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Abstract

Flying robots have the unique advantage of being able to move through the air unaffected by

the obstacles or precipices below them. This ability quickly becomes a disadvantage, however,

as the amount of free space is reduced and the risk of collisions increases. Their sensitivity to

any contact with the environment have kept them from venturing beyond large open spaces

and obstacle-free skies. Recent efforts have concentrated on improving obstacle detection

and avoidance strategies, modeling the environment and intelligent planning to navigate

ever tighter spaces while remaining airborne. Though this strategy is yielding impressive

and improving results, it is limited by the quality of the information that can be provided by

on-board sensors.

As evidenced by insects that collide with windows, there will always be situations in which

sensors fail and a flying platform will collide with the obstacles around it. It is this fact

that inspired the topic of this thesis: enabling flying platforms to survive and recover from

contact with their environment through intelligent mechanical design. There are three main

challenges tackled in this thesis: robustness to contact, self-recovery and integration into

flight systems.

Robustness to contact involves the protection of fast-spinning propellers, the stiff inner frame

of a flying robot and its embedded sensors from damage through the elastic absorption of

collision energy. A method is presented for designing protective structures that transfer the

lowest possible amount of force to the platform’s frame while simultaneously minimizing

weight and thus their effect on flight performance. The method is first used to design a

teardrop-shaped spring configuration for absorbing head-on collisions typically experienced

by winged platforms. The design is implemented on a flying platform that can survive drops

from a height of 2 m. A second design is then presented, this time using springs in a tetrahedral

configuration that absorb energy through buckling. When embedded into a hovering platform

the tetrahedral protective mechanisms are able to absorb dozens of high-speed collisions while

significantly reducing the forces on the platforms frame compared to foam-based protection

typically used on other platforms.

Surviving a collision is only half of the equation and is only useful if a flying platform can

subsequently return to flight without requiring human intervention, a process called self-

recovery. The theory behind self-recovery as it applies to many types of flying platforms is first
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Abstract

presented, followed by a method for designing and optimizing different types of self-recovery

mechanisms. A gravity-based mechanism is implemented on an ultra-light (20.5 g) wing-based

platform whose morphology and centre of gravity are optimized to always land on its side

after a collision, ready to take off again. Such a mechanism, however, is limited to surfaces that

are flat and obstacle-free and requires clear space in front of the platform to return to the air.

A second, leg-based self-recovery mechanism is thus designed and integrated into a second

hovering platform, allowing it to upright into a vertical takeoff position. The mechanism is

successful in returning the platform to the air in a variety of complex environments, including

sloped surfaces, corners and surface textures ranging from smooth hardwood to gravel and

rocks.

In a final chapter collision energy absorption and self-recovery mechanisms are integrated into

a single hovering platform, the first example of a flying robot capable of crashing into obstacles,

falling to the ground, uprighting and returning to the air, all without human intervention.

These abilities are first demonstrated through a contact-based random search bahaviour in

which the platform explores a small enclosed room in complete darkness. After each collision

with a wall the platform falls to the ground, recovers and then continues exploring. In a second

experiment the platform is programmed with a basic phototaxis behaviour. Using only four

photodiodes that provide a rough idea of the bearing to a source of light the platform is able

to consistently cross a 13x2.2 m corridor and traverse a doorway without using any obstacle

avoidance, modeling or planning.

Keywords: Flying robots, contact energy absorption, robustness, self-recovery, uprighting, in-

door exploration, minimal sensing
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Résumé

Les robots volants ont l’avantage unique de pouvoir se déplacer dans l’air sans être affectés

par les obstacles ou précipices se situant au-dessous. Néanmoins, cet avantage se réduit vite

lorsque l’espace de vol devient limité, et que le risque de collision augmente. Leur sensibilité

aux contacts avec leur entourage les a empêchés de s’aventurer ailleurs que dans de grands

espaces libres de tout obstacle. Récemment, les efforts se sont concentrés sur des stratégies

de détection et d’évitement d’obstacles, impliquant la modélisation de l’environnement et le

suivi de trajectoires permettant de les contourner afin de rester en l’air. Même si ces stratégies

permettent d’obtenir des résultats impressionnants, elles sont limitées par la qualité des

informations qui sont fournies par les capteurs embarqués.

Comme on peut l’observer chez les insectes qui entrent en collision avec les fenêtres, il existe

toujours des situations où les capteurs ne fonctionnent pas, et où la plateforme peut entrer en

collision avec les obstacles environnants. C’est en s’inspirant de cela que le sujet de cette thèse

est né : permettre aux plateformes volantes de survivre et de se rétablir suite aux contacts avec

leur environnement, grâce à l’intelligence de la conception mécanique. Cette thèse adresse

trois défis principaux : la robustesse aux contacts, le rétablissement après une collision et

l’intégration du tout sur une plateforme volante.

La robustesse aux contacts implique la protection des hélices tournant à haute vitesse, du

corps rigide du robot ainsi que des capteurs embarqués, grâce à l’absorption élastique de

l’énergie des collisions. Une méthode pour la conception de structures protectives permettant

de minimiser la force transmise au corps de la plateforme tout en gardant le poids minimum

est présentée. La méthode est d’abord appliquée à la conception d’une structure en forme de

goutte d’eau permettant d’absorber l’énergie des collisions frontales typiquement subies par

des plateformes à ailes fixes. C’est ainsi qu’une première plateforme volante utilisant cette

structure et pouvant supporter des chutes de 2 mètres de hauteur est réalisée. Un deuxième

design est ensuite présenté, cette fois utilisant des structures tétraédriques qui absorbent

l’énergie par flambage. Lorsque cette protection est utilisée sur une plateforme volant en

mode stationnaire, les structures de protection tétraédriques permettent d’absorber l’énergie

de douzaines de collisions à haute vitesse, tout en réduisant de manière significative les forces

transmises au corps du robot comparé à une protection en sagex typiquement utilisée sur

d’autres plateformes.
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Résumé

Survivre aux collisions n’est que la moitié du travail, car cela est utile uniquement si la pla-

teforme peut se rétablir, c’est-à-dire retourner en vol sans intervention humaine. La théorie

permettant le rétablissement de plusieurs types de plateformes volantes est d’abord présen-

tée, suivie d’une méthode pour concevoir et optimiser différents types de mécanismes de

rétablissement. Un premier mécanisme basé sur la gravitation est utilisé sur une plateforme à

aile fixe ultralégère (20.5 g), dont la morphologie et le centre de masse sont optimisés pour

toujours atterrir sur le côté après une collision, en position de décollage. Un tel mécanisme

est néanmoins limité aux sols plats et sans obstacles sur une certaine distance en face de la

plateforme afin de permettre le décollage. C’est pourquoi un deuxième mécanisme utilisant

des pattes pour le rétablissement est donc conçu et intégré à une deuxième plateforme ca-

pable de voler en mode stationnaire, les pattes permettant de la redresser en position verticale

appropriée au décollage. Ce mécanisme permet de redresser avec succès la plateforme dans

des environnements variés, y compris des surfaces inclinées, des coins et des sols allant du

plancher lisse aux graviers et cailloux.

Dans le chapitre final, l’absorption de l’énergie et les mécanismes de rétablissement sont

intégrés dans une plateforme unique, démontrant pour la première fois pour un robot volant

la capacité de rentrer en collision avec les obstacles, de tomber par terre, de se redresser

et retourner en l’air, le tout sans aucune intervention humaine. Ces capacités sont dans un

premier temps démontrées par un comportement d’exploration aléatoire basé sur les contacts,

et par lequel la plateforme explore une petite salle dans une obscurité totale. Après chaque

collision avec un mur, la plateforme tombe par terre, se rétablit puis continue l’exploration.

Lors d’une deuxième expérience, le robot est programmé avec un comportement de suivi

de lumière basique. En utilisant uniquement quatre photodiodes indiquant grossièrement

la direction de la source lumineuse, la plateforme est capable de traverser un corridor de

13x2.2 m et de traverser un pas de porte sans aucun mécanisme d’évitement d’obstacle, de

modélisation ou de planification de trajectoire.

Mots-clés : Robot volant, absorption d’énergie de collision, robustesse, rétablissement, redresse-

ment, exploration d’intérieurs, capteurs simples
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1 Introduction

Flying robots have great potential in the exploration of confined and cluttered spaces inacces-

sible to humans, but at the moment are ill-adapted to the specific constraints of flight in close

proximity to obstacles. This introductory chapter begins with a review of current navigation

and obstacle avoidance methods, their failure in highly cluttered environments and presents

the challenges inherent to flight in cluttered environments, specifically in the mechanical

design of flying robots. A state of the art subsequently describes the most recent work in the

field of platform protection and self-recovery after collisions with obstacles. Finally the main

contributions of this thesis are stated and followed by an outline of the work to come.
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Chapter 1. Introduction

Figure 1.1: An artist’s impression of the inside of a damaged building. The ability of flying
robots to access elevated areas and pass over rubble on the ground make them uniquely suited
for exploring such environments.

1.1 Motivation and Challenges

In the last decade flying robots have evolved from being the dreams of science fiction to mature

aerial sensor platforms deployed in an increasing variety of applications [1, 2]. Recent advances

in the miniaturization of electronics and sensors driven by the mobile computing industry,

along with the constant evolution of energy storage and composite materials, have enabled

ever smaller hovering platforms. Though infamous for their use by the military, Unmanned

Aerial Vehicles (UAVs) are increasingly being used in civilian applications as diverse as aerial

photography and photogrammetry [3], automatic detection of forest fires [4] and even the

transportation of medical samples in rural Africa [5]. In all these applications flying robots

navigate in open, obstacle free environments and have access to precise localization data

through the Global Positioning System (GPS).

Flight as locomotion is particularly interesting in the exploration of cluttered environments

such as the damaged building depicted in Fig. 1.1 as it can provide human operators with

an elevated viewpoint of places otherwise inaccessible to people. Flying robots are not con-

strained by the morphology of the ground and can be used to navigate across rubble, through

staircases or up elevator shafts much quicker than ground-based robots.

2



1.1. Motivation and Challenges

Practical applications for the aerial exploration of cluttered environments are common. On

March 11, 2011 a tsunami destroyed large portions of the Japanese coast and rendered a

nuclear power plant unstable. High levels of radiation kept human rescuers from entering

the plants, and ground robots had trouble surmounting the large amounts of rubble on the

ground1. A single Honeywell T-Hawk UAV2 was used for aerial imagery outside the plant, but

was unable to penetrate inside the plant due to its large size3. In February of the same year

an earthquake in Christchurch, New Zealand, caused extensive damage to the city. In what

was one of the first uses of a flying robot inside a building in a disaster situation, rescuers

used a commercially-available Parrot AR.Drone [6] to fly into a collapsed church to assess the

damage inside, though were unable to venture beyond the large open church hall. UAVs have

also been proposed for use in mine rescue and recovery [7], though their current limitations

are best described by the paper’s author:

In theory, UAVs could be used for the Side Entry scenario, though in practice, ...

how they could operate in total darkness and avoid protrusions from the roof are

unanswered questions. [7]

Indeed, as opposed to flight outdoors and in large open spaces, indoor flight poses several

additional challenges to navigation. Precise positioning is difficult due to the absence of GPS

along with low visibility due to smoke or the lack of light. The presence of a large number

of irregular obstacles and the fragility of current flying systems to any impact, make the

survival in such an environment for most flying systems next to impossible. Developing

innovative designs and methodologies to enable UAVs for flight in such cluttered, difficult

indoor environments is the goal of this thesis.

Though having some success, current obstacle avoidance methods are far from robust even

in ideal conditions. As the size of the environment shrinks, obstacles multiply and visual

conditions deteriorate, collisions with obstacles become inevitable. In fact even nature’s most

successful flyers such as insects, though capable of impressive flight indoors, still frequently

crash into obstacles such as windows and low-contrast walls. As opposed to flying robots

however, insects can withstand repeated collisions and can use their legs and wings to return

to the air [8, 9].

It is this fact that brings about the main focus of this thesis: if contact with obstacles is

unavoidable, then the platform must be designed to survive and recover from this contact.

There are three main challenges resulting from this conclusion:

1A great summary of a blog written by a ground robot operator at Fukushima can be found at
http://goo.gl/EMfWm, accessed 21.05.2012.

2http://www.thawkmav.com/, accessed 24.04.2012
3Some videos taken by the T-Hawk can be seen at http://goo.gl/Pk7Mj, accessed 21.05.2012. Another interesting

online article discusses the lack of flying robots at Fukushima: http://goo.gl/Ks2X6, accessed 21.05.2012.
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Chapter 1. Introduction

• Robustness to Contact: The mechanical structure of the platform must be robust to

repeated physical contact with the environment, whether from the slightest brush

against a wall to a high-energy impact resulting from a free-fall from an elevated position.

• Self-Recovery: Surviving a collision is only useful if the platform can keep flying. It

must be able to return to the air from any possible landing position without human

intervention.

• Integration with Flight Systems: Perhaps the most difficult challenge is to integrate

robustness and self-recovery into a platform that is still capable of flying. This requires

minimizing the weight and power requirements of the additional mechanisms and

placing them intelligently within the structure of the platform to limit their effect on the

platform’s centre of gravity (COG) and aerodynamics.

Only after a flying platform can consistently absorb multiple bumps with walls and objects and

take off again after falling will it be able to fulfill complex missions in real human environments

truly autonomously.

1.2 State of the Art

Flying robot is a broad term that can be applied to autonomous platforms that travel through

the air using a variety of locomotion modes and span several orders of magnitude in size and

weight. The challenges presented above, however, limit the types of platforms that can be

used in cluttered environments.

The final goal of this thesis is to design a flying system that can autonomously navigate

within an environment originally intended for use by humans and as such features hallways,

doorways, windows and stairwells. We thus limit the size of the platform to <100 cm in its

largest dimension. Though there is no minimum size, current limitations in energy storage,

miniaturized control electronics and sensing required for autonomous flight [10] keep fully

autonomous platforms smaller than 10 cm out of reach. There is no limit to the weight of the

platform, but as will be explained in Ch. 2 higher weight translates to higher-energy impacts,

and thus this thesis focuses on low-weight platforms.

To fly in cluttered environments a platform must be able to hover in place or travel at low

speeds and be highly maneuverable to avoid obstacles when necessary. There are many types

of flying vehicles, such as airships, wing-based airplanes, flapping-wing platforms, and various

configurations of rotorcraft, all of which present their particular advantages and drawbacks.

There are also other types of robots that travel through the air, such as jumping [11, 12] or

gliding [13, 14] robots. Although they encounter similar challenges and can provide design

inspiration, they represent a different field of research and are beyond the scope of this thesis.

Airships have been used extensively in robotics research [15, 16] because of their ability

to naturally float in the air, requiring little power to move around. They have a very poor

4



1.2. State of the Art

volume-to-lift ratio and a large inertia, however, making them difficult to maneuver and

impractical in cluttered environments. Flapping-wing platforms [17, 18] have had success on

small scales due to their ability to fly in both forward flight and in hover, and are particularly

inspiring to researchers due to their similarity to biological systems. On the downside, at

the scales considered in this thesis they are less efficient than rotary platforms [19, 20], and

more importantly are mechanically complex and their wings are difficult to protect in case of

collisions with the environment.

There remain two classical types of platforms: wing-based [21, 22, 23] and rotor-based [24, 25,

26]. Compared to rotorcraft, wing-based platforms are more efficient in forward flight [27] but

require a minimum forward speed to remain aloft [28]. Rotorcraft can hover and are highly

maneuverable but require more energy since they must create all their lift using their rotor. As

they share the same basic source of actuation (a motor with a propeller) there are also many

possibilities to combine the two modes in a single platform [29]. Both types of platforms have

been used extensively in indoor flight and constitute the core body of work presented in this

state of the art as well as the prototype designs presented in this thesis.

This section begins with a review of the latest work in localization and obstacle avoidance,

as it’s the main strategy currently used by researchers to access confined spaces with flying

robots. Current methods of protecting platforms from collisions are then presented, followed

by some examples of self-recovery in flying and jumping robots.

1.2.1 Localization and Obstacle Avoidance

As opposed to withstanding collisions, most approaches taken so far in indoor flying robotics

have looked at actively avoiding them. Several sensor modalities have been proposed for

detecting obstacles of varying sizes. In the simplest cases, one or several discrete distance

sensors pointed in specific directions can be used to detect the global presence of an obstacle.

Infrared (IR) triangulation [30] or ultrasonic (US) [31] sensors have been used for obstacle

avoidance, but are relatively heavy and have high power requirements, and are thus ill-suited

for flying platforms in large numbers. Discrete optic flow4 sensors such as those found in

optical computer mice are much smaller and low-power, and have demonstrated obstacle

avoidance on platforms as light as 10 g, notably on the ultra-light microflyer presented in [32].

Optic flow, however, is very dependent on surface texture and fails to detect transparent and

low-contrast objects. The main drawback of using discrete sensors is that they can only detect

obstacles in a limited number of directions defined by the number of sensors used.

A greater number of obstacles can be detected either by placing a discrete sensor on a mechan-

ical scanner or by using wide-angle sensors such as visual or IR cameras. Recent advances in

lightweight laser scanners, cameras and embedded computation have enabled great strides in

Simultaneous Localization and Mapping (SLAM). Rather than avoiding obstacles reactively as

they’re detected, platforms running SLAM algorithms can map all the obstacles in their sur-

4Optic flow is a vision-based technique for extractive distance information from vision field motion.
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roundings before planning a path to avoid them. Impressive results have been demonstrated

outdoors where large platforms are capable of carrying heavy payloads. The modified Yamaha

RMax presented in [33] has a payload of 29 kg, enough to mount a custom 3D laser scanner

and a full Pentium-based linux computer for on-board processing. For indoor platforms

where payload is more limited, the Hokoyu miniature laser range finder is the most popular

sensor for high-density obstacle detection, used predominantly on quadrotor hovering plat-

forms [25, 34, 24]. The sensor’s weight (160 g) and power requirements (2.5 W), along with the

significant computational requirements of SLAM algorithms, reserve this technique to larger

platforms with weights above 500 g. SLAM has also been demonstrated using cameras [35], a

much lighter alternative to laser scanners. Extracting distance information from visual data is

much noisier than from a laser scanner, however, and is dependent on light and contrast in

the environment.

The ability of an algorithm to detect obstacles is also dependent on the quality of the in-

formation provided by the sensors. Low light limits the use of visual and even IR cameras,

whereas smoke and suspended dust can corrupt the readings of active range-finders such

as lasers, radars and IR triangulation sensors. Multi-modal sensing that merges information

from multiple redundant sensors can mitigate some environmental effects, as shown on the

Shrimp [36] or Argo [37] ground robots, or more recently on a quadrotor [24]. Multiple sensors

translate to increased weight and computation, and thus larger and more dangerous systems.

Alternately, in the absence of light a platform can create its own light. For example, in [38] a

quadrotor is mounted with a laser circle projector and a fisheye camera to estimate altitude

in dark environments. Though removing the need for light, such a system still suffers from

susceptibility to smoke and cannot be used to detect obstacles all around the robot.

1.2.2 Collision Protection

As opposed to the fragility of most current flying robots, nature has evolved flying animals

robust to collisions and provides some inspiration for protective structure design. Flying

insects have a very low mass to air drag ratio, thus never achieving high impact forces during

free-fall [42]. Their rigid exoskeletons are compliant enough to absorb these minimal forces.

Small microrobots such as the RoACH [43] walking robot or the RoboBee [44] miniature flying

robot have similar properties. As animals grow in size however air drag can no longer limit

impact energy, as their mass increases cubically whereas their surface area only increases

quadratically [45]. The hard exoskeletons of insects give way to the endoskeletons of verte-

brates surrounded by soft tissue better adapted for impact energy absorption [46], though not

without damage in the form of bruising and broken bones.

Similarly to nature and its endo- and exoskeletons, in the domain of flying robots existing

solutions to collision protection can be categorized into two broad types of structures: stiff

bump protection and flexible protection. Stiff protection is the most common strategy and

is sufficient for protecting spinning propellers from low-energy contact. Many commercial
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1.2. State of the Art

Figure 1.2: Some examples of the different types of protection mechanisms used on flying
robots. Top, robots that use a rigid frame and stiff protection mechanisms to survive low-
intensity contact. (A) Ascending Technologies Firefly with fiberglass protection of its six
propellers. (B) A single-rotor helicopter [39] with a stiff carbon frame. (C) MAVion offshoot
RollFly [29] with wheels used simultaneously as propeller protection. (D) Vision’Air and (E) the
JSDF spherical robot, two coaxial robots that protect their propellers within their hard outer
frame. Bottom, robots that use flexible protection mechanisms to absorb collision energy. (F)
AR.Drone [6] and (G) Distributed Flight Array [40], two examples of foam propeller protection.
(H) A quadrotor [30], (I) the FanCopter and (J) the Hopping Rotochute [41], three examples of
using carbon fibre rods in circular shapes to make a protective cage around a flying robot.
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platforms, such as the Ascending Technologies Firefly5 (Fig 1.2A), come with indoor flight

conversion kits, essentially stiff protection that can be mounted around propellers for pro-

tection from side impacts. Other platforms extend the idea to three dimensions, such as the

single-rotor helicopter presented in [39] (Fig. 1.2B) which is surrounded by a cage made of

carbon tubes, protecting from impacts in all directions. In a more original design, a modified

version of the dual-rotor MAVion called RollFly [29] (Fig. 1.2C) features two wheels that both

protect the rotors from contact and can be used to roll on the ground or even along the wall or

ceiling when in flight. Finally, the Vision’Air built at the ISAE6 (Fig. 1.2D) and a spherical robot

built at the JSDF7 (Fig. 1.2E) are two examples of platforms designed specifically with collision

robustness in mind. Both of these coaxial design house their propellers within the robots stiff

outer structure and thus protected from collisions. The major drawback of stiff protection is

the high forces that are produced at the impact point and transferred directly to the platform’s

frame.

Soft protection typically takes the form of either compressible materials such as foam or

deformable cages made up of thin components such as carbon fibre rods. A typical example

is the mobile-phone-controlled AR.Drone [6] (Fig. 1.2F) which has a 2 cm-thick foam hull

to protect its propellers. A styrofoam frame is also used by the Distributed Flight Array [40]

(Fig. 1.2G), a unique flying robot made of individual single-propeller modules that cannot fly

by themselves but can connect to other modules and thus create different multi-rotor systems.

Foam is an improvement to stiff protection, as it increases absorption distance and distributes

the force over a larger area. Its low stiffness, however, make it inefficient for absorbing large

amounts of energy. The protection around the AR.Drone, for example, increases the 370 g

platform’s weight by 60 g, but a force of only 6 N8 results in a deformation of the structure

sufficient to contact the propeller. A further disadvantage to foam is its fragility, as its main

energy absorption mechanism is the crushing of the foam [47]; though it may survive several

collisions, repeated impacts progressively reduce the energy it can absorb.

Another popular protective structure solution is using one or several flexible carbon rods

to absorb collision energy. Compared to foam, carbon is stiffer for a similar weight and

is thus more efficient in absorbing energy (see Sec. 2.2.2 for a more detailed description

of material properties). The quadrotor presented in [30] (Fig. 1.2H) uses a single rod for

propeller protection, though it is only dimensioned for minor bumps and would not survive a

high-speed collision. The commercial multi-rotor FanCopter9 (Fig. 1.2I) extends this idea to

several rods around the platform for better protection. Finally, the Hopping Rotochute [41]

(Fig. 1.2J), a hybrid flying-jumping platform, completely surrounds its two coaxial rotors with

a carbon fibre cage, protecting it from contact in all directions. This solution has been used

on several jumping robots as well, such as the Jollbot [48] or the EPFL jumper [49], as they

5http://www.asctec.de/home-en/, accessed 24.04.2012
6Institut Supérieur de l’Aéronautique et de l’Espace, http://recherche.isae.fr/fr/cas/les-activites-aeronautiques,

accessed 07.05.2012
7Japan Ministry of Defense, http://www.mod.go.jp/e/index.html, accessed 07.05.2012
8The force is applied on the edge of one of the protection rings towards the centre of the platform.
9EMT Penzberg, http://www.emt-penzberg.de/index.php?10, accessed 07.05.2012
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must be capable of absorbing impact energy if they are to jump again and thus provide some

inspiration.

The use of bent circular springs around a platform has the advantage of absorbing collision

energy through several interconnected springs instead of a single one. A major disadvantage

of such a system, however, is that the rods used to produce the cage are sourced as straight

rods and must be bent into a circular shape, storing energy that cannot be recovered until the

cage is disassembled. As every material has a maximum strain it can absorb, this initial strain

reduces the additional collision energy that the rods can absorb before failure and is thus not

an efficient use of the material. A second problem arises from their manner of deflection;

when a circular spring contacts a flat surface it creates inflection points which a much higher

radius of curvature, and thus failure-inducing stress, than the rest of the spring.

1.2.3 Self-Recovery

When flying in a cluttered environment, detecting and surviving a collision is not sufficient to

navigate from one point to another; sooner or later a collision will result in a fall to the ground,

and thus the platform must be able to recover from the crash and return to the air. This process

of autonomously returning to flight after a collision that causes a fall to the ground is referred

to as Self-Recovery.

Several flying platforms exhibit the capability of perching (that is controlled landing on a

predefined surface) and subsequently taking off again. Most hovering platforms for exam-

ple have landing gear and can land on and take off from flat surfaces, in some cases even

autonomously [56, 57]. The helicopter presented in [58] takes this idea further by landing

on angled surfaces, though always in a controlled manner and on its landing gear. The

MMALV [50] (Fig. 1.3A), a small fixed-wing platform with wheel-legs, can land on a flat surface

but can only take off again from an elevated position and with a sufficient runway. A glider ca-

pable of attaching to a vertical wall and subsequently detach has also been demonstrated [51]

(Fig. 1.3B), as was a powered airplane that can actively return to flight after attachment [52]

(Fig. 1.3C). All of these systems, however, can only take off if they land in a predefined position

and generally cannot return to flight from any arbitrary position. No provisions are made for

landing upside-down, or for collisions with obstacles that cause loss of flight control.

Jumping robots that locomote through consecutive jumps have considered the problem of

righting themselves after falling to the ground to prepare for subsequent jumps and thus

provide some inspiration. The EPFL jumper [11] (Fig. 1.3D) and the Jollbot [53] (Fig. 1.3E) are

two examples of gravity-based self-recovery, using spherical cages and specific placement of

COG to roll into takeoff position. All gravity-based mechanisms suffer from the same draw-

backs, however, requiring flat and obstacle-free ground to properly upright. Some jumping

robots use active mechanisms to upright themselves, such as a series of robots designed by

NASA [54] (Fig. 1.3F) that use direct actuation of flaps to stand up. The mechanism only works

in some landing positions, however, and is not optimized for weight, which is an important
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Figure 1.3: Top, robots that can land and take off again in specific orientations and from specific
surfaces: (A) The MMALV [50], capable of taking off from elevated surfaces with a runway.
(B) Glider [51] capable of attaching to vertical surfaces. (C) Scansorial flying platform [52]
capable of landing on and taking off from vertical surfaces. Middle, jumping robots that can
self-recover: (D) EPFL Jumper [11], (E) Jollbot [53] and (F) three generations of jumping robots
with active uprighting [54]. Bottom, (G) flying Scout robot [55] capable of uprighting and
limited flight.
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consideration for flying systems. Though providing some inspiration, jumping robots do not

have to worry about aerodynamic constraints on their COG inherent to flying systems.

To the best of our knowledge, the only flying robot to explicitly consider the problem of

self-recovery is a flying version of the Scout wheeled robot [59] (Fig. 1.3G) that features an

extendable leg meant to upright the platform before flight. This platform, however, is primarily

designed as a ground platform, and thus has very limited flight capabilities; a first version [59]

was not able to successfully fly with its uprighting mechanism, and an improved second

version [55] has not advanced beyond the design stage.

1.3 Main Contributions and Thesis Organization

This thesis brings together elements from such varied fields as mechanical engineering, aero-

dynamics, electronics, robotics and control theory to design small flying platforms capable of

navigating cluttered environments currently inaccessible to robots. This thesis is organized

around the three main challenges that it addresses, and the subsequent contributions that are

presented.

Chapter 2 discusses the problem of absorbing collision energy. A method is presented for

designing and optimizing elastic energy-absorbing protective structures and integrating them

into the mechanical structure of a flying robot. It begins by describing the different types of

springs that can be used to mechanically absorb energy as well as the materials best suited

for the task. The method is successfully applied to a winged platform that is optimized to

absorb head-on collisions when in forward flight. The platform is tested using high-speed

video, demonstrating its ability to survive collisions in a single direction. A second platform is

then designed for absorbing collisions of equal energy in all directions using Euler springs10

in a tetrahedral configuration. The platform is tested extensively in dozens of drop tests

and through autonomous flight in a small room, where it consistently survives contact with

obstacles and the ground.

Chapter 3 formalizes the theory of self-recovery as it applies to flying robots and presents a

method for designing different self-recovery mechanisms that prepare a platform for takeoff.

The method is first applied to a winged platform whose morphology and COG placement

is optimized for forward flight and gravity-based self-recovery. Though successfully demon-

strated on flat ground, the gravity-based mechanism is sensitive to the presence of obstacles

in the environment. A second platform is thus presented that complements the gravity-based

self-recovery with an active leg-based mechanism. This platform represents the first example

of a flying robot able to consistently upright from any position on the the ground and take off

in a variety of environmental conditions, including sloped and textured surfaces ranging from

hardwood to rocky ground.

10Euler springs are long columns that absorb energy through buckling when they are loaded axially. They are
explained in detail in Chapter 2.
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Chapter 4 unites the previous two chapters in the design of a single flying robot that can both

absorb collisions and self-recover. The resulting robot is the first example of a platform capable

of surviving high-energy collisions with obstacles, uprighting itself in complex environments

and returning to flight without human intervention. The platform is demonstrated through

two novel navigation strategies adapted to its unique abilities. In a first experiment the

platform explores a room using contact-based random search in complete darkness where

vision-based navigation is not possible. The fully-autonomous behaviour is then extended to

the traversing of a long corridor using the light detected by four photodiodes as the only source

of directional information. Though the platform often comes into contact with the walls of

the corridor, its ability to survive and recover from collisions allow it to successfully reach the

end of the corridor without the use of any obstacle detection, localization or mapping.

Chapter 5 concludes the thesis and reiterates the main conclusions that were drawn in the

work. As no thesis is truly ever finished, some ideas of future avenues of research enabled by

this work are presented.

Beyond the main topic of the thesis, Appendix A presents the 11 prototypes in chronological

order that were designed, built and tested throughout the work. Each prototype’s contribu-

tion to the work is described to give the reader a sense of the iterative design process that

yielded the final platform. It should be noted that although all the platforms presented in

this thesis can fly, optimizing the performance of their drivetrain or their specific aerody-

namic characteristics is not the focus of this thesis. The selection of motor, gearbox and

propeller combinations for maximum efficiency and flight time is a problem already tackled

by many other researchers [60, 61, 62, 63] and is thus not developed further. Similarly, the

flight performance of the presented platforms could surely be improved through aerodynamic

modeling and wind tunnel testing [29, 64], though this would not improve the collision energy

absorption and self-recovery mechanisms developed in this work.
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2 Absorbing Collision Energy

This chapter addresses the challenge of protecting a flying robot from the high impact energy of

collisions with obstacles or the ground due to a free fall. The chapter begins by describing the

need for protective structures, proposing a method for their design and describing common

spring types and materials that can be used. The method is then applied to a wing-based

platform that can survive head-on collisions with the ground when dropped from a height

of 2 m. The chapter concludes with the design of protective structures using springs in a

tetrahedral configuration applied to a small hovering platform, allowing it to survive dozens of

high-energy collisions with its environment.

This chapter is partly based on the publication Elastic Collision Protection for Flying Robots

Using Euler Springs [65].
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Chapter 2. Absorbing Collision Energy

2.1 The Need for Elastic Protection Mechanisms

Propeller-based flying platforms require a stiff inner frame, as their aerodynamics depend on

the geometric positions and angles between rotors, the COG and/or control surfaces. Perhaps

more importantly, flight motors cannot be allowed to flex out of plane in relation to the robot’s

frame to prevent fast-spinning propellers from contacting other parts of the platform. The

main requirement of protective structures on a flying robot is thus to shield this frame, the

sensitive components mounted on it and the spinning propellers from damage resulting from

a collision.

Many current platforms use stiff protection mechanisms attached to an equally stiff frame

to absorb collision energy through compression of the material [39, 29]. Though resistant to

low-energy collisions and simple to design, stiff protection transfers all the impact energy

of a collision to the platform’s frame. As the absorption distance is minimal, the force on

the structure quickly reaches high values and anything beyond a low-speed bump can cause

inelastic damage to the frame.

This is particularly a problem during the repeated collisions a flying robot is likely to encounter

in a cluttered environment. In the case of carbon fibre, the most common material used for

the frame of current platforms, impact damage is directly related to the impact force on

a structure [66] and can cause extensive de-lamination and matrix shear cracking [67]. A

single impact is enough to reduce the residual strength of the material [68], making it more

vulnerable to subsequent collisions. In addition to compression forces on the structure, impact

force on a stiff protection mechanism can cause high torques on its connection point to the

robot’s frame, often failing at these points. Some platform minimize this damage by using

"mechanical fuses" such as nylon screws or rubber bands around propellers which can be

easily and quickly replaced. Though preventing expensive damage, a single impact still renders

a platform unusable without human intervention.

As opposed to the stiff protective structures currently used in most flying platforms, nature has

evolved flying organisms with bodies resilient to multiple impacts. The stiff inner skeleton of

birds and other vertebrates is surrounded by soft tissue which absorbs energy during impact.

As an example, simply adding a thin layer of skin and hair on the bones of a rabbit increases

its strength by 35% [46]. The greater stiffness of insect exoskeletons is countered by increased

air drag relative to mass, which in turn limits the impact speed and thus energy of collisions

incurred by insects during normal flight.

Even animals, however, have their limits, as is apparent to anyone that has seen a bird crash

into a window or had to clean the bugs off their windshield. This brings about the question:

until which point can we reasonably expect to elastically absorb the energy of a collision

without injury or damage? In the case of animals this limit seems to be an impact speed of

around 5 m/s [70], which corresponds to a free fall from a height of about 1.3 m (without

considering drag or other aerodynamic effects). This limit holds for both insects and birds,

as it can be shown through dimensional arguments that the landing stresses on bodies and
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limbs are roughly the same for all sizes at the same landing speed [69].

To be considered adequately protected from collisions we thus make the assumption that a

flying platform should survive an impact with a surface at a speed of 5 m/s. In order to survive

the dozens or even hundreds of collisions a flying platform can encounter over its lifetime a

protective structure must absorb all the energy of an impact while minimizing the force placed

on the frame. Assuming that impact occurs with a stiff, inelastic surface (such as a concrete

floor), the protective structure must mechanically absorb all the kinetic energy of the entire

platform.

2.2 Protection Mechanism Design

We propose the following steps to design and dimension elastic protective structures adapted

to flying platforms:

1. Spring Type Selection and Configuration: The type of spring and its configuration on

the platform should be selected to increase absorption distance, minimize force on the

platform’s structure and protect from impacts in the most likely directions.

2. Material Selection: A material should be chosen that has the required stiffness, yield

strength and density to absorb the required energy.

3. Dimensioning: Individual elements should be optimized to minimize weight.

2.2.1 Spring Type Selection and Configuration

A spring working in its elastic range absorbs energy U over a distance xmax according to the

formula:

U (xmax) =
∫ xmax

0
F (x)dx. (2.1)

where F (x) is the force provided by the spring at displacement x. The total energy a spring

can absorb is the area under the curve of F (x) at the spring’s maximum deflection, or the

integration of Eq. 2.1. An ideal protective structure should thus limit the maximum force by

increasing the absorption distance xmax and optimizing the the force profile F (x).

There are three common types of springs: traditional linear or ’hookean’ springs, non-linear

springs (generally made of two or more different linear springs in series) and Euler-mode

buckling springs (Euler springs) (Fig. 2.1A). The force and energy profiles of these springs are

shown in Fig. 2.1B and C. Besides these main spring types, specific configurations of several
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Figure 2.1: (A) Some examples of the three common types of springs. Note that a column must
be loaded axially to act in its buckling mode, otherwise in bending mode it acts as a Hookean
spring for small displacements. (B) A representative schematic of relative force and (C) energy
profiles for the three types of springs, scaled for an equivalent amount of energy absorbed at
maximum displacement xmax .
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springs can yield different force profiles that do not fit into the main spring categories. A

spring type and configuration should be selected to minimize the force transferred to the

platform’s frame. Profiles that resemble that of an Euler spring are ideal, as they have the

lowest maximum force for an equivalent deflection and total energy. Non-linear springs such

as the conical springs shown in Fig. 2.1A should be avoided, as most of their energy is absorbed

at a large displacement and with a much higher force than an Euler spring.

A common spring configuration often used in flying [41] and jumping [49, 48] robots is that of

a spherical cage made of rods surrounding the frame of a platform. As presented in Sec. 1.2.2,

however, circular springs sourced as straight rods store energy statically that cannot be sub-

sequently absorbed during a collision and can fail prematurely at inflection points when

impacting a flat surface, and should thus be used with caution.

2.2.2 Material Selection

The material used for the spring should absorb the largest amount of energy without breaking

(or plastic deformation) at the lowest weight. The three factors that must be considered are

thus the material’s stiffness (higher stiffness absorbs more energy) defined by its Young’s

modulus E , tensile yield strength µ (higher strength resists plastic deformation), and density ρ

(lower density yields lower weight). Materials can be optimized for weight by dividing the first

two factors by their density, yielding Specific Stiffness and Specific Yield Strength, respectively.

Some important material properties can be seen in Table 2.1.

The material most adapted for use in flying robots is carbon-fibre reinforced plastic (or simply

carbon fibre), as it has a specific stiffness more than 3x higher than the stiffest metals. The

only competing material, aramid fibre, has a higher specific yield strength1 and will fail at a

higher deflexion than carbon fibre, but as it has a much lower stiffness it would absorb less

energy before failure. The values available in literature are approximate values, as they vary

greatly depending on samples and testing methods. It is even more variable with composite

materials as it depends on thread size, weaving pattern, percentage of fibre to plastic, type of

plastic and weave direction.

Pulltruded Carbon Fibre

Pulltruded columns are often used in protective mechanisms for flying [30, 41] (Fig. 1.2H-J)

and jumping [49] robots due to their high compression strength and stiffness [71] and low cost.

Pulltruded columns are made of unidirectional fibres pulled though a resin and subsequently

polymerized.

1The comparison is made between strength values for aramid and CFRP available in literature. The strength
of pulltruded carbon fibre columns, as measured in the following section, is significantly higher due to the
unidirectional nature of the fibres used for pulltrusion. No comparison was made to pulltruded aramid columns
though it is assumed they will also be stronger than aramid plates.
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Material Young’s Modu-
lus [GPa]

Tensile Yield
Strength
[MPa]

Density
[g /cm3]

Specific
Stiffness
[M N m/kg ]

Specific
Yield
Strength
[kN m/kg ]

Rubber (small
strain)

0.055 +/- 0.045 8 * 1.055 +/- 0.145 0.0521 7.5

Nylon 3.0 +/- 1 78 1.13 1.15 69
Brass 112.5 +/- 12.5 247 8.560 +/- 0.165 13.14 29
Aluminum 69 275 +/- 35 2.700 25.56 102
Stainless Steel 200 600 7.900 +/- 0.150 25.32 76
Titanium alloy 112.5 +/- 7.5 977 4.510 24.94 217
Glass-Fibre-
Reinforced Plastic
(GFRP)

31.65 +/- 14.45 1500 * 1.800 17.58 833

Aramid (e.g.
Kevlar)

70.5 2757 * 1.440 48.96 1915

Carbon-Fibre-
Reinforced Plastic
(CFRP)

135 +/- 15 2000 * 1.570 85.99 1273

Diamond 1220 2800 3.530 345.61 793
Pulltruded
Carbon Fibre
Columns

113 +/- 15 2992 +/- 700 1.47 76 2035

Table 2.1: Material Properties for Selected Materials. Materials marked with a (*) have the
same yield (limit of elastic deformation) and ultimate (limit of failure) strengths. Values for
Pulltruded Carbon Fibre Columns are measured in the lab, the source of other material data is
http://www.matweb.com/. These are just indicative figures.
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Pulltruded columns are often sourced as either rods (circular cross-section) or beams (rect-

angular cross-section), both of which have particular uses. Cross-sectional area S defines

the weight of a column whereas its area moment of inertia I defines its resistance to bending

(formulas are presented in Fig 2.2A). In general rods are lighter than beams for the same value

of I (as shown in Fig 2.2B) of all cross-sections other than square2 and should be used in most

cases when weight is a limiting factor. However, beams have two advantages over rods: they

resist bending in all directions except in the axis of their thickness, and can be made stiffer

than a rod for a given bending angle3. A simple analogy is to think of a beam as a series of thin

rods attached to each other in a row (Fig. 2.2A): when a force is applied to the beam each rod

takes a part of the force and thus the resulting stress for each section is smaller than that for a

single thick rod.

Pulltruded columns have slightly different characteristics than woven and stacked carbon

fibre plates, and thus we tested some samples to extract their relevant properties. Deflection

tests were performed using a linear stage and a load cell to measure the axial loading force

required to bend carbon fibre columns of varying length and cross-sectional profiles in their

buckling mode. As shown in Fig. 2.1B, columns loaded axially will absorb force in compression

up to a critical force Fcrit [72], at which point they will buckle:

Fcrit = π2E I

L2 (2.2)

where L is the column’s length. Figure 2.3A shows the force profiles for 24 samples of various

dimensions, whereas Fig. 2.3B shows the same profiles normalized for L and I . Figure 2.3D is a

boxplot of the buckling point of the columns used to extract an average value of E of 113 GPa.

A similar test is performed to measure tensile yield strength µ, which in the case of carbon

fibre is the same as its ultimate yield strength4. Pulltruded carbon fibre rods were once again

loaded axially, but this time continued to be loaded until failure (when individual fibres started

breaking). µ can be calculated using the formula:

µ= Fmax y

I
(2.3)

where Fmax is the force at which the column fails and y is the displacement of the rod per-

2Beams with a width/thickness ratio of less than 1 are unlikely to bend in the axis of the width and are thus not
considered.

3The stress is proportional to the distance of the bending line, and thus a beam can be made much wider than
the diameter of a rod while keeping the same thickness as the rod’s radius.

4Ultimate yield strength or UTS is the point at which a material fractures or fails catastrophically, as opposed
to tensile yield strength which is the point at which a material starts deforming plastically instead of elastically.
Carbon fibre behaves elastically up to its UTS.
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Chapter 2. Absorbing Collision Energy

pendicular to its axis at Fmax. We can estimate y with good accuracy using the following

formula [72]:

y = 0.900L(
Fmax

Fcrit
−1)

1
2 (2.4)

Figure 2.3C shows some of the 17 various columns that were loaded to failure and Fig. 2.3E

is the resulting boxplot of calculated values of µ, the average value being 2.992 GPa with a

standard deviation of 22%.

Density was measured by weighing a series of carbon fibre columns and was found to be

1.47 g/cm3. The extracted material properties are added to Table 2.1.

2.2.3 Dimensioning

The goal of dimensioning is to select the lightest possible springs to absorb the desired energy

without failing. There is generally a compromise to be made between the force transferred

to the robot’s frame, the weight of the spring and the amount of energy that it can absorb

before failure, as well as secondary effects such as available materials, platform dimensions

and integration. After selecting a spring type and configuration the first part of dimensioning

is to determine the force profile of the protective structure independent of the second moment

of inertia of the spring. The exact dimensions of the spring elements are then selected based

on the required energy to be absorbed, material properties and weight.
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Chapter 2. Absorbing Collision Energy

2.3 Protection of a Winged Platform from Head-on Collisions

This section is partially based on the semester project work of Florentin Marty.

The protective structure design method presented in Sec. 2.2 is first applied to the protection of

a wing-based flying platform that travels primarily through forward flight. A winged platform

can travel more efficiently than a hovering one over long distances [27] and can thus be useful

for the exploration of large spaces such as deep caves or mines. As it must always travel

forward to remain aloft it is most likely to collide with obstacles head-on. The need to protect

the platform in only a single direction simplifies the protective mechanism design and is thus

well-suited as a first case study of the design method.

In its simplest form (Fig 2.4), a typical winged platform consists of central frame with two

attached wings for lift, a motor with a propeller at its front for thrust and control surfaces at

its back for pitch, roll and/or yaw control. For this particular application we choose a frame

length of 20 cm and a propeller diameter of 15.2 cm, a platform size small enough to fit through

doorways and small windows but with a wing loading large enough to fly at the low speeds

required for cluttered flight.

2.3.1 Protection Mechanism Design

Spring Type and Configuration

The priority for a winged platform is to protect the spinning propeller at the front of the

platform and ensure it does not come into contact with obstacles or the rest of the platform.

Collision energy must be dissipated over a distance (according to Eq. 2.1), and thus any

protection mechanism should stick out a certain distance beyond the propellers and be

dimensioned not to impact the propellers in case of high impact.

A design is proposed based on two identical teardrop-shaped springs surrounding the platform

with the point of the teardrops facing forward (Fig. 2.5B). The teardrop shape ensures that all

frontal collisions occur at the same point and are spread to all four springs, which bend out-

wards around the platform and thus away from the wings and control surfaces. The teardrops

are attached to the platform at the back of the frame as well as through two attachment springs

mounted directly behind the motor. These attachment springs also bend backwards and thus

away from the spinning propeller, absorbing additional energy. The length of the teardrop and

the diameter of the attachment spring are set to 40 cm and 23 cm, respectively, large enough

to fit the platform frame and propeller with space for deflection of the springs.

Material Selection

As suggested in Sec. 2.2.2, pulltruded carbon fibre columns provide the highest stiffness for a

given weight. For the teardrop-shaped outer structure there is no need to limit the deflexion
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2.3. Protection of a Winged Platform from Head-on Collisions

direction, and thus carbon fibre rods are selected. The attachment springs however must

remain orthogonal to each other and must not be allowed to bend perpendicular to the robot’s

frame, and thus carbon fibre beams are selected.

Dimensioning

The first step in dimensioning the springs is to determine the force deflection profile of the

protective structure. To simplify the analysis the structure is modelled as two teardrop and

two attachment springs all mounted in parallel (Fig. 2.5A). The force profile for the entire

protective structure Ftot takes the form:

Ftot (x) = 2Ft (x)+2Fa(x) (2.5)

where Ft and Fa are the force profiles of a single teardrop spring and a single attachment spring,

respectively. A simple setup is designed in which carbon fibre rods of various cross-sections

are held in the desired teardrop and attachment spring shapes (Fig. 2.5C). The springs are

then deflected using a force meter and the resulting displacement is measured. The resulting

force profiles, with the force normalized for second moment of inertia of the teardrop It and

attachment spring Ia , are shown in Fig. 2.6.

The teardrop-shaped spring (Fig. 2.6A) has a linear force profile Ft which, based on the

experimental data and normalized for It , takes the form:

Ft (x) = 0.59It x (2.6)

Figure 2.4: A simple schematic of a winged flying platform. Wings used for lift generation, a
motor and propeller generate thrust, elevators used for pitch control and a rudder is used for
yaw control
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Chapter 2. Absorbing Collision Energy

Figure 2.5: The proposed protective structure for absorbing head-on collisions. (A) The entire
structure can be decomposed into two teardrop-shaped outer springs mounted to the frame
in parallel with two attachment springs. (B) The structure and its dimensions overlaid on a
basic wing-based flying platform. (C) Schematic of the loading used to measure displacement
profiles for the teardrop and attachment springs.

The force profile Fa for the attachment spring (Fig. 2.6B), however, is non-linear, and can be

approximated with a second order polynomial:

Fa(x) = Ia(8.13x −0.353x2) (2.7)

Substituting Eq. 2.6 and 2.7 into Eq. 2.5 results in a total force profile of:

Ftot (x) = Ia(16.26x −0.706x2)+1.18It x (2.8)

24
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With some simplification a model has thus been created for the combined protective structure.

Two interesting observations can be made based on this model:

1. For the same dimensions of spring, the linear term of the spring constant for the attach-

ment spring is 14 x higher than that of the teardrop-shaped spring, and thus has a much

higher impact on the collision force transferred to the platform’s frame.

2. The attachment spring’s force profile is nonlinear and has a similar shape to that of an

Euler spring. This is advantageous, as it minimizes the maximum force exerted on the

platform’s frame.

The next step is to use this model to dimension the carbon fibre columns used as the springs

to absorb the desired collision energy. We can calculate the energy absorbed by the protective

structure by substituting Eq. 2.8 into Eq. 2.1:

U (x) =Ia(8.13x2 −0.235x3)+0.59It x2

=(8.13Ia +0.59It )x2 −0.235Ia x3 (2.9)

We dimension our protective structure to survive a drop of a height of 2 m, equivalent to a

impact speed of 6.26 m/s, slightly above the 5 m/s limit seen in nature [70]. For an estimated

final platform weight of 120 g this is equivalent to 2.35 J. Equation 2.9 is solved for various

values of Ia and It at an energy of 2.35 J and the resulting displacement of the robot frame is

plotted in Fig. 2.7.

The proposed protective structure has a space of about 7 cm between the propellers and the

teardrop spring. Taking into account a safety factor, a displacement of between 5-6 cm is
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Figure 2.7: A graph of the deformation of the protective structure for a fall from a height of 2 m
and a structure weight of 120 g.

allowable, equivalent to the turquoise band in Fig. 2.7. To distribute the energy onto both

springs an identical area moment of inertial of It = Ia = 0.25mm4 was chosen for both teardrop

and attachment springs. As we are using beams for the attachment springs and rods for the

teardrop springs, this is roughly equivalent to a beam with a cross-section of 6 mm x 0.8 mm

and a rod of diameter 1.5 mm.

2.3.2 Prototype Realization

The protection mechanism designed and dimensioned in Sec. 2.3.1 was integrated into the

frame of a small winged platform (Fig. 2.8E). Aramid honeycomb sandwiched between two

carbon fibre plates makes up the frame of the platform. The attachment springs made of

carbon fibre beams are held between the frame and the motor mount using two small carbon

fibre plates (Fig. 2.8A). The teardrop-shaped springs are connected to the attachment springs

using 3D-printed linkages (Fig. 2.8B) and mounted to the back of the platform’s frame using

cured carbon fibre (Fig. 2.8C). The weight of the frame and protection mechanism, including

attachment and teardrop springs with linkages is 24 g.

2.3.3 Characterization and Validation

The platform was put through a series of tests to validate the energy absorption capabilities

and resilience of the protective structure as well as its flight performance.
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2.3. Protection of a Winged Platform from Head-on Collisions

Figure 2.8: The completed prototype ready for flight and collision absorption testing. (A) Motor
mount for dual coaxial brushless DC motor and placement of attachment springs. (B) Linkages
between attachment springs and teardrop springs. (C) Attachment of teardrop springs to
platform frame. (D) Embedded flight electronics, motor controllers and servo-motors. (E) The
platform frame with embedded protection mechanisms. (F) The completed flying platform
used in flight experiments.
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Chapter 2. Absorbing Collision Energy

Spring Compression Validation

The first experiment is designed to validate the spring compression mechanism and model

that was developed in Sec. 2.3.1. The weight of the additional components required for

flight (wings, motors, control surfaces and embedded electronics) is added in the form of a

corresponding dead weight of 100 g attached to the platform frame at the COG position of the

complete platform. A styrofoam model of the propellers is also added to see whether they

come into contact with anything during a collision.

High-speed video is used to analyze the performance of the protective structures. Figure 2.9A

shows the timeseries of a drop test from a height of 2 m, equivalent to 2.43 J. The structure was

designed to deform by 5.1 cm, but in the experiment the structure deforms by only 4.5 cm,

12% less than predicted. This error is in an acceptable range of the largely simplified model.

The compression motion follows well the desired movement of the springs, with both the

attachment springs and the teardrop springs absorbing part of the collision energy.

Resilience

The next experiment is used to test the resilience of the protective structure to multiple head-

on collisions. The platform is dropped onto its front several times from increasing heights up

to a height of 2 m. The results of the drop tests is shown in Table 2.2.

Drop
height [m]

Equivalent
energy [J]

Number of
drop tests

Failures

0.5 0.61 3 no damage
1 1.22 6 1x the propeller touched the attachment springs
1.5 1.82 6 1x the propeller touched the attachment springs

1x a teardrop spring failed
2 2.43 4 1x a teardrop spring failed

Table 2.2: Results from drop tests.

Of the 19 drop tests 15 are successful in absorbing collision energy and protecting the platform’s

frame. Two of the failures are the result of contact between the propellers and the attachment

springs, which may not have caused any permanent damage. Only two of the higher-energy

collisions resulted in failure of the protective mechanisms through a ruptured teardrop spring.

High-speed video is used to further analyze the failure modes of the protective mechanisms.

Figure 2.9B shows the timeseries of a drop test from a height of 2 m that resulted in a broken

teardrop spring. The platform touches the ground at an angle, and thus instead of bouncing

back (as in Fig. 2.9B) it rotates onto its back, transferring collision energy to the back of the

teardrop spring which is not designed to absorb force from this direction and subsequently

breaks. In a similar test, Fig. 2.9C shows a timeseries of a drop test from a height of 1.5 m

where the platform contacts the surface at an even greater angle and thus not on its tip but on
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2.3. Protection of a Winged Platform from Head-on Collisions

Figure 2.9: Timeseries of drop tests taken with a high-speed camera. (A) A successful head-on
collision from a height of 2 m, corresponding to an impact energy of 2.43 J. The springs are
deflected by a distance of 4.5 cm. (B) Head-on collision from a height of 2 m with subsequent
induced rolling and rupture of a teardrop spring. (C) Side impact from a height of 1.5 m which
causes deformation in the attachment springs that impacts the propellers.
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Chapter 2. Absorbing Collision Energy

the linkage of the attachment spring. The energy is absorbed without damage, but results in

the springs bending in unplanned directions and thus impacting with the propeller.

This experiment shows that the protective structure is resilient to repeated head-on collisions

from heights of up to 2 m. The few failures result from side impacts instead of the designed

head-on impacts during which a single spring absorbing all the impact energy. Fortunately

individual springs can be easily replaced due to the modular design and 3D-printed linkages.

Flight Tests

The goal of this experiment is to demonstrate that the protective structure can be integrated

into a flying platform without greatly affecting its aerodynamics and weight, and thus its ability

to fly. The platform frame (Fig. 2.8E) is equipped with two styrofoam wings, control surfaces

for pitch and yaw control when in forward flight and a coaxial brushless DC motor with two

propellers used for thrust and roll control. The addition of coaxial motors allow the robot

to fly in hovering mode as well as in forward flight mode. The robot is equipped with the

inertial sensor package BurrMove v4 and BurrSens v45 which also house the motor controllers,

servo-motors for the control surfaces, radio transmitter and embedded microcontroller. The

total weight of the platform is 124 g.

The robot is flown within an 6x7 m experimentation room and demonstrates good stability

and maneuverability. The on-board Inertial Measurement Unit (IMU) is used to stabilize the

robot in both hovering and forward flight mode. The small size of the wings compared to the

weight of the platform results in high speed when in forward flight mode, and thus the robot

must remain in hovering mode when in constrained environments. This experiment confirms

that the protective structure is light enough and unobtrusive enough to be integrated into a

flying platform.

2.3.4 Discussion

This section presented a novel protective structure design that uses a combination of carbon

fibre rods and beams and a teardrop shape to distribute the energy of high-velocity head-on

impacts. The structure is optimized to minimize weight and is then tested to absorb collision

energies of over 2 J. The structure is lightweight and is integrated into a flying robot that can

fly within a confined space using both forward and hovering flight modes.

Though capable of absorbing the head-on collisions most likely to occur during forward flight,

the protective structures can fail due to secondary impacts resulting from subsequent rebound

and loss of stability. Indeed, the main lesson that can be learned from these results is that

irrespective of its flight mode, a platform’s protective structures should be designed to absorb

collision energy in all directions. This challenge is thus presented in the next section.

5See App. A for more details on embedded electronics.
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2.4 Protection of Hovering Platforms in Three Dimensions

To truly navigate in a confined, cluttered environment a platform must be able to hover and

move in all directions. Independent of the number of rotors a rotorcraft has, they all share

the same basic method of lift generation: one or several propellers pushes air downward to

create lift. For proper lift there must be clear space above and below the propellers. Efficiency

and lift improves with propeller size [10] and thus it makes sense to maximize the size of the

propellers within the platform’s dimensions. Flying in cluttered environments necessitates the

protection of the propeller(s), and thus a protective cage surrounding them is required. Thus

most rotor-based flying platforms take roughly the shape of a cylinder, their diameter defined

by the size of their propellers. Figure 2.10 shows the three most common robotic rotorcraft

configurations (quadrotors, coaxial helicopters and tailsitters) and how they fit this general

model.

As demonstrated in Sec. 2.3.1, simply protecting from head-on collisions is insufficient when

the platform is surrounded by obstacles. The goal of this section is thus to design protective

structures for a small hovering platform of similar dimensions but modified based on the

experience of the previous section in the following manner:

1. For a platform to fly at slow enough speeds with such a wing size it would have to have a

weight of around 10 g [21]. As the platform is an order of magnitude heavier, it is likely

to spend most of its time in hovering mode. The wings are thus removed.

2. A major issue in the previous design was contact between the propeller and the rest

of the platform’s frame. In the new design the propellers will be housed within the

platform’s stiff inner frame instead of above it and thus prevented from impacting with

exterior objects or the protective structures.

In its simplest form the hovering platform is thus modelled as a cylinder containing two

coaxial motors with propellers for thrust and yaw control, and control surfaces for pitch and

roll control right below the propellers (Fig. 2.10).

2.4.1 Protection Mechanism Design

Spring Type and Configuration

Once again the goal of a protective structure is to absorb collision energy while minimizing

the force transferred to the platform’s frame. Euler springs are long columns that are loaded

along their axis to the point at which they buckle. As shown previously in Fig. 2.1, for a given

amount of energy and displacement Euler springs have the lowest maximum force exerted

on their attachment point to a frame and are thus a strong candidate for protective structure

design. They are simple to produce (simple straight rods can be used) and do not store energy
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Chapter 2. Absorbing Collision Energy

Figure 2.10: Above, three types of hovering platforms that, when adapted with protective cages
for flight in cluttered environments, take the general shape of a cylinder: (A) a quadrotor,
(B) a coaxial helicopter and (C) a tailsitter. Below, (D) a simplified schematic of the hovering
platform for which protective structures will be designed. Two coaxial motors with counter-
rotating propellers provide lift and yaw control, whereas control surfaces just below the
propellers provide pitch and roll control.
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2.4. Protection of Hovering Platforms in Three Dimensions

statically. Euler springs have had very limited use in robotics (with the notable exception of

the Bow leg hopper [73]) and thus represent a novel solution to impact energy absorption.

Attaching a single Euler spring to the fuselage without fixing the other end will result in

the spring slipping on the contact surface and bending (thus acting as a hookean spring)

instead of buckling (acting as an Euler spring) (Fig 2.1A). To fix the end of the spring in place

in three dimensions we propose using three Euler springs in a tetrahedral configuration as

shown in Fig. 2.11A. The springs are attached to the fuselage and to each other using rotating

joints to ensure that they are only loaded axially. If we model a rotor-based platform as a

cylinder (Fig.2.10) we can protect the platform from collisions in all directions by using eight

tetrahedrals placed symmetrically around the platform.

The length of the individual spring elements is critical, as it defines the direction of the force

loading during impact. If the elements are too short, an impact will bend them inwards, no

longer in the direction of the force (Fig. 2.11B) and thus not absorbing energy through buckling.

Conversely, if the elements are too long an impact bends the elements outwards (Fig. 2.11C).

There is thus an optimized length of spring element that keeps the impact force close to the

axial direction of the spring (Fig. 2.11D). In the case of eight tetrahedrals used symmetrically

around a platform this formula can be derived through trigonometry (as shown in Fig. 2.11E

and F):

y =
√

8

3
x (2.10)

where y is the length of the spring and x is the radius of the platform.

Material Selection

Once again pulltruded carbon fibre rods provide the highest specific stiffness for their weight

and are thus used to build the Euler springs used in the tetrahedrals.
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2.4. Protection of Hovering Platforms in Three Dimensions

Dimensioning

Having decided on the type and material of the spring and its configuration around the

platform there remains the dimensioning of the spring itself. We want to choose the lightest

possible spring while still being able to absorb the required energy. As we are using pulltruded

carbon fibre rods whose length is determined by the platform’s dimensions according to

Eq. 2.10 the problem is reduced to dimensioning the radius r of rod to be used that absorbs

the required energy without failure while minimizing weight.

We begin by deriving the force profile F (x) of an Euler buckling spring which can be written

as [74]:

F (x) = Fcrit + E I

L2 k
x

L

= E I

L2 (π2 +k
x

L
) (2.11)

where k is the spring factor and 0 < x < L. Using deflection tests described in Sec. 2.2.2 and

shown in Fig. 2.3A we determine the spring factor of a pulltruded rod to be k = 8.09. We can

normalize Eq. 2.11 for a given compression factor c by substituting the following equation:

c = x

L
(2.12)

(where 0 < c < 1) which results in:

F (c) = E I

L2 (π2 +8.09c) (2.13)

We can calculate the energy absorbed by a column by substituting Eq. 2.13 into Eq. 2.1:

U = L
∫

F (c)dc

= E I c

L
(π2 +4.045c) (2.14)

Solving for I we can compute the minimum second moment of inertia Imi n required to absorb
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Chapter 2. Absorbing Collision Energy

this energy:

Imin = U L

Ec

1

π2 +4.045c
(2.15)

For a cylindrical rod with radius r ,

I = πr 4

4
(2.16)

Therefore the minimum radius of rod required to absorb energy U is:

rmin = 4

√
4Imin

π
(2.17)

In terms of L, c and U we can write:

rmin = 4

√
4U L

πEc

1

π2 +4.045c
(2.18)

The upper limit of allowable rod radius rmax depends on the strain that the rod can take before

breaking. For this we calculate the maximum force at the desired compression ratio:

rmax = µI

Fmax y
(2.19)

where y is the displacement of the rod perpendicular to its axis, as presented previously in

Eq. 2.4. Substituting Eq. 2.4 into Eq. 2.19 and writing once again in terms of L, c and U we

have:

rmax = µL

0.9E

π

(π2 +8.09c)
p

8.09c
(2.20)

In order to absorb the desired energy U without breaking there must exist values of L and c for
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2.4. Protection of Hovering Platforms in Three Dimensions

which rmin < rmax.

Finally, the weight of the rod can be computed using its volume and density:

Wrod = ρπr 2L (2.21)

The minimum weight Wmin at rmin in terms of L and c can be derived by substituting Eq. 2.18

into Eq. 2.21:

Wmin = ρπr 2
minLmin

= ρπ

√
4U Lmin

πEc

1

π2 +4.045c

× 3

√
0.944E 3U (π2 +8.09c)4(8.09c)2

µ4cπ5(π2 +4.045c)
(2.22)

The derived equations can now be used to dimension the optimal compression ratio and

radius of rods that should be used to absorb impact energy. The equations are applied to a

hovering platform with a core defined by a coaxial motor with 10 cm-diameter rotors. Allowing

for protection around the rotors, the platform’s stiff internal frame takes a cylindrical shape

with a radius of 12 cm. Using Eq. 2.10 the optimal length of the Euler springs is approx. 20 cm.

To dimension the radius of rod required we use Eqs. 2.13, 2.14, 2.18, 2.19, 2.22 to get a sense of

the amount of energy we can expect to absorb.

Figure 2.12 plots the radius, weight and force of a 20 cm rod as a function of compression ratio.

As a general trend, maximizing the compression ratio will lower both the force on the structure

and the weight of the rod. There is a fixed maximum radius however which decreases with the

compression ratio, since a thicker rod will fail at a lower bend angle than a thinner one. As this

robot is designed to fly indoors (low altitude, slow speeds) it should not encounter high-energy

impacts and thus we optimize for minimal weight and force rather than maximum energy. We

select a rod radius of 1 mm (dashed line in Fig. 2.12), which will allow the platform to absorb

1.5 J at a compression ratio of 0.34. With an estimated platform weight of 300 g, this is the

energy of a freefall from a height of 51 cm. It should be noted that this is the energy that can be

absorbed by a single rod. As there are 24 rods surrounding the platform, in most cases there

will be several rods that will absorb the energy at once.
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Figure 2.12: (A) Rod radius, (B) weight and (C) maximum force for a 20 cm carbon fibre rod as
an Euler spring. Shaded areas represent possible combinations of compression ratio, radius
and energy for which the rod will not fail.
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2.4. Protection of Hovering Platforms in Three Dimensions

Figure 2.13: (D) The hovering flying robot equipped with Euler-spring protection structures.
(A) shows the on-board electronics, including high-G accelerometers (top circuit board)
mounted directly to the robot’s frame whereas (B) and (C) show the two endpoints of the Euler
springs. The same core frame is outfitted with (E) styrofoam and (F) stiff protection for force
comparison experiments.

2.4.2 Prototype Realization

Figure 2.13D shows the completed flying platform including protective structures attached to

a rigid internal frame. The frame houses flight motors, control surfaces and flight electronics

composed of BurrMove v5 and BurrSens v5 boards (Fig. 2.13A). The carbon-fibre Euler springs

are inserted into end pieces made of laser-sintered ABS plastic which are subsequently at-

tached to the frame (Fig. 2.13B) and to each other (Fig. 2.13C) using nylon fishing line. The

weight of the protective structures including end pieces is 40 g, and the total weight of the

platform is 282 g.

2.4.3 Characterization and Validation

The platform with its protective structures is put through a series of tests to evaluate its

robustness to contact. Impact force on the frame is measured using 3 orthogonally-positioned

single-axis high-G accelerometers (Freescale MMA3204, range of +/- 100 G, Fig. 2.13A) coupled

directly to the platform’s frame. Depending on the direction of the impact vector, the total

acceleration that can be measured ranges from 100 to 173 G or 980-1695 m/s2. With a platform

mass of 282 g this corresponds to a maximum measurable force of 276 to 478 N.
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Chapter 2. Absorbing Collision Energy

Figure 2.14: Timeseries of drop tests on (A) the platform’s base and (B) on a single tetrahedral
from a height of 75cm.

Buckling Motion Validation

The goal of the first experiment is to validate that the Euler springs are indeed buckling during

a collision. The platform is dropped from a height of 1 m, 5 times on its base (the position

most likely to occur during a hard landing) and 5 times on a single tetrahedral protective

structure, and filmed at 1000 fps using a high-speed camera. All the videos are subsequently

analyzed, confirming that in each case one or more Euler springs is buckling to absorb impact

energy. Figure 2.14A shows a timeseries of an impact on the platform’s base in which four

Euler springs, one from each tetrahedral, are buckling concurrently. In Fig. 2.14B a single Euler

spring absorbs impact energy and subsequently releases it, causing the platform to spin. The

remaining energy is then absorbed by two Euler springs of a different tetrahedral.

Impact Force Minimization

The goal of this experiment is to compare the force minimization capability of the Euler-spring

protective structures to foam-based protection, a common protective structure used in other
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2.4. Protection of Hovering Platforms in Three Dimensions

Figure 2.15: (A) boxplot of the maximum force measured on the platform’s frame over 5 trials
for drop tests from varying altitudes and using various protection mechanisms. (B) Force
profile over time averaged over 5 trials for a free fall from 75 cm. Shaded regions represent
standard deviation. As only a limited amount of data points can be sent to the ground station,
and initial tests showed a flat force curve after 50 ms using foam protection, it was decided to
only record data from the first 50 ms to increase temporal resolution.

flying robots. For this comparison a styrofoam structure with the same weight as the Euler

spring structures is built for the platform and is shown in Fig. 2.13E. The platform is dropped

5 times from increasing heights with either the Euler spring structures or the styrofoam

structures, first on its base and then on a corner (vertex of a tetrahedral for Euler spring

structures, between the propeller-protecting ring and two sides for styrofoam structures). The

height is increased until the high-G accelerometers saturate. A drop test using a stiff protection

mechanism only (Fig. 2.13F) is also done for comparison.

Figure 2.15A shows a box plot of the force measured on the platform for each experiment

whereas Fig. 2.15B shows the profile of the force through time for a drop height of 75 cm. The

following conclusions can be derived from these plots:

• Using only stiff protection of rotors results in high impact forces from even the smallest

heights.

• When falling on its base, the Euler spring mechanism has high initial forces even at low
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heights. This is due to the initial buckling force Fcrit from 4 contact points that is reached

before any energy is absorbed. Once this force is reached however it does not increase

significantly even at 75 cm in accordance with the near-flat force profile of Euler springs.

• Foam-based protection transfers significantly more force to the platform’s frame at high

drop heights.

• Force profiles show that Euler springs absorb energy over a longer time period, thus

decreasing the force on the frame.

As a general conclusion Euler spring protection mechanisms perform similarly to foam-based

mechanisms at low heights, but significantly decrease impact force on the robot’s frame in

high-energy impacts. These trends could be better observed with higher drop heights but

were not done for two reasons: accelerometers with higher thresholds were not available, and

more importantly subjecting the stiff internal frame to higher forces would risk breaking the

frame, making subsequent tests impossible.

Resilience during Flight

In this test we evaluate the robustness of the protective structures to repeated collisions

from all directions during a realistic scenario. The robot is placed in the centre of a 3.5x6 m

experimentation room. A simple behaviour is programmed on the on-board micro-controller

which makes the platform take off, stabilize at a hovering altitude of 1 m for 3 s, then move in

a random direction until it collides with a wall. Once a collision is detected with the on-board

accelerometers and gyroscopes the motors are cut and the platform allowed to fall to the

ground. More specific details on the controller and algorithms used for collision detection can

be found in Ch. 4.

The experiment is repeated 50 times to simulate collisions from many directions with varying

amounts of impact energy. From the 50 trials, only 4 collisions resulted in damage to the

platform: twice the soft propellers flexed and touched each other and twice the nylon strings

connecting end pieces failed. Using stiffer propellers (as used in a subsequent platform

presented in Sec. 4.3) and increasing the thickness of the nylon string should limit these

failure modes. This experiment demonstrates the robustness of the protective structures

to repeated high-energy collisions. A sample of the many collisions can be seen at http:

//lis.epfl.ch/airburr.

2.4.4 Discussion

This section presents a novel protection structure design using Euler springs optimized for

flying robots that must survive repeated high-energy impacts with their environment. The

structure is shown to greatly reduce the impact forces transferred to a robot’s frame compared

to existing solutions using stiff or foam-based protection. The design is adapted to a small
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2.5. Conclusion

hovering platform and validated through static drop tests and collision tests during flight in an

indoor environment. Though presented on a specific platform type, the protective mechanism

design is based on a simple cylindrical model of a hovering platform and thus can be applied

to other types of platforms such as quadrotors.

An interesting behaviour was noticed during flight as a secondary effect of the Euler spring

protection mechanisms: if the platform is contacting a wall with four tetrahedrals when in

flight it has a tendency of staying in contact with the wall. Using a control surface to fly towards

the wall makes the platform rotate around its top tetrahedrals. When trying to fly away from

a wall, however, the low position of the control surfaces creates much less torque around

the bottom tetrahedrals, and the platform has difficultly moving away from the wall. This

behaviour can be both advantageous and disadvantageous; staying against a wall instead of

bouncing off can be used for contact-based navigation such as wall-following or for easier

attachment to surfaces (explained further in Sec. 5.3), but slow down progression through

an environment. There are two possible ways of preventing this behaviour, if desired: using

different lengths of springs for the top and bottom protection (though taking care that they are

still close to the optimal length of Eq. 2.10) or simply cutting the motors when stuck against a

wall, falling to the ground and taking off again (this option is only possible if the platform is

capable of self-recovery).

2.5 Conclusion

The ability to absorb impact energy elastically allows flying robots to access constrained and

cluttered environments that were previously unattainable. This chapter presents a method for

designing protective structures that are uniquely adapted to the constraints of flying robots.

This method is then applied to the protection of two flying robots with different morphologies

and flight modes. The novel design and use of Euler springs on a hovering platform results

in the first demonstration of a robot that can withstand dozens of high-speed collisions in a

confined environment and continue flying, ready for further exploration.
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3 Self-Recovery

Surviving collisions with obstacles is only one half of the equation; if a flying platform cannot

get back into the air after a collision than it can no longer fulfill its purpose as a flying robot.

This chapter considers self-recovery mechanisms that can be used to upright a flying platform

after a fall to the ground and proposes a method for integrating such mechanisms into a flying

platform. The method is first applied to a winged platform that uses gravity and optimized

morphology to upright into a takeoff position. Lessons learned from this first prototype are

then applied to a hovering platform which complements the gravity-based mechanism with

active spring-based self-recovery. This second platform demonstrates the ability to upright

after a collision in less than 30 s in a variety of realistic environments.

This chapter is based on the publications An Indoor Flying Platform with Collision Robustness

and Self-Recovery [75] and An Active Uprighting Mechanism for Flying Robots [76].
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Chapter 3. Self-Recovery

Figure 3.1: Three types of hovering platforms that, when adapted with protective cages for
flight in cluttered environments, take the general shape of a truncated cone: (A) a quadrotor,
(B) a coaxial helicopter and (C) a tailsitter. Below (D), a simplified diagram of the same
truncated cone on its side before uprighting. A mass with a Center of Gravity at point c must
rotate about point a using uprighting force Fu located at an arbitrary point d to return to the
upright position depicted in (A-C).

3.1 Defining Self-Recovery

This chapter addresses the challenge of returning a flying platform to the air after an uncon-

trolled landing that may result from a collision without external intervention. More specifically,

the topic of this chapter is Self-Recovery, which is defined as the process of returning a hovering

flying platform to a position ready for subsequent takeoff, and Self-Recovery Mechanisms, the

actuator(s) or and/or mechanisms used to generate the uprighting force required for self-

recovery. To be successful a self-recovery mechanism must fulfill three major requirements:

• Repeatability: it must be able to consistently upright the platform from any possible

position that it may fall in.

• Adaptability to the environment: it must work on different surface types, angles and

with various amounts of obstacles such as walls or objects.

• Integration: it must not impede the flight capabilities of the robot and thus remain

lightweight, low-power and unobtrusive.
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3.1. Defining Self-Recovery

In order to devise a method for designing self-recovery mechanisms, we must first define the

global shape and Center of Gravity (COG) position of a hovering platform. As presented in the

previous chapter (Sec. 2.4), most hovering platforms adapted for cluttered environments can

be modelled as a cylinder. When a platform lays on its side the angle between its vertical axis

and the ground plays an important part in self-recovery. As this angle can be changed relatively

easily without affecting the performance of a flying platform, we extend the model to that of a

truncated cone. Figure 3.1 shows the three most common robotic rotorcraft configurations

(quadrotors, coaxial helicopters and tailsitters) and how they fit this general model.

Self-recovery can be reduced to the process of returning a truncated cone to its upright

position, ready for vertical takeoff. Due to the symmetry of a cone in the vertical axis, the

problem can be further reduced to a 2-dimensional rotation of a mass (as depicted in Fig.

3.1D) about point a through the application of an uprighting force Fu at an arbitrary point d .

Two conditions must be met for this rotation to occur. Firstly, the uprighting moment created

by the force Fu at the point d about point a must be greater than the moment created by

gravity acting on the COG with a force Fg . The minimum magnitude of Fu for this condition,

Fuami n , follows the equation:

Fuami n = Fg cosθg adac

dad cosθua
(3.1)

Secondly, the uprighting force Fu also creates a moment about point b. There is thus also a

minimum force Fubmi n at which the mass will rotate around point b which follows a similar

equation:

Fumi nB = Fg cosθg B dBC

dBD cosθuB
(3.2)

As neither points a nor b are fixed to the surface, in order for the mass to rotate around point

a and not point b, Fuami n must be less than Fubmi n :

Fuami n <Fubmi n (3.3)

cosθg adac

dad cosθua
< cosθg bdbc

dbd cosθub
(3.4)

Equations (3.1) and (3.4) provide interesting insight into the position, direction and magnitude

of the uprighting force Fu and the position of the COG required for rotation around point a. It

can be summarized as follows:
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• The COG position c should be as close to the rotation point a as possible, as minimizing

dac decreases Fg ami n (Eq. 3.1). In addition, moving the COG to the right towards point

a moves it away from point b, increasing dbc and thus increasing Fubmi n .

• If the COG can be moved to the right of point a the angle θg a , and subsequently Fg ami n

become negative (Eq. 3.1). This corresponds to the case of gravity-based self-recovery

where no uprighting force is required.

• Point d should be as far as possible from point a and as close as possible to point b to

avoid rotation around point b (Eq. 3.4).

Implementing the above guidelines in the design of an active uprighting mechanism is not

always a straightforward process as aerodynamics, weight, morphology, position of control

surfaces and the COG must all be balanced in order for the platform to be able to fly.

3.2 Self-Recovery Mechanism Design

We propose the following method for designing active uprighting systems:

1. Uprighting Force Generation: select a method of generating uprighting force best

adapted to the current platform

2. Modelling and Morphological Optimization: model the self-recovery mechanism through-

out uprighting action and optimize the morphology

Uprighting Force Generation

The selection of a self-recovery mechanism depends on many factors such as platform type,

weight, complexity or morphology and must be adapted to the platform being used. Separate

mechanisms may also be required to upright a platform when it is upside-down and when it is

on its side. Some common force generation methods are presented in Table 3.1 along with

their respective advantages and weaknesses.

Gravity-based self-recovery occurs when the morphology of the platform and its COG place-

ment result in a negative θg a and thus gravity itself uprights the platform, removing the need

for any additional uprighting force. If the COG is not placed favourably after a fall to the

ground, an additional actuator can be used to displace the COG until θg a becomes negative.

This strategy is used by many jumping robots [11, 53]. If the morphology of the platform does

not allow the use of gravity for self-recovery another source of uprighting force is required.

Using existing rotors (in forward or reverse) has the great advantage of not adding any weight to

the platform and should be used whenever possible. The force available from onboard rotors,

however, is limited due to several reasons; the force is not always in the desired direction
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3.2. Self-Recovery Mechanism Design

throughout uprighting, rotors turning in reverse are less efficient and the individual rotors

of a multi-rotor system provide limited force. To increase uprighting efficiency thrust can

be vectored in the desired direction using smartly-placed control surfaces or by rotating

the motors, though at the cost of additional mechanical components, servo-motors and

increased complexity. A second option to increase reverse-thrust efficiency is to use variable-

pitch propellers actuated by servomotors (as have been implemented in some quadrotors for

example [77]) to change the direction and magnitude of the thrust.

When on-board rotors do not suffice an additional mechanism must be implemented. One

example consists of a beam attached to the platform that pushes against the ground and is

powered by an additional actuator such as a DC motor. This beam can be driven directly or

can be attached to the platform using a torsion spring which itself is loaded using a DC motor.

Modelling and Morphological Optimization

Once a self-recovery mechanism is selected the next step is to modify the platforms morphol-

ogy to facilitate self-recovery. For most flying systems the position of the COG must be set

according to flight stability requirements [28], and thus cannot be moved for uprighting. The

morphology of the protective cage however can be modified in relation to the COG to change

the platform’s contact points a and b. When the platform is on its side, for example, increasing

the diameter of the top of the platform and decreasing that of the bottom increases the angle

θg a , reducing the required uprighting force Fuami n . In some cases modifying the morphology

can even lead to a negative θg a and gravity-based self-recovery, removing the need for any

additional uprighting force.

As the platform rotates around point a, the direction of the uprighting force may change, as

does the force due to the weight of the platform. A model should thus be created based on

equations 3.1 and 3.4 to gain insight into the magnitude, position and direction of the force

required to perform this action. The model can then be used to evaluate the required force

during the entire uprighting action to dimension the force generation method to provide

enough uprighting force. As the force output of an actuator is generally proportional to its

weight and power requirements, minimizing the uprighting force is essential for a flying

system.
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3.3. Gravity-Based Self-Recovery and Forward Flight

Figure 3.2: A simple schematic of (A) a winged flying platform, (B) modified with a teardrop-
shaped spring for collision energy absorption and (C) a ring to protect the propellers and
enable gravity-based self-recovery.

3.3 Gravity-Based Self-Recovery and Forward Flight

This section is partially based on the semester project work of Grégoire Boutinard-Rouelle.

The self-recovery mechanism design methodology is first applied to a small wing-based flying

platform optimized for forward flight. The advantage of winged platforms is that they can

take off and fly horizontally and do not need to be in a vertical position to take off again.

Self-recovery in this case is the process of returning the platform to a position lying on its side.

The platform is once again based on a basic design of a central frame with wings for lift

generation, coaxial motors and propellers for thrust and control surfaces behind the wing for

pitch and yaw control (Fig. 3.2A). Its weight is limited to 30 g in order limit the wing loading to

allow efficient forward flight in the order of 1-2 m/s.

3.3.1 Self-Recovery Mechanism Design

Uprighting Force Generation

In the case of a winged platform a gravity-based self-recovery mechanism by means of the

morphology of the platform and positioning of the COG is the simplest option to implement.

Following the method and conclusions of Sec. 2.3, the platform is surrounded by a teardrop-

shaped spring to provide protection from head-on collisions (Fig. 3.2B) as well as a first contact

point with the ground at the front of the platform. Similarly, a ring around the propellers

(Fig. 3.2C) both protects the propellers from contacting objects and provides a second contact

point with the ground.

When the platform lands on its front (Fig. 3.3A) the tip of the teardrop spring and the protection

ring provide the two contact points a and b with the ground. Placing the COG far enough

towards the back of the platform will then cause the platform to rotate around the ring into a

stable position on its side (Fig. 3.3B), ready to take off.
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Chapter 3. Self-Recovery

rotation axis

A B

COG

Figure 3.3: Gravity-based self-recovery based on platform morphology. When the platform
falls on its front (A) gravity will act on its COG and subsequently upright it onto its side (B),
ready for takeoff.

x65
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85% of area
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servoselevators motors
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ailerons
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Figure 3.4: Left, Top (A) and side (B) views of the conceptual design of the platform. The
teardrop shape of the wing and the takeoff angle θ are defined by the diameter Dr and position
xr of the ring protecting the propellers, and the total length xt of the platform. Right, (C)
aerodynamic constraints (top view of platform) require the COG to be placed between 65%
and 85% of the wing surface area; this defines the Ca envelope. (D) Self-recovery (side view of
platform) requires the COG to be placed behind the point perpendicular to the pivot point O;
this defines the Cu envelope. The COG must be within both the Ca and the Cu envelopes to
ensure flight and self-recovery.

52



3.3. Gravity-Based Self-Recovery and Forward Flight

Modelling and Optimization

The selected design has to be dimensioned carefully to fulfill the requirements of aerodynamic

stability, efficiency and self-recovery capabilities. Maximizing the surface area A of the wing in-

creases its lift, which in turn decreases required flight speed for a given weight [27]. Increasing

the diameter of the propellers increases their efficiency [10] as well as the available thrust for a

given motor size, required when hovering. Aerodynamic stability in forward flight is defined

by the correct placement of the COG with respect to the wing. Self-recovery also constrains

the position of the COG to allow gravity-based recovery. In addition the takeoff angle θ should

be maximized to facilitate takeoff.

All of these parameters except for the position of the COG are defined by the geometry of

the platform, which in turn is defined by three geometric parameters: the diameter of the

ring Dr , its position xr along the main axis of the platform, and the total length xt of the

platform. Figure 3.4A and B presents a schematic view of the platform from above and the

side, respectively. A length xt of 40 cm was chosen to remain within the size constraints of

indoor flight, thus there remain only two dimensions that can be optimized to find a suitable

platform shape.

The COG of the platform is an important constraint, as it must be placed to allow both

upturning when on the ground and aerodynamic stability while in flight (Fig. 3.4C-D). These

two constraints must therefore be evaluated to ensure that a position exists in which they

overlap. It is assumed that the COG can be placed in any position during construction by

strategically displacing heavy components such as the battery or the electronics.

The first step is the dimensioning of the wing. Bending a thin carbon rod into a circle and then

connecting the two ends at any desired angle results in a teardrop shape that can be closely

approximated by the following parametric equation:

x =cos(t ) (3.5)

y =sin(t )sinm(
1

2
t )

which can be rearranged into the equation:

y = sin(arccos(x))sinm(
arccos(x)

2
) (3.6)

The parameter m defines the shape of the wing (Fig. 3.5), and can be calculated by solving Eq.

3.6 at the point x = xr , y = Dr
2 , defined by the position and size of the ring. Once the parameter

m is known, the total surface area of the wing can be calculated by integrating Eq. 3.6 from
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Chapter 3. Self-Recovery

Figure 3.5: The Teardrop curves, the natural shape taken by a single carbon fibre rod with its
ends attached, for m=0 (circle) to m=10.

x =−1 to x = 1, while taking into account the space required for the propellers.

The takeoff angle θ of the platform at rest (Fig. 3.4B) can be calculated geometrically using the

formula:

θ = arctan(
Dr

2xr
) (3.7)

The position of the COG for self-recovery from a nose-down position, Cu , must be placed

behind the pivot point O on the ring (Fig. 3.4D). The force of gravity acting on the COG then

creates a moment that rotates the platform into takeoff position. It can be calculated as

follows:

Cu < xu , xu = xt − (
D2

r

4x f
+x f ) (3.8)

where Cu is the COG required for self-recovery and xu is the minimum distance of Cu from

the front of the platform.

The COG position allowing aerodynamically-stable flight Ca is more difficult to calculate. It

must be far enough forward to prevent stalling yet far enough back to prevent diving. Formulas

exist for many standard shapes of wing and airfoil. For example, a straight wing in a classical

plane with a tail should have its COG at 1/4 the chord distance from the leading edge [28].

However, the dual wings, flat yet flexible wing material and teardrop shape of the proposed
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Figure 3.6: To maximize takeoff angle, wing surface area and ring diameter various configu-
rations of these parameters for a platform length xt of 40 cm are presented. All points below
the threshold line represent configurations at which the COG requirements of flight and self-
recovery are fulfilled. An optimal zone exists where both the wing area and ring diameter
are maximized without greatly affecting the takeoff angle. Above the graph are six sample
configurations that aid to visualize the parameters corresponding to the threshold line, with
Ca represented by an X and Cu represented by a circle. Although all these configurations meet
the COG requirements in theory, some are impractical to implement in a physical platform
(such as the examples a and b due to their small wing area and f due to its small ring size).
Configuration e is the one that was selected for the prototype flying platform.

design are all unconventional. Experiments were thus conducted using a mockup wing with a

10 g weight placed in varying positions along the wing’s main axis to simulate the weight of the

platform. The performance of the wing was evaluated through repeated trials to determine the

COG positions that yield aerodynamically stable flight. Based on flight tests with the mockup,

the value of Ca can be conservatively estimated using the equation:

x65 >Ca > x85 (3.9)

where x65 and x85 are the points behind which 65% and 85% of the total surface area of both

the front and the back parts of the wing reside, respectively (Fig. 3.4C).

The takeoff angle θ, wing surface area A and COG envelopes Ca and Cu were calculated for a

series of ring positions xr and diameters Dr ranging from 1 to 40 cm and with a fixed platform

length xt of 40 cm. Ca and Cu were computed for each configuration, and only those that

fulfilled both requirements were considered valid. The main parameters to maximize are the
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wing area, takeoff angle and the size of the ring, which defines the diameter of the propellers.

Fig. 3.6 presents the range of possible configurations that satisfy the requirements of COG

positioning. Though configurations exist with takeoff angles of up to 60◦, they do not have

sufficient wing area for flight. Considering a minimum wing area of 200 cm2, practical solu-

tions begin with a takeoff angle of less than 30◦. This angle diminishes by only 10◦ for wing

areas ranging from 300 to over 800 cm2, and thus the area can be maximized without greatly

affecting the takeoff angle. The ring size also increases with the wing area, though it reaches a

maximum at a wing area of around 750 cm2.

There is no single architecture that maximizes all required parameters, though there is a

certain optimal zone in which wing area and ring diameter can be maximized without greatly

affecting the takeoff angle. A design within this optimal zone was chosen, with the maximum

ring size of 206 mm, a wing area of 759 cm2 and takeoff angle of 20.1◦, which corresponds

to a ring position of 281 mm from the back of the platform. This configuration has Ca and

Cu positions of 186.5 mm and 191.85 mm, respectively, thus there exists a margin of 5 mm to

position the COG to allow both aerodynamic stability and upturning.

3.3.2 Prototype Realization

A prototype flying platform is built using the above-mentioned optimized values (Fig. 3.7).

Thrust is generated by two 6 mm DC motors with 14 mm contra-rotating propellers placed

within the ring, providing a total of 30 g of static thrust. Energy is stored in a 110 mAh lithium-

polymer battery. The total weight of the platform is of 20.5 g. The platform is controlled

through two miniature servo-motors actuating a rudder and an elevator, which regulate

altitude and yaw in forward flight. In addition to forward flight, the two coaxial motors provide

enough thrust for hovering flight, and the control surfaces can be used to regulate roll and

pitch in this flight mode. Off-the-shelf electronics enable individual remote control of the two

servo motors and synchronous control of the two coaxial DC motors1.

3.3.3 Characterization and Validation

The prototype is put through remote-controlled flight tests in a 6x7 m experimentation room

and proves an agile flyer both in forward flight and in hover. Transition between hover and

forward flight, and vice versa, is smooth and easily controllable, partly due to the backward

placement of the COG. The platform can fly for approximately 10 min with a fully-charged

110 mAh battery, while spending some time in hover and some time in forward flight. A video

presenting the flight characteristics of the platform in both forward and hover mode can be

viewed at http://lis.epfl.ch/airburr.

1No control of yaw was implemented for hover mode due to limitations of the off-the-shelf electronics, though
this could be implemented through individual control of the propellers or the use of an additional servo and
differential actuation of the two elevators.
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3.3. Gravity-Based Self-Recovery and Forward Flight

Figure 3.7: The prototype flying platform with details of various subsystems. (A) Two 6 mm
DC motors power counter-rotating propellers for thrust. (B) A miniature off-the-shelf flight
package includes two linear servo-motors to displace the rudders and elevators, a radio
receiver and a single transistor to control both DC motors simultaneously. The wing, (C) dual
rudders, (D) and dual elevator are all made of carbon rod frames over which an ultra thin
mylar layer is stretched and glued.

During flight tests the prototype had numerous collisions with objects or surfaces such as

walls or the ceiling. These collisions provide several insights into the self-recovery capabilities

of the platform:

• Light contact with walls does not always cause the platform to fall to the ground. It

can in fact fly along the wall, its front tip grazing the surface. This behaviour resembles

insects flying against a window pane looking for an exit.

• After collisions with an object that cause a fall to the flat ground, the prototype’s self-

recovery mechanism is always successful in uprighting the platform onto its side, and in

most cases can take off again without human intervention.

• Though always finishing on its side, if the platform does not have enough flat ground

ahead of it it gets stuck against a wall or object and cannot take off again.

To further test the platform’s resilience to collisions and ability to self-recover the platform is

dropped from a height of 1 m from a variety of different starting positions. High-speed video is

used to analyze the deformation of the structure during a collision. Similarly to the prototype

designed in Sec. 2.3, as the platform hits the ground collision energy is absorbed through the

deformation of the teardrop-shaped wing. Fig. 3.8 shows frames from a typical collision and

subsequent righting of the platform after a head-on collision with the ground.

3.3.4 Discussion

A gravity-based self-recovery system greatly constrains the position of the COG, making it

difficult to fulfill the aerodynamic constraints required for flight and limiting the possible
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Chapter 3. Self-Recovery

Figure 3.8: Time-sequence of a typical head-on collision with the ground and subsequent
self-recovery, taken with a high-speed camera. The platform rolls onto its side before rolling
into takeoff position.

platform geometries. Though able to self-recover autonomously in many situations, there

are still many real-life scenarios that remain a challenge to the platform, such as landing

against walls or objects, in rough and uneven terrain or underneath tables or chairs. The

simple passive mechanism is thus not yet sufficient for autonomous self-recovery in all cases.

Indeed, this work seems to have reached the limits of gravity-based recovery, and thus the

development of an active self-recovery mechanism will be presented in the next section.

3.4 Leg-Based Self-Recovery and Hovering Flight

In this section a new platform is designed to overcome some of the limitations of gravity-based

self-recovery. Once again the design is based on two coaxial motors with control surfaces, as

shown in Fig. 3.9A, but with several design changes to previous platforms:

• To avoid the need for a runaway to take off, the platform must be able to take off vertically.

A circular pedestal is added underneath the control surfaces to provide a stable position

for takeoff.

• The platform will be designed to be autonomous instead of remote controlled as the

platform from the previous section and thus will feature an on-board IMU.

• The two coaxial motors are mounted on either side of a stiff carbon-fibre cage to protect

the propellers.

• The platform will be heavier (similar in weight to the platform presented in Sec. 2.3.1

and thus will spend most of its time flying in hover mode.)
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3.4. Leg-Based Self-Recovery and Hovering Flight

Figure 3.9: (A) A simplified schematic of the tailsitter platform in the upright position with a
round pedestal providing a stable position. (B) A protective cage (in red), who’s morphology
has been adapted for gravity-based self-recover, is added to the robot. Four legs (in red), shown
in their (C) retracted and (D) extended positions, are used to upright the platform when it is
lying on its side.

In the case of this platform self-recovery will be the process of returning the platform to a

vertical position, ready for takeoff.

3.4.1 Self-Recovery Mechanism Design

Uprighting Force Generation

This platform design how has three positions it can lie in: upside-down, on its side or upright.

The gravity-based self-recovery mechanism in the previous section was very successful in

returning the previous platform onto its side and is thus reused in the current design. Teardrop-

shaped springs, attachment springs and a ring are once again added around the platform

(Fig. 3.9B) for both collision energy absorption and self-recovery. The teardrop springs are

modified to attach to the landing gear ring at the base of the platform. The COG is placed

within the Cu envelope to enable self-recovery, though this time its position is not optimized

for forward flight as the platform is primarily meant to hover. If the landing surface is slanted,

reverse thrust from the main rotors can easily provide the extra force required.

Uprighting the platform when it is on its side requires an additional self-recovery mechanism.

The platform morphology could potentially be further modified to allow gravity-based self-

recovery into the upright position but the sensitivity to ground angle and obstacles would

remain. Using thrust from the on-board propellers cannot provide force in the correct direction

to upright the platform, as they are almost inline with the bottom ring and thus provide little

uprighting torque. Thrust vectoring with the control surfaces has a similar issue.
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Figure 3.10: Optimization of leg attachment position on the fuselage. (A) shows the different
attachment positions modelled, each with a respective colour. The leg is made as long as pos-
sible while still remaining within the protective cage when retracted. All of these attachment
positions will result in a rotation around the bottom ring and not the top ring (Eq. (3.4)). (B)
shows four example positions during the uprighting process. (C) plots the required spring
factor at each angle during uprighting. (D) plots the minimum spring factor that must be
dimensioned for uprighting to be successful.

An additional mechanism using extending ’legs’ attached to the fuselage through a spring

is thus chosen, as it can be built lightweight and can be integrated without greatly affecting

aerodynamic performance. During flight the spring is fully loaded and the leg is held within

the protective cage of the platform (Fig. 3.9C). When the platform is lying on its side the leg

is extended providing the necessary uprighting force (Fig. 3.9D). Using spring-based legs

decouples the driving motors from the legs in case of shock that can occur during flight, and

thus is better adapted to cluttered environments.

Modelling and Morphological Optimization

A model based on Eq. 3.1 and 3.4 is used to evaluate the force required from the legs at various

attachment points (Fig. 3.10A) to optimize the size of the spring and the attachment point of

the legs during the entire uprighting process (Fig. 3.10B). A fuselage length of 270 mm, top ring

radius of 135 mm, bottom ring radius of 70 mm and a mass of 250 g are used to correspond to

the desired dimensions of our platform. The length of the leg is always maximized to provide

the highest possible uprighting moment about the bottom ring while still fitting within the
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3.4. Leg-Based Self-Recovery and Hovering Flight

Figure 3.11: The AirBurr prototype with integrated active uprighting mechanism. (A) shows
one half of the rollup mechanism used to close the legs for flight, made of 6 mm DC motors
that wind nylon string. (B) shows the end of the ’leg’ with attached ’feet’ for stability. (C) The
attachment point of the legs to the platform frame made of 3D-printed plastic. (D) The control
electronics and on-board sensors.

top ring of the platform. Figure 3.10C shows the varying spring factor profiles based on the

spring’s attachment point to the fuselage. As the attachment point moves from the bottom of

the platform to the top, the initial spring factor decreases since the length of the leg decreases.

However, the angle between the leg and the ground increases and thus a smaller component

of the force at the tip of the leg is used to upright the platform. There is thus an optimal

attachment position of 80 mm (Fig. 3.10D) from the back of the platform at which the spring

constant k, and thus the size of the spring, is minimized. It should be noted, however, that any

attachment point of less than 110 mm from the bottom ring will provide a spring factor within

15% of the minimum possible value.

3.4.2 Prototype Realization

The modified cage and optimized leg-based self-recovery mechanism is integrated into a

flying platform, as seen in Fig. 3.11. The platform requires 4 legs, one for each quadrant, to be

able to upright from any possible position on its side. Instead of using a stiff (and thus heavy)

leg attached to a high-torque (also heavy) spring, we use flexible carbon-fibre beams that
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integrate the spring within the leg itself. The legs are dimensioned to provide the spring factor

required by the model and are anchored near the optimal attachment point using 3D-printed

plastic. Two carbon-tube ’feet’ at the end of each beam (Fig. 3.11B) provide a more stable

anchor point on uneven ground. The legs are retracted using nylon string attached to their

tips which are rolled up using 4 individual 6 mm DC motors with a 225:1 gear ratio (Fig. 3.11A).

All four legs, including feet and attachment pieces, weigh a total of 21.2 g whereas the rollup

mechanism with associated electronics weighs 18.2 g, for a total self-recovery mechanism

weight of 39.4 g.

The platform is equipped with the BurrMove v4.1 and BurrSens v4.2 electronics package (as

the platform in Sec. 2.3.1). In addition to these two boards (which are required for flight)

two more daughter boards were designed: one to control all 4 DC motors individually and

a second that can interface up to 9 infrared (IR) proximity sensors. As the DC motors are

small and have no encoders, 4 IR proximity sensors on the tips of the rollup mechanism are

used to detect when the legs are fully retracted. A simple autonomous uprighting controller

is implemented on top of the regular flight controller. The controller uses the accelerometer

(also used for flight control) to detect the orientation of the platform. If the controller detects

that the platform is on its side it will unravel all four legs to return the platform to a vertical

position. Once the platform is vertical and standing on its bottom ring, all legs are retracted

into their closed position, ready for takeoff.

3.4.3 Characterization and Validation

The platform is put through a series of tests to evaluate its performance based on the design

requirements: repeatability, adaptability to the environment, and integration. A successful

uprighting is one that can return the platform to an upright position ready for takeoff, that is

with an angle between the ground and the fuselage of more than 70◦.

Repeatability

The first round of tests is aimed at measuring repeatability of the uprighting motion on flat,

smooth ground to show that the uprighting motion is independent of the starting position.

The platform is placed upright, manually knocked over 20 times in random directions and

subsequently uprighted using the autonomous controller. Figure 3.12A shows the angle along

the axis of the fuselage facing the ground during uprighting, calculated using the on-board

IMU. As the legs extend, the platform rotates until two of the four legs are touching the ground,

which occurs in the first 5-10 s of the uprighting maneuver. These two legs and the back

ring form three points of contact and thus a stable orientation for the rest of the uprighting

maneuver. As there are four legs symmetrically spaced around the platform, there are four

stable positions during uprighting, as can be seen in the figure. A typical uprighting sequence

is shown in Fig. 3.13.
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Figure 3.12: Platform orientation sequences during 20 uprighting maneuvers, each denoted by
a different shade. (A) plots the robot’s leaning angle. (B) plots the angle between the fuselage
and the ground during uprighting.

Figure 3.13: From left to right, a typical uprighting sequence using the autonomous controller.
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Figure 3.14: Uprighting success rate for various environments based on 5 trials using the
autonomous controller (purple) and 5 trials by a human operator (blue). (A) plots uprighting
on ground angles between +/- 15◦. (B) plots uprighting in various surface textures, whereas
(C) plots uprighting in corners.

Figure 3.12B plots the angle between the fuselage and the ground (uprighting angle) for each

uprighting trial. Irrespective of the starting position, the platform consistently uprights at the

same speed, between 20 and 25 s. The speed is limited by the motor and gear ratio selected for

the rollup mechanism, which are optimized for weight rather than speed. This test successfully

demonstrates the ability of the robot to consistently upright irrespective of its starting position

on the ground.

Adaptability to the Environment

The next set of experiments tests the mechanism’s adaptability to differences in surrounding

obstacles, ground angles and surface textures. In each case the experiment is run 5 times

using the autonomous controller and 5 times using individual, manual control of the four legs

by a human operator. The success rate of the various experiments is shown in Fig. 3.14.

The first set of experiments varies the angle of the ground between -15◦ and +15◦ to simulate

the often uneven ground found in unstructured environments. A second set of experiments

varies the ground texture between hardwood, carpet (found in typical indoor office environ-

ments), gravel (found in outdoor environments) and small rocks (to simulate a cave environ-

ment). A third experiment evaluates the performance of the mechanism in right-angle corners,

a common and difficult landing position for flying robots after a collision. The prototype is

placed on its side in a right-angle corner on hardwood, with its base pointing first towards and

then away from the corner.

As demonstrated, the mechanism works successfully in many common situations. In the cases

that uprighting does not succeed there are several ways of increasing the success rate:

• When the ground angle is below -15◦ (Fig. 3.14A) the force from the legs is only able to
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partially upright the platform. In most of these cases the platform is vertical enough to

still be able to take off, stabilize and close its legs. Manual control can increase success

by extending one leg more than the other, slightly changing the angle and direction of

the resulting uprighting force.

• When the ground angle is above +15◦ the platform topples over itself and falls down the

slope. In these cases, once again the platform can take off before being fully upright, or

close its legs and upright a second time. Manual control increases success by slowing

down the final stage of uprighting thus preventing the platform from toppling over.

• High surface roughness can cause the carbon ’feet’ to occasionally get stuck (Fig. 3.14B).

Retracting and then re-extending the legs in manual mode can help the feet get unstuck.

• Extending all four legs at once is not well suited for difficult situations such as corners

(Fig. 3.14C), where the legs simultaneously push agains walls or other obstacles and get

stuck. In such situations simply extending some legs and not others in manual mode

will lead to successful uprighting.

Most of the failure modes are due to the simplicity of the on-board automatic controller, which

only opens or closes the four legs all at once.

Integration into flight systems

The final experiment demonstrates that the mechanism can be integrated into a flying robot

and not impede on its primary activity of flying. The total weight of the mechanism, including

legs, rollup mechanism, sensors and electronics is 39.8 g, which represents 16 % of the total

weight of the platform (250 g). The symmetry of the mechanism about the fuselage does not

significantly alter the COG or the flight aerodynamics of the entire platform. The extra weight

does however reduce flight time from an average of 4:21 min to 2:11 min (based on three flights

in each configuration with a full battery).

A series of 5 test flights are performed during which the robot is kept flying for approximately

30 s, then purposely flown into a wall causing the platform to drop to the flat, obstacle-free

ground. In all cases the robot is able to upright itself autonomously and return to flight within

30 s of the collision. A video with a sample of these flights can be seen at http://lis.epfl.ch/

airburr.

3.4.4 Discussion

The platform described in this section is the first demonstration of a flying robot that is built

specifically to survive collisions with its environment and that is capable of returning to

a takeoff position autonomously irrespective of its falling position. Its active self-recovery

mechanism has been shown to work in a variety of environments that can be encountered in
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realistic applications. In particular, it is successful on slanted ground and around obstacles,

environments that are difficult for gravity-based self-recovery.

The current controller is a simple one that only uses the signals from on-board accelerometers.

A more advanced controller could be written if there was information available about the

position of the legs and the force they are providing. Initial investigations show that strain

gauges mounted directly on the leg near its connection point to the frame can accurately

measure the shape of the leg, and thus the force that it provides at its tip. Further strain gauges

at the interface between the rollup string and the leg can be used to measure the tension in

the string. Combining information about the leg position and string tension would allow the

controller to detect whether the legs are touching an object in its environment. As an example,

when the platform has its base pointed into a corner (Fig. 3.14C) the lack of tension in the

strings of all the legs can indicate that the platform is stuck. A smarter controller can then

use this information to retract the legs pushing against the walls, allowing the platform to

continue uprighting.

3.5 Conclusions

This chapter introduced the basic theory of uprighting of a rotorcraft platform after a collision

as well as a method to design self-recovery mechanisms that can be applied to many types of

flying robots. The method was then then implemented on two separate platforms resulting in

robots capable of autonomously returning to the air without the need for help from a human

operator.

Uprighting is only useful if a platform has enough space above it to take off vertically. In

environments where this is not the case (i.e. under a table or chair, or in a room with a low

ceiling) it would be beneficial if the platform could displace itself on the ground to reach a

more open area to take off. Indeed, all flying animals also have legs to move on the ground

when flight is not possible. Actuators already present on the robot can provide some of this

functionality. For example, the main thrusters can drag the robot forward on the ground, or

even backward if both motors are reversed. If only one of the motors are reversed, the resulting

torque on the platform makes it roll on its top and bottom rings, displacing itself sideways.

Similarly, the legs mechanism may also have uses beyond uprighting when on the ground. For

example, the legs can be used as a contact point on a vertical surface while in flight, allowing

the robot to position itself and subsequently perch on a wall. Integrated strain gauges can also

provide information on the surface quality of a wall before a perching behaviour.
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The goal of this chapter is to integrate the methods developed in the previous two chapters

into a single robotic platform that can absorb collision energy, upright itself and return to flight

repeatedly and consistently. A controller is implemented in the robot’s on-board processor

enabling it to take off, stabilize its orientation and altitude, fly in the direction of a light source,

detect collisions and self-recover, all fully autonomously. The platform’s unique capabilities

are successfully demonstrated using two tasks that have traditionally been difficult for flying

robots: flight in a completely dark environment and phototaxis in a narrow corridor.

This chapter is based partly on the publication Flying, crashing and recovering: random search

and phototaxis with minimal sensing [78].
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4.1 Motivation

The previous two chapters presented methods for designing collision energy absorption and

self-recovery mechanisms and validated their individual functioning through detailed experi-

ments. A robot cannot self-recover if it doesn’t survive a collision, however, and conversely

cannot complete a task if its in one piece but upside-down on the ground. To be truly useful,

energy absorption and self-recovery must be integrated into a single platform.

The ability to resist and recover from contact frees a flying platform from the constraints of

obstacle avoidance and thus simplifies many navigation tasks. As was presented in Sec. 1.2.1,

any platform that depends on obstacle detection and avoidance to navigate cluttered envi-

ronments is sensitive to the quality of the information it receives from its sensors, and thus

vulnerable to the sensors’ shortcomings. Navigating a dark room filled with smoke such as

a burning building, for example, is not possible for platforms depending on visual [35] or

laser-based [25, 34, 24] SLAM. The ability to bump against walls removes the need to detect

all obstacles and can thus enable simple gradient-based navigation techniques. Platform

payload being used for heavy laser scanners or computers can instead be used to increase the

flight time of the platform or to mount remote cameras or chemical sensors more useful to

the platform’s human operators.

4.2 Platform Design

This section details the design of an autonomous flying platform that integrates collision

energy absorption, self-recovery and the sensing required for autonomous navigation. As the

platform requires a variety of sensors and should navigate in a highly constrained environment,

a hovering design similar to the one presented in Sec. 2.4 represents the core of the platform

(Fig. 4.1A). Once again, two coaxial motors are used for thrust and yaw control and two control

surfaces for pitch and roll control.

Collision Energy Absorption

The platform core is first outfitted with Euler-spring protective mechanisms for absorbing

collision energy (Fig. 4.1B). As the core is the same shape as the one presented in Sec. 2.4,

the same dimensioned carbon fibre rods (20 cm length, 1 mm radius) are used for the four

tetrahedrals protecting the bottom of the platform. The top tetrahedrals are made slightly

longer to prevent the platform from staying against the wall when in flight, though still using

the same radius (25 cm length, 1 mm radius). Their slightly decreased energy absorption

ability due to their increased length1 is justified by the fact that the hovering platform is much

more likely to fall onto its bottom tetrahedrals when flight motors are cut due to a collision.

1The critical buckling force of a column is inversely proportional to the square of its length, and thus longer
columns can absorb less energy. The longer length also translates to less loading in the axial direction. For a more
detailed analysis see Sec. 2.4.
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4.2. Platform Design

Figure 4.1: A schematic of the integrated platform as it’s adapted for collision energy absorption
and self-recovery. Each additional mechanism is outlined in red. (A) The core of the platform
with all the actuators and electronics required for flight. (B) Euler-spring tetrahedral protective
structures are added for collision energy absorption. (C) An additional contact point with the
ground is created to enable gravity-based self-recovery when the platform is upside-down. (D)
A spring-leg-based self-recovery mechanism with its legs retracted and (E) extended.
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Self-Recovery

The configuration of the eight tetrahedral protective structures results in a platform that

can land upright, on its side or upside-down. To upright when upside-down a gravity-based

self-recovery mechanism is selected. The platform’s contact points with the ground are set by

the dimensions of the platform and its tetrahedrals. An additional contact point is created at

the top of the platform using four carbon fibre rods (Fig. 4.1C) whose length is defined using

equations (3.1) and (3.4). Detailed modelling of this mechanism as presented in Sec. 3.3 is not

required, as the platform does not have a wing and does not have to be optimized for forward

takeoff and flight. Though not explicitly designed for collision energy absorption, the four

rods bend on contact and thus do provide some additional protection.

A spring-leg-based active self-recovery mechanism is implemented to upright the platform

when it is on its side. As shown in Sec. 3.4, as long as the legs are positioned near the bottom

of the platform their spring factor remains close to the minimum required value. The legs are

thus mounted at the bottom of the platform’s frame (Fig. 4.1D in their retracted state, Fig. 4.1E

in their extended state), their exact position defined by the mechanical constraints of the rest

of the platform rather than through precise modelling.

4.3 Prototype Realization

A new flying platform named Nighthawk (Fig. 4.2) is built based on the same core platform

as presented in Sec. 2.4. The flexible, 3-blade propellers used in the previous platform (GWS

HD-8040x3 and HD-8040x3R) are replaced by stiffer 2-blade propellers (APC 7x5 and 7x5P)

to prevent them from flexing and contacting the frame during a collision. The high-G ac-

celerometers are moved onto a support bar to free up space for the rollup mechanism which

uses the same design as previously but with slightly more powerful DC motors (Fig. 4.2B).

The platform retains the same BurrMove v5 and BurrSens v5 electronics package which is

mounted just below the rollup mechanism. A dual-colour red and green Light-Emitting Diode

(LED) is mounted at the top of the frame to indicate the robot’s status (Fig. 4.2A). A Maxbotix

LV-MaxSonar-EZ1 ultrasonic (US) range sensor is mounted on the bottom of the frame to

measure the platform’s altitude when in flight (Fig. 4.2C). The sensor has a detection range

of 15-645 cm. The self-recovery legs are made using four carbon fibre beams (dimensions:

7x1x330 mm).

4.4 Autonomous Controller and State Machine

An autonomous controller is implemented in the embedded microcontroller to demonstrate

the platform’s ability to navigate in cluttered environments using minimal sensing and compu-

tation. Flight parameters can be monitored and modified through a radio connection to a base

station, but all sensing, processing and control is implemented on-board. The controller is

designed to navigate either in a random direction or towards a source of light (phototaxis) but
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Figure 4.2: The Nighthawk flying robot with integrated Euler-spring collision energy absorp-
tion and leg-based self-recovery mechanisms. (A) A status LED is used to indicate the robot’s
state when flying in the dark. (B) On-board electronics including high-G accelerometers
are used to control the robot’s flight, and 4 DC motors wind the legs when in flight. (C) An
ultrasonic distance sensor is used to control altitude. (D) IR proximity sensors are used to
detect the retraction status of the legs as well as the ambient light.
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with one major difference compared to traditional navigation algorithms: instead of avoiding

obstacles the controller detects collisions and recovers from them (Fig. 4.3A). The controller

uses a state machine that cycles through 5 possible states depending on the platform’s condi-

tion: Idle, Takeoff, Directed Flight, Contact Detected and Self-Recovery (Fig. 4.3B). The bi-color

status LED is green in the Takeoff and Directed Flight states and red in the Contact Detected

and Self-Recovery states.

Takeoff, flight stabilization and collision detection algorithms were implemented by Adrien

Briod.

State 0: Idle

The Idle mode is the default mode at startup. The platform waits for a connection with

the remote control with flight motors turned off as a failsafe measure before beginning the

behaviour. The controller can be returned to this state at any time using a command from the

remote control.

State 1: Takeoff

This state occurs when the platform detects that it is on the ground and upright, ready for

takeoff. The altitude controller is enabled which sets a high thrust to give the platform a

strong push into the air. Once the target height is reached or a predefined time has passed the

controller switches to Directed Flight.

State 2: Directed Flight

Once in the air the platform is stabilized in a vertical hover using the on-board IMU. Sensor

information from a 3-axis rate gyroscope, a 3-axis accelerometer and a US distance sensor is

fused using a Kalman filter [79] to estimate the platform’s orientation in the roll, pitch and yaw

axes (Fig. 4.4A) and its distance from the ground. The control flaps are then used to stabilize

the roll and pitch angles, whereas the coaxial motors stabilize the yaw angle and altitude.

Figure 4.4B presents the estimated angle and stabilization outputs for the three orientation

axes of the platform during a typical flight. The orientation estimation filter and stabilization

controller was implement by Adrien Briod, and more information can be found in [80].

During stabilized flight the platform is given one of two possible direction commands, set by

a switch on the remote control: random or phototaxis. The random direction θr is reset to

a new value after every takeoff, and can be used to perform a random search exploration of

an environment. The phototaxis direction θph is calculated using the 4 IR proximity sensors2

that are also used by the self-recovery mechanism to detect the retraction status of the legs

(Fig. 4.2D). The sensors are equally spaced at 90◦angles around the perimeter of the platform

2Vishay Semiconductors TCRT1000
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Figure 4.3: The autonomous controller implemented on the flying platform. (A) A schematic
of the robot’s behaviour shows the 5 possible states that it can be in: (0) Idle, (1) Takeoff,
(2) Directed Flight, (3) Collision Detect and (4) Self-Recovery. (B) A detailed state machine
diagram presents the states as grey squares, state change conditions as diamonds and the flow
between states as arrows.
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Figure 4.4: Stabilization of the three orientation axes during hovering flight. (A) A schematic
representation of the platform with a definition of the controlled axes. Only the core of the
platform is shown for simplicity. (B) Command, platform angle and actuator output for roll,
pitch and yaw angles during a typical flight.

and have an integrated photodiode that can be used to detect ambient light. The bearing

to the strongest light source around the platform is calculated using the signal of the sensor

with the highest ambient light s0 and the two sensors to either side of it s−1 and s+1 using the

formula:

θph = θs0 +π(
s−1 − s+1

s−1 + s0 + s+1
) (4.1)

where θs0 is the pointing direction of s0. Though a more accurate bearing could be calculated

using a greater number of sensors and more complex algorithms [81], using only 4 sensors

which are already present on the platform better demonstrates the robustness of the platform

and behaviour to low signal quality.

State 3: Collision Detected

A simple collision detection algorithm that constantly samples the on-board accelerometers

is implemented, inspired by similar algorithms used in the automotive industry to trigger

airbags [82, 83, 84]. If an acceleration of more than 2 G (19.6 m/s2) is detected (after com-
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pensating for gravity) while in Takeoff or Directed Flight states the controller switches to the

Collision Detected state and the flight motors are cut. Using a threshold of 2 G, selected based

on initial flight tests, allows the platform to stay in flight after small impacts or when flying

against a wall but protects its from high-energy collisions that destabilize the platform and

are difficult to recover from. Once the platform stops moving for 1 s after a fall to the ground

the controller switches to the Self-Recovery state. The on-board accelerometers have enough

range to detect collisions, and thus the high-G accelerometers are currently only used for

experimental characterization.

State 4: Self-Recovery

The self-recovery behaviour is a slightly improved version of the one presented in Sec. 3.4. As

opposed to the previous platform which would lie on its side on two circular rings, the current

platform contacts the ground with four tetrahedrals and thus has four stable positions on its

side. The leg closest to the ground can thus be extended alone without causing the platform

to roll on its side. Extending a single leg avoids the problem of getting stuck when in a corner

or against a wall. Once the platform is uprighted the leg is retracted until it is fully enclosed

within the tetrahedrals, as detected using the IR proximity sensor, and the controller returns

to Takeoff state.

4.5 Contact-Based Behaviours

4.5.1 Random Exploration

In this first experiment the platform performs a random search behaviour to explore a small

(3.5x6 m) enclosed experimentation room. In the Directed Flight state the platform uses

the random direction command and continues flying until it comes into contact with a wall.

Similar simple algorithms are commonly used by vacuum cleaning robots such as the Roomba

and are designed to maximally cover floor area even in the presence of clutter [85].

Figure 4.5 presents a bird’s-eye view of an example flight. Beginning in the centre of the

room, the platform takes off and flies in a random direction, contacts a wall and subsequently

uprights in preparation for takeoff. This process is repeated 7 times and lasts 140 s, during

which time the platform explores a large portion of the experimentation room.

Figure 4.6 presents the measured altitude, pitch angle and maximum force acting on the

platform3 through time for the same example flight. Takeoff and Directed Flight states are best

seen on the altitude graph4 whereas the Collision Detected state coincides with high values of

maximum force. In some cases the state changes from Collision Detected directly to Takeoff;

this happens when the platform lands upright (represented as a triangle in Fig. 4.5). Four of

3Maximum force is measured using the high-G accelerometers.
4Spikes in altitude are due to the low-quality signal of the US altitude sensor.
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Figure 4.5: Autonomous flight trajectory of the collision-robust and self-recovering platform
in a small (3.5x6 m) experimentation room as recorded from above using a 180◦fish-eye lens.
The platform takes off, flies in a random direction until it collides with an obstacle, uprights
itself and takes off again, all autonomously. Takeoff and Directed Flight states are outlined in
green, the Collision Detection state in red and the Self-Recovery state in blue. Starting position
is marked with a black X, collisions by diamonds, takeoffs that require uprighting with a circle
and takeoffs with no uprighting with a triangle.
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Figure 4.6: Altitude, pitch angle, and force amplitude measured over time during a test flight
in the experimentation room. The state of the robot is overlaid on the graphs. Takeoff and
Directed Flight states can be seen in the altitude graph, force amplitude indicates Collision
Detected state whereas Self-Recovery can be seen in the pitch angle graph.

the seven collisions result in a landing on its side (represented as a circle in Fig. 4.5) and the

subsequent Self-Recovery state is best reflected in the platform’s pitch angle.

A main advantage of contact-based random exploration is its ability to navigate environments

where obstacle detection is difficult, such as dark or smoke-filled rooms. To demonstrate

this capability the same experiments is performed but this time in complete darkness. The

position of the platform during a 3-minute flight is tracked by recording its status LED in a

long-exposure photograph taken using a camera with a rectilinear wide angle lens placed in a

corner of the room. Figure 4.7 shows three trials of the experiment.

Contact-based random exploration is successfully demonstrated in a completely dark envi-

ronment and provides a good basis for subsequent experiments in goal-directed exploration.

4.5.2 Phototaxis with Minimal Sensing

This experiment expands the ability of contact-based exploration by replacing the random

direction command during the Directed Flight state with a phototaxis command. The platform

is placed at one end of a 13x2.2 m corridor at the other end of which is a bright light (Fig. 4.8B)

that can be differentiated from ambient light using IR proximity sensors. The platform then

navigates autonomously towards the light using the same controller and state machine as in
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Figure 4.7: Long-exposure images of three flights in complete darkness using a contact-
based random exploration behaviour, in the same experimentation room as in Fig. 4.6. The
trajectories are created using the on-board Status LED, which is green during Takeoff and
Directed Flight states and red during Collision Detected and Self-Recovery states. The images
are recorded using a 3-minute-long exposure.
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the previous experiment. Figure 4.8A shows the trajectories of 10 trials in which the platform

succeeded in traversing the corridor and passing through the 2x1.2 m doorway (Fig. 4.8C).

Looking at the trajectories individually (Fig. 4.9) shows that the most difficult parts of the

navigation task were at either end of the corridor. At the start of the experiment the Nighthawk

is quite far from the light source. Plotting the total detected ambient light throughout each

trial (Fig. 4.10) shows that the detected signal begins at <1 % of full scale. This creates a large

error in the estimated light source direction causing the platform to fly towards the corridor

walls. Nevertheless, its ability to self-recover allows it to slowly advance down the corridor

until the signal strength increases.

As the platform navigates the corridor it often comes into contact with the walls. After low-

energy collisions, however, the platform often stays in contact with the wall and follows it in

the direction of the light (the green flight trajectory of Trial 7 in Fig. 4.9 is a perfect example

of this behaviour). High-energy collisions can also be beneficial; if the platform is already

moving towards the doorway contacting a wall can cause it to rebound even farther down the

corridor without using energy (this can typically be seen in trials 3, 6 and 9 in Fig. 4.9).

The second difficulty occurs when trying to cross the doorway as the platform is not always

able to pass through without its tetrahedral protective mechanisms coming into contact with

the doorway. Once again its ability to self-recover allows the platform to try again repeatedly

until it successfully reaches the other side.

Table 4.1 presents some statistics on the 10 trials which reveal several interesting insights on

the phototaxis behaviour:

• There is a large variability in the time taken to traverse the corridor. If there are few

collisions and the light signal is detected immediately the robot can traverse the space

in less than 6 s. Every collision takes time to recover from, especially if uprighting is

required, and can thus increase traversal time by an order of magnitude.

• On average 71% of collisions result in the platform landing on its side and requiring

uprighting. This goes a long way to increasing the required traversal time but also

demonstrates the necessity of the mechanism.

• Though the average traversal time is 68.6 s, the platform only spends 26% of that time

with its flight motors on (Fig. 4.11). This navigation strategy can thus compete with

other strategies based on careful traversing at slow hovering speed to avoid contact with

obstacles.

• The platform spends half of its time recovering from collisions. Though this has little

cost in terms of energy consumption (as the main flight motors are shut off), it may

be a problem for time-sensitive applications. The speed of the leg-based self-recovery

mechanism could be improved by re-dimensioning the DC motors used for rollup,

though at a higher weight cost.
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Chapter 4. Exploiting Crash-Proof Flying Robots

Figure 4.8: Environment and results for phototaxis experiments. (A) Flight trajectories of 10
flights recorded using a fish-eye lens hanging from the ceiling. The platform begins at one
end of the 13x2.2 m corridor (bottom of image) and flies towards the doorway at the other
end of the corridor (top of image). Takeoff and Directed Flight states are outlined in green,
the Collision Detection state in red and the Self-Recovery state in blue. Starting position is
marked with a black X, collisions by diamonds, takeoffs that require uprighting with a circle
and takeoffs with no uprighting with a triangle. (B) An undistorted view of the corridor and
doorway with a target marking the takeoff position. (C) The 2x1.2 m doorway at the end of
the corridor. Every trial was considered completed when the platform passed through this
doorway.
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4.5. Contact-Based Behaviours

Figure 4.9: Individual trajectories for the same 10 trials of the phototaxis experiment presented
in Fig. 4.8 with trajectory colours and marker shapes having the same meaning.
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Chapter 4. Exploiting Crash-Proof Flying Robots

Figure 4.10: Total ambient light detected by all four photodiodes over time for the same 10
trials of the phototaxis experiment presented in Fig. 4.8, normalized for maximum detectable
signal. The state of the robot is overlaid on the graphs.
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4.6. Conclusion

26 %

26 %

48 %

Takeoff and
Directed Flight

Collision
Detected

Self-Recovery

Figure 4.11: Average distribution of time in the various states during phototaxis in corridor
experiment for a total average trial time of 68.6 s.

Parameter Minimum Maximum Mean
Standard
Deviation

Number of Collisions 1 6 3.8 1.32
Number of Uprightings 0 5 2.7 1.34
Flight Time [s] 5.9 133.1 68.6 35.2
Time in Takeoff or Directed
Flight [s]

3.5 48.4 17.9 15.4

Time in Collision Detected [s] 2.5 30.1 17.5 9.9
Time in Self-Recovery [s] 0 54.7 33.2 17.3

Table 4.1: Phototaxis in Corridor Statistics

4.6 Conclusion

Indoor navigation remains a difficult problem for flying robots. At this moment the only

platforms capable of navigating confined spaces such as narrow corridors do so by map-

ping their environment with high-density laser scanners and computation-intensive SLAM

algorithms, hovering slowly to avoid any chance of collisions [25, 34, 24] or by deploying a

fleet of ceiling-attaching-capable robots that help each other thanks to relative positioning

sensors [81].

This chapter presents the first example of a robot capable of flying, colliding with obstacles

without damage, uprighting itself on unstructured terrain and taking off again without human

assistance. The importance of these abilities is demonstrated when the platform repeatedly

traverses a corridor without any contact detection, localization or mapping, but simply based

on a faint signal from four simple photodiodes.
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5 Concluding Remarks

This final chapter summarizes the main contributions of the thesis in enabling flying robots to

safely access cluttered environments. Some possible applications of the methods, platforms

and algorithms developed in this thesis are then presented. Collision survival and self-recovery

can enable many other interactions between flying robots and their environment, and thus

the chapter concludes with some avenues for further research.
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5.1 Main Accomplishments

The objective of this thesis was to investigate and design mechanisms that enable flying robots

to venture beyond wide-open spaces and into the confined, cluttered environments of their

human creators. This thesis has contributed to bring this vision closer to reality by enabling

robots to survive, recover from and even physical exploit contact with their environment.

A method for designing protective structures particularly adapted to small flying systems

presents a new angle on absorbing collision energy and the first contribution of this thesis.

A teardrop-shaped protective cage is proposed and implemented on two winged platforms

with an order of magnitude difference in weight, successfully absorbing energy from head-on

collisions. A second mechanism using Euler springs in a tetrahedral configuration is proposed

as a way of protecting hovering platforms by minimizing the force transmitted to a robot’s

frame while optimizing its weight. When implemented on a hovering platform the mechanism

is able to absorb the energy of hundreds of collisions that would damage or destroy most other

flying robots.

The second major contribution of this thesis is a method of designing self-recovery mecha-

nisms and its application to both winged and hovering platforms. The limits of gravity-based

self-recovery are demonstrated and complemented with the design of an active self-recovery

mechanism using carbon fibre legs optimized to provide the required uprighting force at a

minimum weight. The mechanism is validated on two flying platforms that use their legs to

consistently upright themselves in corners, on rough and on sloped surfaces, ready to return

to the air.

Finally, a platform named the Nighthawk is presented that demonstrates how both collision

absorption and self-recovery mechanisms can be integrated into a single robot without greatly

affecting its aerodynamics and ability to fly. The ability to crash, recover and take off again,

implemented for the first time in a flying robot, enables the use of new navigation algorithms

inspired by flying insects such as contact-based random search and phototaxis in the dark [86].

The final and most important contribution of this work is the successful navigation of a 13 m

corridor with no contact detection or localization but simply the ambient light detected using

four photodiodes. This result demonstrates the importance of self-recovery to flying robots in

enabling navigation when sensor quality is limited or nonexistent.

5.2 Potential Applications

The results on collision energy absorption shown in this thesis can be applied to any robotic

platform that risks coming into unforeseen (or even planned) contact with objects in its envi-

ronment. It is adapted to platforms where weight is a critical factor, such as jumping, gliding

and flying robots but can also be applied to ground platforms optimized for maximum en-

durance. Jumping robots in particular can benefit from this work, as their mode of locomotion

involves constant collisions and saving weight on collision protection can increase the robots’
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jump efficiency. Elastic energy absorption is best adapted to low-speed impacts (<5 m/s and

free-falls from heights of less than 2 m1.

The self-recovery design method can also be immediately applied to other robotic platforms

provided that they are also equipped to survive collisions. The most likely to benefit are other

flying platforms such as the quadrotors most commonly used for indoor exploration. Even the

most advanced platforms using laser-based SLAM to navigate can benefit from self-recovery

when their laser scanners fail to detect a window or other indiscernible object. Jumping robots

can also implement active self-recovery mechanisms, as they are usually unable to control

their landing position after a jump.

The most obvious application of the resilient flying robots and exploration algorithms devel-

oped in Chapter. 4 is the exploration of confined spaces that are dangerous or inaccessible to

humans. Typical examples include search and rescue in damaged buildings [87] and mines

[7], inspection of nuclear plants and other industrial buildings or even the exploration of other

planets.

A flying robot that can take off and land repeatedly in unstructured environments can also be

useful as a mobile sensor platform. A payload 20 g is already sufficient for equipping a variety

of sensors such as visible and infrared cameras, thermopiles, gas and temperature sensors

or microphones [88]. Deploying such platforms equipped with gas sensors in larger groups,

for example, can be used to track the plume of a chemical gas spill inside an industrial plant.

As the plume changes shape due to wind individual platforms can be redeployed to follow

suit. If equipped with wireless data transmitters a group of robots can create a continuously-

expanding wireless mesh network [89]. Such a network could be used, for example, to relay a

video feed from the end of a mine to the command post at its entrance.

5.3 Future Directions

Advanced Self-Recovery

The active self-recovery mechanism developed in this thesis features four individually-controlled

legs, allowing the robot to upright in a variety of different terrains and in the presence of ob-

stacles. There are many situations, however, when simply extending all four legs or the closest

leg to the ground is not the best strategy to upright, as demonstrated by the higher success

rates of human-controlled uprighting compared to the autonomous controller.

In its current state the platform is only aware of its orientation and whether its legs are retracted

or not. Strain gauges are a promising technology for increased sensing in a flying platform due

to their low power, weight and cost. Embedding strain gauges into the self-recovery legs can

provide information on the deflection of a leg, and thus its extension position compared to the

1Alternately, free-falls from higher heights can be absorbed if speed can be limited through the use of parachutes
or retro-rockets.
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Chapter 5. Concluding Remarks

Figure 5.1: Strain gauges attached to the platform’s legs can increase the sensing capability
of the robot at a minimal weight cost. (A) A single miniature circuit board contains all the
electronics required to interface 8 strain gauges at a weight of 4.5 g. (B) A first strain gauge
mounted on the leg can detect the leg’s deformation and perhaps even the quality of surface it
is in contact with. (C) A second strain gauge mounted on a small bar between the leg and the
retraction string can sense the tension in the string.

platform’s frame, whereas a second strain gauge on the retraction string can detect the string’s

tension. In an initial implementation eight strain gauges, two in each leg, were embedded

within the self-recovery mechanism with total weight cost of 4.5 g (Fig. 5.1) including all

required electronics. Once characterized, the deflection and string tension information can

be used to design more advanced uprighting controllers that can autonomously recover from

even more difficult situations.

Contact Detection and Surface Identification

Using on-board accelerometers, as presented in Sec. 4.4, is an efficient way of detecting the

force and duration of a collision using already-existing sensors, but cannot detect whether the

platform remains in contact with the impacting surface. Information on continued contact

with a wall after a low-energy collision could be very useful for more advanced contact-based

navigation strategies. Just as humans resort to using their hands to follow walls and navigate

in the dark, flying robots could use contact detection and wall following to traverse corridors

when other sensory information is unavailable.

There is a well-established body of research in contact sensing for robotic manipulators,
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including several reviews of existing contact sensors and technologies [90, 91]. In general

contact can be sensed either at the interface (i.e. the point of contact between the object

and the robot) or indirectly in the robots structure. Interface sensors typically take the form

of tactile arrays, similar to laptop touch-pads, single-point pressure sensors or IR proximity

sensors [92]. Though quite suitable for the fingertips of robotic manipulators, covering the

entire surface of a flying robot with such an array of sensors would likely be too heavy and

power-consuming to be practical.

Intrinsic sensors usually take the form of strain gauges or force sensors embedded within

the robots structure that measure deformation due to contact with the environment. Initial

experiments using the same strain gauges as in Fig. 5.1 placed throughout the platform’s frame

show some promise in detecting the position and force of contact and present an interesting

avenue of future research. Their main disadvantages is that they cannot differentiate between

single-point and multi-point contact.

Surface identification is an extension to collision detection that measures not only the force,

direction and duration of contact with an obstacle, but also the surface characteristic such as

texture and detail. Such information could be used, for example, to identify surfaces that are

easier or harder to follow based on their roughness.

Though not yet shown in flying robots, there are several examples of surface identification in

ground robots. [93] presents the Whiskerbot, a ’blind’ ground robot inspired by the rat that

has no camera, but uses a mobile ’head’ covered in plastic whiskers to navigate by touch. The

whiskers on the head move actively in a back-and-forth motion, similarly to the whiskers of

a rat, and their motion is detected using embedded strain gauges. Subsequent work on the

SCRATCHBot [94] improved the motion detection of the whiskers using 3-axis magnetometers

to detect a miniature magnet embedded in the whisker. A more classical approach was

presented in [95], where a Roomba floor-cleaning robot is fitted with an aluminum bar with

an accelerometer at its tip used to detect vibration in the bar. The resulting vibration signal is

used to distinguish between different surfaces as the robot passes over them.

Prescott et al. [96] provides a nice overview of technologies that can be used for contact surface

detection. If applied to flying robots, surface identification could be used in contact-based

navigation tasks such as wall following or for finding surfaces on which the robot can safely

perch. An interesting first implementation could be to use the strain gauges embedded within

the self-recovery mechanism (Fig. 5.1) to rub up against a surface while in flight.

Perching

The ability to self-recover allows a flying platform to return to the air when it is on the ground,

but also implies that it may stay on the ground and perform other tasks, such as surveillance

or environmental monitoring, without expending energy required for flight. Certain situations

require a higher point of view than on the ground, and thus the ability to perch on non-
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horizontal surfaces and return to the air is an interesting extension of self-recovery. Perching

of flying robots has been demonstrated on vertical walls using grippers [97, 51], on metallic

ceilings [98], on power lines [99, 100] and more recently on a human hand [101]. In the field

of climbing robots there has been much interest in gecko-inspired dry adhesives, such as

those used on the Waalbot II [102] or the Stickybot III [103]. Using dry adhesives on a flying

robot can give it the ability to perch on smoother surfaces such as windows common in urban

environments.

Hybrid Air-Ground Locomotion

Adding ground locomotion capabilities to a flying robot can be beneficial in certain very

confined spaces such as underneath tables or in caves with low ceilings. The simplest solution

for a flying robot is to drag itself on the ground by displacing air to the side. Adding a set

of passive wheels [29] can increase locomotion efficiency, though only on flat, obstacle-

free ground. Using active wheels powered by the same motors as used for flight has been

considered [55], but the difference in rotation speed and required torque between wheels and

propellers makes using the same drive motor difficult. Perhaps the solution most adapted to

unstructured environments is the one found in insects and birds: adding separately-actuated

legs. Recent demonstrations, including flying robots adapted with legs [50, 104] and legged

robots adapted with wings [104] are a promising start to building flying machines that are

equally comfortable in the air as on the ground.

5.4 Outlook

The automation of flying systems is moving at a lighting pace and flying robots are increasing

filling our skies. Modern commercial airliners feature autopilots whose abilities rival those of

their human counterparts. Flying robots capable of completely autonomous takeoff, waypoint

navigation and landing can now be purchased and operated without any knowledge of how

they actually work2. In a few years autonomous flying systems will be prevalent in the skies

above us, monitoring our crops, mapping our cities, transporting our goods and even helping

to protect our lives.

Perhaps the faith we put in our algorithms is a bit too optimistic, however; mobile robotics is a

developing technology, and has yet to reach the reliability rates of human-piloted systems3.

Even the most sophisticated platforms and algorithms can fail, and the possibility of this

failure must be taken into account when designing flying systems. Much like anti-lock brakes

and airbags have become standard in modern cars, there must be a paradigm shift in the

design of flying robots from collision avoidance to collision resistance. Protecting UAVs from

contact with obstacles also protects humans from contact with UAVs and thus facilitates social

acceptance of their operation in our vicinity.

2http://www.sensefly.com, accessed 21.05.2012
3http://goo.gl/uRDAc, accessed 21.05.2012
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5.4. Outlook

Ultimately, resilience and adaptability still separate current flying platforms from the impres-

sive capabilities of the insects and birds we see in nature. There is a lot of work left to be done

before we can create flying machines that can survive constant collisions like a fly on a window,

navigate in the dark like a bat or stand up on its feet like a bird, but perhaps this thesis has

brought that dream a little bit closer.
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A A Brief History of the AirBurr Project

The flying platforms presented in this thesis are but some of the 11 platforms that were built,

tested and sometimes destroyed as part of the AirBurr project. The goals of this two-person

project are twofold: to develop robust flying platforms that can survive collisions with their

environment and to develop novel strategies for speed limitation and contact sensing. This

thesis tackled the former of the two goals.

This chapter presents the platforms in chronological order to highlight the iterative design

process that yielded the final Nighthawk flying robot. Though sometimes globally referred to

as "AirBurrs", each platform has a unique name based on its particular abilities. The robots

are presented with their most important characteristics as well as their major innovations

compared to previous platforms. It is hoped that this chapter can convey to the reader the

source of some of the ideas presented throughout the thesis and the challenges of integrating

multiple mechanisms into a single platform that is still capable of flight.
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AirBurr 1: Hovermouse

Weight: 20.5 g
Drivetrain: 2x 6 mm DC pager motor,
hand-made balsa propeller
Electronics: Spektrum AR6400
Innovations: Gravity-based self-
recovery, teardrop spring
Battery: 1-cell LiPo, 110 mAh

The first prototype platform was not completely new, as it was based on some of the ideas

developed in a previous thesis on optic-flow based navigation for ultralight winged platforms

[21]. As described in Sec. 3.3, the goal of the HoverMouse is to design an ultralight platform

capable of gravity-based self-recovery while protecting its propellers from contact with the

environment. The platform is built using traditional construction techniques; all carbon

fibre rods and mylar surfaces are glued together, making repair difficult. The HoverMouse

inaugurated the teardrop-shaped spring, is remote-controlled and has no on-board sensing.

AirBurr 2: ICRA2010

Weight: 25 g
Drivetrain: 2x 6 mm DC pager motor,
hand-made balsa propeller
Electronics: Spektrum AR6400
Innovations: 3D-printed connection
joints
Battery: 1-cell LiPo, 110 mAh

ICRA2010, as its namesake may suggest, is a modified version of the HoverMouse built for

publication at the IEEE International Conference on Robotics and Automation. The main

improvements include the use of 3D-printed connection points between the carbon fibre rods

to increase repairability. The extrusion process used to produce the parts was of low quality

and the resulting parts were not very resistant, but the experience gained with the 3D-printing

machines was used in all subsequent platforms.
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AirBurr 3: Flying Stick

Weight: 110 g
Drivetrain: HK-13DZ 2000kv Counter
Rotating Micro BL System, GWS 3-
blade 6-inch propellers
Electronics: BurrSens v3

Innovations: IMU and stabilized hov-
ering
Battery: 2-cell LiPo, 480 mAh

The Flying Stick represented a major change in design. The weight of the platform was

increased by a factor of four to accommodate the 20 g payload required by the project. The

platform’s fuselage is built using an 8x10 mm rectangular carbon fibre tube, much more robust

than the 1.4x1.4 mm bar used in the previous platforms. This new overhead allowed the first

use of embedded sensors in the form of the BurrSens v3 sensor board, which contained 3-axis

accelerometers and gyroscopes for stabilization, an on-board microcontroller and a miniature

radio for data transfer, all in a 3 g package. This platform was also the first to use the HK-13DZ

coaxial brushless DC (BLDC) motor, the lightest one available on the market, weighing a

mere 13 g (18 g with two three-blade propellers). BLDC controllers and a satellite receiver are

connected to the BurrSens board through wires.
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AirBurr 4: Crashy

Weight: 124 g
Drivetrain: HK-13DZ 2000kv Counter
Rotating Micro BL System, GWS
3-blade 6-inch propellers
Electronics: BurrMove v4 and
BurrSens v4

Innovations: Head-on collision en-
ergy absorption
Battery: 2-cell LiPo, 480 mAh

Crashy was developed to improve the collision energy absorption capabilities of the previous

platform and is presented in detail in Sec. 2.3. It is the first platform to use carbon fibre

and aramid honeycomb sandwich as a fuselage material, a material used for all subsequent

platforms. It is also the first platform to feature the BurrMove v4 integrated actuator board

which is meant to replace the loose speed controllers, servos and receivers of the previous

platform by integrating them all into a motherboard. The BurrMove has power management

circuits for stepping down the 7.4 V power from the battery to the various voltages required by

the platform’s actuators and sensors, as well as protecting sensitive components from current

surges. It has its own microcontroller which is used to control all on-board actuators and a

dock for the BurrSens v4 which is now dedicated to sensing and higher-level algorithms.
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AirBurr 5: Bumpy

Weight: 130 g
Drivetrain: HK-13DZ 2000kv Counter
Rotating Micro BL System, GWS
3-blade 6-inch propellers
Electronics: BurrMove v4 and
BurrSens v4
Innovations: Strain-gauge-based
contact detection
Battery: 2-cell LiPo, 480 mAh

Bumpy was developed as part of a student project on contact detection. Taking some inspira-

tion from previous designs, Bumpy is the first platform designed with only hovering flight in

mind and to feature a second ring at the base of the platform to be used as landing gear. Its

main innovation, however, are the four strain gauges integrated into its attachment springs

between the frame and the propeller protection ring. The signals from these four sensors is

analyzed using an embedded algorithm and can detect the position and amplitude of a force

on its outer ring to an accuracy of around 0.5 N and 10◦.

AirBurr 6: Sticky

Weight: 200 g
Drivetrain: 2x CR2028 BLDC motors,
APC 6- and 7-inch propellers
Electronics: BurrMove v4 and
BurrSens v4
Innovations: Attachment mechanism,
stiff propeller protection
Battery: 3-cell LiPo, 730 mAh
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Sticky was developed as part of another student project with the goal of implementing an

attachment mechanism for flying robots using gecko-inspired dry adhesives. The mechanism

is connected between the attachment spring and the protection ring of the platform and can

be used to perch on glass and other smooth vertical surfaces. A similar mechanism is currently

being developed and integrated into the Nighthawk. Sticky was also used as a test platform

for new drivetrains when it was decided to further increase the weight of the platform to

accommodate more sensors. Several configurations were tested, including the use of a single

motor for thrust and a third servo-motor for yaw stabilization, before a final configuration

using two BLDC motors facing each other was selected. The second motor is mounted upside-

down on a stiff propeller cage which is also used for protection. Sticky also marked the move

to 3-cell LiPo batteries.

AirBurr 7: Multitasky

Weight: 210 g
Drivetrain: 2x CR2028 BLDC motors,
APC 7-inch propellers
Electronics: BurrMove v4 and
BurrSens v4
Innovations: Altitude stabilization
and autonomous takeoff
Battery: 3-cell LiPo, 730 mAh

Multitasky got its name as it was originally supposed to integrate attachment and leg-based

uprighting mechanisms, but in the end was used more for flight experiments. Its design

applied the drivetrain lessons of the previous platform and uses two separate BLDC motors

instead of an integrated contra-rotating system. A US distance sensor is mounted pointed

downward to provide altitude stabilization and autonomous takeoff capability.
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AirBurr 8: Samurai

Weight: 250 g
Drivetrain: 2x CR2028 BLDC motors,
APC 7-inch propellers
Electronics: BurrMove v4 and
BurrSens v4
Innovations: Active self-recovery
Battery: 3-cell LiPo, 730 mAh

Samurai is based on the same platform design as Multitasky but with the addition of the

leg-based active self-recovery mechanism explained in greater detail in Sec. 3.4
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AirBurr 9: Beefy

Weight: 280 g
Drivetrain: HobbyKing contra-
rotating BLDC motors, APC 7-inch
propellers
Electronics: BurrMove v5 and
BurrSens v5

Innovations: triangular beam Euler
springs
Battery: 3-cell LiPo, 730 mAh

Beefy is an interim platform used to study some new design ideas in collision energy absorp-

tion and propeller protection. The teardrop springs used in previous platforms are expanded

to triangular springs using carbon fibre beams, a precursor to the tetrahedral configuration.

The beams absorb energy through buckling when loaded correctly, but their inability to flex

in all directions (as opposed to rods) causes damage to connection points in certain loading

conditions, thus leading to the idea of tetrahedrals.

Despite the flexible protection around previous platforms there are still some situations in

which the propellers can come into contact with parts of the platform and get damaged. Beefy

was built with a stiff protection ring made of moulded carbon fibre surrounding a new coaxial

motor that was more powerful than the previous two-motor system. This protection system

proved to be heavy, however, and shattered after a high-energy contact, providing further

arguments against stiff protection for propellers that are outside the platform’s frame.

Before it suffered permanent damage Beefy was a nimble flyer and served as a testbed for

the newest version of the BurrMove and BurrSens electronics which have upgraded power

management to interface more sensors and actuators for future platforms. Beefy also featured

a leg-based active self-recovery mechanism.
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AirBurr 10: Blackstar

Weight: 282 g
Drivetrain: HobbyKing contra-
rotating BLDC motors, GWS 3-blade
8-inch propellers
Electronics: BurrMove v5 and
BurrSens v5
Innovations: Tetrahedral Euler-spring
protective structures, high-G ac-
celerometers
Battery: 3-cell LiPo, 730 mAh

Visually, Blackstar presents the biggest departure from previous designs, but at its core it

remains a coaxial platform with flaps for controlling roll and pitch. The lessons learned with

Beefy are evident in this new design: propellers are now housed within the platform’s frame

and the motors are mounted rigidly to its centre. The triangular protective mechanisms have

been replaced by the tetrahedral structures explained in detail in Sec. 2.4. Blackstar also has

integrated high-G accelerometers for measuring collision force amplitude on its frame.
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AirBurr 11: Nighthawk

Weight: 350 g
Drivetrain: Himax CR2805 contra-
rotating BLDC motors, APC 7-inch
propellers
Electronics: BurrMove v5 and
BurrSens v5
Innovations: Fully-integrated col-
lision energy absorption and self-
recovery. Status LED for night flights.
Battery: 3-cell LiPo, 730 mAh

Nighthawk is the final platform developed during this thesis, and also the first to fully integrate

tetrahedral springs, gravity-based self-recover and leg-based self-recover into a single platform.

Based around the same core as Blackstar, Nighthawk has an upgraded coaxial motor and uses

stiff propellers to prevent flexion during collisions. Its features and autonomous navigation

abilities are best explained in Ch. 4.
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