
1  INTRODUCTION 

Due to ever increasing traffic demands the fatigue 
safety and service life of the bridges need to be ex-
amined. Conventional assessment methods using 
load models and approaches as suggested in codes 
often lead to conservative results resulting in signifi-
cant strengthening interventions. Due to the im-
portant direct and indirect costs of such interven-
tions, more detailed examination methods including 
data as obtained from bridge monitoring are justified 
and needed. 

This paper reports on an ongoing examination of 
the fatigue safety of bridges within a network of rail-
roads in Brazil used for the transportation of mineral 
ore. In particular, the fatigue safety and remaining 
fatigue life of a type of riveted steel truss bridge that 
was built in 1940 as standardized bridge type is 
treated. 

A comprehensive numerical study based on the 
principles of a standard regarding existing structures 
(Brühwiler et al. 2011, Standard SIA 269 2011) has 
been carried out. The first objective was to examine 
the various types of locomotives and wagons trav-
ersing the bridge and develop appropriate load mod-
els. Results of in-situ measurements of the structural 
behaviour due to the passage of real trains in 2009 
are used to calibrate a structural model to examine 
the load effects associated with these vehicles. After 
analysis of the structure and determination of the 
various member actions, structural safety verifica-

tion checks were carried out for the ultimate, fatigue 
and service limit states.   

2 DESCRIPTION OF THE STRUCTURE 

The steel truss under investigation (Fig. 1) has a sin-
gle span of 41 m and is in service since 1940.  It car-
ries a single railway track which is trafficked by 
mineral ore trains.  
 

 

 
 
Figure 1. Viaduct composed of single span standard steel truss-
es.  

 
 
The structure consists of two steel through-

Warren trusses, 7.8 m in height, on either side of the 
bridge. The deck is of open grillage form with trans-
verse floor beams connected to the side trusses and 
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motives required for the long (approximately 200 
wagon) ore trains.  

 
 

 
 
Figure 5. Locomotive loading and geometry (mm). 

 

4 STRUCTURAL ANALYSIS AND 
DETERMINATION OF ACTION EFFECTS  

A linear elastic model of the structure was created 
using the Oasys GSA structural analysis software 
package as shown in figure 6. 
 
 

 
 
Figure 6. Three-dimensional view of structural model. 

 
 
The bridge is supported on the four outermost 

corners with no longitudinal rotational restraint at ei-
ther end i.e. a simply supported pin-roller detail. One 
end of the bridge is fixed in displacement in the ver-
tical, transverse and longitudinal directions while the 
other end features only vertical and transverse re-
straint to model the sliding bearing. 

4.1 Train loading application 

The GSA software was programmed to simulate the 
crossing of a full 200 wagon ore train over the 
bridge and calculating the static stresses generated in 
the bridge as the wheel loads are moved along the 
deck. Figure 7 illustrates the vehicle load step appli-
cation process. An increment spacing of 1 m was 
chosen for the calculation of wheel load stresses. 
The results were then compiled into worst case en-
velopes for each member. 
  

 

 
 

Figure 7. Train load step application process. 
 

4.2 Action effects  

The gravity load effects due to self-weight of struc-
ture and the weight of sleepers and rails are included 
in the model. The calculation for the full ore trains is 
based on 200 full GDE wagons.  

Figure 8 graphically illustrates the axial stresses 
in the bridge under the combined effect of perma-
nent actions and the static load of full ore trains. The 
results indicate that the tensile diagonal members to 
be most highly stressed elements of the structure. 

 
 

 
 
Figure 8. Envelope of axial stress in bar members due to full 
ore train loads and bridge self-weight.   

 

4.3 Dynamic train loading effects 

The computer described in the previous sections as-
sumes a perfectly smooth transition of the train over 
the bridge and makes no allowance for dynamic en-
hancement of the static loads due to unevenness and 
irregularities in the wheels, rails and bridge. An ini-
tial approximation of the dynamic amplification of 
static loads for assessment purposes can be found in 
EN 1991-2 Appendix D. This provides a series of 
formulae to calculate a dynamic enhancement factor 
for static loads acting on different structural ele-
ments of railway bridges.  
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The next phase of work involves updating and re-
finement of the structural models based on the 
measured data in addition to detailed assessment of 
the structural safety of the connections. Subsequent-
ly, long term monitoring, i.e. typically over 12 
months, will be performed and collected data ana-
lysed for updating the fatigue safety verifications 
presented above. 

7 CONCLUSIONS 

First results of a study on fatigue examination of a 
standard bridge type of a railway line are presented. 
All of the members of the riveted steel truss struc-
ture were found to be safe under the various limit 
states. The level of stress ranges found in the truss 
and deck members due to fatigue loading are low. 
The deck and two truss members experience small 
fatigue damage. The bridge structure has thus signif-
icant reserves in capacity which makes an increase 
in axle loads in the future feasible. 
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