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Abstract

In this paper we propose a new technique to obtain upper and lower bounds on the
energy norm of the error in the velocity field, for the Stokes problem. It relies on a
splitting of the velocity error in two contributions: a projection error, that quantifies
the distance of the computed solution to the space of divergence free functions, and
an error in satisfying the momentum equation. We will show that both terms can be
sharply estimated, from above and from below, by implicit a posteriori error estima-
tors. In particular, the proposed estimator is based on the solution of local Stokes prob-
lems both with “Neumann-type” boundary conditions, extending the ideas presented
in [12, 17] for the Laplace equation, and homogeneous Dirichlet boundary conditions.
The numerical results show very good effectivity indices. The underlying idea is quite
general and can be applied to other saddle point problems as well, as the ones arising
in mixed formulations of second order PDEs.

1 Introduction

Techniques for a posteriori estimation of errors in finite element approximations of partial
differential equations are becoming widely employed in applications as methods to control
the accuracy of the approximation and subsequently adapt the computational mesh. The
literature is particularly wide for elliptic problems: we refer to the monograph [2] for a
survey on the different methods proposed so far.

Whenever the error estimation is meant for verification of the numerical solution for engi-
neering design purposes, rather than (or additionally to) application to mesh adaptivity, a
desirable feature of an error estimator is to provide guaranteed upper and lower bounds on
the error.

In the case of elliptic self-adjoint problems, it is known that some implicit estimators, based
on the solution of local problems on subdomains where the residual of the FE equation
acts as a datum, allow to obtain sharp bounds from above and from below for the error
measured in the so called energy norm. We mention, in this respect, the element residual
method with flux equilibration [11, 1] and the more recent weighted subdomain residual
method proposed in [8] and analyzed in [12, 17].

For the Stokes problem, many estimators have been proposed as well, extending the ideas
developed in the elliptic (unconstrained) case. We mention, in particular, the works of Bank
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and Welfert [5] and Verfiirth [20] where implicit estimators, based on the solution of local
Stokes problems, are proposed. Ainsworth and Oden [3] suggest, instead, an equilibrated
element residual method based on the solution of local Poisson problems. In this paper, the
error is measured in an less standard norm. Other approaches can be found in [9, 14, 6] and
[15] where the analysis is directed toward the estimation of the error in specific quantities
of interest.

Yet, to our knowledge, all the estimators proposed so far, provide upper bounds on the error
only up to unknown constants that involve, among others, the constant appearing in the
inf-sup condition. The problem of obtaining guaranteed bounds for the error, measured in
a suitable norm, is still an open question.

In this paper, we show that, for the Stokes problem and, more generally, for an elliptic
constrained problem, it is actually possible to bound the error in the velocity field measured
in the natural energy norm. Our work moves from the idea that the Stokes problem, is an
elliptic self-adjoint problem on the constrained space of divergence free functions, thus it
should be possible to extend suitably the elliptic guaranteed estimators to this case.

The derivation here presented relies on a splitting of the velocity error in two contributions:
a projection error that quantifies the distance of the numerical solution to the space of di-
vergence free functions, and an error in satisfying the momentum equation. Both terms can
be bounded from above and from below by extending, in a quite straightforward way, the
elliptic estimators that provide for guaranteed upper and lower bounds.

The plan of the paper is the following. In Sections 2 and 3 we present the Stokes problem
as well as its finite element discretization and we characterize the error in the velocity field
with respect to the residuals of the finite element formulation. In Section 4 we present a
general framework in which the problem of a posteriori estimation of the velocity error can
be set and we outline the main idea that underlies the definition of the upper and lower
bound estimators. Next, in Sections 5 and 6 we detail a particular choice of estimators
that is meant for a continuous pressure discretization (though it can be applied also for
discontinuous pressure spaces). They are based on the solution of local Stokes problems
on patches of elements and are generalizations of the weighted subdomain residual method
given in [17] and the Babuska-Rheinboldt estimator [4].

Those estimators rely on the solution of infinite dimensional local problems, therefore,
they are not directly employable in applications. In Section 7 we consider their “com-
putable” version obtained by approximating the local problems is some enriched finite ele-
ment spaces. The numerical experiments presented in Section 8 show excellent bounds for
the error in the velocity field.

2 Preiminaries

Let © be an open bounded domain in RY, d = 2,3, with Lipschitz boundary 0. We
consider the Stokes problem

(1)

—vAu+Vp=~f inQ
divau =0 in Q,
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with homogeneous Dirichlet boundary conditions u = 0 on 0f2.

Let us introduce the function spaces
d
vom@)  e-rd@=feert@. [o-0)

and indicate with || - |; and || - ||o the H* and L? norms, respectively. Moreover, we denote
by V' the dual space of V. Then, the weak formulation of problem (1) reads: findu € V
and p € @ such that

{a(u,v) +b(v,p)=(f,v), VWeV (2)

b(u,q) =0, Vge @

where (-, -) denotes the usual inner product in L?($2) and the forms a(-,-) and b(-,-) are
defined as follows:

a(,-): VxV = R; a(v,w):u/Vv:deQ,
Q

b(,-): VxQ—R; b(v,q):—/divquQ,
Q

The form a(-, ) is symmetric, continuous and coercive and defines an inner product on V.
The associated norm ||v||, = \/a(v,v) (hereafter also called energy norm) is equivalent to
the H!'-norm. Furthermore, the form b(-, -) is bilinear and continuous and satisfies the well
known inf-sup condition (see, for instance, [10]): there exists 5 > 0 such that

b(v,q)
sup
veVv\{0} vl

> Bllallo,  VaeQ. ®)

Problem (2) is known to possess a unique solution (u,p) € V x @ forany f € V' (see,
e.g., [10]).

Let us, now, introduce a regular triangulation 7;, of the domain €2 and two finite element
spaces V’;L € Vand Q' € Q of piecewise polynomials of degree at most & (resp. m) on
each element of 7;, 1. Let us assume, moreover that these two spaces (VF, Q") satisfy the
discrete inf-sup condition

sup b(v,q)

> Bullallo, Vg€ Qp'. (4)
vevk\{o} 1Vl

with a constant 3, independent of 1. Different choices of spaces V¥ and @ have been
proposed in the literature in order to satisfy the previous condition (see e.g. [7], [19] for

1In the case of quadrilateral or brick elements, it should be understood that the polynomials are of degree at
most k (resp m) in each direction parallel to the edges of the reference unit d-cube [0, 1]¢.
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quadrilateral elements). Then, the finite element discretization: find u; € Vf‘L and py, €
Qy" such that
a(u}wv) + b(vaph) = (f,V), Vv e V;CL (5)
b(up, q) =0, Vg € Qy'
admits a unique solution.
For the further discussion, we will assume that the spaces (V¥, Q7*) satisfy also a local
inf-sup condition

by (v,
sup (v,q)

v > Billalo, Vg€ Qi (w) N Li(w) (6)
VGVE(W)O[Hé(w)]d a,w

on each patch w of elements sharing a common vertex, with a constant 3; independent on
h and on the patch. In (6) we have indicated with V¥ (w), Q7 (w), bu(-,-) and || - [la.e
the restriction of the corresponding function spaces and forms onto the subdomain w C
Q. Many finite element spaces proposed for the Stokes problem satisfy the local inf-sup
condition as well (see e.g. [10, 18, 19]).

If we denote by e = u — uy, and £ = p — py, the errors introduced by the finite element
approximation on the velocity and pressure, respectively, then (e, E') turns out to be the
solution of the following problem

{a(e,V) +b(v,B) = Rj'(v), VwveV (7)

b(e,q) = Rj(q), Vg e Q
where the two linear functionals

RZL : V=R, RZL(V) = (f,V) - G(U}“V) - b(vaph)

represent the residual in the momentum equation and the residual in the continuity equation.
Owing to (5), R™ and R¢ vanish, respectively, on the spaces V¥ and Q' i.e.

RiM(v) =0 YveVy, Ri(q) =0 VYgeQp (8)

3 Characterization of theerror (e, E)

In view of the a posteriori error estimation, we would like to relate the norm of the error to
some norms of the residuals. Indeed, the latter are known quantities, once the finite element
solution has been computed, and many techniques, so called residual based methods, have
been proposed in the literature aiming at estimating their norm: we refer to [2, 21] for a
review of these methods for elliptic problems.

For the Stokes problem, in order to characterize the error (e, E') in terms of the residuals,
we split it as follows:

(e, E) = (eo, Eo) + (€1, E1)
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where (eg, Ey) and (e , £, ) satisfy, respectively, the two subproblems

a(eo,v) +b(v, Ep) =R} (v), VWeV 9)
bleo,q) = 0, vaeQ

aler,v) +b(v,E1) =0, YweV (10)
blel,q) = R(}:L(Q)v Vgeq

Let us define the two subspaces of V

Vdiv = {V € V? b(V, Q) =0 vq € Q}a

Vi, ={veV, alv,w)=0 Vwe Vgl
V4iv is the subspace of V of divergence free functions while Vjiv is the subspace orthog-
onal to V g, with respect to the inner product a(-, ).

From (9) we infer that ey € V4;,. On the other hand, by taking v € V g in (10), we have
a(e;,v) =0,sothate; € V. Asaresult we have

lell = lleoll? + lleL 12, (11)
the equality being achieved owing to the orthogonality property eq L e .

Let us now observe that problem (9) is an elliptic equation in the constrained space V g;y .
The following result holds

Lemma 3.1 With the above definitions:

R (v
feolla = sup ZEWN — ), (12)
vEViv HVHG av
Proof: By taking v = eq in (9) we have
2 m R;Ln(eo) m
leolls = Ry (e0), = leolla = Teoll, < IR llv,,.-
a

Furthermore, for all v € Vg, we have R} (v) = a(eo,v) < |leollal|V|le and the
assertion follows immediately. O

On the other hand, problem (10) can be seen as a minimization problem of the a-norm || - ||
under the constraint b(v, ¢) = Rj (¢) Vg € Q. More precisely, if we define the constrained
set of functions

Vre ={v eV, b(v,q) =Rj(q) Vg€ Q},

the following result holds
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Lemma 3.2 The function e, solution of Problem (10), is also a solution to the minimiza-
tion problem

find w € Vgs st a(w,w) <a(v,v), Vv € Vge

and, consequently

levlla = <mvn a<v,v>> 13)

C
RE,

Proof: The proof is a standard argument of functional analysis for saddle-point problems.
See, for instance, [7]. O

As a consequence of Lemmas 3.1 and 3.2, the energy norm of the error on the velocity field
can be fully characterized by

lellz = IR}, + min a(v,v) (14)
div VGVRE

In the next section we will show how exact upper and lower bounds for the quantity |e||,
can be achieved. Those bounds are obtained by constructing a posteriori error estimators
separately for the two terms appearing in the right hand side of (14).

We finally mention that a characterization of the error on the pressure in the L2-norm can
be obtained thanks to the inf-sup condition (3). We have indeed

1 b(v,E
1Blo <X sup 252
Bveviioy lIVlla
1 1 .
=— sup —— {Ry(v) —ale,v)}
B vevi oy IVl
B lvevino Ve vevivoy vl

thus leading to the estimate
1 m
IElo < 3 {IRY v + lleLlla}- (15)

where we have exploited the fact that | R} ||(V$V), < [|R3*||v. This inequality has already
been proved in [13, Lemma 3]. Observe that, even in the favorable case where we are able
to provide an upper bound for both ||R}"||v+ and |[e_ ||,, the presence of the constant (3
in (15), which is in general unknown and difficult to estimate, prevents from achieving a
guaranteed upper bound for the Z2-norm of the error on the pressure.
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4 Upper and lower boundsfor the velocity error

We give first a general framework that yields upper and lover bounds on the energy norm of
the velocity error. We refer to Sections 5 and 6 for a description of the particular a posteriori
error estimator that we have analyzed and tested numerically.

The following Proposition is an immediate consequence of Lemmas 3.1 and 3.2:
Proposition 4.1 Given any function ¢, € Vgiy and ¢, € V¢, we have
Ry (o)
lbolla

Provided we are able to build two particular functions 1, and 1) |, which are reasonable
approximations of ey and e, respectively, Proposition 4.1 suggests the idea to define a
lower bound estimator for ||eg||, by simply taking

ow _ IREG)
‘ 1%olla

and an upper bound estimator for |le_ ||, by

<lleollas ¥ illa = lleLlla-

(16)

el =¥l (17)

Let us, now, suppose that we are able to build a Hilbert space M, which will be called
hereafter broken space for a reason that will become clear later, endowed with an inner
product a(-,-) and associated norm || - ||z, satisfying the following assumptions:

Al. There exists a linear application Z : V — M thatinjects V into M; i.e. Z(V) C M.
A2. The inner product a(-,-) on M extends a(-,-) on V, i.e.
a(Zv,Iw) = a(v,w), Vv,w e V.
This implies, in particular, that Z is an isometry.
Let, moreover, R} € M’ be a continuous extension of the functional R} € V7, i.e.
RI(Iv) =R (v), WweV.

The Hahn-Banach theorem assures the existence of such an extension.
Finally, we introduce a subspace M, C M and an affine subspace Mz: C M such that

Mo D I(Vaiv), Mpe DI(Vge). (18)

A straightforward consequence of Lemmas 3.1 and 3.2 is:
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Proposition 4.2 Given a broken space M that satisfies the assumptions A1-A2 and two
sets M, and M. satisfying (18), we have

Ry ’
sup Riv) lleo]la, inf a(v,v) | <leLla
vemo IVla veMz;

Again, this Proposition suggests the idea to define an upper bound estimator for ||eg||, as

ﬁm
eol = sup (V) (19
vemo IVla
and a lower bound estimator for |le_ ||, as
2
Elfw - (veij{}tf722 &(v,v)) . (20)

Remark 4.1 The hypothesis that 7@21 is a continuous functional on M ensures that the

U,

estimator ¢,” is bounded.

The two expressions in (19) and (20) may seem very complicated to compute. Yet, if the
space M has some “broken” property, that means that the elements v € M are defined
only locally on subdomains of €2, without any requirement that they match between one
subdomain and another, the computation of (19) and (20) reduces, in general, to the solution
of local problems on subdomains.

Remark 4.2 A typical example of broken space (see [2]) is given by the space of functions
that are in H!(K) for each element K of the mesh, without any continuity requirement at
the interface between two adjacent elements. More precisely,

M= {ve X)) v|ge[HY(K)Y, v=0 on o0} (21)
with extended inner product

a(v,w) =Y ax(v]x, w|K) (22)

K

where ag (-, -) is the restriction of the bilinear form a(-,-) to the element K. This choice
of broken space leads to the well known element residual method. Observe that the inner
product defined in (22) induces only a semi-norm on M since it vanishes for piecewise
constant functions. In order for ¢;” to be bounded, we need to guarantee that also the
extended residual 7%;” vanishes for piecewise constant functions. This demands, in general,
for some flux equilibration techniques (see [11, 2]).
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In the following section, we will consider another possible choice of broken space that leads
to the solution of local problems on patches of elements. It is an extension of the weighted
subdomain residual method proposed in [8] for elliptic problems and analyzed thoroughly
in [12, 17]. In the present paper, we will give a reinterpretation of that estimator in terms of
broken spaces.

Once the estimators ¢4, i, £'F and £/°* are available, they can be simply recombined
to obtain upper and lower bounds for the velocity error ||le||,. Precisely, we introduce the
global estimators

e = /(W) + (szip)Q, and  glov = \/(56"“’)2 + (5?”)2.
As a consequence of (11) we have that

e > |le|la and glov < lel|q.

5 Patch-wise broken space

The main results stated in this section are Lemmas 5.4 and 5.5, where we define ;"
and glew.

Let {z;, ¢ =1,..., N} be the set of vertices of the mesh 7}, (including the vertices on the
boundary 0€2) and {¢;, i = 1,..., N} the associated set of first order Lagrangian basis
functions. More precisely, if we denote with F g the affine mapping from the reference
triangle or square K onto each element KX of the mesh, we have

¢z(33]) =0;5, Vi,j=1,...,N
.o - [Py(K) for triangular meshes
b = doFR, de i) v
Q1(K) for quadrilateral meshes

where we have denoted by §;; the Kronecker symbol. The support of each ¢; is denoted by
w; and will be referred to as the patch of elements connected to the vertex x; of the mesh.
We denote by h; = maxgc,, hx the maximum diameter of the elements in the patch. A
well known property of the Lagrange basis functions states that the set {¢,}¥, forms a
partition of unity, that is ZiNzl ¢; = 1. We define the following weighted spaces on each
patch w;:

W(w;) = {v:w; — R%, / (Vv [2¢; < +o0}, (23)
W (wi) = { e L o ¢ 00 (24)
{veW(w;), v=00ndw;, NN} ifx; €00

Zw)={giwi =R [ o< +o0) 25)
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Observe that W (w;) D [H'(w;)]? and Z(w;) D L?(w;), since 0 < ¢; < 1, Vo € w;. We
introduce, moreover, the following weighted bilinear forms on each subdomain w;:

ag, (0, v) = 1// (Vu: Vv)o,, Yu,v € VOV(wZ)
bo(v.) == [ vy Vv € W(w). g € Z(w)
The form agy,(-,-) induces an inner product in the space VOV(wi) with associated norm
Vlla,6; = v/@g;(v,Vv), while by, (v, q) can be easily shown to be continuous on W x 7
with respect to the norms || - ||4,¢, and || - [jo,4, = || - gf)z-l/zHLQ(wi).
We now define the broken space M as
N [e]
M=][[W(w) (26)
i=1

In other words, the elements of M are sets of functions {v;}X,, each one defined on a
subdomain w;. The subdomains overlap; yet, on the overlapping region, the functions v;
are not required to match. With this respect we can say that the space M defined in (26) is
a broken space.

We equip the space M with the natural inner product associated with a product space, i.e.
forany O = {v;}¥ and Q = {w;}¥, in M

N
&(07 Q) = Z Qg; (Vi7 Wl) (27)
1=1
and we define the extended residual R} € M’ as
~ N
Rt (0) = 3 Ry (vid). (28)
=1

Following the arguments given in [17, Lemma 3], it can be proved that 7@2” is a bounded,
linear functional on M. The proof relies on the following

Weighted Poincaré inequality: There exists a constant C' > 0, independent of h;, such that

V72 < Chi | [VvPgi Vv e W(w). (29)

This inequality has been proved in [12] for meshes of triangles or tetrahedrons and in [17]
for quadrilateral meshes in 2D. The proof for 3D “brick” elements is still missing and the
applicability of this estimator in 3D problems is an open question.

The following important result holds:
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Lemma 5.3 We define the linear applicationZ : V. — M as

Iv = {v‘w — ‘_’i}ij\ih where v; = {(f“’z V¢i> / (fwz (bi) 12 ¢ 00 (30)
’ 0 if z; € 00

then
i) Z injects Vinto M, i.e. Z(V) C M.
i) a(Zv,Iw) = a(v,w), Vv,we V.
i) R"(Zv) =R (v), VYveV.
Proof:

i) From the previous considerations it appears clear that, for any v € V, the function
V|, — Vi€ W (w;). Thus, V is injected in M through the application Z.

i) We have
ZV IW Zaqb ) ‘_’iaw|wi - Wl) = Za‘bi(v‘wi’w‘wi)
=1 i
N
Z/ VV‘W VW|w (231 Z/ VV VW ( )
i=1 Wi

iii) Similarly, we have

RN (Iv) ZRh Vi, — Vi)$i) = Z (v, ®1) =

i=1

||Mz

The last term vanishes thanks to the Galerkin orthogonality (8), and we have, finally
N
=) Rit(ver) = R (V).
=1

0

The space M defined above, as well as the extended inner product & and residual R},
satisfy the requirements set in the previous section.
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5.1 The subspace M,
A first possibility to define the broken subspace M is

Mos ={0 ={vi}}L; € M, bg,(vi,q) =0 Vg e Z(w;)}. 31)

The subscript S stands for Stokes since this choice leads to the solution of local Stokes-like
problems. If v € Vy;, is a divergence free function, v — wv; is also divergence free in
w; and

b, (v, — Vi, q) = —/ div(vy, —vi)q¢; =0, Vg € Z(wj).
wj
Thus 7 isometrically injects V gi, into Mg g, i.e. Z(Vaiy) C Mygg. The space Mg s
satisfies all the requirements set in Proposition 4.2. It follows immediately that the error
estimator

Ry (O
R L )

(32)
0eMg s HOH&

provides an upper bound of the quantity ||e||q-
We are now in the position to state the first main result of this section

Lemma 5.4 The upper bound estimator (32), associated with the choice of the broken sub-
space M, s defined in (31), can be computed as

N 3
S0 = (Z am(n?pyn?p)) (33)
i=1

where the functions n;” are the solutions of the local constrained elliptic problems defined
on each patch w;:

find 7' € W(w:), with by, (n',q) =0, ¥g € Z(w;), st
QAgp, (nz'upvv) = RZI(VQSZ)’ AAAS W(wi)v b¢i (Va Q) =0 Vq € Z(wl) (34)

Proof: The space M, s is a closed subspace of M and R} is a linear continuous func-
tional on M (and a fortiori on My g). Thus, by the Riesz representation theorem, there
exists a unique element 1 = {n;"}}\, € M, s that satisfies the problem

a(H,0) = RPM0O), YO e Myg. (35)

and is such that

NI

~ N
R™(O w u
— G (Za@(mp,nip))

0eMyg s 10]la =1
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Thus, given H, the estimator 50 5 can be computed by formula (33). Problem (35) can be
written equivalently as

Za@ nr,v ZRh vidi), V{vi}N, € Mos. (36)

Since the functions v; are completely independent one to the other (we can actually chose
v; = 0 forall 7 # j, and v; different that zero), problem (36) reduces to the set of IV
independent local problems stated in (34). O

Remark 5.3 If the bilinear form b, satisfies an inf-sup condition, we can add the con-
straint appearing in (34) explicitly to the equation by a Lagrange multiplier We obtain, in

this case, the set of IV local weighted Stokes problems: find n;” € W(wz) and & € Z(w;)
such that

{a@ ()7, %) + b, (v, E17) = R (vi),  ¥v € W(wy) an
by, (", q) = 0 Vg € Z(w;)
This is the formulation that we will adopt in Section 7 to define the computable error esti-

mator. The issue whether the form by, satisfies or not the inf-sup condition is still an open
question.

Observe that in (34) we do not have imposed any boundary condition (the test functions v
as well as the solutions n;” are completely free on the boundary dw;). Hence, the local
problems (34) (or (37)) are of “Neumann” type.

Remark 5.4 Another possible choice for M is My p = M (the subscript P standing
for Poisson). It is clear, indeed, that this space satisfies also the requirements of Proposition
4.2. In this case, we end up with the solution of local weighted Poisson problems, on each

patch w;, of the form: find 77 € W(wz) such that

ag, (nZ’}D, v) =Ry (vey), Vv € W(w;), (38)
1
and the upper bound estimator is defined again as 60 = <va p ag (n'p, nl“‘}’g)) ?
Since Mo p D M, s we immediately have that e", > . We expect that the estimator
€0,5 provides a sharper upper bound for the quantlty HeoHa than ¢q,p , yet at the expense
of solving local Stokes problems instead of local Poisson ones.
The idea of solving local Poisson problems to obtain an a posteriori estimate on the error of
the Stokes problem has already been considered in [3] (see also [14]). Yet, in those works,
no exact upper bounds are provided for the error on the velocity field.
We finally remark that, since V.C M, p, the estimator 50 p is also an upper bound esti-
mator for the quantity | R} ||y, i.e.
up Ry(v)

e su .
0.p = ve\g ||V||a
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Thus, this estimator may be used to build an estimator for the error on the pressure (see
inequality (15)).

5.2 Thesubset Mp.

Proceeding in a similar way as in the previous section, we define the broken set M . as
Mgrg ={0 = {vi}lL1 € M, by, (vi,q) = Ri(adi) Vg € Z(wi)}.  (39)

It is easy to show that 7 (VRZ ) C Mzq. Indeed, given any function v € V¢ and any
q € Z(w;), we have

by, (V). — Vi,q) = — / div(v), — Vi) q¢i = b(v,q¢y).
where we have denoted by q?bz- the extension of ¢q¢; by zero outside the domain w;. Since
the function v satisfies the constraint b(v,q) = R¢(q), Vg € L*(2) and the function

qo; € L?(£2), we conclude that
b¢z (V|wi - Vi, Q) = RZ((]QSZ), vq € Z(wl)

In particular, we see that the set Mz is not empty.
The set Mg satisfies the assumptions given in Proposition 4.2. Thus, the estimator

2

low : ~
eV = inf a(0,0 40
i (oEMR;- ( >> (40)
provides for a lower bound of the quantity |le ||,.

We are now in the position to state the second main result of this section

Lemma5.5 The lower bound estimator (40), associated with Mx. set in (39), can be
computed as

N 3
Elfw = <Z Ay, (T’éowv néow))
=1

where the functions nﬁ"“’ are the solutions of the local constrained minimization problems:
find né"“’ € W(w;), with by, (nl-m” q) = R} (q¢i), Vg€ Z(w;), st

)

low low

a¢i(nz s g ) < a¢i(viavi)7 \V/Vh € W(wi)ﬂ b¢z(V17Q) = Rfl(tﬂf)z) Vq € Z<w2)
(41)

Proof: Mg: is a closed, convex, non empty subset of M and a(-, -) is a continuous, coer-
cive and symmetric bilinear form. Thus, the minimization problem: Find H = {nl°w1¥ €
Mpe such that

a(H,H) < a(0,0), VO € Mp¢
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admits a unique solution and the estimator slfw can be computed as

1
N 2
Elf“’ =+va(H,H) = (Z a@(néow,néow)) .
i=1

The previous minimization problem can be written in the equivalent form
N N
D oag @ M) <Y ag(viovi),  {vitl € Mg
=1 =1

Since the functions v; are completely independent one to the other, each function n°*, on
each subdomain w;, is the solution of the local minimization problem stated in (41). O

Remark 5.5 As in Remark (5.3), if the form b, satisfies an inf-sup condition, we can add
the non homogeneous constraint explicitly by means of a Lagrange multiplier in (41) and
write the first-order variation conditions. We obtain, in this case, the set of IV local weighted

Stokes problems: find nlov € VOV(wi) and £l € Z(w;) such that
{%i (017, V) + by, (V,E1°%) = 0, Vv € W (w;) @)
by, (i, q) = Rj,(a¢s) Vg € Z(w;)

Again, this will be the formulation adopted in Section 7 to define a computable error esti-
mator.

Remark 5.6 Also in this case, we could have taken as a broken space Mz: = M. It
is clear, indeed, that Z(V ) C M. Yet, the solution to the minimization problem: Find

H = {n°“}N, € M such that
i(H,H) < a(0,0), VYOeM

is the trivial solution n'°* = 0forall i = 1,..., N and the corresponding error estimator

7

would be £!°* = 0. Therefore, this choice is of no use in practice.

Remark 5.7 The two local Stokes problems (37) and (42), defined on each patch of ele-
ments, are identical except for the right-hand side. From the numerical point of view this
means that, whenever they are approximated in some discrete spaces, they could be solved
simultaneously when using a direct solver.

6 Patch-wise computed functions, and ¢

In the previous section we have defined the two estimators e;” and £/°, based on the
broken spaces M, and Mz, respectively. In this section, instead, we consider the other
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two estimators e/ and '” that are based on the construction of two particular functions
Py € Vagiv and ¢ | € Vre, according to Proposition 4.1. The goal is to construct such
functions by avoiding to solve a global problem. By similarity with the estimators proposed
in the previous section, we present, here, a way to compute the functions 1, and 1) | that is
based on the solution of local problems on patches of elements. Yet, this time, we will not
make use of weighted bilinear forms.

We denote by a,(+,-) and b, (-, -) the restrictions of a(-,-) and b(-, -) to the subdomain w;
(without any weight). Then, we introduce the two sets of local Stokes problems, defined on
each patch w;, i =1,..., N:

find ) € [H{(w;)]and ¢? € L3(w;) such that

a, (Y9, V) + b, (v, ¢)) = RPM(v) Vv € [Hg(w;)]
(43)
bwi( g»Q) =0 Vq € L%(wz)
find ;- € [H{(w;)]? and ¢+ € LE(w;) such that
Ay, (¢£_>V) + bwi (V7g7,l) =0 Vve [H(%(WZ)]d
1 5 (44)
bwz‘("/’z‘ aQ) = RZ(QQZ)Z) Vg € Lo(wi)

Problems (43) and (44) are standard Stokes problems, set on each subdomain w;, with
homogeneous Dirichlet boundary conditions and bounded functionals on the right hand
side. Thus, they admit a unique solution.

We set, now

N N
Yo=> ) and ¢ =) o (45)
=1 1=1

where v? and Q/Jil are extended by zero outside w;, and define the error estimators ef)"w and
up
e, as
N

low __ Rzl(@bO) _ Z A, (’lnbzoa’lﬁb?)

gg = =
lola 2 Tl

The following result holds

and  e\" = [[%la- (46)

Lemma 6.6 The functions 1, and ¢ | , defined in (45), satisfy
Yo € Viiv, and Y, € Vge
and the two estimators e/ and &'/? satisfy

e <lleolla  and £ >lesa
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Proof: Both functions v, and v, are sums of H} functions whose support have finite
intersections, thus they belong to V. Now, let us observe that the second equation in (43)
and in (44) holds for all functions ¢ € L?(w;) and not only for all ¢ € LZ(w;). Indeed,
given a constant function ¢ on w;, we have on one hand

by, (Vi,q) = —/ divv;q = —cj/ v, -n=0, for both v; = ¢? and v; = qbf‘
wj awi
and on the other hand

Ry(49:) = aRy(¢i) =0
thanks to property (8). Then, for ¢, we have:

N N
b(¢07q) = Zb( ?,Q) = Z bwi(qp?? q‘mi) =0, Vg € L(z)(Q)7
i=1 =1

the last equality holding since 4., € L?(w;). On the other hand, for 1 | we have

N N
b(wr,q) = D_biq) =D bu(¥i )
=1 ];—1 N
= Rilaq,,6) =RiaY_¢:) =Rilq) Vg€ L§(Q)
=1 1=1

and this achieves the proof of the first assertion in the Lemma. The second assertion comes
immediately from Proposition 4.1. O

Remark 6.8 The presence of the weight ¢; in the right-hand side of (44) is necessary to
guarantee that the mass equation is satisfied for all ¢ € L?(w;). Observe that, given a
constant function g on w;, we always have Rj,(g¢;) = 0, whereas, in general, the quantity
R§ (q) does not vanish unless a discontinuous finite element space is used for the pressure
field.

Remark 6.9 Whenever a discontinuous finite element space is used for the pressure field,
the divergence constraint can be localized more easily element-wise without introducing a
partition of unity. Indeed, in this case, on each element K of the mesh 7;, we have

Ri(q) = — /K divuy, ¢dK =0, Vq constant on K and 0O elsewhere.

and the local problems (43) and (44), set on each element K (instead of each patch w;) are
well posed and lead to exact bounds for ||egl|, and |le . ||4-

Remark 6.10 What has been said in Remark 5.7 holds also in this case. The two local
problems (43) and (44), set on each patch of elements, are identical except for the right-
hand side. At the numerical level, they can be solved at the same time by using a direct
solver.
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7 Computable a posteriori error estimators

The estimators introduced in the previous section involve the solution of infinite dimen-
sional problems, although defined only locally on each patch of elements. Therefore, those
estimators are not directly employable in applications. We can overcome this difficulty by
approximating the local problems in some finite dimensional spaces. Yet, the choice of the
approximation spaces is quite delicate since, on one hand, we need to guarantee that the
local discrete problems thus obtained are well posed and, on the other hand, we would like
to have a computable estimator that is still a good error estimator, i.e., it provides exact
upper and lower bounds for the error up to higher order terms.
To derive a proper discretization of the local problems (37), (42), (43) and (44), we pro-
ceed as follows. We introduce two global enriched finite element spaces Vy O V;, and
Qu D Qp and denote by (ug, pr) the finite element solution of the Stokes problem (2)
in(Vu,Qg):

a(ug,v)+b(v,py) = (f,v) VveVy,

b("—H;Q):O Vg€ Qp.

We will call problem (47) the fine model and we expect it to provide a solution that is a
much better approximation of the exact solution (u, p) than the coarse solution (uy, pp).
(some authors [16, 15] call the fine problem truth-mesh discretization in opposition to the
working approximation, corresponding to our coarse FE problem). Of course, the coarse
FE solution (uy, py) can be seen as an approximation of the fine solution (uy, pgr) as well.
If our goal were to solve only the fine model (47), instead of the true (infinite dimensional)
Stokes problem (2), we could follow the general approach proposed in Section 4 to esti-
mate the error (e’ E#") = (uy — uy,pg — pp). In particular, by splitting the errors
(eflh, By in eflh = el + eflh, and B = E[T + EIh that satisfy, respectively, the
problems

(47)

a(efl",v) + b(v, By = RiM(v), Vv eVy
b(eg",q) = 0, Vg € Qu

aefl" v) +b(v, Bl =0, VveVy

b(efhv q) = RZ(q)7 vq € QH>
we could derive estimators 0T 56"}3 EIf’Hslij for the quantities ||e" |, and ||/ ||,
The characterization of the velocity error given in Lemmas 3.1 and 3.2, as well as the

assertions in Propositions 4.1 and 4.2, are still valid, in this case, provided we replace the
continuous spaces V g;y and Vz¢ with their discrete counterparts

VE ={vevVy, bv,q=0VqeQn}
Vi ={veVu, bv,q) =Rjq) Vg€ Qu}.

It follows that those estimators will provide guaranteed upper and lower bounds for the
quantities e’ and e!’".
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Observe that, now, the spaces VZ and V{{E are finite dimensional. Thus, the estimators

ot 0k €1 €'y will be obtained by solving local problems in locally, yet finite
dimensional, enriched spaces, and therefore they are computable.

Since the true error is e = u—uy, = (u—ug ) +e", an estimator for the quantity ||e’”||,
will also be an estimator for the true error ||e||, up to the term |ju — ug||,, which, under
reasonable assumptions on the regularity of the solution, is a higher order term with respect
to [le]l.

The enriched spaces (V i, Q) might be obtained by either refine the mesh or increasing
the polynomial degree, or both. In the following of this section we detail the case where we
only increase the polynomial degree. For any integer p > 0, we consider the enriched finite
element spaces Vy = fop and Qp = Q7" obtained from the spaces V¥ and Q7" by
adding internal or edge bubbles up to the degree &+ p for the velocity field and m + p for the
pressure (here, p represents the “extra” degree that will be used in the solution of the local
problems). We make the assumption that (fop ,Q;"*P) satisfy the inf-sup condition (4)
and the local inf-sup condition (6). Given any subset o € €2, we will, furthermore, indicate
with Vi (o) = {v|,, Vv € V}™"} (similarly for Q}" (o).

7.1 Computable functions v, and 1) |

Keeping in mind the discrete framework we have just set, the functions v, and ¢, should
belong, respectively, to the finite dimensional spaces VH and VH,
To compute those functions, we introduce the local enrlched finite dimensional spaces

\O/’ffp(wi) = VITP(w) N [H (i), for each patch w;, i=1,...,N
QPP (wi) = QP (wi) N L(w), ¢
and the local discrete problems:

find o € Vk+p(w,) and (¥ € Qm“’(wi) such that

sy (00, V) + by (v, C0) = RIM(v) v € VI ()

(48)
b (7, 9) = 0 Vg € QP (i)
find ;- € \Oflffp( ;) and (- € Qm+p( ;) such that
@ (BFV) + b (v, GH) =0 ¥y € Vi) 49)

bo, (Y7, ) = RS (q¢5) Vg € QP (wy)

We set, as in Section 6,

N N
Yog = Z Y] and  4p, = Z s (50)
=1 =1
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i i low up
and define the computable error estimators e¢’y; and €~ ; as

ow Ry (¢0 H) Y A, ?7 1/)? u
el = et = Z ) and &’y = gll.  (51)

oulls 2= Twboula

It is easy to show that the local problems (48) and (49) are well posed and that the com-
putable functions v ;; and v | 5 satisfy

You € Vi and Y, g€ V%'
(The proof is identical to the one of Lemma 6.6). Thus, the following result holds

Lemma 7.7 The computable estimators e and £'[”; satisfy

Hh

0.1 and &7y > el

Hh
eop < lleg lla

la

7.2 Discrete broken spaces M, M’ and My,
Let us introduce the local weighted enriched spaces, on each patch w;, i =1,..., N,
WHP(w) = VI () 0 W(wy).
Then, the discrete broken space M can be defined as
N o
M =T Wi (w)
=1

Following the proof of Lemma 5.3, it can be shown that M is a broken space for V g,
i.e. the application Z injects isometrically V# into M.
To define the other two subspaces, we introduce the local enriched space for the pressure

ZPP N w) = QP (wi) N Z(wy).

The reason why we take polynomials of degree m + p — 1, instead of the more natural
choice m + p will be clear later. Then, the two subspaces M and M%Z are defined as

M(I){S ={0= {Vi}g\il € MH7 bg, (vi,q) =0 Vg e Z}T+p_l(wi)}v
Mige ={0 = {vi}}Ly € M7, by, (vi,q) = R (agi) Va € Z," P (wi)}-
The following result holds
Lemma 7.8 Let Z be the linear application defined in (30). We have:

I(Vi,) C Mils,  and  I(VE:) C M.
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Proof: For any ¢ € Q?*p_l(wi), the function ¢ = q¢;, extended by zero outside wj,
belongs to QZ”p, since ¢; is a first order Lagrange basis function. Then, given any v €
VP, we have

b¢7, (v\wi — Vi, Q) = b(V’ Q¢z) = b(V, (j>

Thus, if v € VI, we have by, (v|,, — Vi,q) = b(v,q) = 0 whereas, if v € V., we have
be; (V|,, — Vi, @) = b(v,q) = Rj,(q¢;) and these relations hold for all g € QTP wy). O

Remark 7.11 From the proof of Lemma 7.8 it should be clear that, if we consider the
local enriched space Z;""”(w;), instead of Z;"*7~"(w;) in the definition of either Mg
or M%E, we will not have, in general the inclusions stated in Lemma 7.8, because of the
presence of the weight ¢; in the bilinear form by, (-, -). On the other hand, with this choice
of space, the local Stokes problems are even more constrained and we may expect to obtain
better numerical results. We have tested numerically both cases and the results, presented

in Section 8, confirm our expectation.

Remark 7.12 The presence of the weight ¢; in the form b, is necessary to localize the
constraint, whenever a continuous finite element space for the pressure is considered (see
also Remark 6.9). If, instead, a space of discontinuous pressures is employed, a localization
of the continuity equation on each patch w; can be achieved by simply taking a pressure test
function

- - q in W . +
e Q. = . withg e QP (w;).
jeqQy q {0 N0\ w q€ Q) " (wi)

Thus, in this case, we could define the broken spaces as

Mils ={0={vi}} ), vie WP (w;), bu,(vi,q) =0 Vg € Q7P (w;)}

Ml = {0 = (v}, vie Wi (W), bu(vi,q) = Ri(0) Va € Q7 (wi)),

without the need to weight the local bilinear form b(-, -). It is easy to show that, in this case,
the result of Lemma 7.8 is still valid.

Following the same arguments as those presented in Sections 5.1 and 5.2, it can be shown
that the estimators associated with the broken spaces Méf g and M{{E can be computed by
solving the local problems

find n'” € WitP(w;) and £ € 2"~ (w;) such that

ae, (n?pv V) + b(fh‘ (V7 5;40) = RZI (ngi)’ Vv € W2+p(wi) (52)
bg; (0¥ q) =0 Vg e ZMP W)
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find nio* € W5 P(w;) and glow € 27771 (w;) such that
low b low\ __ 0. V Vci/'k"‘P .
A, (772 V) + bi (V7£Z‘ ) =0, Ve W, (wi) (53)

by (M, q) = R, (a9s) Vg € Z," P (wi)

low i
The computable error estimators ey’ ;; and €'}, are then defined as

1
2

1
2
EO S,H — <Z Qg; nz 7771 ) and lfuI){ = (Z CL¢Z low7 niow)> (54)

Lemma 7.9 The local problems (52) and (53) admit a unique solution.

Proof: As already observed, the form a, (-, -) is continuous and coercive in W (w;) and the

right-hand sides R} (v¢;) and R} (q¢;) are continuous functionals on W (w;) and Z (w;),
respectively. The existence and uniqueness of the solution is then proved if the bilinear
form by, (-, -) satisfies the discrete inf-sup condition

_ bg, (v, q)
Vge QP w)  sup 2o > Clgllog,
VEVOVIZ-‘_p( H ||a7 i

Now, let us remark that for any ¢ € Q)7 "(w;), the function § = q¢; belongs to

"P(w;). Since, according to our assumptions, the spaces Vk+p and Q""" satisfy the

local discrete inf-sup condition (6), we have that Vg € Q)'"~ 1(%), I e VITP(w)
such that

/ divquw‘ > BVl 2ol 22

By setting v = v — ¢, where the constant c is chosen in such a way that v € W’ffp(wi),
we conclude that

Vg€ Q)P (w;), Ive WHTP(w;) such that

[bg, (v, q)| = / div‘?c}dw‘ > BV 2 plldll 2w = Clivilagllallos,

where, in the last inequality we have exploited the fact that [[vla.¢, < V7I[VVIlL2(,)
and that in a finite-dimensional space all the norms are equivalent; thus ||<1<Z5¢1/2HL2(M) <

C1llqdillr2(,) (observe that both the quantities ||<1¢2/2HL2(%) and [|q¢;|z2(.,,) are norms
for ¢ € Q7" (w;)). This achieves the proof. O
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Remark 7.13 Following Remark 5.4, we can also take as Méq the broken space M{]{P =

MH . This choice leads to the solution of local discrete Poisson problems in the space
VZer(wi). The two results presented here below are still valid also with this choice of
broken space.

We conclude this section with two results whose proof is an immediate consequence of the
developments done so far:

Lemma7.10 The computable estimators e’ ,; and &'}, satisfy

sgfos,H > He{){h”a and glfu;{ < Hefh”a

Lemma 7.11 We define the upper and lower estimators for the quantity |/e||, as

2 2 2 2
up up up low __ low low

Then we have

el > e, ey < Jle, (55)
and
e’ —la—uglla < llefla < + [u— uglla.

8 Numerical assessment

The first test case we consider is the classical example of the driven cavity for the Stokes
regime. The domain €2 is the unit square and we consider homogeneous Dirichlet boundary
conditions at the bottom, left and right boundaries and non-homogeneous conditions on the
top side, namely

u = (u,u2), up = 4z(1 — x), ug = 0.

Figure 1 shows the magnitude and the streamlines of the velocity field on the left and the
pressure field on the right.

The software we have utilized uses quadrilateral meshes and hp H '-conformal finite ele-
ments whose degree can be chosen in the range k£ = 2,...,8 for the velocity field. The
polynomial degree for the pressure field is then taken equal to m = k — 2 for the interior
bubbles and m = k& — 1 for the edge bubbles. Here we have always chosen & = 2, which
corresponds to the classic Taylor-Hood finite elements Q2/Q".

Concerning the error estimators, we have implemented the four estimators sgf’s, el elw,
slfw defined in (51) and (54) (we omit here and in the following the subscript H, to simplify
the notation). We have also considered the estimator ", associated with the choice M
for the broken space Méq (see Remark 7.13), which relies on the solution of local Poisson

problems, as well as the two estimators 4%, and &/? obtained when we choose the local
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Figure 1: Driven cavity: magnitude and streamlines of the velocity field on the left; pressure
field on the right.

enriched space Z" " (w;) instead of Z;"™~"(w;) in the definition of the broken spaces
Mg and M. (see Remark 7.11),

We have considered a sequence of uniform meshes of 2 x 2,4 x 4, 8 x 8, 16 x 16 elements.
We have computed the error estimators with either p = 1 or p = 2. We have also computed
a very accurate approximation of the errors eqg, e and F, as well as of the exact solution
(u,p), by using finite elements of degree £ = 6 for the velocity and m = 4,5 for the
pressure.

Table 1 shows the effectivity index for the estimators of the quantity |legl|, (i.e. the ratio
uPlov /1164 |,) in the two cases p = 1and p = 2. We remind that the upper bound estimator
is based on the solution of local weighted problems with natural (Neumann-type) boundary
conditions, while the lower bound estimator is based on the solution of local problems
with homogeneous Dirichlet boundary conditions. We observe that all the estimators give
relatively good results even on the very coarse mesh of 2 x 2 elements. The estimator agf’P,
based on the solution of local Poisson problems, gives an effectivity index bigger, although
still acceptable, than the estimator egfg, as it was expected theoretically. Moreover, for
p = 1 the estimator i’ does not provide for a lower bound of the error eq, although
the effectivity index is very close to one. This is not in contrast with the result stated in
Lemma 7.11.

Table 2 shows similar results for the estimators of the quantity ||e | ||,. We recall that, in this
case, the lower bound estimator is based on the solution of local Neumann-type problems,
while the upper bound estimator relies on the solution of Dirichlet local problems. Again,
we observe that the Dirichlet estimator does not provide an upper bound neither when p =
1, nor when p = 2. Yet, the effectivity index remains very close to 1. On the other hand,
the Neumann estimator slfjfg for p = 1 is very poor, and improves significantly going from
p = 1top = 2. In this case, the variant élfjg, which uses a richer local pressure space,
gives much better results.

We consider, now, a posteriori error estimators for the energy norm of the whole velocity
field, by combining estimators for ||eg||, and for |le ||,. Two of them have already been
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p=1 Upper (Neum.) Lower (Dir.)
h leolla/[lulla £0.s g0 Eo.p erv
0.50000 0.2200 1.18761 | 1.09821 | 1.41413 1.01550
0.25000 0.1154 1.18760 | 1.09867 | 1.41844 1.00308
0.12500 0.0582 1.18888 | 1.10015 | 1.42049 1.00306
0.06250 0.0291 1.18897 | 1.10017 | 1.42074 1.00312
p=2 Upper (Neum.) Lower (Dir.)
h leolla/llulla €. €05 Eo.p ey
0.50000 0.2200 1.14492 | 1.10644 | 1.42424 0.99009
0.25000 0.1154 1.14961 | 1.11535 | 1.42887 0.98764
0.12500 0.0582 1.15139 | 1.11719 | 1.43099 0.98815
0.06250 0.0291 1.15144 | 1.11723 | 1.43124 0.98828

Table 1: Driven cavity: effectivity index for the estimators of the quantity ||eg|,. On the
top p = 1, on the bottom p = 2.

introduced in Lemma 7.11, namely

g = \/(58?5)2 + (Eip)z and  glov = \/(56"“’)2 + (Elf“’)2

and for them the result stated in (55) holds. We can also introduce the two variants

sup ~up 2 up\2 slow _ low)2 ~low\ 2
€ Eos) T () and £ (e6™)” + (&)

as well as the two other estimators

neu __ ~up 2 ~low) 2 d dir __ \/ low)? up\2
" =/ (&ls) + () an e =/ (e6™)" + (1)

These last two estimators are of some interest since they rely only on the solution of either
Neumann or Dirichlet local problems. Thus, they are half less expensive than the previous
ones (which, instead, rely on the solution of both Neumann and Dirichlet subproblems).
Table 3 shows the effectivity indices for the six global estimators just introduced.

We can see that all the estimators provide very good results. In particular, the two “cheap”
estimators ™% and %", although they do not provide upper or lower bounds on the error,
yield effectivity indices very close to one.

We conclude these numerical results by introducing two estimators for the L 2-norm of the
error on the pressure. Taking inspiration from inequality (15) and recalling Remark 5.4, we
define the following estimator for the pressure
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p=1 Upper (Dir.) Lower (Neum.)

[ ferlla/Iu]a ey o | &
0.50000 0.3370 0.96148 0.64537 | 0.93448
0.25000 0.1654 0.96478 0.63539 | 0.93543
0.12500 0.0826 0.96492 0.63400 | 0.93576
0.06250 0.0413 0.96493 0.63396 | 0.93576

p=2 Upper (Dir.) Lower (Neum.)

T leclla/Iu]a e | &
0.50000 0.3370 0.98869 0.87815 | 0.93252
0.25000 0.1654 0.98648 0.87760 | 0.93299
0.12500 0.0826 0.98658 0.87793 | 0.93332
0.06250 0.0413 0.98658 0.87793 | 0.93333

Table 2: Driven cavity: effectivity index for the estimators of the quantity ||e ||,. On the
top p = 1, on the bottom p = 2.

From inequality (15) we have indeed
1Bllo < % IR v + llewlla} < = (<4 + 7).
B 5

Thus, £7¢*/dir will be a reasonable estimator if the constant 3, appearing in the inf-sup
condition, is close to one. Similarly, we can define the estimator

gneu/neu _ 60 s+ €~lfw‘
This second estimator uses only Neumann local problems, although of different type: Pois-
son local problems to compute ;" and Stokes ones to compute glow,
Table 4 shows the effectivity |nd|ces of the estimators for the pressure introduced so far, for
the two cases p = 1 and p = 2.

As a second example we propose the test case of the backward facing step. We have solved,
in this case, the problem on the two meshes shown in Figure 2. The first one is a very coarse
mesh (47 vertices) while the second one is finer (185 vertices excluding the hanging nodes)
and has been refined around the reentrant corner to catch the singularity in the pressure
that develops there. As in the previous example we have solved the problem using Q2 /Q*
finite elements and computed an accurate solution using polynomials of degree six for the
velocity. Tables 5, 6, 7, 8 show the effectivity indices of the different estimators previously
introduced for the two meshes considered and the two cases p = 1 and p = 2.

The results are comparable with those obtained in the previous test case. As a general
comment we point out that the estimator ¢/° has the poorest effectivity index. Actually,
the quantity ||e, ||, seems to be the most crltlcal to estimate. Moreover, we remark that the
estimators for the pressure error are not reliable, at least for coarse meshes.
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p =
h HeHa/”uHa cUp gup Elow élow gheu Edz’r
0.5000 0.4025 1.0343 | 1.0043 || 0.7748 | 0.9594 | 0.9863 || 0.9779
0.2500 0.2017 1.0430 | 1.0105 || 0.7752 | 0.9581 || 0.9918 || 0.9775
0.1250 0.1011 1.0446 | 1.0118 || 0.7762 | 0.9586 | 0.9934 || 0.9778
0.0625 0.0505 1.0446 | 1.0118 || 0.7762 | 0.9586 | 0.9933 || 0.9777
p=2
h ||e”a/||u||a cup EUp Elow glow gheu Edir
0.5000 0.4025 1.0379 | 1.0253 || 0.9131 | 0.9501 | 0.9877 || 0.9891
0.2500 0.2017 1.0427 | 1.0304 || 0.9151 | 0.9512 || 0.9963 || 0.9869
0.1250 0.1011 1.0442 | 1.0318 || 0.9160 | 0.9519 | 0.9981 || 0.9871
0.0625 0.0505 1.0441 | 1.0317 || 0.9160 | 0.9519 | 0.9981 || 0.9871
Table 3: Driven cavity: effectivity index for the estimators of the quantity ||e||,. On the top

p =1, on the bottom p = 2.

gneu,dir gneu,neu
h | [[Elo/llpllo p=1|p=2 | p=1|p=
0.5000 0.2628 1.5279 | 1.5553 || 1.5060 | 1.5098
0.2500 0.1215 1.6872 | 1.7122 | 1.6619 | 1.6660
0.1250 0.0593 1.7358 | 1.7614 | 1.7100 | 1.7144
0.0625 0.0296 1.7367 | 1.7624 | 1.7109 | 1.7153

Table 4: Driven cavity: effectivity index for the estimators of the L2-norm of the error on

the pressure

Upper (Neum.) Lower (Dir.)
[ Teolla/Tulla e | | e low
p=1
MESH 1 0.0451 1.0704 | 1.0336 | 1.1379 0.8434
MESH 2 0.0098 1.1472 | 1.1038 | 1.2209 0.9203
p=2
MESH 1 0.0451 1.1056 | 1.0836 | 1.1954 0.9108
MESH 2 0.0098 1.1407 | 1.1167 | 1.2521 0.9377

Table 5: Backward facing step: effectivity index for the estimators of the quantity ||eg||,.
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Figure 2: Backward facing step: coarse mesh on the top, refined mesh on the bottom.

Upper (Dir.) | Lower (Neum.)
[T [lo/ ]l B T | e
p=1
MESH 1 0.1006 0.8877 0.5578 | 0.7234
MESH 2 0.0169 0.9001 0.5608 | 0.7392
p=2
MESH 1 0.1006 1.0052 0.7087 | 0.7686
MESH 2 0.0169 1.0185 0.7288 | 0.7919

Table 6: Backward facing step: effectivity index for the estimators of the quantity ||e | ||,

‘ ”eHa/”uHa H cUp ‘ gup H Elow ‘ &:low H gneu H Edzr
p=1
MESH 1 0.1103 0.9208 | 0.9137 || 0.6149 | 0.7448 | 0.7839 || 0.8804
MESH 2 0.0195 0.9684 | 0.9556 || 0.6700 | 0.7889 | 0.8462 | 0.9052
p=2
MESH 1 0.1103 1.0227 | 1.0187 || 0.7463 | 0.7941 || 0.8297 || 0.9900
MESH 2 0.0195 1.0507 | 1.0442 || 0.7868 | 0.8311 || 0.8852 | 0.9987

Table 7: Backward facing step: effectivity index for the estimators of the quantity ||e||,.
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(c/'nemdir gneu,neu
[ Elo/lpllo p=1|p=2| p=1|p=2
MESH 1 0.0100 0.4683 | 0.5163 || 0.4132 | 0.4370
MESH2 |  0.0008 1.2007 | 1.3025 | 1.0807 | 1.1335

Table 8: Backward facing step: effectivity index for the estimators of the L2-norm of the
error on the pressure.

9 Conclusions and future work

In this work we have proposed a general approach to obtain upper and lower bounds on the
error in the velocity field measured in the energy norm. We have also pointed out that, in
general, estimates for the error in the pressure involve the unknown constant appearing in
the inf-sup condition.

The a posteriori estimators analyzed in Sections 5 and 6 are based on the solution of local
Stokes problems on patches of elements and are well suited for a finite element discretiza-
tion involving continuous pressure spaces. In the case of a discontinuous pressure space,
other options are available, as pointed out in several Remarks throughout the text, eventually
leading to the solution of local problems on each element instead of patches of elements.
Some questions deserve further investigation. First, the extendibility of this technique to
other problems like the Oseen or Navier-Stokes equations. The analysis carried out here re-
lies on the symmetry of the bilinear form a(-, -). Therefore, the extension to non symmetric
problems is not straightforward. Yet, if for instance the unsteady Navier-Stokes equations
are discretized with a time marching scheme that treats explicitly the convective non-linear
term, at each time step we are faced with a symmetric Stokes-like problem and the proposed
technique for error estimation could be applied in each time slab.

Another issue concerns the extension of this technique to the case where we wish to estimate
the error in specific quantities of interest, and, in particular, quantities that might depend
on the pressure field, on which we do not have a reliable estimator. This issue will be the
subject of future work.

Finally, it would certainly be interesting to extend the present technique to other saddle
point problems such as mixed formulations for elliptic or elasticity equations.
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