algorithm for source estimation
Input: x, A, U, e.
Initialize:
k=1, wO = 1yxp, p:=1.
Compute the solution of Problem (10):
s = A(x, 4, WO ¢),
50 = std(s®) ¥).
while p > n and k < K4, do
Update the weight matrix:

ng) = f 5(’“_1),51(?12, for
1=1,...,N, j=1,...,B,

with §(F=1) = g(k=1)

Compute the solution of Problem (10):
s = A(x, 4, WP ¢).

Update 6) := max(86*~1, 55).
Update p := [|s") — sE=D | /[|sF= 1|
k=k+1

end

return s(*—1)

B. Convex optimization algorithms

At each iteration of Algorithm 1, the solution A(x, A, W, ¢)
of problem (10) has to be computed. Problem (10) consists
of minimizing a non-smooth convex function under an ¢5-ball
constraint. Hence, it is not possible to use conventional smooth
optimization techniques based on the gradient. However we
can use proximal optimization methods [28] that are efficient
convex optimization algorithms that can deal with non-smooth
functions and which are particularly well suited for large scale
problems.

We first introduce the general framework of proximal split-
ting methods for solving convex problems. We then derive the
proximity operators involved in our optimization problem (10),
which defined the elementary operations that are required to
fit problem (10) into the general proximal splitting framework,
and we finally describe the Douglas-Rachford (DR) algorithm
which is a well adapted algorithm to solve convex optimization
problems involving two non-smooth functions.

1) Proximal splitting methods: Proximal splitting methods
solve optimization problems of the form:

argmin f1(z) + f2(z) (12)

zER/!

where fi(z), fo(z), are convex functions from R! to
]—00, +o0]. Note that any convex constrained problem can be
formulated as an unconstrained problem by using the indicator
function ic(+) of the convex constraint set C' as one of the
functions in (12), e.g. f2(z) = ic(z) where C represents the
constraint set, and ic(z) = 0 if z € C, and +oo otherwise.
Problem (10) can be seen as a particular instance of problem
(12), with f1(s) = [|s¥|w,1 and fa(s) = isg, (s), where
Bi, = {s e RN*T | || A(s) — x|z < €} is the set of matrices
s that are satisfying the fidelity constraint ||x — A(s)|2 <.

The key concept in proximal splitting methods is the use
of the proximity operator of a convex function, which is a
natural extension of the notion of a projection operator onto a



Algorithm 2: Douglas-Rachford algorithm

Initialize: k = 0, 2% € RN*T, oy, € (0,2), v > 0.
repeat

s(k) = Prox, s, (z(F)

z(B D) — () ak(prox—yfl(2s(k) —z(F)) —s(k))

k=Fk+1.
until convergence;

return s(*)

convex set. For example, the proximal operator of the ¢; norm
is the soft-thresolding operator, and the proximal operator of
the indicator function of a constraint is simply the projection
operator onto the constraint set. Solution to (12) is reached
iteratively by successive application of the proximity operator
associated with each function f; and f5. See [28] for a review
of proximal splitting methods and their applications in signal
and image processing.

We give in the appendix, the definition of the proximity
operator and then derive these operators for the functions
fi(s) = [s¥ [lw, and fa(s) = i;, (s) of our optimization
problem (10).

2) Douglas-Rachford Algorithm: The Douglas-Rachford
(DR) algorithm [29] solves problem (12) by splitting, i.e. by
performing a sequence of calculations involving separately the
individual proximity operators prox. ;s and prox., s,. Moreover
It does not require Lipschitz-differentiability of any of the
functions f;. The general form of the DR algorithm to solve
problem (12) is given in Algorithm 2. This algorithm has been
proved to converge to a solution of Problem (12). In practice,
we used the value o, = 1,Vk, and v = 0.1.

While the DR algorithm converges when the number of iter-
ations tends to infinity, we have to choose a stopping criterion.
We chose to stop the algorithm when the relative change of the
objective value between two successive estimates is less than
a given value 7jqr, ie. [f1(s™)) — f1(s®D)[ /f1(s™™) < nar.
or when the number of iterations is greater than a given
value Miier. In our experiments, we fixed nq, = 0.01, and
Mier = 200.

V. EXPERIMENTS

We evaluated our algorithm with state-of-the-art methods
over convolutive mixtures of speech sources in different mix-
ing conditions. For all the experiments, the test signals are
sampled at 11 kHz and we use a STFT with cosine windows.

A. Experimental protocol

We used the same experimental protocol as in [12]. The
mixing filters were room impulse responses simulated via the
Roomsim toolbox [30], with a room size of dimension 3.55
m x 4.45 m, and with the same microphones and sources
configuration as in [12], [31]. The number of microphones
was M = 2, and the number of sources was varied in the
range 3 < N < 6. The different sets of mixing filters were
generated corresponding to three different reverberation times
RTyo (anechoic, RTgy = 50 ms, RTs9 = 250 ms) and two

TABLE I
SOURCE SEPARATION METHODS BASED ON THE WIDEBAND
DATA-FIDELITY TERM.

[ Methods [ Reweighting | Analysis | Constrained |

SSRA v v v
BPDN A X v v
BPDN S X X v
WB Lasso X X X

different microphone spacings d (d = 5 cm and d = 1 m).
Each set of mixing filters was convolved with 10 different
sets of male and female speech sources yielding 10 mixtures
per mixing condition. We choose to not add additional noise
to the mixture in order to only evaluate the source separation
performance of the algorithms.

In order to evaluate each feature of our SSRA algorithm
(Algorithm 1), we evaluate different variations of it: (i) with
and without reweighting, (ii) with synthesis instead of analysis,
(iii) using the Lagrangian unconstrained formulation instead of
the constrained one. These different variations are summarized
in table I. For all the constrained methods, we set ¢ = 10™%.
Note that ideally we would have set ¢ = 0 or used the prox-
imity operator (24) in the noise-free case, but both approaches
take an infinite number of iterations to reach convergence, and
thus we need anyway to specify a tolerance.

Note that the unconstrained synthesis approach corresponds
to the WB Lasso method of [12], and that the reweighting
approach cannot be easily used in the unconstrained case,
because of the difficulty to adjust the A parameter. Indeed,
changing the weights of the weighted ¢; norm would auto-
matically change the balance between the data-fidelity term
and the regularization term and thus a new value of A\ should
be set to compensate this unbalance.

As stated before, the WB Lasso method needs the continua-
tion trick to converge but at the cost of additional computation.
In the following experiment, we used the continuation trick
(CT) with the sequence \¥) = 107% k = 1,...,8. We
also give the results without the continuation trick, that is
when ) is set directly to A = 1078, The WB Lasso method
with the continuation trick is denoted “WB Lasso CT” in the
following experiments, while the WB Lasso method without
the continuation trick is simply denoted “WB Lasso”.

We also compared our algorithm with the classical DUET
method [3] for source estimation (i.e. the clustering step of
DUET for mixing filters estimation is skipped and the source
estimation step of DUET is initialized with the known mixing
system .A).

The performance is evaluated for each source using the
Signal-to-Distortion Ratio (SDR) in decibel (dB) as defined
in [32], which indicates the overall quality of each estimated
source compared to the target. We then average this measure
over all the sources and all the mixtures for each mixing
condition.

B. Performance analysis as a function of the window size

In order to setup the good STFT window size L for each
of the method, we made a first experiment where, for a given
mixing configuration where N = 4 sources, RT5p = 250 ms



and d = 1 m, we compute the source separation performance
in term of SDR as a function of L.
Figure 1 illustrates the results of this experiment. We can
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Fig. 1. Variation of the average SDR as a function of the STFT window

length L over speech mixtures with N = 4 sources, RTgo = 250 ms and
d=1m.

first notice that the proposed SSRA approach outperforms
significantly all the other methods whatever the window size.
It is interesting to notice that the window length of L = 512
samples is the optimal size for all the methods except DUET,
for which the optimal window size is L = 2048. This is to be
expected since the narrowband approximation is better when
the window size is large compared to the filter length. Other
trends can be observed: the analysis approach (i.e. BPDN A)
improves the performance significantly with respect to the
synthesis approach (i.e. BPDN S) and the reweighting with
analysis approach (i.e. SSRA) improves the performance even
more. The performance of the constrained (BPDN S) and
the unconstrained (i.e. WB Lasso CT) synthesis approaches,
performs very similarly, as predicted by the theory (when
€ — 0 and A — 0). Moreover, we will see in section V-C
that the computational time of BPDN S is more than 6 time
lower than the one of WB Lasso CT. On the other hand, the
performance of WB Lasso without the continuation trick, is
significantly worse (more than 2 dB of difference with WB
Lasso CT at the optimum window size L = 512).

C. Performance analysis as a function of redundancy of the
STFT

It is known [33] that increasing the redundancy of the STFT
of synthesis-based methods can improve the source separation
performance by reducing the musical noise. However, it also
increases the calculation cost. On the other hand, one of the
main advantages of the analysis approach compared to the
synthesis approach, is that adding redundancy in the sparse
transform (i.e. here the STFT) does not increase the size of
the solution. As mentioned by Candes et al. [23], incoherence
of the columns of V¥ is not necessary to guarantee the source
recovery of the analysis problem. What matters is that the
columns of the Gram matrix ¥* ¥ are reasonably sparse,
which is the case of a redundant STFT. Thus, it is interesting

to check if adding redundancy in the STFT, by increasing the
overlap ratio between successive windows, can improve the
source separation performance. In this experiment we vary
the redundancy ratio R by powers of 2 in such a way that
¥ remains a tight frame, which is important, in an algorithm
point of view, so as to be able to use Proposition 2 in order
to have a fast proximal operator for f;, and from a theoretical
point of view [23] (see section III-D).
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Fig. 2. Average SDR in Decibel and computational time in hours, as a
function of the redundancy R over speech mixtures with N = 4 sources,
RTg0 =250 ms and d = 1 m.

Results depicted in Fig. 2 show that the synthesis ap-
proaches improve their performance when the redundancy
increases but it stabilizes quickly around R=4 or R=8. Also, as
predicted, the time of computation increases quickly with the
redundancy. The computation time of the synthesis methods
was growing so fast with respect to the redundancy that, for
some of these methods, we decided to stop the computa-
tion before the end, hence the incomplete curves in Figure
2. Unfortunately, the source separation performance of the
analysis approach (BPDN A) decreases when the redundancy



TABLE II
AVERAGE SDR IN DECIBEL AS A FUNCTION OF RTgo AND d OVER
SPEECH MIXTURES WITH N = 4 SOURCES.

RTgo anechoic 50 ms 250 ms
d 5cm [ Im [ 5cem [1m [5cm [ Im
SSRA 1.6 8.0 3.9 8.8 6.6 10.2
BPDN A 3.4 5.5 4.2 8.0 5.8 8.7
BPDN S 3.9 7.7 4.3 7.2 6.0 7.9
WB Lasso CT 4.9 7.7 4.4 7.3 6.1 8.0
DUET 5.9 7.3 5.5 6.4 2.6 3.4

increases. However, for the reweighting analysis approach
(SSRA), we can improve the performance by about 0.5 dB
with a redundancy of 4 (we called this variant SSRA 4) instead
of 2 (called SSRA 2, or simply SSRA as before) without
significantly increasing the time of computation.

D. Performance analysis as a function of reverberation time
and microphone spacing

We evaluate in Table II the proposed approach and its vari-
ants, with respect to the filter length (R7%p), and microphone
spacing. We also show the results of state-of-the-art methods
as a comparison.

According to the results of Table II, the analysis methods
seems to work better with realistic (long) R7gy while syn-
thesis methods perform better when the RTyq is small. The
reweighting is working well with realistic (long) RT§, and
with shorter RTso when the microphone spacing is large (1
m), but not when the spacing is small (5 cm).

The proposed SSRA method drastically improves perfor-
mance over the other methods (about 2 dB better than
WB Lasso CT) in environments with realistic reverberation
(RTsp = 250 ms).

As for the WB Lasso, the performance of SSRA is less good
than DUET in anechoic and low reverberation environment
(RTso = 50 ms) when the microphone spacing is low (d = 5
cm). As shown experimentally in [12], for low reverberant or
anechoic environments, it is possible to improve the perfor-
mance of WB Lasso (and also probably SSRA), by replacing
the wideband data fidelity term with the narrowband one, but
as discussed in [12], for these mixing conditions, there are a
lot of methods based on the narrowband approximation that
already work well, and some of them like DUET are moreover
very fast. As a consequence, it is not justified to use complex
methods like WB Lasso or SSRA for these conditions.

For all the sparse recovery methods based on the wideband
formulation, the performance is better when the filter is longer.
This trend has a theoretical explanation as discussed in section
II-D.

E. Performance with respect to the number of sources

In addition to the previous experiments where we evaluated
the different methods in the case of a mixture of 4 sources,
we compare now the different methods for mixtures with 3 <
N < 6 sources and with RTg5y = 250 ms and d = 1 m. The
results are depicted in Fig. 3.

Whatever the number of sources, the results depicted in Fig.
3 show that the gap of performance between our methods and

A SSRA 4
—+—SSRA 2
BPDN A
% BPDN S
—&— WB Lasso CT
—+— WB Lasso
- & -DUET

SDR (dB)

Number of sources

Fig. 3. Variation of the average SDR as a function of N over speech mixtures
with RTgo = 250 ms and d = 1 m.

the state-of-the-art (WB Lasso CT) is nearly constant with
respect to the number of sources and that: i) The analysis
approach improves the separation performance compared to
the synthesis one by between 0.5 dB and 1 dB of SDR. ii)
The reweighting combined with analysis, improves the perfor-
mance by between 2 and 3 dB of SDR. iii) The constrained
approach leads to similar results as the non-constrained one,
which is predicted by the theory, however, a) it has been
necessary to use the costly continuation trick so as to make the
non-constrained approach converge at a cost of slowing down
the computation by a factor of 8 (i.e. the number of A(¥) steps
of the continuation trick), b) we cannot simply use (because
of the A setting) the very efficient reweighting scheme, with
this approach, iii) In the noise-free case we know that the
best setting for \ is zero, however in the noisy case, there is
no obvious way to setup A as opposed to € in the constraint
approach.

VI. CONCLUSION

We proposed a novel algorithm based on a reweighted
analysis sparse prior for reverberant audio source separation,
assuming that the mixing filters are known. This algorithm,
based on i) an analysis sparse prior, ii) a reweighting scheme
so as to increase the sparsity, iii) a wideband data-fidelity
term in a constrained form, has been evaluated on convo-
lutive mixtures of sources and compared with state-of-the-
art methods. We also evaluated the analysis versus synthesis
prior, as well as the reweighted versus non-reweighted scheme,
and the constrained versus unconstrained data-fidelity term, on
mixtures with different levels of reverberation and different
numbers of sources.

Our conclusion is that the reweighted analysis sparse prior
with a constrained wideband data-fidelity term works better
than any of the tested methods for realistic reverberant mix-
tures and that the gain of performance is by between 2 and
3 dB of SDR with respect to the state-of-the-art. Another
advantage of our algorithm, is that we can easily increase the
redundancy of the analysis operator, for example by increasing



the redundancy of the STFT, without significantly increasing
the complexity.

A possible extension of this work will be to model the
sources with a structured sparsity prior instead of an /¢y
cost. Another extension would be, in addition to the sources
estimation, to estimate the mixing filters, possibly with an
alternating optimization approach. It would also be interesting
to study more formally the D-RIP for the narrowband and
wideband linear operators so as to have a deeper understanding
of the source recovery conditions depending on the mixing
conditions.

APPENDIX
A. Proximity operator

We give the definition of the proximity operator and derive
these operators for the functions fi(s) = |s¥|w, and

f2 (S) = ilgzz (S)

Definition 1. (Proximity operator) Let f; be a lower semicon-
tinuous convex function from C! to ]—oo, +o0]. The proximity
operator of fi;, denoted prox;, is given by:

. 1
prox;, (z) = argmin f;(u) + §||z—uH§ (13)

ueC’!
This definition extends naturally for some matrices z and
u, by replacing the /5 norm with the Frobenius norm.
We recall that L is a frame if its adjoint satisfies the
generalized Parseval relation with bounds v, and vs:

nlizll> < | L z)* < vz, (14)

with 0 < 11 < vy < 0o. The frame is tight when 14 = vy = v
and LL* =v L
So as to derive the proximity operators of fi and fo, we
need the following lemma:
Lemma 1. If L is a tight frame, i.e. LL* = vI,v > 0, then
proxsy,.)(z) =z + v~ L*(prox, ; —I)(Lz) (15)

Lemma 2. If L is a general frame with bounds vy and vs,
Let py, € (0,2/v9), Define
ult Y = (T = prox, 1 ) (i 'u® +Lp® —y)  (16)
pFt) =z — L* ulF+b) (17)

Then p*) — Proxyy,._y)(2) linearly.

The proof Lemma 1 can be found in [29] the one of Lemma
2 can be found in [34].

Proposition 1. (Prox of \|| - ||;) Let z € CI. Then u =
prox, ., (z) = (proxy|.|(zi))1<i<1 is given entrywise by soft
thresholding:

u; = prox, . (z:) = — (2] — At (18)

z;
|2

where (1)t = max(0, -).

The proof of this proposition can be found in [16].
Applying Lemma 1, we get a closed form solution of the
proximal operator of f1(s) = ||s ¥ |w 1:

Proposition 2. (Prox of f1(:) = || - ¥ ||w.1) Let Z € CN*E
andz € RN*T_[fU € CT*B is a tight frame, i.e. ¥ ¥* = v1,
and W € Rf *B s a matrix of positive weights w;;, then

PIOX||.y ||y , (2) =z + V_l(plroxl,”_uw1 —I)(zT)T* (19)

with

(20)

DTSINLIXT >

where PrOX,,.,, || is the soft thresholding operator given in
(18) with A = vw;;.

Applying Lemma 2, we get an iterative solution of the
proximal operator of fo = 1'352:
Proposition 3. (Prox of fa(-) = iBZQ(')) If Ais a general
frame with bounds vy and vy, Let uy € (0,2/vs), Define

D = (T prox, (g u® + A®) — x)
(21)
p(k+1) =z — A*(u(k+1)) (22)
where :
proxi”.HZSE(u) = min(1, ¢/||ul|2)u. (23)

Then p*) — PLOX; (z) linearly.

The tightest possible frame bound v is the largest spectral
value of the frame operator A.A*, which can be computed
using the power iteration algorithm as in [12]. Recursion (21)-
(22) is a forward-backward splitting scheme applied to the
dual problem [34] which we accelerated with a Nesterov-type
update [17].

In the noise-free case, we can also replace the ¢-ball
constraint set B with the affine constraint set C.; = {s €
RN*T| A(s) = x} and derive a closed form solution of the

proximal operator of fa(:) = ic,,(-) as in [34]:
Proposition 4. (Prox of f(-) = ic,,(-))

prox;. (z) =z+ A"(A AN x - A(z). (24

In practice, (24) can be solved iteratively with a conjugate-
gradient type method such as LSQR [35].
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