000180371 001__ 180371
000180371 005__ 20180317094317.0
000180371 0247_ $$2doi$$a10.1007/s00466-011-0625-2
000180371 022__ $$a0178-7675
000180371 037__ $$aARTICLE
000180371 245__ $$aB-spline goal-oriented error estimators for geometrically nonlinear rods
000180371 269__ $$a2012
000180371 260__ $$bSpringer Verlag$$c2012
000180371 336__ $$aJournal Articles
000180371 520__ $$aWe consider goal-oriented a posteriori error estimators for the evaluation of the errors on quantities of interest associated with the solution of geometrically nonlinear curved elastic rods. For the numerical solution of these nonlinear one-dimensional problems, we adopt a B-spline based Galerkin method, a particular case of the more general isogeometric analysis. We propose error estimators using higher order “enhanced” solutions, which are based on the concept of enrichment of the original B-spline basis by means of the “pure” k-refinement procedure typical of isogeometric analysis. We provide several numerical examples for linear and nonlinear output functionals, corresponding to the rotation, displacements and strain energy of the rod, and we compare the effectiveness of the proposed error estimators.
000180371 6531_ $$aGeometrically nonlinear rods
000180371 6531_ $$aIsogeometric Analysis
000180371 6531_ $$aB-spline basis
000180371 6531_ $$aGoal-oriented a posteriori error estimation
000180371 6531_ $$aError estimators
000180371 700__ $$0245547$$aDede', Luca$$g159570
000180371 700__ $$aSantos, Hugo A. F. A.
000180371 773__ $$j49$$k1$$q35-52$$tComputational Mechanics -International Journal then Research Journal-
000180371 909CO $$ooai:infoscience.tind.io:180371$$particle
000180371 909C0 $$0252436$$pMATHICSE$$xU12241
000180371 917Z8 $$x159570
000180371 917Z8 $$x148230
000180371 917Z8 $$x159570
000180371 937__ $$aEPFL-ARTICLE-180371
000180371 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000180371 980__ $$aARTICLE