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We derive an analytical expression for the broadening of a Gaussian input pulse in an arbitrary linear slow light
medium. The expression consists of two terms, one corresponding to amplitude broadening (low-pass filtering of the
pulse bandwidth) and another corresponding to phase broadening (phase dispersion around the resonance). It is
shown that for a Lorentzian gain profile, the amplitude broadening is dominant at small fractional delays. However,
for large fractional delays, phase broadening is inevitably dominate. © 2012 Optical Society of America
OCIS codes: 060.4370, 290.5900, 350.5500.

In the last few years, the scientific community has shown
a large interest in slow light systems. This interest has
been mostly because of the possible use of slow light
devices as optical buffers or optical delay lines [1]. A
number of slow light systems have been experimentally
realized based on different physical phenomena such as
electromagnetically induced transparency, coherent po-
pulation oscillations, optical parametric amplification,
and stimulated scattering processes [2]. All these slow
light schemes share a common feature making the es-
sence of the slow and fast light generation in optical
media: the presence of one or multiple strong spectral
resonances to obtain a highly dispersive material. Unfor-
tunately, this highly dispersive behavior is also accompa-
nied with an inevitable distortion (in amplitude and
phase) that mostly manifests as pulse broadening. As a
result, the larger the delay in the slow light medium, the
more broadening in the output pulse. In order to over-
come this delay–distortion trade-off, several slow light
schemes have been theoretically and experimentally in-
vestigated [2–9]. In particular, it was found that tailoring
the shape of the spectral resonance to optimize the dis-
persive properties of the material could considerably re-
duce the induced distortion while keeping the fractional
delay. However, even with this approach, the maximum
achievable pulse delay was found to be limited to a few
pulse durations. From the point of view of the applica-
tions, it is important to have simple analytical ways of
evaluating the distortion introduced by an arbitrarily
spectrally shaped slow light medium. This paper aims
to provide a general method of evaluating the distortion
in these arbitrary-shaped systems. The results of the pa-
per may also be useful for filter design in telecommuni-
cation systems, where pulse distortion might be a key
concern.
We provide here an analytical study of Gaussian pulse

broadening propagating in a slow light medium present-
ing an arbitrary spectral transmission. The main result of
the paper is an analytical expression that quantifies the
total broadening accumulated by the Gaussian input
pulse as a function of the higher order moments in the
amplitude and phase response of the system under study.

We show that this broadening can be expressed as the
vector sum of two components: one associated to distor-
tion in the amplitude response of the system (amplitude
broadening or low-pass filtering effect) and the other as-
sociated to the higher order dispersion terms in the phase
response of the system (phase broadening). Our expres-
sion gives explicit forms for the amplitude and phase
broadenings. We show that phase broadening dominates
over amplitude broadening for large fractional delays.
This is consistent with the ringing effect observed in
many experiments attempting large fractional delays
and also in clear opposition to the conventional view that
strictly attributes the main source of broadening in
slow light media to the low-pass filtering effect (ampli-
tude distortion) [1,4].

We began our derivation by finding a suitable descrip-
tion of any linear slow light system. Mathematically, a lin-
ear system can be completely characterized by its
impulse response; i.e., by the output of the system when
it is fed with a Dirac delta at the input. The response of
the medium to an arbitrary input can then be calculated
as the convolution of the input waveform with the
impulse response. In the Fourier domain, the transform
of the impulse response is given by the transfer function
H�ω�, and the output of the system ( ~A�ω�) for an
arbitrary input (Sin�ω�) can be obtained as ~A�ω� �
H�ω� · Sin�ω�. In the particular case of material slow light
systems (such as those based on stimulated Brillouin
scattering [3–6]), the transfer function has the form
H�ω� � exp�g�ω� � iΦ�ω��, where g�ω� andΦ�ω� are re-
lated by the well-known Kramers–Kronig (KK) relations.
KK relations basically result from causality in the re-
sponse of the system; i.e., the response of the system
at any time t � t1 depends only on the system input at
previous times t < t1.

In an ideal scenario, slow light systems should exhibit
a flat amplitude response and a linear phase response
with tunable slope, hence g � g0 andΦ�ω� � Φ1ω. While
this response would be desirable, it also turns out
to be impossible except using passive (nontunable) de-
laying elements with long propagation lengths. Tunable
delaying elements [3–6] may introduce significant delays
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at the expense of working close to or within a resonance.
This means that the system operates only in a narrow fre-
quency band (i.e., the system is bandwidth limited) and
that the distortion in the signal is always present and
should be restricted depending on the actual application
requirements. This also implies that broadening is inevi-
table in linear slow light systems: any system that intro-
duces a low-pass filtering on the signal (a reduction in the
rms spectral width) always causes pulse broadening due
to the time-frequency uncertainty principle [10]. This pro-
blem is conventionally known as the delay–bandwidth
product limitation [11].
Linear slow light systems are tailored to have a sym-

metric spectral response around the central frequency
of the pulse. In a resonance, the center is the region that
exhibits larger delay with less distortion. As a result of
the real impulse response, g exhibits even symmetry,
and consequently Φ exhibits odd symmetry. A series ex-
pansion of g and Φ can be found:

g � g0 � g2ω2 � g4ω4 �…; (1)

Φ � Φ1ω�Φ3ω
3 �Φ5ω

5 �…; (2)

where, for simplicity, the resonance is centered at ω � 0.
In terms of a physical interpretation of the coefficients of
the series expansion, g0 can be interpreted as the ampli-
tude gain/ loss of the system in the center of the resonance
andΦ1 is the delay associated to the slow light effect. All
the higher order terms in the expansion are undesired
(although mostly inevitable) and bring distortion in the
pulse: The higher order terms in g (g2, g4, etc) introduce
amplitude distortion and the higher order terms inΦ (Φ3,
Φ5, etc) introduce phase distortion. Equations (1) and (2)
can be related by reverting to KK relations.
With regard to these expressions, it is important to

have in mind two important concepts: (1) since g and
Φ contribute in the transfer function as purely real
and imaginary components, respectively, their distortion
effect can never mutually cancel (they add distortion
geometrically, as a sort of Pythagorean sum), and
(2) since Φ shows only odd terms in its expansion, its
broadening effect cannot be compensated with conven-
tional second-order chromatic dispersion (which even
introduces more phase distortion) that would be repre-
sented by a Φ2 term.
Our procedure starts by defining a shape-independent

metric of pulse width and pulse broadening. The best me-
tric that we find is the rms pulse width:

σ2t �
1
E

Z �∞

−∞

t2jA�t�j2dt; (3)

where A�t� is the temporal amplitude of the pulse at the
output of the slow light system and

E �
Z �∞

−∞

jA�t�j2dt (4)

is the total energy inside the pulse. In the above expres-
sions, it has been assumed that both A�t� and tA�t� are

absolutely integrable. For simplicity, we have considered
that the pulse is always centered at t � 0. This simplifies
the relations, and the results do not lose any generality.
The rms pulse width is the definition of pulse width that
is conventionally used to quantify pulse distortion in
fiber-optic communication systems. This definition of
pulse width measures how much the pulse energy is tem-
porally “spread” regardless of the shape.

We can connect these expressions of pulse broadening
in the time domain to the frequency domain (where our
slow light systems are better described) by using Parse-
val’s theorem and the well-known properties of the Four-
ier transform [12]:

σ2t �
1
Eω

Z �∞

−∞

���� d
~A

dω

����
2

dω; (5)

where ~A�ω� is the Fourier transform of A�t�. Let us now
consider that the Fourier transform of the pulse envelope
reads ~A�ω� � X�ω� · exp�iφ�ω��, where X and φ are now
purely real functions. In terms of the slow light system,
we can recall that ~A�ω� � H�ω� · Sin�ω�; hence, X�ω� ac-
cumulates all the amplitude distortion introduced by the
slow light system and φ�ω� accumulates all the phase dis-
tortion. We can finally obtain an expression that relates
the pulse width to the amplitude and phase responses of
the system [10,11]:

σ2t �
1
Eω

�Z �∞

−∞

����dXdω
����
2
dω�

Z �∞

−∞

jX�ω�j2
���� dφdω

����
2
dω

�

� σ2X � σ2φ; (6)

where, for simplicity, it has been assumed that the mean
group delay has been subtracted from the output pulse
(as stated before, the pulse is centered in t � 0). Equa-
tion (6) shows that there are two main contributions
to the temporal broadening of the pulse: One is due to
the variations in the spectral amplitude distribution in
the signal (σX), which can be modified through the slow
light system by the spectral filtering effect, the so-called
amplitude broadening, and the other (σφ) is due to the
variations of the spectral phase distribution in the pulse
(weighted by the pulse energy) and can thus be related to
the phase distortion introduced by the medium. As it is
visible, both contributions are positive (they add geome-
trically), and therefore, they can enter into no compensa-
tion scheme. We can also see that the “amplitude”
contribution to the pulse width is the only term that never
vanishes unless the energy is zero or the pulse is spec-
trally flat (the pulse is a Dirac delta).

Nowwe can quantify the relative importance of each of
these contributions in the broadening of a pulse traveling
through a slow light medium. We consider then a Gaus-
sian pulse at the input of the slow light system sin�t� �
exp�−t2 ∕ 2σ2in� (defined in amplitude), whose Fourier
transform is straightforwardly obtained: Sin�ω� �
exp�−ω2σ2in ∕ 2�. For convenience in the mathematical for-
mulation, we can rewrite the expression of H�ω� as
H�ω� � G�ω� exp�iΦ�ω��, whereG�ω� can also be rewrit-
ten as a Taylor series expansion:
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G � exp�g0�
�
1� g2ω2 �

�
g4 �

g22
2

�
ω4 �…

�
; (7)

while expansion in Φ can be found in Eq. (2). We
can now insert H�ω�Sin�ω� in Eq. (6) and recall the
properties of Gaussian integrals. An analytical expres-
sion can then be found for the amplitude and phase
broadenings:

σ2X � σ2in

1 − g2
1
σ2in

−
�9g4�g22�

2
1
σ4in

�…

1� g2
1
σ2in

� 3�g4�g22�
2

1
σ4in

�…

(8)

σ2φ � 27ϕ2
3

2σ4in

1� 5g2 1
σ2in

� 35�g4�g22�
2

1
σ4in

…

1� g2 1
σ2in

� 3�g4�g22�
2

1
σ4in

�…

�…; (9)

where, for brevity, we have just included terms up to the
fourth order in amplitude distortion and third order dis-
persion in the phase distortion. Note that Φ1 has no im-
pact on the pulse broadening, as it merely introduces a
delaying effect.
We can now easily analyze these expressions. It can be

clearly seen that the only way to have no distortion
(σX ∕ σin � 1, σφ � 0) is to set all the coefficients other
than g0 to 0. Otherwise, distortion is introduced in the
pulse leading in most cases to broadening of the pulse.
Retaining only the leading terms in the expansion, ampli-
tude broadening is introduced whenever g2 < 0; that is,
the amplitude response of the system shows a low-pass
signature. On the contrary, amplitude broadening can be
made smaller than one for g2 > 0 but this would normally
favor phase broadening. This is a general trend in Eqs. (8)
and (9); the interested reader may find out that similar
conclusions could be obtained with g4. What is conveni-
ent for minimizing amplitude broadening turns out to be
detrimental for minimizing the phase broadening. An-
other interesting conclusion comes from analyzing the
growth rates when attempting large fractional delays
(Φ1 ∕ σin). This can be simply evaluated in Eqs. (8) and
(9) by keeping Φ1 and all other coefficients gn and Φn
constant and decreasing σin. It can be seen that the
growth rate of the phase broadening is much larger than
the growth rate of the amplitude broadening. This is con-
sistent with the ringing effects typically associated with
third order dispersion, which has been observed in ex-
periments attempting large fractional delays (see, for in-
stance, [13]). To overcome this third order dispersion
effect, a pure linear phase spectral response was recently
proposed [14], which could be interesting for large frac-
tional delays and moderate values of distortion.
We can now visualize this last conclusion by computing

amplitude and phase broadenings in a typical slow light
medium (a Lorentzian gain profile). We perform this com-
putation using Eq. (6) for different widths of the input
Gaussian pulse in relation to the inverse bandwidth of
the slow light device 1 ∕Δ. The results are plotted in Fig. 1
for g0 � 5 (21.7 dB gain in the signal). As could be ex-
pected, the broadening grows rapidly for pulseswith a fre-
quency bandwidth larger than the bandwidth of the slow
light device. Generally, the amplitude contribution is

larger except when σin ∕ �2π ∕Δ� becomes less than 1.1
(in these conditions, this is equivalent to having a frac-
tional delay greater than 1.6). It is noticeable that the
growth rate of the phase broadening in this regime is
larger than the growth rate of amplitude broadening in
this same working region. This situation becomes more
severe when attempting larger fractional delays.

In conclusion, we have provided an analytical expres-
sion that quantifies the total broadening accumulated by
the Gaussian input pulse as a function of the higher order
moments in the amplitude and phase response of the sys-
tem. Our expression gives explicit forms for the ampli-
tude and phase broadenings. We have also shown that
phase broadening dominates over amplitude broadening
for large fractional delays.
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Fig. 1. Amplitude (σX) and phase (σφ) broadenings accumu-
lated in a Gaussian pulse as a function of the input pulse width
σin normalized by the inverse bandwidth of the slow light sys-
tem 2π ∕Δ. Computation has been done using the exact expres-
sion for the Lorentzian gain and Eq. (6). Experimentally
obtained points have been added for comparison (taken from
[13] and [15]). Inset shows the same broadening data plotted
versus fractional delay.
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