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Abstract

A new numerical method is proposed to study two-phase flow and heat transfer for interlayer

cooling of the new generation of multi-stacked computer chips. The fluid flow equations are

developed in 3-dimensions based on the Arbitrary Lagrangian-Eulerian formulation (ALE)

and the Finite Element Method (FEM), creating a new two-phase method with an improved

model for the liquid-gas interface. A new adaptive mesh update procedure is also proposed for

effective management of the mesh at the two-phase interface to remove, add and repair surface

elements, since the computational mesh nodes move according to the flow. The Lagrangian

description explicitly defines the two-phase interface position by a set of interconnected

nodes which ensures a sharp representation of the boundary, including the role of the surface

tension. The new methodology for computing the curvature leads to accurate results with

moderate programming effort and computational cost. Static and dynamic tests have been

carried out to validate the method and so far all the obtained results have compared well to

analytical solutions and experimental results found in the literature, demonstrating that the

new proposed methodology to simulate two-phase flows provides good accuracy to describe

the interfacial forces and bubble dynamics. The new code was then used to simulate elengated

bubble flows in square microchannels, being considered for two-phase interlayer cooling in

future 3D-IC compute chips.

Keywords: Two-Phase flows, Surface tension, Curvature, Arbitrary Lagrangian Eulerian, Finite

Element Method, Adaptive mesh refinement.
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Résumé

Une nouvelle méthode numérique est proposée pour étudier les écoulement biphasiques

et le transfert de chaleur lors du refroidissement “inter-couches” de la nouvelle génération

de processeur “multi-stack”. Les équations d’écoulement du fluide sont développées en

3-dimensions et basées sur la formulation Lagrangiene-Euleriene Arbitraire (LEA) et les Méth-

odes des Elements Finis (MEF). Ceci représente une nouvelle méthode de modelisation des

ecoulements biphasiques comportant une approche améliorée de l’interface liquide-gaz. Une

nouvelle procédure d’adaptation de maille est également proposée pour une gestion efficace

de la maille à l’interface biphasique afin de supprimer, ajouter et réparer les éléments de

surface, les noeuds du maillage se déplaćant avec l’écoulement. La description Lagrangiene

définit explicitement la position de l’interface biphasique par un ensemble de noeuds inter-

connectés qui assure une représentation nette de la frontière, incluent notamment le rôle de la

tension de surface. La nouvelle méthodologie de calcul de la courbure conduit à des résultats

précis avec une complexité de programmation et un temps de calcul modérés. Des essais

statiques et dynamiques ont été réalisés pour la validation de la méthode et à ce jour, tous les

résultats obtenus sont en accord avec les solutions analytiques et les résultats expérimentaux

trouvés dans la littérature. Ceci démontre que la nouvelle méthodologie de simulation des

écoulements biphasiques présente une bonne précision pour décrire les forces interfaciales

et la dynamique des bulles. Le nouveau code a été ensuite utilisé pour simuler les écoule-

ments à bulles allongée dans des microcanaux carrés, représentant le futur refroidissement

intermédiaire biphasique des processeurs 3D-IC.

Mot clés: Écoulement biphasique, Tension de Surface, Courbure, Lagrangiene Euleriene

Arbitraire, Méthodes des Elements Finis, Adaptation de maille.
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arrows). Its analogy to 3-dimension space is straightforward by considering a

surface embedded in R3 as the interface between the fluids. . . . . . . . . . . . . 89

6.5 Normal and tangent components of the interface’s velocity vector. The pro-

posed scheme allows to remove partially or totally the tangent component of

the interface’s velocity vI by varying the parameter γ1. . . . . . . . . . . . . . . . 90

6.6 Insertion of a surface node. (a) The edge 1− 2, which is longer than a fixed

parameter hmax , is identified. (b) The new node is then added at the midpoint

of the edge 1−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.7 Representation of the 3-dimensional triangular surface mesh. (a) The node v is

added at the midpoint of the edge 1−2 (b) The plane θ is derived by the mean of

two element normal vectors which are adjacent to the edge 1−2. The vectors n1

and n2 are the projection of the normal vectors of nodes 1 and 2 onto the plane

θ. (c) The node’s new position is found by moving it from the edge 1−2 toward

the circle segment in (b), thus the curvature error in v is reduced. . . . . . . . . 93

6.8 Deletion of a surface node. (a) The edge 3− v is detected when its length is

smaller than a reference length hmi n . Due to the sum of neighbor edge lengths,

the node v is chosen to be deleted. (b) Therefore, the empty polyhedron must

be reconnected to achieve a new surface triangulation. . . . . . . . . . . . . . . 94

xvii



List of Figures

6.9 Remeshing of a surface polyhedron by successive node re-connections. (a) An

edge is created by connecting the nodes 1 and 2. (b and c) The node 1 is then

connected to the remaining nodes 4 and 5, thus achieving the final surface

triangulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.10 Reconstruction of the surface mesh by the “ear” technique. (a) First “ear” is

achieved by connecting the nodes 1−2−3 and forming the surface triangle. The

node 2 is then deleted from the polyhedron P . (b) The new triangle is formed by

connecting the nodes 3−4−5, and thus the node 4 is eliminated. (c) Last two

triangles are created from nodes 5−6−1 (node 6 is deleted) and 1−3−5, which

are the remaining nodes of the successively deleted polyhedron. . . . . . . . . 95

6.11 Contraction of a surface edge. (a) The edge h (segment 1-2) is found to be smaller

than hmi n and (b) so it is collapsed to the midpoint of the same edge. Due to its

simplicity, only triangles e1 and e2 are eliminated from the surface mesh and the

remaining node connectivity is not affected. The new location of node 1 should

respect the curvature of its neighbors as described in the insertion strategy. . . 96

6.12 Node displacement according to neighbor’s curvature in the process of edge

contraction. (a) The plane Ω is found using the curvature vectors of nodes 1

and 2, thus a circle equation is fitted and (b) its solution is used to displace the

node and avoid losses of mass. (c) The resulting scheme of edge contraction

considering the neighbor’s curvature. . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.13 Triangular surface flipping operations: (a) The triangle aspect ratio, the curvature

of neighboring nodes, and the triangle circumcenter are taken into consideration

to perform the flipping from edge 1−2 to 3−4; (b) the flipping of edge 1−2

cannot be assigned due to an inconsistent mesh generation. (c) The flipping

operation may lead to local loss of mass and it should be treated with care. . . . 99

6.14 Volume correction in the rising bubble test case: (a) The initial volume V 6=
0.5191 is computed when the simulation starts, then it is compared to the current

bubble’s volume and corrected after a few iterations. (b) Convergence error of

bubble’s volume correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.1 Comparison of a Taylor bubble and three representative shapes used to evalu-

ate the curvature error of the proposed numerical method: (a) Taylor bubble,

(b) sphere, (c) cylinder and (d) torus. The sphere with radius R = 0.5 has both

curvatures with same value and sign. In the cylinder, part of its shape (curved)

has one of the principal curvatures zero (along its height) and the other is in-

versely proportional to the cylinder radius Rc = 0.5. The torus has the principal

curvatures with opposite signs in its inner part and same positive sign for the

remaining shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Log scale graph showing the convergence order of the new methodology for

computing the curvature of a surface. The slope found in the numerical method

suggests its convergence is first order. . . . . . . . . . . . . . . . . . . . . . . . . . 106

xviii



List of Figures

7.3 Chordal pressure jump between the phases for different surface edge lengths.

The solution of the pressure field for a static droplet immersed in a low viscous

fluid was interpolated in a linear uniform mesh where the non-dimensional

pressure p = 0 corresponds to the area occupied by the gas phase and the pres-

sure p = 20 stands for the area occupied by the droplet.The test was performed

considering the non-dimensional radius R = 0.5 and Eo = 0.2, resulting ∆p = 20. 108

7.4 Capillary pressure of a spherical droplet immersed in another fluid. The jump in

pressure can be seen at the location of the interface. . . . . . . . . . . . . . . . . 109

7.5 Curvature distribution along the drop’s height. The solid line was fit by the least

square method and its slope gives the value of Êo = 2. . . . . . . . . . . . . . . . 111
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1 Introduction

Today, most of the cooling devices found in personal computers and datacenters use either

single-phase air or water cooling systems. With microprocessor performance increasing

exponentially, an efficent and better way to cool and decrease the computer chip temperature

is of utmost importance. Furthermore, a substantial increase of the number of chips per

motherboard plans to go to multi-layer stacks of chips with internal cooling channels, since

higher computational resources are continouasly required. It is known that the heat exchange

of two-phase flow systems are much higher than those using single-phase flow, mainly due to

the nature of the thermal behavior of each phase in presence of an interface layer separting

both fluids. Therefore, a new cooling technique is proposed to maintain simultansly the

temperature of two or more stacked microprocessors, within an optimal working range, by

flowing and evaporating two-phase environmentally friendly refrigerants in-between. These

operating fluids are responsible for removing the excessive heat produced by the processors,

however the cooling channels are limited to the order of 100 microns size.

Despite the available cutting-edge experimental techniques, a deeper insight into the mi-

croscale flow field is necessary. However, to access such a small length scale accurately,

different techniques are required. In this context, numerical analysis has become an useful

tool to simulate the mechanisms of two-phase flows, due to the fast growth of computer

resources and the reduction of cost compared to those of experimental facilities. In fact, the

modeling of such conditions is not an easy task due to the complexity of the non-linear set of

equations that govern the flow field. Moreover, the characterization of surface tension forces

and the interfacial deformation between the vapor and liquid phases adds another level of

complexity, all of which require significant efforts to resolve in two-phase flow simulations.

This work is part of the larger multi-disciplinary multi-laboratory Nano-Tera/CMOSAIC project

which aims to study and design microscale two-phase interlayer cooling systems for the next

generation of 3-dimensional stacked microprocessors within this framework. This present

thesis proposes a new “one-fluid” moving mesh methodology, using the Arbitrary Lagrangian-

Eulerian description and the Finite Element method, to simulate 3-dimensional two-phase

flows in macro and micro scales with phase change as an extension of the single-phase
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code developed previously at the Metallurgical and Materials Engineering Department of the

Federal University of Rio de Janeiro (UFRJ-COPPE) and in the Group of Environmental Studies

for Water Reservoires of the State University of Rio de Janeiro (UERJ-GESAR) ([4]).

The 3-dimensional Navier-Stokes and energy equations are discretized over a unstructured

tetrahedral mesh through the Finite Element method. The Mini element is employed to

fulfill the stability requirements of the LBB condition and the semi-Lagrangian method is

used to model the convective terms, allowing large time steps and producing symmetric

positive-definid matrices, whose solution is efficiently calculated. The proper description

of the surface tension forces is a key aspect to sucessfully model of the two-phase flows. In

this work, the interface between the phases is represented by an unstructured 3-dimensional

surface, whose description is based on a set of geometrical objects such as points, edges and

triangular faces. In this way, the mean curvature, used to compute the surface tension, can

be calculated directly on the computational nodes by geometric functions, i.e., normal and

tangent vectors based on Frenet’s Formula [48]. With such an approach, a sharp interface

between the phases is also achieved due to its element set representation. Moreover, due to the

discretization method, the thickness of the interface in the transition area of fluid properties,

namely viscosity and density, is kept sharp, thus not requiring a particular function to deal

with numerical instabilities in the two-phase interface. Due to the adopted description of the

fluid flow equations, no velocity restriction is imposed. However, to describe accurately fully

turbulent flow regimes, the mesh size should be proportional to the minimum present length

scale.

The new methodology proposed in this thesis is detailed in the following chapters and several

test cases are used to evaluate the accuracy of the computed surface tension force. Finally, the

method is compared to some representative experimental results. The contents of this Ph.D.

thesis are organized into the following chapters:

• Chapter 1: Introdution

• Chapter 2: Literature Review

• Chapter 3: Governing Equations

• Chapter 4: Finite Element Method

• Chapter 5: Interface Description

• Chapter 6: Adaptive Mesh Refinement

• Chapter 7: Results

• Chapter 8: Conclusions
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2 Literature review

In this chapter, the available literature is reviewed and discussed, focusing on the methodology

adopted in the present work, namely Finite Element Method, two-phase flow methods, surface

tension models, adaptive mesh refinement schemes and mass transfer models.

2.1 Finite Element Method

The Finite Element method has been used, since the 1950’s, in solid mechanics to solve prob-

lems in which the available standard methods were not capable of handling. Only later on, in

the 1970’s, the Finite Element method began to be used to discretized the governing equations

in fluid dynamics, mostly due to the consolidation of the Galerkin method for the diffusion

equations. The relatively late start in fluid dynamics is mainly attributed to the strong velocity-

pressure coupling and convective terms found in the Navier-Stokes equations, in which the

later can not be written in terms of a linear combination of independent components. Thus,

the non-linearity produces non-symmetric operators whose solution is not trivial. Moreover,

the greater is the Reynolds number Re, the larger is the influence of the convective term in

the equations. For instance, in large channel flows, if Re is greater than 2000, the flow regime

is characterized by its non-linearity, namely turbulence. Another numerical obstacle is the

incompressibility condition, which is found in many practical problems. Such a condition

imposes that the velocity field must have zero-divergence, thus the pressure field can not be

coupled to any other quantity. However, many authors have started to develop important

tools to investigate these problems and different approaches are found in the basic literature.

The pioneering work has been performed by [104] in which the Finite Element method was

formalized for solving common field problems. A triangular mesh was set up to investigate

boundary value problems and, despite the precarious computational resources, many engi-

neering problems could be treated numerically. This work brought to the numerical research

field great capabilities that were further developed by many other authors in the fluids area.

Nowadays, the Finite Element method is widely used due to its enormous flexibility to solve

problems in complex geometries and its fundamental mathematical framework, which allows
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real problems to be modeled in several different ways.

An algorithm for the solution of purely diffusion or diffusion-convective is presented in [73].

The mixed characteristic-Finite Element method is developed to derive first and second

order accurate conservative upwind schemes. The algorithm can be used in the Navier-

Stokes formulation; however the numerical implementation requires a quadrature formula

to assemble the right hand side vectors, thus increasing the complexity of the proposed

algorithm.

In [42] and [43], a new Petrov-Galerkin formulation for Stokes problems was derived. The

strong Babuska-Brezzi condition was “circumvented” by introducing an artificial stabilization

process which allowed the use of elements with the same order to discretize fluid flow equa-

tions, therefore reducing considerably the size of the final linear system and, consequently,

the time spent to solve it. However, its implementation is not straightforward and the required

assembling time may be larger than those found in the standard methods. While this Finite

Element formulation is proposed to solve the Stokes problems, it can be successfully applied in

the Navier-Stokes equations to avoid space restrictions commonly found in velocity-pressure

coupling problems.

The Taylor-Galerkin method for Finite Element schemes was proposed and discussed in [26].

The method is described for scalar convection equations in one or more space dimensions,

which produces accurate temporal differencing by using Taylor series expansions. In Taylor-

Galerkin methods, the time discretization plays an important role; therefore the time-stepping

is chosen so that the stabilization occurs in a natural way under certain time step restriction.

The method is compared to the Galerkin and Petrov-Galerkin methods and the conclusion is

that the new methodology produces high phase-accuracy with very low numerical diffusion.

In [53], proposed a two-step explicit Finite Element scheme was proposed to obtain time-

accurate solutions for compressible Euler equations. Additionally, an adaptive mesh refine-

ment scheme was proposed to rearrange the elements according to a required accuracy for

compressible flows. The computational domain is discretized by tetrahedron elements in

an uniform grid and common benchmarks are performed to evaluate the accuracy of the

proposed methodology.

In [68] and [9], they studied a discontinuous Galerkin formulation applied to the Finite El-

ement method. The method proposed was able to solve purely diffusion and convection-

diffusion problems with different levels of mesh refinement. They performed several stability

analysis studies and compared results with the standard continuous Galerkin method, thus

demonstrating quantitatively and qualitatively the superiority of the proposed discontinuous

formulation against the continuous case.

More recently, [4] developed a 3-dimensional scheme of the Navier-Stokes equations using

a mixed formulation of bubble tetrahedron elements, the semi-Lagrangian method and the

projection method, thus fulfilling the Babuska-Brezzi condition and generating a symmetric
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positive-definite matrix, whose solution may be more rapidly computed. The scheme was

shown to be numerically stable for a large range of Reynolds numbers, while however the

linear interpolation, present in the semi-Lagrangian method, may lead to excessive undesired

numerical diffusion, and thus a high interpolation order is required.

Among these works, the investments in numerical two-phase flow and Finite Element method

are growing exponentially. Mainly due to the high mathematical flexibility of the Finite

Element method itself, but also due to its accuracy to model two-phase flow phenomena. In

[89], they used the Finite Element method to model a class of unsteady moving boundary

problems such as free surface flows, two-fluid interfaces, fluid-object and fluid-structure

interactions and moving mechanical components using interface-tracking methods and

interface-capturing methods to model the interface boundaries. Moreover, 3-dimensional

complex geometries were tested and benchmarked to validate the proposed methodology.

The Finite Element method has been used to simulate free-surface flow problems with dy-

namic contact lines in [54]. The Arbitrary Lagrangian-Eulerian description was employed

to describe the solution of the 3-dimensional equations. The interface was modeled by a

triangular surface mesh and the domain mesh was successfully discretized by the quadratic

tetrahedral Taylor-Hood element. Additionally, [13] investigated the same problem of free

surface flows, but employing the MINI tetrahedron element, which reduces the number of un-

knowns in the final set of linear equations. Tests and error analysis were conducted, showing

that the proposed methodology is suitable for modeling moving boundary problems. However,

the dynamics of an additional phase were not taken into account in both works.

2.2 Two-Phase Flow Methods

In two-phase flows, discrete interface modeling is the key factor to achieve accuracy and

precision. In the literature, two different approaches are commonly found, namely Eulerian

and Lagrangian interface representations. These nomenclatures are strongly connected

to the definition of the fluid flow motion. Figure (2.1) depicts a 2-dimensional schematic

representation of the Eulerian and Lagrangian description of the interface between fluids.

In the Eulerian formulation, also called interface capturing, the interface is not explicitly

described, but instead is defined by special color functions which are advected by an additional

hyperbolic equation. Such an equation is a common source of numerical diffusion due to its

discretization and requires special attention by the computational scientist. Bubble break-

ups and coalescences are easily modeled by this approach. However, interface capturing

requires more computational nodes to describe the scales present in the physical problem.

For instance, the most widely used methods are the Volume of Fluid and Level-Set methods.

They are also known as VOF and LS, respectively.

On the other hand, in the Lagrangian approach, the interface between the phases is repre-

sented by a set of geometric objects such as nodes, segments and faces, which may be, or

may not be part of the domain mesh. Figure (2.1b) illustrates a case in which the interface is
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(a) (b)

Figure 2.1: Interface representation in two-phase flows. (a) In the Eulerian approach, the
interface between the fluids is located somewhere in between the computational elements.
On the other hand (b) the Lagrangian description represents the interface by computational
objects, such as nodes, segments and elements, thus achieving a sharp interface.

part of the domain mesh. As can be seen, the interface does not divide any element and no

additional treatment is required to deal with high ratio property changes across the interface.

Moreover, the interface has zero thickness since it is sharply defined by nodes and triangle

edges. The interface is then advected at each time step according to the flow field velocity,

thus not requiring any additional equation to describe its motion.

Within the Eulerian and Lagrangian approaches, different techniques are available to model

two-phase flow problems. Each particular method guarantees a set of desired features with

different levels of programming efforts. Below, we present an overview of the development of

these methods that focus on the Lagrangian description, which is part of the present research.

In the 1980’s, the Volume of Fluid, or VOF, method was proposed by ([40]), which consists of

the description of each phase by the volume ratio occupied in the computational cells. The

integers 0 and 1 are assigned to define the region occupied by only one of the fluids and values

between these integers indicate the region occupied by the interface. Due to the discontinuity

of the VOF function, good accuracy cannot be assured when computing the curvature and

normal vectors and thus important phenomena are more difficult to capture close to the

interface. Figure (2.2) shows a 2-dimensional schematic representation of the VOF method

in a structured rectangular grid. The VOF function is assembled by considering the volume

occupied by each phase in the computational element.

A 2-dimensional VOF method was developed in [92] and later extended to 3-dimensional

flows [91]. The 3-dimensional code included a new methodology based on a two way particle

tracking method, which took into account the effects of each phase on the other. Tests were

performed to investigate a bubble rising in a stagnant fluid. A wide range of Eötvös and Morton
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(a) (b)

Figure 2.2: Interface representation in the VOF method. (a) The interface is defined implicitly
and it is located somewhere in the computational grid. (b) The VOF function is assembled by
considering the volume occupied by each phase at each computational element.

numbers was tested and compared to experimental results, therefore proving that the code

was able to capture the effects of different fluid properties.

In ([17]), a two-phase flow model, based on the VOF technique, was developed to simulate

flows with high density ratios. They used the continuum surface force model (CSF) to account

for the effects of surface tension in the Navier-Stokes equation. Bubble coalescence and

bubble test cases were performed to validate their code with available literature data. The

proposed model showed good agreement with experimental data.

A 2-dimensional two-phase flow model was implemented in [33] using VOF and a staggered

Finite Volume method. This methodology was based on one class of elements commonly

found in Finite Element methods, namely Crouzeix-Raviart. Additionally, adaptive mesh

refinement was used to obtain uniformity in the mesh elements at the domain of dependence

of the interface. They performed static and rising bubble tests and found good agreement to

experimental results.

In [99], they developed a 2-dimensional and axisymmetric least-square finite element method

to simulate two-phase flows using the VOF method. A modified continuum surface tension

model was proposed to treat the surface tension term in the Navier-Stokes equation by calcu-

lating the divergence of a stress tensor defined by the gradient of a Heaviside function. The

modified model bypasses the difficulty in approximating the curvature of the interface and

thus it seems to be easier calculated. Results were successfully compared to different test

cases such as a dam breaking, oscillating and stationary bubbles and a conical liquid sheet in

a pressure swirl atomizer.

The Level-Set (LS) method in fluid dynamics, first presented by [70], has become an important
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tool for two-phase flow modeling. The interface is represented by a zero-level distance function

that is advected by the flow field. The curvature and the normal vector are conveniently

calculated with the aid of the same distance function, and thus a straightforward modeling of

surface tension can be achieved. Despite its recent introduction to two-phase flows, the LS

method has shown to be one of the most important schemes to model interfacial dynamics.

Figure (2.3) shows the representation of the distance function and the level-set function for a

2-dimensional square domain. The distance function is calculated by measuring the distance

from each mesh node to its closest interface node, mathematically meaning x−xI , where x is

the mesh node and xI , the interface node. The same distance function is used to compute the

level-set function, which is nothing but a signed version of the distance between the mesh

nodes and their closest interface nodes. In both cases, the location of the interface is found

when the function values match zero.

(a) (b)

Figure 2.3: Representation of the distance and level-set functions. The interface between the
fluids is located in the middle of the domain. (a) The distance function is created by computing
the distance of each mesh node x to its closest interface node xI . (b) The level-set functions is
a signed distance function with positive values in one phase and negative values in the other
phase.

The LS method in two-phase flows was first developed by [87] and followed by many authors.

They proposed a LS scheme with second-order upwind/projection method to compute the

solution of the Navier-Stokes equations for immiscible fluids. They shown that the conser-

vation of mass is only guaranteed if the level-set function is re-initialized preferably at every

time step. They performed bubble and droplet test cases to validate their new methodology.

Additionally, [86] presented an extension of the LS method for 3-dimensional free surface

flows. Tests were performed to validate their method including important benchmarks, such

as a static droplet and an oscillating drop in zero-gravity, both performed also in this thesis.

The coupling of Level-Set to Finite Elements was presented by [77] in which the fluid flow
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equation was discretized in a triangular mesh. They proposed a fractional-step method

which was used to stabilize the pressure and velocity, therefore allowing the use of the same

element for both quantities. Large density ratios were successfully tested and the method was

compared to standard benchmark cases.

A stabilized finite element formulation was employed with the level-set method to compute

incompressible bubble dynamics in [59]. The streamline upwind Petrov-Galerkin method

was used to discretize the Navier-Stokes equation and the continuum surface force model

was applied to consider the effects of the surface tension forces in the conservative equations.

Bubble coalescence and the rising of a single bubble were studied to test their methodology.

A numerical method for the simulation of three-dimensional incompressible two-phase

flows was presented in [56]. The level-set method was used in conjunction with an implicit

pressure stabilized finite element method to solve the Navier-Stokes equation. The results

were compared to many numerical examples, such as two-phase Poiseuille, Rayleigh-Taylor

instability, dam break and sloshing, all showing that the proposed method was accurate to

represent the dynamics of two-phase flows.

As is usual with methods based on the Eulerian formulation, the discretization of the Level-Set

functions may lead to excessive numerical diffusion, thus requiring its frequent reinitialization

and complex advection schemes to prevent such a problem. For example, to overcome the

drawbacks found in each methodology, a hybrid method is proposed by [64] and [63] where

the curvature and the normal vectors are computed by the Level-Set functions while the

interface is captured by the VOF function. Consequently, the mass conservation errors found

in the Level-Set formulation and the poor calculation of curvature by the VOF function are

avoided.

Unlike VOF and Level-Set methods, the Lagrangian description defines the interface between

phases explicitly by computational elements. Such a formulation is called interface tracking.

Regarding the Lagrangian method, volume-tracking and front-tracking are the most widely

used. The former uses marker particles for the reconstruction of the interface, combining

precision and accuracy with a relatively low implementation investment ([39],[3]). The lat-

ter, first implemented by Glimm and co-authors [34], represent the interface with a set of

interconnected nodes which move according to the fluid flow calculated in an Eulerian way.

Such a description provides a sharp representation of the interface with high accuracy, but its

drawback is the need of an explicit treatment of topological changes in the interface, such as

for the case of coalescence and break-up of bubbles or drops.

In [95], a new method to simulate unsteady multi-fluid flows was achieved. The method was

developed using an Finite Difference approximation in a stationary grid and the interface

between the fluids was explicitly represented by a set of geometrical objects such as triangles,

segments and points. While the background mesh was fixed in the space, the interface was

advected with respect to the flow field. The interface normal vector was found by trigonometric

functions in each interface element and the curvature was calculated by an approximation
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of the Dupin indicatrix of each set of surface nodes. Such an approach leads to a sharp

representation of the front whilst, however, the fluid properties are not sharply defined. A

smooth function was required close to the interface to avoid numerical instabilities in the

transition zone. Even so, the proposed methodology was shown to be suitable to describe

bubble dynamics in multiphase flows.

A Lagrangian Level-Set approach was proposed by ([84]) to simulate incompressible two-phase

flows. The Navier-Stokes equation was discretized by the Galerkin Finite Element method

and the projection method was employed to uncouple the system of non-linear equations.

The interface between the fluids was part of the domain mesh and it was discretized by a

set of segments and points in 2-dimensional spaces. To reduce mass conservation errors,

inherent of the Level-Set method, the methodology employed a Lagrangian technique which

moved the nodes of the computational mesh according to the flow field. Moreover, the need

of an additional equation to move the front was no longer required. The mesh quality was

controlled by common mesh operations such as flipping, insertion and deletion of nodes. In

this method the interface was represented by a sub-set of computational nodes and defined

by the zero level-set of a function φ. Therefore, the curvature and the normal vector were

easily calculated by the expression: κ=∇· (∇φ/|∇φ|) and n =∇φ/|∇φ|, consecutively. Thus,

to satisfy the discrete force balance between pressure and surface tension, the gradient of a

Heaviside function ∇H was used in substitution of the Dirac Delta function δ found in the

Continuum Surface Force (CSF) model. Such an approach is commonly found in Eulerian

based models, but it has shown to be suitable for interface tracking as well, since the pressure

jump condition across the interface was accurately predicted.

The group at the University of Massachusetts has suggested a complete moving mesh tech-

nique to simulate free-surface and two-phase flows ([72],[76]) which differs from the fixed

background mesh approach. In this case the discretization of the equations was made over an

unstructured mesh by an exact fractional step method. Such a technique improves the defini-

tion of the interface since the jumps in the fluid properties are kept sharp. Code validations

were performed, showing that the proposed methodology could model multiphase flows with

accuracy.

The distribution of properties in front-capturing and front-tracking methods may by achieved

by a standard step function that changes its value to represent each phase. The Heaviside

function H :Rn → {0.1} is a commonly used distribution function which is defined within the

“one-fluid” context is 0 in one phase and 1 in the other phase. If computational nodes are used

to represent the interface between fluids, an average value of 0.5 is commonly assigned to

those nodes. Such a function is extremely useful for numerical purposes. It may be used as an

auxiliary function to identify in which phase one specific node belongs to, it may also be used

to calculate the volume occupied by each phase and to determine whether a node should be

inserted or removed. Moreover, the distribution of fluid properties φ may be easily computed
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as:

φ=φ1H +φ0(1−H) (2.1)

where φ0 and φ1 are the fluid properties such as viscosity and density, and H is the Heaviside

function. Figure (2.4) shows a distribution of the Heaviside function such that 1 stands for the

vapor phase and 0 represents the volume occupied by the liquid phase. In this scheme, the

vapor is inside the bubble and the liquid is surrounding the vapor phase.

(a) (b)

Figure 2.4: The Heaviside function is defined as 1 in one fluid and 0 in the other. In the
ALE-FE method, an average value of 0.5 is assigned to the nodes belonging the interface. (a)
2-dimensional drop immersed in another fluid. (b) 3-dimensional drops immersed in another
fluid. The left drop is sliced to show the nodes belonging the phase φ1.

Due to numerical restrictions found in Level-Set and front-tracking methods, a smoothed

version of the Heaviside function may be required. Some authors have suggested different

approaches to smooth the sharp edge in the transition zone and this is achieved by defining

the Heaviside H as a function of the distance function φ:

Hε(φ) =


0 ifφ<−ε
ν(φ/ε) if−ε≤φ≤ ε
1 ifφ> ε

(2.2)

11



Chapter 2. Literature review

where ε is a mesh tolerance, usually defined as a function of the mesh edge length, and ν(φ/ε)

is the smoothing in the transition zone. For example, in [93], ν is defined as:

ν(φ/ε) = 1

2
+ 1

32

(
45φ−50φ3 +21φ5) (2.3)

and in [86] they adopted the following expression:

ν(φ/ε) = 1

2

{
1+φ+ 1

π
sin(πφ)

}
(2.4)

Both smoothing distributions are plotted in Fig. (2.5b). Note that in the present ALE-FE

technique, such a smoothing process is not required, thus the method is able to define sharply

the distribution of properties in the computational domain. Moreover, another advantage of

the definition of the these functions is that the curvature κ and normal vector n can be easily

computed as:

n = ∇φ
|∇φ| and κ=∇·n =∇· ∇φ

|∇φ| (2.5)

where the normal vector n is found by computing the gradient of the Level-Set function φ

and divided by its module, thus resulting in an unity normal vector. The curvature k =∇·n

by definition and, thus can be calculated using the previous defined unit normal vector n.

However, as the interface is tracked during the simulation, the function φ may not accurately

represent the distance from each computational node to the interface. Thus, to keep the

precision of the distance function, its initialization is required by imposing |∇φ| = 1.

2.3 Adaptive Mesh Refinement

In two-phase flows and in the moving mesh context, the computational nodes are in constant

shear due to the moving interface. From one point of view, the ability to translate the mesh

nodes from one zone to another brings into the code important features such as low numerical

diffusion and sharp representation of the interface. On the other hand, the nodes in the com-

putational domain are often stretched and compressed against each others, and consequently

they tend to collapse. Such an inconvenience may shut the simulation down before generating

the expected results, an therefore an effective strategy of adaptive mesh refinement should

be used to avoid the its interruption. Moreover, the same adaptive strategy may be used to

refine or to enlarge particular mesh areas according to the specified local precision required.
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Figure 2.5: Examples of Heaviside functions applied to Level-Set and Front-Tracking codes. (a)
Heaviside with no artificial numerical treatment. (b) Smoothed Heaviside function used in
two known references ([86] and [93]).
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Typically, the computation begins with a trial solution with a coarse mesh, then the errors

of this solution are evaluated and, depending upon the results, new nodes are included or

removed from the computational domain.

In the Finite Element method, such adaptive mesh refinement technique may be, basically,

divided in two classes such as:

• h - refinement

• p - refinement

In the h-refinement, the interpolation order of the finite elements does not change during the

simulation, but instead, their sizes are modified with respect to the simulation requirements.

Therefore, high accuracy may be achieved with fewer computational resources. Within the

h-refinement class, different techniques are proposed to keep the mesh elements bounded

to within a satisfactory aspect ratio. For instance, in the complete re-meshing procedure,

the mesh elements are substituted by new elements with different sizes. Such an approach

may lead to excessive numerical diffusion, since interpolation is strictly required. However,

the higher is the interpolation order used, the lower is the numerical diffusion. Within the

h-refinement class, the sub-class r-refinement consists in modify the element connectivity

without changing the number of mesh nodes. No interpolation is required, and thus numerical

diffusion is avoided. Both procedures may be applied systematically in the computational

mesh to achieve reasonable results; however the insertion of nodes are still required to enhance

the final mesh.

On the other hand, the p-refinement changes the interpolation order of the finite element

to achieve the expected accuracy. Such a procedure may be applied to the entire computa-

tional mesh or locally according to the simulation requirements. Such a refinement may be

performed hierarchically, thus increasing considerably the accuracy of the simulation. This

class of refinements brings into the development of the code another level of complexity, since

different interpolation orders are used in the same domain.

Additionally, a combined refinement class may be derived from the above related classes,

namely hp-refinement. In such a procedure, the interpolation order of the finite element as

well as the element sizes may be changed to achieve the desired precision. It is important to

note that all the mentioned classes can be successfully applied in the moving mesh context.

In fact, these refinements are extremely useful to keep the computational elements within

in a satisfactory shape, consequently allowing the simulation to reach its final stage. These

refinement techniques are commonly found in the Finite Element domain, thus highlighting

its importance as a numerical tool to model fluid flow problems.

In [10], an error estimation study was performed for h-refinement procedures in 2-dimensional

and 3-dimensional meshes, focusing in rectangular and parallelepiped elements. The refine-

ment process began with a coarse mesh and converged to an optimal node distribution
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according to the proposed geometry. Therefore, the error was evaluated based on the solution

convergence.

In [2] proposed an efficient strategy for hp-refinement in the Finite Element method where

the flexibility of choosing pure h or pure p is guaranteed by their methodology. Additionally,

they suggested two efficient ways to solve large ill-conditioned linear systems of equations

which arise from these refinement algorithms.

In [24], an adaptive hp-refinement procedure was described for the parallel solution of hy-

perbolic equations in the rectangular domain. The strategy consisted in using a local Finite

Element procedure to preserver high-order accuracy in specific mesh zones. Additionally, an

efficient multi-processor data structure was used, which introduced the capability to the code

to easily insert and remove elements from the computational mesh.

In [1] a new high-order scheme was proposed, namely k-refinement, in which a faster con-

vergence of the optimal mesh distribution was obtained. They performed many calculations

with isogeometric analysis in linear structural and fluid problems to investigate different

refinement strategies and compared them to the new proposed k-refinement scheme.

In [35], they presented some aspects of a 3-dimensional triangular surface mesh refinement

algorithm using object-oriented language. They presented a new implementation of a local

refinement algorithm based on 8-subtetrahedron subdivision. The edge division was done in

such a way that the mesh quality was kept constant along the whole process, thus achieving

an efficient remeshing strategy with low memory usage.

Diagonal flips in triangular surfaces are well discussed in [62]. It has been proven that any two

triangulations of a closed surface can be transformed into each other by flipping diagonals

in quadrilaterals. An extensive mathematical formulation was presented as the basis to this

important surface remeshing procedure such as diagonal flipping and edge contraction, both

used in this work.

In [19] and [18], a fast algorithm was proposed to maintain a deformable surface mesh by per-

forming flipping operations, insertion and deletion of points. In plannar triangulations, their

algorithm performed edge flipping such that the resulting elements fulfill the requirements

for a Delaunay triangulation, Moreover, the calculations were performed in linear time, thus

substantially decreasing the computational requirements.

2.4 Mass Transfer Models

Two-phase flow problems become even more interesting if phase change occurs, where the

mass transfer from one phase to another adds significantly complexity to the dynamics of

bubbles and droplets. However, the modeling of such phenomena is not an easy task and

should be treated with extreme care. Unfortunately, the related literature, in the numerical

domain, is not so widely developed for mass transfer in single and two-phase flows, compared
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to that for no phase change taking place. Despite the problems related on the modeling of

phase change, efforts have been invested to develop tools capable to predict, to a certain

extent, boiling and condensation processes in two-phase flows.

The pool boiling process was extensively reviewed by [25], in which 4 basic mechanisms were

identified that contribute to the total heat flux, namely evaporation at the liquid interface,

enhanced natural convection, natural convection and transient conduction at a nucleation

site. It was also found that these mechanisms are strongly linked to the temperature of the

superheated wall.

A study of the lateral merging of a vapor bubbles in nucleate pool boiling was performed by

[58]. They discretized the Navier-Stokes equation in 3-dimensional space using the Level-Set

technique to capture the interface between the phases and the SIMPLE method to solve the

equation itself. Systems of single and multiple bubbles were investigated, focusing on how the

overall wall heat transfer changes in the merging process. They concluded that the increasing

of the wall heat transfer is due to the trapping of a liquid layer between the bubble bases during

merger and by drawing of cooler liquid towards the wall during contraction after merger. Tests

were performed and correlated well with experimental data.

A numerical modeling of annular film condensation was studied by [61] and [60]. The model

was based on a finite volume formulation of the Navier-Stokes and energy equations, in which

the interface mass transfer and near-to-wall effects, such as disjoining pressure, were taken

into account. They modeled different cross-sectional channel shapes to understand the basic

mechanisms involved in the condensation process that takes place at the thin liquid film in

two-phase flows. They carried out many code validations with the available literature and

obtaining good agreement with experimental data.

In [83], they developed a numerical method for bubble motion with phase change, based on

the Level-Set method. In their simulations, they assumed that the temperature in the vapor

phase was fixed to be equal the saturation temperature, however such an approach may hide

important mechanisms that take place dynamically within the vapor phase. They tested their

code with the exact solution of a spherically growing bubble in a superheated liquid, in which

a solution is given in cylindrical coordinates.

Boiling flow simulations were performed by [50] within the OPENFOAM software. The model

was developed with the VOF technique and focused on the investigation of the nucleate boiling

process. They included a contact line evaporation model based on the micro region model

previous suggested by the same research group. They studied the growth and detachment of

a single vapor bubble from a heated steel foil, which seemed to be well modeled. However,

comparisons with experimental work were not done.

In [47], they presented a new model to simulate two-phase flows with phase change in two-

dimensional domains. The new formulation was included in the previous front-tracking

adiabatic code developed by [95] to extend its computation to boiling flows. Since the interface
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is represented by geometrical objects, special treatment of phase change was considered. They

also studied the influence of several parameters in the interface temperature. To validate their

model, they compared it to the exact solution of a 1-dimensional test case, followed by the

simulation of film boiling with different fluid properties.

Explosive boiling in microgravity was investigated numerically by [29]. They presented a

simplified version of the two-phase boiling code developed by [47], which was extended to

3-dimensional spaces. One new aspect compared to the previous developed code is that the

saturation temperature was set constant to the interface between fluids. Such an approach

leads equally to good results, while however its implementation is easier and the overall calcu-

lations are done in a simpler way. They carried out validations and numerical benchmarks to

test their code, and finally they studied explosive boiling of a vapor bubble.

2.5 Conclusions

As reported in this chapter, the Finite Element method has been intensively used in fluid

dynamics over the past 20 years, proving to be an excellent candidate to solve two-phase

problems. Moreover, the Lagrangian description was chosen to model the interface between

the fluids so that it is sharply represented, ensuring a faithful modeling of the mechanisms

involved in bubble flows. Therewith, an new improved adaptive mesh refinement will be

proposed here to enforce an optimal mesh quality during the simulations. This proposed work

is an extension of the above cited references.
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This chapter describes the general equations employed to model the fluid flow. These equa-

tions are written in the so-called “one-fluid” formulation using the Arbitrary Lagrangian-

Eulerian description in which the computational mesh moves with an arbitrary velocity.

Additionally, these equations are re-written in non-dimensional form and their descriptions

are detailed. At the end of this chapter, brief comments on the generic initial and boundary

conditions are made.

3.1 Introduction

In this work, the fluid is considered to be a continuum. This assumption establishes that

the smallest volume element considered dV is homogeneous, i.e. the dimension of such an

element is large compared to the average distance between the fluid molecules. Thus, the

fluid flow may be modeled by the universal conservation laws such as:

• conservation of mass

• conservation of momentum

• conservation of energy

These conservation laws are used to set the general equations for fluid flow problems. How-

ever, the modeling of two-phase flows requires an additional description to characterize the

different phases involved. In the “one-fluid” approach, one set of equations is utilized to

describe the entire domain, and thus an additional marker function is used to modify the

properties of the phases. At the interface, a jump condition must be taken into account so that

the transition zone located at the interface between the fluids can be modeled. In this way, the

mass, momentum and energy conservation laws will be developed by considering only one

set of equations, where the different phases are represented by a scalar function which defines

different properties, such as viscosity and density. Note that in this formulation, the fluid

properties are considered to be constant in each phase with a jump condition at the interface.
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3.2 Arbitrary Lagrangian-Eulerian description

In the literature, fluid flow can be expressed by two reference frames commonly used in fluid

dynamics, namely Eulerian and Lagrangian descriptions. The former describes the fluid

motion by a fixed referential frame where the continuum moves with respect to the mesh

nodes. The later describes the fluid flow through the material derivative, i.e. the referential

frame is moving according to the fluid motion. A more generalized way to describe the fluid

motion may consider the referential frame not fixed space or moving with the same velocity of

the fluid motion, but instead the referential frame moves with an arbitrary velocity that does

not necessary represent any of the standard description. Such a generalized representation of

the flow field is referred as the Arbitrary Lagrangian-Eulerian description or simply ALE.

Figure (3.1) depicts a schematic representation of an one-dimensional domain with the three

mentioned descriptions. In Fig. (3.1a), the nodes are moved with the same velocity as the

flow field, thus the material points are found to be located on the mesh nodes. As can be

seen, depending on the flow conditions, in a short period of time the nodes may be poorly

distributed, consequently degrading the accuracy of the solution. In Fig. (3.1b), the mesh

nodes are fixed in the space domain and the particle motion is evaluated according to their

position and velocity and then interpolated back to the mesh nodes. The adverse condition

here is that the quantity in the next time step is interpolated, and thus numerical diffusion

may spoil the accuracy of the simulation. Figure. (3.1c) shows an example of the ALE motion,

where the material points are calculated based on the arbitrary motion of the mesh nodes.

Such a inherent capability of the ALE description allows the mesh nodes to be repositioned

according to some refinement criteria, thus avoiding the shortcomings of the pure Eulerian

and Lagrangian descriptions.

According to [45], the ALE description can be represented by three different domains as

illustrated in Fig. (3.2). These domains are divided as: material domain (X), spatial domain (x)

and referential domain (X̃). Both the material and referential domains are moving while the

spatial domains is fixed. The velocity of a particle that travels from the material domain to the

spatial domain may be written according to the operator φ which describes the motion as:

v = ∂x

∂t
= ∂

∂t
X (x, t ) (3.1)

On the other hand, the velocity of a particle that travels from the referential domain to the

spatial domain according to the operator φ̃ may be written as:

v̂ = ∂x

∂t
= ∂

∂t
X̃ (x, t ) (3.2)
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3.2. Arbitrary Lagrangian-Eulerian description

(a)

(b)

(c)

Figure 3.1: One-dimensional examples of the (a) Lagrangian description, in which the mesh
nodes move according to the flow field, (b) Eulerian, in which the mesh is fixed in the space
and (c) ALE, in which a generalized description is achieved.

Consequently, the two velocities v and ṽ are mapped into the spatial domain and thus can

be rewritten to described the Arbitrary Lagrangian-Eulerian motion as a subtraction of these

velocities. Let us consider f to be a quantity in the space-time domain expressed as a function

of these two mentioned descriptions. The resulting scheme for the quantity f is given by:

D f

Dt
= ∂ f

∂t
+ ((v− v̂) ·∇) f = ∂ f

∂t
+ (c ·∇) f (3.3)

In this scheme, if the mesh velocity is ṽ = v, the time variation of the quantity f is exactly the

same in two different time steps, thus the Lagrangian description is recovered. By setting the

mesh velocity ṽ = 0 instead, the referential domain is fixed in the space, while the quantity f

varies, thus the pure Eulerian description is achieved.
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Chapter 3. Governing Equations

Figure 3.2: Material, referential and spatial configuration for the Arbitrary Lagrangian-Eulerian
framework.

3.3 Conservation of mass

The conservation of mass establishes that for a given fluid with specific weight ρ flowing

through a fixed volume element V , the mass entering per unit time is equal to the mass depart-

ing per unit time plus the increase in mass in the control volume per unit time. Mathematically

this can be described as follows:

∫
V

∂

∂t
dm (3.4)

where the infinitesimal form dm = ρd v is obtained by substitution into Eq. (3.4), so that:

∫
V

∂

∂t
dm =

∫
V

∂

∂t
(ρdV ) =

∫
V

∂ρ

∂t
dV +

∫
V
ρ
∂dV

∂t
=

∫
V

∂ρ

∂t
dV (3.5)
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3.3. Conservation of mass

The mass net flux is defined as follows:

∮
S
ρv ·nd A (3.6)

where v is the fluid velocity and n is the normal component which is parallel to the flow. Thus,

the integral form of mass conservation is written as:

∫
V

∂ρ

∂t
dV =−

∮
S
ρv ·nd A (3.7)

On the right hand side of the above equation, the surface integral can be changed to a volume

integral by the Gauss theorem (see appendix A), thus Eq. (3.7) becomes:

∫
V

∂ρ

∂t
dV =−

∫
V
∇· (ρv) dV (3.8)

or:

∫
V

[∂ρ
∂t

+∇· (ρv)
]

dV = 0 (3.9)

this equation is valid for any volume element V . Thus, for an infinitesimal volume dV , it is:

∂ρ

∂t
+∇· (ρv) = 0 (3.10)

In the present work, the conservation of mass is described in 3-dimensional cartesian coordi-

nates so that:

∂ρ

∂t
+ ∂ρvx

∂x
+ ∂ρvy

∂y
+ ∂ρvz

∂z
= 0 (3.11)
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Chapter 3. Governing Equations

Moreover, the incompressibility hypotheses may be applied to the term ∂ρ/∂t , since the fluid

density remains constant in each phase. The conservation of mass is thus reduced to:

ρ
[ ∂ρvx

∂x
+ ∂ρvy

∂y
+ ∂ρvz

∂z

]
= ρ∇·v = 0 (3.12)

Since ρ 6= 0 for all phases, the final equation becomes:

∇·v = 0 (3.13)

Equation (3.13) represents the incompressibility condition of a fluid. If this fluid is ruled by

such a condition, it is said to be incompressible. This equation is also called the continuity

equation.

3.4 Conservation of momentum

The same concept of conservation of mass is applied to the conservation of momentum to

achieve a mathematical formulation. For a given fluid with density ρ flowing through a volume

element dV , the mass entering per unit time is equal to the mass departing per unit time plus

the increase in mass in the volume element per unit time, mathematically this can be defined

as:

∫
V

∂(ρv)

∂t
dV (3.14)

From Eq. (3.6), the mass flux through the volume element dV is known, thus multiplying the

integral term by a velocity vector in the x direction, the momentum flux crossing the element’s

area is given as:

∮
S
ρvv ·n d A (3.15)
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3.4. Conservation of momentum

The resulting surface forces are given by:

∮
S
σ ·n d A (3.16)

where σ is the stress tensor acting at each area element. Finally, the volume forces, which are

represented by the gravity and surface tension forces, are:

∫
V
ρg dV and

∫
V

f dV (3.17)

Using the Continuum Surface Force (CSF) model according to [12], the source term f in

Eq. (3.17) can be written as:

f =σκδn (3.18)

where κ is the curvature , σ is the surface tension and n is the surface unity outward normal

vector. Additionally, δ represents the Dirac delta function with support on the interface. Thus,

the surface force f may be written as:

∫
V

f dV =
∫

V
σκnδ dV (3.19)

The surface tension force in Eq. (3.19) will be treated as f in the following equations to simplify

the notation. However, it will be detailed later, in chapter 5. Therefore, the conservation of

momentum in the Arbitrary Eulerian-Lagrangian description is therefore described as follows:

∫
V

∂(ρv)

∂t
dV =−

∮
S
ρc(v ·n)d A+

∮
S
σ ·nd A+

∫
V
ρ gdV +

∫
V

fdV (3.20)

The Gauss theorem is applied to the surface integrals to obtain the corresponding volume

integrals, and thus the integral form of the conservation of momentum is:

∫
V

∂(ρv)

∂t
dV =−

∫
V
∇· (ρcv)dV +

∫
V
∇· (σ)dV +

∫
V
ρg dV +

∫
V

f dV (3.21)
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Chapter 3. Governing Equations

Similar to the equation for conservation of mass, Eq. (3.21) is valid for any volume element V .

Thus, for an infinitesimal volume dV , it can be expressed as:

∂(ρv)

∂t
+∇· (ρcv) =∇· (σ)+ρg+ f (3.22)

and expanding the left hand side terms, this becomes:

ρ
∂v

∂t
+v

∂ρ

∂t
+ρc ·∇v+c ·∇(ρv) = ρ

[∂v

∂t
+c ·∇

]
+c

[∂ρ
∂t

+∇· (ρv)
]

(3.23)

The term ∂ρ/∂t +∇· (ρv) is null due to the continuity equation. Thus, rearranging the terms,

the momentum equation is written as:

ρ
[∂v

∂t
+c ·∇v

]
=∇·σ+ρg+ f (3.24)

The total stress tensor σ in the above formulation is defined as:

σ=−pI+τ (3.25)

where p stands for the pressure, I the identity matrix and τ the deviatoric stress tensor. Substi-

tuting the right hand side of Eq. (3.25) into the momentum equation, the (Eq. 3.24) becomes:

ρ
[∂v

∂t
+c ·∇v

]
=−∇p +∇·τ+ρg+ f (3.26)

The deviatoric stress tensor term τ represents the deformation of a fluid element in the

presence of a velocity gradient. The constitutive relation of such a tensor changes according to

the physical properties of the fluid. All the fluids considered in the present work have a shear

stress proportional to their angular deformation, i.e. the fluids are said to be Newtonian. Thus,
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3.4. Conservation of momentum

τ may be written as:

τ= 2µD+
(
λ− 2

3
µ
)
(∇·v)I (3.27)

where µ is the dynamic viscosity and λ the volumetric viscosity of the related fluid. Due to the

incompressibility condition of Eq. (3.13), the deviatoric stress tensor τ may be rewritten as:

τ= 2µD (3.28)

The strain tensor D in the above equation is given by:

D = 1

2
γ̇(v) = 1

2
(∇v+∇vT ) (3.29)

where γ̇(v) it the rate-of-strain tensor. Thus, the divergence of σ may be calculated as follows:

∇·σ=∇· [−pI+µ(∇v+∇vT )] =−∇p +∇· [µ(∇v+∇vT )] (3.30)

The momentum equation in the ALE description can now be written as:

ρ
[∂v

∂t
+c ·∇v

]
=−∇p +∇· [µ(∇v+∇vT )]+ρg+ f (3.31)

Rewriting the above equation using the substantial derivative, this yields:

ρ
Dv

Dt
=−∇p +∇· [µ(∇v+∇vT )]+ρg+ f (3.32)
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3.5 Conservation of energy

The energy (heat) transport states that for a given fluid with density ρ, flowing through a

volume element V , the accumulating mass rate of energy going into the volume element per

time unit is equal to the net mass flux leaving the volume element, in the absence of a source

term. Mathematically, the accumulating mass rate of energy is described as follows:

∫
V

∂T

∂t
dV (3.33)

where T may represent any scalar per volume unit. In the present context, T stands for the

temperature distribution of the fluid. Thus, the net flux due to the heat transport going into

and out of an element volume V is defined as:

∮
S

T v ·nd A (3.34)

where T is the temperature of the fluid, v is the fluid velocity and n is the normal component

which is parallel to the flow field. The net heat flux leaving the volume element due to

conduction is given by:

∮
S

J ·nd A (3.35)

Thus, the integral form of the heat transport is derived as:

∫
V

∂(ρcp T )

∂t
dV =−

∮
S

(ρcp T )v ·nd A−
∮

S
J ·nd A (3.36)

where ρ is the fluid density and cp is the specific heat. The Gauss Theorem is again applied to

the surface integrals in the above equation to obtain the corresponding volume integrals, so
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3.5. Conservation of energy

that:

∫
V

∂(ρcp T )

∂t
dV =−

∫
V
∇· (ρcp T )vdV −

∫
V

JσdV (3.37)

or:

∫
V
ρcp

[∂T

∂t
+∇· (T v)

]
dV =−

∫
V
∇· (J) dV (3.38)

This equation is valid to any volume element V . Thus, for a infinitesimal volume dV , it can be

written as:

ρcp

[∂T

∂t
+∇· (T v)

]
=−∇· J (3.39)

Expanding the left hand side terms of Eq. (3.39), this gives:

ρcp

[∂T

∂t
+T∇·v+c ·∇ ·T

]
=−∇· J (3.40)

The term T∇·v is null due to the incompressibility condition given by the continuity equation

(Eq. 3.13) and c is the relative velocity in the ALE description. Considering that the diffusive

flux is given by Fourier’s law of heat conduction, thus:

J =−k∇T (3.41)

where k is the material’s thermal conductivity. Thus, the Eq. (3.40) results in:

ρcp

[∂T

∂t
+c ·∇T

]
=∇· (k∇T ) (3.42)
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Chapter 3. Governing Equations

Rewriting the above equation using the substantial derivative yields:

ρcp
DT

Dt
=∇· (k∇T ) (3.43)

This equation describes the heat transport in a fluid. The left hand side term represents the

heat convection and the right hand side term stands for the diffusive effect. Note that if k

assumes large values, the heat transport by the convective effect becomes less important

compared to the diffusive effect. On the other hand, for low values of k, the heat transport by

diffusion may be neglected.

3.6 Non-dimensional form of the Navier-Stokes equation

This section describes the non-dimensionalization of the continuity, momentum and energy

equations. Such a procedure is not required to solve the equations, however a better under-

standing of the influence of each term on the simulated flow is easier t oaccess. Two distinct

non-dimensional equations will be presented. The first is used when the flow velocity and the

characteristic length are known and both are set as simulation parameters. The second is em-

ployed for gravity driven flows, where the flow velocity is not a known parameter. Therewith,

the gravity should be taken as a referential parameter, so that the velocity is a function of the

referential length and the acceleration of gravity.

The continuity and momentum equations are non-dimensionalized by defining the following

non-dimensional parameters:

ρ = ρ∞ρ∗ x = Lx∗ g = g∞g∗ c =U c∗

µ=µ∞µ∗ v =U v∗ t = L

U
t∗ κ= 1

L
κ∗

p = ρ∞U 2p∗ ∂

∂t
= U

L

∂

∂t∗
∇= 1

L
∇∗ σ=σ0σ

∗

where the superscript ∗ stands for the non-dimensional variables. By substituting the above

listed parameters into the continuity equation (Eq. (3.13)), the non-dimensionalization process
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3.6. Non-dimensional form of the Navier-Stokes equation

yields:

U

L
∇∗ ·v∗ = 0 (3.44)

Multiplying the equation above by U /L, the non-dimensional form of the continuity equation

turns simply into:

∇∗ ·v∗ = 0 (3.45)

The same procedure is applied to the conservation of momentum, substituting the non-

dimensional parameters into Eq. (3.31):

ρ∗
[ρ0U 2

L

∂v∗

∂t∗
+ ρ0U 2

L
v∗ ·∇∗v∗

]
=−ρ0U 2

L
∇∗p∗

+ µ0U

L2 ∇∗ · [µ∗(∇∗v∗+∇∗v∗T )]+ρ0g0ρg∗+ σ0

L2 f (3.46)

Multiplying the above equation by L/ρ0U 2 yields:

∂v∗

∂t∗
+v∗ ·∇∗v∗ =− 1

ρ∗∇∗p∗+ µ0

ρ0LU
∇∗ · [µ∗(∇∗v∗+∇∗v∗T )]+ g0L

U 2 g∗ σ0

ρ0LU 2 f (3.47)

which is the non-dimensional form of the momentum equation. Three important non-

dimensional groups are found in this equation, namely the Reynolds, the Froude and the

We numbers. Their descriptions are given below:

• Reynolds number (Re): ratio of the inertia force to the viscous force, given by:

Re = ρ0LU

µ0
= LU

ν0
, (3.48)

where ρ0, L, U and µ0 are reference values for density, length, velocity and viscosity,
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respectively. ν0 stands for the kinematic viscosity which is the ratio between the dynamic

viscosity µ0 and density ρ0. If Re < 1, the viscous forces are stronger than the inertial

ones. In the other hand, when Re À 1, the inertial forces are predominant. Moreover, the

Reynolds number is useful to characterize the flow, which can be laminar if (Re < Recritical)

or turbulent if (Re > Recritical).

• Froude number (F r ): ratio of the inertia force to the gravitational force, given by:

F r = U√
g L

(3.49)

where g is the referential gravity. This number is useful to characterize flows in which the

gravitational effects can not be neglected, for instance when an air bubble is immersed

in another fluid with different densities. If F r < 1, the gravity effect has more influence

than the inertial force.

• Weber number (W e): ratio of the inertia force to the surface tension force, given by:

W e = ρ0LU 2

σ0
(3.50)

where σ0 is the referential surface tension. This number is useful to characterize flows

in which the interfacial forces can not be neglected. However, if W e << 1, the surface

tension does not play an important role in the flow field. Since as will be seen, W e

appears as 1
W e in the momentum equation.

The non-dimensional equations presented above consider that the flow velocity is a known

parameter, thus it is taken as a system referential. However, in certain cases where the velocity

is a consequence of a condition and it is not imposed directly on the system, a different

referential parameter should be used instead. For instance, consider the rising of a single

bubble immersed in another fluid driven only by buoyancy effect. In this case, the velocity

field is the result of the system and it can not be used as parameter. Instead, a different system

referential is required. Since the gravity plays an important role in this case, it may be used

as system referential. Thus, the velocity field v is commonly non-dimensionalized by
√

g D

and the characteristic length L by the bubble’s diameter D . Substituting these parameters into

Eq. (3.47), the momentum equation becomes:

ρ∗
[ρ0g0D

D

∂v∗

∂t∗
+ ρ0g0D

D
v∗ ·∇∗v∗

]
=−ρ0g0D

D
∇∗p∗

+ µ0
√

g0D

D2 ∇∗ · [µ∗(∇∗v∗+∇∗v∗T )]+ρ0g0 ρ
∗g∗+ σ0

D2 f∗ (3.51)
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3.6. Non-dimensional form of the Navier-Stokes equation

Multiplying the above equation by 1/ρ0g0 and dropping all the superscripts ∗, the non-

dimensional momentum equation becomes:

∂v

∂t
+v ·∇v =− 1

ρ
∇p + µ0

√
g0D

D2 ∇· [µ(∇v+∇vT )]+ρ0g0ρg + σ0

ρ0g0D2 f (3.52)

Two important non-dimensional groups are found in the above equation, namely the Archimedes

and the Eötvös numbers, in which the descriptions are written below:

• Archimedes number (N ): ratio of the buoyancy force to the viscous force, given by:

N = ρ2
0D3g

µ2
0

, (3.53)

where ρ0, D, g and µ0 are reference values for density, bubble/drop diameter, gravity

and viscosity, respectively.

• Eötvös number (Eo): ratio of the buoyancy force to the surface tension force, given by:

Eo = ρ0g D2

σ0
(3.54)

where si g ma0 is the referential surface tension coefficient. This number is useful to

measure quantitatively the effects of surface tension and gravity. Is is equivalent to the

We number but the velocity is non-dimensionalized as
√

g D instead.

Additionally, the non-dimensional Morton number and Capillary number are defined due to

their importance to characterize the shape of a bubble or (drop) and the relative effect of the

viscous and surface tension forces, respectively:

• Morton number (M): ratio of viscous, capillary and gravitational forces, given by:

M = µ4
0g

ρ0σ
3
0

= Eo3

N 2 = W e3

F r Re4 (3.55)

This number may be expressed by the ratio of the Eötvös number raised to the third

power relative to the Archimedes number to the second power.

33



Chapter 3. Governing Equations

• Capillary number (C a): ratio of viscous and surface tension forces, given by:

C a = µU

σ0
(3.56)

If C a << 1, the flow is dominated by capillary forces. This number also represents the

ratio of the Weber number W e and the Reynolds number Re, thus it correlates the inertia,

viscous and interfatial forces. Such a number is an important parameter to characterize

two-phase flow regimes.

A similar procedure is applied to the energy equation to achieve its non-dimensional form.

Thus, beside using the same parameters of the continuity and momentum equations above, a

new parameter is defined to non-dimensionalize the temperature:

T ∗ = T −Ts

Tw −Ts
=⇒ T = (Tw −Ts)T ∗+Ts

where Tw is the temperature in the wall and Ts represent the saturation temperature. Thus,

substituting the non-dimensional parameters into Eq. (3.43):

ρcpU

L

∂

∂t∗
[(Ts −T∞)T ∗+T∞]+ρcpU c∗ · 1

L
∇∗[(Ts −T∞)T ∗] =

1

L
∇∗ ·

[
k∞k∗ 1

L
∇∗(Ts −T∞)T ∗

]
(3.57)

ρcpU

L
(Ts −T∞)

∂T ∗

∂t∗
+ ρcpU

L
(Ts −T∞)c∗ ·∇∗T ∗ = k∞

L2 (Ts −T∞)∇∗ · (k∗∇T ∗) (3.58)

Multiplying the above mentioned equation by L/[(Tw −Ts)Uρcp ], this yields:

∂T ∗

∂t∗
+c∗ ·∇∗T ∗ = k∞

ρcpU L
∇∗ · (k∗∇∗T ∗) (3.59)

In Eq. (3.59) the non-dimensional group is defined as:

• Peclet number (Pe): ratio of the characteristic body length to the thickness of the
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3.6. Non-dimensional form of the Navier-Stokes equation

thermal boundary layer, given as:

Pe = ρcpU L

k∞
(3.60)

U stands for the referential velocity, L represents the referential length and k∞ is the

thermal conductivity. This number is used to characterize the effects of thermal diffusion

and convection. If Pe < 1, the thermal diffusion effect is more pronounced than the

convection.

For hydrodynamic problems where the fluid velocity is imposed on the system and conse-

quently Re is defined, it is convenient to split the non-dimensional number Pe such that:

Pe = U L

k∞
= ρ0U L

µ0

µ0

ρ0k∞
= RePr (3.61)

In the above equation, the non-dimensional group is defined as:

• Prandtl number (Pr ): ratio of thickness of the hydrodynamic to the temperature bound-

ary layers, given as:

Pr = µ0

ρ0k∞
(3.62)

If Pr < 1 in a given fluid, the thermal diffusion occurs at a greater rate than the momen-

tum diffusion. Therefore, the effect of heat conduction is stronger compared to heat

convection. For gases, this number is on the order of 0.7 to 1.0. In liquids, this number is

usually larger than for gases and the higher is the viscosity, the higher is the Pr number.

Thus, substituting the non-dimensional groups Re and Pr into Eq. (3.59) and dropping all the

subscripts, the heat transport equation becomes:

∂T

∂t
+c ·∇T = 1

RePr
∇· (k∇T ) (3.63)

This equation describes the transient distribution of temperature in a fluid. The aforemen-

tioned non-dimensional equations are discretized by the Finite Element method, which will

be described in the Chapter (4).
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3.6.1 Mass Transfer

In order to include the mass transfer effect to the Navier-Stokes and Heat transport equations,

an extensive reformulation is required. Let us consider one fluid occupying the computational

domain in which two distinct phases are present, namely the liquid phase and its vapor. As

mentioned earlier in this chapter, only one set of equations is used to model the entire domain,

consequently these two phases are also modeled by the same set of equations within the

“one-fluid” formulation. If boiling or condensation occurs, the volume occupied by each phase

changes, however the overall volume is kept constant. In our model, this can be achieved

by considering that the field remains incompressible, but a volume change (compressibility

condition) is allowed at the interface. This formulation is based on the work of [29] and [47],

and thus extended here for the present ALE-FE code. The heat transport equation (Eq. (3.43)

is modified and rewritten as follows:

ρcp
DT

Dt
=∇· (k∇T )+Z q̇|∇H | (3.64)

where Z is a constant which modifies the latent heat h f g as a result of unequal specific heats.

|∇H | is the module of the gradient of the Heaviside function H , which defines the region for

the volume changing. The heat flux q̇ is given by:

q̇ =∇2T (3.65)

where T is the temperature distribution in the computational domain. In [29], the heat flux

q̇ was found using two normal probes which originated at the phase boundary and extend a

certain distance into the vapor and the liquid. However in the Finite Element formulation, the

Eq. (3.65) can be used, since the operator ∇2 is already assembled.

We assume that the temperature of the interface between the phases TI is equal to the satura-

tion temperature Ts at the system pressure ps y s as follows:

TI = Ts(ps y s) (3.66)

Since the velocity field is not incompressible at the whole computational domain, it is neces-

sary to include the volume change occurring at the interface into Eq. (3.13). Thus, it needs to
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3.6. Non-dimensional form of the Navier-Stokes equation

be slightly modified to accommodate this effect by rewriting the field velocity v as a function of

the vapor velocity vv , the liquid velocity vl and the Heaviside function H . In order to achieve

the formulation, we use the same distribution function for fluid properties of Eq. (2.1) as

follows:

v = vv H +vl (1−H) (3.67)

Considering ∇·vv =∇·vl = 0, and the mass transfer rate ṁI at the phase boundary as follows:

ṁI = ρl (vl −vI ) = ρv (vv −vI ) = q̇

h f g
(3.68)

where vI is the normal velocity of the interface. The divergence of the velocity field v is given

by:

∇v = 1

h f g

(
1

ρv
− 1

ρl

)
q̇|∇H | (3.69)

The normal interface velocity vI is found to be:

vI = v+ṁβ (3.70)

In [29], the value of β was set to equal to the following expression:

β= 1

2

(
1

ρl
+ 1

ρv

)
(3.71)

Therefore, the same value was adopted in this work.
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3.6.2 Generic initial and boundary conditions

In numerical modeling, the initial conditions and the boundary conditions are of utmost

importance to realistically characterizing any problem modeled by differential equations.

Furthermore, in 3-dimensional simulations, where limitations on computer resources may be

more restrictive, the domain length must be carefully chosen by taking into consideration the

velocity field, as observed by [90] and [41]. A free-slip condition at the wall can be specified to

avoid this effect whilst periodic boundary conditions may be used to avoid large domains and

excessive computing time. The boundary conditions used in this work are briefly explained

below, followed by their detailed specifications in each particular case in the results section:

• No-slip condition: all the velocity components are specified with null value, thus the

fluid adjacent to the wall is at rest;

• Free-slip condition: used when a symmetry condition is desired. The normal velocity

component to the wall is set to zero and the derivative of the tangent component is also

set to null value, thus the adjacent fluid is in motion.

• Inflow condition: this is specified when an influx of mass is desired. For such a condition,

v = vi n f l ow .

• Outflow condition: usually defined as p = 0 when the normal tension to the fluid outflow

boundary is equal to zero. Such a condition represents a state where the fluid flow exits

and its details are not known prior to solution of the flow problem or it is close to a fully

developed condition.

• moving wall condition: a tangent velocity vt 6= 0 is set at the wall boundaries so that the

reference frame is no longer fixed in the space, but instead it is moving with the same

tangent velocity vt .

• symmetry condition: only the normal velocity vn is prescribed on the wall boundary,

thus a symmetry condition is imposing allowing the fluid next to the wall to slip in the

tangent direction.
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4 Finite Element Method

In this chapter, the Finite Element method formulation will be described. Focus will be

on the variational formulation (weak form) of the non-dimensional conservation equations

presented in Chapter 3. Additionally, the discrete finite elements used in this work will be

presented and a brief discussion of the tetrahedron mesh generation method through the

Delaunay algorithm. Finally, the methodology employed to the solution of the resulting linear

system of equations will be presented.

4.1 Variational Formulation

The variational formulation will be presented for one set of equations, more specifically for

the equations in which the Reynolds number Re is defined. The same formulation can be

employed similarly to obtain their description when the Archimedes number N is defined.

Let consider the incompressible Navier-Stokes equation which comprises the momentum,

continuity and energy (heat) equations in their non-dimensional form:

∂v

∂t
+c ·∇v =− 1

ρ
∇p + 1

Re
∇· [µ(∇v+∇vT )]+ 1

F r 2 g+ 1

W e
f (4.1)

∇·v = 0 (4.2)

∂T

∂t
+c ·∇T = 1

RePr
∇· (k∇T ) (4.3)
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Chapter 4. Finite Element Method

valid in a domainΩ⊂Rm with the following boundary conditions:

v = vΓ in Γ1 (4.4)

vt = 0 and σnn = 0 in Γ2 (4.5)

T = TΓ inΓ3 (4.6)

where the convective velocity c represents the relative velocity between the flow field and the

mesh, given by the following expression: c = v− v̂. Here, v stands for the flow field velocity and

v̂ for the mesh velocity.

Now, let us consider the subspace:

V= H 1(Ω)m = {v = (v1, . . . , vm) : vi ∈ H 1(Ω),∀ i = 1, . . . ,m} (4.7)

where H 1(Ω) and the Sobolev space given by:

H 1(Ω) =
{

v ∈ L2(Ω) :
∂v

∂xi
∈ L2(Ω), i = 1, · · · ,m

}
(4.8)

taking L2(Ω) as an infinite dimensional space characterized by the Lesbegue’s integral, which

is equivalent to the Riemann’s integral for continuous functions, and thus it can be treated by

the conventional form:

L2(Ω) =
{

v :Ω→R,
∫
Ω

v2dΩ<∞
}

(4.9)

Note thatV= H 1(Ω)m is the Cartesian product of m spaces H 1(Ω) where:

VvΓ = {v ∈V : v = vΓ in Γ1} (4.10)
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4.1. Variational Formulation

PpΓ = {q ∈ L2(Ω) : q = pΓ in Γ2} (4.11)

TTΓ = {r ∈ L2(Ω) : r = TΓ in Γ3} (4.12)

The variational formulation consists in finding the solutions v(x, t) ∈ VvΓ , p(x, t) ∈ P0 and

T (x, t ) ∈TTΓ so that:

∫
Ω

{∂v

∂t
+c ·∇v+ 1

ρ
∇p − 1

Re
∇· [µ(∇v+∇vT )]− 1

F r 2 g− 1

W e
f
}
·wdΩ= 0 (4.13)

∫
Ω

[∇·v]qdΩ= 0 (4.14)

∫
Ω

{∂T

∂t
+c ·∇T − 1

RePr
∇· (k∇T )

}
r dΩ= 0 (4.15)

Developing the equation terms, they become:

∫
Ω

{∂v

∂t
+c ·∇v

}
·wdΩ+

∫
Ω

{ 1

ρ
∇p

}
·wdΩ

−
∫
Ω

{ 1

Re
∇· [µ(∇v+∇vT )]

}
·wdΩ−

∫
Ω

{ 1

F r 2 g
}
·wdΩ−

∫
Ω

{ 1

W e
f
}
·wdΩ= 0 (4.16)

∫
Ω

{∇·v}qdΩ= 0 (4.17)

∫
Ω

{∂T

∂t
+c ·∇T

}
· r dΩ−

∫
Ω

{ 1

RePr
∇· (k∇T )

}
r dΩ= 0 (4.18)
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Chapter 4. Finite Element Method

The first terms of Eqs. (4.16 and 4.18) will be treated in the ALE formulation as a substantive

derivative for further development using by the semi-Lagrangian method. Its weighing ratio

consists in:

∫
Ω

Dv

Dt
·wdΩ=

∫
Ω

∂v

∂t
+c ·∇v (4.19)

∫
Ω

DT

Dt
r dΩ=

∫
Ω

∂v

∂t
+c ·∇T (4.20)

The next step is the treatment of the diffusive terms, in which the Green theorem should by

applied, thus splitting the volume integral in two other integrals: the inner and the boundary

domain integrals, so that:

∫
Ω
∇· [µ(∇v+∇vT )] ·wdΩ=

−
∫
Ω
ν[(∇v+∇vT ) : ∇wT ]dΩ+

∫
Γ

n · [µ(∇v+∇vT ) ·w]dΓ (4.21)

∫
Ω
∇· (k∇T )r dΩ=−

∫
Ω

(k∇T ) ·∇r T dΩ+
∫
Γ

n · (k∇T )r dΓ (4.22)

where the operator (:) stands for the scalar product between two tensors. The boundary

integral Γ in the above equation may be segregated into two other integrals in Γ1 and Γ2. Due

to w = 0 from Eq. (4.21) and r = 0 from Eq. (4.22), the integral in Γ2 is null. Moreover, the

integral in Γ1 is also null due to the boundary conditions in (Eq. 4.5). Therefore the integral in

Γ is null. The treatment of the pressure term is done by applying the same procedure, thus the

integration by parts results in:

∫
Ω
∇p ·wdΩ=−

∫
Ω

p∇·wdΩ+
∫
Γ

pw ·ndΓ (4.23)

where the above boundary integral is null due to the boundary conditions w = 0 in Γ1 and
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4.1. Variational Formulation

p = 0 in Γ2. The gravity and surface tension term are treated simply as:

∫
Ω

g ·wdΩ and
∫
Ω

f ·wdΩ (4.24)

The resulting equations are:

∫
Ω

Dv

∂t
·wdΩ− 1

ρ

∫
Ω

p∇·wdΩ+ 1

Re

∫
Ω
µ[∇v+∇vT ] : wdΩ

− 1

F r 2

∫
Ω

g ·wdΩ− 1

W e

∫
Ω

f ·wdΩ= 0 (4.25)

∫
Ω

[∇·v]qdΩ= 0 (4.26)

∫
Ω

DT

∂t
r dΩ+ 1

RePr

∫
Ω

(k∇T )∇r T dΩ= 0 (4.27)

The integral forms are defined as follows:

m(
Dv

Dt
,w) =

∫
Ω

Dv

Dt
·wdΩ (4.28)

k(ν,v,w) =
∫
Ω
ν[(∇v+∇vT ) : ∇wT ]dΩ (4.29)

g (p,w) =
∫
Ω
∇p ·w dΩ (4.30)

d(p,w) =
∫
Ω

(∇·w)p dΩ (4.31)

k̃(k,T,r ) =
∫
Ω

k∇T ·∇r T dΩ (4.32)

m̃(
DT

Dt
,r ) =

∫
Ω

DT

Dt
r dΩ (4.33)

Thus, the weak form of the proposed problem is written as: Find the solutions v(x, t) ∈VvΓ ,
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Chapter 4. Finite Element Method

p(x, t ) ∈P and T (x, t ) ∈TTΓ such that

m(
Dv

Dt
,ρ,w)− g (p,w)+ 1

Re
k(µ,v,w)− 1

F r 2 m(g,ρ, w)− 1

W e
m(f, w) = 0 (4.34)

d(q,v) = 0 (4.35)

m̃(
DT

Dt
,r )+ 1

RePr
k̃(k,T,r ) = 0 (4.36)

for all w ∈V0, q ∈P0 and T ∈T0.

4.2 The semi-discrete Galerkin Method

In this section, the semi-discrete Galerkin method for the governing equations will be formally

presented. These equations are discretized only in the spatial domain, remaining continuous

in the temporal domain.

So, let us consider the momentum equation in its variational non-dimensional form coupled

in the orthogonal directions x, y and z:

∫
Ω

[Du

Dt
wx + Dv

Dt
wy + Dw

Dt
wz

]
dΩ− 1

ρ

∫
Ω

[
p
∂wx

∂x
+p

∂wy

∂y
+p

∂wz

∂z

]
+

1

Re

∫
Ω
µ
{(∂u

∂x

∂wx

∂x
+ ∂v

∂x

∂wy

∂x
+ ∂w

∂x

∂wz

∂x
+ ∂u

∂y

∂wx

∂y
+ ∂v

∂y

∂wy

∂y
+ ∂w

∂y

∂wz

∂y
+

∂u

∂z

∂wx

∂z
+ ∂v

∂z

∂wy

∂z
+ ∂w

∂z

∂wz

∂z
+

)
+

(∂u

∂x

∂wx

∂x
+ ∂u

∂y

∂wy

∂x
+ ∂u

∂z

∂wz

∂x
+ ∂v

∂x

∂wx

∂y
+

∂v

∂y

∂wy

∂y
+ ∂v

∂z

∂wz

∂y
+ ∂w

∂x

∂wx

∂z
+ ∂w

∂y

∂wy

∂z
+ ∂w

∂z

∂wz

∂z

)
−

}
dΩ

1

F r 2

∫
Ω

(gx wx + g y wy + gz wz )dΩ− 1

W e

∫
Ω

( fx wx + fy wy + fz wz )dΩ= 0 (4.37)

According to the variational formulation, it is required to find the solutions v = (u, v, w) ∈VvΓ

and p ∈P so that Eq. 4.37 must be true for all w = (wx , wy , wz ) ∈V0. Note that if the following

expressions are satisfied:
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4.2. The semi-discrete Galerkin Method

∫
Ω

Du

Dt
wx dΩ− 1

ρ

∫
Ω

p
∂wx

∂x
+

1

Re

∫
Ω
µ
(∂u

∂x

∂wx

∂x
+ ∂u

∂y

∂wx

∂y
+ ∂u

∂z

∂wx

∂z
+ ∂u

∂x

∂wx

∂x
+ ∂v

∂x

∂wx

∂y
+ ∂w

∂x

∂wx

∂z

)
dΩ−

1

F r 2

∫
Ω

gx wx dΩ− 1

W e

∫
Ω

fx wx dΩ= 0 (4.38)

∫
Ω

Dv

Dt
wy dΩ− 1

ρ

∫
Ω

p
∂wy

∂y
+

1

Re

∫
Ω
µ
(∂v

∂x

∂wy

∂x
+ ∂v

∂y

∂wy

∂y
+ ∂v

∂z

∂wy

∂z
+ ∂u

∂y

∂wy

∂x
+ ∂v

∂y

∂wy

∂y
+ ∂w

∂y

∂wy

∂z

)
dΩ−

1

F r 2

∫
Ω

g y wy dΩ− 1

W e

∫
Ω

fy wy dΩ= 0 (4.39)

∫
Ω

Dw

Dt
wz dΩ− 1

ρ

∫
Ω

p
∂wz

∂z
+

1

Re

∫
Ω
µ
(∂w

∂x

∂wz

∂x
+ ∂w

∂y

∂wz

∂y
+ ∂w

∂z

∂wz

∂z
+ ∂w

∂z

∂wz

∂x
+ ∂w

∂z

∂wz

∂y
+ ∂w

∂z

∂wz

∂z

)
dΩ−

1

F r 2

∫
Ω

gz wz dΩ− 1

W e

∫
Ω

fz wz dΩ= 0 (4.40)

for any wx ∈ V0, wy ∈ V0 and wz ∈ W0 respectively, then (Eq. 4.37) is automatically satis-

fied. Therefore, it is possible to solve such an equation by splitting it into the x-direction

(Eq. 4.38), the y-direction (Eq. 4.39) and the z-direction (Eq. 4.40) separately, without any loss

of generality. The continuity equations is then:

∫
Ω

(∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
qdΩ= 0 (4.41)

and the energy equation:

∫
Ω

DT

Dt
r dΩ− 1

RePr

∫
Ω

k
(∂T

∂x

∂r

∂x
+ ∂T

∂y

∂r

∂y
+ ∂T

∂z

∂r

∂z

)
dΩ= 0 (4.42)
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Chapter 4. Finite Element Method

Considering NV the number of velocity nodes, N P the number of pressure nodes, N T the

number of temperature nodes and N E the number of finite elements in the discretized domain

Ω, the following substitutions in (Eq. 4.37) are required for the Galerkin method:

u(x, t ) ≈
NV∑
n=1

Nn(x)un(t ) (4.43)

v(x, t ) ≈
NV∑
n=1

Nn(x)vn(t ) (4.44)

w(x, t ) ≈
NV∑
n=1

Nn(x)wn(t ) (4.45)

T (x, t ) ≈
N T∑
n=1

Tn(x)cn(t ) (4.46)

p(x, t ) ≈
N P∑
n=1

Pn(x)pr (t ) (4.47)

which are semi-discrete approximations, i.e. continuous in time (t) and discrete in space

(x). Here, Nn(x), Pn(x) and Tn(x) represent velocity, pressure and temperature interpolation

functions, respectively.

In the momentum equation, the weight functions wx , wy e wz are replaced by interpola-

tion functions Nm = Nm(x), m = 1, . . . , NV . Therefore, making the suitable substitutions in

Eqs. (4.38, 4.39 and 4.42), thus results in:

∑
e

∫
Ωe

∑
n

Dun

Dt
Nm NndΩ−∑

e

∫
Ωe

∑
r

∂Nm

∂x
Pr pr dΩ

+ 1

Re

∑
e

∫
Ωe

∑
n
µe

(∂Nm

∂x

∂Nn

∂x
un + ∂Nm

∂y

∂Nn

∂y
un+

∂Nm

∂z

∂Nn

∂z
un + ∂Nm

∂x

∂Nn

∂x
un + ∂Nm

∂y

∂Nn

∂x
vn + ∂Nm

∂z

∂Nn

∂x
vn

)
dΩ−

1

F r 2

∑
e

∫
Ωe

∑
n

Nm Nn gx,ndΩ− 1

W e

∑
e

∫
Ωe

∑
n

Nm Nn fx,n = 0 (4.48)
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∑
e

∫
Ωe

∑
n

Dvn

Dt
Nm NndΩ−∑

e

∫
Ωe

∑
r

∂Nm

∂y
Pr pr dΩ

+ 1

Re

∑
e

∫
Ωe

∑
n
µe

(∂Nm

∂x

∂Nn

∂x
vn + ∂Nm

∂y

∂Nn

∂y
vn+

∂Nm

∂z

∂Nn

∂z
vn + ∂Nm

∂x

∂Nn

∂y
vn + ∂Nm

∂y

∂Nn

∂y
vn + ∂Nm

∂z

∂Nn

∂y
vn

)
dΩ−

1

F r 2

∑
e

∫
Ωe

∑
n

Nm Nn g y,ndΩ− 1

W e

∑
e

∫
Ωe

∑
n

Nm Nn fy,n = 0 (4.49)

∑
e

∫
Ωe

∑
n

Dwn

Dt
Nm NndΩ−∑

e

∫
Ωe

∑
r

∂Nm

∂z
Pr pr dΩ

+ 1

Re

∑
e

∫
Ωe

∑
n
µe

(∂Nm

∂x

∂Nn

∂x
wn + ∂Nm

∂y

∂Nn

∂y
wn+

∂Nm

∂z

∂Nn

∂z
wn + ∂Nm

∂x

∂Nn

∂z
wn + ∂Nm

∂y

∂Nn

∂z
wn + ∂Nm

∂z

∂Nn

∂z
wn

)
dΩ−

1

F r 2

∑
e

∫
Ωe

∑
n

Nm Nn gz,ndΩ− 1

W e

∑
e

∫
Ωe

∑
n

Nm Nn fz,n = 0 (4.50)

The energy equation does not require high order elements since there is no coupling with pres-

sure field. The unknown values are computed only at the tetrahedron vertices, thus pairing

with the dimension of the unknown values of pressure N T = N P ; however, for better under-

standing, the dimensions of unknown temperatures and pressures will be kept respectively as

N T and N P , so that:

∑
e

∫
Ωe

∑
n

DTn

Dt
TmTndΩ

+ 1

RePr

∑
e

∫
Ωe

∑
n

ke
(∂Tm

∂x

∂Tn

∂x
Tn + ∂Tm

∂y

∂Tn

∂y
Tn + ∂Tm

∂z

∂Tn

∂z
Tn

)
dΩ= 0 (4.51)

As mentioned at the beginning of this chapter, the continuity equation is strongly linked to the

pressure, thus it may be evaluated at the pressure nodes, and therefore the weight function q

is approximated by the interpolation functions associated to the pressure Pr (x):

∑
e

∫
Ωe

∑
n

(∂Nn

∂x
un + ∂Nn

∂y
vn + ∂Nn

∂z
wn

)
Pr dΩ= 0 (4.52)
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for r = 1, . . . , N P . Restricting the interpolation functions to each element e, it follows that:

∑
e

∫
Ωe

∑
j ,k∈e

(∂N e
j

∂x
u j +

∂N e
j

∂y
v j +

∂N e
j

∂z
w j

)
P e

k dΩ= 0 (4.53)

Equations (4.48, 4.49, 4.50, 4.53 and 4.51) may be represented by the system of ordinary

differential equations (ODE) below:

Mx u̇ + 1

Re
{(2Kxx +Ky y +Kzz )u +Kx y +Kxz w}−Gx p − 1

F r 2 Mρ,x gx − 1

W e
Mx fx =(4.54)

Mx v̇ + 1

Re
{Ky x u + (Kxx +2Ky y +Kzz )v +Ky z w}−Gy p − 1

F r 2 Mρ,y g y − 1

W e
My fy =(4.55)

Mx ẇ + 1

Re
{Kzx u +Kz y v + (Kxx +Ky y +2Kzz )w}−Gw p − 1

F r 2 Mρ,z gz − 1

W e
Mz fz =(4.56)

Dx u +D y v +Dz w = 0(4.57)

MT Ṫ + 1

RePr
(KT xx +KT y y +KTzz )T = 0(4.58)

where u̇, v̇ , ẇ and Ṫ represent the substantial derivative and are defined as

u̇ = [Du1/Dt , . . . ,DuNU /Dt ]T , v̇ = [Dv1/Dt , . . . ,DvNU /Dt ]T , ẇ = [Dw1/Dt , . . . ,

DwNU /Dt ]T , Ṫ = [DT1/Dt , . . . ,∂TN T /∂t ]T , u = [u1, . . . ,uNU ]T , v = [v1, . . . , vNV ]T ,

w = [w1, . . . , wNV ]T , T = [T1, . . . ,TN T ]T , p = [p1, . . . , pN P ]T , which are the vectors of nodal

values for the velocity, pressure and temperature, respectively. The respective matrix system

associated to the ODE’s are represented by:

Mx =Ax (me ), My =Ay (me ), Mz =Az (me ),

Kxx =Ax (ke
xx ), Kx y =Ax (ke

x y ), Kxz =Ax (ke
xz ),

Ky x =Ay (ke
y x ), Ky y =Ay (ke

y y ), Ky z =Ay (ke
y z ),

Kzx =Az (ke
zx ), Kz y =Az (ke

z y ), Kzz =Az (ke
zz ),

Gx =Ax (g e
x ), Gy =Ay (g e

y ), Gz =Az (g e
z ),

Dx =Ax (d e
x ), D y =Ay (d e

y ), Dz =Az (d e
z ),

KT xx =Ax (ke
T xx ), KT y y =Ay (ke

T y y ), KTzz =Ay (ke
Tzz ),

MT =AT (me )
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such that the sub-matrices, me , ke
xx , ke

x y , ke
xz , ke

y x , ke
y y , ke

y z ,ke
zx , ke

z y , ke
zz , g e

x , g e
y , g e

z , d e
x , d e

y , d e
z ,

ke
T xx , ke

T y y and ke
Tzz are locally defined matrices to each element, so that:

me
i j =

∫
Ωe

N e
i N e

j dΩ ke
xx,i j =

∫
Ωe
νe (

∂N e
i

∂x

∂N e
j

∂x
)dΩ (4.59)

ke
x y,i j =

∫
Ωe
νe (

∂N e
i

∂y

∂N e
j

∂x
)dΩ ke

xz,i j =
∫
Ωe
νe (

∂N e
i

∂z

∂N e
j

∂x
)dΩ (4.60)

ke
y x,i j =

∫
Ωe
νe (

∂N e
i

∂x

∂N e
j

∂y
)dΩ ke

y y,i j =
∫
Ωe
νe (

∂N e
i

∂y

∂N e
j

∂y
)dΩ (4.61)

ke
y z,i j =

∫
Ωe
νe (

∂N e
i

∂z

∂N e
j

∂y
)dΩ ke

zx,i j =
∫
Ωe
νe (

∂N e
i

∂x

∂N e
j

∂z
)dΩ (4.62)

ke
z y,i j =

∫
Ωe
νe (

∂N e
i

∂y

∂N e
j

∂z
)dΩ ke

zz,i j =
∫
Ωe
νe (

∂N e
i

∂z

∂N e
j

∂z
)dΩ (4.63)

g e
x,i k =

∫
Ωe

∂N e
i

∂x
P e

k dΩ g e
y,i k =

∫
Ωe

∂N e
i

∂y
P e

k dΩ (4.64)

g e
z,i k =

∫
Ωe

∂N e
i

∂z
P e

k dΩ d e
x,k j =

∫
Ωe

∂N e
j

∂x
P e

k dΩ (4.65)

d e
y,k j =

∫
Ωe

∂N e
j

∂y
P e

k dΩ d e
z,k j =

∫
Ωe

∂N e
j

∂z
P e

k dΩ (4.66)

me
T,i j =

∫
Ωe

N e
i N e

j dΩ ke
T xx,i j =

∫
Ωe

ke (
∂T e

i

∂x

∂T e
j

∂x
)dΩ (4.67)

ke
T y y,i j=

∫
Ωe

ke (
∂T e

i

∂y

∂T e
j

∂y
)dΩ ke

Tzz,i j =
∫
Ωe

ke (
∂T e

i

∂z

∂T e
j

∂z
)dΩ (4.68)

The operator A represents the assembling of elementary sub-matrices of the ODE’s system

((Eq. 4.58), with respect to the global and local indexes of Eqs (4.48, 4.49, 4.50).

The dimension of the matrices in Eq. 4.58 are NV ×N P for Gx , Gy and Gz , N P×NV for Dx , D y

and Dz and NV ×NV for all the remaining matrices. From (Eq. 4.58) it is possible to rewrite

the ODE’s system in a compact way, coupling the velocities in x, y and z, resulting in:

M v̇+ 1

Re
K v−Gp − 1

F r 2 Mρg− 1

W e
M f = 0

Dv = 0

MT Ṫ + 1

RePr
KT T = 0 (4.69)
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where the variables are now defined as v̇ = [Dv1/ Dt , . . . ,DvNV / Dt ,v1, . . . ,

vNV ]T , v = [v1, . . . , vNV ,v1, . . . ,vNV ]T , G = [g x
1 , . . . , g x

NV , g y
1 , . . . , g y

NV , g z
1 , . . . , g z

NV ]T ,

D = [d x
1 , . . . ,d x

NV ,d y
1 , . . . ,d y

NV ,d z
1 , . . . ,d z

NV ]T , c = [c1, . . . , cN T ]T , ċ = [DT / Dt ,

. . . ,DTN T / Dt ,T, . . . ,TN T ]T and p = [p1, . . . , pN P ]T , and the matrices as

M =

 Mx 0 0

0 My 0

0 0 Mz


3NV ×3NV

Mρ =

 Mρ,x 0 0

0 Mρ,y 0

0 0 Mρ,z


3NV ×3NV

K =

 2Kxx Ky x Kzx

Kx y 2Ky y Kz y

Kxz Ky z 2Kzz


3NV ×3NV

G =

 Gx

Gy

Gz


3NV ×N P

D =
[

Dx D y Dz

]
N P×3NV

MT =

 MT x 0 0

0 MT y 0

0 0 MTz


3N T×3N T

K =

 KT x 0 0

0 KT y 0

0 0 KTz


3N T×3N T

4.3 The semi-Lagrangian Method

The semi-Lagrangian method has its own history dating from the end of the 1950’s ([98])

and the beginning of the 1960’s ([49] and [79]). However, the use of such a methodology for

modeling fluid flow problems came later in the 1980’s through the work of [78] and [73], in

which predominately convective problems were investigated.

The semi-Lagrangian method was firstly used in convection-diffusion systems where numeri-

cal stability and large time steps were required. Since then, this methodology has been shown

to fulfill the expectation for large problems to be solved relatively fast. For meteorological

purposes, the numerical prediction of weather conditions using the semi-Lagrangian ap-

proach has shown to be very effective in which large time steps are crucial ([27]). However, the

semi-Lagrangian method is not commonly found in the discretization of the Navier-Stokes

equations, but recently work has shown its effectiveness for simulating flows with high veloci-

ties ([5] and [6]).

The semi-Lagrangian algorithm is an integrating factor method in which such a factor is an

advection operator. This operator is shifted to a moving coordinate system from which the

next time step quantity is calculated. Let ψ be a scalar function in its material derivative

50



4.3. The semi-Lagrangian Method

representation, given in 3-dimensional form as:

Dψ

Dt
= ∂ψ

∂t
+u

∂ψ

∂x
+ v

∂ψ

∂y
+w

∂ψ

∂w
(4.70)

In the moving mesh context, the material derivative turns into a partial ordinary derivative,

thus the convective term vanishes while the coordinates are instantaneously changed.

In fluid dynamics, the pure Lagrangian coordinates track the fluid flow by moving the points

along its trajectory. However, this may limit the feasible range of simulation conditions, even

for low velocity flows, since the particle’s trajectory may turn to a chaotic state in a short period

of time. Thus, to address such a drawback, the semi-Lagrangian method re-initializes the

coordinate system at each time step, consequently recovering the original mesh. The quantity

value in the current time step is calculated according to its position in the previous time step,

thus this methodology is said to be explicit in time. However, due to its natural description, no

time restriction is imposed to satisfy its numerical stability.

Following the description presented above, the Eq. (4.70) may be discretized linearly in the

time domain at the point xi by using a explicit first order scheme:

Dψ

Dt
= ψn+1

i −ψn
d

∆t
(4.71)

where ψn
d = ψn(xd , t n) and xd is the departure point. In the strong form, the substantial

derivative is calculated along the characteristic trajectory, thus finding the point xd by solving

Dψ/Dt = f backwards in time t n+1 ≥ t ≥ t n using the initial condition x(t n+1) = xi . For

simplicity, this procedure is shown in an 1-dimensional scheme in Fig. (4.1). According to

this scheme, the initial position xi in time t n+1 is known and therefore it is used to find the

departure point xd , whose position is unknown.

In the semi-Lagrangian context, a searching procedure is required to find the unknown de-

parture points xd in time t n . This procedure may lead to excessive computational cost if

it is not well designed, thus it should be treated with appropriate care. In this work, this

searching procedure is implemented using a smart technique that maps each element node

to the opposite element that shares the same face. Therefore, using volume coordinates, it

is possible to track the path from the current node’s position xi to its departure point xd as

shown in Fig. (4.2). As can be seen, only few computational elements are required to find

the element in which the departure point is located. Once the point position is known, an

interpolation is performed and the quantity is assigned.

51



Chapter 4. Finite Element Method

Figure 4.1: 1-dimensional space scheme of the semi-Lagrangian method. The point xd is
found by integrating the mesh backward in time according to Eq. (4.71). Thus, to calculate the
quantity value, an interpolation is performed considering the quantity values on the nodes
xi−1 and xi .

Figure 4.2: 2-dimensional particle trajectory from the current node’s position ψn+1
i to its

corresponding departure point ψn
d .
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Besides the above example described in Fig. (4.2), many different others may appear. Fig-

ure (4.3) shows 5 possible trajectories that should be considered while developing the searching

procedure. In the trajectory 1, the departure point xd is locatead near the node position xi .

Once the point’s position is found, the interpolated quantity can be assigned. In the trajecto-

ries 2 and 3, the departure points are located outside the boundary domain. Thus, a boundary

element is used to interpolate the quantity to the nodes. In the trajectories 4 and 5, both cases

are similar to the trajectory 4, however, the searching algorithm demands more computational

time and the trajectory interpolation is less accurate.

Figure 4.3: Interpolation procedures in the semi-Lagrangian method.

Above, a summary of the semi-Lagrangian method has been given. It is worth noting that

higher accuracy may be achieved if the trajectory is fitted by high order schemes in time,

such as the Generalized Adams-Bashforth schemes (see [75]). In the present work, the time

restriction limits the displacement of the departure point to one element long, thus a linear

approximation of the trajectory achieves reasonable accuracy.

4.3.1 Semi-Lagrangian Method for the Navier-Stokes Equations

The procedure described in the previous section will be used to discretize the material deriva-

tive of the Navier-Stokes equation. The material derivative (Eq. 4.72) is substituted into

Eq. (4.34), resulting in:

Dv

Dt
= ∂v

∂t
+u − û

∂v

∂x
+ v − v̂

∂v

∂y
+w − ŵ

∂v

∂z
(4.72)
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vn+1
i −vn

d

∆t
=− 1

ρ
∇pn+1 +∇· [µ(∇vn+1 +∇(vn+1)T )]− 1

F r 2 gn − 1

W e
fn (4.73)

Following the spirit of the semi-Lagrangian discretization method, Eqs. (4.34, 4.35 and 4.36)

are re-written as:

m(
vn+1

i −vn
d

∆t
,w)− g (pn+1,w)+ 1

Re
k(µ,vn+1,w)− 1

F r 2 (g,w)− 1

W e
(f,w) = 0 (4.74)

d(q,vn+1) = 0, (4.75)

m̃(
T n+1

i −T n
d

∆t
,r )+ 1

RePr
k̃T (k,T n+1,r ) = 0 (4.76)

for all w ∈V0, q ∈P0 and T ∈T0. Thus, the resulting discrete matrix form is given by:

M
(vn+1

i −vn
d

∆t

)+ 1

Re
K vn+1 −Gpn+1 − 1

F r 2 gn − 1

W e
fn = 0

Dvn+1 = 0

MT
(T n+1

I −T n
d

∆t

)+ 1

RePr
KT T n+1 = 0 (4.77)

4.4 Mesh elements

The computational mesh used in the Finite Element Method allows for a wide variety of

elements. They are characterized by their geometry and the polynomial interpolating function

use to fit the desired equation. These elements may be classified according to their shape as

triangular, quadrilateral, etc. for 2-dimensional problems and tetrahedral, prismatic, paral-

lelepiped, etc. for 3-dimensional problems. Moreover, the order of the polynomial function

may be classified as linear, quadratic, cubic, bi-linear, etc. Additionally, a particular class

of elements namely Isoparametric elements may be used where the region to be modeled

requires elements with more general shapes, which is the case of curvilinear domains (for

details, see [103]). Even affordable to moving boundary problems, the Isoparametric elements

are unfortunately relatively more complicated to deploy and, thus it has not been chosen in
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the present work.

The finite elements are numerically represented by the meaning of their local coordinates.

This means that the interpolating functions (also known as shape functions) are built indepen-

dently of the element’s neighborhood, thus the finite element may be easily changed without

modifying significantly the simulation program. Such an inherent ability is a strong advantage

compared to other discretization methods such as finite difference and finite volume methods.

In the following subsections, a description of the tetrahedron element through the volume

coordinates and a brief illustration of different shape functions used in this work are presented.

4.4.1 Volume coordinates

Let us consider a point inside a generic tetrahedron i j kl as depicted in Fig. (4.4). The local

linear coordinates Li , L j , Lk and Ll may be calculated by its non-dimensional volume as

follows:

Figure 4.4: Volume coordinates for the generic tetrahedron i , j ,k,l where P is a point some-
where inside the tetrahedron.

Li = Vi

V
(4.78)

where Vi represents the volume occupied by the tetrahedron i j kP and V the total volume of

the tetrahedron element. Repeating the same idea for the remaining sides, it is possible to
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define L j , Lk and Ll . Thus, the following is true for the tetrahedron element:

L j =
V j

V
Lk = Vk

V
Ll =

Vl

V
(4.79)

Vi +V j +Vk +Vl =V −→ Vi

V
+ V j

V
+ Vk

V
+ Vl

V
= 1 (4.80)

Li +L j +Lk +Ll = 1 (4.81)

and re-writing as function of the local Cartesian coordinates x, y and z:

x = Li xi +L j x j +Lk xk +Ll xl (4.82)

y = Li yi +L j y j +Lk yk +Ll yl (4.83)

z = Li zi +L j z j +Lk zk +Ll zl (4.84)

The element volume can be found by the matrix determinant, which is represented by the

element coordinates:

6V = det


1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z4

1 x4 y4 z4



Solving the above system of Eqs. (4.82, 4.83 and 4.84), the linear coordinates L1, L2, L3 and L4

are equally determined and thus can be used to compute the high order elements:
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L1 = ai +bi x + ci y +di z

6V
(4.85)

L2 =
a j +b j x + c j y +d j z

6V
(4.86)

L3 = ak +bk x + ck y +dk z

6V
(4.87)

L4 = am +bm x + cm y +dm z

6V
(4.88)

4.4.2 3-dimensional elements

The choice of the appropriate element is a key step to successfully achieve the required

precision in the simulations. In fluid dynamics, the element is responsible for the coupling of

velocity and pressure and it should satisfy the requirements of the so-called Ladyzhenskaya-

Babouska-Brezzi (LBB) stability condition ([21], [102] and [67]). Such a condition imposes the

type of velocity and pressure basis functions. One way to avoid the LBB condition is to use

stabilizing methods such as pressure stabilization, penalty method or artificial compressibility

([44], [103],[102]). However, such a stabilization process is not part of this work, in which has

preferred the use of LBB stable elements.

The elements used in the present work are reported below, followed by short descriptions of

their features and their applicability in the Navier-Stokes equation.

Linear element: The unknowns are evaluated at the tetrahedron’s corners with interpolation

functions of order 1. This element is commonly used to solve scalar equations, such as heat

and chemical species transport. This element does not satisfy the LBB condition for fluid flow

problems and it cannot be used to solve velocity and pressure without stabilizing methods.

For linear tetrahedron elements with local coordinates Li , L j , Lk and Ll , the shape functions
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are equivalent and written as:

Ni = Li , i = 1,2,3,4 (4.89)

A simple formula is available in the literature to calculate the volume integral over the element

(see [43], [103]) and it is expressed by:

Ñ
V

Li
aL j

bLk
c Lm

d d xd yd z = a!b!c !d !

(a +b + c +d +3)!
2V (4.90)

Mini element: This element is part of the Taylor-Hood family and it is a combination of the

linear tetrahedron and an additional “bubble” function, built by an additional node localized

in its barycenter, thus making it a five node element. The interpolation polynomial is of order

4, but it does not present the second and the third degree terms. The pressure is linear and is

evaluated at the tetrahedron vertices and the velocity is cubic incomplete and evaluated at all

the 5 nodes.

The shape functions Ni for the 5-node tetrahedron element may be defined as a function of

local coordinates Li , L j , Lk as follows:

Ni = Li −64L1L2L3L4, i = 1,2,3,4

N5 = 256L1L2L3L4
(4.91)
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10-node element: Defined by nodes in the middle of the tetrahedron edges, the 10-nodes

quadratic element is commonly used in fluid flow problems. The interpolation polynomial is

of order 2. The pressure is linear and evaluated at the tetrahedron vertices, while the velocity

is quadratic and evaluated at all 10 nodes.

The interpolation functions Ni for the 10-node quadratic element may be also expressed as a

function of local coordinates Li , L j , Lk as follows:

Ni = (2Li −1)Li , i = 1,2,3,4

N5 = 4L1L2

N6 = 4L2L3

N7 = 4L1L3

N8 = 4L1L4

N9 = 4L2L4

N10 = 4L3L4

(4.92)

The list of available elements are not limited to those above described. Many other geome-

tries and polynomial functions may be used to discretize the fluid flow equations. High

order elements, discontinous pressure elements and combined elements are examples of

the wide variety of Finite Elements. This diversity is organized by families such as Taylor-

Hood, Crouzeix-Raviart and Serendipity; each one has its particular approach to calculate the

quantities. A list of available elements for fluid flow problems can be found at [52], [44] and

[103].
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Due to its superior mass conservation and the minimum amount of nodes per element to

satisfy the LBB condition, the mini-element has been chosen to discretize pressure and velocity

in the the Navier-Stokes equations within the moving mesh context. Such a decision has shown

to be appropriate to model two-phase flow problems with minimum implementation efforts

and significant accuracy.

4.5 The Delaunay Tetrahedralization

Tetrahedron elements are extremely powerful to discretize any kind of geometry. Its appli-

cation extends from simple brick geometries to more complex shapes including curvilinear

boundaries. However, for fluid flow problems, the distribution of the elements should respect

some physical requirements. While considering a domain discretized by tetrahedron elements

and not limiting it to a uniform point distribution, an unstructured grid is expected, i.e. the

number of a node’s neighbors is not constant. Such a flexibility cannot be assessed if cubic and

brick shaped elements are used, however the Finite Element method allows the concurrent

use of different element shapes, if the code implementation takes into account their inter-

connectivity. Thus, the tetrahedron distribution in the computational domain may change

with respect to the investigated problem and some criteria should be imposed to keep the

elements bounded to acceptable aspect ratios, since low quality elements may corrupt the

accuracy of the computational discretization.

In the present technique, the equations are discretized over an unstructured non-regular

tetrahedral mesh with optimal element properties. This is achieved using the Delaunay tetra-

hedralization algorithm which ensures well-shaped elements. However, due to the constant

motion of the mesh nodes, all the Delaunay requirements may not be satisfied. Nevertheless,

efforts have been made to maintain the mesh quality, in each time step, restricting it to good

element aspect ratios.

The Delaunay tetrahedralization consists of a geometrical construction often used in mesh

generation for the Finite Element Method. Such a construction corresponds to the dual graph

of the Voronoi diagram ([96]), which is a special type of space decomposition determined

by distances and commonly used for mapping regions and land areas. Figure. (4.5) shows

a simplified representation of the Voronoi diagram of a set of points and its corresponding

tessellation according to the Delaunay properties.

In 2-dimensional spaces, the Delaunay algorithm maximizes the minimum angle of all trian-

gles and minimizes the largest circumscribed circle, thus avoiding low quality elements. The

Delaunay tetrahedralization follows the same strategy as its correspondent 2-dimensional

algorithm, however some of the features may not be assured due to geometrical restrictions.

Although this inconvenient, the Delaunay tetrahedralization results in satisfactory elements

and thus can be used to discretize the domain of two-phase flow problems by the Finite

Element Method (see [81] and [69]).
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(a) (b)

Figure 4.5: 2-dimensional representation of a (a) Voronoi diagram and (b) its tessellation
according to the Delaunay properties.

4.6 Projection Method

After the spatial and temporal discretization by the Finite Element Method, the solution of a

set of linear algebraic equations is required. There are many ways to solve this linear system,

but due to its size, computational methods may be employed to avoid excessive processing

time and memory overhead. The methods for the solution of a linear system may be divided in

two groups, namely coupled and uncoupled. The former attempts to solve the complete linear

system directly at each time step. However, the direct solution of the Navier-Stokes equations,

where pressure and velocity are strongly connected, becomes an onerous procedure. Moreover,

the non-linearity of such an equation makes the solution even more complex. Instead, the

latter detaches the internal dependencies, allowing a serial resolution of the problem. As part

of the uncoupled methods, the Projection Method has become popular in the fluid dynamics

domain. It was originally introduced by Chorin ([20]) and thus followed by many others such

as ([71]) with the SIMPLE method and [39] with the MAC method.

The family of Projection methods is basically divided into three different parts:

• Continuous projection method

• Semi-discrete projection method

• Discrete projection method

The projection method in the continuous form attempts to split velocity and pressure before

the discretization of the equations is achieved. In the semi-discrete form, the procedure is

applied when part of the Navier-Stokes’s equation is already discretized in the time domain.

The discrete projection method segregates pressure and velocity before the solution of the
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linear system, thus time and space are already discretized. This work has chosen a variant of

the discrete projection method, namely LU-based discrete projection method. The general

idea of the Projection method as well as the implemented discrete method is presented below.

4.6.1 The Projection Method

The projection method assumes that any vector v ∈Ω, where Ω is a domain with a smooth

boundary ∂Ω, may be uniquely decomposed by:

v = vd +∇% (4.93)

and vd is solenoidal and parallel to the boundary ∂Ω, that is,

∇·vd = 0 in Ω (4.94)

vd ·n = 0 in ∂Ω (4.95)

where % is a scalar field. From the vector analysis, ∇×∇%= 0, and thus Eq. 4.93 is equivalent to

spliting the vector v in two components, namely divergence-free and rotational-free. Now, let

us consider the equations in the conservative form valid for all the domainΩwith constant

viscosity µ and density ρ in each phase:

∂v

∂t
+∇· (vv) =−∇p +ν∇2v+g (4.96)

∇·v = 0 (4.97)

Thus, Eq. (4.96) is written as:

∂v

∂t
+∇p = S(v) where S(v) = ν∇2v+g−∇· (vv) (4.98)

In general, S(v) is not divergence-free and rotational-free. Additionally, note that:
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∇· [∂v

∂t
= ∂

∂t
(∇·v) = 0 (4.99)

∇×∇p = 0 (4.100)

Equation (4.98), as suggested by [20], may be interpreted with v from Eq. (4.93). The vector

S(v) is known and can be projected onto both divergence-free (∂v/∂t ) and rotational free (∇p)

subspaces, in other words:

∂v

∂t
= P[S(v)] ∇p = Q[S(v)] (4.101)

where P and Q are projection operators which satisfy the following properties:

P2 = P Q2 = Q PQ = QP = 0 (4.102)

Now, for any vector v, P projects such a vector onto the null space of the divergent operator

and Q is reciprocal to the rotational operator, that is:

∇·P[v] = 0 ∀v ∈Ω (4.103)

∇·Q[v] = 0 ∀v ∈Ω (4.104)

By comparing Eqs. (4.99 and 4.101), the projection operators are:

P = I−∇(∇2)−1(∇) (4.105)

Q = I−P (4.106)

As observed by Gresho [38] and due to the strong coupling of pressure and velocity in incom-

pressible flows, only acceleration and pressure can be split by the projection operators.
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4.6.2 The LU-based discrete projection method

The discrete projection method based on the LU decomposition is obtained through the

factorization of the resulting linear system, so that the velocity and pressure splitting is done

after the space and the time discretization:

M(
vn+1 −vn

∆t
)+ 1

Re
K vn+1 −Gpn+1 − 1

F r 2 gn − 1

W e
fn = 0 (4.107)

Dvn+1 = 0 (4.108)

MT (
T n+1

i −T n
d

∆t
)+ 1

RePr
K T n+1 = 0 (4.109)

Equation (4.109) can be solved separately, however Eqs. (4.107 and 4.108) form a system of

equations that may be represented by:

[
B −∆tG

D 0

]
.

[
vn+1

pn+1

]
=

[
r n

0

]
+

[
bc1

bc2

]
(4.110)

where the system is now written only for the problem unknowns such that

vn+1 = [un+1
1 , . . . ,un+1

Nu , vn+1
1 , . . . , vn+1

N v , wn+1
1 , . . . , wn+1

N v ]T , pn+1 = [pn+1
1 , . . . , pn+1

N p ]T , where Nu,

N v , N w e N p are the number of unknowns for velocity in x, y and z and pressure respectively.

Note that the vector and matrix notation were kept as simple as possible. The B matrix is given

by:

B = Mρ

∆t
+ K

Re
(4.111)
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and the right hand side vector stands for the known quantities in current time n,

r n = Mρ

∆t
vn

d (4.112)

and the boundary conditions, which are the contributions of known values for velocity and

pressure on the right hand side of the system. The projection method based on the LU

factorization aims to uncoupled the linear system (Eq. 4.110) through a block factorization.

According to [51], such a procedure can be done in several different ways, each one classified

by families of methods. Now, consider a LU canonical block factorization as:

[
B −∆tG

D 0

]
=

[
B 0

D ∆tDB−1
1 G

]
.

[
I −∆tB−1

2 G

0 I

]
(4.113)

Thus, the resulting system is described as:

[
B 0

D ∆tDB−1
1 G

]
.

[
I −∆tB−1

2 G

0 I

]
.

[
vn+1

pn+1

]
=

[
r n

0

]
+

[
bc1

bc2

]
(4.114)

The Uzawa method [16] is achieved if the system presented in (Eq. 4.114) is solved. However

its solution requires the computation of the inverse of matrix B at each time step, which is a

time consuming task and extremely costly. Therefore, such a matrix may be approximated

by a diagonal matrix BL which is easy and fast to invert. This methodology is known as

Matrix Lumping and it has shown to be suitable for the Finite Element Method. The main

idea of this method is to perform a summation of all entries of a row into its main diagonal.

Two diagonalizations were tested, one using the consistent mass matrix M so that the new

approximated diagonal matrix results in ML, and the second using the matrix B and resulting

in BL. Both approaches have shown good results, but a small oscillation was noted for the

velocity field when the Reynolds number varies from low to moderate values. It is important to

note that according to [16], different approximations can be done for the consistent matrices

B1 and B2, but to satisfy the continuity equation, it is mandatory that B1 = B2, so that all the

approximation error is focused to the momentum equation. Thus, the new uncoupled linear

system is described as follows:
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[
B 0

D ∆tDB−1
1 G

]
.

[
ṽn+1

pn+1

]
=

[
r n

0

]
+

[
bc1

bc2

]
(4.115)

Bṽ = rn +bc1 (4.116)

∆tDB−1Gpn+1 =−Dṽ+bc2 (4.117)

[
I −∆tB−1

2 G

0 I

]
.

[
vn+1

pn+1

]
=

[
ṽn+1

pn+1

]
(4.118)

(4.119)

vn+1 = ṽ+∆tB−1Gpn+1 (4.120)

where t is time and vn
d is the velocity calculated in the previous time step at the departure

points. Thus, the complete solution procedure is described as follows:

• compute the trial velocity ṽ by solving:

Bṽ = rn +bc1 (4.121)

• update ṽ while considering the surface and gravity forces:

ṽcor r = ṽ+∆tM−1
ρL(

1

F r 2 Mρg+ 1

W e
Mf) (4.122)

• compute pn+1 from:

DB−1Gpn+1 =−D(ṽcor r )+bc2 (4.123)
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• find the solution velocity vn+1 from:

vn+1 = ṽcor r +B−1
L Gpn+1 (4.124)

The subscript L refers to the Lumped matrix, which consists in a diagonal approximation, thus

avoiding the computation of the matrix inverse. Note that in Eq. (4.122) the source terms f

and g are only included once the trial velocity ṽ is computed, thus satisfying the balance with

pressure. For consistency, the lumped approximation is also employed in the computation of

f, therefore Mf ≈ κGH .

The two final linear systems (Eqs. (4.121) and (4.123)) are solved at each time step by the

conjugate gradient method and the generalized minimum residual method, respectively.

The Incomplete Cholesky and LU factorization are used as preconditioners to speed up the

convergence of the final solution.

4.6.3 Time step restriction

In the ALE formulation, the convection term is driven by the difference between two velocities,

namely u and û. As explained in chapter 3), u is the total Eulerian velocity and û is the mesh

velocity. Instead of applying the classical Galerkin method, which imposes a time step and

mesh space restriction, the semi-Lagrangian technique was chosen to discretize this term.

This approach leads to an explicit modeling of the operator, and due to its character, there is

no strict time step restriction for its stability. Nevertheless, large time steps should be avoided

since the accuracy is first order in time, otherwise important non-linear phenomena may not

be captured. The time step constraint for this term is given by the expression below:

∆tsl <
hmi n

umax
(4.125)

where hmi n is the smallest tetrahedral mesh edge length and umax is the maximum value of

velocity given by max{|u|, |v |, |w |}. On the other hand, the motion of the mesh nodes is due to

û and the time step constraint should prevent the nodes from moving more than one mesh

cell, otherwise the mesh is corrupted due to element distortions and collision of nodes. The

strategy of the moving mesh time constrain calculation is based on the velocity differences

and the local mesh edge size, thus limiting one node to overlap the other or cross the face of an

element. Let us consider v1 and v2 as the vertices of a tetrahedral edge he and∆ûe = û1− û2 as
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the mesh velocity difference, thus the proposed Lagrangian time step should be bounded by:

∆tl < min
( he

|∆ûe |
)

(4.126)

where, û is the velocity of the moving mesh given by Eq. (6.5). Unfortunately, the Lagrangian

time step may fairly restricts the time step, but using the node deletion method previously

described, the mesh edge length he does not become too short and consequently the time

step is increased. Additionally, the explicit treatment of gravity and surface tension adds a

constraint to the final time step which is related to the wave velocity propagating into the

computational mesh. According to Brackbill and Kothe [12] and Fortuna [30], such a criteria

for both surface tension and gravity may be written as:

∆ts <
[ρh3Eo

2π

]1/2
(4.127)

and

∆tg <
[ 1

hmi n

]1/2
(4.128)

In the above equations, ρ is an average fluid density between the inner and outer fluids, h is

the mesh characteristic length, hmi n is the smallest mesh length and Eo is the Eötvös. Thus,

the final simulation constraint may be written as:

∆t ≤ min
{
∆tl ,∆ts ,∆tg ,∆tsl

}
(4.129)

4.6.4 Object-oriented design

The layout of a project is of utmost importance in many designing aspects and it should be

treated with care. Reusability and further development must be considered when creating

a project. Not different is the design of a numerical code, especially if it involves large data

structures and the discretization of complex equations, which is the case of the present work.

Moreover, the Finite Element method allows a modular structure that may be designed to

provide easy maintenance and inclusion of different methods without the need to rewrite the

entire code.
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The C++ language was chosen as the code programming language due to its many available

features. This modern computer language has shown to be efficient in many applications

such as systems software, application softwares, device drivers, high-performance computing,

etc. Moreover, its high portability makes the C++ language easily to be compiled in many

different operating systems, such as UNIX-based sytems (Linux and OS X) and Microsoft

Windows. Finally, the paradigm of object-oriented programming can be exhaustively used

since this language allows the manipulation of objects, classes, hierarchy and polymorphism.

Figure (4.6) shows a simplified Unified Model Diagram (UML) of the proposed project layout

and its description is given below.

The Model class is responsible to characterize the conditions and the geometry of the proposed

study, being the first class to be initialized. The non-dimensionalization of the domain, the

boundary conditions, the insertion and deletion of nodes in the volumetric and surface

meshes, the measurement of mesh quality and many other methods are implemented in this

class. Moreover, since the methodology used in this work to compute the curvature is based

on mesh geometric objects such as tangent and normal vectors, the curvature calculation is

performed in the Model class.

The MeshSmooth class, as its name suggests, performs the mesh smoothing according to

some parameters such as velocities, coordinates and edge lengths. This class is linked to the

Model class and to the Simulator class, therefore modifying the computational mesh without

insertion and deletion of nodes.

The volumetric points distribution is achieved by the Helmholtz class. The discretization

of the Helmholtz equation in 3-dimensions is done using the finite element method, thus

the code structure is reused as input parameters. In this case, the surface mesh is passed as

an argument from the Model class and the finite linear element (FEMLinElement) is used to

discretize the equation. The solution is than sent back to the Model class.

In the TElement class, the finite elements can be chosen according to their type. The design of

such a class is based on hierarchy, which allows other classes to be attached, and consequently

inherit the elemental array structures. Three additional classes are inherited from the TElement

class, namely: FEMLinElement, FEMMiniElement and FEMQuadElement. Each of these classes

are responsible to build the elemental array structure according to the element order. The

elemental stiffness, mass, gradient and divergence matrices are created with the aid of the

Gaussian quadrature which is computed in such a way that the accuracy of the elemental

integrals are kept high. Note that the proposed modular design allows the inclusion of many

different elements without affecting the other classes, thus not requiring any additional

modification in the computational code.

The core of this numerical code is located in the Simulator class. There, the global matrices are

assembled according to the elemental arrays from the TElement class and the domain mesh

from Model class. The Simulator class is also responsible to impose the boundary conditions

to the linear system, to assemble the source vectors of gravity and surface tension and to
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Figure 4.6: Simplified UML class diagram of the code’s design. The classes are projected to
allow Reusability and further development.
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compute the moving mesh velocity.

The convective term of Navier-Stokes equations is computed in a modular way. Two classes

were designed apart of the Simulator class, namely Semi-Lagrangian and Galerkin classes.

The former computes the convection term using the semi-Lagrangian method and the later

uses the Galerkin method. Note that for stability reasons, the Semi-Lagrangian class has been

chosen for all the simulations here presented. Moreover, additional methods can easily be

included into the code without affecting the structure of the Simulator class.

Finally, the assembled linear system with proper boundary conditions and source vectors

are thus sent to the Solver class in which a suitable method will be chosen to compute the

solution for the current time step. Among the implemented inheritor classes, one has been

built as an interface to a popular scientific computation toolkit, namely Petsc ([7], [7], [8]).

The class PetscSolver allows the use of any linear solver and preconditioners implemented by

the Petsc group such as Conjugated Gradients, GMRes, Least Square Residual, , LU, Cholesky,

Jacobi and many others. Additionally, the remaining inheritor classes of the Solver class are

developed to solve the linear system by the Conjugated Gradients and GMRes methods. This

extended flexibility brings into the code a potential platform for the study of efficient ways to

solve large linear systems.
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5 The Discrete Interface

This chapter describes the interface discretization procedure, from its geometrical represen-

tation to the nodal surface tension calculation. The Heaviside function is presented and the

distribution of fluid properties in the numerical domain is compared to standard methods

found in the literature.

5.1 Geometrical representation

In front-tracking codes the interface is constructed by a set of geometrical objects, such

as triangles, edges and nodes, which are moved in Lagrangian fashion, whlie instead the

background mesh is fixed on the space. An additional function is required to communicate

from one mesh to another, since there is no implicit interconnectivity. This approach leads to

the so-called zero-thickness interface, in which a sharp representation is achieved. Although its

excellent geometrical definition, the fluid properties close to the interface require a numerical

treatment to avoid undesirable instabilities. Thus, these properties are smoothed along the

transition zone and the zero-thickness is no longer guaranteed.

Unlike front-tracking codes, the present surface and background meshes are part of the same

computational mesh, thus no additional equation is required to pass the information from

one mesh to another. The 3-dimensional mesh comprises a set of tetrahedron elements

distributed on the domain and the interface is found by a scalar function, namely Heaviside,

which defines the nodes belonging to each phase and the interface itself. To achieve a zero-

thickness representation, the interface’s nodes must be connected consistently so that the

piecewise discrete interface may be represented by a set of interconnected triangles. In other

words, each triangle is a face of two adjacent tetrahedral elements. Figure (5.1a) shows a

schematic representation of the discrete interface between the two different phases. The same

triangle face is shared by two adjacent tetrahedrons, therefore the zero-thickness interface is

successfully achieved.

Advantages and drawbacks are found in such an approach, but one feature is especially inter-
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(a) (b)

Figure 5.1: Geometrical representation of the interface between the phases. (a) The interface
(gray colored) is represented by a set of triangles, edges and nodes which are part of the
tetrahedron mesh. (b) The fluid property φ, such as density or viscosity, is sharply defined in
phase 1 and phase 2 with a zero thickness interface in the transition zone.

esting due to the definition of the fluid properties in the transition area. From the macroscopic

point of view, the physical meaning of an interface is the region that sharply divides the volume

occupied by each phase. Thus, it is desirable that such an interface’s thickness should be

kept as thin as possible. The Lagrangian description guaranties the geometrical part, but

due to the abrupt change in properties from one phase to another, numerical instabilities

may appear and deteriorate the accuracy of the solution. Such a problem is mainly due to

the location of the interface somewhere in-between two computational elements. This can

be circumvented with the ALE and the Finite Element formulation, in which the interface is

not located in between mesh elements but it shares the faces of two adjacent computational

mesh elements and thus the fluid properties remain constant in each mesh element. A sharp

transition of properties is thus successfully achieved and does not require the use of any

smoothing functions, consequently assuring accuracy in the balance of forces close to the

interface.

Figure (5.1b) shows the transition zone between the two phases colored by dark and light

gray, which was purposely drawn to highlight the methodology proposed by this work. As

can be seen, the property φ1 fills the elements of phase 1 and the property φ2 fills exactly the

elements of phase 2. Even for a high property ratio φ1/φ2 = 1000, the methodology proposed

here does not present spurious oscillation in the pressure and the velocity field. Figure (5.2)

depicts a 1-dimensional plot of density distribution along the phases. Figure (5.2a) shows a

the density distribution used in the implemented ALE-FE scheme. Due to the Finite Element

formulation, each phase property φ is assigned to each tetrahedron element, thus a sharp

transition of properties is achieved. Figure (5.2b) shows a smoothed distribution commonly

found in Level-Set methods. Such a procedure is required to avoid numerical instabilities

close to the interface.
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5.1. Geometrical representation

Despite the sharp definition of the interface and the fluid properties, topological changes are

not naturally handled in this method, thus requiring an implementation effort on the modeling

of coalescence and break-up of bubbles and drops. To address this issue, a geometrical

model may be used to merge or split two surfaces. For instance, when the film thickness

between two bubbles are smaller than a predefined parameter, the surfaces are connected

and coalescence takes place. Although the topological change occurs, the physical aspects are

not fulfilled. In fact, the mechanisms of bubble coalescence and break-up is still an open issue

and, consequently, a potential field of future research.
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Figure 5.2: Density distribution in two-phase flows. Phase 1 has a density ρ1 = 1000 and phase
2 has a density ρ2 = 1. The interface is at x ≈ 0.5. (a) The sharp transition is achieved by the
ALE-FE method, in which no artificial smoothing is required. (b) Smoothed distribution of
density commonly found in Level-Set methods (see [87] and [93]).
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5.2 Curvature and normal vectors in R3

According to Eq. (3.19), the non-dimensional form of the surface tension term can be written as

f = nκδ, whereκ is the curvature and n is the surface unity outward normal vector. Additionally,

δ represents the Dirac delta function with support on the interface. Now, let us consider a

distributed surface tension force scheme based on the Heaviside function:

f =σκ∇H (5.1)

In such a scheme, the distributed interface force f is a volume force and its intensity σκ is

calculated and applied on the direction of the gradient of the linear Heaviside function ∇H ,

where σ stands for the surface tension coefficient. Thus, at the interface all the surface tension

force is well distributed on the free node’s neighbors and the effects of overshooting and

undershooting are eliminated.

In 2-dimensional space, the mean curvature κ can be locally calculated from the variation of

the normal or tangent vector along the curve that defines the interface. Such a definition is

derived from the Frenet’s formulas ([48]) and it is written as:

κt =−∂n

∂s
or κn = ∂t

∂s
(5.2)

which represents the continuous description. The discrete first order approximation is then

given by:

κn = (t1 − t2)

∆s
(5.3)

where t1 and t2 are approximations of the unit tangent vectors in two consecutive interface

edges and ∆s is its approximate arc length. Figure (5.3a) shows the continuous representation

of the mentioned formula and in Fig. (5.3b) the discrete representation of the 2-dimensional

interface is presented. The interface’s nodes are used to compute the tangent and normal

vector and the approximate arc length is found by connecting the centroids of each segment.

Note that with the above scheme, the Continuous Surface Force (CSF) in the Eq. (3.18) can be
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(a) (b)

Figure 5.3: The 2-dimensional Frenet’s formula for mean curvature ([48]). (a) The continuous
description and (b) the discrete form used in the computational grid.

written in the discrete form using Eqs. (5.1) and (5.3) as:

f =−σ
[ (t1 − t2)

∆s

]
·n∇H (5.4)

In the above equation, the capillary force intensity σ|t1 − t2| is divided by the approximate

arc length, that is applied in the direction of the gradient of the Heaviside function ∇H . In

this scheme, the vector n can be determined in several ways. For instance, Level-Set methods

compute the normal vector through the following scheme:

n =− ∇H

|∇H | (5.5)

which gives a good approximation in the discrete space. The final discrete form of the surface

tension can be computed as:

f =σ
[ (t1 − t2)

∆s

]
· ∇H

|∇H |∇H (5.6)

If the interface representation is explicitly defined by nodes, a more accurate evaluation of the

normal vector n can be achived by orthogonalizing the same calculated unit tangent vectors

t1 and t2 as shown in Fig. (5.4a). In 2-dimensional space, such a calculation is done relatively

easy, since the interface mesh is always structured and thus the number of neighbors of each

interface node is constant and equal to 2. The mean direction of ni is a simple sum of unit

normal vectors n1 and n2.

These schemes are compatible to a linear continuous approximation of the pressure finite

element space and, consequently, can be successfully applied to the Navier-Stokes equation.
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(a) (b)

Figure 5.4: Normal vector evaluation in 2-dimensional spaces. (a) The normal vector of each
edge may be found by rotating the previously calculated tangent vector by 90◦. (b) The final
nodal normal vector n is found by summing the two normal vectors n1 and n2.

In this work, the equations are evaluated in R3 and the aforementioned scheme is no longer

suitable. A new scheme is therefore proposed to compute the mean curvature and the normal

vectors in 3-dimensional spaces, which will later be used in Eq. (5.1) to calculate the surface

tension force. As explained earlier in this chapter, the interface between the fluids is repre-

sented by a set of geometrical objects which defines a surface, hence the new scheme should

take into consideration the different topologies that such a surface may present. This scheme

is described as follows:

LetΩs be an embedded surface inR3, ni be the set of nodes n lying on the surfaceΩs and e j
i be

the set of surface triangles associated to the i th node, where j is the number of triangles, which

may vary according to the structure of the surface mesh (Fig. 5.5). The surface tension force f

requires the calculation of the mean curvature κwhich, in the present model, is defined at each

node i . An evaluation of this nodal mean curvature κi is done by integrating the elemental

force contribution over the 1-ring triangle neighbors and dividing by the corresponding

barycentric area. To calculate the elemental force, one should find two unit normal vectors,

which lie on the triangle surface, and integrate them on the segments d1 and d2 as shown in

Fig. (5.6a). The segments d1 and d2 connect the triangle mid-edges to the triangle centroid.

Due to the Stokes theorem, the distributed elemental force tnd in Fig. (5.6a) is equivalent to

the integral of tn ·n over d1 +d2. Thus, a simplified way to calculate the elemental force is

achieved by orthogonalizing one of the two vectors (t1 or t2 - Fig. 5.6b), finding its unit vector,

and integrating the result to the segment d , which connects two triangle mid-edges (Fig. 5.6c).

Consequently, an evalutation of the i th node mean curvature is found by integrating the

intensity of elemental force tnd in the 1-ring triangle neighbors e i
j and dividing it by the sum

of the barycentric areas of e i
j . The mentioned expression is calculated as follows:
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Figure 5.5: Schematic representation of the curvature evaluation κi at a common surface node,
which is calculated using geometric operations at all the triangular neighboring elements and
weighted by the barycentric area (gray colored).

(a)

d

tn

t1 t2

(b)

tnd

(c)

Figure 5.6: (a) An elemental force evaluation is done using the sum of the distributed forces
t1nd1 and t2nd2. (b) Using the Stokes theorem, the elemental distributed force may be calcu-
lated orthogonalizing one of the two linearly independent vectors t1 and t2 to the segment d
which connects two mid-edge nodes. (c) An evaluation of the node mean curvature is found
by dividing the sum of the module of the calculated distributed forces (|tnd |) by the sum of
the barycentric areas (Eq. 5.7.)

κi =

∣∣∣ m∑
j=1

(tnd) j

∣∣∣
m∑

j=1
Ai

j

(5.7)

In the above equation, κi is the node mean curvature and Ai
j is the barycentric area of the j th

triangle neighbor of i , which is equivalent to 1/3 of the triangle area, and m is the number
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of neighbor elements of i . The direction of application of such a curvature is given by the

normal vector, that unfortunately cannot always be defined by the direction of the vector ki

itself due to a singular case where the set of triangular faces e j
i are on the same plane, thus

the length of the computed vector is equal to zero and its direction is then not defined. In

this singular case, to find the normal vector of the node ni one can approximate it by the

sum of the cross product of two vectors of e j
i since the 1-ring neighbor nodes are consistently

sorted. This scheme is an extension for surfaces embedded in R3 of the previously presented

2-dimensional scheme shown in Fig. (5.7).

(a) (b)

Figure 5.7: Normal vector evaluation in 3-dimensional spaces. (a) The normal vector of each
triangle in the surface may be found by applying the cross product of two tangent vectors
which lie in the triangle plane. (b) The final nodal normal vector ni is found by summing the
normal vectors ne for e = {1.. j }. In the illustrated case j = 5.

Due to the unstructured character of the surface mesh, the number of neighbor triangular

elements e associated to the node i must be taken into account, since it may vary from one

node to another. Moreover, a consistent surface orientation is required in this scheme so that

it can be successfully applied. Substituting such a distributed force into Eq. (5.1) yields:

f =σ

∣∣∣ m∑
j=1

(tnd) j

∣∣∣
m∑

j=1
Ai

j

n∇H (5.8)

the calculation of the surface tension force in 3-dimensions is thus achieved and thus can now

be substituted into Eq. (3.32) as a source term.
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5.3 The discrete surface tension force

As seen earlier in this chapter, the calculation of the surface tension force is based on the

gradient of a Heaviside function ∇H . According to Chapter (4), a Finite Element formulation

for the given force is achieved by considering the following scheme:

1

W e
Mf = 1

W e
ΣGHλ (5.9)

In the above equation, Σ is a diagonal matrix with elements σκ1,σκ2,σκ3, · · · ,σκNV , where

NV is the total number of mesh nodes relative to the pressure field. The matrix G stands for

the discrete form of the gradient operator ∇ and Hλ is the discrete Heaviside function. Finally,

Equation (5.9) can be substituted into the discrete momentum equation (Eq. (4.69)) and the

surface tension term calculation achieved.
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This chapter describes the new methodology of adaptive mesh refinement developed to work

with the Finite Element method in two-phase flows, in which the interface between the fluids

plays an important role. The effective management of the computational mesh is detailed in

which two data structures are stored in the computer memory and handled separately.

6.1 Mesh representation

Two sets of data are stored during the simulation which are treated separately in the context

of the adaptive mesh refinement: the volumetric nodes and the surface mesh. The latter

consists of two parts, the interface between the phases and the domain boundary, both created

simultaneously by the software (GMesh, [32]). The code is then linked to a tetrahedral mesh

generator (TETGEN, [82]) that uses the previous generated surface meshes and a volumetric

set of nodes as input parameters. The initial volumetric node distribution may be set manually,

according to the requirements of the simulation, or by TETGEN, which may create a smooth

distribution of nodes according to the edge lengths of the given surface meshes. Then, the

3-dimensional connectivity array is exported to the code. Figure (6.1) depicts the two data

structures used in this work. Such an approach allows an easy maintenance of each region

without affecting the node connectivity of the other. Moreover, the data structure makes

the mesh management easier in the code programming level, enabling fast access to each

structure separately.

In the ALE context the computational mesh is not fixed in the space, instead, it is moved

according to an arbitrary velocity. Therefore to avoid collapsing of nodes, edges and elements,

the computational mesh requires an extensive topological treatment. Note that due to the

separate treatment of the surface mesh and the volumetric nodes, each set of data must be

handled in a different way. Additionally, mesh smoothing may be used to reduce the number

of operations performed on the meshes.
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(a) (b)

Figure 6.1: Data-set representation of the meshes used in the present numerical code. (a) The
surface meshes, which comprise the interface between the fluids and the domain boundary,
are passed as an input parameter to the open source library TETGEN, which export the
3-dimensional connectivity array. (b) The volumetric mesh is than used to discretize the
two-phase flow equations.

6.2 Volumetric nodes

For each time step, the node distribution of the volumetric mesh (tetrahedrons) is monitored

and compared to the previous iteration. The tetrahedron edge length determines whether

insertion or deletion is required for a given predefined distance in a specific zone, therewith

it is possible to avoid clustering and dispersion of computational nodes. In this work, the

distribution edge lengths h are obtained by the solution of the following Helmholtz’s equation:

∇2h = 1

k
(hb −h) (6.1)

where k is a diffusive parameter and hb is the initial edge length distribution. Thus, the

obtained solution corresponds to a smooth distribution of nodes in the space. Note that

for large values of k in the above equation, the right hand term tends to zero, thus resulting

in Laplace’s equation (∇2h = 0) in which the solution damps all the sudden changes in the

distance between nodes. On the other hand, assuming a small value of k, the solution h

approaches the initial point distribution hb .

As mentioned before, the initial volumetric node distribution hb may be set according to the

flow requirements, where a particular zone may or may be not refined. Figure (6.2) shows two
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examples of the solution of the Helmholtz equation. In both cases, the solid lines represent

the initial edge length distribution hb , while the other lines show the solutions for different

diffusive parameter k. As can be seen for large values of k, the smoothing effect is more

pronounced, while for small values of k, the solution approaches the initial distribution hb .

In Fig. (6.2a), the edge length distribution is seen in the z axis, in which the bubble is located

within the interval z = {2,4}. This shows a typical distribution of edge lengths in rising bubble

simulations where a dense cluster of nodes is expected near the bubble’s interface. However,

far from the interface, the region is not refined as can be seen with large values of edge length

h. In Fig. (6.2b) the edge length distribution differs from the previous case. The aim is to

achieve an efficient distribution along a pipe or channel, thus more nodes are required close

to the domain boundaries and a coarse mesh is sufficient in the middle. Such a refinement is

important to investigate liquid film thickness and bubble/boundary interactions present in

annular and bubbly flows.

The solution of the Helmholtz equation (6.1) has been shown to be extremely important in

order to achieve a smooth distribution of nodes in the 2-dimensional and 3-dimensional do-

mains. It is discretized through the Finite Element method by following the same procedures

described earlier in Chapter 4. However, its continuous solution may overload the compu-

tational resources and it may not necessarily bring significant changes in the simulation at

each time step. Due to minor modifications in the mesh distribution from one time step to

another, mainly driven by small time step, the solution of the Helmholtz equation may be

stored in the memory and kept for a few iterations. After a certain number of iterations, say 5,

the procedure is redone. Thus, the successive solution of the Helmholtz equation is avoided

but a smooth edge length distribution is achieved during all the simulation.

6.3 Mesh smoothing

A proper choice of the mesh velocity and the mesh strategy is necessary to avoid the fast

degradation of the computational elements and the onset of non-desirable numerical in-

stabilities found in the pure Lagrangian framework. Especially close to the boundaries, the

elements are often stretched and compressed in such a way that the simulation becomes

unstable. Therefore it is desirable to chose the mesh velocity to rearrange the nodes, thus

keeping the elements bounded within good aspect ratios. Additionally, insertion and deletion

of vertices should be performed whenever the edges of the elements are greater or smaller

than a predefined size. Unfortunately, the re-meshing process and the rearrangement of mesh

elements may become very expensive in terms of processing time and therefore they require

special attention. To address this issue, a new fast node repositioning scheme is proposed and

described here as weel as a new local re-meshing technique that bounds the element aspect

ratios within a satisfactory level with no significant time cost in two-phase flows.

As seen earlier in Section (3), the mesh velocity v̂ determines the motion of the nodes of the

finite element mesh. This velocity is obtained by a linear combination of two others: the
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Figure 6.2: Solutions of the Helmholtz’s equations for different diffusive parameter k. (a)
The sample was taken along the z axis, in which the bubble’s location can be seen within the
interval z = {2,4}. (b) The y component represents the channel cross section. In this case, the
mesh is more refined close to the channel’s boundaries (y =−0.5 and y = 0.5) and coarser in
the middle.

flow velocity itself and an elastic velocity, in which the latter is defined according to some

smoothing criteria intended to redistribute the nodes optimally, thus minimizing the number
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6.3. Mesh smoothing

of re-meshing steps and avoiding heavy computation requirements. The transfinite mapping

method (see [36]) and Laplacian smoothing are examples of mesh-update procedures, the

latter being chosen for this work.

The idea behind the Laplacian smoothing operator is to move the non-uniform mesh nodes

by redistributing equally the distance between them, thus achieving a smoothed distribu-

tion. In this work, the implementation consists in defining a function in terms of the 1-ring

neighboring coordinates; thus the mesh nodes are repositioned in such a manner that the

elements satisfy some predetermined geometric criterion. The smoothing procedure is part of

an iterative scheme which converges to a more uniform point distribution. According to [22],

the new point’s position x̂i can be approximated using a weighted sum of the 1-ring neighbors

of a node as follows:

x̂i =
∑

i∈N1( j )
wi j (x j −xi ) (6.2)

where wi j is the weight that can be set as uniform or proportional to the inverse distance from

its neighbor vertices and N1 is the set of 1-ring neighbors of the j th. node. Thus, the mesh

velocity v̂e is found by dividing the displacement of each node’s position xi by the simulation

time step d t . This approximation is not sufficient to distribute the mesh nodes optimally in

one single application step but once applied systematically, the mesh elements converge to a

satisfactory shape. Figure (6.3) shows a 3-dimensional example of a node reposition scheme

based on the Laplacian smooth operator. As can be seen, the Laplacian operator moves the

point in the direction of the polyhedron’s centroid, thus the connected edges approach an

uniform spatial distribution.

(a) (b)

Figure 6.3: Laplacian smoothing operation in 3-dimensional space. (a) initial point position
and (b) final point position after successively smoothing steps.
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So far we have seen that the uniform weighted approximation results in significant slid-

ing and shape distortion in an unstructured 3-dimensional mesh as has been reported by

Taubin [88]. Therefore, a scale-dependent Laplacian approximation seems to be ideal for all

the 3-dimensional simulations. Its difference, compared to the uniform weighted method, is

that wi j = 1/|ei j | where ei j is the distance between the node and each neighbor. Thus, the

node sliding is less pronounced and the shape of the elements converges to a more equidistant

distribution of vertices. Thus, the final Laplacian smooth distribution is obtained by:

v̂ei =
∑

i∈N1( j ) e−1
i j (x j −xi )

d t
(6.3)

Additionally, another technique has been tested here which defines the velocity v̂ as a function

of the neighbor’s velocities instead. This approach is applied to all the volumetric mesh

nodes, but only the surface mesh node (interface and boundary) velocities are taken into

account. If an iteration process is used, the velocity is spread smoothly over the vicinity of the

surface mesh. The advantage of such an approach is that for high velocity gradients, when the

elements tend to collapse, the surface mesh velocity is distributed around the neighborhood

of each node next to the surface, thus moving them all in the direction of the closest surface

node normal vector. The procedure is represented by the following scheme:

v̂vi =
1

n

∑
j∈N1( j )

v j (6.4)

where N1 is the set of the 1-ring neighbors to the j th node, vi is the velocity associated to

the i th node and n is the number of mesh neighbors to the i th node. The mesh velocity is

represented by v̂vi is the mesh velocity. Note that with such an approach, the nodes close

to the surface mesh (interface and domain boundaries) will behave like those of the surface

mesh. Thus, it is expected that these nodes will not collapse nor cross a triangle interface. This

scheme has been successfully applied to overcome the fast element distortion close to the

interface where the velocity gradient may be high.

Figure (6.4) illustrates the above velocity repositioning scheme in 2-dimensional space and its

simplicity. The surface’s velocity is scattered gradually to the nodes near the surface, the closer

is the node to the surface, the stronger is the influence of the moving interface. This scheme is

an important tool to avoid that nodes and surface elements collapse. Note that its extension

to 3-dimensional space is straightforward by considering an embedded surface in R3 as the

interface between the fluids.

Moreover, the velocity smoothing scheme proposed here is useful for simulations involving

bubble/bubble and bubble/wall interactions. Close to the boundaries, the volumetric nodes
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Figure 6.4: Velocity smoothing operation in 2-dimensional spaces. Near the interface, the
nodes are more influenced by the surface velocity (large arrows), while if the node is located
far from the surface, the mesh velocity ûv is less pronounced (small arrows). Its analogy to
3-dimension space is straightforward by considering a surface embedded inR3 as the interface
between the fluids.

are moved according to the interface’s velocity, which is responsible to pull the nodes away,

and the zero boundary mesh velocity, which stops the motion of an approaching node. Thus,

the volumetric nodes are compressed and squeezed in the gap between the interface and

boundary meshes, such that the precision and the number of nodes remain unchanged.

Due to the separation of the domain and the surface mesh in the above procedure, the mesh

distribution treatments may be combined into a scheme and adjusted by parameters varying

from 0 to 1, which is a 3-dimensional generalization of the approach presented by Souza

and Mangiavacchi [84] for 2-dimensional simulations. The domain and surface velocities are

therefore treated as follows:

v̂(x) =
v−γ1(v · t )t +γ2(ve · t )t if x belongs to the interface

β1v+β2vv +β3ve if x does not belong to the interface
(6.5)

In such a method, due to the description of the interface mesh by computational elements,

the surface should move according to the fluid motion. In the above equation, if x belongs

to the interface, we can define its velocity as vI . Thus, it is convenient to decompose it into

two orthogonal components: vIn and vIt which represent the normal and tangential velocities,

respectively. To decrease the displacement of nodes in the tangential direction, one may

remove partially, or even totally, its velocity from the total interface’s velocity. This can be

achieved by either projecting the interface’s velocity vIn to the normal vector associated to the

node or, in a simpler manner, by removing the tangent component from the total surface mesh
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velocity vIt = v− (v · t)t . Figure (5.4) shows the mentioned decomposition of the interface’s

velocity vI in to two orthogonal vectors. Such a procedure may be included into a scheme so

that the intensity of the tangential velocity can be easy modified. Therewith, the parameter γ1

controls the magnitude of the tangent velocity in the total interface’s velocity. Letting γ1 = 1,

only the normal interface’s velocity is taken into account in the surface mesh motion, and

therefore the surface nodes are not allowed to move in the tangent direction. Additionally, the

parameter γ2 includes the smoothing scheme in Eq. (6.4) on the surface mesh nodes, thus

keeping them all bounded within good aspect ratio. The parameter β1 controls the Lagrangian

motion of the inner and outer volumetric mesh velocity. By setting β1 = 1, the flow velocity

v is fully included in the moving mesh velocity v̂ and, consequently, the volumetric nodes

move according to the flow field. Otherwise, letting β1 = 0, the flow velocity v is not taken

into account on the moving mesh velocity. The parameters β2 and β3 control the intensity

of the velocity smoothing scheme vv and the laplacian smooth scheme ve into the moving

mesh velocity. Thus, setting both parameters to null, the volumetric mesh smoothing is not

performed. Note that the parameters γ and β may vary from 0 to 1 to achieve a desirable node

distributions according to the simulation requirements.

Figure 6.5: Normal and tangent components of the interface’s velocity vector. The proposed
scheme allows to remove partially or totally the tangent component of the interface’s velocity
vI by varying the parameter γ1.

The most immediate case which requires very strict mesh control is the simulation of a bubble

in a gravity-driven flow. In such a demanding condition, the computed flow field tends to drag

the surface nodes from one region to another mainly due to the higher shear stress close to the

interface. The flexibility of the parameters presented in Eq. (6.5) allows one to chose γ1 = 1, so

that the tangential surface velocity is completely eliminated from the equation and therefore

the surface nodes are allowed to move only in the normal direction. Additionally, the wake and

vortex formed by the bubble’s ascension push the surface nodes around the bubble’s surface,

compressing them one against the other; thus a stiff mesh is recommended to avoid such a

problem and this is achieved by setting β1 = 0. One may also adjust the parameters β2 and
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γ2 between 0 and 1 to displace the nodes close to the interface and to optimally redistribute

the new surface mesh elements respectively, as well as the value of β3 to guarantee better

tetrahedron aspect ratios.

In contrast to the above example, if the bubble or drop is nearly static or its displacement with

respect to the domain is negligible, different mesh parameters are required. Due to the low

level of motion of the flow field, the mesh velocity may be set to a pure Lagrangian motion

(β1 = 1), thus describing the fluid convection with higher precision and a lower number of

mesh nodes compared to a standard fixed mesh simulation. The other parameters may be

adjusted according to the need to preserve the mesh quality. Moreover, if the flow is controlled

by an inflow velocity condition, letting β1 = 1 and γ1 = 0 may be the appropriate choice for

such a problem.

A third case is illustrated for shear-driven simulations. Due to the prescription of a velocity

inflow condition, a pure Lagrangian motion is not recommended due to the strong mesh

distortions that may appear, especially close to the boundaries. Thus, it is recommended

to set the mesh parameter β1 = 0. This implies a stiff volumetric mesh. The elastic velocity

parameters β3 and γ2 may be adjusted to 1, thus maintaining the nodes well distributed for

both the volumetric and the surface meshes. The parameters β2 and γ1 may be arbitrarily

chosen to fit the requirements of the mesh.

6.4 Surface remeshing

Unfortunately, mesh smoothing itself is not able to keep all the elements bounded to optimal

shapes after numerous iterations. Furthermore, the moving front creates a poor distribution of

surface nodes which can affect the accuracy of the computed curvature and, consequently, the

final solution. Since the connectivity of the surface mesh is handled by the code, a re-meshing

technique is thus required to keep the surface elements aspect ratios in a satisfactory range

as indicated by ([34], [95], [41], [46], [89]). The technique proposed here consists of changing

the connectivity of surface nodes and elements through “flipping” operations. Additionally,

insertion and deletion of nodes is required when a coarse surface mesh is detected or when a

dense cluster of surface nodes is not desired, respectively. The new methodology proposed

for insertion, deletion, contraction and flipping of triangular edges on the surface mesh is

described below.

6.4.1 Point insertion

The strategy for insertion of points aims to occupy “barren” areas and to increase the accu-

racy in certain regions of the surface mesh where a higher precision is required. Different

techniques and insertion criteria can be found in the literature, especially in the computer

graphics area, thus it is desired to chose a suitable approach to the investigated problem.

In two-phase flows, the flow field formed by the motion of a single bubble tends to move
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the surface nodes from one region of the interface to another, producing non-uniform node

distributions. Furthermore, when the bubble interface moves away from another surface, the

3-dimensional elements are slightly stretched and consequently their aspect ratios change

and thus the insertion of nodes may be required to maintain the desired mesh quality.

Figure (6.6) shows two connected triangles with vertices numbered from 1 to 4. When, due to

stretching, edge 1−2 becomes longer than a predefined length, a new node v is inserted in

the middle of the edge 1−2, thus dividing the segment into two equal parts, and consequently

creating two new elements which are both part of the surface mesh.

(a) (b)

Figure 6.6: Insertion of a surface node. (a) The edge 1−2, which is longer than a fixed parameter
hmax , is identified. (b) The new node is then added at the midpoint of the edge 1−2.

Secondly, if the new node v is inserted on the segment that defines the edge 1−2 (see Fig. 6.7a),

it will introduce a local curvature error that is proportional to l/h, where h represents the

triangle edge length and l the distance from the edge 1−2 and its correct position considering

the local mean curvature, thus adding a perturbation that affects the accuracy of the computa-

tion of the surface tension force. To minimize such an undesirable error, the new node must

be placed according to the curvature of its neighbors. This can be achieved by fitting a circular

segment which passes through the vertices 1 and 2. As exemplified in Fig. (6.7b), the θ-plane

may be defined by the mean normal vector of two adjacent triangular elements, namely

1−2−3 and 1−4−2. The normal vector associated to the nodes 1 and 2 are projected onto

the θ-plane forming n1 and n2 respectively. The intersection the line of action of these two

vectors is chosen as the approximate center (xc ,yc ) of a circumference (x−xc )2+ (y − yc )2 = r 2

with radius r . Thus, the solution of this equation is used to determine the displacement l , and

consequently the final position of the new node v , as can be seen in Fig. (6.7c).

6.4.2 Point deletion

The displacement of vertices in the moving mesh technique may cause the dense clustering of

nodes in particular areas of the domain, including the triangular surface mesh. Consequently,
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(a)

(b)

(c)

Figure 6.7: Representation of the 3-dimensional triangular surface mesh. (a) The node v is
added at the midpoint of the edge 1−2 (b) The plane θ is derived by the mean of two element
normal vectors which are adjacent to the edge 1−2. The vectors n1 and n2 are the projection
of the normal vectors of nodes 1 and 2 onto the plane θ. (c) The node’s new position is found
by moving it from the edge 1−2 toward the circle segment in (b), thus the curvature error in v
is reduced.

with the regrouping of these nodes, the elements become smaller and the time step size

decreases due to the Lagrangian motion restriction. Additionally, the total number of nodes

belonging to the mesh increases, increasing the processing time. The additional number of

vertices does not necessarily bring real benefits to the accuracy of the final solution and thus

these unnecessary vertices should be eliminated. There are many ways to delete a single mesh

point and conserve the mesh quality for the next iteration. The present work has adopted two

different techniques to keep the mesh bounded to the Delaunay properties. Both approaches

attempt to find an edge h that is smaller than a predefined length hmi n . Once such an edge is

detected, the method computes the sum of the edge length of the 1-ring neighbors of both

extremity vertices. The one which has the lowest value is then considered for elimination

from the surface mesh. Once the node deletion is performed, its neighbors form a polyhedron

which must be subdivided to recover the triangular structure. Figure (6.8) shows the deletion

of a surface node and the polyhedron that should be remeshed.

Two strategies were tested to reconnect the empty space left by the deletion of the surface
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(a) (b)

Figure 6.8: Deletion of a surface node. (a) The edge 3− v is detected when its length is smaller
than a reference length hmi n . Due to the sum of neighbor edge lengths, the node v is chosen
to be deleted. (b) Therefore, the empty polyhedron must be reconnected to achieve a new
surface triangulation.

node v . The first strategy is simple and its implementation is straightforward. Let us consider

the polyhedron P = {1,2,3,4,5,6} as show in Fig. (6.9). The node 1 is chosen to reconnect

successively the nodes 3, 4 and 5 by creating edges on the surface mesh. If the polyhedron

nodes have some orientation defined, each triangle may be created by choosing two successive

nodes. Thus, the first triangle is formed by connecting the nodes {1,2,3} and the second by

{1,3,4}. The strategy continues to set the third triangle {1,3,5} and the last one is than defined

by {1,5,6}.

(a) (b) (c)

Figure 6.9: Remeshing of a surface polyhedron by successive node re-connections. (a) An edge
is created by connecting the nodes 1 and 2. (b and c) The node 1 is then connected to the
remaining nodes 4 and 5, thus achieving the final surface triangulation.

The second strategy is done based on the work of Devillers [23] and Xu et al. [100] and extended

here to triangular surface meshes. Let us consider a generic polyhedron P = {x0, x1, ..., xk , x0},

where the first “ear” of the polyhedron P is defined by the triangle with vertices xi −xi+1−xi+2.

Such an ear will be part of the surface triangulation if and only if the segment [xi , xi+2] is
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located inside the polyhedron and it does not intercept its boundary. A sub-set of P is formed

with the deletion of the point xi+1, and then the new triangular “ear” may be found by repeating

the described strategy. The process is iterated until the number of nodes of the sub-set of P is

equal to 3, therefore the last triangular ear is composed by xk−1 −xk −x0.

Figure (6.10) shows the schematic representation of the deletion process and remeshing by the

“ear” technique. The edge 3−v is detected as being smaller than hmi n and the node v is chosen

to be removed. The neighbor triangles of node v are eliminated from the surface mesh and

the polyhedron formed by the 1-ring neighbor nodes of v is used to remesh the empty space.

In this example, the reconnection of nodes to form the new triangulation is done by defining a

polyhedron P = {1,2,3,4,5,6} and the first “ear” to be E1 = {1,2,3}. The first triangle is created

and the node 2 is deleted from P . The new sub-set of P is defined as Ps1 = {1,3,4,5,6} and

thus the next “ear” as E2 = {3,4,5}. Node 4 is then deleted from the sub-set Ps1, thus creating

Ps2 = {1,3,5,6}. A new ear is set on the triangle E3 = {5,6,1}, the node 6 is deleted from the

sub-set Ps2 and consequently the new sub-set Ps3 = {1,3,5} is assembled. Since the number of

nodes in Ps3 = 3, the last triangle is formed and the local re-meshing is accomplished.

(a) (b) (c)

Figure 6.10: Reconstruction of the surface mesh by the “ear” technique. (a) First “ear” is
achieved by connecting the nodes 1−2−3 and forming the surface triangle. The node 2 is
then deleted from the polyhedron P . (b) The new triangle is formed by connecting the nodes
3−4−5, and thus the node 4 is eliminated. (c) Last two triangles are created from nodes
5−6−1 (node 6 is deleted) and 1−3−5, which are the remaining nodes of the successively
deleted polyhedron.

The strategies presented above are not sufficient to guarantee optimal triangular shapes. In

fact, the selection of the initial node should be treated with care by considering the polyhedron

spatial geometry. For instance, if the polyhedron has a concave shape and the initial node is

wrongly chosen, the remeshing procedure will invalidate the triangulation by creating non-

triangular elements or even creating elements outside the polyhedron boundaries. Moreover,

flipping operations may be required to achieve an optimal triangle distribution. Such an

operation was implemented in this work and it will be described in the next sections.
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6.4.3 Edge contraction

This strategy is based on the contraction of an edge and it is well discussed by [62]. Once an

edge h for each h < hmi n is detected, this scheme aims to collapse the two extremity vertices

into the midpoint of the edge h; thus the two adjacent triangles are removed from the surface

mesh, as shown in Fig. (6.11). After it has been contracted, the edge h is no longer part of the

surface mesh, so that nodes 1 and 2 occupy the same position while nodes 3 and 4 remain

at their locations. The benefit of such an approach, compared to the previous point deletion

strategy, is its geometrical simplicity since the surrounding connectivity of the mesh is not

affected.

As can be seen in Fig. (6.12), the same consideration of the curvature of two adjacent nodes

found in the insertion strategy should be taken into account when collapsing two vertices,

thus avoiding displacement errors and undesirable loss of mass. This is done by fitting the

equation of a circle to the nodes 1 and 2 and considering the curvature of the adjacent nodes

(1−2−3−4). Thus, the collapsed node is displaced according to the neighbor curvature values.

(a) (b)

Figure 6.11: Contraction of a surface edge. (a) The edge h (segment 1-2) is found to be smaller
than hmi n and (b) so it is collapsed to the midpoint of the same edge. Due to its simplicity, only
triangles e1 and e2 are eliminated from the surface mesh and the remaining node connectivity
is not affected. The new location of node 1 should respect the curvature of its neighbors as
described in the insertion strategy.

6.4.4 Edge flipping

Since insertion, deletion and collapsing of vertices may deteriorate the mesh, edge flipping

may be required to restore the mesh quality. Such an operation in a 3-dimensional surface is

more restrictive compared to 2-dimensional spaces. The flipping criteria implemented here

considers four different measurements:

96



6.4. Surface remeshing

(a)

(b)

(c)

Figure 6.12: Node displacement according to neighbor’s curvature in the process of edge
contraction. (a) The plane Ω is found using the curvature vectors of nodes 1 and 2, thus a
circle equation is fitted and (b) its solution is used to displace the node and avoid losses of
mass. (c) The resulting scheme of edge contraction considering the neighbor’s curvature.

• sum of the triangle aspect ratios;

• curvature of neighboring nodes;

• sum of the triangle areas;

• circumcenter of each triangle.
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These parameters are evaluated at every time step to check if the flipping operation will be

performed. This is achieved by comparing the quality of the initial and the modified pair of

triangles, thus if one criteria fails the flipping is not performed.

In the literature, there are may ways to check the triangle aspect ratio such as edge ratio

measurement, relative size squared, maximum and minimum angle, etc. (see [81], [28] and

[23]). The one chosen in this work considers the radius of the inscribed circle and the longest

edge length. This scheme provides quantitatively the quality of a given triangle and thus

can be used as parameter to the flipping operation. The neighbor’s curvature should be also

considered before flipping an edge due to a strong restriction on the surface embedded in

R3. If the curvature is too high, the flipping operation can damage the surface mesh, thus

forcing the simulation to shut down. In this work the curvature limiter has been adopted to be

κmax = 40, i.e. above this limit flipping is not performed. Additionally, the sum of the triangle

areas are taken into account. This measure restricts the flipping operation if the resulting sum

of the areas is smaller than before flipping. Finally, the circumcenter of each triangle is also

taken into account as a quality ratio parameter to the final local mesh. Note that these flipping

parameters are required to avoid strong mesh degradation and large losses of mass. However,

the flipping operation is especially required to keep the mesh bounded to within a satisfactory

aspect ratio.

Figure (6.13a) shows a typical flipping operation done on the surface edge. According to the

criteria mentioned above, the triangles with vertices 1−2−3 and 1−4−2 have lower ratio

quality compared to the triangles with vertices 1−4−3 and 3−4−2, thus the flipping operation

is performed and the new mesh is achieved. On the other hand, Fig. (6.13b) shows a case

where a diagonal flip should be avoided since it contradicts the triangular surface mesh. The

new generated element 3−4−1−2 is not triangular and the surface mesh is consequently

corrupted. As pointed out by [76], pronounced loss of mass occurs if the flipping operation

is performed when the angle of two consecutive faces is lower than 90◦, where the resulting

elements may have a better aspect ratio but the loss of mass may reduce significantly the

precision of the simulation (see Fig (6.13c)).

6.4.5 Volume Conservation

Due to the constant surface mesh treatment, the front-tracking methods are known to accu-

mulate spurious loss of mass during a simulation. However, for incompressible flows, the

volume of both phases should remain constant and excessive geometrical operations may

lead to loss of mass. To avoid such an issue, one should minimize the number of flipping

operations and limit the deletion and insertion of new points. In certain cases where the

surface mesh is at constant shear, the number of geometrical operations cannot be reduced. As

mentioned before, successive mesh smoothing and the displacement of a new inserted node

according to its curvature should be performed. Nevertheless, due to the inherent truncation

and rounding errors, the combined mass of the two phases may slightly change. Therefore, a
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(a)

(b)

(c)

Figure 6.13: Triangular surface flipping operations: (a) The triangle aspect ratio, the curvature
of neighboring nodes, and the triangle circumcenter are taken into consideration to perform
the flipping from edge 1−2 to 3−4; (b) the flipping of edge 1−2 cannot be assigned due to an
inconsistent mesh generation. (c) The flipping operation may lead to local loss of mass and it
should be treated with care.

simple treatment has been implemented to compensate for the spurious mass variation, thus

avoiding the accumulation of mass conservation errors. This correction is done by moving the

surface nodes in the direction of their normal vector. Such a displacement is calculated based
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on the initial phase volume, which is compared to the current iteration; thus a successive

relaxation method is applied to find the final node’s positions. The difference between the

initial phase volume and the current time step volume may be chosen according to a given

tolerance, in which, for the present work, is on the order of 10−8. Note that this tolerance has

been chosen according to the simulation experience acquired on the test cases studied in

this thesis, however this tolerance may be changed if more precision is required. The volume

conservation algorithm is described below.

Input: Initial surface volume

TOL = 1.0E-08;

while absolute(error) > TOL do

foreach surface node i do
xNormal(i) = normal vector component of node i;

edge = local surface edge length size;

x(i ) = x(i ) + xNormal(i)*edge*error;
end

surfaceVolume = compute surface volume;

error = 1.0 - surfaceVolume/initSurfaceVolume;
end

Algorithm 1: Surface volume correction.

Figure (6.14) shows the result, in one time step, of the mass conservation for the rising bubble

test case. As can be seen, the current bubble’s volume is different of the initial bubble’s volume

in the iteration 0. This is due to geometrical operations on the surface mesh such as edge

flipping, deletion and insertion of nodes. In this time step, 21 iterations are required to restore

the initial bubble’s volume with an error of order of 10−8. Note that the local surface edge

length size should be taken into account for simulations of many bubbles with different mesh

refinements.

The geometrical operations on the surface and volumetric meshes are performed preferably

at all time steps, as well as the volume correction algorithm and consequently the adaptive

mesh refinement is successfully achieved. Thus, the surface and the volumetric meshes are

corrected, the phase volumes are adjusted, and the simulation can reach the final state with

no significant loss of mass.
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Figure 6.14: Volume correction in the rising bubble test case: (a) The initial volume V 6= 0.5191
is computed when the simulation starts, then it is compared to the current bubble’s volume
and corrected after a few iterations. (b) Convergence error of bubble’s volume correction.
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7 Validations and Results

This chapter describes numerical results for incompressible two-phase flows obtained with

the present Arbitrary Lagrangian-Eulerian Finite Element code. The computed curvature κ is

compared to the analytical value of some well-known geometric objects and presented first in

this chapter. A number of single phase flow benchmark tests were carried out to successfully

validate the code, these included a Poiseuille flow, a backward facing step, a lid-driven cavity

and a rotating disk flow (see [4] and [74]).

Next, static and dynamic two-phase flow test cases were carried out to validate the discretiza-

tion procedure and its implementation; these will be described in the following sections.

These tests are important to evaluate the coupling of the implemented surface tension force

model with other terms of the momentum equation. In doing so, the accuracy of the proposed

methodology can be estimated, as well as the precision of the computed curvature.

The tests performed were divided in two groups, namely static and dynamic tests. The former

includes the static droplet and the sessile drop tests in which the convection term is negligible.

The latter includes the oscillating droplet, the falling drop and the rising bubble. The oscillat-

ing, sessile and falling drop results are compared to analytical solutions, and the rising bubble

test is compared to experimental results found in the literature. Moreover, the effect of wall

on the bubble dynamics is tested by comparing the 3-dimensional numerical simulation to

a well-known flow pattern map found in the literature. The mechanisms of collision of two

equal-sized drops are also investigated and, finally, results on microscale flows are presented.

7.1 Curvature calculation

The accuracy of the methodology used in this work to calculate the curvature and the surface

tension force, explained in detail in Chapter 5, is strongly linked to the number and size of the

elements connected to each single surface node. Thus, in order to validate the computation

of the curvature, the relative error, for a given shape, was determined as a function of the

characteristic element edge length h of its surface. The relative curvature error (Errorκ) was
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Table 7.1: Standard deviation (SD) and error of curvature (κ) for different geometries.

Edge Length Sphere Cylinder Torus

[h] SD Error[%] SD Error[%] SD Error[%]

0.19 0.1487 0.7717 0.2461 3.5625 0.6571 4.5625
0.16 0.1398 0.6304 0.2539 3.7878 0.5645 4.7812
0.12 0.0975 0.3896 0.3515 2.6785 0.5822 3.8554
0.09 0.0715 0.2558 0.2916 2.2232 0.5560 2.3244
0.06 0.0447 0.1231 0.3413 2.3391 0.5588 2.9176
0.03 0.0209 0.0279 0.2979 2.3237 0.5671 3.3712

estimated as follows:

Errorκ =
√∑

(κi −κA)2∑
(|κi |)2 (7.1)

where κ is the numerical mean curvature of each surface node and κA is its analytical value

for a particular shape. The summation is done over all the surface nodes, and thus an average

value is computed. The tests were performed and validated against three representative shapes

of significance to two-phase flows: a sphere, a cylinder and a torus, due to the value and sign

of their curvature. Figure (7.1) shows a comparison of the three mentioned representative

shapes against a simulated Taylor bubble. As can be seen, each part of the Taylor bubble

assumes different shapes, therefore each case is modeled separately to evaluate the curvature

against their analytical values. The representative surface shapes are shown with a portion of

the volumetric meshes, intentionally sliced for illustration purposes. The results are shown in

Table (7.1) as a function of the average length h, which varies from 0.19 down to 0.03 for each

shape. The standard deviation (SD) and the error of the computed curvatures κ are evaluated

using their analytical solution, demonstrating that for the cylinder and the torus, where the

curvatures change value and sign, the calculation is less accurate if compared to the sphere,

but nevertheless they are all bounded to within a maximum relative error of 5% of κA .

Additionally, a plot of the computed curvatures of a sphere with a non-dimensional radius

R = 0.5 is shown in Fig. (7.2). The test was performed varying the maximum admissible surface

edge length from 0.03 to 0.30 and the results are compared to the first and second order of

convergence curves in a logarithm scale. As can be seen, the curvature calculation for different

edge mesh sizes appears to be of first order.

104



7.1. Curvature calculation

(a)

(b)

(c)

(d)

Figure 7.1: Comparison of a Taylor bubble and three representative shapes used to evaluate the
curvature error of the proposed numerical method: (a) Taylor bubble, (b) sphere, (c) cylinder
and (d) torus. The sphere with radius R = 0.5 has both curvatures with same value and sign.
In the cylinder, part of its shape (curved) has one of the principal curvatures zero (along its
height) and the other is inversely proportional to the cylinder radius Rc = 0.5. The torus has
the principal curvatures with opposite signs in its inner part and same positive sign for the
remaining shape.
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Figure 7.2: Log scale graph showing the convergence order of the new methodology for
computing the curvature of a surface. The slope found in the numerical method suggests its
convergence is first order.

7.2 Static droplet

The coupling between pressure and surface tension is assessed here with respect to the

generation of spurious flow by the simulation of a spherical droplet immersed in another fluid

in the absence of any external force and velocity field. From the mathematical point of view,

the Navier-Stokes equation reduces to:

∇p = f (7.2)

This equation shows that the surface tension force is at an equilibrium state with the pressure

field. In fact, this is not the equation numerically solved but due to the prescription of zero

velocity at the boundaries and the setting of the gravity term to null, all the related terms vanish,

and thus they do not influence the final solution. Theoretically, the pressure gradient should

completely equilibrate the surface tension force but, due to numerical reasons (coupling

between velocity and pressure, accuracy of the numerical scheme, curvature calculation, etc.)

spurious currents may appear. It is clear that undesired artificial behaviour, namely spurious

currents, should be minimized. To successfully achieve such a difficult task, some authors

have suggested different approaches as reported by [85] and [31]. The consistent numerical

treatment of the surface tension term as well as a good coupling between pressure and velocity
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7.2. Static droplet

Table 7.2: Comparison between edge length size, pressure distribution and spurious currents.

Edge Length (h) N. Surf. Triangles ∆p ∆per r or max{|u|, |v |, |w |}
0.10 804 19.98 0.1% 4.1×10−3

0.09 948 19.98 0.1% 1.2×10−3

0.06 2044 19.99 0.05% 8.2×10−4

0.04 2632 20.02 0.1% 3.7×10−4

0.03 4104 20.01 0.05% 1.2×10−4

fields of the present approach are responsible for very weak spurious currents without any

supplementary artificial treatment. Thus, simulations have been performed for different mesh

refinement levels to quantify such an artificial velocity as well as the error of the pressure

field solution inside and outside the droplet, considering the same capillary-viscous length

Rv = 0.002 as reported by [94], where Rv = ρν2/σ and ν is the kinematic viscosity. In their case,

the surface tension coefficient was σ= 5. Table (7.2) provides a compilation of the results for

this test. It can be seen that the error in pressure difference ∆per r or is approximately linear

and the same applies to the spurious currents. Other tests have shown that such values of

spurious currents do not considerably affect the final solution of the simulation.

The theoretical value of the pressure difference between the phases is given by the non-

dimensional Young-Laplace equation, ∆pa = 2/(EoR), where R stands for the droplet radius

and Eo is the Eötvös number. The average pressure difference of the numerical result is

calculated by summing the values in each phase and dividing by its respective number of

nodes as:

∆p =

ni n∑
i=1

pi n

ni n
−

nout∑
i=1

pout

nout
(7.3)

The pressure inside the droplet is given by pi n and the number of nodes by ni n . The outside

phase is describe by pout and nout , respectively.

Figure (7.3) depicts the linear pressure distribution between the phases and the standard hat

shape inherent to the pressure field for different mesh refinements. These values were taken

using a linear interpolation along the z-axis with a unidimensional uniform grid. For all the

cases, they were simulated using the same set of parameters but varying the number of the

surface mesh elements in a domain 8Dx8Dx8D where D is the droplet diameter. As expected,
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the higher is the number of mesh nodes the more accurate is the pressure jump across the

interface. This can be seen in Fig. (7.4) where the plot shows the distribution of pressure.

Considering the static nature of this test and the velocity recirculation near the drop interface,

the mesh parameters used in these simulations were β1 = 0, β2 = 0, β3 = 0.1, γ1 = 0.0 and

γ2 = 0.0, thus keeping the surface and volumetric mesh nearly static.
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Figure 7.3: Chordal pressure jump between the phases for different surface edge lengths.
The solution of the pressure field for a static droplet immersed in a low viscous fluid was
interpolated in a linear uniform mesh where the non-dimensional pressure p = 0 corresponds
to the area occupied by the gas phase and the pressure p = 20 stands for the area occupied
by the droplet.The test was performed considering the non-dimensional radius R = 0.5 and
Eo = 0.2, resulting ∆p = 20.

7.3 Sessile drop

The next simulation was performed to validate the surface tension implementation and its

coupling with pressure and gravity. A spherical drop with radius R = 0.5 was initialized two

diameters above the bottom of the domain and then released. Due to gravity, the drop, being

heavier than the surrounding fluid, falls and hits the solid surface. Before the contact between

the solid surface and the interface, the drop deforms to a quasi-steady state and approaches

the wall with no significant shape changes. The drop’s profile remains axisymmetric and its

shape can be approximated by the classical Young-Laplace equation of capillarity which, in
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Figure 7.4: Capillary pressure of a spherical droplet immersed in another fluid. The jump in
pressure can be seen at the location of the interface.

non-dimensional form, states that:

( 1

R1
+ 1

R2

) 1

Eo
=∆pg =∆ρg (z − z0) (7.4)

where R1 and R2 are the two principal radii at the apex of the drop, σ is the interfacial tension

and ∆pg stands for the hydrostatic pressure difference across the interface, where ∆ρ = ρi n −
ρout . Considering φ as the drop tangent angle with respect to the wall, for an axisymmetric

drop:

( 1

R1
+ 1

R2

)= κ= dφ

d s
+ si nφ

r
(7.5)

where s is the coordinate along the surface and r is the radial coordinate. Substituting Eq. (7.5)

into Eq. (7.4), results in:

dφ

d s
= Êo(p − z)− si nφ

r
(7.6)

dr

d s
= cosφ (7.7)

109



Chapter 7. Validations and Results

d z

d s
= si nφ (7.8)

Here, p̂ stands for the dimensional reference pressure, p = p̂/ρg L as the non-dimensional

pressure and Êo = Eo(∆ρ/ρi n) as the modified Eötvös number. These equations are solved by

the Runge-Kutta method with appropriate initial conditions: s = 0, φ= 0, r = 0.258 and z = 0

and are then solved and integrated up to φ=π.

The simulation of the drop was performed assuming the following non-dimensional param-

eters: R = 0.5, Eo = 2, ρi n = 1.0 and µi n = 1.0 for the drop and ρout = 0.1 and µout = 0.9 for

the external fluid. The domain limits were set to be 8Dx8Dx4D, where the last dimension

stands for the direction of gravity, and discretized by approximately 26000 tetrahedrons and

5100 nodes. The interface mesh had approximately 5400 triangles in which 2056 were part of

the interface mesh. The mesh parameters used were β1 = 0, β2 = 1.0, β3 = 1.0, γ1 = 0.1 and

γ2 = 0.0, thus keeping the volumetric and surface meshes as well as the distance of nodes to

the surface elements almost uniform while the drop is moving downward to the bottom of the

domain.

Figure (7.5) shows the curvature distribution along the drop’s height. The solid line was fit

using the data from z = [0.2,0.8] by the least squares method; therefore the slope of such a

line gives the value of Êo = 2 for which it can be used to solve the previous mentioned ODE.

Additionally, comparing the distance from the numerical data to the solid line, it is possible

to compute the error of curvature for the simulated drop. Thus, the curvature error Errorκ
was found to be 0.2, showing reasonable agreement to the analytical solution. Furthermore,

the numerical solution of the drop’s shape is compared to the semi-analytical solution of the

Young-Laplace’s equation (Eq. (7.6),(7.7) and (7.8)) and is shown in Fig. (7.6). The results show

that the sessile drop is correctly predicted by the present implementation, due to the accurate

balance of the gravity, pressure and surface tension forces.

7.4 Oscillating drop

The evolution of a single drop initially perturbed in its shape is presented below. This case is

part of the set of standard benchmarks tests required to evaluate the modeling of the surface

tension force. The simulation consists of an initially axisymmetric ellipsoidal drop immersed

in another fluid in the absence of gravity. Due to the absence of external forces and assuming

the viscous effects to be small, the oscillating process is mainly driven by interfacial forces

which are directly balanced by the convection term. The perturbed drop tends to oscillate
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Figure 7.5: Curvature distribution along the drop’s height. The solid line was fit by the least
square method and its slope gives the value of Êo = 2.
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Figure 7.6: Comparison between the numerical solution of an axisymmetric sessile drop and
the analytical solution of its shape derived by the Young-Laplace equation of capillarity.

with the frequency given by:

w2 = 24σ

(3ρi n +2ρout )R3 (7.9)111
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and an amplitude decay given by:

a(t ) = a0e−t/τ (7.10)

where ρi n stands for the drop density, ρout represents the density of the surrounding fluid and

R is the unperturbed drop radius. In the amplitude equation, a0 is the initial drop amplitude

that should be small enough to avoid the growth of undesired non-linear modes. The time

is given by t and τ = R/5ν where R is the unperturbed drop radius and ν is the kinematic

viscosity. For this simulation a0 was set to 0.1R , assuring the requirements of the linearization

process.

The non-dimensional parameters used for this simulation were σ= 1 and R = 0.5 as the drop’s

radius, ρi n = 1.0, µi n = 1.0 for the drop and ρout = 0.001 and µout = 0.001 for the external

fluid. The domain limits were set to be 8Dx8Dx8D. The coarse mesh had approximately

43000 tetrahedrons and 9100 nodes. The interface mesh had approximately 8900 triangles,

from which 1800 triangles belong to the interface mesh. Instead, the refined mesh had

approximately 60000 tetrahedrons and 11600 nodes, while the surface mesh had approximately

11700 triangles with 4100 triangles as part of the interface mesh.

Figure (7.7) shows the numerical solution of the interface’s axial position for two different

mesh refinement levels, namely coarse and refined. A comparison is then made with the

analytical curve given by:

y(t ) = y0 +a0e−t/τcos(w t ). (7.11)

In the above equation, y0 corresponds to the initial oscillating surface’s axial position. As

expected, the predicted curve for the refined mesh has a better agreement to the analytical

solution when compared to the coarse mesh. Moreover, the numerical oscillating frequency

found for the refined mesh shows very good agreement to the analytical solution with an error

< 1% while the coarse mesh presents an error of 4%.

Figure (7.8) shows the simulated drop at two different times with the inversion of the velocity

direction in the z-axis. The simulations were performed with the re-meshing technique

describe in Chapter 5 for the inner and outer mesh as well as for the surface mesh. Thus, it

shows that the code is able to capture correctly the dynamics of capillary waves.
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Figure 7.7: Drop oscillation amplitude. Comparison between numerical and analytical solu-
tion for two levels of mesh refinement. The analytical period is 0.785 and the decay rate is
shown by the envelope represented by the lines below and above the oscillating curve. The
oscillating period in the coarse mesh was found to be 0.820 for the coarse mesh while that for
the refined mesh was 0.783.

7.5 Falling Drop in an Inert Media

The falling drop test case aims to compare the effects of the implemented convection, viscous

and gravity terms versus the surface tension force. This dynamic test is set up by releasing a

spherical drop with high surface tension, and letting it fall due to gravity. The position of the

center of mass of the free falling non-deformable object yields an analytical solution which

is given by a parabolic second degree polynomial equation and it can be used to compare to

our simulation. Two simulations were performed keeping all the parameters constant but

varying the viscosity ratio µi n/µout , thus changing significantly the outside fluid resistance

and consequently illustrating this effect with respect to the non-viscous analytical solution.

A parallelepiped of 6Dx6Dx8D with the higher dimension along the direction of gravity was

used. The parameters used in this simulation were R = 0.5 for the drop radius, ρi n/ρout = 1000

as the density ratio, and N = 10001/2 and Eo = 1 for the Archimedes and Eötvös numbers,

respectively. The sphere was initially placed on the upper region of the 4Dx4Dx8D domain,

where D stands for the sphere diameter and discretized by approximately 30000 tetrahedrons

and 5200 nodes. The interface mesh had approximately 1100 triangles and the total surface

mesh had approximately 3000 triangles.

Figure (7.9) shows the simulated drop center of mass positions in comparison with the analyti-
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(a) (b)

Figure 7.8: Inversion of the velocity direction in the z-axis. (a) The top and bottom parts are
squeezing the drop, and it corresponds to t ≈ 0.0. (b) The velocity is inverted, thus the drop is
being stretched in the z-axis, t ≈ 0.4

cal solution given by z = z0 − (1/2)g t 2, and Fig. (7.10) depicts the drop velocities compared to

the analytical solution, given by w = w0 − g t , where z0 = 5.5D and z represent the drop initial

and final center of mass position, w0 and w are the velocity along the z-coordinate, g stands

for gravity and t is the non-dimensional time. As can be seen, the solution of the simulation

for the low viscosity closely follows the analytical solution. According to Eq. (6.5) the mesh

parameters used in all cases were β1 = 0, β2 = 1.0, β3 = 0.1, γ1 = 0.1 and γ2 = 0.2. These results

show that the convection and gravity terms are well balanced in the presence of the surface

tension force; and that as the viscosity is decreased, the solution approaches the analytical

solution.

7.6 Spherically growing bubble in a superheated liquid

To validate the proposed mass transfer model, a spherical vapor bubble is simulated in a

superheated liquid with the fluid properties shown in Table (7.3). The numerical domain was

set as a cubic shape and an outflow condition was imposed at all the walls, thus allowing the

bubble to expand equally to all directions. Initially, a vapor bubble with its temperature equal

to the saturation temperature Tsat is placed on the middle of the domain. As mentioned in

Chapter (3), the surface temperature is set to the saturation temperature, and thus the only

difference in temperature is due to the superheated liquid surrounding the vapor bubble.

Considering that the temperature is non-dimensionalized such that T ∗ = (T −Ts)/(Tw −Ts),

the saturation temperature is set to Ts = 0 and the temperature of the superheated liquid is set

to T = 0+. The superheated liquid at the given saturation pressure starts to evaporate, thus

the total liquid volume decreases and the vapor volume increases. At this point, an analytical
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Figure 7.9: Trajectory of the falling drop immersed in different fluids. The drop trajectory
of the high viscosity fluid (black squares) tends to deviate as expected from the analytical
solution while the low viscosity fluid trajectory almost matches the free fall equation.

Table 7.3: Fluid properties

fluid vapor phase liquid phase interface

ρ µ k cp ρ µ k cp σ

[kg /m3] [µPa · s] [W /mK ][J/kg K ] [kg /m3] [µPa · s] [W /mK ][J/kg K ] [N /m]

R134a 37.54 12.04 0.0173 1065 1187 185.4 0.079 1446 0.0074

solution can be used to compare the change of vapor volume with time. Such an expression is

given by:

R(t ) = 2β
√

(kt ) (7.12)

where R is the bubble’s radius, k is the thermal conductivity and β is a constant calculated in

[80]. Note that the viscous and surface tension effects are neglected during the simulation,

thus Eq. (7.12) is valid for the growth of the vapor bubble.

Figure (7.11) shows the growth of the vapor bubble with time due to evaporation process. From
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Figure 7.10: Drop’s fall velocity driven by gravitational effects. The effects of deacceleration are
stronger when the inert media has a high viscosity compared to the analytical solution of the
free fall velocity profile, while in the low viscosity fluid, the deacceleration is more pronounced,
obstructing the descent of the drop.

t ≈ 0.02 to t ≈ 0.12, the vapor bubble expands linearly due to heat conduction. From t ≈ 0.13

to the end of the simulation, the bubble asymptotically reduces its expansion and begins to

deviate from the analytical solution, due to different assumptions used to derive Eq. (7.12)

with respect to those in the numerical simulation. Figure (7.12) depicts the three velocity

components showing the vapor bubble expansion. As can be seen, the velocity increases with

time as well as the bubble radius.

Further investigation of the boiling process in the present two-phase code is still required,

looking at additional cases and flows.

7.7 Rising Bubble

A comparison with experimental data has also been carried out to validate the code. In this

test case, the difference of fluid properties (viscosity and density) as well as all the terms of the

momentum and continuity equations are tested simultaneously. Additionally, the resilience of

the re-meshing procedure implemented in this work is massively tested due to the significant

change in bubble shape, where the final bubble geometry presents a dimpled ellipsoidal-cap

form (see classification in [37]). As can be seen in Figs. (7.13-7.17), the distortion of the surface

mesh at the bottom of the bubble becomes larger as the viscosity decreases, thus making the

re-meshing process even more necessary.
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Figure 7.11: Growth of a vapor bubble due to evaporation.

The numerical results were compared to the widely cited experiments performed by [11]. Tests

were carried out to predict the terminal velocity of a rising air bubble in aqueous sugar solu-

tions for five different viscosities. According to the experiments, the volume of the generated

bubbles was 9.3 cm3, thus the diameter is d = 2.61cm. The surface tension of 0.078N/m was

that of the air-water-sugar interface, the bubble air’s viscosity and density are 0.0000178kg/ms

and 1.225kg/m3 respectively. We considered an average value for the aqueous solution density

to be 1350kg/m3, since the experiments presented measurement variations, and five different

liquid viscosities {2.73,1.28,0.54,0.28,0.13}kg/ms, thus changing the final shape of the rising

bubbles. For the first three cases presented, two different mesh refinement levels were used,

namely coarse and refined. The former had approximately 5000 volumetric nodes, 33000

tetrahedrons, 1400 surface nodes and 2800 surface triangles, and the later had approximately

18000 volumetric nodes, 111000 tetrahedrons, 4000 surface nodes and 8000 surface triangles.

For the last two cases, only the refined mesh was used. The geometry of the domain consisted

in a parallelepiped with dimensions of 8Dx8Dx15D with the higher dimension along the

gravity direction was used and a bubble with radius R = 0.5 was placed in the bottom of the

domain where the center of mass is located at z = 3.

Figure (7.13) shows bubble shape transition and the center of mass velocity of the rising air

bubble immersed in the most viscous solution. It can be seen that at time t = 1.9 the bubble
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.12: Velocity components of a vapor bubble growing due to evaporation of the super-
heated liquid. (a)-(c) x-component , (d)-(f) y-component and (g)-(i) z-component.

velocity reaches its respective terminal velocity. The final bubble shape is reached at t ≈ 5.0.

The bottom edge of the bubble, where the curvature changes its sign, is not so pronounced

due to the slow ascension velocity and thus the mesh can be regularize with relative ease. The

mesh parameters used in these simulations were β1 = 0.0, β2 = 0.8, β3 = 0.1 for the volumetric

mesh and γ1 = 1.0 and γ2 = 0.1 for the surface mesh. The non-dimensional parameters were

set to Eo = 116, N = 194.88, ρi n/ρout = 0.0009, µi n/µout = 6.53E −06.

Changing the concentration of the aqueous sugar solution and thus its viscosity from 2.78

to 1.28kg/ms, the Morton number changes from Mo = 848 to Mo = 41.1 and a higher bubble

ascension velocity is obtained as can be seen in the Fig. (7.14). The bubble’s final velocity is

reached at time t = 1.7, and then it remains nearly constant until the end of the simulation.

The final bubble shape is reached at t ≈ 5.2. Note that due to the higher ascension velocity

profile and the consequently larger variation of the bubble shape, it was observed that both

the volumetric and surface meshes should adapt faster to the onset of non-desired low quality

elements. However, this requirement may be reduced by increasing the smoothing parameters
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Figure 7.13: Rising of an air bubble immersed in the aqueous sugar solution with the highest
viscosity µ = 2.73. (a) Bubble’s shape evolution. (b) Bubble’s center of mass velocity. The
straight solid line represents the terminal velocity found by [11]. Velocity and time are non-
dimensional.

β and γ so that the meshes are regularized, thus avoiding the collapse of nodes and edges near

the bubble. The mesh parameters used in this simulation were β1 = 0.0, β2 = 1.0, β3 = 0.3,

γ1 = 1.0 and γ2 = 0.2. In this simulation, the non-dimensional parameters were set to Eo = 116,

N = 194.88, ρi n/ρout = 0.0009, µi n/µout = 1.39E −05.

Figure (7.15) shows the rising of an air bubble immersed in the third viscous solution (0.54kg/ms

and Mo = 1.31). At time t = 1.0 the bubble velocity reaches its respective terminal velocity,

but its shape varies continuously up to time t ≈ 3.8 when the bubble shape is nearly stable.

The mesh parameters used in this simulation were β1 = 0.0, β2 = 1.0, γ1 = 1.0 and γ2 = 0.2.

The volumetric mesh parameter was set higher than the previous case to β3 = 0.5, thus

producing a suitable distribution of mesh nodes even in the presence of higher velocity gradi-

ents. In this simulation, the non-dimensional parameters were set to Eo = 116, N = 1091.57,

ρi n/ρout = 0.0009, µi n/µout = 3.29E −05.

Figure (7.16) shows the rising of an air bubble immersed in the fourth viscous solution

(0.28kg/ms and Mo = 0.103). Note that for this case and the next one, only the refined mesh

was used. At time t = 3.7 the bubble velocity reaches its respective terminal velocity, but its

shape varies continuously up to time t ≈ 5.5 when the bubble shape is nearly stable. The

mesh parameters used in this simulation were β1 = 0.0, β2 = 1.0, γ1 = 1.0 and γ2 = 0.2. The

volumetric mesh parameter was set higher than the previous case to β3 = 0.8, thus producing

a suitable distribution of mesh nodes even in the presence of higher velocity gradients. The
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Figure 7.14: Rising of an air bubble immersed in the aqueous sugar solution with moderate
viscosity µ = 1.28. (a) Bubble’s shape evolution. (b) Bubble’s center of mass velocity. The
straight solid line represents the terminal velocity found by [11]. Velocity and time are non-
dimensional.
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Figure 7.15: Rising of an air bubble immersed in the aqueous sugar solution with viscosity
µ= 0.54. (a) Bubble’s shape evolution. (b)Bubble’s center of mass velocity. The straight solid
line represents the terminal velocity found by [11]. Velocity and time are non-dimensional.
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sharp edges found in this simulations demanded severe surface remeshing, thus the excessive

deletion of nodes and elements introduced numerical diffusion that affected the final bubble’s

velocity. However, the final bubble’s shape is in agreement with the experiments. In this simu-

lation, the non-dimensional parameters were set to Eo = 116, N = 3892.86, ρi n/ρout = 0.0009,

µi n/µout = 6.23E −05.
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Figure 7.16: Rising of an air bubble immersed in the aqueous sugar solution with viscosity
µ= 0.28. (a) Bubble’s shape evolution. (b)Bubble’s center of mass velocity. The straight solid
line represents the terminal velocity found by [11]. Velocity and time are non-dimensional.

Figure (7.17) depicts the rising of an air bubble immersed in the least viscous solution

(0.13kg/ms and Mo = 4.63E − 3). Due to the pronounced shape deformation, the simula-

tion did not reach the final stage. At time t = 2.98, the bottom

Despite the geometrical handling of the surface mesh, the bubble oscillated near the terminal

velocity as reported in the experiments, and therefore it can be conclude that the bubble

dynamics and the difference of fluid properties are well represented by the proposed model,

as can been seen in Fig. (7.17b).

Different mesh parameters have been tested to handle the large surface distortions produced

by this simulation condition. The most suitable was found to be β1 = 0.0, β2 = 1.0, γ1 = 1.0

and γ2 = 0.2. The volumetric mesh parameter was set higher than the previous case to β3 = 0.9.

In this simulation, the non-dimensional parameters were set to Eo = 115, N = 18124.01,

ρi n/ρout = 0.0009, µi n/µout = 13.44E −05.

For the simulations performed above, a small fluctuation was observed when the bubble

reached its final shape, as been reported by other numerical benchmarks found in the litera-
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Figure 7.17: Incomplete rising of an air bubble immersed in the aqueous sugar solution with
the least viscosity µ= 0.13. (a) Bubble’s shape evolution. (b)Bubble’s center of mass velocity.
The straight solid line represents the terminal velocity found by [11]. Velocity and time are
non-dimensional.

ture. Such a behavior does not seem to affect the final solution. Moreover, the flexibility given

by the mesh control parameters β and γ allows an easy maintenance of the computational

mesh, achieving the representative elements with satisfactory shape, thus increasing the accu-

racy of the Finite Element method. The required mesh treatment for the last case reported

(µ= 0.13)) still needs to be further investigated.

7.8 Rising of Taylor Bubbles

In this section, a more challenging test has been carried out to validate the code against the

terminal velocity and liquid film thickness of elongated bubbles in circular channels. The wall

effects are included in the bubble dynamics and the results are compared to the well known

flow pattern map of [97] and the Brown’s theoretical solution for the film thickness [14]. The

modeling of such flows increases significantly the obstacles of the remeshing process, since

the formation of the thin liquid film between the bubble and wall requires a fine mesh to

capture the flow mechanisms. Again, the flexibility of the Finite Element method is explored

in the development of the computational meshes, in which different mesh element sizes are

used in the 3-dimensional domain.

Figure (7.18) shows the flow pattern map of White and Beardmore for air bubbles in circular

channels. To characterize the rising velocity of air bubbles in different solutions, 7 regions
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7.8. Rising of Taylor Bubbles

Table 7.4: Fluid properties

fluid properties dimensionless number film thickness

ρ µ σ Eo Mo δ

[kg /m3] [µPa · s] [mN /m] [-] [-] [-]

sucrose 1 1.172 5.650 77.7 40 1E-07 0.0617
sucrose 2 1.172 5.650 77.7 100 1E-07 N.A.
glycerol 1.260 712.0 63.1 40 1E-01 0.1483
diluted glycerol 0.234 154.0 64.8 100 1E-02 0.1196
sugar syrup 1 1.420 20900 77.2 400 1E+04 0.2267
sugar syrup 2 1.420 20900 77.2 3 1E+06 N.A.

air 1.789 1.225 — — — —

were identified and related to viscous, interfacial and inertial forces. The solutions used in

the experiments varied from distilled water to sugar syrup, glycerol, oil, sucrose and ethanol.

Table 7.4 summarizes the fluid properties used in the rising Taylor bubble simulations and the

dimensionless film thickness δ calculated from the following expression:

δ=
[

3

2
F r

Mo1/4

Eo3/4
(R −δ)

]1/3

(7.13)

where F r , Eo and Mo are the dimensionless numbers defined in Chapter (3) and R is the

channel radius. This expression is derived from [14] and calculates the stable film thickness of

a rising bubble. However, the stability of the film thickness requires that the bubble length Lb

must be large enough so that the uniform film can be measured. The initial bubble’s length

Lb in all simulations was set to be Lb > 2D. Three fluids with different properties were used,

namely sucrose, glycerol and sugar syrup, as according to the experimental database. Doing

so, the code can be tested and benchmarked to different zones found in the flow pattern of

Fig. (7.18).

The numerical solution for the rising bubble requires a long domain to be compatible to the

experiments. According to [15], the development of the bubble’s shape and, consequently,

the terminal velocity requires that the numerical domain should be 8D long in the gravity

direction. As mentioned before, an extra mesh refinement is needed to solve the liquid film

formed between the wall and the confined bubble, thus the total number of mesh elements

increases dramatically. Considering that the simulations are performed in 3-dimensions and

the experimental test section is constant in the gravity direction, a moving referential frame

technique is employed to shorten the numerical domain, thus allowing a faster computation.

Figure (7.19) depicts the schematical representation and the boundary conditions used to
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Chapter 7. Validations and ResultsThe velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes 

FIG. 6. Crossplot of data, showing regions in which the effect of some variables becomes unimportant. 

Limits of correlations 

The various regimes are indicated on Fig. 6 which 
shows the contour lines for JFr. These were 
drawn by determining from Figs. 2, 3 and 4 the 
conditions under which the various retarding forces 
may be neglected (without causing an error in 
velocity of greater than +5 per cent). Approxi- 
mately, surface tension effects may be neglected if 
Eo > 70, inertial effects if JFr < 0.05 and vis- 
cosity effects if p2gd3/p2 > 3 x 105. Table 2 sum- 
marizes these results. The condition given by 
HARMATHY [l l] for the neglecting of viscous forces 
is Re’ > 500. Using the correlations for spherical 
particles in turbulent movement in an infinite 
medium, this becomes p2gd3,/p2 > 8 x 105. Al- 
though this is of the same order as that already 
given, if d N de, it is an unsatisfactory criterion for 

cylindrical bubbles, because a change in the length 
of the bubble, which does not affect the velocity, or 
presumably the forces acting on it, affects de. In a 
similar way, the general correlation given by 
HARMATHY for the prediction of bubble velocity is 
possibly needlessly complicated for application to 
cylindrical bubbles by the introduction of uco and 
d,. These quantities apply to a spherical bubble of 
the same volume. 

As the forces affecting the bubble shape and 
velocity differ in the different regimes, the region 
in which an investigation is conducted should be 
stated, and in the absence of further data it is ex- 
pected that the results apply only to that region. 
The work of LAIRD and CHISHOLM [S] applies to 
bubbles rising unaffected by viscous or interfacial 
forces i.e. region V. The data of FOUST [9] were 

E 357 

Figure 7.18: Flow pattern map of rising bubble in cylindrical vertical tubes [97]. 7 regions were
identified to characterize the dependency of the velocity to viscous, interfacial and inertial
forces. The horizonta axis stands for the Eötvös number and the vertical axis to the Morton
number. The curved lines are dimensionless velocity, which is equivalet to the Froude number.

represent the referential domain. In Fig. (7.19a) the bubble moves upward with velocity Vb

and the camera tracks the bubble’s motion with the same velocity. By mean of relative velocity,

if Vb is removed from the bubbles velocity, then the bubble and the camera will be steady and

all the remaing objects will move downward with a velocity equal to −Vb . Consequently, the

boundary conditions is imposed in such a way that the fixed bubble should “feel” the shear

from the wall. This is represented by Fig. (7.19a), where the inflow and outflow conditions are

imposed in the top and bottom wall with respect to the bubble’s velocity Vb , being the same

applied to the side walls.

The numerical domain used to simulate all the fluids given by Table (7.4) was set to D×5D+Lb ,
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7.8. Rising of Taylor Bubbles

(a) (b)

Figure 7.19: Schematical representation of the moving frame technique, which uses the
principles of relative velocity to shorten the numerical domain. (a) The rising bubble moves
with velocity Vb and the camera tracks its motion with the same velocity. (b) The boundary
conditions applied to simulate the same condition illustrated in (b) requires that the walls
move downward with velocity Vb .

where D stands for the circular channel diameter and Lb is the bubble length. The bubble

was placed far from the bottom part of the domain to guarantee that the bubble’s wake is well

captured, thus allowing the bottom of the bubble to deform. Figure (7.20) shows the front, the

back and the side views of the computational domain used at all simulations performed in

the rising Taylor bubble test. As can be seen, the mesh is more dense at the wall and close to

the bubble, where the maximum edge length size allowed is hmax = 0.02. Below the bubble, a

larger value of h is allowed, however the maximum edge length admissible should be able to

capture the wake behind the bubble, thus it was set to be hmax = 0.05. Finally, in the top part

of the domain, the maximum edge length was set to hmax = 0.09. Such a mesh refinement

reduces considerably the computational time if compared to an uniform grid. Moreover,

during the simulation, nodes are added and deleted according to the description of mesh

adaptive refinement in Chapter 6, assuring accurate results.

Figure (7.21) shows the time progression of a Taylor air bubble immersed in a sugar syrup
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(a) (b) (c) (d)

Figure 7.20: Tetrahedron mesh used to simulate the rising Taylor bubble. The boundary mesh
is more refined close to the bubble to capture the mechanisms of the thin liquid film. Above
the bubble, the mesh is less refined and behind the the bubble a fine mesh is used to capture
the bubble’s wake.

solution. The bubble is initialized as a “bullet” shape to reduce the initial perturbation

generated by the initial bubble form. The initial film thickness was set to δo = 0.37 and the

mesh parameters used in this simulation were β1 = 0.0, β2 = 1.0, γ1 = 1.0 and γ2 = 0.1. The

air bubble deformation remains with rounded end, and not presenting sharp edges, thus the

adaptive mesh refinement is able to handle with relatively ease. The bubble terminal shape

was also compared to different numerical works and it is qualitatively in good agreement. In

Fig. (7.22) is shown the evolution in time of the bubble’s center of mass velocity, in which the

computed terminal velocity approaches the value found in the flow pattern map. The error
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7.8. Rising of Taylor Bubbles

was found to be < 0.1%.

(a) t = 0.00 (b) t = 4.78 (c) t = 6.74 (d) t = 9.89 (e) t = 21.19

Figure 7.21: Bubble shape evolution with time for an air bubble in a sugar syrup solution with
dimensionless numbers Mo = 104, Eo = 400. (a) Initial bubble shape with t = 0. (b-d) Bubble
shape transient solution. (e) Terminal bubble shape with t = 21.19.
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Figure 7.22: Rising of an air Taylor bubble immersed in the sugar syrup solution with dimen-
sionless numbers set to Mo = 104 and Eo = 400. The time evolution of the Bubble’s center of
mass velocity is compared to the terminal bubble’s velocity found in [97]. Velocity and time
are non-dimensional.

In the test case presented by Fig. (7.23), it was observed that the bubble’s shape converges to a
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symmetric shape. This is due to strong viscous force compared to the gravitational one, which

does not allow the bubble to rise. In the numerical test, a small velocity flotation of the order

of 10−3 was found, as can be seen in Fig. (7.24). In fact, it was observed that the simulated

bubble did not rise, showing that the velocity flotation is due to the interface motion, which

converges to its equilibrium shape. In this simulation, the initial film thickness was set to

δo = 0.37 and the mesh parameters used in this simulation were β1 = 0.0, β2 = 1.0, γ1 = 1.0

and γ2 = 0.1.

(a) t = 0.00 (b) t = 2.50 (c) t = 4.83 (d) t = 7.07 (e) t = 9.27

Figure 7.23: Bubble shape evolution with time for an air bubble in a sugar syrup solution with
dimensionless numbers Mo = 106, Eo = 3. In such a condition, the bubble does not rise due
to the stronger viscous force compared to the gravitational force. (a) Initial bubble shape with
t = 0. (b-e) Bubble shape transient solution.

Figure (7.25) shows the time progression of a Taylor air bubble immersed in a sucrose solution.

The same bubble shape and film thickness, as the previous cases, is used as an intial shape.

In the transient evolution, the bubble’s velocity reached its maximum velocity at time t ≈ 1,

and its terminal velocity at time t ≈ 3.7 Also, it was shown that the bottom part of the bubble

was pulled in and oscillated until convergence at t ≈ 7.4 The mesh parameters used in this

simulation were β1 = 0.0, β2 = 1.0, γ1 = 1.0 and γ2 = 0.1 and the dimensionless numbers were

set to Mo = 10−7, Eo = 40. Figure (7.26 presents the transient solution of the bubble’s center

of mass velocity. It was observed, an overshooting of the ascension velocity from time t = 0

to t = 1.1, due to the initial deformation of the bottom part of the bubble, and consequently

acceleration of the center of mass. The result agreed to the prediction of the flow pattern map,

obtaining an error of 1.1%.

A difficult condition was tested in Fig. (7.27), in which the bubble surface changed dramatically.

As can be seen at time t = 2.70, the bottom part of the surface mesh presents sharp edges due

to the high curvature of the surface, thus shutting down the simulation. However the rising

velocity in Fig. (7.28) shows an oscillating trend close to the solution given by the flow pattern
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Figure 7.24: Rising of an air Taylor bubble immersed in the second sugar syrup solution with
dimensionless numbers set to Mo = 106 and Eo = 3. According to [97], the terminal bubble’s
velocity is zero, thus the bubble does not rise. The numerical simulation shows that the bubble
does not rise, however a small residual is found in the rising velocity w . Velocity and time are
non-dimensional.

(a) t = 0.00 (b) t = 1.09 (c) t = 1.78 (d) t = 3.05 (e) t = 7.41

Figure 7.25: Bubble shape evolution with time for an air bubble in a sucrose solution with
dimensionless numbers Mo = 10−7, Eo = 40. The adaptive mesh refinement proposed in this
work captures accurately the strong shape distortion produced by the high ascension velocity.
(a) Initial bubble shape with t = 0. (b-d) Bubble shape change during transient solution. (e)
Terminal bubble shape with t = 7.41.
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Figure 7.26: Rising of an air Taylor bubble immersed in a sucrose solution with dimensionless
numbers set to Mo = 10−7 and Eo = 40. The time evolution of the Bubble’s center of mass
velocity is compared to the terminal bubble’s velocity found in [97]. Velocity and time are
non-dimensional.

map. This indicates that, despite the difficulty in handling the surface mesh, the gravitational

effects are well balanced with the inertial and interfatial effects.

Figure (7.29) shows the time progression of a Taylor air bubble immersed in a glycerol solution.

The mesh parameters used in this simulation were β1 = 0.0, β2 = 0.5, γ1 = 0.5 and γ2 = 0.1

and the dimensionless numbers was set to Mo = 10−2 and Eo = 100. In this case, the mesh

parameters were slightly modified to test different mesh conditions in the simulation. The

obtained result shows that the bubble shape and terminal velocity agrees well to experimental

data. In Fig. (7.30) is shown the evolution in time of the bubble’s center of mass velocity, in

which the computed terminal velocity approaches the value found in the flow pattern map.

The error was found to be 6.5%.

Figures (7.32 and 7.31) show the bubble shape and the rising velocity evolution with time,

respectively. It was observed that the transient solution of the bubble shape presented round

ends in the bottom part during the whole simulation. Moreover, a linear rising velocity

was found in the interval t = [1,4], followed by its convergence to the terminal velocity, this

resembles the same rising velocity evolution of the sugar syrup solution. The error was found

to be < 1.0%.

Table (7.5) shows the comparison of the obtained numerical liquid film thickness δnum to

the liquid film thickness calculated by Brown’s correlation δcor given by Eq. (7.13). The film

130



7.8. Rising of Taylor Bubbles

(a) t = 0.00 (b) t = 0.71 (c) t = 1.17 (d) t = 1.76 (e) t = 2.70

Figure 7.27: Bubble shape evolution with time for an air bubble in a sucrose solution with
dimensionless numbers Mo = 10−7, Eo = 100. The high ascension velocity and the strong
deformation of the surface mesh shut the simulation down. Mesh analysis suggest that a
specific surface mesh refinement is required to handle such a deformation. (a) Initial bubble
shape with t = 0. (b-e) Bubble shape during transient solution.

thickness error δer r or is calculated according to the follow equation:

δer r or =
√∑

(δcor −δnum)2∑
(|δcor |)2 (7.14)

The good agreement of the liquid film thickness with the Brown’s correlation indicates that the

proposed method is suitable to describe the mechanisms of film formation between a vapor

Table 7.5: Dimensionless liquid film thickness

fluid δnum δcor δer r or [%]

sucrose 1 0.0681 0.0617 10.3
sucrose 2 0.0979 N.A. N.A.
glycerol 0.1413 0.1483 4.72
diluted glycerol 0.1203 0.1196 0.58
sugar syrup 1 0.2190 0.2267 3.39
sugar syrup 2 0.1320 N.A. N.A.
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Figure 7.28: Rising of an air Taylor bubble immersed in a glycerol solution with dimensionless
numbers set to Mo = 10−7 and Eo = 100. The sharp edged produced by the high ascension
velocity is not handled by the remeshing process. Mesh analysis suggested that a different
edge length is required to model high curvature shapes, which is the case of the bottom part
of the bubble. Velocity and time are non-dimensional.

(a) t = 0.00 (b) t = 1.15 (c) t = 2.39 (d) t = 2.86 (e) t = 6.00

Figure 7.29: Bubble shape evolution with time for an air bubble in a glycerol solution with
dimensionless numbers Mo = 10−2, Eo = 100. (a) Initial bubble shape with t = 0. (b-d) Bubble
shape transient solution. (e) Terminal bubble shape with t = 6.00.
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Figure 7.30: Rising of an air Taylor bubble immersed in a glycerol solution with dimensionless
numbers set to Mo = 10−2 and Eo = 100. The time evolution of the Bubble’s center of mass
velocity is compared to the terminal bubble’s velocity found in [97]. Velocity and time are
non-dimensional.

(a) t = 0.00 (b) t = 0.70 (c) t = 1.93 (d) t = 3.35 (e) t = 8.76

Figure 7.31: Bubble shape evolution with time for an air bubble in a glycerol solution with
dimensionless numbers Mo = 10−1, Eo = 40. (a) Initial bubble shape with t = 0. (b-d) Bubble
shape transient solution. (e) Terminal bubble shape with t = 6.00.

bubble and the wall. Moreover, the refined mesh close to the bubble assured the minimum

number of elements located in the liquid film. Brown’s correlation assumes that the liquid film
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Figure 7.32: Rising of an air Taylor bubble immersed in a glycerol solution with dimensionless
numbers set to Mo = 10−2 and Eo = 100. The time evolution of the Bubble’s center of mass
velocity is compared to the terminal bubble’s velocity found in [97]. Velocity and time are
non-dimensional.

is stable, however during our simulations, the liquid film was not stable in all cases, suggesting

that the large discrepancy of the computed film thickness for the solution of sucrose 1 may be

the caused of this phenomena.

As an extension of the bubble’s rising velocity and liquid film thickness, one fluid of Table (7.4)

was selected to be compared to a 2-dimensional simulation. Thus, a quantitative and qualita-

tive comparison can be done to estimate how far a 2-dimensional simulation compared to its

3-dimensional solution. The 2-dimensional code was implemented following the same guide-

lines for the 3-dimensional one. The equations are discretized by the Finite Element Method

in the Arbitrary Lagrangian-Eulerian description, an adaptive mesh refinement is performed

to keep the interface elements (triangle edges and nodes) and the triangles elements bounded

to satisfactory shapes. The curvature is calculated using the 2-dimensional version of the

Frenet’s formula (5.2) and the gravity is included in the y-direction, so that the surface tension

and gravity effects are taken into account in the Navier-Stokes equation. Despite the reduced

computational time used to perform this simulation, the moving frame technique was also

applied to reproduce the same conditions of the 3-dimensional case. The numerical domain

used to simulate this case was set to D ×5D +Lb , where D stands for the channel diameter

and Lb represents the bubble length, and thus the 2-dimensional domain is compatible to

the 3-dimensional simulation. One test case was selected to be compared, and it is shown in

Figs. (7.33 and 7.34). The Morton number was set to Mo = 10E −02 and the Eötvös number to
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7.9. Two drop collision

Eo = 40. Density ρ, viscosity µ and surface tension was set to those of the glycerol solution (see

Table (7.4). The triangular mesh used comprised approximately 2445 nodes, 4430 triangles,

577 interface nodes (interface and boundary) and 577 edges to assemble the interface and

boundary meshes. The bubble shape time evolution is shown in Fig. (7.33) and a qualitative

comparison with the 3-dimensional simulations is shown in Fig. (7.34).

(a) t = 0.00 (b) t = 1.14 (c) t = 1.63 (d) t = 2.54 (e) t = 7.62

Figure 7.33: 2-dimensional bubble shape evolution with time for an air bubble in a glycerol
solution with dimensionless numbers Mo = 10−1, Eo = 40. (a) Initial bubble shape with t = 0.
(b-d) Bubble shape during transient solution. (e) Terminal bubble shape at t = 7.62.

The results show that the terminal bubble shape is modeled relatively well in 2-dimensional

simulations, which can be seen in Fig. (7.34). However the measured liquid film is not well

predicted, being thicker compared to the 3-dimensional case, so thus the bubble length tends

to be longer in 2-dimensions simulations. Another issue was found in the terminal rising

velocity, which was found to be 25% than for the 3-dimensional case, therefore justifying the

thicker liquid film.

It is important to note that the liquid film for the Taylor bubble simulations adds significantly

the difficult of handling the mesh in the liquid film. However, with the proposed adaptive

mesh refinement, the dynamics of the bubble rise could be essentially captured.

7.9 Two drop collision

The mechanisms of coalescence are still an open issue. A common approach is to assume

a lubricating model to describe the thin liquid film dynamics of two approaching drops.

In such a model, the interface between the fluids is considered to be two non deformable

solid plates. However, the interface shape may modify during the coalescence process, thus

if the curvature of the interface changes, the pressure field is immediately affected, and
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(a) t = 0.00 (b) t = 0.70

Figure 7.34: Qualitative comparison of bubble’s terminal shape in (a) 2-dimensional and (b)
3-dimensional simulations in a glycerol solution.

consequently the lubrication theory may not represent accurately the process. In [55], the

mentioned analysis to study film drainage between a deformable interface was extended,

improving the representation of the phenomena.

Coalescence has been modeled and described by breaking it down into three consecutive

stages, namely approach of drops, film drainage and film rupture. The first stage is started

when the drops are large and separated. The second stage is characterized by the approaching

of the drops and the decreasing of the liquid film thickness between them. The last stage is

represented by the rupture of the interface and consequent coalescence. An experimental

work was performed by [101] and they pointed out the importance of the later stage, since the

interface instabilities may be the cause of the film to rupture.

A numerical simulation of 3-dimensional drop collision was made by [66]. They investigated

the coalescence process using a front-tracking code and they pointed out the limitation of

their grid resolution to resolve the liquid film thickness between the drops. In [65], a numerical

study was performed to investigate the collision of two droplets using an axisymmetric model.

They compared their results to the available literature and obtained good agreement to the

experimental results.

Taking advantage of the methodology developed in this work, where the nodes are moved in

the Arbitrary Lagrangian-Eulerian description, a preliminary study was performed about the

approaching of two equal-sized drops in general linear flows by considering two stagnation-

points with constant strain conditions, namely planar and axisymmetric. In the former, the

assumption of a planar flow is performed by imposing the boundary conditions according to

the following expression:
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where u, v and w are the velocity components, and x, y and z are the boundary coordinates.

Pressure is set in such a way that the flow is allowed to escape only in the perpendicular plane

of the two drops. On the other hand, the boundary conditions imposed on the axisymmetric

flows is slightly modified to take into account the w velocity component in the prescribed

velocity, thus it is set according to the following expression:
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y
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 (7.16)

The qualitative difference of these two boundary conditions is associated to the final bubble’s

shape and flow definition itself. In the planar case, the drop is squeezed along the x − y plane

and in the axisymmetric one, then the drop remains nearly spherical. In order to investigate

the effects of the interface force during the approaching process of two equal-sized drops,

the fluid properties were set equal to 1, such that ρi n/ρontout = 1, µi n/µontout = 1 and the

Weber number is constant and set to W e = 2. 2 cases were simulated for each flow condition

by varying the Reynolds number Re = {2,20,200}, consequently varying the Capillary number

C a{1,0.1,0.01}. Such a condition is equivalent to the simulation of a soap bubble, where the

inner and outer fluid are the same, but still the effect of an interface between the fluids is

present.

Figure (7.35) depicts the background flow velocity and how the boundary conditions are

applied in the two above mentioned cases. In the planar case, an outflow and a symmetry

conditions are set in the perpendicular walls of the x and z-axis directions respectively. On

the top y = ymax and bottom y = ymi n parts, an inlet velocity condition is imposed. In the

axisymmetric case, the difference in the imposition of the boundary condition is that the

outflow is set at all the walls perpendicular to the x and z axis.

The shape evolution with time of the planar case is shown in Fig. (7.36). As can be seen, the

higher is the Re number, the lower is the bubble’s shape deformation along x direction. The

thin liquid film between the two drops requires an extensive mesh controlling procedure to

capture satisfactorily well the present mechanisms. Despite the planar background flow, the

3-dimensional simulation did capture a velocity gradient in the z direction, thus concluding

that this flow can not be well predicted by a 2-dimensional code. However, a 2-dimensional
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(a)

(b) (c)

Figure 7.35: Boundary conditions (b.c.) applied to the two drop collision simulations. (a)
Background flow characterized by stagnation-point with constant strain conditions. (b) Planar
case. (c) Axisymmetric case.

simulation suggested that a qualitative description of this test case can be done.
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(a) t=0.0 (b) t=0.22 (c) t=0.35 (d) t=0.51

(e) t=0.0 (f) t=0.41 (g) t=0.78 (h) t=1.61

(i) t=0.0 (j) t=0.28 (k) t=0.66 (l) t=0.93

Figure 7.36: Time evolution of the collision of two equal-sized drops in the planar flow imposed
by Eq. (7.15). (a-d) Dimensionless parameters are W e = 2 and Re = 2. (e-h) Dimensionless
parameters are W e = 2 and Re = 20. (i-l) Dimensionless parameters are W e = 2 and Re = 200.
Time is non-dimensional.
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Figure (7.37) shows the time evolution of the collision of two equal-sized drops in the axisym-

metric flow imposed by Eq. (7.16) for different Re numbers. In the axisymmetric case, the

bubble’s shape remains nearly spherical in the parallel plane, and thus it is squeezed in the

perpendicular direction. It was observed different time scales for the approaching of the two

simulated bubbles. This is due to the significant change in the Re number.

Figures (7.38a) and (7.38b) show the time evolution of the film thickness for the planar and

axisymmetric cases respectively. As can be seen, if the Re number is high the trends tend to

detach from the analytical solution of the flow field given by 0.5e−x and the linear evolution

given by 0.5−0.5x, where x is the coordinate, thus indicating that the non-linear effects are

stronger in the liquid film.

The computational mesh used at all simulations comprised approximately 11000 volumetric

nodes, 66700 tetrahedrons, 1500 surface nodes and 2980 surface triangles. During the simula-

tions, nodes are added and deleted, thus the numbers presented were not constant. The mesh

parameters used in this simulation were β1 = 0.0, β2 = 1.0, γ1 = 1.0 and γ2 = 0.0. The surface

mesh parameter γ2 was kept null to avoid excessive displacement of the surface mesh by the

smoothing velocity.

In this preliminary study and based on the numerical simulations performed, it can be con-

clude that the flow can not be assumed to be linear in the gap between the two interfaces.

Moreover, it has been seen that with the increasing of the Re number, the curvature of the

interface in the liquid film region assumes negative values, thus the assumption of a non

deformable surface is no longer valid. However, the effects of interface instabilities, pressure

distribution and detailed velocity profiles still need to be further investigated. Furthermore, it

appears that application of lubricating theory alone is not sufficient to model this process.

7.10 Microchannel simulations

Microchannel two-phase flows are important in many applications, in particular to slug flows

in cooling of electronics as in the present CMOSAIC project. In such a scale, the surface tension

force plays an important role in the flow dynamics, whereas gravitational effects are generally

negligible. Thus, an accurate modelling of the surface tension force is required. Figure (7.39)

depicts the test section of the microchannel boiling facility at the Heat and Mass Transfer

Laboratory, where 67 microchannels with a square cross-section are distributed side-by side.

Later, it will be placed on the top of the microprocessor, thus achieving highly efficient cooling

by evaporating two-phase flow refrigerants.

Four simulations were performed in the micro scale using different conditions and two fluids,

namely R1234ze and R236fa, which are used in the scope of the cooling of 3D stacked chips

in the CMOSAIC project. The properties of each working fluid can be seen in Table (7.6) and

they are taken considering the working temperature of the refrigerants, which is 25◦C. The

length of the channel is on the order of 10−3m. Figure (7.40) shows the surface mesh of the
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(a) Re=2, t=0.0 (b) Re=2, t=0.67 (c) Re=2, t=1.29 (d) Re=2, t=2.85

(e) Re=20, t=0.0 (f) Re=20, t=0.45 (g) Re=20, t=1.09 (h) Re=20, t=1.74

(i) Re=200, t=0.0 (j) Re=200, t=0.45 (k) Re=200, t=0.78 (l) Re=200, t=0.93

Figure 7.37: Time evolution of the collision of two equal-sized drops in the axisymmetric
flow imposed by Eq. (7.16). (a-d) Dimensionless parameters are W e = 2 and Re = 2. (e-h)
Dimensionless parameters are W e = 2 and Re = 20. (i-l) Dimensionless parameters are W e = 2
and Re = 200. Time is non-dimensional.

3-dimensional domain used to simulate a single bubble flowing inside a micro channel with

a square cross-section of 100x100µm. The bubble is placed near the middle of the domain,
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Figure 7.38: Film thickness δ of (a) planar case, where the z component of the velocity is not
considered on the boundary conditions and (b) axisymmetric case

and the mesh receives a special treatment to capture the thin liquid film found in such flows.

Therefore, in order to simulate such a condition, the same idea of the moving referential frame
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Figure 7.39: Test section of the microchannel boiling facility at the Heat and Mass Transfer
Laboratory. 67 microchannes with square cross-section are distributed side-by-side and placed
on the top of the micro processor. The square channel length is 100µm. Figure extracted from
[57].

is used to shorten the numerical domain, and the boundary conditions are applied to include

the wall effect into the bubble dynamics. Since the flow is driven by the shear effect and

the boundaries will move with the bubble’s velocity, a velocity profile was set on the left and

right walls. On the remaining walls, the no slip condition was used and a single node is used

to set the pressure condition, thus satisfying the continuity equation in Eq. (3.13). Such an

imposition resembles the lid-driven cavity, in which only one single node is required to solve

the pressure field.

The isothermal simulation of an isolated bubble is performed to evaluate the conditions found

in microchannel flows using refrigerant R236fa as the working fluid. The bubble’s length was

set to Lb = 1.2D where D is the cross-section width. Figure (7.41) shows the evolution of the

bubble’s shape with time and colored by the velocity component in the x-direction. After a

transient stage, the bubble reaches its stable solution for the bubble shape. However, the tail

of the bubble presents a small continuous oscillation, typically observed experimentally. The

dimensionless liquid film thickness remained stable and its minimum value was measured,

and it was found to be δmi n = 0.057, which represents 57µm.
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(a) (b)

Figure 7.40: Numerical domain used to simulate the microchannel boiling facility’s microchan-
nel. (a) The side view of the domain shows the mesh distribution, where a denser cluster of
nodes are located near the bubble region. (b) The square microchannel cross-section.

Table 7.6: Fluid properties

fluid vapor phase liquid phase interface

ρ µ k cp ρ µ k cp σ

[kg /m3] [µPa · s] [mW /mK ][k J/kg K ] [kg /m3] [µPa · s] [mW /mK ][k J/kg K ] [mN /m]

R1234ze 25.898 12.464 15.664 1.0421 1157.4 202.71 62.060 1.3882 8.5156
R236fa 18.294 10.846 12.760 0.8844 1360.3 286.03 72.870 1.2641 10.086

A different working fluid was tested with a longer bubble length Lb = 2D , where D is the width

of the square channel cross-section. Figure (7.42) depicts the time evolution of a single vapor

bubble of the refrigerant R1234ze. As can be seen, the bubble changes its shape from time

t = 0.0 to t ≈ 5, the liquid film becomes thinner and surface waves appear close to the tail of

the vapor bubble, which also continuously oscillates, as observed in experiments. The colors

represent the velocity of the surface nodes in the x-direction.

A more interesting test case was simulated using the same refrigerant as in the previous test

case, but with an additional bubble placed 0.5D behind the other one. Therefore, the second

bubble is affected by the wake formed by the motion of the first one, characterizing a slug flow.

Each bubble length was set to be Lb = 2D . Figure (7.43) depicts the bubble’s shape evolution

of two vapor bubbles of the refrigerant R1234fa. Different patterns were found in the bubble’s

shapes as well as the evolution of the film thickness with time, as can be seen in Fig. (7.44).

The liquid film thicknesses were found to be δ = 20µm and δ = 37µm for the left and right

bubble respectively. From time t ≈ 8 till the end of the simulation, the two bubbles remained

equally distanced.

The dynamics of a single vapor bubble of the refrigerant R1234ze was simulated taking into

account the evaporation process produced by the constant and uniform heat flux q̇ applied to

the bottom part (wall) of the numerical domain. Thus, the simulation of the microchannel

placed on the top of a working chip can be achieved. The bubble’s length was set to Lb = 1.3D
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(a) t = 0.00

(b) t = 0.70

(c) t = 1.93

(d) t = 3.35

(e) t = 8.76

Figure 7.41: Bubble’s shape evolution with time for a single vapor bubble. The working fluid
is R236fa, whose details can be found in the Table (7.6) The fluid is entering at the left of the
domain and exiting at the right. A transient stage occurs in (a-b), followed by a nearly stable
bubble shape in (c-e).

145



Chapter 7. Validations and Results

(a) t = 0.00

(b) t = 0.70

(c) t = 1.93

(d) t = 3.35

(e) t = 8.76

Figure 7.42: Bubble’s shape evolution with time for a single vapor bubble. The working fluid
is the recent environmentally friendly refrigerant R1234ze, whose details can be found in
Table (7.6). (a-c) Transient stage. (d) initial formation of the surface waves in the tail of the
vapor bubble. (d) Stable bubble shape.

and the initial film thickness to δi = 0.35. Figure (7.45) shows the transient solution of the

temperature profile of two-phase evaporation of R1234ze. Due to the evaporation process, it

was verified that the bubble’s volume changed 12% compared to the initial volume. Moreover,

the transient bubble’s shape presented a different pattern compared to the isothermal simula-

tion (Fig. (7.42), indicating that the evaporation of the liquid film affected the bubble’s shape.
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(a) t = 0.00

(b) t = 0.70

(c) t = 1.93

(d) t = 3.35

(e) t = 8.76

Figure 7.43: Bubble’s shape evolution with time for two vapor bubbles. The working fluid is
refrigerant R1234ze, whose details can be found in Table (7.6). The fluid is entering at the left
of the domain and exiting at the right. (a-c) Transient stage. (d) initial formation of the surface
waves in the tail of the vapor bubble. (d) Stable bubble shape.

The surface waves were not identified in the tail of the bubble. The measured film thickness

found was δ= 0.073. A further investigation is still required to validate the implemented mass

transfer model.
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Figure 7.44: Transient solution of the liquid film thickness computed for the two vapor bubbles
of the refrigerant R1234ze.

Finally, a comparison is made between 2-dimensional and 3-dimensional simulations with

the same conditions of the single vapor bubble of refrigerant R1234ze presented previously.

The triangular mesh had approximately the same number of nodes and elements of the above

mentioned 2-dimensional case. The bubble shape evolution with time is shown in Fig. (7.46)

and a qualitative comparison with the 3-dimensional simulations is shown in Fig. (7.47).

The results show that the terminal bubble shape is not well modeled in the 2-dimensional

simulation, which can also be seen in Fig. (7.34). Moreover, the measured liquid film is not well

predicted, being higher if compared to the 3-dimensional case, and thus the bubble length

tends to be longer in the 2-dimensions simulation. Another issue was found in the terminal

velocity, being 21% than for the 3-dimensional case. Therefore, it can be conclude that a

3-dimensional simulation is required to simulate the dynamics found in the present test cases.

The computational mesh used in the single bubble microchannel simulations comprised

approximately 13000 volumetric nodes, 60000 tetrahedrons, 5500 surface nodes and 11000

surface triangles. In the two bubbles test case, the computational mesh comprised 22000

volumetric nodes, 140000 tetrahedrons, 11000 surface nodes and 22000 surface triangles.

During the simulations, nodes are added and deleted, thus the numbers presented were not

constant. The mesh parameters used in this simulation were β1 = 0.0, β2 = 1.0, γ1 = 1.0 and

γ2 = 0.0.
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(a) t = 0.00

(b) t = 3.03

(c) t = 4.52

(d) t = 8.41

(e) t = 13.03

Figure 7.45: Transient solution of two-phase flow boiling of refrigerant R1234ze. A constant
heat flux q̇ is applied in the bottom part of the domain. The fluid is entering at the left of the
domain and exiting at the right. Time and temperature are non-dimensional.
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(a) t = 0.00

(b) t = 0.91

(c) t = 2.30

(d) t = 4.26

(e) t = 7.60

Figure 7.46: 2-dimensional bubble shape evolution with time for a vapor bubble of refrigerant
R1234ze. (a) Initial bubble shape with t = 0. (b-d) Bubble shape transient solution. (e)
Terminal bubble shape with t = 7.62.
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(a)

(b)

Figure 7.47: Qualitative comparison of bubble’s terminal shape in (a) 2-dimensional and (b)
3-dimensional simulations of refrigerant R1234ze.
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8 Conclusions

This thesis presents a new methodology for simulating incompressible two-phase flows within

the Finite Element Method context in which the mesh moves in an Arbitrary Lagrangian-

Eulerian fashion. The coupling FEM-ALE methodology provides a sharp representation of the

interface between the phases, not only for the geometrical representation itself but also for

the definition of the phase properties, thus resulting in a model which accurately describes

the actual physical conditions.

The new methodology proposed for the calculation of the surface tension force, based on the

Frenet’s formula, has been shown to be consistent and accurate with moderate programming

effort and computational cost. An exclusive test was performed to compare the curvature

calculation for different geometries where the two principal curvatures may not necessarily

present equal signs. The results have shown to be bounded to the maximum relative error of

5% of the analytical curvature.

The proposed treatment of the computational mesh, splitting the surface meshes and the

volumetric points, has shown to be an excellent choice, thus avoiding the obstacles of handling

the remeshing process over the tetrahedron mesh, allowing the utilization of a standard

Delaunay tetrahedralization library. Moreover, the new adaptive meshing strategy achieves

good control of the mesh quality during the simulations by keeping the volumetric and surface

elements bounded to a satisfactory shape, thus preserving the accuracy of the calculation.

However, excessive linear interpolations on the volumetric and surface mesh may lead to a

lack of accuracy in certain domain areas and this should be used with care.

Benchmarks and results for the static droplet, sessile drop, oscillating drop and falling drop

in an inert media have also shown good agreement with their respective analytical solutions.

Additionally, the rising bubble tests were successfully compared to an experimental database

found in the classical literature for different mesh refinement levels. Thus, these tests highlight

the proposed ALE-FEM scheme’s suitability to use as an accurate and adaptable two-phase

flow simulation strategy. Moreover, the code has shown to be suitable to capture the dynamics

of the liquid film and to model systems with multiple bubbles and drops as shown in the
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two drop collision and the microchannel simulations. Furthermore, it was shown that an

equivalent 2-d simulation was significantly different for the simulation of the 3-d elongated

bubble in a microchannel, demonstrating that the present 3-d code is needed while a 2-d code

is not sufficient.

The heat and mass transfer was implemented into the code using the same strategy of the

fluid flow solver. However, it requires an extensive reformulation of the isothermal method

presented here. The thin thermal boundary layer requires an additional number of nodes

and elements to be physically resolved, thus increasing significantly the processing time. The

preliminary tests presented for evaporation in square microchannels qualitativly agreed to

those observed experimentally. However, a deeper analysis is still required to compare the

actual state of the phase change model with different benchmarks available in the literature.

In summary, a new two-phase flow simulation methodology has been proposed and proven

to stand up to numerous benchmarks and tests and is now available for simulations in mi-

crochannel flows.

8.1 Further work

Within the development of the proposed method, many difficulties were sucessfuly overcome

and new ideas were brought into the numerical code. However, various improvements can

still be implemented to enhence the code’s capability, thus allowing the modeling of more

complex phenomena. Taking advantage of the flexibility of the code’s design, it is proposed

that further developments should address:

• parallelization: enable high performance computing schemes to increase the processing

performance of the simulations, thus reducing the input time;

• coalescence: modeling of the process by which two or more bubbles are merged during

contact.

• static and dynamic contact angle: interactions of bubbles or drops to rigid walls, allowing

the modeling of more complex phenomena;

• surface roughness of microchannels: different roughness partterns can be tested and

included as boundary conditions in order to approach the physical reality;

• sub-grid models: thermal micro layer and bubble break-up are examples of sub-grid

models that could enhence the code’s capabilities.

154



A Important theorems

Theorem 1 [Integration by parts] BeΩ⊂Rm , Γ= ∂Ω the boundary ofΩ and φ,ψ : U ⊂Rm →R

scalar fields, therefore:

∫
Ω
φ∇ψ ·n dΩ=

∫
Γ
φψ dΓ−

∫
Ω
ψ∇φ ·n dΩ

Theorem 2 [The first form of Green]: Be Ω ⊂ Rm , Γ = ∂Ω the boundary of Ω and φ,ψ : U ⊂
Rm →R scalar fields, therefore:

∫
Ω

(
φ∇2ψ+∇φ ·∇ψ)

dΩ=
∫
Γ
φ∇ψ ·n dΓ .

Theorem 3 [Second form of Green]: Be Ω ⊂ Rm , Γ = ∂Ω the boundary of Ω and φ,ψ : U ⊂
Rm →R scalar fields, therefore:

∫
Ω

(
φ∇2ψ+ψ∇2φ

)
dΩ=

∫
Γ

(
φ
∂ψ

∂n
+ψ∂φ

∂n

)
dΓ .

Theorem 4 [Green’s theorem for vector fields]: Be Ω ⊂ Rm , Γ = ∂Ω the boundary of Ω and

u,w : U ⊂Rm →Rm vector fields, therefore:

∫
Ω

{
(∇2u) ·w+ (∇u : ∇wT)

}
dΩ=

∫
Γ

n · (∇u ·w) dΓ .

Theorem 5 [Gauss’s divergence]: BeΩ⊂Rm , Γ= ∂Ω the boundary ofΩ and u : U ⊂Rm →Rm
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a vector field, therefore:

∫
Ω
∇·u dΩ=

∫
Γ

u ·n dΓ .

where n is the normal vector in Γ.
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B TetGen - command line switches

The command syntax used to generate different meshes are presented below:

• -p Tetrahedralizes a picecwise linear complex (.poly or .smesh file).

• -q Quality mesh generation. A minimum radius-edge ratio may be specifyed (default

2.0).

• -a Applies a maximum tetrahedron volume constraint.

• -A Assigns attributes to identify tetrahedra in certain regions.

• -r Reconstructs/Refines a previously generated mesh.

• -Y Suppresses boundary facets/segments splitting.

• -i Inserts a list of additional points into mesh.

• -M Does not merge coplanar facets.

• -T Set a tolerance for coplanar test (default 1e-8).

• -d Detect intersections of PLC facets.

• -z Numbers all output items starting from zero.

• -j Jettison unused vertices from output .node file

• -o2 Generates second-order subparametric elements.

• -f Outputs faces (including non-boundary faces) to .face file.

• -e Outputs subsegments to .edge file.

• -n Outputs tetrahedra neighbors to .neigh file.

• -g Outputs mesh to .mesh file for viewing by Medit.
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• -G Outputs mesh to .msh file for viewing by Gid.

• -O Outputs mesh to .off file for viewing by Geomview.

• -B Suppresses output of boundary information.

• -N Suppresses output of .node file.

• -E Suppresses output of .ele file.

• -F Suppresses output of .face file.

• -I Suppresses mesh iteration numbers.

• -C Checks the consistency of the final mesh.

• -Q Quiet: No terminal output except errors.

• -V Verbose: Detailed information on what I’m doing.

• -v Prints the version information.

• -h Help: A brief instruction for using TetGen.

At all simulations, the following command was invoked in the numerical code:

• tetrahedralize( (char*) "QYYApa",&in,&out );

where &in,&out are the surface and volumetric meshes respectively.
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