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Per chi viaggia in direzione
ostinata e contraria





But there was something else he had had on the tip of his tongue,
something about mathematical problems that did not admit

of any general solution, though they did admit of particular solutions,
the combination of which could bring one closer to the general solution.
He might have added that he regarded the problem set by every human

life as one of these. What someone calls an age – without knowing whether
he should by that understand centuries, millennia, or the span of time

between schooldays and grandparenthood – this broad, unregulated
flux of conditions would then amount to much the same thing as a
chaotic succession of unsatisfactory and, when taken singly, false
attempts at a solution, attempts that might produce the correct

and total solution, but only after men had learned to combine them.
In the tram going home he remembered this...

Robert Musil, Der Mann ohne Eigenschaften (1942), I. 358.
In Italo Calvino, Lezioni Americane (1985), Molteplicità.
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Abstract
The objective of this thesis is to develop reduced models for the numerical solution of optimal
control, shape optimization and inverse problems. In all these cases suitable functionals of state
variables have to be minimized. State variables are solutions of a partial differential equation
(PDE), representing a constraint for the minimization problem. The solution of these problems
induce large computational costs due to the numerical discretization of PDEs and to iterative
procedures usually required by numerical optimization (many-query context).
In order to reduce the computational complexity, we take advantage of the reduced basis
(RB) approximation for parametrized PDEs, once the state problem has been reformulated in
parametrized form. This method enables a rapid and reliable approximation of parametrized
PDEs by constructing low-dimensional, problem-specific approximation spaces. In case of PDEs
defined over domains of variable shapes (e.g. in shape optimization problems) we need to introduce
suitable, low-dimensional shape parametrization techniques in order to tackle the geometrical
complexity. Free-Form Deformations and Radial-Basis Functions techniques have been analyzed
and successfully applied with this aim.
We analyze the reduced framework built by coupling these tools and apply it to the solution
of optimal control and shape optimization problems. Robust optimization problems under
uncertain conditions are also taken into consideration. Moreover, both deterministic and Bayesian
frameworks are set in order to tackle inverse identification problems.
As state equations, we consider steady viscous flow problems described by Stokes or Navier-Stokes
equations, for which we provide a detailed analysis and construction of RB approximation and a
posteriori error estimation. Several numerical test cases are also illustrated to show efficacy and
reliability of RB approximations.
We exploit this general reduced framework to solve some optimization and inverse problems
arising in haemodynamics. More specifically, we focus on the optimal design of cardiovascular
prostheses, such as bypass grafts, and on inverse identification of pathological conditions or
flow/shape features in realistic parametrized geometries, such as carotid artery bifurcations.

Keywords: Reduced Order Modelling, Reduced Basis Methods, Shape Parametrization Techniques,
Optimal Control, Shape Optimization, Inverse Problems, Fluid Dynamics.
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Version abrégée
Le but de cette thèse est le développement de modèles réduits pour l’approximation numérique
de problèmes de contrôle, d’optimisation de forme et d’autres problèmes inverses. Dans tous
ces situations, il faut minimiser une fonctionnelle coût, donnée par une fonction des variables
d’état. Celles-ci sont obtenues par la solution d’une équation aux dérivées partielles (EDP), qui
représente une contrainte pour le problème de minimisation. Une caractéristique commune aux
problèmes susmentionnés est l’énorme coût computationnel, dû à la discrétisation numérique des
EDP et à la résolution du problème d’optimisation par des méthodes itératives.
Pour réduire le coût computationnel, nous profitons de la méthode des bases réduites (Reduced
Basis, RB) pour EDP paramétrisées, une fois que le problème a été reformulé sous forme paramé-
trique. Cette méthode permet de reconstruire des solutions approchées d’équations paramétrisées
en fonction d’autres solutions déjà calculées et disponibles, ce qui réduit énormement les ressources
de calcul nécessaires. Dans le cas où les EDP sont définies sur des domaines dont la forme est
variable (par example, dans le cas des problèmes d’optimisation de forme) nous introduisons une
paramétrisation des formes convenable, pour aborder la complexité géométrique. En particulier,
on a considéré deux techniques possibles, les déformations de forme libre (plus connues sous
le nom de Free-Form Deformations) et des fonctions à base radiale (aussi dites Radial Basis
Functions). Ces techniques ont été analysées puis appliquées aux cas d’interêt pratique devéloppés
dans cette thèse.
Le cadre de réduction donné par le couplage de ces outils est analysé et utilisé pour résoudre des
problèmes de contrôle optimal et d’optimisation de forme. Des problèmes d’optimisation robuste
sous conditions d’incertitude ont également été examinés. De plus, nous considérons un cadre
déterministique et un cadre bayésien pour la solution de problèmes d’identification inverse.
Au niveau du problème d’état, on considère les équations de Stokes et de Navier-Stokes station-
naires. On fournit une analyse détaillée de l’approximation à bases réduites pour ces problèmes,
ainsi que des techniques pour l’estimation à posteriori des erreurs. Nous présentons de nombreux
tests numériques pour montrer l’efficacité de ces techniques.
Au niveau de l’application, on considère des problèmes d’optimisation et des problèmes inverses
dans le cadre de l’hémodynamique. Deux exemples sont donnés par le design optimal des prothèses
cardiovasculaires (ou pontages) et l’identification de conditions pathologiques qui dépendent de
l’interaction entre l’écoulement sanguin et la géometrie des artères.
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Estratto
L’obiettivo di questa tesi è lo sviluppo di modelli ridotti per la soluzione numerica di problemi
di controllo ottimo, ottimizzazione di forma e altri problemi inversi. In tutti questi casi occorre
minimizzare un funzionale costo dipendente dalle variabili di stato del sistema, attraverso il
controllo di una o più variabili che influenzano la soluzione del problema di stato, costituito da
un sistema di Equazioni a Derivate Parziali (EDP). Questi problemi sono caratterizzati da una
notevole complessità computazionale, a causa della discretizzazione numerica delle EDP e delle
procedure iterative richieste per l’ottimizzazione numerica.
Per ridurre la complessità computazionale, riformuliamo il problema di stato in forma para-
metrizzata e consideriamo una approssimazione a basi ridotte (Reduced Basis, RB) per EDP
parametrizzate. Questo metodo permette di ricostruire la soluzione approssimata di un problema
parametrizzato combinando opportunamente un insieme di soluzioni – o basi – precedentemente
calcolate (tramite una tecnica di discretizzazione tradizionale, come il metodo degli elementi finiti).
In questo modo, la dimensione dello spazio di approssimazione risulta notevolmente ridotta.
Nel caso in cui l’equazione è definita su un dominio di forma variabile (come nel caso dell’ottimiz-
zazione di forma) occorre introdurre una parametrizzazione del dominio, in modo da ridurre la
complessità geometrica e riportare il calcolo delle basi su un dominio di riferimento, allo scopo
di poterle combinare. In particolare, sono state considerate due differenti tecniche, basate su
deformazioni a forma libera (Free-Form Deformations) o sull’impiego di funzioni a basi radiali
(Radial Basis Functions).
Questo metodo di riduzione, basata sull’accoppiamento di approssimazioni a basi ridotte e di
opportune tecniche per la parametrizzazione di forma, è stata ampiamente analizzata e applicata
a problemi di controllo ottimo e ottimizzazione di forma. Successivamente, sono stati presi in
considerazione anche problemi di ottimizzazione robusta in condizioni di incertezza e più generali
problemi inversi, affrontati sia mediante tecniche deterministiche per l’ottimizzazione sia grazie a
metodi della statistica bayesiana.
L’analisi presentata in questa tesi si concentra su problemi legati a flussi viscosi stazionari,
descritti da equazioni di Stokes o di Navier-Stokes. Per questa classe di problemi sono state
sviluppate (o ampliate, laddove già introdotte) sia la tecnica di approssimazione a basi ridotte
che la metodologia per la stima a posteriori dell’errore. Numerosi test numerici sono stati forniti
anche allo scopo di mostrare l’efficacia e l’attendibilità dell’approssimazione a basi ridotte in
questo contesto.
Da ultimo, questo metodo di riduzione è stato sfruttato per risolvere numerosi problemi di
ottimizzazione di forma e problemi inversi di interesse emodinamico, come il design ottimale di
bypass aorto-coronarici e femorali o l’identificazione di potenziali condizioni di rischio patologico
legate all’interazione tra il flusso di sangue e la forma di particolari segmenti di arteria, come nel
caso di stenosi della biforcazione carotidea.
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Introduction

The efficient solution of optimization problems or more general inverse problems involving Partial
Differential Equations (PDEs) has become an important part of the computational science and
engineering disciplines. These problems represent a challenging framework because they rely
on both rigorous theoretical tools of functional analysis and efficient computational techniques,
required to face the complexity arising from numerical approximation. In case of optimal control
or shape optimization problems governed by PDEs, the goal is the minimization/maximization of
some objective function depending on a system described by a PDE model, the control being
represented by either suitable variables (such as sources, model coefficients or boundary values)
or the shape of the domain itself. Instead, when dealing with inverse identification problems,
the purpose is to recover some features of a system from output measurements. In this case,
quantifying the effect of uncertainty driven by data on the identified features is a further issue
to be considered. In this framework, computational costs arise from three distinct sources: (i)
numerical approximation of the state system (usually a nonlinear system of PDEs); (ii) iterative
optimization procedures, requiring recursive evaluations of the state solution and the objective
function of interest; (iii) handling domains of arbitrary shapes in optimization/inverse problems
related with shape-dependent quantities. In order to tackle the complexity implied by the interplay
of these aspects, suitable reduced order models must be considered.

The goal of this thesis is to develop a reduction framework relying on the Reduced Basis (RB)
method for the efficient solution of optimization and inverse problems. This method enables a
rapid and reliable approximation of parametrized PDEs by constructing low-dimensional, problem-
specific approximation spaces. Using these spaces for the discretization of the original problem,
instead of high-dimensional, general approximation spaces like in the finite element method, we
can construct a (reduced-order) model – depending only on a handful of degrees of freedom,
with respect to the large amount required by traditional (full-order) approximations – which is a
sufficiently accurate approximation to the original problem. Exploiting such a model within the
optimization framework thus features a strong reduction of computational complexity. Further
efforts are required when dealing with shape-dependent problems, in order to face the additional
geometrical complexity arising from the treatment of shape deformation and representation.

The application of reduced strategies to speed up the solution of many-query problems such as
optimal control and shape optimization problems is not completely new – and the RB method
is not the unique available choice. As stated by Gunzburger ten years ago in his monograph
Perspective in Flow Control and Optimization [128], “many cost reduction schemes have been
proposed, tested, and sometimes actually employed to solve specific yet useful flow control and
optimization problems; however, very few of them are rooted in firm mathematical ground or have
otherwise been shown to be of general use”. Nonetheless, during the last decade, several efforts in
theoretical foundations, numerical investigations and methodological improvements have made
headway to develop general ideas in reduced order modelling.
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Introduction

This branch of scientific computing provides nowadays a solid mathematical background of
general utility, which can be exploited to tackle several problems governed by PDEs, recast
both in real-time and many-query contexts. In particular, RB methods provide not only an
efficient approximation technique for parametrized PDEs (made possible by a suitable affine
decomposition of PDE operators and a related computational splitting), but also a certified
framework, thanks to a posteriori error estimates between reduced-order and full-order solutions/
quantities of interest. In this way, the parametrized framework provides a great opportunity,
provided that suitable parametrization techniques are available, in order to describe our input of
interest, such as geometrical configurations or control functions.

The most original contribution of this work is the development of a modular, reduced framework
to solve optimal control, shape optimization and other inverse problems dealing with fluid flows
in complex geometrical configurations. This framework is based on the coupling of two reduction
ingredients, which have been set, analyzed and implemented in this work:

1. Reduced Basis Methods for Stokes and Navier-Stokes equations to account for the
computational (complexity) reduction. We have extended the existing framework to global,
nonaffine geometrical parametrizations (relying on the empirical interpolation method for
recovering an affine structure). A posteriori error estimates for these problems have been
developed, based on the Babuška stability theory for Stokes case and on the Brezzi-Rappaz-
Raviart stability theory for Navier-Stokes case, in order to obtain joint velocity/pressure
error estimates. Error bounds for general linear and quadratic outputs in Stokes case have
been derived as well.

2. Free-Form Deformation (FFD) and Radial Basis Function (RBF) techniques to allow
for geometrical (complexity) reduction. Both these strategies are low-dimensional techniques
relying on a set of control points. They have been applied to geometrical configurations
such as bifurcations or junctions, some of the most complex geometries managed by reduced
basis methods. FFD parametrizations, which were already exploited within the RB context,
have been extended to viscous flows, whereas RBF parametrizations have been employed
within the RB context for the first time. New theoretical results related to these techniques
and some automatic procedures for selecting control points have been proposed.

The parametrized reduced framework resulting from these techniques has been widely analyzed.
Moreover, both a deterministic and a Bayesian framework to deal with inverse problems have
been implemented. In the former, inverse identification problems have been reformulated as
suitable optimization problems, whereas the latter has enabled to solve some statistical inverse
problems and to address some issues related with uncertainty quantification.
At the end, the parametrized reduced framework has been exploited within several applications
arising in fluid dynamics – and more specifically to face some (simplified versions of) problems
dealing with blood flows, such as the optimal design of cardiovascular prostheses or the inverse
identification of pathological conditions through measurements of risk indices related with flows.
We have decided to test our framework – which is general, and can be used in a broad variety of
applications – to some interesting applications arising in haemodynamics, in order to address a
proof of its efficacy in a relevant applicative context. Moreover, we point out that:

• the results addressed by this work are the first examples of RB approximations of viscous
flows dealing with complex geometries, parametrized through global nonaffine mappings;

• the developed framework provides a useful tool not only to address the many-query problems
introduced above, but it is also relevant to sensitivity analysis (e.g. with respect to geo-
metrical features) and to rapid (almost real-time) numerical simulations over parametrized
settings (e.g. within a wide family of similar geometrical configurations).
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Introduction

The dissertation is organized in three Parts, each consisting of two Chapters, as follows.
1. Part I is devoted to a general overview of problems and methods discussed and developed

throughout this work.

• In Chapter 1 we set an abstract framework for parametrized PDEs and introduce
optimal control, shape optimization and more general inverse problems governed by
PDEs, providing some examples related to fluid dynamics. We highlight the main
complexity points and sketch the guidelines of our reduced strategy. A more detailed
and critical explanation of the contributions and scopes of this thesis is also provided.
• In Chapter 2 we outline the main features of computational and geometrical reduced
order modelling. We detail the general construction of reduced basis methods for
parametrized PDEs and a posteriori error estimations. Then, we recall basic affine and
nonaffine shape parametrizations, focusing on two nonaffine paradigms, the Free-Form
Deformations and Radial Basis Functions techniques. We show their construction and
highlight some relevant properties.

2. Part II is devoted to the analysis of the reduced framework built over the Reduced Basis
method for parametrized PDEs.

• In Chapter 3 we present the reduced basis approximation and a posteriori error
estimation for steady Stokes and Navier-Stokes equations, as well as some numerical
tests. We derive the abstract parametrized formulation and state the main assumptions
ensuring its well-posedness. Then, we discuss the RB approximation, focusing on the
concept of algebraic and approximation stability and on a suitable Offline/Online
decomposition. We derive error bounds for velocity and pressure, both in Stokes and
Navier-Stokes case. Moreover, we derive error bounds for both linear and quadratic
outputs in Stokes case.
• In Chapter 4 we describe the reduced framework for optimization and inverse prob-
lems governed by parametrized PDEs, built over the RB approximation of the state
problem. We also provide some results concerning optimal control and shape optimiza-
tion problems, as well as FFD and RBF parametrization techniques. Moreover, we
characterize a deterministic and a Bayesian framework for inverse problems, recasting
them in a many-query context.

3. Part III is devoted to some applications of interest in haemodynamics.

• In Chapter 5 we provide several results concerning optimal design problems related
with cardiovascular prostheses, such as bypass anastomoses. We introduce the main
features related to this problem and show how the reduced framework discussed in
Part II can be applied. We present some results concerning (i) a simplified version of
an optimal flow control problem, (ii) two shape optimization problems dealing with
Stokes and Navier-Stokes flows and (iii) a further robust shape optimization problem
which can be of interest in this framework.
• In Chapter 6 we detail some inverse identification problems related to blood flows in

parametrized geometrical configurations. We discuss some possible strategies to get low-
dimensional representations of realistic vessel geometries such as carotid bifurcations,
and some shape sensitivity problems. Then we consider three inverse identification
problems related with pathological risk assessment and recovery of flow and shape
features, solved within both a deterministic and a statistical inverse setting.

4. Some concluding remarks and perspectives on future developments of this work are briefly
discussed in the final Conclusion. Further technical insights about the implementation of
reduced basis methods and a posteriori error estimates are addressed in the Appendix A.
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To help the reader following the logical flow of the work, we present in this page the general
organization of the thesis, highlighting both methodological and conceptual links.
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1 Optimization problems based on
parametrized PDEs
In this chapter a general framework for forward and inverse problems based on parametrized
partial differential equations is introduced. The abstract setting and the notation, as well as
the main classes of problems faced throughout the thesis, are outlined. Optimal control, shape
optimization and, more generally, inverse problems are described and recast in the context of
many-query problems, featuring the key complexity issues arising in their numerical solution.

1.1 Forward and inverse problems in
real-time and many query contexts

Scientific computing and numerical simulations in engineering have gained an ever increasing
importance during the last decades. In several fields, from aerospace and mechanical engineering
to life sciences, computer experiments (or experiments in silico) provide nowadays a virtual
platform ancillary to material/mechanics testing or in vitro experiments, useful either for (i)
inference about the underlying system (such as the prediction of input/output responses of
interest) or (ii) its design, control and optimization [294]. A crucial factor contributing to a wide
spread of computer simulations is the constant increase of available computational power, which
has gone with the progressive improvement of algorithms for solving large linear systems. Indeed,
numerical simulations of turbulent flows, multiscale and multiphysics phenomena, are nowadays
possible by means of discretization techniques such as finite elements, finite volumes or spectral
methods, but are very demanding, involving up to O(109) degrees of freedom and several hours
(or even days) of CPU time also on powerful hardware parallel architectures.

From a mathematical point of view, problems arising from applied sciences are often modelled
by partial differential equations (PDEs), which depend on a set of input data, such as material
coefficients, boundary and initial conditions, source terms, as well as on a geometrical configuration,
which can be considered as input itself.
Given a PDE model of a system, solving a forward problem consists in computing the solution of
the PDE and some output of interest for specified combinations of the input data. On the other
hand, whenever some parameters are unknown or uncertain, their values (and/or distributions)
may be inferred from indirect observations or measures by solving an inverse problem: given an
observed or measured output, the values of the input resulting in that observation can be found
by driving the solution of the PDE and the corresponding computed output as close as possible
to the observed output value, thus minimizing a distance functional in a proper sense. Very
often, we may also be interested in minimizing or maximizing some physical indices expressing
some desired properties or performances of the underlying system – and depending on the PDE
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Chapter 1. Optimization problems based on parametrized PDEs

solution – by acting on some control variables (such as sources, boundary conditions, etc.) or on
the shape of the domain itself. In the former case, we deal with optimal control problems, while
we refer to the latter as shape optimization or optimal design problems.

Since the most common numerical strategies used to face previous examples are based on iterative
optimization procedures, optimization and inverse problems under PDE constraints can be recast
in the so-called many-query context, involving several input/output evaluations as well as many
repeated PDE solutions. Other cases fitting the many-query context are for instance sensitivity
analysis of PDE solutions with respect to input data, parametric studies and statistical analyses
exploited in design of computer experiments. Thus, despite the computer resources nowadays
available, it is still difficult – and often impossible – to deal with applications and scenarios
involving the repeated solution of PDEs on different data settings (many-query context) or
requiring a numerical solution within a real time context – or at least very rapidly. Both these
contexts are crucial to computational engineering and their interest is growing also in view of more
widespread application of numerical methods for PDEs in engineering practice and more specific
industrial processes. They also feature a remarkable challenge to classical numerical techniques,
such as – but not limited to – the finite element (FE) method; in fact, classical FE approximations
may require big computational efforts (and also data/memory management) when the dimension
of the discretization space becomes large. This makes both real-time and many-query simulations
unaffordable: hence, looking also for computational efficiency in numerical methods becomes
mandatory. As detailed in the following, suitable computational reduction techniques enable to
solve these problems entailing an acceptable amount of CPU time and limited storage capacity.

1.2 Parametrized PDEs: abstract setting and notation
In this section we introduce an abstract setting for the formulation of parametrized partial
differential equations, as well as the relevant notation. First of all, we introduce an input-
parameter vector µ = (µ1, . . . , µp)T and an input parameter domain – i.e. the set of all possible
inputs – as a compact subset D of Rp; the input-parameter vector typically characterizes physical
properties and material, geometrical configuration, or even boundary conditions and force fields
or sources.
In particular, we consider an output of interest s(µ) ∈ R expressed as a functional of a field
variable y(µ) that is the solution of a PDE, parametrized with respect to the input parameter
p-vector µ. The outputs of interest are physical quantities or indexes used to measure and assess
the behavior of a system, i.e. related to fields variables or fluxes, as for example domain or
boundary averages of the field variables, or other quantities such as energies, drag forces, flow
rates, etc.

In abstract form, a parametrized PDE problem can be formulated as follows: given µ ∈ D ⊂ Rp,
evaluate the output of interest

s(µ) = S(y(µ);µ), (1.1)

where y(µ) ∈ X(Ω) satisfies

A(y(µ), w;µ) + δC(y(µ), y(µ), w;µ) = F (w;µ), ∀ w ∈ X(Ω). (1.2)

We denote Ω a suitably regular bounded spatial domain in Rd (for d = 2 or 3) and X = X(Ω)
a suitable Hilbert space, defined on Ω. We assume that Ω is a fixed, µ-independent, reference
domain: when dealing with variable domains, we will distinguish between the reference domain Ω
and the original domain, which will be denoted Ωo.
Correspondingly, Γ = ∂Ω (resp. Γo = ∂Ωo) will denote the boundary of the domain Ω (resp. Ωo),
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x ∈ Rd (resp. xo ∈ Rd) a point in Ω (resp. in Ωo) and n ∈ Rd (resp. no ∈ Rd) the normal unit
vector on the boundary Γ (resp. Γo). Furthermore, when input parameters affect the shape of
the domain, i.e. when we deal with geometrical parametrizations, the original domain will be
denoted Ωo = Ωo(µ), in order to underline the parametric dependence. For reasons that will be
extensively discussed throughout the thesis, the parametrized PDEs setting needs to rely on a
reference, parameter-independent domain; we will come back on this point several times.

We consider either linear (δ = 0) or nonlinear (δ = 1) PDEs, whence A(·, ·;µ) and C(·, ·, ·;µ) are
the bilinear and the trilinear forms associated to the differential operator, respectively, while
F (·;µ) is a linear form associated to data. We shall focus on second-order PDEs, and hence
(H1

0 (Ω))κ ⊂ X(Ω) ⊂ (H1(Ω))κ, where κ = 1 (respectively, κ = d) for a scalar (respectively,
vector) field. Here L2(Ω) is the space of square integrable functions over Ω, while H1(Ω)
and H1

0 (Ω) denote the Sobolev spaces defined as H1(Ω) = {v : v ∈ L2(Ω),∇v ∈ (L2(Ω))d},
H1

0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}, respectively. We denote by (·, ·)X the inner product associated
with the Hilbert space X, whose induced norm ‖·‖X = (·, ·)1/2

X is equivalent to the usual (H1(Ω))κ
norm. Similarly, (·, ·) and ‖ · ‖ denote the L2(Ω) inner product and induced norm, respectively.
Moreover, given a Banach space X, X ′ will denote its dual, i.e. the space of linear functionals on
X, X′〈·, ·〉X will denote the duality pairing of X and X ′, while L(X,X) will denote the space of
linear operators from X to itself.
We consider throughout the thesis both linear outputs of a field variable, i.e s(µ) = L(y(µ);µ) for a
suitable linear form L(·;µ), and quadratic outputs of a field variable, i.e s(µ) = Q(y(µ), y(µ);µ)
for a suitable bilinear form Q(·, ·;µ). Finally, the field variables y(µ) connecting the input
parameters to the output depend on the selected PDE models and may represent velocity or
pressure, temperature or concentration, displacements, potential functions, distribution functions.

We thus arrive at an input-output relationship µ→ s(µ), whose evaluation requires the solution of
a parametrized PDE. In particular, we shall assume that the bilinear form A(·, ·;µ) : X ×X → R
is continuous and coercive over X for all µ in D, i.e.

γA(µ) := sup
w∈X

sup
v∈X

A(w, v;µ)
‖w‖X‖v‖X

< +∞, ∀ µ ∈ D, (1.3)

∃ ᾱ > 0 : α(µ) := inf
w∈X

A(w,w;µ)
‖w‖2X

≥ ᾱ, ∀ µ ∈ D. (1.4)

If the coercivity condition is not satisfied, it will be replaced by a more general inf-sup condition;
see e.g. Sect. 3.2.1. In the same way, we assume that the trilinear form C(·, ·, ·;µ) : X×X×X → R
is continuous, i.e.

γC(µ) := sup
w∈X

sup
v∈X

sup
z∈X

C(w, v, z;µ)
‖w‖X‖v‖X‖z‖X

< +∞, ∀ µ ∈ D, (1.5)

that the linear forms F (·;µ) and L(·;µ) are continuous over X, i.e.

γF (µ) := sup
w∈X

|F (w;µ)|
‖w‖X

< +∞, γL(µ) := sup
w∈X

|L(w;µ)|
‖w‖X

< +∞, ∀ µ ∈ D (1.6)

and that the bilinear form Q(·, ·;µ) is continuous and coercive over X for all µ in D. Under
previous assumptions, in the linear case (δ = 0) the parametrized PDE (1.2) admits a unique
solution for each parameter value µ ∈ D; in the nonlinear case, additional assumptions on
operators and data are needed for ensuring the well-posedness of problem (1.2). This analysis is
postponed to the cases of interest addressed in Part II.
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We shall make one last assumption, crucial for the efficacy of computational reduction, by
assuming that the parametric (bilinear/linear/trilinear) forms are affine in the parameter µ: for
some finite QA, QF , QC , A(·, ·;µ), F (·;µ) and C(·, ·, ·;µ) can be expressed as

A(w, v;µ) =
QA∑
q=1

Θq
A(µ)Aq(w, v), F (w;µ) =

QF∑
q=1

Θq
F (µ) F q(w), (1.7)

C(w, v, z;µ) =
QC∑
q=1

Θq
C(µ) Cq(w, v, z), (1.8)

for given (typically very smooth) µ-dependent functions Θq
A : D → R, 1 ≤ q ≤ QA, Θq

F : D → R,
1 ≤ q ≤ QF , Θq

C : D → R, 1 ≤ q ≤ QC and continuous µ-independent (bilinear/linear/trilinear)
forms Aq, 1 ≤ q ≤ QA, F q, 1 ≤ q ≤ QF , Cq, 1 ≤ q ≤ QC , respectively. As we shall see
in the following, the assumption of affine parametric dependence – not so unusual in many
applicative contexts, dealing for instance with different property materials or geometrical blocks –
is relevant to many instances of both property and geometry parametric variation. Nevertheless,
this assumption may be relaxed by introducing a suitable approximation of the operators based
on the so-called empirical interpolation method [21], as we will see in Sect. 2.4.

1.3 Optimization and inverse problems governed by PDEs
In this section we introduce the main features of optimal control, shape optimization and other
inverse problems governed by (general, non parametrized) PDEs, leaving some remarks on the
case of parametrized PDEs to the following section.

1.3.1 Optimal control problems

In abstract terms, given a state or controlled system, the goal of an optimal control (OC) problem
is to find the best control input such that the observation of some output of interest (depending
on the solution of the state system) fulfills – in a suitable sense – an objective to be achieved. In
our case, state systems are given by boundary value problems for PDEs, written1 in abstract
variational form as

A(y(u), w) = F (w;u), ∀w ∈ X; (1.9)

here A(·, ·) : X ×X → R and F (·;u) : X → R are the bilinear form associated to the differential
operator and the linear form associated to the data and the control input, respectively. The PDE
is defined over a fixed spatial domain Ω, which for the sake of clarity has been omitted.
The state variable y = y(u) ∈ X depends on a control function u ∈ Uad acting on the system,
where Uad ⊆ U ; X and U denote general reflexive Banach spaces, Xad ⊆ X and Uad ⊆ U the
space of admissible controls. In the case Uad ( U , the problem is said to be control-constrained;
similarly, when y ∈ Xad ( X, it is said to be state-constrained. The control is operated through
a source term (when it is called distributed control) or through the boundary data (when it is
called instead boundary control). The objective is usually given by a cost functional J : Uad → R
expressed as a function of the state variable as

J (u) = J̃ (y(u), u),

1We consider, for the sake of simplicity, the case of a scalar state variable and of a linear differential operator;
the formulation of optimization and inverse problems related to systems modelled by nonlinear PDEs, as well as
systems involving vector state variables, follows the same setting.

10



1.3. Optimization and inverse problems governed by PDEs

where J̃ : X × Uad → R. Then the OC problem can be expressed as a constrained optimization
problem as follows:

û = arg min
u∈Uad

J (u) s.t. A(y(u), w) = F (w;u), ∀w ∈ X, (1.10)

where the constraint is given by the PDE modelling the state system. In the simplest case, we
deal with linear/quadratic elliptic control problems, in which the weak form of a second order,
linear elliptic operator (usually referred to as a general advection-diffusion-reaction problem)
appearing in (1.9) is given by

A(y, w) =
∫

Ω

(
∂y

∂xi
aij(x) ∂w

∂xj
+ bi(x) ∂y

∂xi
w + c(x)yw

)
,

where Ω ⊂ Rd is a bounded, Lipschitz domain; aij(·) ∈ L∞(Ω), bi(·) ∈ L∞(Ω), for 1 ≤ i, j ≤ d,
c(·) ∈ L∞(Ω), c ≥ 0 some bounded functions, representing the diffusivity (or conductivity) tensor,
the advection field and the reaction coefficient, respectively. Moreover, A = (aij(x)) is uniformly
elliptic, i.e.

(A(x)ξ, ξ)Rd ≥ α|ξ|2, ∀x ∈ Ω, ∀ξ ∈ Rd.

The control can be defined as a distributed control or a boundary control; in the former case, the
right-hand side of (1.9) is given by

F (w;u) = 〈f +BΩu,w〉,

where BΩ : L2(∂Ω) → H−1(Ω) is an injection or restriction operator and the control u might
act only in a subdomain Ωc ⊂ Ω, so that BΩu = u1Ωc , where 1Ωc = 1Ωc(x) is the characteristic
function of Ωc. In the latter case the control might affect Dirichlet, Neumann or Robin data and
in general the right-hand side of (1.9) can be expressed as

F (w;u) = 〈f +BΓu,w〉,

where (e.g. in the case of a Neumann control) BΓ : L2(∂Ω)→ H−1(Ω). On the other hand, the
general expression of a cost functional is given by

J (u) = J̃ (y(u), u) = 1
2J1(Cy(u)) + ε

2J2(u),

where J1 : Z → R is usually a quadratic functional of the observation of the system z(u) := Cy(u).
This is typically given by a linear function of the state solution, i.e. z(y) = Cy. Here we denote
C : X → Z a suitable observation operator and Z a Banach space (of observations); z(y) might be
the state variable itself, its restriction to a subdomain Ωobs ⊂ Ω or to a portion of the boundary
Γobs ⊂ Γ, or (in the cases of our interest) some physical indices depending on the gradient of the
state variable. In the more common cases,

J1(Cy(u)) =
∫

Ω
(y(u)− zd)2dx, or J1(Cy(u)) =

∫
Ω
|∇(y(u)− zd)|2dx,

or a portion of its boundary ∂Ω, so that

J1(Cy(u)) =
∫
∂Ω

(y(u)− zd)2dσ, or J1(Cy(u)) =
∫
∂Ω

(∂ny(u)− zd)2dσ.

11



Chapter 1. Optimization problems based on parametrized PDEs

Here, zd ∈ Z is the target state or in general a condition to which we aim to drive the system. In
the same way, and without loss of generality, we can assume that the cost functionals we deal
with can be written under the following form:

J1 : X → R, J1(y) =
∫

Ω
ΦΩ(x, y,∇y) dΩ +

∫
∂Ω

Φ∂Ω(σ, y,∇y) dσ,

where ΦΩ : Rd × R × Rd → R and Φ∂Ω : Rd−1 × R × Rd → R are two C1 functions. Instead,
J2 : U → R is a regularization term given by

J2(u) = (Nu, u)U ,

where N ∈ L(U ,U) is a symmetric and coercive operator. A simple example is provided by a
spatial region or a body occupying the domain Ω that is to be heated (or cooled); in this case, y
represents its temperature, and the state system is modelled by the heat equation, fitting the
general expression (1.9). To heat or cool the system, we act either on its boundary or in the
whole volume by means of a heat source u, which thus plays the role of a boundary control or
a distributed control. Our goal is to choose the control in such a way that the corresponding
temperature distribution y = y(u) in Ω approaches as much as possible the desired temperature
distribution zd, and the effort in controlling the system is as little as possible. Further examples
arising from fluid dynamics will be discussed in Sect. 1.5.

The classical approach for analysis and solution of OC problems governed by PDEs is based on
the theory developed by J.L. Lions [192]; an alternative and more general approach is based on
the Lagrangian formalism (see for instance [311,143,39]). In the latter case, the OC problem is
seen as a constrained minimization problem, for which a Lagrangian functional can be defined by
introducing a Lagrange multiplier (denoted also ad adjoint state or co-state); the optimum, if it
does exist, is a stationary “point” of the Lagrangian functional. A third possible formulation
is inherited from saddle-point problems (see e.g. [129]). The solution of an OC problem can be
characterized by the so-called Karush-Kuhn-Tucker system; in the case of problems governed by
PDEs, it takes the form of a system of PDEs (also known as system of Euler-Lagrange equations)
and it is made by the state equation, the adjoint equation which has to be fulfilled by the adjoint
state and a minimum principle expressing the optimality condition. In Sect. 4.1.2 the case of
the optimal control of stationary Navier-Stokes flows will be briefly discussed, recalling the main
existence results. We will not address the case of OC problems for parabolic systems; some
general insights can be found e.g. in the book by J.L. Lions [192] and in many other more recent
monographs (see e.g. [311]).

1.3.2 Shape optimization problems

Another class of optimization problems under PDE constraints is given by optimal design or
shape optimization (SO) problems, where the goal is to achieve some objective which involves
the solution of a state system, by controlling the shape of the spatial domain itself. As in the
OC case, the state system is modelled through a boundary value problem for PDEs, under the
abstract variational form

A(y(Ωo), w; Ωo) = F (w; Ωo), ∀w ∈ X(Ωo),

while the objective is a shape functional

J (Ωo) = J̃ (y(Ωo),Ωo),
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depending on the state solution y(Ωo) ∈ X(Ωo); for the sake of clarity, the dependence on the
original, variable shape Ωo has been highlighted also in the definition of linear/bilinear forms
and functional spaces. Here we denote A(·, ·; Ωo) : X ×X → R and F (·; Ωo) : X → R the bilinear
form and the linear form associated to the differential operator and to the data, respectively,
Oad ⊆ O the set of all admissible domains, where O is a larger set of domains, X(Ωo) a reflexive
Banach space defined on Ωo; as before, the cost functional can be expressed as a function of the
state variable, with J̃ : X ×O → R. Thus, the SO problem can be expressed as the following
constrained optimization problem:

Ω̂o = arg min
Ωo∈Oad

J (Ωo) s.t. A(y(Ωo), w; Ωo) = F (w; Ωo), ∀w ∈ X(Ωo), (1.11)

where the constraint is given, as in the OC case, by the PDE modelling the state system. In this
case, we assume to deal with shape functionals under the form

J (Ω) = J̃ (y(Ω),Ω) = 1
2J1(y(Ω)) + ε

2J2(Ω),

where, as in the OC case and without loss of generality,

J1 : X(Ω)→ R, J1(y) =
∫

Ω
ΦΩ(x, y,∇y) dΩ +

∫
∂Ω

Φ∂Ω(σ, y,∇y) dσ.

The functional J2 : O → R is a regularization term which usually enforces some constraints
dealing with the shape (e.g. volume constraints, perimeter constraints, etc.) and may help in
ensuring the well-posedness of the shape optimization problem (1.11).
For instance, regarding the case of a region (or a body) to be heated (or cooled) within a shape
optimization context, we act on the shape of the domain by considering fixed the heat sources
at the boundary and/or in the volume. Thus, we seek the best shape – under some constraints,
e.g. regarding its volume or its perimeter – which allows to approach as much as possible the
desired temperature distribution zd, i.e. the shape providing the best thermal response provided
some heating/cooling sources. Further examples of shape optimization problems dealing with
fluid dynamics will be discussed in Sect. 1.5.

In general, this class of problems features more difficulties than OC problems, concerning both
the theoretical analysis and the numerical solution [248, 137, 139]. For instance, verifying the
well-posedness of shape optimization problems involves additional assumptions of regularity on
admissible shapes and continuity of the state solution with respect to shape deformations. Like
in the OC case, also the solution of a SO problem can be characterized through a Lagrangian
approach (see e.g. [7]). Nevertheless, besides numerical approximation of PDEs and optimization,
it requires also a suitable approach for representing and deforming efficiently the shape of the
underlying geometry, as well as for computing – if needed – shape derivatives. A crucial aspect is
thus the geometrical treatment of the shapes during the optimization process and the definition of
a set of admissible shapes; following an increasing difficulty, three approaches can be envisaged [7]:

- parametric shape optimization: shapes are naturally described by means of a set of p
shape parameters [7]. In this way, the shape optimization problem is a simple constrained
optimization problem in Rp.

- geometrical shape optimization: we seek for the solution on a set of shapes with fixed
topological properties, being the position of the boundary of the shape under control
changed during the optimization process [75,303,139].

- topological shape optimization: in the most difficult case, shape can be optimized by acting,
during the optimization process, both on the position of its free boundary and on its
topology [7, 60], by allowing for example the inclusion of holes.
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Chapter 1. Optimization problems based on parametrized PDEs

We will focus on some problems which traditionally arise in the context of geometrical shape
optimization – some tools for the theoretical analysis will be provided in Sect. 4.2. Nevertheless,
as it will be illustrated in the next section and detailed in Sect. 2.5, an effective strategy to
reduce computational costs of SO problems relies on suitable shape parametrizations, enabling to
represent a set of admissible shapes by means of a set of shape parameters, which are iteratively
update during the optimization process until convergence to the optimal shape. In order to take
advantage of computational reduction techniques for parametrized PDEs, we will set a fully
parametrized framework for the numerical solution of this kind of problems – thus recasting some
instances of geometrical SO problems into a suitable parametric SO framework – as detailed in
the next section and in Sect. 4.3.
In particular, the case of optimal shape design problems related with Stokes/Navier-Stokes flows
will be briefly discussed in Sect. 4.2.2, recalling the main existence results, a general way to define
shape deformations and a possible characterization of the shape parametrization we deal with.
As for the optimal control problems, we will not consider the case of SO problems governed by
parabolic PDEs; some details can be found e.g. in the book by Haslinger and Mäkinen [137].

Figure 1.1: Optimal control and shape optimization problems.

1.3.3 More general inverse problems

Besides optimal control and shape optimization problems, there are many other examples of
inverse problems that can be recast into an optimization framework based on PDEs or, more
generally, into a many-query context. Far from being exhaustive, we focus in this thesis on three
different cases that can fit our general parametrized framework.

A first case is given by the extension of the previous problems to a more general robust optimization
setting – i.e., robust optimal control or robust shape optimization; these problems occur whenever
the state system depends also on some factors which are either uncertain or cannot be controlled.
Denoting q ∈ Q this factor, we look for an optimal control or an optimal shape which is robust
with respect to possible variations of q ∈ Q, i.e. we seek the worst case scenario being able
to cover a range of possible realizations of this factor. This leads to a min-max optimization
problem, which in the case of robust optimal control can be written as follows:

û = arg min
u∈Uad

H(u) := max
q∈Q
J (u, q) s.t. A(y(u, q), w) = F (w;u, q), ∀w ∈ X; (1.12)

in the same way, a robust shape optimization problem can be expressed under the following form:

Ω̂o = arg min
Ωo∈Oad

H(Ωo) := max
q∈Q
J (Ωo, q) s.t. A(y(Ωo, q), w; Ωo) = F (w; Ωo, q), ∀w ∈ X(Ωo).
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1.4. Complexity issues and reduced order modelling

In both cases, cost functional and state problem follow the setting presented in Sect. 1.3.1-1.3.2;
in addition, we only highlight their dependence on the uncertain/uncontrollable factor s.

A second scenario deals with the solution of some inverse identification problems, where we aim
at recovering some uncertain features q ∈ Qad ⊆ Q of a system described through PDEs, by
matching the values of the system observation z(y) ∈ Z (in our case, computed through numerical
simulation) with experimental measurements z∗ referred to the same quantity. As in the previous
cases, denoting y = y(q) the state of the system, this problem can be written as follows:

q̂ = arg min
q∈Qad

J (q) := J̃ (y(q), q) := ‖z(y(q))− z∗‖2Z s.t. A(y(q), w; q) = F (w; q), ∀w ∈ X.

(1.13)

In particular, in order to exploit our parametrized framework, we aim at describing the quantity q
to be identified – which may represent a boundary condition, some physical coefficients, etc. – by
means of a parameter (or a set of parameters), thus yielding an inverse parameter identification
problem. In this way, by minimizing the distance between the experimental measurements
z∗ – which are usually affected by experimental noise – and the simulated output, we shall
identify possibility regions that characterize parameter uncertainty, thus yielding an uncertainty
quantification problem2. Some basic premises of uncertainty quantification are, for instance, to
(i) understand which parts of the system (boundary conditions, material parameters, constitutive
laws, etc.) being modelled are not known exactly and which kind of variation we can expect to
observe in these quantities; (ii) quantify how these variations propagate into the solution of the
equations and how they affect the predicted quantities of the simulations, and (iii) minimize the
negative effects of the uncertainty in the desired outcomes. To deal with inverse identification
problems, after recasting them into our parametrized context, we have developed a framework
(see Sect. 4.5) for both deterministic inversion and statistical inversion, in order to address some
insights in uncertainty quantification.

A third case is about the possibility to rewrite some simplified instances of geometrically coupled
multiphysics problems as suitable inverse problems. We refer to the former group of problems
whenever the coupling conditions are expressed through suitable interface or boundary conditions,
such as in the case of fluid-structure interaction. By introducing a suitable shape parametrization,
the coupling conditions between fluid and structure can be formulated in the low-dimensional space
of geometric parameters, rather than directly on the larger space of the geometrical displacement
fields. In this case, the coupling process is typically iterative – thus falling within a many-query
context – and the reconstruction of the geometrical displacement from the parameter update
requires the solution of an inverse identification problem (see Sect. 4.6.2).

1.4 Complexity issues and reduced order modelling
Optimization problems governed by PDEs, as well as other inverse problems, entail very large
computational efforts, since they involve iterative optimization procedures that require several
PDE solves and cost functional evaluations. Standard techniques rely on iterative optimization
schemes based on the gradient of the cost functional, such as the steepest descent method: in
this case, for each iteration, the control variable is updated in order to step along the opposite
direction of the gradient of the cost functional. This entails the repeated solution of the PDEs
system obtained as first order necessary optimality conditions.

2Uncertainty quantification has become a popular topic in the mathematical modelling community during the
last decade. Moving on the surface of this huge research field, our goal is to exploit the parametrized framework –
and computational reduction techniques – in a possible investigation of uncertainty quantification problems, which
are naturally many-query problems.
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Not only, the forward state problem is typically a nonlinear PDE, possibly incorporating coupled
multiphysics phenomena. State-of-the-art discretization methods and parallel codes are therefore
required to solve them up to a reasonable accuracy – this is exacerbated by the fact that solving
the inverse problem requires multiple solutions of the forward problem. Hence, if the forward
problem can be replaced with an inexpensive (but reliable) surrogate, solving the inverse problem
is much more feasible.
Incorporating geometrical configurations into the framework, e.g. when dealing with shape
optimization problems under the form (1.11), makes the inverse problem even less affordable.
In fact, even though a SO problem can be solved through the same approaches used for OC
problems, discretization procedures result expensive when problem geometry keeps changing; this
fact is rather evident also within geometrically coupled multiphysics problems, like fluid-structure
interaction (FSI) problems.

For instance, both FSI and SO problems deal traditionally with (i) discretization techniques over
domains of variable shape; (ii) mesh motion and possibly remeshing during iterative procedures
for coupling or optimization; and (iii) the need of exchanging information over the free boundary
(either by transferring loads and displacements between fluid and structure, or moving the fluid
boundary according to the minimization of a cost functional). In particular:

• In FSI problems, stresses or pressure loads are transmitted from the fluid domain to
the structural nodes on the fluid-structure interface. Once the new structure motion is
determined, the displacement of the fluid mesh points (on both the interface and the whole
fluid domain) has to be imposed in order to take into account the structural deformation;

• In shape optimization problems, the nodes lying on the boundary to be optimized are usually
displaced according to the shape gradient of the chosen cost functional to be minimized [249].
Thus, a classical shape optimization algorithm based on explicit boundary displacement
can provide accurate solutions at the expense of being very inefficient, since at each step
PDEs have to be solved for a new geometrical configuration.

In both cases, once the boundary displacement has been computed, we need to extend this
displacement also to the interior nodes to maintain a good mesh quality. Several methods
can be used in order to handle the shape deformation. Usual techniques are based on the
so-called continuous approach, in which the mesh nodes are displaced according to e.g. the
harmonic extension of the boundary displacement to the entire domain; although this strategy is
computationally cheap, it can run into trouble when large domain deformations occur. Alternatives
include solving the elasticity equations, the biharmonic equation, the use of spring models etc. A
second possibility is based on the so-called point-by-point schemes, in which the deformation of
the mesh nodes is explicitly prescribed (e.g. making the deformation for a node proportional to
its distance to the boundary, or using interpolation schemes such as radial basis functions). For a
review of coupling methods for non-matching meshes we refer the reader to [70].
Hence, it is rather evident that dealing with a fixed domain approach and accounting for the shape
deformations directly onto the equations modelling the state problem would entail a substantial
computational saving concerning the optimization procedure. Incidentally, we point out that the
reduction techniques we have in mind to speedup the solution of the state problem need to rely
on a fixed, reference domain, which has to be suitably parametrized, so that the introduction of
a shape parametrization and the reformulation on a fixed domain can be seen as a very good
chance in view of a combined attempt of reduction – both geometrical and computational at the
same time.

From a more general standpoint, optimization problems presented in the previous section can be
recast in the many-query context for at least two reasons:

16



1.4. Complexity issues and reduced order modelling

• In several applications, the state system is modelled by a parametrized PDE, so that the
computation of optimal controls or optimal shapes are required for many different values of
other input parameters, representing for instance physical or geometrical properties of the
underlying system which do not act on the state system as controllers. In this case, the
OC problem (in the same way for SO or other inverse problems) takes the following form:
given µ ∈ D, find

û(µ) = arg min
u(µ)∈Uad

J (u(µ)) s.t. A(y(u(µ)), w;µ) = F (w;u(µ),µ), ∀w ∈ X.

The numerical solution of this problem is even less affordable, since an optimization problem
is required to be solved for each new input instance. To deal with this additional degree of
complexity, we can rely for instance on fast solvers for OC problems based on the so-called
one-shot approach [268], rather than on more common iterative optimization procedures.
Nevertheless, computational reduction techniques for parametrized PDEs are necessary to
tackle the need of repeated solutions. However, we will not consider this case in the present
work; many details on a recent application in this respect can be found e.g. in [223].

Figure 1.2: Parametrized optimal control problems.

• For the reasons discussed in the previous sections, the solution of OC or SO problems can
be very time-consuming also if the underlying system is not parametrized. In this case, the
parametric context represents a computational opportunity, rather than a computational
burden: whenever it is possible to represent either control inputs, admissible shapes or
uncertain elements as parametrized quantities, the reduction framework developed for
parametrized PDEs guarantees a significative improvement in computational performances.

The following subsection is devoted to the illustration of the reduced framework analysed and
developed in the thesis for solving optimization problems based on parametrized PDEs; care has
been devoted to shape optimization problems and other shape related inverse problems, for which
geometrical reduction through shape parametrization cannot be renounced.

1.4.1 A reduced framework for optimization and inverse problems

The main focus of this thesis is the development, analysis and application of a reduced integrated
setting for efficient solution of optimization problems based on parametrized PDEs. This
framework exploits the Reduced Basis (RB) method [253, 237, 280] for a rapid and reliable
approximation of parametrized PDEs, built upon a full-order discretization technique such as the
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FE method. Of course, this is not the only available option, since many other techniques – such as,
for instance, Proper Orthogonal Decomposition (POD) [15, 33, 144] – can be exploited to achieve
computational reduction. In practice, for inverse problems such as optimal control and shape
optimization, very often the standard adjoint-based approach turns to be too computationally
expensive; the presence of uncertainty e.g. in measurements or in model parameters make the
solution of inverse problems even less feasible.
Substantial computational saving becomes possible thanks to a reduced order model (ROM) which
relies on two reduction steps: (i) parametrization of the control inputs and (ii) substitution of
the full-order solution of the state problem with a reduced-order solution, which in our case
is obtained through the reduced basis method. In particular, the parametrization of control
variables in OC problems, as well as the parametrization of (simple) uncertain quantities in a
context where shape variation are not involved, is usually straightforward, and is made a priori
when the model is set. In this case, by expressing for instance the set of admissible controls as a
family of functions depending on the parameter vector µ ∈ D, i.e.

Uad = {u = u(µ) ∈ U : µ ∈ Dad ⊆ D},

the optimal control problem (1.10) can be rewritten in a parametric framework as follows:

µ̂ = arg min
µ∈Dad

J (µ) s.t. A(y(µ), w) = F (w;µ), ∀w ∈ X, (1.14)

where y = y(µ) is the state of the system – now expressed directly as a function of the control
parameter vector µ, A(·, ·) the (in case, parameter dependent) operator corresponding to a
parametrized PDE (see equation (1.2)) and J (µ) = J̃ (y(µ),µ) the parametrized version of the
cost functional to be minimized. In the same way, by expressing the set of uncertain features
affecting the state system as

Qad = {q = q(µ) ∈ Q : µ ∈ Dad ⊆ D},

the inverse identification problem (1.13) can be rewritten as follows:

µ̂ = arg min
µ∈Qad

J (µ) = ‖z(y(µ))− z∗‖2Z s.t. A(y(µ), w;µ) = F (w;µ), ∀w ∈ X. (1.15)

Thus, once the control function or the uncertain features have been expressed with respect to
some parameters, the problems at hand are rewritten as parametric optimization problems, where
each input/output evaluation requires the solution of a parametrized PDE fitting the framework
presented in Sect. 1.2. These problems are defined on a fixed geometry, which does not affect
the problem and does not require any treatment. On the other hand, parametrization of shapes
requires particular care (and additional work) in case of shape optimization and shape-related
inverse problems – our ultimate goal. Here we address the main blocks and guidelines of this
framework; specific ingredients will be detailed within the next chapters.

Shape parametrization techniques for geometrical complexity reduction
A first key to simplification consists of making use of a fixed-domain approach in shape-related
problems. To do this, we introduce a reference configuration on which every problem is brought
back and solved at each iteration of the optimization process, whereas geometry variations are
accounted for the equation coefficients. In order to represent a set of admissible shapes through a
set of geometrical parameters, we rely on suitable (low-dimensional) shape parametrizations: in
this way, domains Ωo(µ) corresponding to different shape configurations are obtained from the
fixed, reference configuration Ω through a parametric map T ( · ;µ) : Ω→ Ωo(µ). Several options
and computational requirements for shape parametrization will be detailed in Sect. 2.5.
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Hence, by mapping the problem (1.11) back to the reference domain, and considering the set of
admissible shapes Oad as

Oad = {Ωo(µ) = T (Ω;µ) ∈ O : µ ∈ Dad ⊆ D},

we obtain the following formulation3:

µ̂ = arg min
µ∈Dad

J (µ) s.t. A(y(µ), w;µ) = F (w;µ), ∀w ∈ X, (1.16)

where Dad ⊆ D is the subset of admissible parameters. We underline that at this stage the PDE
problem – as well as the functional space – has been defined on the reference domain Ω, where
the new linear/bilinear forms can be expressed from the original ones through a suitable change
of variables. Clearly, if the parametric map T ( · ;µ) is sufficiently flexible and low-dimensional,
shape deformations can be easily handled by acting on a small number of geometrical parameters
– thus yielding to an effective geometric reduction.
The introduction of such a map is also instrumental to the use of reduced basis methods, since
basis solutions corresponding to different shape configurations Ωo(µ) can only be compared and
combined on a reference, parameter-independent domain. Once the original problem has been
traced back to a reference configuration (and the admissible shapes have been parametrized), it
results in a parametrized problem where the effect of geometry variations is traced back onto its
parametrized transformation tensors – thus fitting the parametrized framework of Sect. 1.2.

Figure 1.3: Parametric optimization problems (optimal control or shape optimization).

Reduced basis method for computational reduction
To solve the parametrized PDEs appearing in the formulations (1.14)–(1.16) in a very efficient
way, we rely on a suitable reduced-order method, which in our case is the reduced basis method.
Thanks to a suitable computational Offline-Online decomposition (see Sect. 2.2.4), these methods
provide rapid results at a greatly reduced cost. At the outer level, the solution of parametrized
PDEs and the rapid input/output evaluation is exploited within a suitable iterative procedure
for the (now, parametric) optimization, provided e.g. by some nonlinear programming techniques
such as sequential quadratic programming and various quasi-Newton methods [23,143].

3As before, we consider for the sake of simplicity in the exposition a linear state problem. The analysis
introduced in the next chapters will deal with a more general nonlinear state problem.

19



Chapter 1. Optimization problems based on parametrized PDEs

Roughly, reduced-order methods for parametrized PDE problems are low-dimensional approx-
imations to the solution of a parametrized PDE, built by choosing a basis ζi, i = 1, . . . , N of
full-order discretized solutions computed for some selected parameter values, i.e. ζi = y(µi),
where N is – hopefully – much smaller than the dimension (say N ) of the full-order discretization.
Next, the reduced approximation to the state solution for a new parameter value µ is defined as

yN (µ) =
N∑
j=1

yN j(µ)ζj

so that yN (µ) ∈ XN = span{ζ1 . . . , ζN}, where the coefficients {yN j} are determined through
a Galerkin projection of the state equation onto the reduced space XN . The cost of such a
computation is thus very small – compared to a full-order approximation – if N is small. Hence,
if the state solution is approximated in the reduced space XN , then the cost of each optimization
step will be very small compared to that involving the full-order state approximation. Hence,
throughout the optimization, only the small RB-based discrete solutions are used; this entails
relevant savings in CPU costs when compared to the use of a full-order discrete system within the
optimization process. We emphasize that a reduced basis method requires the solution of some
full-order and therefore very expensive discrete equations. The key-idea is that these demanding
calculations can be done Offline, before the optimization with respect to the control parameters is
attempted. Hence, a RB-based strategy will be convenient whenever the optimization procedure
requires as many steps as the number of basis functions which have to be computed Offline.
However, very often the same reduced basis for the approximation of the state system can be
exploited for the optimization with respect to many different cost functionals – this greatly
enhances the computational saving offered by RB-based strategies. The principal features of RB
methods will be introduced in Chapter 2; the RB approximation of fluid dynamics problems
modelled by Stokes and Navier-Stokes equations will be presented in Chapter 3.

Computational reduction strategies such as RB methods or POD have already been employed to
speedup the solution of optimal control, simpler shape optimization and other inverse problems
dealing with parametrized PDEs. First examples of optimal control problems solved by exploiting
computational reduction techniques have been addressed by Ito and Ravindran, in the context
either of (a preliminary version of) the reduced basis method [152, 153, 154] or of the proper
orthogonal decomposition method [264,265,267]. A more systematic approach has been firstly
provided by Maday and Patera [198,253]. More recent contributions dealing with RB methods
have been presented in both the elliptic case by Quarteroni, Rozza and Quaini [257], by Tonn
and Urban [309], Grepl and Kärcher [121], and the parabolic case by Dedè [73, 74]. Other recent
works dealing with optimal control problems through POD techniques have been addressed for
instance by Kunisch and Volkwein [176], Tonn, Urban and Volkwein [310] dealing with POD
techniques.
Shape optimization problems solved by means of RB techniques have been addressed for the
first time by Rozza [273] in the case of simple shape parametrizations and afterwards by Lassila
and Rozza [185] in a more complex case; other inverse design problems solved through POD
techniques have been presented by Willcox and Ghattas [51,52], whereas a more recent treatment
of uncertainties in aerodynamic design dealing with POD-based reduced order models to inverse
has been addressed by Schulz and Schillings [295, 296]. Other reduced models, such as balanced
truncation [14], have been applied in the last two years to tackle shape optimization problems by
Heinkenschloss, Hoppe, Sorensen, Antil [13, 12].
Furthermore, reduced models have been recently applied to real-time parameter estimation
by Nguyen and many others [225, 123], as well as to statistical inverse problems related with
uncertainty quantification by Willcox, Ghattas et al. [106,191], Patera, Huynh, Knezevic, [147],
Nguyen and Rozza [227], Grepl and Veroy [124]. An exhaustive review of reduced order models
in this context can be found in [101].
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1.5 Optimization problems in fluid dynamics
The control of fluid flows for the purpose of achieving some desired objective is crucial to many
applications. The reduction of drag forces acting on airfoils [159] or the vorticity minimization in
cardiovascular prostheses [254, 273] are just two examples from very different fields, which can be
recast in the same control framework. In particular, design problems are of particular interest
whenever the performances of a system can be greatly enhanced by acting on its shape, such as
in aircraft, ship or automotive design, as well as in biomedical engineering.

In fluid mechanics, cost functionals are expressed in terms of flow variables (such as velocity,
pressure, temperature, etc.), while constraints are represented by the PDE (advection-diffusion,
potential, Euler, Stokes, Navier-Stokes or Boussinesq equations, etc.) describing the flow, and by
topological constraints on the shape of the domain, whenever necessary. In the applications of
our interest we will focus on steady, incompressible viscous fluid flows, governed by either Stokes
or Navier-Stokes equations for laminar Newtonian flows. These equations – extensively analyzed
in Sect. 3.1 – are the steady version of the classical mathematical description of Newton’s law of
motion and conservation of mass for an incompressible viscous flow, and read as follows:

−ν∆v + δ(v · ∇)v +∇p = f + uΩ in Ω
∇ · v = 0 in Ω
v = uc on Γc
v = vin on Γin
v = 0 on Γw

−pn + ν
∂v
∂n = g on Γout.

(1.17)

Here δ = 1 in the case of Navier-Stokes (resp. δ = 0 in the case of Stokes) equations, v is the
velocity vector, p is the pressure, ν > 0 is the kinematic viscosity – defined as the ratio between
the dynamic viscosity µ > 0 and the density ρ > 0 of the fluid – and Ω ⊂ Rd for d = 2, 3 is
the domain occupied by the fluid. The Dirichlet portion ΓD of the boundary is further divided
into an inlet Γin where we prescribe an inflow condition, a wall Γw where we prescribe a no-slip
boundary condition and a portion Γc where we prescribe a boundary control uΓc . Furthermore,
we prescribe the value of the normal stress T(v, p)n at the outlet Γout 6= ∅, where T(v, p) is the
stress tensor defined by

T(v, p) = −pI + 2νσ(v), σ(v) = 1
2(∇v +∇Tv);

σ(v) is called strain rate tensor. The control u can be applied at the boundary, i.e. u = uc ∈
Uc ⊆ (H1/2(Γc))d, or can be distributed in the domain, i.e. u = uΩ ∈ UΩ ⊂ (L2(Ω))d, as a source
term. Typical problems are related with the reduction of the vorticity ∇× v, e.g. in turbulent
flows, for which a model problem can be stated as follows:

û = arg min
u∈Uad

J (u) s.t. (v, p) = (v, p)(u) is the solution of (1.17) associated with u, (1.18)

where

J (u) = ν

2

∫
Ω
|∇ × v(u)|2 dΩ + ε

2

∫
Ω
|u|2dΩ

is the cost functional related to a distributed observation of the vorticity and a distributed control
u = uΩ. The second integral appearing in the cost functional plays the role of a regularization
term, where ε > 0 is a suitable (sometimes called Tikhonov) regularization factor.
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In the case of a boundary (Dirichlet) control u = uc, J (u) takes the following form:

J (u) = ν

2

∫
Ω
|∇ × v(u)|2 dΩ + ε

2

∫
Γc
|u|2dΩ.

Another cost functional which can be used is the following energy functional

J (u) = ν

2

∫
Ω
|∇v(u)|2 dΩ + ε

2

∫
Ω
|u|2dΩ,

if we are interested in the minimization of the viscous energy dissipation ν|∇v|2 (referred also as
strain rate) for flow regularization. Other examples will be discussed for instance in Sect. 5.2.4.

In the case of optimal design problems, we act instead on a portion Γc ⊆ ∂Ωo of the boundary
(also denoted as free-boundary), in order to minimize a shape functional depending on velocity v
and/or pressure p, which – following the same notation as before – solve:

−ν∆v + δ(v · ∇)v +∇p = f in Ωo
∇ · v = 0 in Ωo
v = vin on Γin
v = 0 on Γc ∪ Γw

−pn + ν
∂v
∂n = g on Γout.

(1.19)

Thus, a model problem can be stated as follows:

Ω̂o = arg min
Ωo∈Oad

J (Ωo) s.t. (v, p) = (v, p)(Ωo) is the solution of (1.19) on Ωo, (1.20)

where the set of admissible shapes can be defined as

Oad = {Ω ∈ O : |Ω| ≤ V, Γin ∪ Γw ∪ Γout is given } ,

where Ωo is the fluid domain and in this case O is the set of domains Ωo ⊂ Rd piecewise C2 with
convex corners. When dealing with internal flows, ∂Ωo represents the external wall of the branch
Ωo whereas in the case of external flows the target is the shape of a body B embedded into a
fictitious fluid volume D, so that Ωo = D \B and Γc ⊆ ∂B.
Depending on the objective, several shape functionals can be defined; omitting for the sake of
simplicity the regularization term, in case of energy or vorticity minimization, we can introduce
the following functionals:

J (Ω) = ν

2

∫
Ω
|∇ × v(Ω)|2 dΩ, J (Ω) = ν

2

∫
Ω
|∇v(Ω)|2 dΩ,

respectively. Another very well studied problem deals with the minimization of drag forces (or
resistances) on a body B in relative motion within a fluid, for which the usual functional to be
minimized is given by the drag acting on the body:

J (Ω) = −
∫
∂B

(T(v(Ω), p(Ω))n) · v̂∞dΓ,

where v∞ = U v̂∞ is the horizontal component of the fluid flow acting on the body and v̂∞ a
unit vector in the horizontal direction. An equivalent choice is the adimensional drag coefficient:

J (Ω) = − 1
q∞d

∫
∂B

(T(v(Ω), p(Ω)))n) · v̂∞dΓ,
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where d is a characteristic length of the body and q∞ = 1
2ρU

2. Also concerning the case of shape
optimization problems, several other examples will be introduced in Sect. 5.2.4.
Indeed, in the context of optimal flow control problems, the challenges stem from the nature of
the state system: the nonlinearity of Navier-Stokes equations leads to nonconvex problems which
cause major difficulties concerning existence and uniqueness analysis. The case of optimal design
problems is even more difficult, due to further critical aspects related with shape regularity and
deformations, and to continuity of the nonlinear state solution with respect to shape variations.
Furthermore, on the computational side, applications within these contexts lead to large-scale
nonlinear optimization problems, which are among the most challenging optimization problems
in computational science and engineering.

Early contributions on optimal control problems associated with Navier-Stokes equations (both
in the stationary and in the time-dependent case) date back to 90’s and are addressed by
Abergel and Temam [2], Casas [1], a series of articles by Gunzburger, Hou, Svobodny ( [130,131],
e.g.) and Kim [132, 167], Ghattas [112], Heinkenschloss [138], Berggren [30, 31, 32], Ito and
Ravindran [81,266]. These authors are mainly concerned with important questions such as the
formulation of feasible problems, existence of optimal controls, first-order necessary conditions
for optimality, and discretization issues. A complete review of challenges and features related
to optimal flow control problems can be found in the monograph by Gunzburger [128]. More
recent contributions – mainly concerning the numerical approximation, and among a very long
list including many authors – have been presented by Hintermuller, Kunisch, Volkwein [142] and
Vexler [174], Agoshkov, Quarteroni and Rozza [5, 6] and Dedè [71].
Concerning optimal design problems related with fluid flows, the first theoretical contributions
date back to the 70’s and are due to Pironneau [246,247] and Glowinski [116], and subsequently
to many other authors such as Simon [301,27], Zolésio and coauthors [37,89], Gunzburger [133]
and Kim [166], and more recently by Gao, Ma and Zhuang [108,107]. These works are mainly
concerned with the formulation of feasible problems, existence of optimal shapes, regularity
and differentiability of state solution and cost functionals with respect to shape and optimality
conditions. Starting from a pioneering work by Bourot [42], a long list of authors have proposed
many tools for tackling the numerical difficulties arising in shape optimization for fluid dynamics
problems. We just mention Jameson [158, 159, 160], whose role has been fundamental for the
application of shape optimization techniques to aerodynamics problems such has the optimal
design of airfoils. An exhaustive survey on both theoretical and numerical aspects is provided e.g.
in the book by Pironneau and Mohammadi [214] and other reviews by these authors [249,215].

On the other hand, the first attempts to solve flow control problems by reduced order models
date back to last decade and are given to Ito [153, 154] and Ravindran [267, 265]; subsequent
developments in flow control problems are given by Quarteroni, Rozza and Quaini [257], Tonn
and Urban [309], Dedè [73,74]. Concerning reduced order models applied to shape optimization
problems – at the best of our knowledge – the only contributions are due to Antil, Heinkenschloss
and Hoppe [13, 12], beyond the works by Rozza [276,273] and Lassila [185], which constitute the
seeds from which applications and methods presented in this thesis actually stem.
Some general remarks about the use of reduced models in flow control problems have been
addressed by Gunzburger in his monograph [128]. Nevertheless, whether several strategies for
geometrical reduction have been fully exploited in optimal design problems, the introduction of
reduced-order models is somehow very recent and largely still to be explored. In our opinion,
this is due basically to (i) the lack of adequate methods for the certification of reduced-order
solutions up to the last decade, and (ii) to the lack of advanced parametrization techniques
within a parametrized PDEs context. We underline that efficient and rigorous a posteriori error
bounds are still missing for a large class of optimal control problems: the main difficulty stands
in the construction of rigorous error bounds not just for reduced state variables, but also for the
reduced cost functional and the reduced control – an aspect which is not taken into account in
this thesis, but represents an interesting topic for forthcoming research.
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Chapter 1. Optimization problems based on parametrized PDEs

Indeed, our ultimate goal is the investigation of a reduced framework based on the reduced basis
method and suitable shape parametrization techniques for optimal design problems arising in
fluid dynamics. In particular, our driving applications deal with haemodynamics, such as design
of cardiovascular prostheses and assessment of pathological risks through inverse identification of
flow and shape features. To do this, we will face both optimal control and shape optimization, as
well as with more general inverse identification problems. Clinical motivations, modelling features
and detailed results will be addressed in Part III.
Nevertheless, techniques and methods developed and discussed in this thesis prove to be useful
also in facing other optimization problems arising in computational fluid dynamics and, more
generally, in science and engineering contexts modelled by PDEs.

1.6 Thesis contributions, scopes and limitations
In this thesis we focus on the development of suitable reduced models for the numerical solution
of optimal control, shape optimization and other inverse problems. We rely on a certified reduced
basis methodology for parametrized PDEs for the sake of computational reduction, whereas we
exploit suitable shape parametrization techniques in problems dealing with variable shapes for the
sake of geometrical reduction. The coupling of these techniques has pushed us to build a modular
framework, where several shape parametrizations can be taken into account – depending on the
applicative context – and to develop further methodologies to face additional approximation and
reduction issues.

Concerning the reduced basis methodology, we introduce some advances to the current framework
for two-dimensional steady fluid dynamics equations, for steady Stokes and Navier-Stokes equa-
tions. First, we extend the certified framework to the treatment of general parametrized nonaffine
Stokes and Navier-Stokes problems, exploiting the empirical interpolation method. Second, we
provide both a stability study based on the role of the Brezzi’s inf-sup constant in the RB
context and an error analysis and certification for velocity and pressure fields by jointly exploiting
either the Babuška’s or the Brezzi-Rappaz-Raviart theory in the Stokes and Navier-Stokes cases,
respectively. Moreover, we also develop a posteriori error bounds for quadratic functionals in the
Stokes case. Third, we improve the Offline/Online computational procedure (in particular for the
nonlinear case) and apply for the first time the natural-norm Successive Constraint Method for
estimating lower bounds of parametrized stability factors in the framework of general noncoercive
problems, providing a preliminary extension to the nonlinear case.
Regarding shape parametrization techniques, we manage complex geometrical configurations
hosting internal flows in problems dealing with variable shapes by exploiting the Free-Form
Deformation (FFD) technique and applying, for the first time, the Radial Basis Function (RBF)
paradigm in the context of parametrized shape deformations. Furthermore, we provide some
theoretical results about these two techniques which can be useful also in a more classic shape
optimization framework.

The problems and the goals presented in Sect. 1.3-1.4 are quite challenging, and the variety of
methods (for discretization, optimization) that could be addressed is extensive. For instance, we
do not consider adjoint-based optimization methods for the solution of optimal control or shape
optimization problems: instead, we treat the optimization procedure relying on fast and certified
input/output evaluations within a many-query context. This work can be seen as a part of a
much larger effort in developing RB methods and error estimation procedures for optimization
problems based on parametrized PDEs. Nevertheless, we consider also new applications in the
context of inverse problems, such as robust optimal control problems, robust shape optimization
problems, inverse identification problems. In particular, we develop a Bayesian framework
relying on RB input/output evaluations, for the analysis of statistical inversion and uncertainty
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quantification problems within a more general many-query context. The efforts in setting this
coupled computational/geometrical reduction framework, driven by the solution of optimization
and inverse problems, have led to develop suitable methods for fast numerical simulations and
related output evaluations which can be of interest in many applicative fields in science and
engineering.

Examples and applications provided to justify and support methodological developments deal
with problems of great interest in haemodynamics, such as the optimal design of better prosthetic
devices (e.g. bypass graft prostheses) and the characterization of physical and geometrical flow
properties which may be related to pathological risks. Under some (not negligible) restrictions
and modelling assumptions, we are able to provide some preliminary results which may be of
applicative interest after extending the current framework to more complex fluid dynamics models.
Results have already provided at this step some interesting information on fine physical details
and reduction of computational efforts. Of course, methods and tools developed within this work
are general and can be applied to several other contexts and problems of interest in science and
engineering.
However, RB methods for fluid dynamics equations have also been applied to other physical
parametrization of great interest, to three-dimensional problems [79, 148] and to time-dependent
problems [168, 228]. These problems are not addressed in any detail in this work, with the
exception of a short analysis in Chapter 6 and a discussion of future work in the final Conclusions.

Concerning the reduced basis methodology, this thesis builds on earlier works on Stokes [278,282]
and Navier-Stokes [79,255,312] equations. On the other hand, concerning mathematical problems
and applications addressed within, this thesis extends the earlier, precursor work [276, 273] by G.
Rozza, sharing many focuses but addressing more general features and results. Throughout this
work, results refer to computations executed on a personal computer with 2× 2GHz Dual Core
AMD Opteron (tm) processors 2214 HE and 16 GB of RAM. Reduced basis computations have
been performed within the rbMIT [149] library, created by A.T. Patera and his group at MIT.
Practicing and extending this library has taken a non-negligible part of the activity carried out
within this work and represent a further achievement of this thesis.
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2 Computational/geometrical
reduced order modelling
In this chapter we describe the computational and geometrical reduction techniques involved in
our general framework for the solution of optimal control, shape optimization and other inverse
problems. After a brief insight on the main features shared by several computational reduction
techniques, we focus on reduced basis methods for parametrized PDEs, introducing the setting
and the notation useful for the formulation and the analysis of the parametrized problems we
will deal with. The second part of the chapter is devoted to the illustration of several available
approaches for shape parametrization, which will be exploited afterwards in the numerical solution
of optimization and inverse problems related with shape variations.

2.1 Computational reduction: main features and goals
As pointed out in Chapter 1, problems arising in several many-query contexts and/or dealing
with PDE-constrained optimization entail very large computational costs and require a strong
computational reduction to be tackled and solved.
The goal of computational reduction techniques is to capture the essential features of the
input/output behavior of a system in a rapid and reliable way, i.e. (i) by improving the
computational performances and (ii) by keeping under control the approximation error between
the reduced-order solution and the full-order one. In particular, we aim at approximating the
solution of a PDE system using a handful of degrees of freedom instead of the millions of degrees
of freedom needed for a full-order approximation. In this way, we need to solve the full-order
problem only for few instances of the input (through a demanding Offline stage), in order to be
able to perform many low-cost reduced-order simulations (very inexpensive Online stage) for new
instances of the input. We may distinguish between two general paradigms in computational
reduction – projection vs. interpolation – yielding to the following groups of techniques:

1. Computational Reduction Techniques (CRT) are problem-dependent methods which aim at
reducing the dimension of the algebraic system arising from the discretization of a PDE
problem. The reduced solution is thus obtained through a projection of the original problem
onto a small subspace made by global basis functions, constructed for the specific problem,
rather than onto a large space of generic, local basis functions.

2. Surrogate Models, also known as metamodels or emulators, are instead problem-transparent
methods, which provide an approximation of the input/output map by fitting a set of
input/output data obtained by numerical simulation. These methods are widely employed in
analysis and post-processing of computer experiments, to extract and synthetize information
from large sets of simulations. In this case, PDEs are still solved through full-order
discretization techniques – thus reduction acts just at a subsequent stage.
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Our focus is on computational reduction techniques for parametrized PDEs, aiming at computing,
in a cheap way, a low-dimensional approximation of the PDE solution that would be obtained
through a higher-fidelity, computationally expensive discretization scheme. The most common
choices, like reduced basis (RB) or proper orthogonal decomposition (POD) methods, seek for a
reduced solution through a projection onto suitable low-dimensional subspaces1. Of course, several
other reduction strategies for computational reduction are available; we cite low-rank tensor
methods [165,170], Krylov subspace methods, balanced truncation [188,126], modal truncation
and other balancing-related truncation techniques employing the idea of spectral projection [28].
On the other hand, surrogate models have been initially exploited within numerical experiments
in substitution of expensive simulations whenever interested to parametric studies and sensitivity
analyses. Nowadays, they provide an essential tool in planning and post-processing of large
computer experiments and optimization problems. A general survey of these techniques can be
found for instance in [284, 316], while some applications to analysis of computer experiments are
addressed e.g. in [289,314]. Some comparisons between surrogate and reduced order models are
provided in [101] and in a recent work developed with Quarteroni and Rozza [207].

RB and POD methods are not bound to Galerkin approximations – such as the ones obtained
through finite elements methods – in fact they can also be built over other discretization techniques,
we present the key reduction issues starting from a differential problem under strong form. For the
sake of simplicity, we focus here on a linear, time-independent problem: evaluate s(µ) = S(y(µ);µ)
where the solution y(µ) ∈ X = X(Ω) satisfies

L(µ)y(µ) = F(µ), (2.1)

where L(µ) : X → X ′ is a second-order parametrized differential operator and F(µ) ∈ X ′, for
any µ ∈ D. The weak formulation of (2.1) reads (recalling (1.2)): find y(µ) ∈ X = X(Ω) such
that

A(y(µ), w;µ) = F (w;µ), ∀ w ∈ X, (2.2)

where A(·, ·;µ) : X ×X → R and F (·;µ) : X → R are given2, respectively, by

A(y, w;µ) := X′〈L(µ)y, w〉X , F (w;µ) = X′〈F(µ), w〉X , ∀ y, w ∈ X. (2.3)

Here the attention is thus restricted to a typically smooth and rather low-dimensional paramet-
rically induced manifold M = {y(µ) ∈ X : µ ∈ D}, spanned by the set of fields engendered
as the input µ varies over the parameter domain D – clearly, generic approximation spaces are
unnecessarily rich (and expensive) within the parametric framework. The essential components
of a CRT can be thus summarized as follows:

• Full-order discretization technique
In any case, a CRT is premised upon, and does not replace completely, a full-order or
high-fidelity (sometimes also denoted as truth) discretization method, such as the finite
element method3 (FEM), which in the linear, time-independent case (2.1) reads as: given
µ ∈ D, evaluate sN (µ) = S(yN (µ);µ), where yN (µ) ∈ XN is such that

LN (µ)yN (µ) = FN (µ), (2.4)

1Indeed, we remark that several CRTs, like POD, have been originally introduced and developed in order to
speed-up the solution of very complex time-dependent and nonlinear problems, like for turbulent flows, without
being addressed to parametrized problems (i.e. time was considered somehow as the only parameter).

2 In a more rigorous way, we should introduce the Riesz identification operator R : X′ → X by which we
identify X and its dual, so that, given a third Hilbert space H such that X ↪→ H′ and H′ ↪→ X′, X∗ 〈L(µ)u, v〉X =
(RL(µ)u, v)H . However, the Riesz operator will be omitted for the sake of simplicity.

3Historically [97] RB methods have been built upon finite element discretizations. However, spectral elements
[196,194], finite volumes [135], finite differences and other discretization methods may be considered too.
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and XN ⊂ X is a finite dimensional (truth approximation) space of typically very large
dimension N = Nh, LN (µ), FN (µ) are discrete operators, and h denotes the spacing of
the computational FE grid. The RB method consists thus in a low-order approximation of
the “truth” manifoldMN = {yN (µ) ∈ XN : µ ∈ D}.
We assume that

‖y(µ)− yN (µ)‖X ≤ E(h), ∀ µ ∈ D,

where E(h) is an estimation of the discretization error, which can be made as small as
desired by choosing a suitable spacing size h. From an abstract standpoint, introducing the
projection operators ΠN : X → XN and Π∗N : X ′ → XN

′ onto XN and XN ′ , respectively,
and denoting yN (µ) = ΠN y(µ), we have that

Π∗N (L(µ)Π−1
N yN (µ)−F(µ)) = 0, (2.5)

so that we can identify LN (µ) = Π∗NL(µ)Π−1
N and FN (µ) = Π∗NF(µ). Equivalently,

thanks to (2.3) the weak formulation of the problem (2.4) reads:

A(yN (µ), wN ;µ) = F (wN ;µ), ∀ wN ∈ XN . (2.6)

• Space construction and (Galerkin) projection
Any CRT usually consists of selecting a (reduced) basis of few full-order PDE solutions
{yN (µi)}Ni=1 and seeking for a reduced approximation yN (µ) expressed as a linear combi-
nation of the basis functions [237]. Given a positive integer Nmax, we then introduce
an associated sequence of approximation spaces: for N = 1, . . . , Nmax, XNN is a N -
dimensional subspace of XN ; we further suppose that they are nested (or hierarchical), i.e.
XN1 ⊂ XN2 ⊂ · · ·XNNmax

⊂ XN ; this condition is fundamental in ensuring (memory) effi-
ciency of the resulting reduced approximation. In order to define a (hierarchical) sequence of
Lagrange4 spaces XNN , 1 ≤ N ≤ Nmax, we first introduce a “master set” of properly selected
parameter points µn ∈ D, 1 ≤ n ≤ Nmax. We then define, for given N ∈ {1, . . . , Nmax},
the Lagrange parameter samples

SN = {µ1, . . . ,µN} , (2.7)

and associated Lagrange reduced spaces

XNN = span{yN (µn), 1 ≤ n ≤ N} ; (2.8)

the yN (µn), 1 ≤ n ≤ Nmax, are often referred to as “(retained) snapshots” of the parametric
manifoldMN and are obtained by solving the FE problem (2.6) for µn, 1 ≤ n ≤ Nmax; the
sampling strategy used to build the set SN is based on a greedy algorithm (see Sect. 2.2.2).
From now on, we omit the superscript N when denoting the space XNN ≡ XN .
Then, we compute the reduced approximation yN (µ) through a (Galerkin-like) projection
of the PDE onto XN : given µ ∈ D, evaluate sN (µ) = S(yN (µ);µ), where yN (µ) ∈ XN

solves

LN (µ)yN (µ)−FN (µ) = 0; (2.9)

clearly, the smaller is the dimension N of the reduced space compared to the dimension
N of the full-order approximation space, the cheaper will be the solution of the reduced
problem. In the same way as before, introducing the projectors ΠN : XN → XN onto the
reduced space XN and Π∗N : XN ′ → X ′N onto its dual X ′N , we have

4However, this formulation, as well as Offline-Online procedures and a posteriori error estimation, are relevant
also to other reduced approximations, such as the ones based on Taylor and Hermite spaces.
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Chapter 2. Computational/geometrical reduced order modelling

Π∗N (LN (µ)Π−1
N yN (µ)−FN (µ)) = 0, (2.10)

so that LN (µ) = Π∗NLN (µ)Π−1
N and FN (µ) = Π∗NFN (µ). Equivalently, the weak formula-

tion of the reduced PDE problem (2.9) reads as

A(yN (µ), wN ;µ) = F (wN ;µ), ∀ wN ∈ XN . (2.11)

The computational procedure used to find the reduced solution yN – ultimately, the
coefficients in the linear combination of the basis functions – will be discussed in Sect. 2.2.4.
We point out that the classical optimality result of the Galerkin method holds also in the
reduced approximation, since in the energy norm5 we have:

|||yN (µ)− yNN (µ)|||µ ≤ inf
w∈XN

N

|||yN (µ)− w|||µ , (2.12)

i.e. the Galerkin procedure automatically selects the best combination of snapshots (“best
fit” approximation).

• Offline/Online procedure
Under the affinity assumptions (1.7), the parametric setting enables to decouple the com-
putational effort in two stages: a very extensive (parameter independent) pre-processing
performed Offline once, consisting in the generation of the snapshots database, that pre-
pares the way for subsequent very inexpensive calculations performed Online for each
new input-output evaluation required. In the real-time or many-query contexts, where the
goal is to achieve a very low marginal cost per input-output evaluation, we can accept
an increased “Offline” cost – not tolerable for a single or few evaluations – in exchange
for greatly decreased “Online” cost for each new/additional input-output evaluation. As
pointed out in Sect. 2.4, whenever the affinity assumption is not naturally induced by the
problem, it can be recovered through a further interpolation stage.
Nevertheless, the chance to decouple completely the Online computational cost from the
dimension N of the full-order problem is unavoidable whenever interested in real-time
output or PDE evaluations or problems fitting a many-query context. In particular, we will
detail the Offline/Online procedure in Sect. 2.2.4.

• Error estimation procedure
Effective, sharp, inexpensive a posteriori error bounds for field variables

‖yN (µ)− yN (µ)‖X ≤ ∆N (µ), ∀µ ∈ D, N = 1, . . . , Nmax,

and outputs of interest

|sN (µ)− sN (µ)| ≤ ∆s
N (µ), ∀µ ∈ D, N = 1, . . . , Nmax,

are crucial for both the efficiency and the reliability of RB approximations. As regards
efficiency, a posteriori error estimation permits us to control the error, as well as to minimize
the computational effort by controlling the dimension of the RB space. Moreover, in the
greedy algorithm (see Sect. 2.2.2) the application of error bounds – as surrogates for the
actual error – allows a better parameter space exploration at greatly reduced cost.
Concerning reliability, a posteriori error bounds allow a confident exploitation of the rapid
predictive power of the RB approximation, making up for an error quantification for each
new parameter value µ in the Online stage and assuring the feasibility of the solution.

5Under the coercivity and the symmetry assumptions, the bilinear form A(·, ·;µ) defines an (energy) scalar
product given by ((w, v))µ := A(w, v;µ) ∀w, v ∈ X; the induced energy norm is given by |||w|||µ = ((w,w))1/2

µ .
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We remark that CRTs do not replace, but rather are built upon – and measured (as regards accu-
racy) relative to – the high-fidelity discretization technique, so that an algorithmic collaboration
is pursued, expressed simply by means of a triangular inequality as follows:

‖y(µ)− yN (µ)‖X ≤ ‖y(µ)− yN (µ)‖X + ‖yN (µ)− yN (µ)‖X ≤ E(h) + ∆N (µ), ∀µ ∈ D.

The ingredients presented in this section form a common paradigm shared by several CRTs; we
will focus on certified reduced basis methods for parametrized PDEs, which exploit effective
greedy algorithms for reduced spaces construction. Next sections are meant to give all the details
concerning RB approximations for linear elliptic parametrized PDEs. The reader interested to
the treatment of fluid dynamics equations can refer directly to Chapter 3.

2.2 Reduced Basis Methods for parametrized PDEs
Reduced Basis discretization is, in brief, a Galerkin projection on an N -dimensional approximation
space that focuses on the parametrically induced manifoldMN . We restrict the attention to
the Lagrange RB spaces, which are based on the use of “snapshot” FE solutions of the PDEs,
corresponding to certain (properly selected) parameter values, as global approximation basis
functions previously computed and stored; other possible approaches, such as Taylor [250] or
Hermite spaces [153], take into account also partial derivatives of these basis solutions.

Initial ideas grew out of two related research topics dealing with linear/nonlinear structural
analysis in the late 70’s: the need for more effective many-query design evaluation and more
efficient parameter continuation methods [8, 230,231]. These first works were soon extended to
(i) general finite-dimensional systems as well as certain classes of ODEs/PDEs [97,251,22,270], and
(ii) a variety of different RB approximation spaces, such as Taylor and Lagrange expansions. The
next decade saw further expansion into different applications and classes of equations, such as fluid
dynamics and, more specifically, the incompressible Navier-Stokes equations [127,152,154,242].
In these early methods the approximation spaces tended to be rather local and typically low-
dimensional in parameter (often p = 1 physical parameters), due also to the absence of a posteriori
error estimators and effective sampling procedures. Much current effort in the last ten years has
thus been devoted in the RB framework to the development of these tools, which are crucial
to guarantee reliability, accuracy and efficiency. The a posteriori error bounds are of course
mandatory for rigorous certification of any particular RB Online output prediction. However,
they also play an important role in effective (greedy) sampling procedures [313,280]: they allow
us to explore efficiently the parameter domain in search of most representative “snapshots,” and
to determine when we have just enough basis functions.

Concerning instead computational reduction and decoupling stratagems, early work on the RB
method exploited (but not fully) the Offline-Online procedure. Consequently, the computational
savings (relative to classical FE evaluation) were typically rather modest [230,250,251] despite
the very small size of the RB linear systems. Much work has thus been devoted to full decoupling
of the FE and RB spaces through Offline-Online procedures, above all concerning the efficient a
posteriori error estimation; in this way, the complexity of the Offline stage depends on N , while
the complexity of the Online stage depends only on N and Q•, so that we can reach the accuracy
of a high-fidelity FE model but at the very low cost of a reduced-order model.
In the context of affine parameter dependence, the Offline-Online idea is quite self-apparent and
has been naturally exploited [19, 242] and extended more recently in order to obtain efficient
a posteriori error estimation. In the case of nonaffine parameter dependence the development
of Offline-Online strategies is even more challenging and only in the last few years effective
procedures have been studied and applied [21] to allow more complex parametrizations; clearly,
Offline-Online procedures are unavoidable both in the real-time and the many-query contexts.
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In the following we present the main features of the approximation of a simple, scalar (κ = 1)
elliptic problem in two spatial dimensions (d = 2), which turn to be useful for the subsequent
RB approximation of Stokes and Navier-Stokes equations, extensively discussed in Chapter 3. A
survey of RB methods can be found in a review paper by Rozza, Huynh and Patera [280], as
well as in the book by Patera and Rozza [237] and in the collection of material provided by the
augustine.mit.edu portal [149] of Massachusetts Institute of Technology (MIT), held by the
group of A.T. Patera.

2.2.1 Parametrized formulation

We briefly recall how the parametrized formulation (1.1)-(1.2) can be obtained, in the case of a
simple linear (δ = 0) elliptic problem; we shall first define an “original” problem (subscript o),
posed over the parameter-dependent domain Ωo = Ωo(µ): given µ ∈ D, evaluate

so(µ) = Lo(yo(µ);µ) ,

where yo(µ) ∈ Xo(µ) satisfies

Ao(yo(µ), v;µ) = Fo(v;µ), ∀v ∈ Xo(µ) , (2.13)

where Xo(µ) is a suitable Hilbert space defined on Ωo(µ); definition of bilinear and linear forms
follows the same notation of Sect. 1.2. Since the RB framework requires a reference (µ-inde-
pendent) domain Ω in order to compare, and combine, FE solutions that would be otherwise
computed on different domains and grids, the original Ωo(µ) has to be mapped to a reference
domain6, in order to get the parametrized “transformed” problem (2.2), which is the point of
departure of RB approach. For the sake of the applications addressed, the construction of a
parametric mapping related to geometrical properties can be managed following two different
strategies (both detailed in Sect. 2.5), based on (i) patches of local affine mappings combined
within a domain decomposition approach or (ii) global nonaffine mappings. In general, we can
introduce a conforming domain decomposition of Ωo(µ),

Ωo(µ) =
Kdom⋃
k=1

Ωko(µ), (2.14)

consisting of mutually nonoverlapping open subdomains Ωk
o(µ), s.t. Ωk

o(µ) ∩ Ωk′

o (µ) = ∅,
1 ≤ k < k′ ≤ Kdom. If related to geometrical properties used as input parameters (e.g. lengths,
thicknesses, diameters or angles) the definition of parametric mappings can be done in a quite
intuitive fashion7. In the following we will identify Ωk = Ωk

o(µref), 1 ≤ k ≤ Kdom, and denote
(2.14) the “RB triangulation”; it will play an important role in the generation of the affine
representation (1.7). Hence, original and reference subdomains must be linked via a mapping
T k(·;µ) : Ωk → Ωko(µ), 1 ≤ k ≤ Kdom, such that

Ωko(µ) = T k(Ωk;µ), 1 ≤ k ≤ Kdom; (2.15)

conditions ensuring the well posedness of the map and some recipes for its construction, will be
detailed in Appendix A. In the case of a single global mapping (Kdom = 1) the superscript k will
be omitted. The more difficult case of nonaffine mappings will be discussed, presenting several
options particularly suitable for the applications we are interested in.

6The reference domain can be seen as a particular instance of the parametrized ones, Ω = Ωo(µref ), being
µref ∈ D a selected parameter value.

7These regions can represent different material properties, but they can also be used for algorithmic purposes
to ensure well-behaved mappings.

32



2.2. Reduced Basis Methods for parametrized PDEs

It remains to introduce the class of admissible operators such that (upon mapping) the transformed
problem satisfies the hypotheses introduced above – in particular, the affinity assumption (1.7)-
(1.8). Nevertheless, when this assumption is not fulfilled by the resulting transformed formulation,
it can be recovered through a suitable approximation – see Sect. 2.4 for details. We may now
consider the associated bilinear forms Ao : Xo(µ)×Xo(µ)→ R

Ao(w, v;µ) =
Kdom∑
k=1

∫
Ωko(µ)

(
∂w

∂xo,i
νo,kij (µ) ∂v

∂xo,j
+ vχo,ki (µ) ∂w

∂xo,i
+ wηo,ki (µ) ∂v

∂xo,i
+ wv

)
dΩo,

where νo,k : R2 × D → R2×2, 1 ≤ k ≤ Kdom, are parametrized (symmetric positive definite)
conductivity/diffusivity tensors, while χo,k : R2 ×D → R2, ηo,k : R2 ×D → R2, 1 ≤ k ≤ Kdom,
are two parametrized vectors, representing transport/convective terms.
Similarly, we require that Fo(·;µ) : Xo(µ)→ R and Lo(·;µ) : Xo(µ)→ R are given by

Fo(v;µ) =
Kdom∑
k=1

∫
Ωko(µ)

fo,k(µ)v dΩo, Lo(v;µ) =
Kdom∑
k=1

∫
Ωko(µ)

lo,k(µ)v dΩo (2.16)

where fo,k : D → R and lo,k : D → R, for 1 ≤ l ≤ Kdom, are prescribed coefficients [275]. By
identifying y(µ) = yo(µ) ◦ T (·;µ) and tracing Ao(w, v;µ) back on the reference domain Ω, it
follows that the transformed bilinear form A(·, ·;µ) : X ×X → R can be expressed as

A(w, v;µ) =
Kdom∑
k=1

∫
Ωk

(
∂w

∂xi
νkij(µ) ∂v

∂xj
+ vχki (µ) ∂w

∂xi
+ wηki (µ) ∂v

∂xi
+ wv|JkT (µ)|

)
dΩ, (2.17)

where νk(x; ·) : D → R2×2, 1 ≤ k ≤ Kdom, are parametrized tensors given by

νk(x;µ) = (JkT (x;µ))−Tνo,k(µ)(JkT (x;µ))−1|JkT (x;µ)| (2.18)

where JkT (x;µ) : R2 ×D → R2×2 is the Jacobian matrix of the map T k(·;µ), defined as

(JkT (x;µ))ij = ∂(T k)i
∂xj

(x;µ) (2.19)

and |JkT (x;µ)| : R2 × D → R its determinant. In the same way, χk(x;µ) : D → R2, ηk(x;µ) :
D → R2, 1 ≤ k ≤ Kdom, are parametrized vectors, given by

χk(x;µ) = (JkT (x;µ))−Tχo,k(µ)|JkT (x;µ)|,

ηk(x;µ) = (JkT (x;µ))−Tηo,k(µ)|JkT (x;µ)|.
(2.20)

The transformed linear forms F (·;µ) : X → R and L(·;µ) : X → R can be expressed similarly as

F (v;µ) =
Kdom∑
k=1

∫
Ωk
fk(x;µ)v dΩ, L(v;µ) =

Kdom∑
k=1

∫
Ωk
lk(x;µ)v dΩ,

where fk(x; ·) : D → R and lk(x; ·) : D → R are given, for 1 ≤ k ≤ Kdom, by

fk(x;µ) = fo,k(µ)|JkT (x;µ)|, fk(x;µ) = fo,k(µ)|JkT (x;µ)|.

Hence, the original problem has been reformulated on a reference configuration, resulting in a
parametrized problem where the effect of geometry variations is traced back onto its parametrized
transformation tensors. A priori, parametrized tensors depend both on the parameter µ and the
spatial variables x ∈ Ω; however, in the affine case they depend just on the parameter components,
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Chapter 2. Computational/geometrical reduced order modelling

allowing to write the affine formulation (1.7) by simply expanding the expression (2.17) in terms
of the subdomains Ωl and the different entries of the tensors. This results, for example, in

A(w, v;µ) = ν1
11(µ)

∫
Ω1

∂w

∂x1

∂v

∂x1
+ ν1

12(µ)
∫

Ω1

∂w

∂x1

∂v

∂x2
+ · · · (2.21)

The affine representation is now clear: for each term in (2.21), the (µ-independent) integral
represents Aq(w, v), while the (µ-dependent) prefactor represents Θq(µ); the linear forms F (·;µ)
and L(·;µ) admit a similar treatment. The same transformation can be operated if the problem
accounts for nonlinear terms and/or the output is quadratic; see for instance Chapter 3 for the
case of a quadratic output related to a Stokes problem or for the case of Navier-Stokes operator.

2.2.2 Reduced spaces construction: Greedy algorithms

In order to sample the parameter space and construct the master set (2.7) – and ultimately the
reduced basis space – several strategies are available; we rely on the so-called greedy algorithms,
based on the idea that a proper selection is made by choosing at each step the locally optimal ele-
ment. Together with the Offline/Online computational strategy, greedy procedures are nowadays
the kernel of RB methods for parametrized PDEs [280,237]. In particular, the current procedure
for constructing reduced subspaces in parametrized PDEs like (2.2) is based on the following
greedy procedure. Other available strategies will be briefly recalled in Sect. 2.2.3.

In an abstract setting, given a compact subspace K of a Hilbert space X , the goal is to seek for a
set of functions {ϕ0, ϕ1, . . . , ϕN−1} such that each element ϕ ∈ X can be well approximated by
the elements of the subspace KN = span{ϕ0, . . . , ϕN−1}. Starting from a first element ϕ0 such
that ‖ϕ0‖X = maxϕ∈K ‖ϕ‖X , at the N -th step a greedy algorithm selects

ϕN = arg max
ϕ∈K
‖ϕ−ΠNϕ‖X ,

where ΠN is the projector onto KN , i.e. ϕN is the worst case element, which maximizes the
error in approximating the subspace K using the elements of KN . A more feasible variant of
this algorithm – called weak greedy algorithm in [36] – replaces the true error ‖ϕ− ΠNϕ‖X by a
surrogate ηN (ϕ) – in our case, the a posteriori error bound ∆N – satisfying

cηηN (ϕ) ≤ ‖ϕ−ΠRB
N ϕ‖X ≤ CηηN (ϕ), f ∈ X ;

in this way, ϕN = arg maxϕ∈K ηN (ϕ) can be more easily computed, provided that the surrogate
error ηN (ϕ) is cheap to evaluate. Following this setting, we now detail the greedy algorithm
exploited for the construction of our (Lagrangian) RB spaces. First of all, let us denote by Ξ
a finite sample of points in D, which shall serve as surrogates for D in the calculation of errors
(and error bounds) over the parameter domain. For a generic element z : D → XN , we denote

‖z‖L∞(Ξ;X) ≡ ess sup
µ∈Ξ
‖z(µ)‖X .

Moreover, we denote the particular samples which shall serve to select the RB space – or “train”
the RB approximation – by Ξtrain. The cardinality of Ξtrain will be denoted |Ξtrain| = ntrain. We
note that although the “test” samples Ξ serve primarily to understand and assess the quality
of the RB approximation and a posteriori error estimators, the “train” samples Ξtrain serve to
generate the RB approximation. The choice of ntrain and Ξtrain thus have important Offline
and Online computational implications. Roughly, at iteration N of the greedy algorithm, we
would append to the master set (2.7) that parameter value µN+1 which maximizes the true
error ‖y(µ)− yN (µ)‖L∞(Ξ;X). In actual practice, we never compute this error, rather we exploit
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2.2. Reduced Basis Methods for parametrized PDEs

our a posteriori error bound to select that parameter value µN+1 which maximizes the error
bound ∆N (µ). Thus, denoting by ε∗tol a chosen tolerance for the stopping criterium, the greedy
algorithm can be implemented as follows:

S1 = {µ1}; compute yN (µ1);
Xgreedy

1 = span{yN (µ1)};
for N = 2 : Nmax

µN = arg maxµ∈Ξtrain ∆N−1(µ);
εN−1 = ∆N−1(µN );
if εN−1 ≤ ε∗tol

Nmax = N − 1;
end;
compute yN (µN );
SN = SN−1 ∪ {µN};
Xgreedy
N = Xgreedy

N−1 ∪ span{yN (µN )};
end.

By means of this procedure, at iteration N our greedy algorithm appends to the retained snapshots
space Xgreedy

N that particular candidate snapshot – over all candidate snapshots yN (µ), µ ∈ Ξtrain
– which is (predicted by the a posteriori error bound to be the) least well approximated by (the
RB prediction associated to) Xgreedy

N−1 . In this way, the greedy algorithm provides hierarchical
spaces and in the strong L∞(Ξtrain;X) norm in parameter. Not only, the cost of this formulation
enables a very exhaustive search – large ntrain – with corresponding high quality approximation
spaces. Clearly, the accuracy and cost of the a posteriori error estimator ∆N (µ) are crucial to the
success of the algorithm. We will provide in the following chapters a computational evidence that
this greedy selection process generates spaces which are, if not optimal, at least very good – a
theoretical proof of this result, based on the exponential convergence of the Kolmogorov N -width,
can be found in [36]. Recent enhanced greedy algorithms using either a saturation assumption (so
that only error estimators are computed for those points in Ξtrain with a large enough predicted
error) or an adaptive enrichment of Ξtrain have been proposed in [141]. From now on we refer to
RB subspaces built through a greedy sampling if the superscript greedy is omitted.

2.2.3 Reduced spaces construction: other options

An alternative technique used for the construction of reduced spaces in dynamical or parametrized
systems is the proper orthogonal decomposition (POD). This method is very popular also in other
fields, such as multivariate statistical analysis (where it is called principal component analysis) or
theory of stochastic processes (Karhunen-Loève decomposition). The first applications of POD were
concerned with the analysis of turbulent flows and date back to the early ’90s [15,33]; more recently,
applications in computational fluid dynamics can be found, for instance, in [144,175,177,197,161],
as well as in [63,54,134] for parametrized flows.
POD techniques reduce the dimensionality of a system by transforming the original variables
onto a new set of uncorrelated variables (which are called POD modes, or principal components)
such that the first few modes retain most of the energy present in all of the original variables.
This allows to obtain a reduced, modal representation through a spectral decomposition which
requires basic matrix computations (a singular value decomposition) also for complex nonlinear
problems. Nevertheless, (i) a posteriori error bounds are in general not available, making the
choice of the reduction size and the quality assessment of the reduced solution sometimes critical.
Moreover, (ii) space reduction through spectral decomposition entails larger computational costs
than RB’s.
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Chapter 2. Computational/geometrical reduced order modelling

We shortly review the main features of the POD in the context of parametrized PDEs. Given a
finite sample Ξ of points in D, a train sample Ξtrain (which shall serve to select the POD space),
for a generic element z : D → XN , we denote

‖z‖L2(Ξ;X) ≡
(
|Ξ|−1

∑
µ∈Ξ

‖z(µ)‖2X
)1/2

.

The POD method seeks an N -dimensional subspace XPOD
N ⊂ XN approximating the data in

an optimal least-squares sense; thus, we seek an orthogonal projector ΠPOD
N : XN → XPOD

N , of
prescribed rank N minimizing the least-square distance as follows:

XPOD
N = arg inf

XN⊂span{yN (µ) | µ∈Ξtrain}
‖yN (µ)−ΠPOD

N yN (µ)‖L2(Ξtrain;X) . (2.22)

Following the so-called method of snapshots, introduced by Sirovich [302], we compute the ntrain
full-order approximations {y(µm)}ntrain

m=1 corresponding to µ1, . . . ,µntrain , the mean

ȳ = 1
ntrain

ntrain∑
j=1

y(µj)

and the correlation matrix C ∈ Rntrain×ntrain whose components are

Cij = 1
ntrain

ntrain∑
m=1

(
y(µi)− ȳ, y(µj)− ȳ

)
X
, 1 ≤ i, j ≤ ntrain.

Then, we compute the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λntrain ≥ 0 and the eigenvectors of the
correlation matrix, which solve: Cψk = λkψk, for k = 1, . . . , ntrain. The central result of POD
states that the optimal subspace XPOD

N of dimension N minimizing (2.22) is given by

XPOD
N = span{ζn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax,

where the POD basis functions are defined as

ζk = ζ̃k

‖ζ̃k‖X
, ζ̃k =

ntrain∑
m=1

ψk,m(y(µm)− ȳ), 1 ≤ k ≤ ntrain,

where ψk,m = (ψk)m is the m-th component of the k-th eigenvector. In particular, the basis
functions {ζk}ntrain

k=1 are orthonormal, i.e. they are such that (ζn, ζm)X = δnm, for 1 ≤ n,m ≤
ntrain. In particular, Nmax is chosen as the smallest N such that

εPODN =
(

ntrain∑
k=N+1

λk

)1/2

≤ ε∗tol,

i.e. the energy εPODN retained by the last (ntrain −Nmax) modes is negligible. Concerning the
convergence properties of greedy and POD spaces, the two algorithms perform in a similar
way if measured in the native norm over Ξtrain which defines the respective objective function –
L2(Ξtrain) for POD, L∞(Ξtrain) for greedy. From the viewpoint of Offline computational cost, a
POD approach is much more expensive than the Greedy approach: in the latter, we only need to
compute the N – typically very few – FE retained snapshots; in the POD approach, we must
compute all ntrain – typically/desirably very many – FE candidate snapshots, as well as the
solution of an eigenproblem for the correlation matrix C ∈ Rntrain×ntrain .
Not surprisingly, the POD has found most application in the reduction of dynamical systems – the
first (and most used) application of this strategy, see e.g. [245,315] – described in the time-domain
(which has single dimension if seen as a parameter space) in which ntrain typically remains quite
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2.2. Reduced Basis Methods for parametrized PDEs

small. Furthermore, the correlations between the solution at different times can be effectively
captured by the global nature of the POD optimization; in this context, the greedy approach is
not as successful. For this reason, in the RB approximation of parabolic problems, an efficient
combined POD (in time) - greedy (in parameter space) approach has been proposed [135,228]
and is currently used [227,120].
Among many other methods for generating reduced spaces, we mention the Centroidal Voronoi
Tessellation [53, 54] and the Proper Generalized Decomposition [62, 232, 86], which are indeed
quite close to POD.

2.2.4 Offline/Online computational strategy

We now consider the discrete equations associated with the Galerkin approximation (2.11) under
the compliance assumption (i.e. if A(·, ·;µ) is a symmetric bilinear form and L(·;µ) ≡ F (·;µ)):
given µ ∈ D, evaluate

sN (µ) = F (yN (µ);µ), (2.23)

where yN (µ) ∈ XN ⊂ XN satisfies

A(yN (µ), wN ;µ) = F (wN ;µ), ∀ wN ∈ XN . (2.24)

First of all, we apply the Gram-Schmidt orthogonalization procedure with respect to the (·, ·)X
inner product to snapshots yN (µn), 1 ≤ n ≤ Nmax, to obtain mutually (·, ·)X–orthonormal basis
functions ζn, 1 ≤ n ≤ Nmax. Then, the RB solution can be expressed as a linear combination of
the basis functions:

yN (µ) =
N∑
m=1

yN m(µ)ζm; (2.25)

by taking w = ζn, 1 ≤ n ≤ N , into (2.24) and using (2.25), we obtain the RB “stiffness” equations

N∑
m=1

A(ζm, ζn;µ) yN m(µ) = F (ζn;µ), 1 ≤ m,n ≤ N , (2.26)

for the RB coefficients yN m(µ); we can subsequently evaluate the linear RB output as

sN (µ) =
N∑
m=1

yN m(µ)F (ζm;µ) . (2.27)

The system (2.26) is nominally of small size: a set of N linear algebraic equations in N unknowns.
However, the formation of the stiffness matrix, and indeed the load vector, involves entities ζn,
1 ≤ n ≤ N, associated with our N -dimensional FE approximation space. Fortunately, we can
appeal to affine parameter dependence to construct very efficient Offline-Online procedures.
In particular, system 2.26 can be expressed, thanks to the affinity assumption (1.7), as

N∑
m=1

( QA∑
q=1

Θq
A(µ)Aq(ζm, ζn)

)
yN m(µ) =

QF∑
q=1

Θq
F (µ)F q(ζn),

for 1 ≤ n ≤ N . The equivalent matrix form is(
Qa∑
q=1

Θq
A(µ)AqN

)
yN (µ) =

QF∑
q=1

Θq
F (µ)f qN , (2.28)
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where (yN (µ))m = yN m(µ) and

(AqN )mn = Aq(ζm, ζn), (f qN )n = F q(ζn), 1 ≤ m,n ≤ Nmax.

Since each basis function ζn belongs to the FE space XN , it can be written as a linear combination
of the FE basis functions {φNi }Ni=1:

ζn =
N∑
i=1

ζinφ
N
i , 1 ≤ n ≤ Nmax;

therefore, the RB “stiffness” matrix can be assembled once the corresponding FE “stiffness”
matrix has been computed. In fact, we have:

Aq(ζm, ζn) =
N∑
i=1

N∑
j=1

ζinA
q(φNi , φNj )ζjn, 1 ≤ m,n ≤ N, 1 ≤ q ≤ QA, (2.29)

F q(ζn) =
N∑
i=1

ζinF
q(φNi ), 1 ≤ n ≤ N, 1 ≤ q ≤ QF ; (2.30)

then, we can introduce basis matrices ZN ∈ RN×N , 1 ≤ N ≤ Nmax:

(ZN )jn = ζnj , i.e. ZN = [ ζ1 | . . . | ζN ] ∈ RN×N , 1 ≤ N ≤ Nmax,

so that the nth column of ZNmax contains the vector ζn ∈ RN of FE basis coefficients associated
with the nth RB basis function. In this way, (2.29)-(2.30) can be rewritten as follows:

AqN = ZTAqNZ, f qN = ZT f qN , (2.31)

where

(AqN )ij = Aq(φj , φi), (f qN )i = F q(φi) (2.32)

is the corresponding FE “stiffness” matrices and right-hand-sides. Reduced basis structures can
thus be computed, starting from the full-order discretization structures, through a pre- and
post-multiplication by rectangular basis matrices; see Fig. 2.1 from a schematic representation.

Figure 2.1: Schematic representation of the reduced basis projection.

Although being dense (rather than sparse as in the FE case), since the RB basis elements have
global support, the system matrix is very small because its size N is presumably small – and,
of course, independent of the FE space dimension N (see e.g. chapter 3 of [237]). However,
we point out that the computational savings provided by this projection operation would be
rather modest – despite the very small size of the RB system –if system (2.28) were generated
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by direct appeal to the full-order truth approximation structures (2.32). In this way, thanks to
the Offline/Online strategy, based on the affinity assumption, computation entails an expensive
µ-independent Offline stage performed only once and an Online stage for any chosen parameter
value µ ∈ D, whose complexity depends only on N and no more on the dimension of the full-order
system N .

We close this section by pointing out the connection between the RB approximation and the
FE approximation from an algebraic standpoint. Let us denote by yN ∈ RN and yN ∈ RN
the vectors of degrees of freedom of the FEM and of the RB approximation, associated to the
functions yN ∈ XN and yN ∈ XN , respectively. Moreover, let AN (µ) and AN (µ) be the matrices
corresponding to the FEM and to the RB discretization, respectively, for any given parameter
value µ ∈ D. In this way, the reduced linear system (2.28) can be rewritten as

AN (µ)yN (µ) = fN (µ), (2.33)

whereas the full-order FEM linear system would read

AN (µ)yN (µ) = fN (µ). (2.34)

In order to make a connection between the RB and the FE linear systems, we can express (for
the sake of simplicity, without considering a basis orthonormalization)

yN (µ) = ZN (yN (µ) + δN (µ)), (2.35)

where the error term δN ∈ RN accounts for the fact that ZNyN is not the exact solution of the
full-order system and a priori is not vanishing. By plugging the expression (2.35) into (2.34) and
multiplying the system by ZTN , we obtain ZTNAN (µ)ZN (yN (µ) + δN (µ)) = ZTN fN (µ). Thanks
to (2.31) and to (2.33), we thus find that

AN (µ)δN (µ) = 0,

i.e. the algebraic counterpart of the Galerkin orthogonality property, fulfilled by the RB approx-
imation, that is: a(yN (µ) − yN (µ), wN ) = 0, for any wN ∈ XN . On the other hand, setting
δN (µ) = ZNδN (µ), we have

yN (µ) = ZNyN (µ) + δN (µ), (2.36)

where now the error term δN ∈ RN is represented in the reduced vector space RN . Plugging
(2.36) into (2.34), we end up with

AN (µ)δN (µ) = fN (µ)− AN (µ)ZNyN (µ),

i.e. the algebraic counterpart of the error residual relationship (2.37), which constitutes the basis
of a posteriori error estimation procedures, discussed in the forthcoming section.

2.3 A posteriori error estimation
The motivations for error estimation – efficiency and reliability – introduced in Sect. 2.1 lead to
some necessary requirements on the construction and evaluation of the error bounds. First, the
error bounds must be rigorous, i.e. valid for all N and for all parameter values in the parameter
domain D (non-rigorous error “indicators” may suffice for adaptivity during basis assembling,
but not for reliability of the Online evaluation); reasonably sharp, and very efficient, relying –
such as the solution and output approximations – on a suitable Offline/Online procedure, so that
the Online evaluation of the RB error bounds results independent of N .
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Let us now consider a posteriori error bounds for the field variable yN (µ) and the output sN (µ) in
the elliptic coercive (compliant) case (2.23)-(2.24); extensions to noncompliant, noncoercive and
nonlinear problems will be detailed in the following. Here we introduce two basic ingredients of
our error bounds – the error residual relationship and lower bounds of stability (here, coercivity)
factors – which will be exploited also in the error estimation for more general classes of problems.

The central equation in a posteriori theory is the error residual relationship. In particular,
it follows from the problem statements for yN (µ), (2.6), and yN (µ), (2.11), that the error
e(µ) := yN (µ)− yN (µ) ∈ XN satisfies

A(e(µ), v;µ) = r(v;µ), ∀ v ∈ XN . (2.37)

Here r(v;µ) ∈ (XN )′ (the dual space to XN ) is the residual,

r(v;µ) := F (v;µ)−A(yN (µ), v;µ), ∀ v ∈ XN . (2.38)

Indeed, (2.37) directly follows from the definition (2.38), F (v;µ) = A(yN (µ), v;µ), ∀ v ∈ XN ,
the bilinearity of A(·, ·;µ), and the definition of e(µ). It shall prove convenient [237] to introduce
the Riesz representation of r(v;µ), ê(µ) ∈ XN , satisfying

(ê(µ), v)X = r(v;µ), ∀ v ∈ XN . (2.39)

This allows us to write the error residual equation (2.37) as

A(e(µ), v;µ) = (ê(µ), v)X , ∀ v ∈ XN (2.40)

and it follows that the dual norm of the residual can be evaluated through the Riesz representation:

‖r( · ;µ)‖(XN )′ := sup
v∈XN

r(v;µ)
‖v‖X

= ‖ê(µ)‖X ; (2.41)

this expression is important for the Offline-Online strategy developed below.

As a second ingredient, we need a positive, parametric lower bound function

0 < αNLB(µ) ≤ αN (µ) ∀µ ∈ D, (2.42)

for the FE coercivity constant8 defined as

αN (µ) = inf
w∈XN

A(w,w;µ)
‖w‖2X

; (2.43)

Instead of computing αN (µ) by solving an eigenproblem for each parameter value µ, we use the
lower bound αNLB(µ) since its Online evaluation, for any value of µ ∈ D is independent of N and
thus fulfills the efficiency requirements on the error bounds articulated before.

An efficient algorithm for the computation of αNLB(µ) is given by the so-called Successive Constraint
Method (SCM), widely analyzed in [150, 280, 146]. We present the natural norm version for
noncoercive problems in the analysis of the Stokes problem (Sect. A.3 of Appendix A), as well as
a possible extension to nonlinear problems for the Navier-Stokes case (Sect. A.3.2). Here, we only
remark that the SCM algorithm – which is based on the successive solution of suitable linear
optimization problems – has been developed for the special requirements of the RB method, and
features an efficient Offline-Online strategy.

8As we assumed that the bilinear form is coercive and the FE approximation spaces are conforming, it follows
that αN (µ) ≥ α(µ) ≥ ᾱ > 0, ∀µ ∈ D.

40



2.4. Extension to nonaffine problems

We define error estimators for the solution (in the energy norm) as

∆N (µ) := ‖ê(µ)‖X
(αNLB(µ))1/2 . (2.44)

Moreover, under the compliance assumption (i.e. if A(·, ·;µ) is a symmetric bilinear form and
L(·;µ) ≡ F (·;µ)), the output converges as the “square” of the energy error, i.e. it verifies the
following property:

sN (µ)− sN (µ) = |||yN (µ)− yN (µ)|||2µ; (2.45)

in this case, the error estimator for the output are given by

∆s
N (µ) := ∆2

N (µ) ≡ ‖ê(µ)‖2X
αNLB(µ)

. (2.46)

Although this latter result depends critically on the compliance assumption, extensions via adjoint
approximations to the noncompliant case are also possible (see e.g. [237, 256] and the application
to the Stokes case in Sect. 3.4.2-3.4.3). Nevertheless, the error bounds (2.44)–(2.46) are of no
utility without an accompanying Offline-Online computational approach. The computationally
crucial component of all the error bounds introduced is the dual norm ‖ê(µ)‖X of the residual,
which can be computed through an Offline-Online procedure; details about these expressions are
reported in Appendix A for the Stokes (Sect. A.2.1) and the Navier-Stokes (Sect. A.2.2) case.

2.4 Extension to nonaffine problems
We briefly discuss in this section the extension of the RB methodology to nonaffine problems,
which are particularly relevant to our geometrical parametrizations and related applications. Also
other (more general) classes of problems, such as noncompliant and noncoercive problems, can
be tackled by the RB methodology. In the next chapter the case of Stokes and Navier-Stokes
problems – representing one of the most remarkable cases of noncoercive problems – will be
extensively treated, In the same chapter, an example of noncompliant problem is presented as
well, when dealing with linear (noncompliant) or quadratic outputs of Stokes variables. For a
general introduction to noncompliant and noncoercive problems the interested reader can refer
to [237,256].

As already remarked in Sect. 2.2.4, the assumption of affine parametric dependence (1.7) is
fundamental in order to exploit the Offline-Online strategy and then minimize the marginal cost
associated with each input-output evaluation. However, also nonaffine problems, i.e. problems
in which condition (1.7) is not still valid, can be efficiently treated in the RB framework. In
this case, we rely on the Empirical Interpolation Method (EIM) [21,122,90], which is based on
adaptively chosen interpolation points and global shape functions, and allows to recover the
assumption of affine parametric dependence in nonaffinely parametrized operators (e.g. linear,
bilinear forms, etc.). In the case of a nonaffinely parametrized bilinear form A(v, w;µ), the latter
is replaced by an affinely parametrized approximation of the form

A(v, w;µ) =
Q∑
q=1

Θq(µ)AqEIM(v, w) + εEIM(v, w;µ), (2.47)

where the error term εEIM needs to be controlled to an acceptable tolerance. We provide a short
presentation of the EIM procedure based on [21]. Let us denote by g(x,µ) ∈ C0(D;L∞(Ω)) a
scalar function depending on both the spatial coordinates x and the parameters vector µ in a
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nonaffine way; the extension to tensors through an element-wise procedure is straightforward.
The goal is to find an approximate expansion of the form

gM (x,µ) =
M∑
j=1

Θj(µ)ζj(x), (2.48)

where Θj(µ), j = 1, . . . ,M , are parameter-dependent functions and ζj(x), j = 1, . . . ,M , are
parameter-independent functions, denoted also shape functions. Being an interpolation procedure,
the EIM procedure seeks a sequence of (nested) sets of interpolation points TM = {p1, . . . ,pM}
(magic points), with pj ∈ Ω for each j = 1, . . . ,M , and a set of shape functions ζj(x), in order to
compute the expansion (2.48) by solving the following Lagrange interpolation problem:

M∑
j=1

BMi,jΘj(µ) = g(pi,µ), ∀ i = 1, . . . ,M,

where BM ∈ RM×M is defined as (BM )ij := ζj(pi), i, j = 1, . . . ,M . Let us denote by ΞEIMtrain ⊂ D
a large training set, Mmax the maximum number of terms, ε∗EIM a fixed tolerance, and select an
initial parameter value µ1. The EIM procedure [21] is as follows:

ζ1(x) := g(x,µ1); compute p1 := arg ess supx∈Ω |ζ1(x)|;
q1 = ζ1(x)/ζ1(p1); G1 := span(ζ1), set B1

11 = 1;
for M = 2 : Mmax

solve µM := arg maxµ∈ΞEIM
train

infv∈GM−1 ||g(·,µ)− v||L∞(Ω) (linear programming)
set ζM (x) := g(x,µM ), GM := span(ζ1, . . . , ζM )
solve

∑M−1
j=1 σM−1

j qj(pi) = ζM (pi), i = 1, . . . ,M − 1;
compute (residual) rM (x) := ζM (x)−

∑M−1
j=1 σM−1

j ζj(x);
compute pM := arg ess supx∈Ω |rM (x)|;
set qM (x) = rM (x)/rM (pM ), BMij = qj(pi), i, j = 1, . . . ,M ;
if maxµ∈ΞEIM

train
infv∈GM ||g(·,µ)− v||L∞(Ω) < ε∗EIM

Mmax = M − 1;
end;

end.

In the end, given an approximation gM (x,µ),M < Mmax, we denote the one point error estimator
the following quantity (very inexpensive to compute):

ε̂M (µ) = |g(pM+1;µ)− gM (pM+1;µ)|, (2.49)

corresponding to the difference between the function and the interpolant at the point pM+1,
which gives the largest residual rM (x). While not rigorous as a posteriori error bound, this
quantity proves to be an intuitive measure of the error committed by the EIM procedure [21].
Advances in error bounds developments have been presented in [90,122,200,226].

In practice, if the problem9 is not affinely parametrized (e.g. when the geometrical transformation
(2.15) is not affine, see Sect. 2.5.2, or the physical coefficients appearing in the tensors νo,k, χo,k,
ηo,k are nonaffine functions of x and µ), the parametrized tensors in (2.17) depend both on the
parameter µ and the spatial coordinate x. In this case, the operators can not be expressed as in

9For the sake of simplicity, we consider here a parametrized bilinear form A(·, ·;µ) corresponding to a pure
diffusion operator; for more general operators, the same procedure is applied to each parametrized tensor.
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(1.7) and we thus need an additional pre-processing, before the FE assembling stage, in order
to recover the affinity assumption. According to EIM – considering for instance the tensor νk –
each component νkij(x,µ) is approximated by an affine expression given by

νkij(x,µ) =
Kk
ijl∑

l=1
βijkl (µ)ηijkl (x) + εkij(x,µ); (2.50)

all the functions βijkl ’s and ηijkl ’s are efficiently computable scalar functions and the error terms
are guaranteed to be under some tolerance,

‖εkij(·;µ)‖∞ ≤ εEIMtol ∀µ ∈ D.

In this way, we can identify the µ-dependent functions βijkl (µ) in (2.50) as the functions Θq
A(µ)

in (1.7), where q is a condensed index for (i, j, k, l), while the µ-independent functions will be
treated as pre-factors in the integrals which give the µ-independent bilinear forms Aq(w, v).
The nonaffine treatment is really important since many problems involving more complex
geometrical parametrizations and/or more complex physical properties are hold by nonaffine
parametric dependence. Not only, EIM has been exploited also to deal with nonlinear operators
involving polynomial functions of the variables, for instance in [122].

2.5 Geometrical reduction: main features and goals
The complexity of geometrical models is nowadays increasing in optimal design together with
engineering applications, implying the importance of automation in computer-aided design (CAD)
and the need of a strong geometrical reduction. Since shape representation is highly specific
problem-dependent, various methods have been proposed in several engineering contexts; for a
review of shape parametrization techniques we refer the reader to [286,104,214].
Two different approaches in geometrical shape optimization are the local boundary variation [249]
and explicit boundary shape parametrizations [59, 26, 286]. The former uses the discrete nodes
of the triangulation lying on the boundary as design variables and their displacement for the
shape deformation. Since very fine meshes are needed for complex shapes or flows, the number of
design variables may become very large, leading to very high computational costs, and sometimes
it is difficult to preserve the regularity of the geometry. The latter uses polynomial or spline
representations (e.g. Bézier curves, B-spline curves, etc.) depending on some weights and a set of
control points, which are treated as parameters. The drawbacks of this approach are that (i) the
number of parameters used to describe the shapes may become high-dimensional for arbitrarily
complex shapes and that (ii) after each shape deformation, remeshing is still required.

Neither the boundary variation nor the boundary parametrization represent the ultimate choice
to define a shape parametrization fitting a reduced basis framework for parametrized PDEs.
Rather, we turn to global domain parametrizations in order to solve efficiently shape optimization
problems and other shape-related inverse problems by means of a fixed domain approach. Not
only, the introduction of a shape parametrization has to be seen as a first geometrical reduction
step, provided that the parametric map is sufficiently flexible and low-dimensional. In particular,
we can evaluate shape parametrization methods according to five criteria:

1. computational efficiency: the parametric shapes must be computable efficiently, by means
of a compact and effective set of design variables, with little loss of numerical precision,
and preferably allows a parallel implementation;

2. generality: the parametrization method must be able to describe smooth, regular shapes
with arbitrary precision as the number of parameters used to describe the shape is increased;
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3. flexibility: the number of parameters and their effect on the shapes must be tunable by the
user, e.g. to add control points near areas of the shape where the design is more sensitive
to small variations;

4. transferability: it should be possible to transfer the parametric shapes between the CAD
program used by designers, and the finite element software used by the engineers, without
manual pre-processing steps in between. This also includes being able to transfer the
optimized shape back to the CAD program since many industrial manufacturing processes
nowadays can be directly driven by the CAD;

5. quality of shapes: of course, we typically want to avoid self-intersection of shapes, singular
points, cusps, etc. We might also demand some minimum level of regularity from the
shapes (e.g. Ck for k ≥ 1), depending on the problem at hand, as well as lower continuity
requirements for some parts of the geometry (e.g. NURBS patches can have repeated knots
with only C0 continuity locally).

In view of exploiting the RB method for the sake of computational reduction, a suitable shape
parametrization should not only realize a good compromise between these criteria – in particular,
flexibility and computational efficiency – but also allow to fit some unavoidable requirements
of the parametrized framework, such as the affinity assumption – or at least not to cause an
overwhelming extracost if this assumption is not automatically verified and has to be properly
recovered. Based on these features, different options for the construction of the parametric map
T ( · ;π) have been considered in the framework of reduced basis applications. For example, affine
or nonaffine maps built by hands and based on a domain decomposition approach have been
introduced in order to deal with simple cartesian geometries; several extensions to geometries
with curved boundaries have been also implemented, but leading to large parametric complexities
(in terms of affine expansions of the operators) for more involved geometries.
An alternative way, exploited in our applications for constructing flexible but low-dimensional
maps, is based on the so-called free shape representations. The most popular technique within
this group is the Free-Form Deformation (FFD) technique (see Sect. 2.6) which is based on tensor
products of splines and gives a global nonaffine transformation map. Another technique which
we have successfully coupled with the RB framework and allows to construct such a map is given
by the Radial Basis Function (RBF), which is a general paradigm for interpolation of scattered
data in high dimensions. In the following sections we present these approaches, which will be
exploited in the examples discussed in Part III for the description of complex geometries arising
from some haemodynamics applications.

2.5.1 Automatic piecewise affine maps

Affine maps represent the simplest example of parametric maps to transform the original problem
(2.13) into a parametrized problem defined on the fixed, reference domain. Their definition is
elementary on a simple, Cartesian geometry where the geometrical parameters are shape properties
such as lengths, thicknesses, diameters or angles. Moreover, it allows the parametrized PDE
to straightforward inherit the affinity assumption, crucial for the efficacy of the Offline/Online
strategy. Not only, the generation of this kind of maps can be made automatic thanks to the
introduction of a suitable domain decomposition paradigm also on curved and more general
geometries; clearly, increased complexity in geometry and operator will result in more terms
in affine expansions, with a corresponding increase in the RB (Online) computational costs.
As already mentioned in Sect. 2.2.1, by introducing the RB triangulation (2.14), original and
reference subdomains are linked via a mapping T (·;µ) : Ωk → Ωk

o(µ), 1 ≤ k ≤ Kdom. These
maps must be individually bijective, collectively continuous, which means they have to fulfill the
following interface condition:

T k(x;µ) = T k
′
(x;µ), ∀x ∈ Ω̄k ∩ Ω̄k

′
, 1 ≤ k < k′ ≤ Kdom. (2.51)
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In the affine case, for the kth subdomain (1 ≤ k ≤ Kdom) the precise affine transformation is then
given, for any µ ∈ D and x ∈ Ωk, by

T ki (x,µ) = Cki (µ) +
d∑
j=1

Gkij(µ)xj , 1 ≤ i ≤ d (2.52)

for given translation vectors Ck : D → Rd and linear transformation matrices Gk : D → Rd×d.
The linear transformation matrices can effect rotation, scaling and/or shear and have to be
invertible. The associated Jacobians are defined as

JkT (µ) = |det (Gk(µ))|, 1 ≤ k ≤ Kdom;

for invertible mappings they are strictly positive. In particular, the software rbMIT [149] used for
the RB computations allows to build efficient affine mappings in an automatic fashion based on a
domain decomposition made up by some “building blocks” introduced in this section; for clarity,
we concentrate on a single subdomain in the two-dimensional case (d = 2). In this case, straight
lines are mapped into straight lines and parallelism is preserved, a parallelogram is mapped
into a parallelogram and hence a triangle into a triangle; moreover, affine transformations map
ellipses into ellipses. These features are exploited for the development of an automatic domain
decomposition technique that is suitable for the RB context; the interested reader can refer to
Sect. A.5 of Appendix A for more details related to the construction of basic RB triangulations
built on (standard) triangles, elliptical triangles and general “curvy” triangles.

2.5.2 Automatic nonaffine maps: volume-based parametrizations

For problems with simple domains and/or simple sizing operations, piecewise affine maps defined
over a suitable domain decomposition are workable. For more complex problems, although the
construction can be performed automatically, the computational cost might sensibly increase,
because of the splitting generated by the domain decomposition. In this case, it is preferable to
turn to global nonaffine maps, defined on the whole domain Ω, even if this causes the parametrized
formulation of the PDE problem not to satisfy automatically the affinity assumption, and thus
imply an additional step to recover this crucial feature.
We denote as nonaffine any transformation which cannot be written under the form (2.52). In
this case, for the kth subdomain (1 ≤ k ≤ Kdom), for any µ ∈ D and for any x ∈ Ωk, xo ∈ Ωko(µ),
the nonaffine transformation is given by a generic expression

xo i = T naff,k
i (x,µ), 1 ≤ i ≤ d, (2.53)

and the Jacobians JkT (x,µ) = |det (G naff,k(x,µ))|, 1 ≤ k ≤ Kdom, are strictly positive, where
G naff,k : Ωk×D → Rd×d are the Jacobian matrices of the mappings T naff,k(·,µ) defined in (2.19).
As in the affine case, the interface condition (2.51) allows us to interpret the set of local mappings
as a global bijective piecewise affine transformation T (·;µ) : Ω→ Ωo(µ), given for any µ ∈ D by

T (x,µ) = T aff∨ naff,k(x;µ), k = min
k′∈{1,...,Kdom}|x∈Ωk′

k′. (2.54)

Several techniques are available in literature for constructing nonaffine parametric maps which are
smooth, sufficiently flexible but low-dimensional; in particular, computer graphics techniques (e.g.
in the so-called soft object animation field) provide powerful algorithms for modifying shapes. In
the following sections, we focus on a widespread paradigm developed in this field – the so-called
volume-based representations [104] – which allow to perform deformations whatever the complexity
of the shape. In particular, by means of maps relying on such a representation, geometry can be
parametrized independently from PDE models, discrete formulations and computational meshes.
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Volume based representations operate on a control volume, regardless of the object to be deformed,
embedded in the volume. Parametric maps are thus defined by introducing a set of control points
over the control volume and considering their displacements (which actually induce a shape
deformation) as geometrical parameters, rather than geometrical properties directly related with
the shape itself. In this way, shifting a control point causes a deformation of the embedding space
– the parametric map is defined inside the whole control volume – and thereby induces a global
modification of each shape located inside this volume. Two possible techniques leading to free
shape representations are detailed in Sect. 2.6 and 2.7.

2.6 Free-Form Deformation techniques
A first case of free shape representation is given by the Free-Form Deformation (FFD) technique,
introduced first on computer graphics by Sederberg and Parry in the late 80s [297]. This technique
consists of embedding the shape to be deformed inside a control volume and then of modifying –
by acting on a lattice of control points – the metrics of this space and thus the shape embedded
into it, rather than modifying the shape directly. A modification of the control points position
thus results in a deformation inside the control volume and, automatically, of the computational
FE mesh. A simple physical analogy for FFD is to consider a parallelepiped of clear matter,
flexible (at the limit, like a jelly) material in which we embed an object we wish to deform. The
object is also flexible, so that it can be deformed along with the external parallelepiped.

Based on tensor product of splines, FFD inherits from boundary parametrization techniques the
possibility to handle with global deformations by acting on a set of control points [10,40], but
provides an easier tool – since any explicit parametrization is required – which can be applied to
virtually any geometrical model.
A simple version of the FFD construction is defined as follows, as a mapping from Rd to Rd
through a d-variate tensor product Bernstein polynomial. For the sake of simplicity, we restrict
ourselves to the two-dimensional case (d = 2), extension to three dimensions is straightforward.

Given a fixed rectangular domain D containing the reference domain Ω ⊂ D we wish to deform,
we introduce an affine map

Ψ : D → D̂ ≡ (0, 1)2, x̂ = Ψ(x), x ∈ D,

with Ψ(·) a monotonic function, in order to define FFD – in a simpler way – in the coordinates
x̂ = (x̂1, x̂2) of the spline parameter space (0, 1)2. We thus select an ordered lattice of control
points Pl,m ∈ (0, 1)2 (the unperturbed configuration), so that

Pl,m =
[

l/L
m/M

]
, l = 0, . . . , L, m = 0, . . . ,M.

A perturbation of the control points positions is specified by a set of (L+ 1)(M + 1) parameter
vectors µl,m ∈ R2 so that the perturbed configuration of the control points results in

Po
l,m(µl,m) = Pl,m + µl,m, (2.55)

giving in total 2(L+ 1)(M + 1) possible degrees of freedom. Very often, only small subsets of
these are selected as design variables if we want to perform a sensible geometrical model order
reduction; moreover, several rows or columns of control points can be fixed to obtain desired levels
of continuity or to “anchor” certain parts of the domain. In general, we indicate the effectively free
scalar-valued parameters chosen as design variables (or actual degrees of freedom) as µ1, . . . , µp,
each corresponding to the displacement of a control point in either the x̂1 or the x̂2 direction, i.e.
to one of the components of a vector µl,m, and call p the number of degrees of freedom.
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From now on we assume that the shape parametrization involves only those µl,m corresponding
to the actual degrees of freedom, omitting the parameters that have been fixed. in this way,
we denote by µ = (µ1 . . . , µp), even if also other control points – which do not correspond to
effective design variables – obviously go under displacement.
We thus construct a parametric domain map T̂ (·;µ) : D̂ → D̂o(µ) by which the updated geometry
is computed as follows:

T̂ (x̂;µ) =
L∑
l=0

M∑
m=0

bL,Ml,m (x̂)Po
l,m(µl,m) =

L∑
l=0

M∑
m=0

bL,Ml,m (x̂)(Pl,m + µl,m), (2.56)

where

bL,Ml,m (x̂) = bLl (x̂1)bMm (x̂2) =
(
L

l

)(
M

m

)
(1− x̂1)L−lx̂l1(1− x̂2)M−mx̂m2 (2.57)

are (Bézier) tensor products of the univariate Bernstein basis polynomials

bLl (x̂1) =
(
L

l

)
x̂l1(1− x̂1)L−l, bMm (x̂2) =

(
M

m

)
x̂m2 (1− x̂2)M−m.

defined on the unit square D̂ with local variables (x̂1, x̂2) ∈ (0, 1)2. The shape and continuity
of a deformation within the volume is related to the degree L, M of the Bernstein polynomials.
Finally, the FFD mapping T (·,µ) is obtained as the composition

T (·;µ) : D → Do(µ), T (x;µ) = Ψ−1 ◦ T̂ ◦Ψ(x;µ); (2.58)

in particular, the parametrized domain Ωo(µ) is obtained as Ωo(µ) = Ψ−1 ◦ T̂ ◦ Ψ(Ω;µ); see
Fig. 2.2 for a representation of the mapping construction. An example of FFD mapping to
represent deformations of a two-dimensional airfoil of the NACA family is shown in Fig. 2.3. In
this case, the design parameters are given by the p = 8 vertical displacements of the control
points located in the interior part of the domain.

Figure 2.2: Schematic diagram of FFD technique: unperturbed control points Pl,m, perturbed
control points Po

l,m(µl,m), map x̂ = Ψ(x), T̂ (x̂;µ) and resulting FFD map T (x;µ) = (Ψ−1 ◦ T̂ ◦
Ψ)(x;µ).
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Figure 2.3: Example of shape deformation of a NACA0012 airfoil obtained through FFD mapping:
reference configuration and control points (left), deformed configuration and control points (right).

Bernstein basis polynomials are used mainly because they fulfill the partition of unity
L∑
l=1

bLl (x̂1) =
M∑
m=1

bMm (x̂2) = 1 (2.59)

and positivity

bL,Ml,m (x̂) ≥ 0 ∀x̂ ∈ (0, 1)2

properties. Using the first property, it can be shown that FFD are a particular case of the
transformations defined as perturbation of the identity, i.e. T (x; 0) = x. A more detailed analysis
of this class of mappings will be addressed in sect. 4.4. One benefit of the simple FFD defined
above is that the parametric transformations of the reference domain are simple polynomial
functions in spatial coordinates and parameter, and they can be evaluated numerically through
the stable De Casteljau algorithm [95], while their derivatives can be expressed in terms of tensor
products of lower order Bernstein polynomials by means of the following formula [95]:

∇bL,Ml,m (x̂) =
[

L(bL−1
l−1 (x̂1)− bL−1

l (x̂1)bMm (x̂2))

M(bM−1
m−1 (x̂2)− bM−1

m (x̂2)bLl (x̂1))

]T
. (2.60)

This gradient formula is particularly useful for evaluating the parametrized tensors (2.18)–(2.20)
appearing in the parametrized formulation (1.1)-(1.2) of our PDE problems, which depend on
the Jacobian (2.19) of the map. Exploiting the partition of unity property (2.59), thanks to the
formula (2.60), in the FFD case we obtain

JT (x;µ) = J−1
Ψ (x)

[
I +

L∑
l=0

M∑
m=0
∇bL,Ml,m (Ψ(x))µl,m

]
JΨ(x). (2.61)

Thus, not only the FFD map T (·;µ) can be stably evaluated, but also its Jacobian JT (·;µ) as well
as the parametrized tensors (2.18)–(2.20). Moreover, the determinant of the Jacobian provides us
with control over the volume change that a body experiences under FFD: by computing |det(JT )|,
it can be shown that the largest and smallest polynomial coefficients provide an upper and a
lower bound, respectively, on the volume change FFD. A condition on the well-posedness of the
FFD map, ensuring also that the connectivity of the lattice of control points is preserved, will be
briefly discussed in Sect. 4.4.
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Concerning generality and quality of shapes, FFD techniques lead to low-dimensional parametriza-
tions without loss of accuracy, since perturbations on parameters yield smooth shape deformations
even if control points are not related to the shape boundary. In particular, parametric curves and
surfaces remain parametric under FFD, geometrical singularities can be taken into account (since
the initial shape including its singularities is deformed) and the smoothness of the deformation is
controlled thanks to the Bernstein polynomials appearing in the map.
Regarding efficiency, the number of design variables depends on the user’s choice: we can keep
fixed a subset of control points or only allow them to move in one direction; this allows the user
to keep the number of FFD parameters to a desired low level (in our case P < 10 is typical).
In particular, the number and position of control points chosen have a deep impact on FFD
flexibility: it is crucial to maximize the influence of the control points by placing them close
to the more sensitive regions of the configuration. Adaptive procedures for the selection of the
control points based on sensitivity analysis and correlations are also available (see e.g Sect. 4.8).

FFD have been largely employed for parametrization and optimal design of aerodynamic surfaces
such as wings, for instance by the group of Désidéri [88, 82, 11] and by Samareh [287]. A nice
study of shape optimization of fluid domains by means of FFD techniques for some examples of
engineering interest can be found in a paper by Lehnhäuser and Schäfer [189].
In the RB context, FFD has previously been proposed as a parametrization technique for inverse
airfoils design in potential flows by Lassila and Rozza [185] and for thermal flows control by the
author with Lassila and Rozza [281]. In this Thesis, we aim at enhancing the computational
performance in the shape optimization process for viscous flows, coupling FFD and RB methods
for Stokes/Navier-Stokes flows, developing what started in these two previous works.

2.7 Radial Basis Function techniques
Whereas Free-Form Deformation show great flexibility and easiness of handling, they suffer from
some limitations, since (i) the control points cannot be chosen freely, being the nodes of a lattice
(ii) it is not possible to perform a boundary control and (iii) the process is not interpolatory. In
particular, using a rectangular lattice to describe deformations of irregular or complex shapes
makes the choice of control points crucially important; for example, control points located far
from the boundary to be optimized have less influence. Choosing the subset of active points is
therefore a critical issue, highly problem-dependent.

In order to overcome these limitations, an alternative method can be used for shape parametriza-
tion – still based on a set of control points, but which is in addition interpolatory: the Radial Basis
Function (RBF) technique. Originally used in neural networks and later applied to the solution of
PDEs in what is known as meshless methods, RBFs are now a widely used method for scattered
interpolation and reconstruction of surfaces and volumes. In particular, they provide a general and
flexible way of interpolating data in multi-dimensional spaces, even for unstructured data where
it is often impossible to apply polynomial or spline interpolation [155]. For a general introduction
on RBF method see for instance the monographs by Buhmann [50] or Wendland [320].

We first describe the RBF interpolation procedure (which is employed in the following chapters
also for different goals than shape parametrization, see e.g. Sect. A.3.2), focusing afterwards on
the construction of parametric maps based on this strategy. Without loss of generality, we restrict
ourselves to the two-dimensional case, where we denote by X = {x1, . . .xk} ⊆ R2 a set of k > 2
non-collinear points (usually called centers, with xi = (xi1, xi2)) and by Y = {y1, . . . yk} ⊆ R the
values at the centers which have to be interpolated.
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Radial Basis Function Φ(r)
Linear r
Spline type (Rλ) |r|λ, λ odd
Thin-Plate Spline (TPSλ) |r|λ log |r|, λ even
Multiquadric (MQ) (1 + r2)1/2

Inverse Multiquadric (IMQ) (1 + r2)−1/2

Inverse Quadratic (IQ) (1 + r2)−2

Gaussian (GS) exp(−r2)

Table 2.1: Several options for radial basis functions

Then, the RBF interpolant τ : R2 → R has the form

τ(x) = π(x) +
k∑
i=1

wi Φ(‖x− xi‖). (2.62)

In (2.62), the function Φ is a fixed basis function, which is radial with respect to the Euclidean
distance ‖x‖, π(·) : R2 → R is a bivariate polynomial function of (low) degree p, {wi}ki=1, wi ∈ R
is a set of coefficients corresponding to the centers xi. Common choices for RBFs are listed in
Tab. 2.1. Moreover, in many cases it is appropriate to scale the basis function with a so-called
shape parameter ε, so that the basis function is replaced by Φε(r) = Φ(εr).

The coefficients {wi}ki=1 and the polynomial π(·) are determined so that τ interpolates the data
y1, . . . , yk (interpolation constraints)

τ(xi) = yi, 1 ≤ i ≤ k (2.63)

and satisfies the additional requirements (side constraints)

k∑
i=1

wiϕ(xi) = 0 ∀ϕ ∈ Πq
2, q ≤ p, (2.64)

where Πq
2 is the space of all polynomials of degree up to q ≥ 1 in 2 unknowns. By imposing

the side constraints, we require that each polynomial up to degree p is interpolated exactly; we
discuss in Sect. 4.4 the geometrical meaning of this requirement, providing a general analysis of
RBF schemes and some conditions on the well-posedness of RBF parametric mappings. For the
sake of simplicity, we consider π(x) to be a polynomial function of degree p = 1, so that

π(x) = γ0 + γ1x1 + γ2x2;

moreover, we denote by w = (w1, . . . , wk)T ∈ Rk and γ = (γ0, γ1, γ2)T ∈ R3 the vectors whose
components are the coefficients w1, . . . , wk for the RBFs and for the polynomial, respectively.
Constraints (2.63)-(2.64) thus lead to the following linear system for the coefficients vector
[w γ]T ∈ Rk+3:[

M P
PT 0

] [
w
γ

]
=
[

y
0

]
(2.65)

where y = (y1, . . . , yk)T ∈ Rk, M ∈ Rk×k is the interpolation matrix of components

(M)ij = Φ(‖xi − xj‖), 1 ≤ i, j ≤ k

and P ∈ Rk×3 the matrix defined by imposing the side constraints:
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P =

 1 x11 x12
...

...
...

1 xk1 xk2

 .
Provided that the interpolation matrix M is nonsingular, we can invert (2.65) and obtain

w = (I−M−1PMPPT )M−1y, γ = MPPTM−1y,

where MP = (PTMP)−1, so that the RBF interpolant (2.62) is uniquely identified.

For shape parametrization in d dimensions – as well as for mesh deformation – we need d
interpolating functions, one for each coordinate direction. In the two-dimensional case, we shall
consider the centers {P1, . . .Pk} ⊆ R2 as the unperturbed configuration of the control points in
the reference domain Ω, being Pi = (Pi1, Pi2) for any i = 1, . . . , k, and {Po

1, . . .Po
k} ⊆ R2 as the

perturbed configuration of the control points in the original domain Ωo.
By introducing a set of (now vector-valued) coefficients {wi}ki=1, wi = (wi1, wi2)T ∈ R2, and
denoting by π(x) = c + Ax a polynomial function of degree 1, with c ∈ R2 and A ∈ R2×2, the
RBF map (2.62) can be rewritten in a compact form as

τ(x) = c + Ax + WT s(x), (2.66)

where s(x) = (Φ(‖x−P1‖), . . . ,Φ(‖x−Pk‖))T ∈ Rk and W = [w1, . . . ,wk]T ∈ Rk×2. Regarding
shape parametrizations, the polynomial of degree 1 represents the affine part of a deformation
(rotation and/or scaling), while the term WT s(x) depending on the control points adds a nonaffine
contribution. The RBF map (2.66) is thus a function of 2k+ 6 coefficients in the two-dimensional
case, which are determined by looking for a transformation such that: (i) each control point
Pi in the unperturbed configuration is mapped onto the corresponding control point Po

i in the
perturbed configuration, and that (ii) each affine transformation is recovered exactly (i.e. the
RBF interpolation is invariant with respect to rigid motions). This is equivalent to impose both
the interpolation and the side constraints (2.63)-(2.64), which now read:

τ(Pi) = Po
i , i = 1, . . . , k, (2.67)

k∑
i=1

wi = 0,
k∑
i=1

Pi1wi =
k∑
i=1

Pi2wi = 0. (2.68)

We point out that when dealing with mesh deformation or coupling between two different
phases, interpolation and side constraints (2.67)-(2.68) guarantee the conservation of virtual
work, total load and total momentum when the displacements are transferred from one phase to
another [155,217].

In order to fit the RBF technique in our parametrized framework, let us express the deformed
positions Po

i of the control points as

Po
i (µi) = Pi + µi, i = 1, . . . , k,

where µi = (µi1, µi2) is the displacement of the i-th control points. As in the FFD case, only
small subsets of p ≤ 2k displacements are selected as design variables – accordingly to some
problem-dependent criteria – if we want to perform a sensible geometrical reduction. We indicate
the actual degrees of freedom as µ = (µ1, . . . , µp), each corresponding to the displacement of a
control point in either the x1 or the x2 direction, i.e. to one of the components of a vector µi.
The parametric map T (·;µ) : Ω→ Ωo(µ) is thus given by

T (x;µ) = c(µ) + A(µ)x + W(µ)T s(x), (2.69)
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Figure 2.4: Schematic diagram of the RBF technique: on the left, the reference (or initial)
configuration Ω and the unperturbed control points Xi, i = 1, . . . , k; on the right, the deformed
(or target) configuration Ωo(µ) and the displaced control points Yi, i = 1, . . . , k.

where the coefficients c(µ), A(µ), W(µ) satisfy the constraints (2.67)-(2.68) and now depend
on µ ∈ Rp. As before, by denoting M ∈ Rk×k the interpolation matrix whose components
(M)ij = Mij are given by

Mij = Φ(‖Pi −Pj‖), 1 ≤ i, j ≤ k (2.70)

and P ∈ Rk×3 the matrix defined by imposing the side constraints:

P =

 1 P11 P12
...

...
...

1 Pk1 Pk2

 .
the coefficients (c(µ))m = cm(µ), (A(µ))mn = Amn(µ) and (W(µ))im = wim(µ), for 1 ≤ m,n ≤
2, 1 ≤ i ≤ k appearing in the map (2.69) are obtained by solving the following linear systems:[

M P
PT 0

] [
W1(µ)
γ1(µ)

]
=
[

Po
1(µ)
0

]
,

[
M P
PT 0

] [
W2(µ)
γ2(µ)

]
=
[

Po
2(µ)
0

]
(2.71)

being

Wm(µ) = (w1m, (µ) . . . , wkm(µ))T , Po
m(µ) = (P1m(µ), . . . , Pkm(µ))T , m = 1, 2

and

γ1(µ) = (c1(µ), A11(µ), A21(µ))T , γ2(µ) = (c2(µ), A12(µ), A22(µ))T .

A representation of the mapping construction is shown in Fig. 2.4. An example of RBF mapping
used to model deformations of a two-dimensional airfoil of the NACA family is shown in Fig. 2.5.
In this case, the design parameters are given by the p = 6 vertical displacements of the control
points located along the boundary sides.

Control points are usually chosen close to the boundary of the shape to be deformed (see Fig. 2.4),
even if in our case the parametrization is constructed independently from the computational mesh.
For a small number of control points, as in our approach, linear systems (2.71) can be efficiently
solved by a suitable direct method (we remark that matrix factorization is not depending on the
parameters). When using a large number of control points – as for example in fluid-structure
interaction coupled problems or, more generally, when dealing with mesh motion through RBF –
the matrix appearing in (2.71) may be badly conditioned and some difficulties may arise. In these
cases, suitable scaling or preconditioning strategies may help, as discussed for example in [50].
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In general, RBF maps provide more local control of the shape due to the ability to fine tune the
shape by adding locally more control points and by choosing the type and support radius of the
shape functions. The asymptotic behavior of Φ(h) is different among the selected basis functions,
and the choice on the various possibilities is performed according to shape regularity and to
convergence properties of the numerical method used to compute the coefficients appearing in
(2.62). For example, the linear RBFs exhibit better convergence properties, while the cubic RBFs
guarantee an enhanced shape smoothness.

RBFs can be divided into two groups, functions with compact support and functions with global
support. Whenever Φ(·) is an increasing function with global support, the influence of a center
on an evaluation node increases with the distance of the two nodes. Thus, the global character
of these functions tend to smooth out local effects, so that a large support radius yields a good
approximation order. On the other hand, a full matrix system has to be solved10. Introduced by
Wendland [319] and Wu [322], compactly supported RBFs attempt to reduce the bandwidth of
the otherwise full interpolation matrix (2.70). However, in this case the choice of the support
radius of the RBF functions, which is an additional parameter to be tuned, may become a critical
issue. Increasing the support radius tends to produce ill-conditioned interpolation systems and
lead to the Runge phenomenon [44]. On the other side, using a support radius that is too small
yields a large interpolation error, even though the system can be more easily solved. To conclude,
a drawback of the many different types of RBFs proposed in literature is that often the final
shape is quite sensitive to the choice of the shape function and its support radius parameter.
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Figure 2.5: Example of shape deformation of a NACA0012 airfoil obtained through RBF mapping:
reference configuration and control points (left), deformed configuration and control points (right).

Depending on the application at hand, we will discuss some possible choices of RBFs functions.
In any case, the versatility of RBFs comes at a price of complexity in guaranteeing the quality of
the remeshing interpolant.
Because of their excellent approximation properties, RBFs have been successfully applied to
many different areas, such as computer graphics, mesh deformation [269,69] and interpolation
between nonmatching meshes in FSI computations [25,70]. Another application of RBFs is in
simulation based optimization, where they are used to build a surrogate model for less expensive
black-box optimization; see e.g. [156] and references therein. In optimal design problems, RBFs
have been used as shape parametrization for airfoil shape optimization in [217,155], as well as for
topological optimization of structure in [318,317].

10Actually, this is not a big issue in our context, since k is rather small – k = O(10) if we desire a low-dimensional
shape parametrization – but may become somehow undesirable in applications of larger dimensions, such as mesh
deformations or interpolation between non-matching meshes.
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2.8 Other available options
In the previous sections we have illustrated just two paradigms: several extensions and modi-
fications are possible. First of all, different FFD or RBF mappings can be recast in a domain
decomposition framework, so that the parametric mapping is defined on a subregion close to the
shape which has to be deformed.
In this respect, several tools to adaptively refine or coarsen the FFD lattice in some parts of the
parametrized shape have been developed, as well as self-adaptive multilevel algorithms based
on a geometrical hierarchy of nested parametrizations of Bézier type, for instance, in order to
deal with multi-level representations, whenever interested in multi-grid optimization strategies.
Different FFD and/or RBF maps can be defined on different subdomains and coupled in order
to define piecewise a global map, even if this kind of procedures require careful handling and
implies large efforts for the computation of the parametrized tensors involved in the parametrized
formulation of the PDE problems.

On the other hand, FFD parametrizations can be built by considering more complex basis functions
instead of Bernstein polynomials (also denoted as Bézier parametrization case): extensions
of FFD to Non-Uniform and Rational B-Splines (NURBS) basis functions are also available
[10,290,179,104]. In this case, the FFD lattice is modelled by using B-splines functions instead of
a d-variate tensor product of Bernstein polynomials; further, the distribution of the control points
is not uniform, providing better local control of the object – this allows an exact representation
of shapes given by conic sections, for instance – and local deformations can be implemented by
locating the lattice on a specific part of the object.

Several other options for constructing different shape parametrizations are available, however we
will focus on the volume-based representations discussed above. We just mention the transfinite
interpolation method, used to build parametric mapping – the so-called transfinite mapping
– within the reduced basis element method. The reduced basis element method is a domain
decomposition method where the computational domain is decomposed into smaller blocks that
are topologically similar to a few reference shapes, and the reduced solution is expressed as a
gluing of basis functions defined on each local block (see e.g. [201,202]).
The idea of the transfinite mapping is to define the interior points of the original domain as linear
combinations of points on the boundaries [117]. In particular, each edge of the original domain
Ωo(µ) is obtained as a one-to-one mapping of the corresponding edge on the reference domain
Ω, through a vector of geometrical parameters µ. In this way, we extend the possibility to act
on the shape by moving its boundary already provided by boundary shape parametrizations, but
defining a global map between domains. By introducing suitable weights and projection operators
for each curvilinear side, the idea can be extended to general reference domains. More recent
applications to flow problems in parametrized networks exploiting transfinite mappings can be
found e.g. in [196,195,151].
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3 Reduced basis methods in
computational fluid dynamics
In this chapter we present the reduced basis approximation and a posteriori error estimation meth-
ods for the steady Stokes and Navier-Stokes equations. After deriving the abstract parametrized
formulation, we briefly recall the FE approximation and the main assumptions to ensure well-
posedness at both continuous and discrete level. Then, we introduce the RB approximation,
focusing on algebraic and approximation stability conditions, the Offline/Online decomposition
and the treatment of nonaffine problems.
We provide new a posteriori error estimates for Stokes and Navier-Stokes solutions, based on the
Babuška stability theory and on the Brezzi-Rappaz-Raviart theory, respectively. Moreover, we
prove some error estimates for both (general) linear and (velocity) quadratic outputs in the Stokes
case. We extend the Successive Constraint Method for the estimation of stability factors to the
Stokes and Navier-Stokes cases, for which more insights are provided in Appendix A. Further,
we address fluid dynamics problems in domains that are more general than those considered so
far in the RB literature. Finally, we present several numerical test cases, in order to show some
approximation features and computational performances.

3.1 Formulation of Stokes and Navier-Stokes problems
In this section we recall the necessary ingredients for the RB approximation of Stokes and
Navier-Stokes problems, and related a posteriori error estimation. The Navier-Stokes equations
provide a model of the flow motion for a viscous Newtonian incompressible fluid. In the steady
case they can be stated as follows:

−ν∆vo + δ(vo · ∇)vo +∇po = fo in Ωo
∇ · vo = 0 in Ωo
vo = 0 on ΓoD0

vo = goD on ΓoDg
−pono + ν

∂vo
∂no

= goN on ΓoN ,

(3.1)

where (vo, po) are the velocity and the pressure fields defined on the original domain Ωo, for
some given fo, goD, goN . Here Ωo ⊂ Rd for d = 2, 3 is assumed to be piecewise C2 with convex
corners, whereas the subscript/superscript “o” stands for “original”. The first equation expresses
the linear momentum conservation, the second one the mass conservation, which is also called
the continuity equation.
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Here fo = (fo1 , fo2 ) denotes a forcing term per unit mass, ν = µ/ρ denotes the kinematic viscosity,
where ρ is the (constant) density and µ the dynamic viscosity of the fluid. Moreover, we define
the Reynolds number as the non-dimensional ratio of convection to diffusion Re = L|v̄|/ν, where
L is a characteristic length of the domain Ωo and v̄ a typical velocity of the flow. Navier-Stokes
equations correspond to the case δ = 1; we concentrate on laminar flows, with Reynolds number
in the range [1, 103], in two-dimensional domains (d = 2). If δ = 0, the (quadratic) convective
term is neglected, obtaining the steady Stokes equations, which provide a model in the case of
slow motion of fluids with very high viscosity (low Reynolds number).

In what follows, we consider a partition ∂Ωo = ΓoD0
∪ ΓoDg ∪ ΓoN , then we prescribe homoge-

neous Dirichlet conditions on ΓoD0
, non-homogeneous Dirichlet conditions on ΓoDg and Neumann

conditions on ΓoN , such that the Dirichlet portion is ΓoD = ΓoD0
∪ ΓoDg ; no is the normal unit

vector to the boundary ∂Ωo. We denote the functional spaces for velocity and pressure fields
by Vo = (H1

0,Γo
D

(Ωo))2, Qo = L2(Ωo), respectively, where H1
0,Γo

D
(Ωo) = {v ∈ H1(Ωo) : v|Γo

D
= 0}.

Moreover, we introduce the space V g
o = {v ∈ (H1(Ωo))2 : v|Γo

D0
= 0, v|Γo

Dg
= goD}. The corre-

sponding abstract (or weak) form of Navier-Stokes equations (3.1) reads: find (vo, po) ∈ V g
o ×Qo

such that

ν

∫
Ωo
∇vo : ∇w dΩo −

∫
Ωo
po∇ ·w dΩo + δ

∫
Ωo

(vo · ∇)vo ·w dΩo =∫
Ωo

fo ·w dΩo +
∫

Γo
N

goN ·w dΓo, ∀w ∈ Vo∫
Ωo
q∇ · vo dΩo = 0, ∀ q ∈ Qo.

In order to incorporate the boundary conditions directly into the equations, we introduce a lift
function Lo,g ∈ (H1(Ωo))2 such that Lo,g|Γo

Dg
= goD, Lo,g|ΓoD0

= 0 (extension of non-homogeneous
boundary conditions to the interior of the domain) and denote v̂ = v− Lo,g, so that v̂|ΓD = 0;
for the sake of simplicity, we still denote v̂ with v, as no ambiguity occurs. Hence, the abstract
formulation of (3.1) reads: find (vo, po) ∈ Vo ×Qo such that, for all w ∈ Vo and q ∈ Qo,∫

Ωo
[ν∇vo : ∇w− po∇ ·w + δ(vo · ∇)vo ·w] dΩo + δ

∫
Ωo

[(Lo,g · ∇)vo ·w + (vo · ∇)Lo,g ·w] dΩo

=
∫

Ωo
fo ·w dΩo +

∫
Γo
N

goN ·w dΓo −
∫

Ωo
ν∇Lo,g : ∇w dΩo − δ

∫
Ωo

(Lo,g · ∇)Lo,g ·w dΩo,

−
∫

Ωo
q∇ · vo dΩo =

∫
Ωo
q∇ · Lo,g dΩo.

(3.2)

We assume to deal with two-dimensional, original domains Ωo ⊂ R2 made up of Kdom mutually
nonoverlapping open subdomains {Ωk

o}
Kdom
k=1 , so that the bilinear and linear forms of the weak

formulation, for 1 ≤ i, j ≤ 2, read as follows:

ao(v,w) =
Kdom∑
k=1

∫
Ωko
νoij

∂v
∂xoi
· ∂w
∂xoj

dΩo, bo(q,w) = −
Kdom∑
k=1

∫
Ωko
q∇ ·w dΩo,

co(v,w, z) =
Kdom∑
k=1

∫
Ωko

(v·∇)w·z dΩo, 〈F os ,w〉 =
Kdom∑
k=1

∫
Ωko

fo ·w dΩo+
K̃dom∑
k=1

∫
Γo,k
N

gN ·w dΓo,

denoting with νoij = νδij (where δij indicates the Kronecker symbol) and with K̃dom the number
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of subportions in which the Neumann portion ΓN is divided through the domain decomposition,
where Γo,kN = ∂Ωko∩ΓoN . Until stated otherwise, summation over repeated indices i, j is understood.
The terms due to non-homogeneous Dirichlet boundary conditions can thus be expressed as:

do(v,w) = co(Lo,g,v,w) + co(v, Lo,g,w)

〈F od ,w〉 = −ao(Lo,g,w)− δco(Lo,g, Lo,g,w), 〈Go, q〉 = −bo(q, Lo,g〉,

so that, denoting by 〈F o,w〉 = 〈F os ,w〉+ 〈F od ,w〉, the abstract formulation (3.2) can be rewritten,
in a more compact form, as follows: find (vo, po) ∈ Vo ×Qo such that{

ao(vo,w) + δdo(vo,w) + bo(po,w) + δco(vo,vo,w) = 〈F o,w〉 , ∀w ∈ Vo
bo(q,vo) = 〈Go, q〉 , ∀q ∈ Qo.

(3.3)

Starting from the abstract formulation (3.3), we derive in the next section the parametrized
abstract formulation underlying our reduced basis approximation.

3.2 Parametrized abstract formulation and analysis

We now introduce an input-parameter vector µ = (µ1, . . . , µp)T ∈ D of Rp, which may characterize
either the geometrical configuration or physical properties, boundary data and sources1.
Hence, we assume that the original domain can be expressed as Ωo = Ωo(µ) and it is obtained as the
image of a reference domain Ω = Ωo(µref) through a parametrized mapping T (·;µ) : R2×D → R2.
In the most general case, original and reference subdomains can be linked via either an affine or
a nonaffine mapping T k(·;µ) : R2 ×D → R2, such that Ωko(µ) = T k(Ωk;µ), 1 ≤ k ≤ Kdom (see
Sect. 2.5.2). For the sake of notation, we do not explicit the dependence on µ in all the other
virtually µ-dependent quantities as in Sect. 2.2.1.
We now derive the parametrized formulation by tracing (3.3) back on the reference domain Ω. We
point out that this operation is necessary when dealing with geometrical parameters. Otherwise,
if parameters characterize just physical properties, we do not need to map the problem back to a
reference configuration (i.e., in this case Ω ≡ Ωo).

In what follows, we consider a partition ∂Ω = ΓD0 ∪ ΓDg ∪ ΓN , homogeneous Dirichlet conditions
on ΓD0 , non-homogeneous Dirichlet conditions (with data gD ∈ (H1/2(ΓD))2) on ΓDg and
Neumann conditions (with data gN ∈ (H1/2(ΓN ))2) on ΓN , such that the Dirichlet portion
is ΓD = ΓD0 ∪ ΓDg ; n is the normal unit vector to the boundary ∂Ω. We introduce a lift
function Lg ∈ (H1(Ω))2 such that Lg|ΓDg = gD, Lg|ΓD0

= 0 and we denote the functional
spaces for velocity and pressure fields by V = (H1

0,ΓD(Ω))2, Q = L2(Ω), respectively, where
H1

0,ΓD (Ω) = {v ∈ H1(Ω) : v|ΓD = 0}.
We equip V and Q with the following notions of scalar products and corresponding norms:

‖ · ‖V = (·, ·)1/2
V , (v,w)V = (∇v,∇w)(L2(Ω))2 , ∀v,w ∈ X,

‖ · ‖Q = (·, ·)1/2
Q , (p, q)Q = (p, q)L2(Ω), ∀p, q ∈ Q,

respectively. Then, by identifying (v(µ), p(µ)) = (vo, po) ◦ T (·;µ), we can express the problem
as a system of parametrized PDEs by tracing (3.3) back on the reference domain Ω, under the
following abstract form:

1Here we do not make any distinction between geometrical and physical parameters – it will be made in
Sect. 4.5, for the sake of the general analysis of the framework for our forward and inverse problems.
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find (v, p) ∈ V ×Q such that{
a(v(µ),w;µ) + δd(v(µ),w;µ) + b(p(µ),w;µ) + δc(v(µ),v(µ),w;µ) = F (w;µ) , ∀w ∈ V

b(q,v(µ);µ) = G(q;µ) , ∀q ∈ Q.
(3.4)

Here the parametrized bilinear and trilinear forms are defined as follows [255,278,282]:

a(v,w;µ) =
Kdom∑
k=1

∫
Ωk

∂v
∂xi

νkij(·;µ) ∂w
∂xj

dΩ, b(q,w;µ) = −
Kdom∑
k=1

∫
Ωk
qχkij(·;µ)∂wj

∂xi
dΩ, (3.5)

c(v,w, z;µ) =
Kdom∑
k=1

∫
Ωk
vi χ

k
ij(·;µ) ∂wm

∂xj
zm dΩ. (3.6)

The transformation tensors for the bilinear viscous terms νk : R2 ×D → R2×2, 1 ≤ k ≤ Kdom,
are defined as follows:

νk(x;µ) = (JkT (·;µ))−Tνo(µ)(JkT (x;µ))−1|JkT (x;µ)| (3.7)

where JkT : R2×D → R2×2 is the Jacobian matrix of the map T k(·;µ), and |JkT (x;µ)| : R2×D → R
its determinant. In the same way, the transformation tensors for the pressure/divergence terms
and the nonlinear convective terms χk : R2 ×D → R2, 1 ≤ k ≤ Kdom, are given by

χk(x;µ) = (JkT (x;µ))−T |JkT (x;µ)|. (3.8)

The linear form corresponding to source terms is given by

Fs(w;µ) =
Kdom∑
k=1

∫
Ωk

f ·w |JkT (·;µ)|dΩ +
K̃dom∑
k=1

∫
Γk
N

gN ·w|JkT (·;µ)t|dΓ,

where f ∈ (L2(Ω))2 and t is the tangential unit vector to the boundary and ΓkN = ∂Ωk ∩ ΓN ,
while the terms due to non-homogeneous Dirichlet conditions on ΓD can be expressed as:

d(v,w;µ) = c(Lg,v,w;µ) + c(v, Lg,w;µ) (3.9)

Fd(w;µ) = −a(Lg,w)− δc(Lg, Lg,w;µ), G(q;µ) = −b(q, Lg;µ), (3.10)

so that F (w;µ) = Fs(w;µ) + Fd(w;µ).

Then, denoting byX = X(Ω) the product space given byX = V ×Q, by Y (µ) = (v(µ), p(µ)) ∈ X
and W = (w, q), the parametrized abstract formulation (3.4) can be rewritten in the following
form, fitting the general parametrized formulation (1.2): find Y (µ) = (v(µ), p(µ)) ∈ X(Ω) s.t.

A(Y (µ),W ;µ) + δC(Y (µ), Y (µ),W ;µ) = F̃ (W ;µ), ∀W ∈ X (3.11)

where

A(Y,W ;µ) = a(v,w;µ) + δd(v,w;µ) + b(p,w;µ) + b(q,v;µ), (3.12)

C(Y, Y,W ;µ) = c(v,v,w;µ), (3.13)

F̃ (W ;µ) = F (w;µ) +G(q;µ). (3.14)
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Finally, we introduce two linear functionals Lv(·;µ) ∈ V ′ and Lp(·;µ) ∈ Q′ and a bilinear form
Q(·, ·;µ) : V × V → R. We may then define the following output evaluation problem: given
µ ∈ D, evaluate the scalar output of interest

s(µ) = S(Y (µ);µ) = L(Y (µ);µ) +M(Y (µ);µ), (3.15)

where L(Y (µ);µ) = Lv(v(µ);µ) + Lp(p(µ);µ) and M(Y (µ);µ) = Q(v(µ),v(µ);µ) are a linear
functional in both velocity and pressure fields and a quadratic functional of the velocity fields,
respectively, and Y (µ) = (v(µ), p(µ)) ∈ X ×Q is the solution of (3.11).

Before addressing the analysis of the parametrized abstract formulation (3.11)-(3.15) we require
that the linear, bilinear and trilinear forms introduced fulfill the assumption (crucial for our
Offline/Online computational stratagem) of affine parametric dependence. Under the assumption
that the transformation mappings are affine in the sense of (2.52), parametrized tensors depend
just on the parameter µ and in the Stokes/Navier-Stokes cases the affine decompositions (1.7)-(1.8)
read as follows. For the bilinear forms we have, for some integers Qa and Qb:

a(v,w;µ) =
Qa∑
q=1

Θq
a(µ)aq(v,w), b(q,w;µ) =

Qb∑
q=1

Θq
b(µ)bq(q,w); (3.16)

where q is a condensed index of i, j, k quantities and, for 1 ≤ k ≤ Kdom, 1 ≤ i, j ≤ 2,

Θq(i,j,k)
a (µ) = νkij(µ), aq(i,j,r)(v,w) =

∫
Ωk

∂v
∂xi

∂w
∂xj

dΩ, (3.17)

Θq(i,j,k)
b (µ) = χkij(µ), bq(i,j,r)(q,w) = −

∫
Ωk
q
∂wi
∂xj

dΩ. (3.18)

For the trilinear form and the source term (e.g. in the case gN = 0), we have instead:

c(v,w, z;µ) =
Qc∑
q=1

Θq
c(µ)cq(v,w, z), Fs(w;µ) =

Qs∑
q′=1

Θq′

s (µ)F q
′

s (w), (3.19)

for some integers Qc and Qs, where q and q′ are condensed indexes of i, j, k quantities and k
quantities, respectively, and

Θq(i,j,k)
c (µ) = χkij(µ), cq(i,j,k)(v,w, z) =

∫
Ωk
vi
∂wk
∂xj

zk dΩ,

Θq′ (k)
s (µ) = |JkT (·;µ)|, F q

′ (k)
s (w) =

∫
Ωk

f ·wdΩ.

On the other hand, if the parametric map T (·;µ) is nonaffine, parametrized tensors are function
of both spatial coordinates x and parameter µ. Hence, we rely on EIM (see Sect. 2.4) in order
to recover the affinity assumption: by assuming for the sake of simplicity to deal with a global
map (Kdom = 1), each component of ν : R2 × D → R2×2 and χ : R2 × D → R2×2 has to be
approximated by an affine expansion of the form

νij(x,µ) =
Ka
ij∑

k=1
βi,jk (µ)ξi,jk (x)+εai,j(x;µ), χij(x,µ) =

Kb
ij∑

k=1
γi,jk (µ)ηi,jk (x)+εbi,j(x;µ), (3.20)

for 1 ≤ i, j ≤ 2, where Ka
ij and Kb

ij represent the total number of terms obtained for each tensorial
component after the empirical interpolation procedure. The same expansion (made now by Ks

terms) is set up for the tensor appearing at the right-hand-side of velocity equation:
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|det(JT (x;µ))| =
Ks∑
k=1

δk(µ)ψk(x) + εs(x;µ). (3.21)

All the coefficients βi,jk ’s, γi,jk ’s, δk’s, ξi,jk ’s, ηi,jk ’s and ψk’s are efficiently computable scalar
functions and the error terms are guaranteed to be under some prescribed tolerance:

‖ε(a,b)
i,j (·;µ)‖∞ ≤ εEIMtol , ‖εi(·;µ)‖∞ ≤ εEIMtol , ∀µ ∈ D.

In this way, we can recover the affine expansions (3.16)-(3.19) by setting

aq(i,j,k)(v,w) =
∫

Ω
ξi,jk (x) ∂v

∂xi

∂w
∂xj

dΩ, bq(i,j,k)(p,w) = −
∫

Ω
ηi,jk (x)p∂wi

∂xj
dΩ, (3.22)

cq(i,j,k)(v,w, z) =
∫

Ωk
viη

i,j
k (x)∂wk

∂xj
zk dΩ, F q(k)

s (w) =
∫

Ωk
ψk(x)f ·wdΩ, (3.23)

with Θq
a(µ) = βi,jk (µ), Θq

b(µ) = Θq
c(µ) = γi,jk (µ), Θq

s(µ) = δk(µ).
In the end, in order to obtain the affine expansion for the problem (3.11) fitting the general form
(1.7)-(1.8), it is sufficient to sum the affine expansions corresponding to each term appearing in
the expressions (3.12)-(3.14). We remark that if the output (3.15) can be expressed through a
similar affine expansion, it can be evaluated in a very cheap way; its treatment is very similar to
the linear and bilinear forms already introduced and is omitted here.

In the next subsections we analyze the well-posedness of the parametrized abstract formulation
(3.11) starting from the simpler Stokes case. We also discuss the stability of the truth approxima-
tion problem obtained by the finite element method, highlighting some features which turn to be
important also for the proper formulation of the RB approximation.

3.2.1 Well-posedness of parametrized Stokes equations

The analysis of the well-posedness for the Stokes problem is usually recast in the framework
of saddle point problems. Let us suppose that the bilinear forms a(·, ·;µ) : V × V → R and
b(·, ·;µ) : V × V → R are continuous:

γa(µ) = sup
v∈V

sup
w∈V

a(v,w;µ)
‖v‖V ‖w‖V

< +∞, ∀ µ ∈ D, (3.24)

γb(µ) = sup
q∈Q

sup
w∈V

b(q,w;µ)
‖w‖V ‖q‖Q

< +∞, ∀ µ ∈ D. (3.25)

Under a suitable stability condition over the two bilinear forms, the Stokes problem (3.4, with
δ = 0) is well-posed, as stated by the following theorem (Brezzi [47]):

Theorem 3.1. Given the Hilbert spaces V and Q and the linear functionals F (·;µ) ∈ V ′,
G(·;µ) ∈ Q′, let us assume that the bilinear forms a(·, ·;µ) : V ×V → R and b(·, ·;µ) : Q×V → R
are continuous, and that F (·;µ) and G(·;µ) are continuous for any µ ∈ D. Moreover, let us
assume that the bilinear forms satisfy the following assumptions:

1. a(·, ·;µ) is weakly coercive over V0 = {w ∈ V : b(q,w;µ) = 0, ∀q ∈ Q} ⊂ V X, i.e.

∃ αLB(µ) > 0 : α(µ) = inf
v∈V0

sup
w∈V0

a(v,w;µ)
‖v‖V ‖w‖V

= inf
w∈V0

sup
v∈V0

a(v,w;µ)
‖v‖V ‖w‖V

≥ αLB(µ), ∀ µ ∈ D;
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2. b(·, ·;µ) is inf-sup stable over X ×Q, i.e.

∃ βLBBr (µ) > 0 : β(µ) = inf
q∈Q

sup
w∈X

b(q,w;µ)
‖w‖V ‖q‖Q

≥ βLBBr (µ), ∀ µ ∈ D. (3.26)

Then there exists a unique solution (v(µ), p(µ)) ∈ V ×Q to problem (3.4) (with δ = 0), for any
µ ∈ D. Furthermore, the following a priori estimates hold:

‖v(µ)‖V ≤
1

αLB(µ)

[
‖F (·;µ)‖V ′ + αLB(µ) + γa(µ)

βLBBr (µ)
‖G(·;µ)‖Q′

]
, (3.27)

‖p(µ)‖Q ≤
1

βLBBr (µ)

[(
1 + γa(µ)

αLB(µ)

)
‖F (·;µ)‖V ′ + γa(µ)(αLB(µ) + γa(µ))

αLB(µ)βLBBr (µ)
‖G(·;µ)‖Q′

]
.

Remark 3.2. In the following, we assume that a(·, ·;µ) satisfies the (more general) coercivity
property over V :

∃ αLB(µ) > 0 : α(µ) = inf
w∈V

a(w,w;µ)
‖w‖2V

≥ αLB(µ), ∀ µ ∈ D. (3.28)

Remark 3.3. The result stated in Theorem 3.1 provides the classical framework – to which we
refer as Brezzi inf-sup theory – for mixed variational problems. A second equivalent inf-sup
stability theory has been formulated by Babuška [17] directly on the formulation (3.11).
Considering the bilinear form A(·, ·;µ) : X×X → R defined in (3.12), the Babuška inf-sup theory
states that the problem (3.11) (with δ = 0) is well posed if and only if the following continuity
condition:

γA(µ) = sup
V ∈X

sup
W∈X

A(V,W ;µ)
‖V ‖X‖W‖X

< +∞, ∀ µ ∈ D, (3.29)

and the following (Babuška) inf-sup condition:

∃ βLBBa (µ) > 0 : βBa(µ) = inf
V ∈X

sup
W∈X

A(V,W ;µ)
‖V ‖X‖W‖X

≥ βLBBa (µ), ∀ µ ∈ D (3.30)

hold. Furthermore, the unique solution of (3.11) satisfies

‖Y (µ)‖X ≤
‖F̃ (·;µ)‖X′
βLBBa (µ)

. (3.31)

In this way, the Babuška theory can be seen as a generalization of the Lax-Milgram result for the
Galerkin-type formulation to the Petrov-Galerkin case – to which we refer sometimes as Nečas
theorem; its application to the Stokes problem is just a possible use.
We also remark that from the Brezzi estimates (3.27) it is possible to derive a global estimate

‖(v, p)(µ)‖V×Q ≤ KBr(α−1(µ), β−1
Br(µ), γa(µ))‖(F (µ), G(µ))‖V ′×Q′ (3.32)

where KBr = KBr(α−1, β−1
BR, γa) is such that

βBa(µ) ≥ 1
KBr(α−1, β−1

BR, γa)
. (3.33)

Moreover, it is possible to show that βBr(µ) ≥ βBa(µ) and α(µ) ≥ βBa(µ) (see e.g. [324,77]).
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We exploit these results not only for stating the well-posedness of the parametrized Stokes
problem, but also in order to create a general framework to compute error bounds for noncoercive
problems under mixed variational form solved by the RB method, as illustrated in Sect. 3.4.1. In
particular, our stability analysis will be based on the Brezzi stability theory, while error analysis
and certification will be based on the Babuška stability theory. In particular, a posteriori error
estimates on velocity and pressure based on the Babuška stability theory require the evaluations
of a smaller amount of factors (see remark ).
In the end, concerning the well-posedness of the output evaluation problem, we require that
the linear forms Lv(·;µ) ∈ V ′ and Lp(·;µ) ∈ Q′ are continuous on V and Q for any µ ∈ D,
respectively, and that the bilinear form Q(·, ·;µ) : V × V → R is coercive over V , in the sense
stated by (3.28). For the most common quadratic outputs of the velocity field, such as energy,
vorticity, etc., this bilinear form turns to be also symmetric.

3.2.2 Well-posedness of parametrized Navier-Stokes equations

The proof of existence and uniqueness of solutions of Navier-Stokes problem is much more involved,
due to its nonlinear nature. Here we recall the main results necessary to set our RB approximation
and corresponding a posteriori error estimation, following the two paradigms introduced for the
analysis of the Stokes problem (Brezzi theory vs. Babuška theory). General results about the
well-posedness of Navier-Stokes equations can be found in the books by Ladyzhenskaya [178],
Temam [307], Girault and Raviart [115]. A common assumption that enables theoretical analysis
concerns the existence of a local branch of non-singular solutions, see for example [115],

In addition to assumptions (3.24)-(3.25), thanks to Hölder inequality and Sobolev embedding
theorems (assuring that H1(Ω) ⊂ L4(Ω) for d = 2, 3; see e.g. [307], Chapter 2, Sect. 1.1), the
trilinear form c(·, ·, ·;µ) : V × V × V → R satisfies the following continuity condition:

γc(µ) = sup
v∈V

sup
w∈V

sup
z∈V

c(v,w, z;µ)
‖v‖V ‖w‖V ‖z‖V

< +∞, ∀ µ ∈ D. (3.34)

In particular the continuity constant γc(µ) can be expressed as:

γc(µ) =
√

2ρ2 max
q=1,...,Qc

‖Θc
q(µ)‖L∞(D) max

q=1,...,Qc
‖ηq‖L∞(Ω) (3.35)

where ρ = ρ(Ω) is the Sobolev embedding constant

ρ2 = sup
v∈V

‖v‖2L4(Ω)

(v, v)H
. (3.36)

for any v ∈ H such that H1
0 (Ω) ⊂ H ⊂ H1(Ω) and ‖w‖Lp(Ω) =

(∫
Ω |w|

p
)1/p. The proof of this

relationship is a slight variation of the usual continuity proof for the trilinear form of Navier-Stokes
operator (see e.g. [307], Chapter 2, Sect. 1.2), taking into account the additional terms arising
from the parametrized formulation. In particular, ηq is defined in (3.20) – q is a condensed index
of i, j, k – and it is such that ‖ηq‖L∞(Ω) = 1 in the affine case.

In order to state an existence result, let us remark that the trilinear form is such that c(v; v; v;µ) =
0 for any v ∈ (H1

0 (Ω))2. In this case, provided that a(·, ·;µ) is coercive over V and b(·, ·;µ) is
inf-sup stable over V ×Q, the problem admits a solution (see e.g. [307], Chapter 2, Thm. 1.2). In
the more general case of non-homogeneous problems, recalling that d(v,v;µ) = c(v, Lg,v;µ) +
c(Lg,v,v;µ), an additional assumption on c(·, ·, ·;µ) has to be fulfilled, as stated by the following
result, based on a classical stability and uniqueness result (for the proof, see e.g. [307], Chapter 2,
Thm. 1.6):
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Theorem 3.4. Given the Hilbert spaces V and Q and the linear functionals F (·;µ) ∈ V ′,
G(·;µ) ∈ Q′, let us assume that the bilinear forms a(·, ·;µ) : V ×V → R and b(·, ·;µ) : Q×V → R
are continuous in the sense of (3.24)-(3.25) and stable in the sense of (3.28)-(3.26), and that
F (·;µ) and G(·;µ) are continuous for any µ ∈ D. Moreover, assume that the trilinear form
c(·, ·, ·;µ) is continuous in the sense of (3.34) and such that, for any w ∈ V , µ ∈ D,

|c(w, Lg,w;µ)| ≤ α(µ)
2 ‖w‖2V , |c(Lg,w,w;µ)| ≤ α(µ)

2 ‖w‖2V , (3.37)

so that the following coercivity property is satisfied:

∃ α̃LB(µ) > 0 : α̃(µ) = inf
w∈V

a(v,v;µ) + d(v,v;µ) + c(v,v,v;µ)
‖w‖2V

≥ α̃LB(µ), ∀ µ ∈ D. (3.38)

Then (3.4) with δ = 1 admits a solution (v(µ), p(µ)) ∈ V ×Q, for any µ ∈ D. Moreover, if

4 γc(µ)
α̃LB(µ)‖F (·;µ)‖(H−1(Ω))2 < 1, (3.39)

then there exists a unique solution (v(µ), p(µ)) ∈ V ×Q to (3.4) (with δ = 1), for any µ ∈ D.

Remark 3.5. The result stated in Theorem 3.4 provides a possible framework for the analysis
of steady Navier-Stokes equations under the small data assumption. The more general Brezzi-
Rappaz-Raviart (BRR) theory – see e.g. [49, 56] – provides the required tools for the analysis of a
wider class of nonlinear equations. In the same way as the Babuška theory for mixed variational
problem, it is based on the global operator Ã(·, ·;µ) : X ×X → R

Ã(V,W ;µ) = A(V,W ;µ) + C(V, V,W ;µ), (3.40)

and its Fréchet derivative with respect to the first variable; at V ∈ X, it can be expressed as

dÃ(Y ;µ)(V,W ) = A(V,W ;µ) + C(Y, V,W ;µ) + C(V, Y,W ;µ), (3.41)

and it is such that

Ã(V + Z,W ;µ) = Ã(V,W ;µ) + dÃ(Z;µ)(V,W ) + C(Z,Z,W ;µ), ∀ V, W, Z ∈ X,

being A(·, ·;µ) and C(·, ·, ·;µ) the operators defined by (3.12)-(3.13). In particular, the problem
(3.11) (with δ = 1) is well posed if and only if the following continuity condition:

γÃ(µ) = sup
V ∈X

sup
W∈X

dÃ(Y (µ);µ)(V,W )
‖V ‖X‖W‖X

< +∞, ∀ µ ∈ D, (3.42)

and the following (Babuška) inf-sup condition:

∃ βLB
Ã

(µ) > 0 : βÃ(µ) = inf
V ∈X

sup
W∈X

dÃ(Y (µ);µ)(V,W )
‖V ‖X‖W‖X

≥ βLB
Ã

(µ), ∀ µ ∈ D (3.43)

holds. Under these assumptions, the solution in the neighborhood of Y (µ) is unique. Further
details about this framework will be provided in Sect. 3.4.4, where it will be exploited to derive an
a posteriori error bound for the RB approximation.

3.2.3 Stability of the FE truth approximation

We briefly recall the conditions ensuring the stability of the FE truth approximation lying over
our RB approximation. Let V N ⊂ V and QN ⊂ Q be two subspaces of V and Q, of dimension
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NV < +∞ and NQ < +∞, for velocity and pressure, respectively. The dimension of the FE
spaces is thus taken large enough in order to neglect the differences ‖vN (µ) − v(µ)‖V and
‖pN (µ) − p(µ)‖Q, so that it can be effectively considered as a “truth” approximation. The
truth FE approximation reads as follows: given µ ∈ D, evaluate the scalar output of interest
sN (µ) = S(Y N (µ);µ) where Y N (µ) = (vN (µ), pN (µ)) ∈ XN := V N ×QN is such that

A(Y N (µ),WN ;µ) + δC(Y N (µ), Y N (µ),WN ;µ) = F̃ (WN ;µ), ∀WN ∈ XN (3.44)

or, equivalently,
a(vN (µ),wN ;µ) + δd(vN (µ),wN ;µ) + b(pN (µ),wN ;µ)

+δc(vN (µ),vN (µ),wN ;µ) = F (wN ;µ) , ∀wN ∈ V N

b(qN ,vN (µ);µ) = G(qN ;µ) , ∀q ∈ QN .
(3.45)

All the forms are continuous over the discrete spaces V N and QN . In particular, a discrete
version of the Sobolev embedding result can be stated (see e.g. [307]), where

ρ2
N = sup

v∈V N

‖v‖2L4(Ω)

(v, v)H
. (3.46)

is the discrete version of (3.36), such that ρ2
N ≤ ρ2. Instead, approximation stability is ensured

by imposing that the coercivity and inf-sup conditions are still valid at the discrete level.

In the Stokes case, (3.45) admits a unique solution provided that a(·, ·;µ) is coercive over V N :

∃ αLBN (µ) > 0 : αN (µ) = inf
v∈V N

a(v,v;µ)
‖v‖2V

≥ αLBN (µ), ∀ µ ∈ D, (3.47)

and b(·, ·;µ) is inf-sup stable over V N × QN , so that the following discrete Brezzi inf-sup
condition [47,48]:

∃ βLBBr,N (µ) > 0 : βBr,N (µ) = inf
q∈QN

sup
w∈V N

b(q,w;µ)
‖w‖V ‖q‖Q

≥ βLBBr,N (µ), ∀ µ ∈ D (3.48)

is satisfied. Moreover, stability estimates under the form (3.27) hold for the truth approximation
(vN (µ), pN (µ)), replacing all the discrete counterparts αLBN (µ), γNa (µ), βLBBr,N (µ) to the continu-
ity/stability constants. In our case V N ×QN is the space of Taylor-Hood P2 − P1 elements [125];
however, this choice is not restrictive, the whole construction keeps holding for other spaces
combinations as well. In order to verify the Brezzi inf-sup condition (3.48) let us introduce the
following (inner, pressure) supremizer operator Tµp : QN → V N , defined as

(Tµp q,w)V = b(q,w;µ), ∀ w ∈ V N . (3.49)

From this definition it is straightforward to prove that2

2By definition (3.49), ‖Tµp q‖2V = (Tµp q, Tµp q)V = b(q, Tµq;µ), but by Cauchy-Schwarz inequality

b(q,w;µ)
‖w‖V

=
(Tµp q,w)V
‖w‖V

≤
‖Tµp q‖V ‖w‖V
‖w‖V

≤ ‖Tµp q‖V , ∀w ∈ V N

Hence, the supremizer role property gives

βBr,N (µ) = inf
q∈QN

(
1
‖q‖Q

(
sup

w∈VN

b(q,w;µ)
‖w‖V

))
w=Tµp q= inf

q∈QN

‖Tµp q‖V
‖q‖Q

⇔ (βBr,N (µ))2 = inf
q∈QN

(Tµp q, Tµp q)V
‖q‖2Q

.
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Tµp q = arg sup
w∈V N

b(q,w;µ)
‖w‖V

and (βBr,N (µ))2 = inf
q∈QN

(Tµp q, Tµp q)V
‖q‖2Q

. (3.50)

Note from our affine assumption it follows that, for any ϕ ∈ QN , the (inner, pressure) supremizer
operator can be expressed as

Tµp ϕ =
Qb∑
q=1

Θq
b(µ)T qpϕ, where (T qpϕ,v)V = bq(ϕ,v), ∀v ∈ V N , 1 ≤ q ≤ Qb. (3.51)

Remark 3.6. Following the Babuška stability theory, an alternative to (3.47)-(3.48) ensuring
the well posedness of (3.45) is the following Babuška inf-sup stability condition:

∃ βLBBa,N (µ) > 0 : βBa,N (µ) = inf
V ∈XN

sup
W∈XN

A(V,W ;µ)
‖V ‖X‖W‖X

≥ βLBBa,N (µ), ∀ µ ∈ D (3.52)

The Navier-Stokes case poses of course much more difficulties. We simply remark that, assuming
to consider a branch of nonsingular solutions, (3.45) admits a solution under suitable (discrete)
stability conditions, which is also unique provided the small data assumption holds. However,
since the trilinear form is (in general) no longer such that c(vN ,vN ,vN ;µ) = 0 for any vN ∈ V N ,
in order to fulfill a stability condition under the form (3.38) also at the discrete level, it has to be
replaced by a slightly different version, given for instance (see e.g. [307]) by

c̃(v,w, z;µ) =
Kdom∑
k=1

(
1
2

∫
Ωk
vi χ

k
ij(·;µ) ∂wm

∂xj
zm dΩ− 1

2

∫
Ωk
vi χ

k
ij(·;µ)wm

∂zm
∂xj

dΩ
)
,

which is consistent with (3.6) since c̃(v,v, z;µ) = c(v,v, z;µ), for any w ∈ V and any v ∈ V
such that ∇ · v = 0, but is such that c̃(vN ,vN ,vN ;µ) = 0. Thus, if for any wN ∈ V N , µ ∈ D,

|c̃(wN ,vND ,wN ;µ)| ≤ αN (µ)
2 ‖w‖2V , |c(vND ,wN ,wN ;µ)| ≤ αN (µ)

2 ‖wN ‖2V ,

where vND denotes the FE interpolant of velocity boundary conditions imposed on ΓD, the discrete
counterpart of the coercivity property (3.38) holds with α̃LBN (µ), so that problem (3.45) admits
a solution, provided that the pressure/divergence term is inf-sup stable in the sense of (3.48). As
before, in order to satisfy the inf-sup condition, we can introduce the (inner, pressure) supremizer
operator (3.49). Moreover, a uniqueness result follows under the small data assumption:

4 γNc (µ)
α̃LBN (µ)

‖F (·;µ)‖(H−1(Ω))2 < 1, γNc (µ) =
√

2ρ2
N max
q=1,...,Qc

‖Θc
q(µ)‖L∞(D) max

q=1,...,Qc
‖ηq‖L∞(Ω);

γNc (µ) denotes the continuity constant of c̃(·, ·, ·;µ) over V N . As for well-posedness, the BRR
theory [49, 56] provides a more general framework for the finite dimensional approximation of
branches of nonsingular solutions. We remark that the discrete version of continuity and inf-sup
stability conditions (3.42)-(3.43) read as follow:

γN
Ã

(µ) = sup
V ∈XN

sup
W∈XN

dÃ(Y N (µ);µ)(V,W )
‖V ‖X‖W‖X

< +∞, ∀ µ ∈ D, (3.53)

∃ βLB
Ã,N (µ) > 0 : βÃ,N (µ) = inf

V ∈XN
sup

W∈XN

dÃ(Y N (µ);µ)(V,W )
‖V ‖X‖W‖X

≥ βLB
Ã,N (µ), ∀ µ ∈ D. (3.54)
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3.2.4 Algebraic formulation of the FE truth approximation

Starting from the Galerkin approximation (3.45), we can easily derive the matrix formulation of
the Stokes and the Navier-Stokes problems, whose structures are needed to assemble the reduced
basis approximation as well. Let us denote by {φv

i }
NV
i=1 and {φpi }

NQ
i=1 the basis of the FE spaces

V N and QN , respectively, so that we express3 the FE velocity and pressure as

vN (µ) =
NV∑
i=1

uNi (µ)φv
i , pN (µ) =

NQ∑
i=1

pNi (µ)φpi .

Consequently vN (µ) = (uN1 (µ), . . . , uNNV (µ))T ∈ RNV and pN (µ) = (pN1 (µ), . . . , pNNQ(µ))T ∈
RNQ denote the vectors of the degrees of freedom related to the FE velocity and pressure,
respectively. The problem (3.45) can thus be rewritten under matrix form as follows:[

AN (µ) + δDN (µ) + δCN (vN (µ);µ) BTN (µ)
BN (µ) 0

] [
vN (µ)
pN (µ)

]
=
[

fN (µ)
gN (µ)

]
(3.55)

where, for 1 ≤ i, j ≤ NV and 1 ≤ k ≤ NQ,

(AN (µ))ij = a(φv
j ,φ

v
i ;µ), (DN (µ))ij = c(vND ,φ

v
j ,φ

v
i ;µ) + c(φv

j ,vND ,φ
v
i µ),

(CN (w;µ)N )ij =
NV∑
m=1

wNmc
(
φv
m,φ

v
j ,φ

v
i ;µ

)
, (BN (µ))ki = b(φpk,φ

v
i ;µ), (3.56)

(fN (µ))i = Fs(φv
i ;µ)− a(vND ,φ

v
i ;µ)− δc(vND ,vND ,φ

v
i ;µ), (gN (µ))k = −b(φpk,v

N
D ;µ).

Here, AN is the stiffness matrix, BN the gradient matrix (whose transpose BTN is the divergence
matrix), while CN (v) is the nonlinear transport matrix; DN is the Newton derivative of the
nonlinear transport term, evaluated at vND ; the right-hand sides fN and gN are related to source
terms and lifting of Dirichlet conditions. Moreover, we introduce here two other (µ-independent)
matrices XV ∈ RNV ×NV and XQ ∈ RNQ×NQ – associated with the discrete inner products:

(XV )ij = (φv
i ,φ

v
j )V , (XQ)ij = (φpi , φ

p
j )Q (3.57)

so that the inner product of elements of V N (resp. QN ) can be calculated as

(wN ,vN )X = wT
NXV vN , (pN , qN )X = pTNXQqN . (3.58)

In the Stokes case (δ = 0), (3.55) becomes a linear system under the usual form of a saddle-point
problem, which can be solved e.g. by means of a sparse LU factorization. Other options based on
preconditioned iterative solvers (such as the so-called pressure matrix method) are also available;
see e.g. [260,92].

In the Navier-Stokes case, the nonlinear saddle-point problem (3.55) can be solved for instance
by means of a fixed-point iteration4. We remark that – see e.g. [92], Chapter 7.2 and references
therein – the advantage of the fixed point (or Picard) iteration is that, relative to Newton

3 We remark that the solution of the problem (3.44) is vanishing on the whole Dirichlet boundary, so that the
corresponding FE velocity approximation fulfilling the boundary conditions is given by vN (µ) + g̃ND , where g̃ND is
a discrete function defined just on the set of Dirichlet degrees of freedom, interpolating the Dirichlet data.

4By considering c(w,v, z;µ) instead of c(v,v, z;µ) in (3.4), where w is a known, divergence-free velocity field,
we obtain the so-called Oseen problem, which is well-posed for any w. Denoting its solution by u = Tw, for an
operator T : V → V , the solution of the Navier-Stokes problem results a fixed point of T ; it is unique under the
small data assumption, since in this case T is a contractive mapping (Banach fixed-point theorem); see e.g. [92,115].
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iteration, it has a huge ball of convergence. Moreover, it can be shown that fixed-point iteration
is globally convergent if the small data uniqueness condition is satisfied; that is, it will converge
to the uniquely defined solution for any initial velocity. Thus, starting from an initial guess
(v(0)
N (µ),p(0)

N (µ)), for k ≥ 1, we compute (v(k)
N (µ),p(k)

N (µ)) as the solution of the problem[
AN (µ) + DN (µ) + CN (v(k−1)

N (µ);µ) BTN (µ)
BN (µ) 0

][
v(k)
N (µ)

p(k)
N (µ)

]
=
[

fN (µ)
gN (µ)

]
, (3.59)

until a given stopping criterium is satisfied; for instance, we may require that

‖v(k)
N (µ)− v(k−1)

N (µ)‖X ≤ εNStol ,

given a small positive tolerance εNStol , where the discrete norm has to be considered in the sense of
(3.58). As initial guess, we usually consider the Stokes solution of (3.55). Each Oseen system can
be solved e.g. by means of a sparse LU factorization, like in the Stokes case. With respect to the
Stokes problem, we remark that in the Oseen case the velocity matrix is no longer symmetric,
due to the nonconvective term. Different approaches for solving the FE problem are based on
the use of homotopy/continuation with respect to the parameters, whenever interested in one
solution branch, as shown in [78], is .

We remark that exploiting the affine parametric expansions (1.7)-(1.8), we can write the matrices
occurring in the FE formulation by decoupling the µ-dependent and µ-independent parts: for
the linear terms we have

AN (µ) =
Qa∑
q=1

Θq
a(µ)AqN , (AqN )ij = aq(φv

j ,φ
v
i ), 1 ≤ q ≤ Qa

BN (µ) =
Qb∑
q=1

Θq
b(µ)BqN , (BqN )ki = bq(φpk,φ

v
i ), 1 ≤ q ≤ Qb (3.60)

while, for the nonlinear terms, with 1 ≤ q ≤ Qc, we have

CN (wN ;µ) =
Qc∑
q=1

Θq
c(µ)CqN (wN ), (CqN (wN ))ij = cq

(NV∑
k=1

wNk φ
v
k ,φ

v
j ,φ

v
i

)
. (3.61)

A similar expansion can be obtained for the matrix DN (µ) and the right-hand sides:

DN (µ) =
Qd∑
q=1

Θq
d(µ)DqN , fN (µ) =

QF∑
q=1

Θq
F (µ)f qN , gN (µ) =

QG∑
q=1

Θq
G(µ)gqN , (3.62)

where

Θq
d(µ) = Θq

c(µ), (DqN )ij = cq(vND ,φ
v
i ,φ

v
j ) + cq(φv

i ,vND ,φ
v
j ), q = 1, . . . , Qd ≡ Qc

Θq
F (µ) = Θq

s(µ), (f qN )i = F qs (φv
i ), q = 1, . . . , Qs

Θq
F (µ) = Θq

a(µ), (f qN )i = −aq(vND ,φ
v
i ), q = Qs + 1, . . . , Qs +Qa

Θq
F (µ) = δΘq

c(µ), (f qN )i = cq(vND ,vND ,φ
v
i ), q = Qs +Qa + δ, . . . , Qs +Qa + δQc

Θq
G(µ) = Θq

b(µ), (gqN )k = bq(φpk,vND ), q = 1, . . . , QG ≡ Qb

We point out that (i) the RB approximation will be built upon, and the error in our RB
approximation will be measured with respect to, this truth FE approximation, and that (ii) the
Offline/Online procedure is based on relationships (3.60)-(3.62) valid at the FE level.

69



Chapter 3. Reduced basis methods in computational fluid dynamics

3.3 Reduced basis approximation
We are now in the position to apply the reduced basis framework presented in Sect. 2.2 to the
Stokes and the Navier-Stokes problems. Former contributions dealing with the RB approximation
of Stokes problems have been addressed by Rozza [278,276] and Veroy [282], dealing with both
affine and nonaffine geometrical parametrizations, even if rigorous a posteriori error bounds were
still under development. In the Navier-Stokes case, after the pioneering works by Peterson [242],
Ito and Ravindran [153,152], a general framework for both RB approximation and a posteriori
error estimation has been provided by Patera, Veroy [312] and Nguyen [224], without including the
treatment of the pressure field within the equation in the isothermal case. Both RB approximation
and error estimation have been further developed by Deparis [78] and Rozza [79], by considering
the more general case involving the temperature field and a complete natural norm framework.
Moreover, the extension to more complex geometries dealing with nonaffine geometrical maps is
due to Quarteroni and Rozza [255].

Concerning the Stokes problem, the original contribution of this thesis work – based on a recent
work with Rozza and Huynh [279] – is a joint stability study based on the role of the Brezzi’s
inf-sup constant in the RB context and an error analysis and certification of results based on the
estimation of the Babuška’s inf-sup constant in the framework of general noncoercive problems.
The approximation of the lower bounds of the global Babuška stability factors is performed by
extending the natural norm Successive Constraint Method (SCM) to the Stokes case.
In the Navier-Stokes case, instead, the original contribution of this thesis is the setting of a
posteriori error estimation for velocity and pressure fields jointly, following the BRR theory,
whereas the stability of the RB approximation is still based on the Brezzi theory. Moreover, we
extend the approximation of lower bounds of stability factors based on the SCM to the nonlinear
case, providing also a different surrogate method to estimate this quantity (see Sect. A.3). In
the end, we also deal with a fully decoupled Offline/Online procedure and with the treatment of
more complex nonaffine geometrical mappings also in the Navier-Stokes case.

3.3.1 Reduced basis spaces and their approximation stability

The RB method efficiently computes an approximation of the solution (vN (µ), pN (µ)) of problem
(3.45) by using global approximation spaces made up of well-chosen solutions of this problem,
corresponding to specific choices of the parameter values.
We address in this section all the details concerning the RB approximation of Stokes prob-
lems – which are in fact still valid in the Navier-Stokes case – leaving to the following section
the details concerning the treatment of the nonlinear terms. In both cases, following the gen-
eral framework described in Sect. 2.1, we select (iteratively, through the greedy algorithm)
a set of parameter values SN = {µ1, . . . ,µN} and consider the corresponding FE solutions
(vN (µ1), pN (µ1)), . . . , (vN (µN ), pN (µN )) of problem (3.45) (with δ = 0 in the Stokes case, δ = 1
in the Navier-Stokes case, respectively), where typically N � N . We thus define the reduced
basis pressure space QNN ⊂ QN as the space engendered by the pressure snapshots:

QNN = span{ζ̃pn := pN (µn), n = 1, . . . , N}, N = 1, . . . Nmax. (3.63)

The reduced basis velocity space V N ,µN ⊂ V N can be built as

V N ,µN = span{ζ̃v
n := vN (µn), Tµp ζ̃pn, n = 1, . . . , N}, N = 1, . . . Nmax, (3.64)

thus enriching the space of velocity snapshots with the inner (pressure) supremizers. Details
about the Gram-Schmidt orthonormalization procedure are reported in Sect. A.1 of Appendix A.
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3.3. Reduced basis approximation

The RB approximation (vN (µ), pN (µ)) can be obtained by computing a Galerkin projection onto
the reduced spaces V N ,µN ×QNN as follows: given µ ∈ D, evaluate the scalar output of interest
sN (µ) = S(YN (µ);µ) where YN (µ) = (vN (µ), pN (µ)) ∈ XN := V N ,µN ×QNN is such that

A(YN (µ),WN ;µ) + δC(YN (µ), YN (µ),WN ;µ) = F̃ (WN ;µ), ∀WN ∈ XN (3.65)

or, equivalently,
a(vN (µ),wN ;µ) + δd(vN (µ),wN ;µ) + b(pN (µ),wN ;µ)

+δc(vN (µ),vN (µ),wN ;µ) = F (wN ;µ) , ∀wN ∈ V N ,µN

b(qN ,vN (µ);µ) = G(qN ;µ) , ∀qN ∈ QNN .
(3.66)

We can easily show that problem (3.66) fulfills an equivalent Brezzi RB inf-sup condition. By
defining the reduced spaces as in (3.63)-(3.64) and the RB stability factor as

βN (µ) = inf
q∈QN

N

sup
w∈V N ,µ

N

b(q,w;µ)
‖w‖V ‖q‖Q

(3.67)

the following inequalities hold [276,282]:

βN (µ) ≥ βN (µ) > 0, ∀µ ∈ D,

where βN (µ) is defined in (3.26). In fact, we have that

βN (µ) = inf
q∈QN

sup
w∈V N

b(q,w;µ)
‖w‖V ‖q‖Q

≤ inf
q∈QN

N

sup
w∈V N

b(q,w;µ)
‖w‖V ‖q‖Q

=

inf
q∈QN

N

b(q, Tµp q;µ)
‖Tµp q‖V ‖q‖Q

≤ inf
q∈QN

N

sup
w∈V N ,µ

N

b(q,w;µ)
‖w‖V ‖q‖Q

= βN (µ), (3.68)

where we have applied the fact that QNN ⊂ QN , the definition of the (inner, pressure) supremizer
operator and the fact that the RB velocity space V N ,µN is enriched by supremizers, respectively.
We remark that, by enriching the velocity space with the supremizers Tµp ζpn, for n = 1, . . . N , the
RB velocity space (3.64) has dimension 2N , the double of the dimension N of the RB pressure
space. We detail the construction of the supremizer operator in Sect. A.1 of Appendix A.
From now on, we denote the RB velocity space by V NN ≡ V N ,µN for the sake of simplicity. We
introduce two orthonormal basis of the RB spaces V NN and QN , denoted by {ζpn}Nn=1 and {ζv

n}2Nn=1,
respectively. To highlight the relationship with the truth FE approximation, here we do not
consider the additional orthonormalization of velocity and pressure basis functions, as well as the
µ-dependence in the supremizer solutions; the rigorous formulation is detailed in Sect. A.1 of
Appendix A. We just remark that, in order to exploit a suitable Offline/Online procedure,we
need to express the velocity RB space (3.64) in a more viable way. In fact, we want to completely
assemble/store the basis functions only once during the Offline stage, while for each new Online
evaluation, given a parameter value µ, we do not want to assemble the supremizer solution as
combination of previously computed solutions. Since the definition of the RB velocity space
(3.64) still depends on µ, we need a different way to express it.
In this way, by expressing the RB approximation as RB solution can be written as a combination
of previously computed stored solutions as basis functions:

vN (µ) =
2N∑
j=1

vNj(µ)ζv
j , pN (µ) =

N∑
l=1

pNl(µ)ζpl ,
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the weights vN (µ) = (vN 1(µ), . . . , vN 2N (µ))T ∈ R2N and pN (µ) = (pN 1(µ), . . . , pN N (µ))T ∈
RN are obtained by solving the following RB system:[

AN (µ) + δDN (µ) + δCN (vN (µ);µ) BTN (µ)
BN (µ) 0

] [
vN (µ)
pN (µ)

]
=
[

fN (µ)
gN (µ)

]
(3.69)

where, for 1 ≤ m,n ≤ 2N and 1 ≤ l ≤ N ,

(AN (µ))mn = a(ζv
n, ζ

v
m;µ), (DN (µ))mn = c(vND , ζ

v
n, ζ

v
m;µ) + c(ζv

n,vND , ζ
v
m;µ),

(CN (wN ;µ))mn =
2N∑
s=1

wN sc (ζv
s , ζ

v
n, ζ

v
m;µ) , (BN (µ))lm = b(ζpl , ζ

v
m;µ), (3.70)

(fN (µ))m = Fs(φv
m;µ)− a(vND ,φ

v
m;µ)− δc(vND ,vND ,φ

v
m;µ), (gN (µ))l = −b(φpl ,v

N
D ;µ).

In the Stokes case, (3.69) is a linear system showing the same saddle-point structure of the
FE approximation (3.55). Hence, using reduced basis we deal with a matrix of considerably
smaller dimension (of order of N � N ) but with full matrices (instead of sparse ones). In the
Navier-Stokes case, the nonlinear saddle-point problem (3.55) can be solved for instance by means
of a fixed-point iteration, like in the FE case: starting from an initial guess (v(0)

N (µ),p(0)
N (µ)) (e.g.

the Stokes solution), for k ≥ 1, we compute (v(k)
N (µ),p(k)

N (µ)) as the solution of the problem[
AN (µ) + DN (µ) + CN (v(k−1)

N (µ);µ) BTN (µ)
BN (µ) 0

][
v(k)
N (µ)

p(k)
N (µ)

]
=
[

fN (µ)
gN (µ)

]
, (3.71)

until convergence. Despite its lower convergence rate with respect e.g. to a Newton iteration, we
adopt a fixed point algorithm because it has a huge ball of convergence, as already remarked in
the FE case. We point out that the linearized term can be computed as

2N∑
n=1

(CN (v(k−1)
N (µ);µ))mnv(k)

N n =
2N∑
s=1

2N∑
n=1

v
(k−1)
N s c(ζv

s , ζ
v
n, ζ

v
m;µ)v(k)

N n, 1 ≤ m ≤ 2N

and thus only the matrices CN (ζv
s
;µ), for 1 ≤ s ≤ 2N , 1 ≤ N ≤ Nmax, defined by

(CN (ζv
s
;µ))mn = c(ζv

s , ζ
v
n, ζ

v
m;µ),

have to be stored. In view of an Offline/Online decomposition, it shall prove convenient to express
the RB matrices and vectors appearing in (3.71) in terms of the corresponding FE matrices and
vectors of (3.59): the former are linked to the latter via the basis matrices Z2N ∈ RNX×2N and
ZN ∈ RNQ×N for the velocity and the pressure RB space, respectively, given by

(ZN )il = ζip l, (Z2N )jm = ζjvm, 1 ≤ i ≤ NQ, 1 ≤ j ≤ NV , 1 ≤ l ≤ N, 1 ≤ m ≤ 2N

for 1 ≤ N ≤ Nmax, where the RB basis functions can be expressed as

ζpl (x) =
NQ∑
i=1

ζip lφ
p
i (x), ζv

m(x) =
NV∑
j=1

ζjvmφ
v
j (x), 1 ≤ l ≤ N, 1 ≤ m ≤ 2N,

since they are elements of the FE spaces QN and XN , respectively. In particular, from (3.56)-
(3.70) we obtain, for 1 ≤ m,n ≤ 2N , 1 ≤ l ≤ N , 1 ≤ s ≤ 2N :
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AN (µ) = ZT2N AN (µ) Z2N , a(ζv
n, ζ

v
m;µ) =

NX∑
i=1

NX∑
j=1

ζjvna(φv
j ,φ

v
i ;µ)ζivm,

BN (µ) = ZTN BN (µ) Z2N , b(ζpl , ζ
v
n;µ) =

NQ∑
i=1

NX∑
j=1

ζip lb(φ
p
i ,φ

v
j ;µ)ζjvn, (3.72)

CN (ζv
s ;µ) = ZT2NCN (ζv

s ;µ)Z2N c(ζv
l , ζ

v
n, ζ

v
m;µ) =

NX∑
i=1

NX∑
j=1

ζjvnc(ζ
v
s ,φ

v
j ,φ

v
i ;µ)ζivm,

and, in the same way for the source and lifting terms (we omit the explicit expression):

DN (µ) = ZT2N DN (µ) Z2N , fN (µ) = ZT2N fN (µ), gN (µ) = ZTN gN (µ). (3.73)

Furthermore, thanks to the affine decomposition of FE structures (3.60)-(3.62), we obtain

AN (µ) =
Qa∑
q=1

Θa
q (µ)AqN , BN (µ) =

Qb∑
q=1

Θb
q(µ)BqN , CN (ζv

s ;µ) =
Qc∑
q=1

Θc
q(µ)CqN (ζv

s ) (3.74)

AqN = ZT2N AqN , Z2N , BqN = ZTN AqN Z2N , CqN (ζv
s ) = ZT2N CqN (ζv

s ) Z2N ;

in the same way, we can express also the RB structures appearing in (3.73).

3.3.2 Offline-Online computational strategy

The linear system (3.69) has normally a very small size (and a full structure) compared to the
one arising from the FE discretization of (3.55), since it consists of a set of 3N linear algebraic
equations in 3N unknowns – the FE discretization lead to a set of NV +NQ equations in NV +NQ
unknowns. Nevertheless, the elements of V NN and QNN are associated with the underlying FE
space and thus are depending on N . To eliminate this N -dependency, which would lead to a very
poor online performance, we construct a very efficient Offline/Online procedure (see Sect. 2.2.4):
thanks to (3.74), all µ-independent terms can be precomputed and stored in the Offline stage,
thus yielding to Online computations which are completely independent of N .
In the Offline stage we first compute and store the basis functions {ζv

n}2Nn=1, {ζ
p
l }Nl=1, and form

the RB structures. This requires:

1. O((Qa + Qb + QD)νE) operations for the assembly of the FE structures AqN , BqN , DqN ,
O(2N(Qc)νE) for the assembly of the FE structures CqN (ζv

n), as well as O((QF +QG)νE)
for the vectors f qN , gqN ; here νE denotes the number of elements in the FE computational
mesh;

2. O(N(NV +NQ)3(1+δKN )) operations for the basis computations, where KN is the number
of the fixed-point iterations required at the FE level;

3. O(Qa4N2 +Qb2N2 + δQd4N2) operations for the assembly of the linear RB sub-matrices
AqN , BqN and DqN , O(δ2NQc4N2) for the nonlinear RB sub-matrices CqN (ζv

n) and O(2NQF +
NQG) for the right-hand sides RB vectors f qN and gqN .

In the Online stage, for each new value of µ we use the precomputed RB structures to assemble
the (full) 3N × 3N system (3.69), whose solution gives vN (µ) ∈ R2N and pN (µ) ∈ RN ; then, we
evaluate the output approximation. The operation count for the Online stage is then:

1. O((Qa +Qb + δ(2NQc +Qd))N2 + (QF +QG)N) to assemble the RB system;
2. O(27N3(1 + δKN )) to invert the RB system, where KN is the number of the fixed-point

iterations required at the RB level, and O(N +N2) to evaluate the output.
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The crucial point is that our Online costs are dependent on Q• and N , but independent of
NX +NQ. Since 3N � NX +NQ, we can expect significant (orders of magnitude) speedup in
the Online stage compared to the pure FE approach. This implies also that we may choose N
very large in order to eliminate the error between the exact solution and the FE predictions
without affecting the RB Online efficiency – this may be required when dealing with Navier-Stokes
equations at moderately large Reynolds numbers, for instance. In fact, the bigger the underlying
FE system and thus N is chosen, the bigger the speedup by the use of the RB method in the
Online stage will be. However, we should keep in mind that the Offline stage is still N -dependent.

3.4 A posteriori error estimation
In this section we deal with a posteriori error estimation in the RB context for parametrized
Stokes and Navier-Stokes equations. The approach we address takes advantage in the former case
of the Babuška stability theory – in the framework of general noncoercive problems – involving
the global Stokes operator, in the latter of the BRR general theory for approximation of branches
of nonsingular solutions in nonlinear problems.

3.4.1 Stokes equations

As in the model problem of Sect. 2.3, also for the Stokes problem our a posteriori error estimation
takes advantage of two quantities: the dual norm of residuals and an effective lower bound of
the (parametric) stability factor, given in this case by the Babuška inf-sup constant βBa,N (µ)
defined in (3.52). Let us define the residuals rv(· ;µ) and rp(· ;µ) by

rv(w;µ) := F (w;µ)− a(vN (µ),w;µ)− b(pN (µ),w;µ), ∀ w ∈ V N ,
rp(q;µ) := G(q;µ)− b(q,vN (µ);µ), ∀ q ∈ QN . (3.75)

Note that

rv(w;µ) = a(ev(µ),w;µ) + b(ep(µ),w;µ) ∀ w ∈ V N ,
rp(q;µ) = b(q, ev(µ);µ) ∀ q ∈ QN , (3.76)

where ev(µ) = vN (µ)− vN (µ) and ep(µ) = pN (µ)− pN (µ). Equivalently, we can write

r(W ;µ) = A(Y N (µ)− YN (µ),W ;µ) ∀ W ∈ XN , (3.77)

where r(W ;µ) := rv(w;µ) + rp(q;µ). Using the inf-sup condition (3.52), we have

βBa,N (µ)‖Y N (µ)− Y NN (µ)‖X ≤ sup
W∈XN

A(Y N (µ)− Y NN (µ),W ;µ)
‖W‖X

,

so that the following result holds:

Proposition 3.7. Let us denote by Y N (µ) and YN (µ) the truth approximation (3.45) and the
reduced basis approximation (3.66) in the Stokes case δ = 0, respectively. Then, the following
residual-based estimation holds:

‖Y N (µ)− YN (µ)‖X ≤
‖r(·;µ)‖X′
βLBBa,N (µ)

=: ∆N (µ), ∀µ ∈ D, (3.78)

where ‖r(·;µ)‖X′ = supW∈XN r(W ;µ)/‖W‖X is the dual norm of the residual and βLBBa,N (µ) is
a computable lower bound for βBa,N (µ).
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An alternative expression of (3.78) is

‖vN (µ)− vN (µ)‖2V + ‖pN (µ)− pN (µ)‖2Q ≤
1

(βLBBa,N (µ))2

(
‖rv(· ;µ)‖2V ′ + ‖rp(· ;µ)‖2Q′

)
where

‖rv(· ;µ)‖V ′ = sup
w∈V N

rv(w;µ)
‖v‖V

, ‖rp(· ;µ)‖Q′ = sup
q∈QN

rp(q;µ)
‖q‖Q

are the dual norms of the residuals for the velocity and the pressure variables, respectively, such
that ‖r(·;µ)‖2X′ = ‖rv(· ;µ)‖2V ′ + ‖rp(· ;µ)‖2Q′ .
We point out that these error bounds (as well as the ones we are going to introduce in the following
sections) are of no utility without an accompanying Offline-Online computational approach. In
order to be computed in a very rapid and efficient way, both the dual norm of the residuals and
the lower bounds βLBBa,N (µ) have to be based on such a procedure. The natural norm version of
the SCM algorithm for the computation of βLBBa,N (µ) – applied for the first time this algorithm
to saddle point Stokes problems, as shown in the work with Rozza and Huynh [279] – is analyzed
in Sect. A.3 of Appendix A. Computation of dual norms of residuals is based instead on the
Riesz representation of rv(· ;µ) and rp(· ;µ) and on the affine decomposition of the parametric
operators; see Sect. A.2.1 in the Appendix A for further details.

Remark 3.8. Using the estimations (3.27) on the residual equations (3.76) it is possible to derive
analogous error estimates5 for the velocity and the pressure errors, separately:

‖vN (µ)− vN (µ)‖V ≤ ∆NN ;v(µ), ‖pN (µ)− pN (µ)‖Q ≤ ∆NN ;p(µ), ∀µ ∈ D,

where

∆N ;v(µ) := ‖rv(· ;µ)‖V ′
αLB
N (µ)

+
(

1 +
γUBa,N (µ)
αLBN (µ)

)
‖rp(· ;µ)‖Q′
βLBBr,N (µ)

(3.79)

∆N ;p(µ) := ‖rv(· ;µ)‖V ′
βLBBr,N (µ)

+
γUBa,N (µ)
βLBBr,N (µ)

(
‖rv(· ;µ)‖V ′
αLB
N (µ)

+
αLB
N (µ) + γUBa,N (µ)
αLB
a,N (µ)βLBBr,N (µ)

‖rp(· ;µ)‖Q′
)
,

αLB
N (µ) and γUBa,N (µ) the lower bound of the coercivity constant (3.47) and the upper bound of the

continuity constant γNa (µ), respectively, of a(·, ·;µ). A detailed analysis of these error estimates
is provided for instance in [111]. Moreover, if we compare the Babuška error bound (3.78) and
the one obtained by summing the two separate bounds (3.79) as

‖Y N (µ)− YN (µ)‖X ≤ ((∆NN ;v(µ))2 + (∆N ;p(µ))2)1/2 =: ∆̃N (µ),

effectivities ηN (µ) = ∆N (µ)/‖eN (µ)‖X and η̃N (µ) = ∆̃N (µ)/‖eN (µ)‖X are such that

1 ≤ ηN (µ) ≤ γa,N (µ) + γb,N (µ)
βBa,N (µ) , 1 ≤ η̃N (µ) ≤ KNBr(γa,N (µ)+γb,N (µ)), ∀µ ∈ D,

where KNBr = KNBr(α
−1
N , β−1

Br,N , γa,N ) is the discrete counterpart of the factor KBr introduced
in (3.32). Thanks to relationship (3.33), by considering aggregate error estimates for both RB
velocity and pressure of type (3.31) or (3.32), we argue that the Babuška-based estimate is sharper
than the Brezzi-based one since the “safety factor” βBA is in any case greater than 1/KBr.

5A former contribution on a posteriori error bounds for Stokes problem based on the splitting between viscous
and pressure-divergence terms was provided by Rovas [272]. A recent approach has been proposed by Veroy and
Gerner [110] based on a penalty method, thus reporting the problem in the coercive case.
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Numerical analysis supporting this conjecture are still in progress. In any case, the advantage of
the Babuška-based error estimator is that only the (lower bound βNBA(µ) of a) stability constant
needs to be evaluated to get the error bound. Instead, the Brezzi-based error estimators would
require the evaluation of the coercivity (lower bound) and continuity (upper bound) constants of
a(·, ·;µ) and the Brezzi inf-sup constant of b(·, ·;µ).
Clearly, if we are interested in error bounds for outputs depending on either velocity or pressure,
separate bounds like (3.79) can be more effective, provided that all the quantities appearing in the
expression of the error bounds are computed.

3.4.2 Linear outputs

We now build a posteriori error bounds for our outputs of interest (3.15), given by

s(µ) = L(Y (µ);µ) +M(Y (µ);µ) = Lv(v(µ);µ) + Lp(p(µ);µ), (3.80)

dealing formerly with the linear case, and distinguishing between compliant and noncompliant
cases. The quadratic case will be addressed in the next section.

Compliant case

Given the solution (v(µ), p(µ)) to Stokes problem (3.4), in the compliant case we have Lv(·;µ) =
F (·;µ), Lp(·;µ) = G(·;µ). Correspondingly, the FE approximation of the output is given by

sN (µ) = L(Y N (µ);µ) = F (vN (µ);µ) +G(pN (µ);µ), (3.81)

while the RB approximation of the output, considering a suitable correction as proposed in
[243,244] in order to improve the output accuracy, is given by

sN (µ) = L(YN (µ);µ) + r(YN (µ);µ), (3.82)

and thus sN (µ)− sN (µ) = rv(ev(µ);µ) + rp(ep(µ);µ). Thanks to the relationship

|sN (µ)− sN (µ)| ≤ sup
w∈V

rv(w;µ)
‖w‖V

‖ev(µ)‖V + sup
q∈Q

rp(q;µ)
‖q‖Q

‖ep(µ)‖Q

= ‖rv(·;µ)‖V ′‖ev(µ)‖V + ‖rp(·;µ)‖Q′‖ep(µ)‖Q,

and to the error bound (3.78) on velocity and pressure variables, the following result holds,
yielding to the quadratic convergence effect (see e.g. [280]) also in the Stokes case:

Proposition 3.9. Let us denote by sN (µ) and sN (µ) the finite element and the reduced basis
approximation, defined by (3.81) and (3.82), respectively, of a linear output (3.80) in the compliant
case. Then, the following error estimation holds:

|sN (µ)− sN (µ)| ≤ 2
(
‖rv(·;µ)‖2V ′ + ‖rp(·;µ)‖2Q′

βLBBa,N (µ)

)
:= ∆s, c

N (µ), ∀µ ∈ D, (3.83)

Noncompliant case

Let us now consider the more general case where the output of interest can be written as a
linear functional of (v(µ), p(µ)) as s(µ) = L(Y (µ);µ) = Lv(v(µ);µ) + Lp(p(µ);µ), where
Lv(·;µ) ∈ V ′ and Lp(·;µ) ∈ Q′ for all µ ∈ D. In this case, we can readily develop an a posteriori
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error bound for sN (µ): by standard arguments [280,237] we have that

|sN (µ)− sN (µ)| ≤ ||L(·;µ)||(XN )′∆N (µ),

where ∆N (µ) is given by (3.78). In case of outputs depending just on velocity or pressure
fields, error bounds ∆N ;v(µ), ∆N ;p(µ) defined by (3.79) can be used. We denote this method
as “primal-only”. Although for many outputs this is perhaps the best approach (each additional
output, and associated error bound, is a simple “add-on”), it has two deficiencies: (i) we lose the
“quadratic convergence” effect (2.45) for outputs, and (ii) the effectivities may be unbounded (see
e.g. [280]).

To overcome these limitations, we introduce the dual problem associated with l(·;µ): find
(ψ(µ), λ(µ)) ∈ V ×Q such that{

a(w,ψ(µ);µ) + b(λ(µ),w;µ) = −Lv(w;µ) ∀ w ∈ V
b(q,ψ(µ);µ) = −Lp(q;µ) ∀ q ∈ Q, (3.84)

where Ψ(µ) = (ψ(µ), λ(µ)) is denoted the dual (or adjoint) field. The corresponding FE
approximation of the output is sN (µ) = L(ΨN (µ);µ) = Lv(vN (µ);µ) + Lp(pN (µ);µ), where
ΨN (µ) = (ψN (µ), λN (µ)) ∈ XN is the solution of:{

a(wN ,ψN (µ);µ) + b(λN (µ),wN ;µ) = −Lv(wN ;µ) ∀ wN ∈ V N
b(qN ,ψN (µ);µ) = −Lp(qN ;µ) ∀ qN ∈ QN . (3.85)

The dual problem is subject to the same Brezzi inf-sup condition of the primal problem. Its RB
approximation is as follows: find ΨM (µ) = (ψM (µ), λM (µ)) ∈ V NM ×QNM such that{

a(wM ,ψM (µ);µ) + b(λM (µ),wM ;µ) = −Lv(wM ;µ) ∀ wM ∈ V NM
b(qM ,ψM (µ);µ) = −Lp(qM ;µ) ∀ qM ∈ QNM .

(3.86)

where the RB dual spaces V NM , QNM are built by means of a greedy algorithm and the dimension
M � N is a priori different from the dimension N of the primal RB spaces. Reduced spaces
and approximation for the dual problem are denoted in the same way as for the primal problem,
where M (instead of N) is the dimension of the dual space.

Similarly to (3.75), we define the errors eduv (µ) = ψN (µ)−ψM (µ) and edup (µ) = λN (µ)−λM (µ)
and the residuals rduv (·;µ) ∈ V ′ and rdup (·;µ) ∈ Q′ as follows:

rduv (w;µ) := −Lv(w;µ)− a(w,ψM (µ);µ)− b(λM (µ),w;µ),
rdup (q;µ) := −Lp(q;µ)− b(q,ψM (µ);µ). (3.87)

Note that

rduv (w;µ) = a(eduu (µ),w;µ) + b(edup (µ),w;µ) ∀ w ∈ V N ,
rdup (q;µ) = b(q, eduu (µ);µ) ∀ q ∈ QN ; (3.88)

equivalently,

rdu(W ;µ) = A(ΨN (µ)−ΨM (µ),W ;µ), ∀ W ∈ XN ≡ V N ×QN ,
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where rdu(W ;µ) := rduv (w;µ) + rdup (q;µ). The RB approximation of the output is thus given by

sN (µ) = L(YN (µ);µ)− r(ΨM (µ);µ) (3.89)

where the correction helps improving the accuracy of the approximation. Hence, we have

sN (µ)− sN (µ) = L(Y N (µ);µ)− L(YN (µ);µ) + r(ΨM (µ);µ)
= Lv(ev(µ);µ) + Lp(ep(µ);µ) + r(ΨM (µ);µ);

thanks to (3.84) and (3.75), this expression can be also written as

sN(µ)− sN (µ) =− a(ev(µ),ψN (µ);µ)− b(λN (µ), ev(µ);µ)− b(ep(µ),ψN (µ);µ)
+ a(ev(µ),ψM (µ);µ) + b(λM (µ), ev(µ);µ)+ b(ep(µ),ψM (µ);µ)

=− a(ev(µ), eduv (µ);µ)− b(edup (µ), ev(µ);µ)− b(ep(µ), eduv (µ);µ)
=− rduv (ev(µ);µ)− rdup (ep(µ);µ).

Using the same procedure exploited in the compliant case, we obtain the following expression:

|sN (µ)− sN (µ)| ≤ sup
w∈V

rduv (w;µ)
‖w‖V

‖ev(µ)‖V + sup
q∈Q

rdup (q;µ)
‖φ‖Q

‖ep(µ)‖Q

= ‖rduv (·;µ)‖V ′‖ev(µ)‖V + ‖rdup (·;µ)‖Q′‖ep(µ)‖Q,

so that the error bound is given by a combination of the dual norms of the dual residuals and the
error on the primal variables. We have thus shown the following proposition:

Proposition 3.10. Let us denote by sN (µ) and sN (µ) the finite element and the reduced
basis approximation, defined by (3.81) and (3.89), respectively, of a linear output (3.80) in the
noncompliant case. Then, the following error estimation holds:

|sN (µ)− sN (µ)| ≤ ∆s, n
N (µ), ∀µ ∈ D,

where

2
(
‖rduv (·;µ)‖2V ′+‖rdup (·;µ)‖2Q′

βLBBa,N (µ)

)1/2(
‖rv(·;µ)‖2V ′+‖rp(·;µ)‖2Q′

βLBBa,N (µ)

)1/2

. (3.90)

This result is the noncompliant version of (3.83): in fact, it extends the estimation obtained
for the compliant case, since in the latter case, choosing V NN ≡ V NM and QNN ≡ QNM , we have
ψM (µ) ≡ −vN (µ), λM (µ) = −pN (µ) and the same expression for primal and dual residuals.

3.4.3 Quadratic outputs

Let us move on to the case of a quadratic output

s(µ) = Q(v(µ),v(µ);µ), (3.91)

expressed as a quadratic bilinear form over the velocity space V . Many examples of outputs of
physical interest, such as energy dissipation, drag forces (conveniently expressed), vorticity, can
be recast in this framework. In order to derive a suitable a posteriori error estimation, we exploit
a dual-based strategy as in the noncompliant case of linear outputs.
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However, the dual problem now involves the derivative (with respect to the primal variables) of
the output, which is a linear functional of the (primal) velocity itself. The case of a quadratic
output depending on the pressure field, not addressed here, is straightforward and can be treated
in the same way.

Let us first consider a preliminary error bound which does not show the so-called quadratic effect.
In fact, by using a continuity argument, we have directly

|sN (µ)− sN (µ)| =
∣∣Q(vN (µ),vN (µ);µ)−Q(vN (µ),vN (µ);µ)

∣∣
≤
∣∣Q(vN (µ),vN (µ)− vN (µ);µ) +Q(vN (µ),vN (µ)− vN (µ);µ)

∣∣
≤ ξQ(µ)

(
‖vN (µ)‖V + ‖vN (µ)‖V

)
‖vN (µ)− vN (µ)‖V ,

where ξQ(µ) > 0 is the continuity constant of Q(·, ·;µ); the norm of the FE velocity approximation
can be bounded by means of stability estimates introduced in Sect. 3.2.3 and similar estimates
can be derived also for the RB approximation. As already pointed out in the previous section,
the primal-only approach has some deficiencies: moreover, in the quadratic case, the estimate
would be affected by a factor bounding the norm of the truth FE approximation.

We thus introduce a primal-dual alternative as for the case of a noncompliant linear output,
exploiting a general approach based on duality principles [24]. This approach is widely used in
optimal control and error estimation for adaptivity (leading to the so-called dual-weighted-residual
method) – and has been already used for a posteriori error estimation in optimal control problems
for advection-diffusion equations solved within the RB framework [73].

Within this context, the estimation problem is recast in a more general optimal control framework,
by introducing a suitable Lagrangian functional for a fictitious minimization problem, which in
our case reads as follows:

min
v∈V

Q(v(µ),v(µ);µ) s.t.
{
a(v(µ),Φ;µ) + b(p(µ),Φ;µ) = F (Φ;µ) ∀ Φ ∈ V
b(φ,v(µ);µ) = G(φ;µ) ∀ φ ∈ Q,

which is in fact equivalent to the evaluation of the output s(µ) from the solution of the (primal)
Stokes problem. For the sake of notation, the explicit µ-dependence is often omitted in this
section. By introducing the following Lagrangian functional:

L((v, p), (ψ, λ)) := Q(v,v) +F (ψ) +G(λ)−a(v,ψ)− b(p,ψ)− b(λ,v), ∀(ψ, λ) ∈ V ×Q,

the solution (v, p) of the previous minimization problem is characterized as the first component of
a stationary point of L((v, p), (ψ, λ)). Hence, we seek solutions (Y,Ψ) ≡ ((v, p), (ψ, λ)) ∈ (V ×Q)2

to the following Euler-Lagrange system (first-order necessary conditions):
L′(ψ,λ)[Φ, φ] = 0 ⇔

{
a(v,Φ;µ) + b(p,Φ;µ) = F (Φ;µ)
b(φ,v;µ) = G(φ;µ) ∀ (Φ, φ) ∈ V ×Q

L′(v,p)[Φ, φ] = 0 ⇔
{
a(Φ,ψ;µ) + b(λ,Φ;µ) = Q(v,Φ;µ)
b(φ,ψ;µ) = 0 ∀ (Φ, φ) ∈ V ×Q.

(3.92)

We recall that these equations are stated for, and our a posteriori error estimation for RB solution
is computed with respect to, the truth FE solution. Following the so-called optimize-then-discretize
approach, we can introduce the truth FE approximation of (3.92) and then a subsequent RB
approximation, which is given by:
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
L′(ψM ,λM )[Φ, φ] = 0⇔

{
a(vN ,Φ;µ) + b(pN ,Φ;µ) = F (Φ;µ)
b(φ,vN ;µ) = G(φ;µ) ∀ (Φ, φ) ∈ V NN ×QNN

L′(vN ,pN )[Φ, φ] = 0⇔
{
a(Φ,ψM ;µ) + b(λM ,Φ;µ) = Q(vN ,Φ;µ)
b(φ,ψM ;µ) = 0 ∀ (Φ, φ) ∈ V NM ×QNM ,

(3.93)

where, as in the previous section, ΨM (µ) = (ψM (µ), λM (µ)) ∈ V NM × QNM is the RB dual
approximation. As in the linear case, primal errors and residuals satisfy equation (3.76), here
rewritten for the reader’s convenience (expliciting the dependence on the primal variables):

rprv (Φ;YN (µ);µ)) = a(eprv (µ),Φ;µ) + b(eprp (µ),Φ;µ),
rprp (φ;YN (µ);µ) = b(eprv (µ),vN (µ);µ). (3.94)

In the same way, dual errors and residuals satisfy the following relationship (such as in (3.88)):

rduv (Φ; ΨM (µ);µ) = Q(vN (µ); Φ;µ)− a(Φ,ψM (µ);µ)− b(λM (µ),Φ;µ)
= a(Φ, eduv (µ);µ) + b(edup (µ),Φ;µ), (3.95)

rdup (φ; ΨM (µ);µ) = −b(φ,ψM (µ);µ) = b(φ, eduv (µ);µ).

In this case, we can show the following results:

Proposition 3.11. Let us denote by sN (µ) and sN (µ) the finite element and the reduced basis
approximation of a quadratic output (3.91) of the velocity fields. Then, the following error
estimation holds:

|sN (µ)− sN (µ)| ≤ ∆s, q
N (µ), ∀µ ∈ D,

where

∆s, q
N (µ) =

‖rprv (·;µ)‖2V ′+‖rprp (·;µ)‖2Q′
βLBBa,N (µ)

+
‖rduv (·;µ)‖2V ′+‖rdup (·;µ)‖2Q′

βLBBa,N (µ)
(3.96)

Proof. Let us start by considering the following relationship:

sN (µ)− sN (µ) = L(Y N (µ),ΨN (µ))− L(YN (µ),ΨM (µ)).

By indicating with ξN (µ) = (Y N (µ),ΨN (µ)) and ξN,M (µ) = (YN (µ),ΨM (µ)), the previous
difference can be rewritten as

sN (µ)− sN (µ) = L(ξN (µ))− L(ξN,M (µ)) =
∫ 1

0
L′(ξN,M + tη;η)dt

where η = η(µ) = (Y N (µ) − YN (µ),ΨN (µ) − ΨM (µ)) is a compact expression of the primal
and dual errors (eprv (µ), eprp (µ)), (eduv (µ), edup (µ)), and the condensed notation L′(ξ; Π) denotes

L′(ξ; Π) := L′(v,p)[Φ, φ] +L′(z,q)[Φ̃, φ̃], ξ = (Y,Ψ) = ((v, p), (ψ, λ)), Π = ((Φ, φ), (Φ̃, φ̃)).

By using the trapezoidal rule for approximating the integral, we obtain

sN (µ)− sN (µ) = 1
2L
′(ξN (µ);η) + 1

2L
′(ξN,M (µ);η) +R
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where the remainder term R is given by

R = 1
2

∫ 1

0
L
′′′

(ξN,M (µ) + tη;η,η,η)t(t− 1)dt

and vanishes if a(·, ·;µ), b(·, ·;µ) are bilinear and s(·) is quadratic (see e.g. [24]). Since
L′(ξN (µ);η) = 0 for all η ∈ XN ×XN due to the Euler-Lagrange system (3.92) and

L′(ξN,M (µ);η) = L′(vN ,pN )[eprv (µ), eprp (µ)] + L′(ψM ,λM )[eduv (µ), edup (µ)] =

= rprv (eprv (µ);YN (µ)) + rprp (eprp (µ);YN (µ)) + rduv (eduv (µ); ΨM (µ)) + rdup (edup (µ); ΨM (µ)),

we end up with

sN (µ)− sN (µ) = 1
2 (rprv (eprv (µ);YN (µ))+ rprp (eprp (µ);YN (µ))

)
+1

2
(
rduv (eduv (µ); ΨM (µ)) + rdup (edup (µ); ΨM (µ))

)
so that the following a posteriori error bound on the output holds:

|sN (µ)− sN (µ)| ≤ 1
2
(
‖rprv (·;YN (µ))‖V ′‖eprv (µ)‖V + ‖rprp (·;YN (µ))‖Q′‖eprp (µ)‖Q

)
+ 1

2
(
‖rduv (·; ΨM (µ))‖V ′‖eduv (µ)‖X + ‖rdup (·; ΨM (µ))‖Q′‖edup (µ)‖Q

)
,

which has a similar form of estimate (3.90). The result easily follows by using the error estimates
on velocity and pressure fields.

The evaluation of (both primal and dual) residual norms to compute the output error bounds
(3.83)-(3.90) in the case of linear outputs, and (3.96) in the case of quadratic outputs, is based on
the same Offline-Online procedure already introduced for error bounds on velocity and pressure
fields, and detailed in Sect. A.2.1 of Appendix A.

3.4.4 Navier-Stokes equations

We move on to the Navier-Stokes case, describing an error estimation procedure for velocity
and pressure fields jointly, based on the BRR theory. We require some slight modifications with
respect to the linear preliminaries: also for the Navier-Stokes problem the a posteriori error
estimation takes advantage of the dual norm of residuals and of an effective lower bound of the
(parametric) stability factor, given in this case by the Babuška inf-sup constant βÃ,N (µ) referred
to the Fréchet derivative of the global operator Ã(·, ·;µ), defined in (3.54). We first define the
residuals rv(· ;µ) and rp(· ;µ) by

rv(w;µ) := F (w;µ)− ã(vN (µ),w;µ)− b(pN (µ),w;µ)− c(vN (µ),vN (µ),w;µ),
rp(q;µ) := G(q;µ)− b(q,vN (µ);µ), (3.97)

for any w ∈ V N , q ∈ QN , respectively, where ã(·, ·;µ) = a(·, ·;µ) + d(·, ·;µ). Equivalently,
r(W ;µ) := rv(w;µ) + rp(q;µ) is such that

r(W ;µ) = F̃ (W ;µ)− Ã(YN (µ),W ;µ) ∀ W ∈ XN . (3.98)
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Moreover, let us denote by ‖r(·;µ)‖X′ = supW∈Y N r(W ;µ)/‖W‖X the dual norm of the residual
and βLB

Ã,N (µ) a computable lower bound for βÃ,N (µ) = βÃ,N (YN (µ);µ), recalling that

βÃ,N (µ) ≡ βÃ,N (YN (µ)(µ);µ) = inf
V ∈XN

sup
W∈XN

dÃ(YN (µ)(µ);µ)(V,W )
‖V ‖X‖W‖X

,

where we now highlight the dependence on the RB solution YN (µ) where the derivative is
evaluated. Since the error bound is related to the RB solution YN (µ), the derivative of the global
operator, as well as the stability factor, have to be evaluated with respect to YN (µ). We next
introduce a proximity indicator (a non-dimensional measure of the the residual) required by the
BRR theory:

τN (µ) = 4γ(ρ;µ)‖r(·;µ)‖X′
(βLB
Ã,N (µ))2 ,

where γ(ρ;µ) ≡ γNc (µ) is the (discrete) continuity constant of the trilinear form c(·, ·, ·;µ),
depending on the Sobolev embedding constant ρN defined in (3.46). Here in the continuity
constant we highlight the dependence by ρ = ρN (omitting the subscript N for simplicity), since
the Sobolev embedding constant is a further, requested ingredient to be computed for the sake of
error estimation. Finally, we define N∗(µ) such that τN (µ) < 1 for N ≥ N∗(µ); we require that
N∗(µ) ≤ Nmax, for any µ ∈ D. Then, we can state the following theorem:

Theorem 3.12. Let us denote by Y N (µ) and by YN (µ) the truth approximation (3.45) and the
reduced basis approximation (3.66), respectively. If N ≥ N∗(µ), there exists a unique solution
Y N (µ) to (3.45) in the open ball

BX

(
YN (µ);

βLB
Ã,N (µ)

2γ(ρ;µ)

)
=
{
Y ∈ X : ‖Y − YN (µ)‖X ≤

βLB
Ã,N (µ)

2γ(ρ;µ)

}
.

Furthermore, the following a posteriori error estimation holds:

‖Y N (µ)− YN (µ)‖X ≤
βLB
Ã,N (µ)

2γ(ρ;µ)

(
1−

√
1− τN (µ)

)
=: ∆N (µ), ∀µ ∈ D. (3.99)

Proof. This result is a slight variation of the result shown by Veroy and Patera in [312], that in
turn derives from the abstract results of the BRR theory stated in Thm. 2.1 of [56]. For this
reason, we sketch only the main points, reminding to the original references for further details.
First of all, let us denote by g(·, ·;µ) : X ×X → R the following operator:

g(W,V ;µ) = Ã(W,V ;µ)− F̃ (V ;µ)

and remark that dg(Z;W,V ;µ) = dÃ(Z;W,V ;µ), recalling that

dÃ(Z;W,V ;µ) = A(W,V ;µ) + C(Z,W, V ;µ) + C(W,Z, V ;µ).

Moreover, let us remark that, by Taylor expansion,

Ã(Y N2 ,WN ;µ)− Ã(Y N1 ,WN ;µ) =
∫ 1

0
dÃ(Y N1 + t(Y N2 − Y N1 );Y N2 − Y N1 , V ;µ), (3.100)

whereas from the continuity of c(·, ·, ·;µ) we have

|dÃ(Y N2 ;WN , V N )− dÃ(Y N1 ;WN , V N )| ≤ 2γ(ρ;µ)‖WN ‖X‖V N ‖X‖Y N2 − Y N1 ‖X . (3.101)
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The central ingredient is the construction of a suitable contraction mapping which underlies a
standard fixed-point argument. To this aim, we define the operator Hµ : XN → XN as

dg(YN (µ);Tµ(WN ), V N ;µ) = dg(YN (µ);WN , V N ;µ)−g(WN , V N ;µ), ∀V N ∈ XN ; (3.102)

it is evident that a fixed point of Hµ(WN ), such that Hµ(WN ) = W
N , is a zero of g, i.e.

g(WN , V ;µ) = 0 for any V ∈ XN , that is WN solves the truth approximation problem (3.45).
Let us now consider WN1 ∈ B(YN (µ);α), WN2 ∈ B(YN (µ);α), for a given α > 0; from (3.100)–
(3.102) and the definition of βLB

Ã,N (µ), it follows that

‖Hµ(WN2 )−Hµ(WN1 )‖X ≤
2γ(ρ;µ)α
βLB
Ã,N (µ)

‖WN2 −WN1 ‖X ,

so that ‖Hµ(WN2 ) −Hµ(WN1 )‖X ≤ ‖WN2 −WN1 ‖X , i.e. Hµ(·) is a contraction mapping, for
any α ∈ [0, βLB

Ã,N (µ)/2γ(ρ;µ)). Furthermore, from the same relationships, we also have that

‖Hµ(WN )− YN (µ)‖X ≤
‖r(·;µ)‖X′ + α2γ(ρ;µ)

βLB
Ã,N (µ)

, ∀WN ∈ B(YN (µ), α),

where the residual r(W ;µ) is given by r(W ;µ) = −g(YN (µ),W ;µ) and its dual norm such that
|g(YN (µ),WN ;µ)| ≤ ‖r(·;µ)‖X′‖WN ‖X , for any WN ∈ XN . Thus, since

‖r(·;µ)‖X′ + α2γ(ρ;µ)
βLB
Ã,N (µ)

< α⇔
βLB
Ã,N (µ)

2γ(ρ;µ)

(
1−

√
1− τN (µ)

)
< α <

βLB
Ã,N (µ)

2γ(ρ;µ)

(
1 +

√
1− τN (µ)

)
,

we obtain that for any α ∈ [∆N (µ), (βLB
Ã,N (µ)/2γ(ρ;µ))(1 +

√
1− τN (µ))] the operator Hµ(·)

maps B(YN (µ), α) into itself. In conclusion, for any α ∈ [∆N (µ), βLB
Ã,N (µ)/2γ(ρ;µ)] Hµ(·) is a

contraction that maps B(YN (µ), α) into itself, and thus it admits a unique fixed points, i.e. there
exists a unique function Y N (µ) ∈ B(YN (µ), α) which is a solution of the truth approximation
(3.45).

Remark 3.13. This theorem generalizes available versions of the a posteriori error bounds for
Navier-Stokes equations in two ways: (i) by developing the computations on the global Navier-
Stokes operator Ã(·, ·;µ) (including also the pressure terms) and involving the lower bound
βLB
Ã,N (µ), we provide an aggregate error estimate for both RB velocity and pressure; (ii) by

considering the continuity factor γ(ρ;µ) of the trilinear form instead of just the Sobolev embedding
constant ρ, we can deal with problems involving parametrized trilinear terms – entering, for
instance, in geometrical parametrizations. Moreover, in nonaffine problems the correction factor
maxq=1,...,Qc ‖ηq‖L∞(Ω) affects the definition of γ(ρ;µ), whereas it reduces to 1 in the affine case.
In any case, we presume that in the Navier-Stokes case the parameter-dependent solution lays on
an isolated branch.

As for the Stokes case, the computational challenge is the development of suitable and efficient
procedures for the calculation of the quantities appearing in the error bound (3.99): dual norms
of residuals, embedding constants and lower bounds βLB

Ã,N (µ) of the stability factor. Details
about the evaluation of these quantities are provided in the Appendix A – see Sect. A.2.2, A.3.2
and A.4, respectively. Error bounds for linear and quadratic outputs related to Navier-Stokes
equations have been treated for instance in [78], but not employed. In our framework, based on
error estimation for velocity and pressure jointly, their analysis and implementation is another
topic of forthcoming research [209].
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3.5 Further remarks and open issues
Before presenting some numerical examples dealing with RB approximation of both Stokes and
Navier-Stokes problems, we point out major numerical difficulties and bottlenecks. First of all,
let us remark that the most challenging computational aspects are (i) the estimation of lower
bounds for stability factors and (ii) the calculation of dual norms of residuals, more than the RB
approximation itself.
Concerning the latter point, computation of dual norms of residuals is based instead on the
Riesz representation of rv(· ;µ) and rp(· ;µ) and on the affine decomposition of the parametric
operators. We thus need to store during the Offline stage several structures representing the
scalar products of parameter-independent terms, so that during the Online stage we just need
to evaluate the Θ•(µ) functions and combine the former contributions. This procedure requires
the storage of up to O(Q2

cN
2 +Qc(QaN)) full matrices of dimension O(N) in the nonlinear case

(see Sect. A.2.2), which may lead to some difficulties in case of affine expansions made by large
number of terms. This case occurs whenever the affine structure of the operators is recovered
through the EIM procedure, featuring sometimes Q• = O(102) terms in each operator.

Regarding instead the estimation of lower bounds for stability factors, we rely on the (natural
norm version of the) Successive Constraint Method (SCM), which is based on the successive
solution of suitable linear optimization problems and features an efficient Offline-Online strategy;
see Sect. A.3 of Appendix A. As shown in the forthcoming section, the natural norm SCM
algorithm has been successfully applied to several Stokes problems, dealing with both (physical
and geometrical) affine and (geometrical) nonaffine parametrizations, and p ≤ 3 parameters.
Some preliminary results are available also for a simple Navier-Stokes problem dealing with a
physical affine parametrization.
From our current experience, the natural norm SCM algorithm starts converging very slowly
when the number of parameters is getting larger and larger, at least for p ≥ 4. However, we
observe that for free-shape nonaffine geometrical parametrizations such as in the FFD case,
adding more geometrical parameters does not have a huge impact on the range of stability factors
(see also [184]). We were thus able to circumvent the difficulty of poor convergence of the SCM
algorithm by proposing several alternatives, such as: (i) global constant lower bound in case of
free-shape nonaffine parametrizations; (ii) parametric lower bounds obtained by activating up to
p̃ ≤ 3 parameters among the ones defining the parametrization; (iii) surrogate models, based e.g.
on RBF interpolation, as sketched in Sect. A.3.2 of Appendix A.
More rigorous alternatives capable to overcome also the difficulty of large affine expansions (e.g.
in nonaffine problems treated through EIM procedures) take advantage of the possibility to
approximate a nonaffine operator by means of two affine operators at different levels of accuracy.
In this way, SCM is applied on the coarse level to obtain a lower bound for the stability factors,
and this bound is extended to the fine level by adding a proper correction term. This procedure
has been implemented for simple scalar coercive and noncoercive problems in [183] and its
extension to Stokes and (possibly Navier-Stokes) operators is currently under investigation.

3.6 Numerical examples
Flows in pipes and channels or around bodies are of great interest in fluid mechanics applications
[234], especially when they can be studied in a parametrized geometrical configuration. We present
in the following some numerical results dealing with RB approximation and error estimation for
steady parametrized Stokes and Navier-Stokes flows. We consider both physical and geometrical
parametrizations: the former involve boundary conditions and physical coefficients, while the
latter consist of both (automatic, piecewise) affine and global nonaffine mappings.
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3.6.1 Stokes equations

The following examples consider low Reynolds viscous flows described by 2D steady Stokes
equations in different geometries; they can be seen as examples for the design of parametrized
fluidic devices or considered as elements of more complex modular fluidic systems. By increasing
complexity, we deal with classic Poiseuille and Couette flows, a flow in a channel contraction,
around a curved bluff body and in a bifurcation. The following subsections are devoted to the
description of these problems with results – submitted in a recent paper [279] – showing the
application of the RB methodology. All numerical details concerning the construction of RB
spaces and the computation of lower bounds βLBBa,N (µ) for the inf-sup stability constants are
reported in Tables 3.1 and 3.2.

Case 1: Poiseuille and Couette flows

This first example deals with a classical flow in straight pipes of uniform cross-section, known as
Hagen-Poiseuille and Couette flows [234]. In the former a parabolic velocity profile is imposed at
the inflow, while in the latter we deal with a flow in the space between two parallels sections, one
of which is moving relative to the other.
For the Poiseuille case, we consider the physical domain Ωo(µ) shown in Fig. 3.1 and P = 2
parameters. Here µ1 = ν, while µ2 is a geometrical parameter representing the length of the right
narrow channel. In this case a dimensional formulation for the equations has been considered.
The parameter domain is given by D = [0.25, 0.75]× [1.5, 2.5]. The forcing term is f = (1, 0).

Figure 3.1: Parametrized geometry and domain boundaries for the Poiseuille (left) and the
Couette (right) case.

We impose the following boundary conditions (with ΓD ≡ ΓD0 = ∂Ω \ (Γ1 ∪ Γ7)):

v = 0 on ΓD
v1 = 0, v2 = 4x1(1− x1) on Γ1

v1 = 0, −pn2 + µ1
∂v2

∂x2
n2 = 0 on Γ7

(Poiseuille case)

where n = (n1, n2)T denotes the normal unit vector. For the Couette case, we consider the
physical domain Ωo(µ) shown in Fig. 3.1 (right side) and P = 1 parameter, µ1 ∈ [0.5, 2], being
both the height of the channel and the maximum value of the linear profile of inlet velocity
prescribed. The forcing term is f = (0,−1). Denoting ΓD = ∂Ω \ Γ3, we impose the following
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boundary conditions:

v1 = x2, v2 = 0 on ΓD
v2 = 0, −pn1 + ∂v1

∂x1
n1 = 0 on Γ3

(Couette case)

Figure 3.2: Poiseuille (top) and Couette (bottom) cases: lower and upper bounds for the Babuška
inf-sup constant; here Ξtrain is a uniform sample of size ntrain = 1000: βLBBa,N (µ) (red curve) and
βUBBa,N (µ) (blue curve) as a function of µ2 for the Poiseuille case (being µ1 = 0.5 fixed) and of µ1
for the Couette case after 27 and 15 iterations of the SCM greedy algorithm, respectively.

With a fixed tolerance εRB
tol = 10−2, Nmax = 7 and Nmax = 6 basis functions have been selected

for the Poiseuille and the Couette cases, respectively, through the greedy procedure. We also plot
in Fig. 3.2 the SCM lower and upper bounds for the Babuška inf-sup constant (e.g. for a selected
value of µ1 in the Poiseuille case, using for both the cases in the Online evaluation a uniform
test sample of 1000 parameter values). For these cases the output of interest is provided by the
visualization of velocity and pressure contour fields; two examples are reported in Fig. 3.3-3.4.
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Figure 3.3: Poiseuille case: representative solution for pressure with streamlines (left) and velocity
(right) for µ = [0.25, 2.5].

We plot in Fig. 3.5 the errors between the “truth” FE solution and the RB approximation,
for N = 1, . . . , Nmax, and the corresponding error bounds. We remark both the rigor and the
sharpness of the error bounds, being the effectivity ηN (µ) := ∆N (µ)/‖Y N (µ)− YN (µ)‖Y larger
than 1 (rigor) and not far from unity (sharpness).
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Figure 3.4: Couette case: representative solution for pressure with streamlines (left) and velocity
(right) for µ = 0.5.
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Figure 3.5: Poiseuille (left) and Couette (right) cases: a posteriori error bounds and (minimum,
maximum and average over Ξtest) computed errors between the “truth” FE solution and the RB
approximation, for N = 1, . . . , Nmax. Here Ξtest is a uniform sample of size ntest = 1000.

Case 2: A channel contraction

The problem of the change of a sectional area characterizes many engineering problems dealing
with internal flows. The physical phenomena observed in the channel at the change of the sectional
area are based on the continuity equation; another important aspect is the calculation of flow
rates at a selected section of the channel. We consider the physical domain Ωo(µ) shown in
Fig. 3.6; we identify the regions R`, 1 ≤ ` ≤ 2, which represent the portions of the channel with
different sectional area.
We consider P = 3 parameters; here µ1, µ2, µ3 are geometrical parameters defined in Fig. 3.6:
µ1 is the length of the larger zone of the channel before the contraction, µ2 is the length of the
narrow zone of the channel (just before the outflow) and µ3 is the diameter of the channel at
the inflow. The parameter domain is given by D = [3, 5]× [3, 5]× [2.5, 3]. The forcing term is
f = (0, 0). We impose the following boundary conditions:

v = 0 on Γ1,Γ2,Γ4,Γ6,Γ7,Γ8

v2 = 0, −pn1 + ∂v1

∂x1
n1 = 1 on Γ5.

v2 = 0, −pn1 + ∂v1

∂x1
n1 = −1 on Γ9,Γ10,Γ11.
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Figure 3.6: Parametrized geometry and domain boundaries for the channel contraction case.

The output of interest is the flowrate on Γ3 (internal boundary at the interface, on which the
continuity of velocity and stresses is assured), given by

s(µ) =
∫

Γ3

u1(µ)dΓ.

Figure 3.7: Channel contraction case: lower bounds for the Babuška inf-sup constant; here Ξtrain
is a uniform sample of size ntrain = 2500: βLBBa,N (µ)as a function of µ1, µ2 (left, being µ3 = 2.75
fixed) and of µ1, µ3 (right, being µ2 = 4 fixed) after 49 iterations of the SCM greedy algorithm.

The greedy procedure for the construction of the primal and dual RB spaces selects Npr
max = 11

and Ndu
max = 17 basis functions for the primal and the dual problem, respectively, with a fixed

tolerance εRB
tol = 10−2. We plot in Fig. 3.7 the SCM lower bounds for the Babuška inf-sup

constant, using in the Online evaluation a uniform test sample of size ntest = 2500. In Fig. 3.8
we report some representative solutions for selected values of the parameters.
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Figure 3.8: Channel contraction case: representative solutions for pressure with streamlines (left)
and velocity (right) for µ = [3, 5, 2.5] and µ = [5, 3, 3].
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We plot in Fig. 3.9 the errors between the “truth” FE solution and the RB approximation, for
N = 1, . . . , Nmax, and the corresponding error bounds.
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Figure 3.9: Channel contraction case: a posteriori error bounds and (minimum, maximum and
average over Ξtest) computed errors between the “truth” FE solution and the RB approximation,
for N = 1, . . . , Nmax. Here Ξtest is a uniform sample of size ntest = 500.

In Fig. 3.10 we plot the computed output, together with the related error bound, as functions of
µ1 and µ2, being µ3 fixed to its intermediate value. We recall the quadratic effect recovered by
introducing and solving the dual problem in the case of a noncompliant output.

Figure 3.10: Channel contraction case: output sN (µ) (left) and related error bound ∆s
N (µ)

(right) as functions of µ1, µ2, with µ3 = 2.75. Average time for output evaluation is 0.148s.

Case 3: A curved bluff body

A common problem in fluid dynamics is the drag minimization around a body which is in relative
motion in a fluid (see Sect. 1.5). Here we consider a simplified version of the drag minimization
problem addressed in [71], in which drag forces are minimized by controlling the velocity through
the body boundary. Our goal is to compute the Stokes flow and related drag forces around a
profile in relative motion with a laminar viscous fluid, with respect to simple parametric variations.
We consider the geometrical setting depicted in Fig. 3.11: here µ1 ∈ [0.1, 0.25] is a geometrical
parameter representing the body length, while µ2 ∈ [−25, 25] is the Neumann datum prescribed
on the boundaries Γ9 ∪ Γ11: as in [71], this corresponds to regulate the aspiration or the blowing
of the boundary layer for reducing the effects of the vortices coming off from the rear of the body.
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Figure 3.11: Parametrized geometry and domain boundaries for the curved bluff body case.

The forcing term is f = (0, 0). A parabolic flow is imposed at the inlet Γ7 ∪ Γ8, while a free-stress
condition is imposed at the outflow Γ3 ∪ Γ4. Thus, we impose the following boundary conditions:

v = 0 on Γ1,Γ2,Γ5,Γ6,Γ10,Γ12,Γ13,
v1 = α(x2 − 0.4)(x2 + 0.4), v2 = 0 on Γ7,Γ8,

v1 = 0, −pn2 + ∂v2

∂x2
n2 = µ2 on Γ9,

v1 = 0, −pn2 + ∂v2

∂x2
n2 = µ2 on Γ11,

−pn + ν
∂v
∂n = 0 on Γ3,Γ4.

where α = 0.16 in order to have a maximum inlet velocity equal to 1. A first output of interest is
the drag force acting on the Dirichlet boundary of the body ΓB = Γ10 ∪ Γ12 ∪ Γ13, given by

s(µ) =
∫

ΓB

(
pn− ∂v

∂n

)
· v̂DdΓ,

where v̂D = (1, 0) is the direction of the inflow velocity. By means of the greedy procedure (with
a fixed tolerance εRB

tol = 10−2) Npr
max = 12 and Ndu

max = 6 basis functions have been selected for
the primal and the dual problem, respectively. We also plot in Fig. 3.12 the SCM lower bounds
βLBBa,N (µ) for the inf-sup constant; clearly, they do not depend on µ2, which does not affect the
left-hand-side of the Stokes operator. In Fig. 3.13 we report some representative solutions for
selected values of the parameters.

Figure 3.12: Curved bluff body case: lower bounds βLBBa,N (µ) for the Babuška inf-sup constant as
a function of µ1, µ2; here Ξtrain is a uniform sample of size ntrain = 2500.
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Figure 3.13: Curved bluff body case: representative solutions for pressure with streamlines (left)
and velocity (right) for µ = [0.1,−25] (top) and µ = [0.25, 25] (bottom).

We can underline a strong sensitivity of the flow with respect to geometrical variations and,
clearly, also on the aspiration/blowing of the fluid across the body. In Fig. 3.14 we plot the
computed output, together with the related error bound. The output behaves as a non-monotonic
function w.r.t. the two parameters. There is a different influence of the bluff body geometry (i.e.
short or long body) w.r.t. the shear layers and the separation.
We plot in Fig. 3.15 the errors between the “truth” FE solution and the RB approximation, for
N = 1, . . . , Nmax, and the corresponding error bounds (we remark that ∆s

N (µ) ≈ 10−7 ÷ 10−8).

Figure 3.14: Curved bluff body case: computed output sN (µ) (left) and related error bound
∆s
N (µ) (right) as a function of µ1, µ2. The average time for Online output evaluation is 0.087s.

A second output of interest is the viscous energy dissipation over the domain, given by

s(µ) = ν

∫
Ω
|∇v(µ)|2dΩ ≡ a(v,v;µ),

thus fitting the quadratic case of Sect. 3.4.3 with Q(·, ·;µ) = a(·, ·;µ). In the case of a full
Dirichlet problem, this output is in fact equivalent to the drag output considered above [27].
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Figure 3.15: Curved bluff body case: a posteriori error bounds and (minimum, maximum and
average over Ξtest) computed errors between the “truth” FE solution and the RB approximation,
for N = 1, . . . , Nmax. Here Ξtest is a uniform sample of size ntest = 500.

By means of the greedy procedure (with a fixed tolerance εRB
tol = 10−2) Npr

max = Ndu
max = 12 basis

functions have been selected for both the primal and the dual problem. We show in Fig. 3.16
the convergence of the simultaneous6 primal-dual greedy algorithm, as well as the (averages
computed over over a uniform sample Ξtest of size ntest = 2500 of the) online evaluations for the
error bounds on both primal and dual solutions.
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Figure 3.16: Curved bluff body case. Left: maxµ∈Ξtrain ∆N (µ) and maxµ∈Ξtrain ∆M (µ) as a
function of N = Npr and M = Ndu computed during the greedy procedure, for the primal
(blue) and the dual (red) problem, respectively. Here Ξtrain is a uniform random sample of size
ntrain = 1000 and RB tolerance is εRB

tol = 10−2. Right: online evaluations of error bounds on
primal and dual variables (average over ntest = 2500 sampled µ values).

6For a noncompliant linear output, the dual problem does not depend on the primal solution, so the assembling
procedure for the dual space can be executed one the primal RB space has been built. Instead, when dealing
with quadratic outputs, the (right-hand side of the) dual problem depends on the primal solution, so that we can
exploit a simultaneous primal-dual greedy for constructing both spaces at the same time. Stopping criterium is
fulfilled when both primal and dual error bounds are below a given tolerance, for any µ ∈ D. This explains why
Npr
max = Ndu

max after the selection procedure. See e.g. [72] for alternative greedy strategies in this context.
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Figure 3.17: Curved bluff body case: a posteriori error bounds on energy output and (minimum,
maximum and average over Ξtest) computed errors. Here Ξtest is a uniform sample of size
ntest = 2500. The average time for Online output evaluation is 0.11s.

In the end, we plot in Fig. 3.17 the errors between the “truth” FE output sN (muv) and the RB
output sN (µ), for N = 1, . . . , Nmax, and the corresponding error bounds. We can remark that
we are able to recover the quadratic effect also in the case of a quadratic output.

Case 4: A parametrized bifurcation

We now consider the case of Stokes flows through a nonaffinely parametrized bifurcation, obtained
by a global FFD mapping. This geometrical configuration can be considered as a simplified
version of a carotid bifurcation, which represents a well-studied case of interaction between blood
flows and (possibly occluded) arterial vessels, potentially able to affect the development of arterial
diseases. See Sect. 6.3 for more details and other study cases related to these features. Here we
are interested in the RB approximation and certification of a simpler steady Stokes flow in the
domain represented in Fig. 3.18. A 10× 5 lattice of control points is placed over the bifurcation
and the two control points represented in red are allowed to move in the x2-direction, giving
p = 2 geometrical parameters µ = (µ1, µ2) ∈ (−0.5, 0.5)2, adjusting the width of the bifurcation.
A parabolic Poiseuille profile is imposed at the inflow Γin, no-slip conditions are imposed along
the wall Γw, while free-stress conditions are imposed at the two outflows Γout.

Figure 3.18: Parametrized geometry and domain boundaries for the bifurcation case.

By means of the greedy procedure (with εRB
tol = 10−3) Nmax = 16 basis functions have been

selected. We also plot in Fig. 3.19 the SCM lower bounds βLBBa,N (µ) for the inf-sup constant; we
can remark that the pattern is nearly symmetric with respect to both variables, and does not
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Figure 3.19: Bifurcation case: lower bounds βLBBa,N (µ) for the Babuška inf-sup constant as a
function of µ1, µ2 after 329 iterations of the SCM greedy algorithm. Here Ξtrain is a uniform
sample of size ntrain = 2500.

show strong variations over the parametric range. We always experienced these features when
dealing with FFD shape parametrizations (see e.g. also case 3 of the following section).
We plot in Fig. 3.20 both the convergence of the greedy algorithm and the errors between the
“truth” FE solutions and the RB approximations, with the corresponding error bounds.

2 4 6 8 10 12 14 16
10−4

10−3

10−2

10−1

100

101

102

103

N

2 4 6 8 10 12 14 16
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

N

 

 
∆

N
(µ)

error (min)

error (max)

error (average)

Figure 3.20: Bifurcation case. Left: maxµ∈Ξtrain ∆N (µ) as a function of N for the RB ap-
proximations computed during the greedy procedure. Here Ξtrain is a uniform random sample
of size ntrain = 1000 and the RB tolerance is εRB

tol = 10−2. Right: a posteriori error bounds
and (minimum, maximum and average over Ξtest) computed errors between the “truth” FE
solution and the RB approximation, for N = 1, . . . , Nmax. Here Ξtest is a uniform sample of size
ntest = 2500.

In Fig. 3.21 we report some representative solutions for selected values of the parameters. We can
underline a strong sensitivity of the flow with respect to geometrical variations, which represents
one of the most interesting features when dealing with this kind of problems.

94



3.6. Numerical examples

−
6

−
4

−
2

0
2

4
6

−
1.

5

−
1

−
0.

50

0.
51

1.
5

 

 

0510152025

−
6

−
4

−
2

0
2

4
6

−
1.

5

−
1

−
0.

50

0.
51

1.
5

 

 
−

20
0

−
15

0

−
10

0

−
50

0

−
6

−
4

−
2

0
2

4
6

−
1.

5

−
1

−
0.

50

0.
51

1.
5

 

 

05101520253035

−
6

−
4

−
2

0
2

4
6

−
1.

5

−
1

−
0.

50

0.
51

1.
5

 

 
−

30
0

−
25

0

−
20

0

−
15

0

−
10

0

−
50

0
Figure 3.21: Bifurcation case: representative solutions for velocity and pressure with streamlines
for µ = [−0.5, 0.5] (left) and µ = [0.5,−0.5] (right).

Summary of results

As shown by the results obtained with the previous test cases, the greedy algorithm enables
to build reduced spaces of contained dimension performing an exponential convergence. We
report all the details of the numerical simulations related to the discussed test cases in Table
3.1. We remark the very small dimension N of the RB approximation problems with respect to
the FE approximation space dimension N , which leads to effective computational economies,
necessary when dealing with numerical simulations in both real time and many query context.
The reduction in linear systems dimension is between 200 and 400 times, depending on the test
cases, while the computational speedup is of order 102, varying from 98 to 442. Computational
time for Online evaluation is of order 10−2 seconds. The number of affine operator components
Qa + 2Qb is larger in the Case 4 compared to other cases because of the EIM procedure employed
to recover the affine parametric dependence in this nonaffine case. By setting εEIMtol = 2.5× 10−4,
we obtain an affine expansion of

∑
i,j K

a
ij = 117 terms for νij components and of

∑
i,j K

b
ij = 7

terms for χij components. This has a strong impact on the running of the SCM algorithm, which
in this case has taken about 300 iterations to converge in about 20 hours, by using the Lanczos
method to solve the eigenproblems required by SCM.

In Table 3.2 we report all the details related to the SCM procedure for the approximation of
lower bounds βLBBa,N (µ) used in the test cases presented. We point out that the natural norm
SCM algorithm enables to contain the computational costs arising from the computation of the
lower bound of the inf-sup constant, also in the cases of larger parameter spaces D, as for the
curved bluff body case, at least in the case p ≤ 3 – the algorithm starts converging very slowly
when the number of parameters is getting larger and larger.
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Case 1 Case 1 Case 2 Case 3 Case 4
Approximation data Poiseuille Couette Channel Body Bifurcation
Number of parameters P 2 1 3 2 2
Affine op. components Qa + 2Qb 5 3 8 8 135
Affine rhs components QF +QG 2 4 2 9 140
FE space dim. N 8354 5093 6490 13216 24046
RB primal space dim. Npr

max 7 6 11 12 16
RB dual space dim. Ndu

max - - 17 6 -
FE evaluation tonlineFE (s) 3.987 2.005 3.464 10.483 14.563
RB evaluation tonlineRB (s) 0.0101 0.0205 0.0212 0.0237 0.0289
Computational speedup 395 98 163 442 504

Table 3.1: Numerical details for the test cases presented. RB spaces have been built by means of
the greedy procedure, using a tolerance εRB

tol = 10−2 and a uniform RB greedy train sample of
size ntrain. A comparison of the computational times between the Online RB evaluations and the
corresponding FE simulations is reported. Here tonlineRB is the time of an Online RB computation,
while tonlineFE is the time for a FE computation, once FE matrices are built.

Approximation data Poiseuille Couette Channel Body Bifurcation
# of selected µ̄ 2 3 1 1 6
# of selected µ̂ (∀µ̄) 22; 5 7; 5; 3 49 10 215; 33; 21; 38; 17; 5
# of eigenproblems 39 24 66 27 605

Table 3.2: Numerical details for the test cases presented. The lower and upper bounds of the
Babuška inf-sup constants have been computed by means of the natural norm SCM algorithm
detailed in Sect. A.3, using a tolerance εSCMtol = 0.85 and a uniform train sample of size ntrain.
SCM requires the solution of #µ̄+ #µ̂+ 2(Qa + 2Qb) eigenproblems.

3.6.2 Navier-Stokes equations

In the following we consider moderate Reynolds viscous flows described by 2D steady Navier-
Stokes equations in different geometries. By increasing complexity, we deal with a classic cavity
flow parametrized by the Reynolds number, with a double elbow pipeline parametrized by the
Reynolds number and the aspect ratio, and with a flow around an airfoil profile, whose shape
is parametrized through a FFD map. In any case, we are interested to the approximation of
velocity and pressure fields, as well as to error estimation; no outputs (and related dual problem
will be considered at this level. All numerical details concerning the construction of RB spaces
are reported in Table 3.3, as well as some remarks concerning the computation of lower bounds
βLB
Ã,N (µ) for the inf-sup stability constants.

Case 1: A channel expansion

In this first example we deal with a parametrized flow in the fixed geometrical configuration
depicted in Fig. 3.22, representing a channel expansion (sometimes assimilated to the classical
cavity benchmarks). We identify the regions R`, 1 ≤ ` ≤ 2, which represent the portions of the
channel with different sectional area. We consider p = 1 parameter, defined as µ1 = 1/ν; the
parameter domain is given by D = [10, 250]. The forcing term is f = (0, 0). A parabolic flow is
imposed at the inlet Γ1, while a free-stress condition is imposed at the outflow Γ5. Thus, we
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impose the following boundary conditions:

v = 0 on Γ2,Γ3,Γ4,Γ6,Γ7,
v1 = α(x2 − 1)(2− x2), v2 = 0 on Γ1,

−pn + 1
µ1

∂v
∂n = 0 on Γ5.

where α > 0 is a positive constant chosen such that |v̄| = max v1|Γ1 = 0.5. Equivalently, the
flow is parametrized with respect to the Reynolds number, which can be defined in this case by
Re = µ1/2, where L = 1 is the characteristic length – the width of the channel at the inflow –
and |v̄| the characteristic velocity.

Figure 3.22: Parametrized geometry and domain boundaries for the channel expansion case.

The greedy procedure for the construction of the RB space selects Nmax = 11 basis functions with
a fixed tolerance εRB

tol = 10−4. We report in Fig. 3.23 the convergence of the greedy procedure, as
well as the (online evaluation over a train sample Ξtest of size ntest = 100) errors between the
“truth” FE solution and the RB approximation, for N = 1, . . . , Nmax, and the corresponding error
bounds. In this case we have N∗(µ) = 3 (N∗(µ) is such that τN (µ) < 1 for N ≥ N∗(µ)); for
N < N∗(µ) we can keep τN (µ) as error bound (this choice is employed by the greedy algorithm,
which thus selects the first snapshots as those which maximize τN (µ), and also during the online
evaluations). We also remark that the difference between ∆N (µ) and τN (µ) is not so large for
N ≥ N∗(µ), even if a more general mathematical connection between ∆N (µ) and τN (µ) is less
obvious – e.g., there could be coincidences related to embedding constants and inf-sup constants.
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Figure 3.23: Channel expansion case. Left: maxµ∈Ξtrain ∆N (µ) (in red) and maxµ∈Ξtrain τN (µ)
(in blue) as a function of N , computed during the greedy procedure. Here Ξtrain is a uniform
random sample of size ntrain = 500 and RB tolerance is εRB

tol = 10−4. Right: online evaluations of
error bounds (average over ntest = 100 sampled µ values) and (minimum, average and maximum
over Ξtest) error between FE and RB approximations.
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We plot in Fig. 3.24 the lower bounds for the Babuška inf-sup constant βLB
Ã,N (µ) computed by

the SCM algorithm (in red), as well as the values (blue dots) of the true stability factor β(µj∗),
for the points in S = {µj∗, j = 1, . . . , J} selected through the SCM-greedy procedure. As in the
linear case (see e.g. [146], Section 3.2), the method interpolates βÃ,N (µ) at each µ∗ ∈ S, i.e.
βÃ,N (µ∗) = βLB

Ã,N (µ∗) for each µ∗ ∈ S. Moreover, we show (in blue) the surrogate lower bounds
computed7 through a RBF interpolation of the values βÃ,N (µ), for µ∗ ∈ S, by using thin plate
splines, as well as (in black) a set of ntest = 10 computed true values βÃ,N (µi), with µi /∈ S.
Although the surrogate fails to bound βÃ,N (µi) in at least one case (µi ∈ (200, 250)), it can
be globally considered a good surrogate of the SCM lower bound βLB

Ã,N (µ), avoiding the lower
peaks usually shown by SCM outputs and due to the imposition of the successive constraints.
Nevertheless, the RBF surrogate (as well as a constant lower bound) might fail in particular in
the case of separated flows also at moderate Reynolds number, because of possible undergoing
bifurcation phenomena.

0 50 100 150 200 250
10−4

10−3

10−2

10−1

100

 

 

SCM lower bound

RBF interpolant
βLB

µ
*

β(µ)

Figure 3.24: Channel expansion case. Lower bounds βLB
Ã,N (µ) for the Babuška inf-sup constant

(in red) and RBF surrogate lower bound (in blue) as a function of µ; here Ξtrain is a uniform
sample of size ntrain = 400; Values of the stability factor βÃ,N (µ∗) for each selected µ∗ ∈ S (blue
dots) and stability factors βÃ,N (µi) for 10 parameter values {µ1, . . . ,µ10} (in black).

In Fig. 3.25 we report some representative solutions. We can underline that the size of the vortex
core located in the bottom left corner increases as µ1 increases, indicating the presence of a larger
and larger recirculation with increasing Reynolds numbers, as expected.

Case 2: A double elbow pipeline

We now consider a parametrized flow in the geometrical configuration depicted in Fig. 3.26,
representing a double elbow pipeline (sometimes assimilated to a double cavity benchmark). We
identify the regions R`, 1 ≤ ` ≤ 3, which represent the three portions of the channel with constant
sizes (` = 1, 3) and variable sizes (` = 2). We consider p = 2 parameter, defined as µ1 = 1/ν
and the aspect ratio µ2 of the vertical portion of the pipeline; the parameter domain is given by
D = [50, 350]× [2, 5]. The forcing term is f = (0, 0). A parabolic flow is imposed at the inlet Γ1,
while a free-stress condition is imposed at the outflow Γ6:

v = 0 on ∂Ωo(µ2) \ (Γ1 ∪ Γ6),
v1 = αx2(1− x2), v2 = 0 on Γ1,

−pn + 1
µ1

∂v
∂n = 0 on Γ6.

7See Sect. A.3.2 in Appendix A for some remarks about the construction of surrogate lower bounds.

98



3.6. Numerical examples

0 1 2 3 4 5 6 7

0

0.5

1

1.5

2

 

 

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7

0

0.5

1

1.5

2
 

 

−0.2

−0.15

−0.1

−0.05

0

0 1 2 3 4 5 6 7

0

0.5

1

1.5

2

 

 

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7

0

0.5

1

1.5

2

 

 
−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

Figure 3.25: Channel expansion case: representative solutions for velocity and pressure with
streamlines for µ = 50 (left) and µ = 250 (right).

where α > 0 is a positive constant chosen such that |v̄| = max v1|Γ1 = 0.5. Equivalently, the flow
is parametrized with respect to the Reynolds number, given by Re = µ1/2, where L = 1 is the
characteristic length – the width of the channel – and |v̄| the characteristic velocity.
The greedy procedure for the construction of the RB space selects Nmax = 29 basis functions with
a fixed tolerance εRB

tol = 10−2. We report in Fig. 3.27 the convergence of the greedy procedure,
as well as the (online evaluation over a train sample Ξtest of size ntest = 200) errors between
the FE solution and the RB approximation, for N = 1, . . . , Nmax, and the corresponding error
bounds. In this case we have N∗(µ) = 2; for N < N∗(µ) we can keep τN (µ) as error bound (this
choice is employed by the greedy algorithm, which thus selects the first snapshots as those which
maximize τN (µ)).

We plot in Fig. 3.28 the surrogate lower bounds for the Babuška inf-sup constant βÃ,N (µ)
computed through a RBF interpolation (by using thin plate splines) over a set of J = 50 values
β(µj∗) corresponding to a set of a priori selected points S = {µj∗, j = 1, . . . , J}, represented as
blue dots. In this case we did not rely on the SCM algorithm for the construction of the lower
bounds since the (current implementation of the) procedure showed a very poor convergence,
leading to computational times sensibly larger than required by the construction of the RB space
itself.

Figure 3.26: Parametrized geometry and domain boundaries for the double elbow pipeline case.
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Figure 3.27: Double elbow pipeline case. Left: maxµ∈Ξtrain ∆N (µ) as a function of N , computed
during the greedy procedure. Here Ξtrain is a uniform random sample of size ntrain = 500 and
RB tolerance is εRB

tol = 10−2. Right: online evaluations of error bounds (average over ntest = 200
sampled µ values) and (minimum, average and maximum over Ξtest) error between FE and RB
approximations.

We point out that in this case the method interpolates βÃ,N (µ) at each µ∗ ∈ S, but it may lack
of rigor for values of µ not close to S. See Sect. A.3.2 in Appendix A for further details.
In Fig. 3.29 we report some representative solutions for selected values of the parameters. The
pattern of the vortex cores becomes more and more complex when µ1 (and Reynolds number as
well) increases – despite we are dealing with steady flows – showing the usual recirculation cells
close to the corners of the channel. In case of shorter configurations at larger Reynolds numbers
(e.g. the first case in Fig. 3.29) the recirculation fills up the whole channel.
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Figure 3.28: Double elbow pipeline case. Surrogate RBF lower bounds (log scale) and a set of
j = 1, . . . , J = 50 computed values β(µj∗) (blue dots) for the Babuška inf-sup constant βÃ,N (µ).
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Figure 3.29: Double elbow pipeline case: representative solutions for velocity and pressure for
µ = (500, 2.5) (left), µ = (400, 5) (center) and µ = (250, 3) (right).

Case 3: A NACA airfoil

In this last example we consider the approximation of a steady Navier-Stokes flow around a
family of NACA0012 airfoil profiles (see Fig. 3.30). We parametrize the geometry around the
airfoil using a FFD map: a 6 × 6 lattice of control points is placed around the airfoil and the
closest four control points (represented in red) are allowed to move in the x2-direction. We thus
consider p = 4 geometrical parameters, given by the vertical displacements of the four control
points; the parameter domain is given by D = [−0.4, 0.4]4.

The forcing term is f = (0, 0), whereas ν = 1/150. A parabolic horizontal flow vin = (α(x2 −
2.5)(2.5 − x2), 0)T is imposed at the inlet Γin, where α > 0 is a positive constant chosen such
that |v̄| = max v1|Γ1 = 1, while a free-stress condition is imposed at the outflow Γout.
The greedy procedure for the construction of the RB space selects Nmax = 17 basis functions with
a fixed tolerance εRB

tol = 2.5×10−3. We report in Fig. 3.31 the convergence of the greedy procedure,
as well as the (online evaluation over a train sample Ξtest of size ntest = 500) errors between the
“truth” FE solution and the RB approximation, for N = 1, . . . , Nmax, and the corresponding
error bounds. In this case N∗(µ) = 1, so that the error bound ∆N (µ) can be employed from the
very beginning both for greedy selection procedure and the online error evaluation.
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Figure 3.30: Parametrized geometry and domain boundaries for the NACA airfoil case.
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Figure 3.31: NACA Airfoil case. Left: maxµ∈Ξtrain ∆N (µ) as a function of N , computed during
the greedy procedure. Here Ξtrain is a uniform random sample of size ntrain = 1000 and RB
tolerance is εRB

tol = 2.5× 10−3. Right: online evaluations of error bounds (average over ntest = 500
sampled µ values) and (minimum, average and maximum over Ξtest) error between FE and RB
approximations.

We plot in Fig. 3.32 (bottom) the surrogate lower bounds for the Babuška inf-sup constant βÃ,N (µ)
computed through a RBF interpolation (by using thin plate splines) over a set of J = 100 values
β(µj∗) corresponding to a set of a priori selected points S = {µj∗, j = 1, . . . , J} (top). As
already remarked for the Case 4 of Sect. 3.6.1 dealing with a Stokes flow in a nonaffinely (FFD)
parametrized bifurcation, the range of variation of the stability factor over the parametric domain
is rather contained, so that also a constant lower bound can provide good results. See Sect. A.3.2
in Appendix A for further details. In the end, we report in Fig. 3.33 some representative solutions
for selected values of the parameters.

Summary of results

As in the case of Stokes flows, also for Navier-Stokes flows the greedy algorithm enables to build
reduced spaces of contained dimension performing an exponential convergence, as shown by the
results of previous test cases.
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Figure 3.32: NACA Airfoil case. Top: set of J = 100 computed values β(µj∗), j = 1, . . . , J for
the Babuška inf-sup constant βÃ,N (µ). Bottom: surrogate RBF lower bounds computed on a
train sample Ξtrain of size ntrain = 1000.
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Figure 3.33: NACA airfoil case: representative solutions for velocity and pressure for different
values of µ ∈ D.

Some weak points, mainly concerned with the estimation of parametric lower bounds to the
stability factor βÃ,N (µ), are shared with the Stokes cases; moreover, other critical aspects arise
within the approximation of Navier-Stokes equations, such as the efficient computation of dual
norms of residuals and the solution of nonlinear equations – both during basis computation
and online RB approximation. We report all the details of the numerical simulations related to
the discussed test cases in the following Table 3.3. The number of affine operator components
Qa + 2Qb +Qc is larger in the Case 3 compared to other cases because of the EIM procedure
employed to recover the affine parametric dependence in this nonaffine case.

We remark the very small dimension N of the RB approximation problems with respect to the
FE approximation space dimension N , although we are currently dealing with RB tolerances of
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order 10−2 ÷ 10−4. The reduction in linear systems dimension ranges between 357 and 699 times,
depending on the test cases.

Computational speedup is of order 102, varying from 377 to 564. Computational time for each RB
Online evaluation is of order 1 second and is almost constant, also when dealing with problems
parametrized w.r.t. Reynolds number. On the other hand, FE solutions require increasing CPU
times (and number of iterations) in these cases (see e.g. Fig. 3.34, concerning the test Case 1);
both for FE and RB solutions of nonlinear problems we rely on a fixed-point iteration with a
tolerance εNStol = 10−5.

Case 1 Case 2 Case 3
Approximation data Channel Pipeline Airfoil
Number of parameters P 1 2 4
Affine op. components Qa + 2Qb +Qc 9 18 77
Affine rhs components QF +QG 9 13 67
FE space dim. N 23077 31093 32538
RB space dim. Nmax 11 29 17
RB greedy tolerance εRB

tol 10−4 10−2 2.5× 10−3

RB greedy train sample size ntrain 500 500 1000
FE evaluation tonlineFE (s) 137.47 2070.25 460.28
RB evaluation tonlineRB (s) 1.3707 3.667 1.2201
Computational speedup 100 564 377

Table 3.3: Numerical details for the test cases presented. RB spaces have been built by means
of the greedy procedure, using a tolerance εRB

tol and a uniform RB greedy train sample of size
ntrain. A comparison of the computational times between the Online RB evaluations and the
corresponding FE simulations is reported. Here tonlineRB is the time of an Online RB computation,
while tonlineFE is the time for a FE computation, once FE matrices (linear operators) are built.
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Figure 3.34: Channel expansion case. Comparison between FE and RB evaluation CPU times.
Here the problem is parametrized w.r.t. µ1 = 1/ν ∈ [10, 250], proportional to Reynolds number.
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4 A reduced framework for opti-
mization and inverse problems
In this chapter we analyze the reduced framework developed for the efficient solution of optimal
control, shape optimization and other inverse problems governed by parametrized PDEs, which
is based on the integration of RB methods for computational reduction and suitable shape
parametrizations for geometrical complexity reduction.
We first provide some general results for optimal control and shape optimization problems,
which are applied to some problems dealing with fluid flows. Then, we present a reduced order
framework for parametrized optimal control and shape optimization problems, built over the
reduced basis approximation of the state flow problems. In particular, we recast FFD and
RBF parametrization techniques in the general class of perturbation of the identity map (which
assure suitable regularity conditions on admissible shapes). We extend this framework to other
inverse problems related with both variable shapes and uncertainty, for which we characterize a
deterministic and a Bayesian framework, recasting them in a many-query context. Further, we
propose a parameter coupling algorithm for steady fluid-structure interaction problems. Finally,
we describe a numerical procedure for solving optimization problems governed by parametrized
PDEs. Throughout the chapter, we omit the proofs of well-known results from literature.

4.1 Optimal control problems
In the following we recall a general well-posedness result for some optimal control (OC) problems,
which will then be specified for the case of velocity boundary control problems governed by
Navier-Stokes equations, relevant to the applications presented in Part III.

4.1.1 Abstract formulation

As seen in Sect. 1.3.1, an optimal control problem can be expressed as a constrained optimization
problem in the general form (1.10), here rewritten for the reader’s convenience:

û = arg min
u∈Uad

J (u) s.t. Ã(y(u), w) = F (w;u), ∀w ∈ X; (4.1)

here y = y(u) ∈ X is the state variable, X the state space, Ã : X ×X → R the state operator.
Moreover, F : X → R is a linear operator depending on the control function u ∈ Uad and Uad ⊆ U
is the space of admissible controls; X and U are reflexive Banach spaces. The constraint is the
PDE modelling the state system, whereas J : Uad → R is the cost functional. The well-posedness
of the abstract OC problem (4.1) is assured by the following result:
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Theorem 4.1. Let U be a reflexive Banach space and Uad ⊆ U a nonempty, closed, bounded
and convex set. Then, if J : Uad → R is a weakly lower semicontinuous functional, such that
minu∈Uad J (u) > −∞, problem (4.1) admits a solution.

Remark 4.2. This classical result in calculus of variations states that a bounded lower semi-
continuous functional attains its minimum in a weakly sequentially compact set (see e.g. [311],
Chapter 2, Thm. 2.14 for the proof). We remark that: (i) every bounded subset of a reflexive
Banach space is weakly sequentially compact, and (ii) every convex and closed subset of a Banach
space U is weakly sequentially closed, so that if the space U is reflexive and the set is in addition
bounded, then it is weakly sequentially compact. The first result is the main reason why the
concept of weak convergence is fundamental: the notion of weak sequential compactness takes over
the role of compactness used in the finite-dimensional case to assure the existence of a minimizer
for a lower semicontinuous function (Weierstrass theorem).

Remark 4.3. In order to fulfill the hypotheses of Theorem 4.1, let us recall that a continuous
and convex functional J : U → R on a Banach space U is weakly lower semicontinuous, i.e.

lim inf
n→∞

J (un) ≥ J (u)

for any sequence {un}∞n=1 ⊂ U such that un ⇀ u as n→∞. We recall that we can express

J (u) = 1
2J1(u) + ε

2J2(u) = 1
2‖Su− zd‖Z + ε

2(Nu, u)U ,

where S : U → Z is the operator S = EXG, where G : U → X is the control-to-state operator
and EX : X → Z the embedding operator of X into Z. If ε > 0, the second summand is strictly
convex, where N ∈ L(U ,U) is a symmetric and coercive operator, whereas if ε = 0 the strict
convexity is implied by the injectivity of S : U → Z.

In order to find the solution to the OC problem (4.1) we can use the Lagrangian functional
framework (see e.g. [128], Chapter 6), for which (û, ŷ(û), p̂(û)) ∈ Uad ×X ×X, where û ∈ Uad is
the solution to (4.1), is a stationary point of the Lagrangian functional

L(y, z, u) := J̃ (y, u) + F (z;u)− Ã(y, z),

where z ∈ X is the Lagrangian multiplier and J (u) = J̃ (y(u), u). Then, (û, ŷ(û), p̂(û)) fulfills
the following (first order) optimality conditions:

∂pL(y, z, u)[φ] = 0 ∀ φ ∈ X state equation,

∂yL(y, z, u)[ψ] = 0 ∀ ψ ∈ X adjoint equation,

∂uL(y, z, u)[θ] ≥ 0 ∀ θ ∈ Uad optimality condition.

(4.2)

Hence, by differentiating L w.r.t. z, we find again the state equation in weak form:

find y ∈ X : Ã(y, φ) = F (φ;u) ∀φ ∈ X.

The second equation of (4.2) is the adjoint equation (for which z ∈ X is also defined as the
adjoint variable) and is obtained by differentiating L w.r.t. y; its weak form reads as follows:

find p ∈ X : Ãy(y)(z, ψ) = ∂yJ̃ (y, u)(ψ) ∀ψ ∈ X,

where Ãy(y)(z, ψ) is the Fréchet derivative of Ã(y, ψ) with respect to the first argument y ∈ X,
evaluated at z ∈ X. If Ã(·, ·) is bilinear, then Ãy(y)(z, ψ) = Ã(z, ψ); if Ã(·, ·) is a more general
semilinear form (linear in the second argument), the adjoint equation is still linear in z ∈ X. In
the end, by differentiating L w.r.t. u, we obtain the third equation of system (4.2):

∂uJ̃ (y, u)(θ) + Fu(u)(z; θ) ≥ 0 ∀θ ∈ Uad,
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which states the optimality condition and provides the expression of the gradient of the cost
functional, needed e.g. for gradient-based numerical optimization procedures.

4.1.2 Velocity boundary control of Navier-Stokes flows

We now turn to the analysis of a velocity boundary control problem for the Navier-Stokes
equations, which is of particular interest in view of an application to optimal design of bypass
grafts (see Sect. 5.2.4). We consider the Lagrangian multiplier method [16] for the treatment of
the Dirichlet boundary conditions, which includes the control function itself. Let us consider a
state system similar to (1.17), given by:

−ν∆v + (v · ∇)v +∇p = 0 in Ω
∇ · v = 0 in Ω
v = uc on Γc
v = vin on Γin
v = 0 on Γw

−pn + ν
∂v
∂n = 0 on Γout,

(4.3)

where uc ∈ Uc := (H1/2(Γc))2 is the boundary control function and uin ∈ Uin(H1/2(Γin))2 a
second inflow condition. The domain Ω ⊂ Rd for d = 2, 3 is assumed to be piecewise C2 with
convex corners, while the Dirichlet portion of ∂Ω is ΓD = Γc ∪ Γin ∪ Γw. Moreover, let us define

uD ∈ (H1/2(ΓD))d : uD =

 uc on Γc
vin on Γin
0 on Γw.

Let us consider a cost functional J̃ : V × Uc × Uin → R+ which represents the objective of the
optimization. It depends both on velocity and inflow conditions, and will be chosen according to
the specific applications (see Sect. 5.2.4). Let us denote by Y = (v, p, ξ) ∈ X = V ×Q× G the
state variable, given by the velocity, the pressure and the Lagrange multiplier accounting for the
Dirichlet conditions, with V = (H1(Ω))d, Q = L2(Ω) and G = (H−1/2(ΓD))d, respectively. If the
function uin ∈ Uin is known, the first problem of interest – denoted as deterministic design (OC)
problem – can be formulated as follows: given vin, find the boundary control function ûc solving

ûc = arg min
uc∈Uc, ad

J (uc) s.t. Y = (v, p, ξ) ∈ X :

Ã(Y,W ) = F (W ; uD), ∀W = (z, q,λ) ∈ X
(DD-OC)

where Uc, ad ⊆ Uc, J (uc) = J̃ (v,uc,vin) and the operators appearing in the state problem is

Ã(Y,W ) = a(v, z) + b(p, z) + b(q,y) + c(v,v, z) + gD(ξ, z) + gD(v,λ),
F (w; uD) = −gD(uD,λ), (4.4)

where (using the same notation of Sect. 3.1)

a(v, z) := ν

∫
Ω
∇u : ∇z dΩ, b(p, z) :=

∫
Ω
p∇ · z dΩ, c(v,w, z) :=

∫
Ω

(v · ∇)w · z dΩ,

and the Dirichlet conditions on ΓD with boundary data uD are enforced through the bilinear
form

gD(v,w) :=
∫

ΓD
v ·w dΓ.
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We recall that the state problem (4.4) is well-posed under the conditions stated in Theorem 3.4.
Moreover, the velocity field satisfies the following stability estimate:

‖v‖V ≤
2
ν
‖F (·; uD)‖(H−1(Ω))d ,

where ‖F (·; uD)‖(H−1(Ω))d is defined like in (3.39) and depends on the Dirichlet boundary condi-
tions uD. In particular, the solution v is unique and depends continuously on the data uD.

Let us consider J̃ : V × Uc × Uin → R+ as a functional of the velocity field v ∈ V , and denote
J(v) = J (v,uc,vin). A general existence result for the first optimality problem (DD-OC) can
be found in [130] (see Lemma 2.1 and the related proof):

Theorem 4.4. Let us assume that the cost functional J(v):

1. is bounded, i.e. there exists C0 > 0 s.t. J(v) ≤ C0‖v‖2V ;

2. is convex, i.e. for any u1,u2 ∈ V and γ ∈ [0, 1] it holds that (1 − γ)J(u) + γJ(u) ≥
J((1− γ)u + γu);

3. satisfies for some constants C1, C2, C3 > 0 the weak coercivity inequality

J(v) ≥ C1‖v‖2V − C2‖v‖V − C3 for all v ∈ V. (4.5)

Let the admissible set Uc, ad for the control function be a closed and convex subset of Uc =
(H1/2(Γc))d. Then the problem (DD-OC) admits at least one solution.

The proof of Theorem 4.4 is a direct application of the abstract result stated in Theorem 4.1.
A second optimal flow control problem of remarkable interest for the sake of applications is a
worst-case OC problem, where we are interested to seek for the optimal control ûc that minimizes
the worst-case value of J (uc,vin) = J̃ (v,uc,vin) over all admissible values of the function vin.
Hence, we are interested in studying the so-called robust design problem: find the boundary
control function ûc solving the worst-case optimization problem

ûc = arg min
uc∈Uc, ad

max
vin∈Uin, ad

J (uc,vin) s.t. Y = (v, p, ξ) ∈ X :

Ã(Y,W ) = F (W ; uc,vin), ∀W = (z, q,λ) ∈ X
(RD-OC)

The robust design problem (RD-OC) can be understood as a one-shot game, where the optimizer
plays first and chooses the control function uc to minimize the cost functional J . The second
player then follows by choosing the function vin to maximize the cost function J . The payoff for
the designer is −J and for the second player J . Thus the optimal strategy for the optimizer
is given as the solution of a min-max type of strategy obtained by solving (RD-OC), while the
second player will choose his response by solving another problem. We call this the complementary
uncertainty problem, and it is defined as: given a known boundary control function uc, find the
function v̂in solving

v̂in = arg max
vin∈Uin, ad

J (uc,vin) s.t. Y = (v, p, ξ) ∈ X :

Ã(Y,W ) = F (W ; vin), ∀W = (z, q,λ) ∈ X
(CU)

The well-posedness of problem (CU) is ensured by the following result:
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Theorem 4.5. Let us assume that Γin is an open and connected, non-empty subset of ∂Ω, and
that the cost functional J(v):

1. is bounded (see (i), Theorem. 4.4);

2. is upper semicontinuous, i.e. lim sup
v→v∗

J(v) ≤ J(v∗) for all v∗ ∈ V .

Let the admissible set Uin, ad ⊆ UC4 be a closed subset of

UC4 :=
{
u ∈ (H2(Γin))d : ‖u‖(H2(Γin))d ≤ C4

}
, (4.6)

for some C4 > 0 small enough such that (3.37) is satisfied, and furthermore that the viscosity is
large enough to satisfy (3.39). Then the problem (CU) admits at least one optimal solution.

Proof. Since Γin is bounded, the embedding H2(Γin) ↪→ H1(Γin) is compact by Rellich’s theorem
and Uin is compact in (H1(Γin))d. According to Theorem 3.4, the solution map vin 7→ v(vin)
is continuous in the H1-topology under our assumptions. Thus the image of UC4 through the
resolvent operator (4.4), restricted to velocity field, is a compact set in V . By Theorem 4.1, a
bounded upper semicontinuous functional attains its maximum in a compact set.

Remark 4.6. For coercive cost functionals satisfying (4.5) the maximizer of (CU) will be found
on the boundary of the set of admissible functions Uin, ad. Thus we expect to find maximizers that
become increasingly singular as we increase C4 in (4.6).

Existence of solutions for the worst-case problem (RD-OC) in the infinite-dimensional case has
not been extensively studied. In a recent paper [140], the concept of weak lower semi-continuity
for set-valued functions is used to prove existence results for OC problems governed by PDEs for
functionals of the min-max type. In the case that the admissible set Uin, ad does not depend on
the control variable uc, and therefore a sufficient condition for the weak lower semi-continuity of

Ĵ (uc) := sup
vin∈Uin, ad

J̃ (v,uc,vin)

is that J̃ ( · , · ,vin) is weakly lower semi-continuous for all admissible vin ∈ Uin, ad (Theorem
2.5 of [140]). This assumption of independence does not strictly hold for problems discussed in
chapter 6 (see eq. (5.3)), so further study on well-posedness of the min-max formulation would
be needed.

4.2 Shape optimization problems
We discuss in this section the main results assuring the well-posedness of the shape optimization
(SO) problems relevant to the applications presented in Part III. These problems are more difficult
than the optimal control case, because of the shape dependence and the need of a suitable
definition of shape variations. After treating the general case of an abstract SO problem, we
characterize the case of problems governed by Navier-Stokes equations.

4.2.1 Abstract formulation

Recalling Sect. 1.3.2, a shape optimization problem can be expressed as a constrained optimization
problem in the general form (1.11), here rewritten for the reader’s convenience:

Ω̂o = arg min
Ωo∈Oad

J (Ωo) s.t. Ã(y(Ωo), w; Ωo) = F (w; Ωo), ∀w ∈ X(Ωo); (4.7)
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y(Ωo) ∈ X(Ωo) is the state variable, X(Ωo) a reflexive Banach space defined on Ωo, Oad ⊆ O
the set of admissible shapes, where O is a generic class of shapes (to be specified later). Here
the state equation representing the constraint is defined over the domain Ωo – which for the
sake of convenience is identified with the original domain of the parametrized framework –
whereas J : Oad → R is the cost functional, depending on the state variable as well, i.e.
J (Ωo) = J̃ (y(Ωo),Ωo), where J̃ : X × Oad → R. Let us recall that we denote by Γw the
free-boundary which can be displaced in order to optimize the objective.

Provided that the state problem admits a unique solution in any domain Ω, we can introduce a
mapping y that with any Ω ∈ O associates the state solution y(Ω) ∈ X(Ω), i.e. y : Ω 7→ y(Ω) ∈
X(Ω). Moreover, let {Ωn}∞n=1 ⊂ O be a sequence of shapes and {yn}∞n=1 a sequence of state
solutions, being yn ≡ y(Ωn) ∈ X(Ωn). Let us denote Ωn

τ→ Ω̂ and yn  y two suitable notions of
convergence1, of the sequence of shapes and of state solutions, respectively; remark that in the
latter case convergence involves different functional spaces, defined on the sequence {Ωn}∞n=1.
Then, the following abstract existence result holds (see for example [137], Theorem 2.10):

Theorem 4.7. Let E = {(Ω, y(Ω)),∀Ω ∈ Oad} be the graph of the mapping y(·) restricted to
Oad. Assume that

i) E is compact, i.e. for any sequence {(Ωn, y(Ωn)) ∈ E}∞n=1, there exists a subsequence
{(Ωnk , y(Ωnk)) ∈ E}∞k=1 and (Ω̂, y(Ω̂)) ∈ E, such that Ωnk

τ→ Ω̂, y(Ωnk) y(Ω̂) for k →∞;

ii) the cost functional J (Ω) is lower semicontinuous, i.e. if Ωn
τ→ Ω̂ and yn  ŷ, then

lim infn→∞ J̃ (yn,Ωn) ≥ J̃ (ŷ, Ω̂).

Then, if J̃ is bounded from below, problem (4.7) has at least one solution.

Remark 4.8. The usual way to verity the first hypothesis stands on the two following assumptions:

1. compactness of Oad in O: for any sequence {Ωn}n≥1 ⊂ Oad there exists a subsequence
{Ωnk}f≥1 ⊂ Oad such that Ωnk

τ→ Ω when k →∞;

2. continuity of y(Ω) with respect to the domain: for any sequence {Ωn}n≥1 ⊂ Oad, Ω ⊂ Oad,
the following implication holds: Ωn

τ→ Ω⇒ y(Ωn) y(Ω).

With respect to OC problems, verifying the well-posedness of SO problems involves additional
assumptions of regularity on admissible shapes and continuity of state solution with respect to
shape deformations. Thanks to Remark 4.8, we can decouple the dependence of the shape on the
state solution: the first assumption is in fact just related to the set of admissible shapes. Usually,
further regularity assumptions on the set of admissible shapes or admissible deformations ensure
the compactness of Oad. For instance, Lipschitz domains (or, equivalently, domains satisfying the
so-called uniform cone condition [139]) yield to compact sets of admissible shapes; additional
constraints, for instance on the volume of the admissible domains might also be imposed. Another
class of domains yielding this property are the ones obtained through a perturbation of the identity
map; this concept is useful not only to frame the analysis of problem (4.7), but also to express
optimality conditions as well.

Let us denote

O ≡ O(Ω) := {Ωo = T (Ω) for some T ∈ T }, (4.8)

1A possible choice for the topology of O is the set distance topology of Hausdorff or the pseudo-distance (4.9).
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the space of shapes obtained by deforming Ω through the mapping T , where T = {T : Rd →
Rd, (T − I) ∈W 1,∞(Rd; Rd), (T−1 − I) ∈W 1,∞(Rd; Rd)} is a space of diffeomorphisms2 in Rd;
in other words, T ∈ T is a differentiable mapping whose inverse is also differentiable. It can
be shown that such a map is also continuous, so that the topology of the shapes obtained by
deformation through T ∈ T is the same as the one of Ω.

As a set Oad of admissible shapes for the SO problem (4.7), we can thus define

Oad = {Ωo ∈ O(Ω) : ∂Ωo \ Γw is fixed, |Ωo| ≤ V }.

Nevertheless, to ensure a compactness property, we need to enforce a uniform regularity condition
– exploited e.g. in the forthcoming analysis of the FFD mappings – by introducing the following
(pseudo) distance over the set of shapes O:

d(Ω1,Ω2) = inf
T∈T :T (Ω1)=Ω2

(
‖T − I‖W 1,∞(Rd;Rd) + ‖T−1 − I‖W 1,∞(Rd;Rd)

)
. (4.9)

Thus, it can be shown (see e.g. [221]) that the set of admissible shapes defined by

Oad = {Ωo ∈ O(Ω) : d(Ω,Ωo) ≤ R : ∂Ωo \ Γw is fixed, |Ωo| ≤ V }

verifies a suitable compactness3 property. This ensures the existence of (at least) one optimal
shape, provided the other conditions required by Theorem 4.7 are verified.

Thanks to previous results, we thus can focus on perturbation of the identity maps, given by

T (·;θ) = I + θ, with θ ∈W 1,∞(Rd; Rd);

θ : Rd → Rd can be regarded as a vectorial field which deforms the reference domain Ω to obtain
the original domain Ωo. In particular, (i) T (Ω;θ) ∈ O(Ω) if the displacement field θ is sufficiently
small and (ii) the set of shapes obtained through T (Ω;θ) is compact, as stated by the following
Lemma (see e.g. [7], Lemma 6.13 and [221], Theorem 2.4):

Lemma 4.9. Let θ ∈ W 1,∞(Rd; Rd) be a vectorial field such that ‖θ‖W 1,∞(Rd;Rd) ≤ 1. Then
T (·;θ) = I + θ ∈ T , i.e. it is a perturbation of the identity. Moreover:

1. if ‖θ‖W 1,∞(Rd;Rd) ≤ 1− α for some α ∈ (0, 1), then ‖T−1(·;θ)− I‖W 1,∞(Rd;Rd) ≤ 1/α;

2. the following family of shapes is compact (with respect to the pseudo-distance (4.9)):

OT (Ω) := {Ωo = T (Ω;θ) : ‖θ‖W 1,∞ ≤ 1− α, |Ωo| ≤ V }. (4.10)

Not only, we can also define the notion of shape derivative, unavoidable to formulate the optimality
conditions, by using the derivative operation with respect to θ. We just point out that, as in
the OC case, also for a shape optimization problem the optimality conditions can be expressed
by means of the Lagrangian functional framework (see e.g. [7], Chapter 6). Following the same
notation of Sect. 4.1.1, let us define the Lagrangian functional associated to (4.7) as

L(y, z,Ω) := J̃ (y,Ω) + F (z; Ω)− Ã(y, z; Ω),
2Recall that W 1,∞(Rd; Rd) is the space of Lipschitz functions ϕ : Rd → Rd such that ϕ and ∇ϕ are bounded

in Rd, which can be equipped with the norm ‖ϕ‖W1,∞(Rd;Rd) = supx∈Rd(‖ϕ‖2 + |||∇ϕ|||2) where ‖ · ‖2 (resp.
||| · |||2) is the Euclidean norm over R2 (resp. the induced Euclidean matrix norm over Rd×d).

3This is another important topology which can be used in conjunction with mapping techniques. Whenever
domain perturbations are described by a family of bijective mappings having some regularities (for example,
T ∈ T ), convergence of domains can be defined using the pseudo-distance (4.9) among the mappings T s.t.
T (Ω) ∈ T .
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where z ∈ X(Ω) is the Lagrangian multiplier. The optimum (Ω̂, ŷ(Ω̂), ẑ(Ω̂)) ∈ Oad×X(Ω̂)×X(Ω̂)
is a stationary point of the Lagrangian functional and fulfills the following optimality conditions4:

∂pL(Ω, y(Ω), z(Ω))[φ] = 0 ∀ φ ∈ V state equation,

∂yL(Ω, y(Ω), z(Ω))[ψ] = 0 ∀ ψ ∈ V adjoint equation,

∂ΩL(Ω, y(Ω), z(Ω))[θ] ≥ 0 ∀ θ ∈W 1,∞(Rd; Rd), optimality condition.

(4.11)

As in the OC case, by differentiating L(y, z,Ω) with respect to z we find the state equation, while
by differentiating L(y, z,Ω) with respect to y we find the adjoint equation:

find p(Ω) ∈ V (Ω) : a′(y(Ω))(z(Ω), ψ) = ∂yJ̃ (Ω, y(Ω))(ψ) ∀ψ ∈ V (Ω). (4.12)

Finally, by differentiating L(y, z,Ω) with respect to the shape we obtain

∂ΩL(Ω, y(Ω), z(Ω))[θ] = dJ (Ω;θ), (4.13)

where dJ (Ω;θ) = limt→0(J (Ωt
o) − J (Ω))/t is the derivative of J in Ω and direction θ, and

Ωto = T (Ω; tθ); in the same way, we can define the derivative of the Lagrangian. Last equation of
system (4.11) thus provides the expression of the gradient of the cost functional, needed e.g. for
gradient-based numerical optimization procedures.

4.2.2 Shape optimization for Stokes/Navier-Stokes flows

We now turn to the analysis of a shape optimization problem for the Navier-Stokes equations,
in view of the applications presented in Sect. 5.4. Let us consider the state system (5.2), where
the condition v = vc on the inflow boundary Γc is now set and does not represent a control
function anymore. Furthermore, let us consider a cost functional J̃ : V ×Oad × Uin → R+ which
represents the objective of the optimization, depending on velocity, on the shape of the domain
Ωo ⊂ Rd for d = 2, 3 (which is assumed to be piecewise C2 with possibly convex corners) and on
the boundary data vin ∈ Uin for reasons that will be clarified later.

Let us denote by Y = (v, p, ξ) ∈ X = V × Q × G the state variable (see Sect. 4.1.2 for the
functional setting). If the function vin ∈ Uin is known, the first shape optimization problem we
are interested in is the following deterministic design (SO) problem: given vin, find the optimal
shape Ω̂o solving

Ω̂o = arg min
Ωo∈Oad

J (Ωo) s.t. Y (Ωo) = (v(Ωo), p(Ωo), ξ(Ωo)) ∈ X(Ωo) :

Ã(Y (Ωo),W ; Ωo) = F (W ; Ωo), ∀W = (z, q,λ) ∈ X(Ωo)
(DD-SO)

where the operators appearing in the state problem are defined by (4.4) – here we have made
explicit the dependence of the differential operators on the shape of the domain Ωo.

Analysis of this SO problem exploits the general Theorem 4.7 and its proof is mainly based on
the observations sketched in the previous section. To this aim, let us denote

Oad = {Ωo ∈ OT (Ω) : Ωo ⊂ D, ∂Ωo \ Γw is fixed}, (4.14)

where O(Ω) is the family of shapes defined by (4.10) and D ⊂ Rd a fixed box of volume V = |D|
such that ∂D ∩ ∂Ω = ∂Ωo \ Γw, i.e. the free boundary Γw lies inside the box, whereas ∂Ω \ Γw is

4This abstract formulation is valid if X does not depend on Ω; the same result stands also for problems in
which X = X(Ω) introducing suitable Lagrange multipliers for treating Dirichlet boundary conditions.
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a subset of the boundary ∂D. Moreover, let us consider J̃ : V ×Oad → R+ as a functional of the
velocity field v ∈ V and denote J(v) = J̃ (v,Ωo). An existence result for the problem (DD-SO)
can be found e.g. in [132] (see Theorem 5.1 and related proof):

Theorem 4.10. Assume that Oad is given by (4.14) and the cost functional J(v) is such that

J(v) =
∫

Ωo
φ(∇v) dΩo,

where φ(s) is a continuous, nonnegative and convex function of s ∈ R. Then, if the state problem
(5.2) is well posed, problem (DD-SO) admits at least one solution.

Proof. (sketch) Continuity of the state solution with respect to shape variations can be proved
by introducing a sequence of shapes {Ωo,n}∞n=1 ⊂ Oad such that Ωo,n

τ→ Ω̂o and extending by
zero the velocity solution in B \ Ωo,n. Extended solutions on B verify stability estimates of the
Navier-Stokes problem and thus result uniformly bounded; from this sequence we can extract a
subsequence that is weakly convergent (thanks to Banach-Alaoglu theorem) and converges to an
element fulfilling the state equations over Ω̂o. To verify this, it is sufficient to pass to the limit in
the weak formulation over Ωo,n. The lower semicontinuity of the cost functional follows directly
from the assumption made in the statement (see e.g. [103]).

As in the optimal control case, a second interesting problem we wish to deal with is the following
robust design (SO) problem, where we aim at finding an optimal shape of the domain Ωo which
is robust with respect to the boundary data vin ∈ Uin:

Ω̂o = arg min
Ωo∈Oad

max
vin∈Uin, ad

J (Ωo,vin) s.t. Y (Ωo) = (v(Ωo), p(Ωo), ξ(Ωo)) ∈ X(Ωo) :

Ã(Y (Ωo),W ; Ωo) = F (W ; Ωo,vin), ∀W = (z, q,λ) ∈ X(Ωo) (RD-SO)

being for simplicity J (Ωo,vin) = J̃ (v,Ωo,vin). Existence of solutions for the worst-case shape
optimization problem (RD-SO) in the infinite-dimensional case has not been extensively studied
yet. We argue that the concept of weak lower semi-continuity for set-valued functions analyzed
in [140] could be employed also in the present case. Nevertheless, as in the OC case, further study
of the well-posedness of this min-max formulation is needed.

4.3 Reduced order modelling for optimization
problems governed by parametrized PDEs

Computational and geometrical reduction tools come into play in order to solve optimal control
and shape optimization problems, by providing a general and modular framework for their efficient
numerical approximation and recasting them into the many-query context. In practice, for
both optimal control and shape optimization problems, the standard adjoint-based approach
addressed in the previous sections is very often too expensive. Substantial computational saving
becomes possible thanks to a reduced order model (ROM) which relies on two reduction steps:
(i) parametrization of control functions and/or admissible shapes and (ii) substitution of the
full-order truth solution of state equations with a reduced solution obtained by the reduced basis
method. Here we focus on the formulation of the parametrized version of OC and SO problems,
while the resulting numerical procedure – based on the RB method for parametrized PDEs – is
addressed in Sect. 4.7. The extension to other inverse identification problems will be addressed
in Sect. 4.5, by focusing on the a parametric coupling technique for fluid-structure interaction
problems in Sect. 4.6.
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The key factor is provided by the description of either control functions or admissible shapes
through a set of input parameters. In particular, we assume that the control functions (in OC case)
and admissible shapes (in SO case) are described through a control parameter π ∈ Dπ ⊂ Rpπ ,
while other uncertain factors such as boundary conditions, sources or physical properties are
described through an uncertainty parameter ω ∈ Dω ⊂ Rpω . In this way, the state problem is
described by a parametrized PDE, where the parameter vector µ = (π,ω) ∈ D ⊂ Rp consists of
two parts and the parametric set is given by D = Dπ ×Dω, being p = pπ + pω. Concerning the
two classes of OC and SO problems, we have that:

• in the OC case, representing the control functions by means of a set of parametric inputs is
straightforward: for instance, in the boundary velocity control case, we need to provide
an expression uc = uc(π) of the boundary data. By formulating the state problem over
a fixed geometrical domain – which can be taken as the reference configuration Ω in the
parametrized PDE context – the deterministic OC problem (DD-OC) can be rephrased as
the following parametrized optimization problem:

π̂ = arg min
π∈Dπ

J (π) s.t. Y (µ) ∈ X :

Ã(Y (µ),W ;µ) = F (W ;µ), ∀W ∈ X,
(DD-OCµ)

where J (π) is the corresponding parametrized version of the cost functional J (uc) appearing
in (DD-OC). On the other hand, by assuming that uncertain elements are parametrized
as well, also a robust OC problem can be formulated in the same way. For instance, by
denoting vin = vin(ω) the unknown boundary condition in (5.2), the robust OC problem
(RD-OC) can be expressed as the following parametrized robust optimization problem:

µ̂ = arg min
π∈Dπ

max
ω∈Dω

J (µ) s.t. Y (µ) ∈ X :

Ã(Y (µ),W ;µ) = F (W ;µ), ∀W ∈ X.
(RD-OCµ)

where J (µ) = J (π,ω) is the analogous of J (uc,vin) in (RD-OC). Equivalently, we denote
by J̃ (Y (µ);µ) the parametrized equivalent of J (v,uc,vin).

• In the SO case, a parametrized expression of the admissible shapes is achieved through
a suitable shape parametrization techniques, so that Ωo = Ωo(π). In this way, problem
(DD-SO), for instance, reduces to

π̂ = arg min
π∈Dπ

Jo(π) s.t. Yo(µ) ∈ X(Ωo(π)) :

Ão(Yo(µ),W ;µ) = Fo(W ;µ), ∀W ∈ X(Ωo(µ)),
(4.15)

Whenever we make use of a parametrized representation of the admissible shapes, we
end up with a problem under this form. However, it is still defined over the original
µ-dependent domain, so that numerical optimization procedures at this stage cannot avoid
shape deformations and related mesh motion at each step. Then, in order to exploit fully
the parametric framework and the reduced basis methodology, we need to formulate the
state problem in the reference domain Ω, taking advantage of the parametric mapping
T (·;µ) : Ω → Ωo(µ) and the related change of variables. Problem (4.15) can be thus
rewritten as follows:

π̂ = arg min
π∈Dπ

J (π) s.t. Y (µ) ∈ X(Ω) :

Ã(Y (µ),W ;µ) = F (W ;µ), ∀W ∈ X(Ω),
(DD-SOµ)
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Furthermore, by assuming that uncertain elements are parametrized as in the OC case,
the robust SO problem (RD-SO) can be expressed as the following parametrized robust
optimization problem:

µ̂ = arg min
π∈Dπ

max
ω∈Dω

J (µ) s.t. Y (µ) ∈ X :

Ã(Y (µ),W ;µ) = F (W ;µ), ∀W ∈ X(Ω).
(RD-SOµ)

Moreover, based on the introduction of a suitable control/shape parametrization, the analysis
of the well-posedness of problem (DD-OCµ) (likewise, (DD-SOµ)) is simpler than the non-
parametrized cases addressed in the previous sections, thanks to the assumption that input
parameter µ belongs to a finite dimensional space. In fact, the following existence result, based
on the classical result for continuous real functions over finite-dimensional compact spaces (see
e.g. [283], Thm. 4.16):

Theorem 4.11. Let Dπ , ad ⊆ Dπ a nonempty, compact and convex subset of D ⊆ Rp. Then,
if J : Dπ , ad → R is a lower semicontinuous functional, problem (DD-OCµ) (respectively,
(DD-SOµ)) admits a solution. Moreover, if J is also convex, the solution is unique.

In both cases, we denote Ã(Y,W ;µ) = A(Y,W ;µ) + C(Y, Y,W ;µ) a nonlinear stationary
parametrized operator (keeping always in mind the Navier-Stokes case) as already done in the
previous chapter. We remark that, thanks to the (i) introduction of a suitable parametrization
for either control functions or admissible shapes, and to the (ii) parametrized PDEs framework,
extensively analyzed in the previous chapters, optimal control and shape optimization problems
can be recast in a general parametrized optimization context.
We will detail the numerical strategy for solving the parametrized optimization problems intro-
duced so far in Sect. 4.7. It relies on the reduced basis method for parametrized PDEs and a
suitable numerical iterative optimization procedure.

Let us close this section by pointing out two facts about the parametrized formulation and the
optimality conditions. For sake of simplicity, although these considerations are absolutely general,
we consider a state problem given by the parametrized Navier-Stokes equations (3.11)-(3.14).
First of all, we observe that, by deriving formally with respect to µ1, . . . , µp the expression of
the state problem (3.11)-(3.14), we obtain the following sensitivity equations for the unknowns
∂Y (µ)/∂µ = (∂v(µ)/∂µ, ∂p(µ)/∂µ) ∈ X = V ×Q:

a(∂v(µ)
∂µ

,w;µ) + d(∂v(µ)
∂µ

,w;µ) + b(∂p(µ)
∂µ

,w;µ) + c(∂v(µ)
∂µ

,v(µ),w;µ)

+c(v(µ), ∂v(µ)
∂µ

,w;µ) = ∂F

∂µ
(w;µ)− ∂a

∂µ
(v(µ),w;µ)− ∂d

∂µ
(v(µ),w;µ)

− ∂b
∂µ

(p(µ),w;µ)− ∂c

∂µ
(v(µ),v(µ),w;µ), ∀w ∈ V ; (4.16)

b(r, ∂v(µ)
∂µ

;µ) = ∂G

∂µ
(r;µ)− ∂b

∂µ
(r,v(µ);µ), ∀r ∈ Q,

(we adopt a compact notation to express p equations, one for each derivative ∂/∂µi, with
i = 1, . . . , p, in p unknowns, ∂Y (µ)/∂µi = (∂v(µ)/∂µi, ∂p(µ)/∂µi)). By introducing the global
Navier-Stokes operators Ã(V,W ;µ) = A(V,W ;µ)+C(V, V,W ;µ) and F̃ (W ;µ) defined by (3.40)–
(3.14), as well as the Fréchet derivative dÃ(Y ;µ)(V,W ) defined by (3.41), problem (4.16) can be
rewritten as follows:

dÃ(Y (µ);µ)(∂Y (µ)
∂µ

,W ) = ∂F̃

∂µ
(W ;µ)− ∂Ã

∂µ
(V,W ;µ), ∀W ∈ X,
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where the right-hand side is computed, thanks to the affinity assumptions (1.7)-(1.8), by taking
the derivatives of the Θq

• with respect to µ – provided that the functions Θq
• ∈ C1(D; R). This

assumption is automatically verified in case of affine parametrizations, and also in nonaffine
parametrizations treated by EIM if the tensors appearing in the parametrized formulation are
at least C1(D × Rd; Rd×d) functions. For instance, in the case of the viscous term a(·, ·;µ) we
obtain:

∂a

∂µi
(v,w;µ) =

Qa∑
q=1

∂Θq
a(µ)
∂µi

aq(v,w), 1 ≤ i ≤ p;

in the same way we can compute the parametric derivatives of remaining terms. It is straightfor-
ward to show that, under the assumption (3.43), problem (4.16) is well-posed. Moreover, from
(3.43) we can easily draw a continuity result for the solution Y (µ) with respect to the parameter
µ. In fact, we end up with the following relationship:∣∣∣∣∣∣∣∣∂Y (µ)

∂µ

∣∣∣∣∣∣∣∣
X

≤ CA
βBA(µ)Cµ

(∣∣∣∣∣∣∣∣∂Θ•(µ)
∂µ

∣∣∣∣∣∣∣∣
C0(D)

)
,

where CA > 0 is a constant originating from the continuity of the µ-independent linear/bilin-
ear/trilinear forms appearing at the right-hand side of (4.16) and Cµ(·) is a suitable combination
of the∞-norms of the parametric derivatives of the Θ•(µ) functions. In the case of a parametrized
shape optimization problem, such a relationship plays the same role as the continuity of the state
solution with respect to shape variations, required for instance by the well-posedness analysis.

The second fact is about optimality conditions for a parametrized optimization problem like
(DD-OC), which we rewrite here by considering a quadratic cost functional of the velocity field
(this is a case occurring very often in our applications):

µ̂ = arg min
µ∈D
J (µ) s.t. Y (µ) ∈ X : Ã(Y (µ),W ;µ) = F (W ;µ), ∀W ∈ X, (4.17)

being

J (µ) = J̃ (v(µ),µ) = 1
2Q(v(µ),v(µ);µ).

Also in the parametric case the approach based on the Lagrangian functional allows to derive the
optimality conditions. By introducing the Lagrangian functional

L(v, p, z, q,µ) = J̃ (v(µ),µ) + F (z;µ) +G(q;µ)
−a(v, z;µ)− d(v, z;µ)− b(p, z;µ)− b(r,u;µ)− c(v,v, z;µ) (4.18)

where (z, q) ∈ V×Q is the Lagrange multipliers (or adjoint variables). Then, (v̂(µ̂), p̂(µ̂), ẑ(µ̂), q̂(µ̂), µ̂) ∈
X ×X ×D fulfills the following optimality conditions:

∂zL(v, p, z, q,µ)[w] = 0 ∀ w ∈ V velocity state equation,

∂qL(v, p, z, q,µ)[r] = 0 ∀ r ∈ Q pressure state equation,

∂vL(v, p, z, q,µ)[w] = 0 ∀ w ∈ V velocity adjoint equation,

∂pL(v, p, z, q,µ)[r] = 0 ∀ r ∈ Q pressure adjoint equation,

∂µL(v, p, z, q,µ)[µ̃] ≥ 0 ∀ µ̃ ∈ Dad optimality equation.

(4.19)
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It is straightforward to see that by deriving the Lagrangian with respect to the adjoint variables
we obtain again the parametrized Navier-Stokes equations representing the state problem. By
deriving the Lagrangian with respect to the state variables we obtain instead the following adjoint
equations:

a(w, z(µ);µ) + d(w, z(µ);µ) + b(q(µ),w;µ)
+c(w,u(µ), z(µ);µ) + c(u(µ),w, z(µ);µ) = Q(v(µ),w;µ), ∀w ∈ V ; (4.20)

b(r, z(µ);µ) = 0, ∀r ∈ Q.

In the end, by deriving the Lagrangian with respect to the parameter µ, we obtain (using the
same compact notation as in (4.16)) :

∂L
∂µ

(v(µ), p(µ), z(µ), q(µ),µ) = 1
2
∂Q

∂µ
(v(µ),v(µ);µ) + ∂F

∂µ
(z(µ);µ) + ∂G

∂µ
(q(µ);µ)

− ∂a
∂µ

(v(µ), z(µ);µ)− ∂d

∂µ
(v(µ), z(µ);µ)− ∂b

∂µ
(p(µ), z(µ);µ)− ∂b

∂µ
(q(µ),v(µ);µ)

− ∂c
∂µ

(v(µ),v(µ), z(µ);µ).

This expression turns to be equal to the derivative of the cost functional ∂J (µ)/∂µ, with respect
to µ, i.e.

∂J
∂µ

(µ) = 1
2
∂Q

∂µ
(v(µ),v(µ);µ) +Q(v(µ), ∂v(µ)

∂µ
;µ) = ∂L

∂µ
(v(µ), p(µ), z(µ), q(µ),µ),

thanks to the expression of the adjoint problem (4.20) with w = ∂v(µ)/∂µ and the sensitivity
equations (4.16). Thus, also in the parametric case we can exploit a gradient-based procedure,
based on the previous optimality conditions, for the numerical solution of parametrized optimiza-
tion problems. In any case, the solution of parametrized state problems relies on the reduced
basis method presented in the previous chapter.
At the moment, we rely on direct method of nonlinear programming to solve the parametrized
optimization problems addressed in this section. In this way, we avoid the explicit solution of the
adjoint equations and the computation of the parametric derivatives ∂Θp

•(µ)/∂µ – entailing for
each operator Q•p derivatives – for which the empirical interpolation method could potentially
be exploited in the most expensive nonaffine cases, as shown in [91]. We will come back on these
points in the last section of the chapter 4.7, devoted to the numerical implementation.

4.4 Further analysis of FFD and RBF mappings
We provide in this section a deeper analysis of the two volume-based shape parametrization
techniques – Free-Form Deformation (FFD) and Radial Basis Functions (RBF) techniques – we
have introduced in order to deal with complex shapes, recasting them in the class of perturbation
of identity mappings. In particular, since we rely on FFD mappings to parametrize our shape
optimization problems, we provide some conditions ensuring (i) a good definition of the mapping
and (ii) the compactness of the resulting admissible shapes obtained through this parametrization
with respect to the parameter µ. Moreover, we provide some results on RBF deformations with
respect to the location and the admissible displacements of the control points.
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4.4.1 Free-Form Deformation mappings

Recalling from Sect. 2.6, a FFD mapping – here denoted as TFFD : R2 ×D → R2 – is obtained
as the composition TFFD(x;µ) = Ψ−1 ◦ T̂FFD ◦Ψ(x;µ), where Ψ : D → D̂ ≡ (0, 1)2 is a simple
affine mapping,

T̂FFD(x̂;µ) =
L∑
l=0

M∑
m=0

bL,Ml,m (x̂)(Pl,m + µl,m), (4.21)

and bL,Ml,m (x̂) = bLl (x̂1)bMm (x̂2) are tensor products of the 1D Bernstein basis polynomials (2.57).
For sake of simplicity, we consider the two-dimensional case (d = 2), although the extension of
these results to the case d > 2 is straightforward.
Thanks to the partition of unity property (2.59) of the Bernstein polynomials, to the equispaced
distribution of the control points over the lattice, and exploiting the composition with the mapping
Ψ, we can easily characterize the FFD mapping as a perturbation of identity, under the form

TFFD(x;µ) = x + θFFD(x;µ), being θFFD(x;µ) =
L∑
l=0

M∑
m=0

bL,Ml,m (Ψ(x))Dµl,m, (4.22)

where D = diag(D1, D2) and D1, D2 are the dimensions of the box D such that Ω ⊂ D. Let
us show some interesting properties of FFD mappings. First of all, owing to the expression of
Bernstein polynomials, TFFD(·;µ) ∈ C∞(R2; R2). Moreover, we can prove the following result:

Proposition 4.12. Let α ∈ (0, 1) be an arbitrary constant and let R ∈ R+ be defined as

R = R(D,L,M,α) = 1− α

max(D1, D2)
(

1 + 2
√
L2 +M2

min(D1, D2)

) . (4.23)

Then, if the parameter vectors {µl,m}, l = 1, . . . , L, m = 1, . . . ,M are such that

L∑
l=0

M∑
m=0
‖µl,m‖2 ≤ R,

the displacement field θFFD(·;µ) verifies ‖θFFD(·;µ)‖W 1,∞(R2;R2) ≤ 1 − α, so that the FFD
mapping TFFD(·;µ) defined by (4.22) is a perturbation of the identity.

Proof. We report here a simple sketch of the proof (see [18] for more details). We show that the
constant R defined by (4.23) is such that

‖θFFD(·;µ)‖W 1,∞(R2;R2) = sup
x∈R2

‖θFFD(x;µ)‖2 + sup
x∈R2

|||∇θFFD(x;µ)|||2 < 1− α, (4.24)

in order to apply the first result of Lemma 4.9. For the first term, we have that:

‖θFFD(x;µ)‖2 ≤
L∑
l=0

M∑
m=0
|bL,Ml,m (Ψ(x))|‖Dµl,m‖2 ≤ max(D1, D2)

L∑
l=0

M∑
m=0
‖µl,m‖2.

For the second term, since (see (2.61))

∇θFFD(x;µ) = D

(
L∑
l=0

M∑
m=0

µl,m ⊗∇b
L,M
l,m (Ψ(x))

)
D−1
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we have, thanks to Cauchy-Schwarz inequality,

|||∇θFFD(x;µ)|||2 ≤ ‖D‖2
L∑
l=0

M∑
m=0
‖µl,m‖2‖∇b

L,M
l,m (Ψ(x))‖2‖D−1‖2,

where the bound ‖∇bL,Ml,m (Ψ(x))‖2 ≤ 2
√
L2 +M2 is obtained thanks to the representation formula

of the gradient (2.60) and to the properties of Bernstein polynomials. In the end, we find

‖θFFD(·;µ)‖W 1,∞(R2;R2) ≤ max(D1, D2)
L∑
l=0

M∑
m=0
‖µl,m‖2

(
1 + 2

√
L2 +M2

min(D1, D2)

)

so that (4.24) is verified because R satisfies (4.23).

By taking the bound R on the norm of the control points displacements as in (4.23), the second
result of Lemma 4.9 implies that ‖T−1

FFD − I‖W 1,∞(R2;R2) ≤ 1/α, so that the family of shapes
OFFD(Ω;R) is compact. In particular, the pseudo-distance (4.9) between the reference and the
deformed shape is equal to d(Ω,Ωo(µ)) = α+ 1/α. Hence, the previous result guarantees that
the domains Ωo(µ) = TFFD(Ω;µ) generated from Ω through the FFD mapping TFFD(·;µ) form a
compact set under a suitable small parameters condition.

Remark 4.13. We point out that parameter vectors µl,m ∈ R2 and displacement fields are
defined over two different spaces (see definition (2.56) of the FFD mapping). This explains the
presence of the matrix D in the definition (4.22) of the field θFFD(x;µ).

Remark 4.14. From a practical viewpoint, by defining the actual degrees of freedom as µ1, . . . , µp
directly on the domain Ω, each corresponding to the displacement of a control point in either the
x1 or the x2 direction (i.e. to one of the components of a vector µl,m), condition (4.23) can be
simply rewritten as follows:

µ = (µ1, . . . , µp) ∈ Rp :
∑
k′∈K1

µk′

D1
+
∑

k′′∈K2

µk′′

D2
≤ R,

where Ki is the set of indices 1 ≤ k ≤ p related to displacements of a control point in the xi
direction.

The result stated in Theorem 4.12 provides a practical condition to ensure the right definition of
a FFD mapping and, in particular, that the determinant of its Jacobian det(JTFFD) is always
(strictly) positive, so that self-intersections of deformed shapes are avoided. We point out that
often this condition is quite restrictive, featuring very small deformations; from a numerical point
of view, we experienced FFD parametrizations still preserving det(JTFFD) ≥ δ > 0 also for larger
deformations than required in Theorem 4.12, by checking the sign of det(JTFFD) for very large
train sets of possible deformations. Different set of necessary and sufficient injectivity conditions
which are however more difficult to implement are reported e.g. in [105].

4.4.2 Radial Basis Functions mappings

We now turn to the analysis of the RBF mappings, introduced in Sect. 2.7. In particular, we
state some conditions ensuring the well-posedness of the interpolation problem (2.65), and an a
priori estimate on the (parametrized) coefficients entering in the expression of the RBF mapping
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Chapter 4. A reduced framework for optimization and inverse problems

with respect to the parameter µ and the set of interpolation points.
Since we do not use RBF mappings in shape optimization problems, we do not derive any
condition ensuring that the norm of the displacement field obtained through a RBF mapping is
bounded by a suitable norm of the parameter vector µ as in (4.24). Recalling from Sect. 2.7, a
RBF mapping is given by

T (x;µ) = c(µ) + A(µ)x + W(µ)T s(x), (4.25)

being c(µ) ∈ R2, A(µ) ∈ R2×2, W(µ) ∈ Rk×2 the coefficients of the mapping. Recall that
s(x) ∈ Rk is given by s(x) = (Φ(‖x−P1‖), . . . ,Φ(‖x−Pk‖))T .

Vector and matrices components cm(µ), (A(µ))mn = Amn(µ) and (W(µ))im = wim(µ), for
1 ≤ m,n ≤ 2, 1 ≤ i ≤ k are obtained by solving the following linear systems:

[
M P
PT 0

] [
Wm(µ)
γm(µ)

]
=
[

Pm + µm
0

]
, m = 1, 2 (4.26)

where (for sake of analysis, notation slightly differs from (2.71)):

• Wm(µ) = (w1m, (µ) . . . , wkm(µ))T and γm(µ) = (cm(µ), A1m(µ), A2m(µ))T are the coeffi-
cients related to radial and polynomial components to deformation, for the m-th coordinate;

• Pm = (P1m, . . . , Pkm)T the vector of the m-th coordinates of the k control points in the
undeformed, reference configuration; in the same way, Pi = (Pi1, Pi2)T for any 1 ≤ i ≤ k;

• µm = (µ1m, µkm) the displacement of the set of k control points in the m-th direction;

• M ∈ Rk×k the interpolation matrix, of componentsMij = Φ(‖Pi−Pj‖), for any 1 ≤ i, j ≤ k;

• P ∈ Rk×3 the matrix arising from the side constraints and given by P = [ 1 | P1 | P2].

It is possible to show (see e.g. [50], Proposition 2.1) that the interpolation matrix M is in general
symmetric and positive semi-definite; it is positive definite if Φ(r) = φ(r2), where φ : R+ → R
is a continuous completely monotonic function, i.e. φ : R+ → R, φ ∈ C∞(0,∞) is such that
(−1)lφ(l)(t) ≥ 0 for l = 0, 1, 2, . . . and for all positive t. In this case, the RBF interpolation
problem admits a unique solution even without adding a polynomial function to the RBF map,
provided that {Pi}ki=1 ⊂ R2 is a set of k > 2 distinct, non-collinear control points. Then, if we
use e.g. Gaussian or Multiquadric RBFs (see table 2.1), the interpolation problem is well posed.

On the other hand, we can recover the possibility to solve the RBF interpolation problem even
for function which are not completely monotonic, by relaxing the requirement on Φ(·) and the
definition of positive definiteness. In fact, we can always interpolate uniquely with (strictly)
conditionally positive definite functions5 if we add polynomials to the interpolant, and if the only
polynomial that vanishes on the set of control points {Pi}ki=1 ⊂ R2 sites is zero.

5A function F : Rd → R is conditionally positive definite (of order k) if for all finite subsets Ξ ⊂ Rd, the
quadratic form

∑
ξ∈Ξ

∑
ζ∈Ξ λξλζF (ξ − ζ) is nonnegative for all λ = {λξ}ξ∈Ξ which satisfies

∑
ξ∈Ξ λξq(ξ) = 0

for any polynomial functions q ∈ Πk−1
d

of total degree at most k − 1 in d unknowns. In our case, F (x) = Φ(‖x‖)
and it can be proved that Φ(‖x‖) is strictly conditionally positive definite (of order k) if (−1)kdk/dtkφ(

√
t), t > 0

is completely monotonic (see e.g. [50], Theorem 5.1). Common choices of RBFs satisfy this requirement wit k = 2,
so that adding a polynomial of degree k − 1 = 1 is sufficient.

120



4.4. Further analysis of FFD and RBF mappings

The side constraints in (4.26) are used to take up the extra degrees of freedom introduced through
the use of the polynomial π(x) ∈ Π1

2. Moreover, we can prove the following result:

Proposition 4.15. The RBF mapping (4.25) satisfies the following properties:

1. T (x;µ) = x + θ(x;µ), where θ(x;µ) = 0 if and only if µ = 0;

2. the following a priori estimate holds:

1
κ2(K)

‖Pm‖2
‖µm‖2

≤ (‖γm(µ)‖2 + ‖Wm(µ)‖2)1/2 ≤ κ2(K) ‖µ
m‖2

‖Pm‖2
, (4.27)

where κ2(K) = maxi σi(K)
mini σi(K) is the spectral condition number of K =

[
M P
PT 0

]
.

Proof. First of all, we can rewrite expression (4.25) as follows:

T (x;µ) = x + c(µ) + (A(µ)− I)x + W(µ)T s(x).

It is easy to check that, since P = [ 1 | P1 | P2], the solution of the linear systems (4.26) with
µm = 0 is given by Wm(0) = 0 for m = 1, 2 and γ1(0) = [0, 1, 0]T , γ2(0) = [0, 0, 1]T , i.e. we
have A(0) = I, c(0) = 0, W(0) = 0, provided that K is nonsingular. To prove this, let us remark
that:

• if M is symmetric positive definite, K has a saddle-point structure and is nonsingular if and
only if P has full column rank, i.e. if and only if rank(P) = 3. In the present case, this
condition is verified if and only if the k > 2 control points are non-collinear. In fact, K is
congruent to the block diagonal diag(M,S), where S = −PTMP is the Schur complement,
so that K is nonsingular if and only if S is nonsingular, provided that M is nonsingular.

• if M is symmetric but positive semi-definite, we can rely on theorem 5.1 in [50].

To prove the a priori estimate (4.27), we simply apply a basic result in numerical linear algebra
(see e.g. [258], Theorem 3.2) for the stability analysis of a linear system Kx = b, b 6= 0:

K(x + δx) = b + δb ⇒ 1
κ(K)

‖δb‖
‖b‖ ≤

‖δx‖
‖x‖ ≤ κ(K)‖δb‖

‖b‖ ,

by taking, for m = 1, 2:

b =
[

Pm

0

]
, δb =

[
µm

0

]
, x =

[
Wm(0)
γm(0)

]
, δx =

[
Wm(µ)−Wm(0)
γm(µ)− γm(0)

]
.

In this way, by taking the Euclidean norm ‖ · ‖2 vectors (and the induced matrix norm to get the
spectral condition number κ2(K), the estimate directly follows.

We point out that some relationships between the spectral condition numbers of the interpolation
matrix κ2(M) and of the global matrix κ2(K) can also be derived, by exploiting the theory of
saddle-point problems (see e.g. [29], Theorem 3.5). In this way, we can characterize the stability
estimate (4.27) by means of the spectral condition number κ2(M) of M.
Moreover, we remark that κ2(M) provides an indication about the complexity of the interpolation
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problem, related to location/number of control points and radial basis. In particular, upper
bounds under the following form can be established:

κ2(M) ≤ kmaxi6=j |Φ(‖Pi −Pj))|
G(q) , q = 1

2 min
i6=j
‖Pi −Pj‖2,

where q is the separation radius of the control points positions and G(·) a real function depending
on the radial basis; e.g., for the Gaussian RBF Φ(h) = e−h

2 we have G(h) = h−de−γ/h
2 , for the

spline-type Φ(h) = hλ we have G(h) = hλ. See e.g. [50], Chapter 5 or [291] and references therein
for further details and a general setting.

For a small number of control points, as in our approach, linear systems (4.26) can be efficiently
solved by a suitable direct method (matrix factorization is not depending on the parameters).
When using a large number of control points – as for example in fluid-structure interaction
coupled problems or, more generally, when dealing with mesh motion through RBF – the matrix
appearing in (4.26) may be badly conditioned and non-sparse (because of the global character
of RBF), and some difficulties may arise. In these cases, suitable scaling or preconditioning
strategies may help, as discussed for example in [50]. See also [155] for theoretical construction
of shape deformations based on RBFs for mesh deformations and the works by Schaback and
Wendland (e.g., [321,293]) for computational aspects related to RBFs interpolation.

4.5 Reduced order modelling for parametrized
inverse problems

The parametrized framework enables to deal with more general inverse problems beyond opti-
mization problems governed by PDEs, such as optimal control and shape optimization problems.
In this section we address both a deterministic framework and a Bayesian framework for the
solution of different types of inverse problems.
Given a parameter vector µ ∈ D, the forward problem consists in computing the state solution
Yo(µ) ∈ X(Ωo) solving the state equation

Ao(Yo(µ),W : µ) + Co(Yo(µ), Yo(µ),W ;µ) = Fo(W ;µ), ∀W ∈ X(Ωo) (4.28)

and in evaluating the corresponding output of interest

so(µ) = So(Yo(µ)) (4.29)

being so : D → Z and So : X(Ωo)→ Z suitable observation operators, and Z the vector space of
observables. Usually the forward problem (4.28) is solved many times, each one corresponding to
a new value of the parameter vector µ, in order to predict the outcome so(µ) – which is thus
equivalent to exploring the graph of the observation operator µ 7→ so(µ). A more challenging
situation is that of inverse problems, where observed data or measurements ŝ∗o ∈ Z are used to
estimate unknown parameters µ of the physical state system.
As in Sect. 4.3, we shall assume that the input parameter vector µ = (π,ω) ∈ D ⊂ Rp consists
of two parts – a control parameter π ∈ Dπ ⊂ Rpπ and an uncertainty parameter ω ∈ Dω ⊂ Rpω ,
so that D = Dπ ×Dω, being p = pπ + pω. Depending on the single cases, we may be interested
in identifying one or both the components π and ω; for sake of notation, whenever possible we
will deal in this presentation with the global input parameter vector µ ∈ D. In the following
subsection we provide a first deterministic approach to the solution of inverse problems, which
are seen as parameter identification problems.
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4.5.1 A deterministic optimization framework

A deterministic approach for the solution of the inverse problems recasts them in a more general
optimization framework, and computes the best-fit for the parameter value by minimizing the error
(usually in the least squares sense) between the observation s∗o and the output prediction given by
the model. We can also refer to this class of problems as parameter identification problems. In
our context based on parametrized PDEs, we define the abstract parametrized inverse problem
as follows: given an observation operator so : D → Z, and a target observation s∗o ∈ Z – being Z
the vector space of observables – find the parameter vector µ∗ ∈ D that solves the optimization
problem

µ∗ = arg min
µ∈D

Jo(µ) := 1
2‖s
∗
o − so(µ)‖2Z + 1

2‖µ− µp‖
2
M , (4.30)

being µp ∈ D a given, target parameter value, M : RP → RP a positive definite matrix so that
‖µ− µp‖2M := (M(µ− µp),µ− µp)RP is a regularization term. In the applications addressed in
Part III, we deal with scalar outputs So : X(Ωo)→ Z ≡ R, given by a linear and/or a quadratic
functional of the state solution Yo(µ), under the form

So(Yo(µ)) = Lo(Yo(µ);µ) +Qo(Yo(µ), Yo(µ);µ).

Nevertheless, the present framework can be extended to more complex outputs So : X(Ωo)→ Z,
being Z a suitable vector or functional space – a first example in this direction is represented by
the inverse identification problem arising in the FSI context. The abstract formulation (4.30) thus
covers a large number of practical problems, of which we next give a few examples – recasting
also in this framework the cases presented in the previous sections:
• Parameter identification problem. The most common problem under the form (4.30) is the

identification of uncertain parameters ω (related e.g. to boundary conditions) or to control
parameters π (e.g. related with shape) so that the misfit between the computed output
so(µ) and some given observations∗o (possibly affected by experimental noise) is minimized.

• Optimal design problem (without uncertainty):

min
π∈Dπ

Jo(π) := 1
2So(Yo(π)), (4.31)

where the state equations (4.28) do not contain any uncertainty ω and So : X(Ωo(π))→ R
is a quadratic functional of the state variables. We can also consider a tracking-type
functional So(Yo(π)− Y ∗o ), where Y ∗o is a reference solution with some desirable properties.
For example, in a shape optimization problem related to minimizing the vortices generated
behind a bluff body, Y ∗o might represent the Stokes solution (see e.g. [163,174]).

• Robust optimal design problem (with uncertainty):

min
π∈Dπ

Jo(π) := max
ω∈Dω

1
2So(Yo(µ)), (4.32)

where we seek e.g. a single optimal shape represented through a parameter vector π̂ to
cover a range of possible realizations of the uncertainty ω.

• Parameter identification (coupled) problem. In the following section we introduce a para-
metric coupling algorithm for simple FSI problems. In this case, ω represents a vector
of material parameters, whereas π a set of geometrical parameters, describing the free-
boundary at the interface between the fluid and the structural domain. Suppose we want
to identify the material parameters ω̂ such that a given output, depending on the state
(fluid) solution Yo(π) computed in Ωo(π) gives the best fit to some measurement s∗o.
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This entails the solution of the following parameter identification problem:

min
ω∈Dω

Jo(µ) := 1
2 |s
∗
o − So(Yo(π∗(ω)))|2 + 1

2‖ω − ωp‖
2
M , (4.33)

where for any realization ω ∈ Dω in addition to the forward equation

Ao(Yo(π∗,ω),W ;µ)+Co(Yo(π∗,ω), Yo(π∗,ω),W ;µ) = Fo(W ;µ) ∀W ∈ X(Ωo(π∗)),

we need to specify another equation, Eo(π∗,ω) = 0 (in this case the parametric coupling
problem) in order to close the problem and determine π∗ = π∗(ω). Here Eo(π∗,ω) = 0
returns the shape control parameters π∗ best fitting the structure displacement.

No matter which numerical algorithm ends up being used (see Sect. 4.7), a deterministic setting for
inverse problems leads to the repeated evaluation of the state solution Yo(µ) and the cost functional
Jo(µ), depending on the output of interest So(Yo(µ)), which is a typical many-query problem.
Hence, the efficient solution of (4.30) hinges on our ability to simulate effectively the forward
problem (4.28): reduction techniques are thus mandatory in order to contain the computational
costs, since optimization procedures may require up to O(102)−O(103) input/output evaluations.

Of course, further difficulties are exhibited when the parameters π control explicitly or implicitly
the domain of the forward problem Ωo(π). In this case, by considering a fixed domain approach
as in the previous sections, we end up with an inverse problem on the fixed domain Ω:

min
µ∈D

J (µ) := 1
2‖s
∗ − s(µ)‖2Z + 1

2‖µ− µp‖
2
M , (4.34)

where s(µ) = S(Y (µ);µ) and Y (µ) is the solution of the forward problem on the fixed domain:

A(Y (µ),W ;µ) + C(Y (µ), Y (µ),W ;µ) = F(W ;µ) ∀W ∈ X(Ω). (4.35)

Once the problem has been rewritten in the proposed parametrized form (4.34)-(4.35), we can
exploit the reduced basis method for parametrized PDEs, in order to speed up the solution of the
state problem and related output evaluations during the optimization procedure.

4.5.2 A reduced Bayesian statistical framework

Parameter estimation problems search for a best choice of parameters relative to (typically noisy)
experimental data. This usually entails the solution of an optimization problem, for any realization
of the experimental noise affecting the data, thus yielding to extensive numerical simulations
which are unaffordable without resorting to computational reduction strategies. Moreover, in the
case that s∗ is an experimental measure, possibly polluted by measurement error, a deterministic
approach is no longer sufficient to describe fully the propagation of errors through the numerical
model. We need a method for quantifying the uncertainty contained in the best estimator. A
different perspective, presented e.g. in a recent work by Patera et al. [147], is based on statistical
validation procedures, which assess the consistency of any candidate parameter value – and hence
associated proposed PDE model – with (typically noisy) experimental data. In order to facilitate
such an approach, we assume that the uncertainty can be embedded in the parameters of the
forward problem – we do not consider nonparametric approaches here6 – and that the parametric
dimension is relatively small to avoid the curse of dimensionality.

6As previously mentioned, we call the subset of parameters that describe the uncertainty as uncertainty
parameters, as opposed to the other types of parameters in our inverse problem called control parameters that can
be either directly or indirectly influenced.
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We can distinguish between Bayesian and frequentistic validation. The former approach builds
directly upon Bayesian parameter estimation [219] from experimental data to likelihood through
prior to posterior and finally credible regions [304]. This approach is very general and can easily
provide several information on the error propagation through the numerical model; however, it
strongly hinges on the choice of a prior probability density.
The latter approach avoids the introduction of prior distributions and is able to provide less
subjective conclusions, but still some assumptions on the statistical (parametric) model to describe
the observed data (e.g. the Gaussian model) may limit its capability. Many other reasons can of
course be addressed in order to motivate the choice between these two general approaches; here we
decide to follow a Bayesian approach (opting e.g. for non informative prior distributions) mainly
because of its intuitive nature, just in order to provide a possible uncertainty quantification
framework where computational reduction can be extremely helpful (as detailed in [101,106,191]).
We remark, in fact, that a statistical approach to uncertainty in inverse problems, either from the
frequentistic [263] or the Bayesian viewpoint [162,305], requires in any case the repeated evaluation
of outputs over large sample sets (e.g. in order to compute sample statistics such as expectations,
variances, and higher moments). With this respect, the reduced basis framework can be suitable
also for uncertainty quantification [147] and more general probabilistic problems [43,227].

To address our goals, we can identify two approaches to deal with uncertainty. In the first
approach the uncertainty can be “explored" thanks to the inexpensive solution algorithm so that
some application-specific conclusions can be drawn. Exploring the parametric uncertainty space
of possible outcomes leads naturally to a “many-query" context – the forward problem will need
to be solved for multiple different values of the uncertainty parameters.
In the second approach a Bayesian viewpoint (see e.g. [106,191]) is adopted, providing a probability
distribution function for the parameter µ that carries on the uncertainties related to measurements.
We assume that we have available certain prior information about the uncertainty parameters
plus a characterization of the noise. In particular, we model observations s∗ and parameters µ as
random variables and we assume that the probability distributions can be written in terms of
(measurable) probability density functions.

By applying the well-known Bayes’ theorem, the probability distributions can be inverted to
obtain the posterior distribution of the uncertainty parameters given the information about the
observation. In this way, the solution of the inverse problem is given by the posterior probability
density p(µ|s∗) : Dµ × Y → R+

0 , i.e. the probability density of the parameter µ given the prior
information and the measured value of s∗, which can be obtained as

p(µ | s∗) = p(s∗ | µ) p(µ)
p(s∗) , (4.36)

where in (4.36) p(µ) : Dµ → R+
0 is the prior probability density, expressing all available information

on µ independently of the particular measurements on s∗ that will be considered as data;
p(s∗ | µ) : Y ×Dµ → R+

0 is the likelihood function, i.e. the conditional probability density of the
observation s∗ if µ were known; the denominator p(s∗) is a norming constant, determined by the
normalization of the posterior density, and has often little importance.

The simplest probabilistic model that can be used to describe experimental uncertainties is the
Gaussian model; in particular, we assume that our data are n surrogate measures s∗ = s(µ) + ε,
obtained by perturbing the output value depending on a parameter vector µ by adding normally
distributed errors ε ∼ N (0,Σs), uncorrelated and equally distributed, i.e. Σs = σ2

sIn, where the
variance σ2

s is supposed to be known. Under this assumption, the likelihood function is given by

p(s∗ | µ) = pnoise(s∗ − s(µ)) ∝ exp
(
− 1

2‖s
∗ − s(µ)‖2Σ−1

s

)
= exp

(
− 1

2σ2
s

‖s∗ − s(µ)‖2
)
.
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If we can assume a Gaussian model also on the prior knowledge of the parameters distributions,
i.e. p(µ) ∼ N (µp,Σp), then the posterior probability density will be normally distributed, under
the form

p(µ | s∗) ∝ exp
(
− 1

2‖s
∗ − s(µ)‖2Σ−1

s
− 1

2‖µ− µp‖
2
Σ−1
p

)
.

In this case, the maximum a posteriori estimator µ∗ is then obtained as

µ∗ = arg min
µ∈Rp

(
1
2‖s
∗ − s(µ)‖2Σ−1

s
+ 1

2‖µ− µp‖
2
Σ−1
p

)
,

i.e. by solving a specific instance of the regularized minimization problem (4.30). We can also
remark that in the Bayesian framework the norms ‖ · ‖Y , ‖ · ‖M and the value µp have a clear
interpretation in terms of the statistics of the measurement noise and the prior probability
distribution [305].

On the other hand, if we assume that no information is available about the parameter distribution
except that it resides in the parameter space D, i.e. p(µ) ∼ U(D) is a uniform distribution over
D, the posterior probability density is given by

p(µ | s∗) ∝

 exp
(
− 1

2σ2
s

‖s∗ − s(µ)‖2
)
, µ ∈ D,

0, µ /∈ D.

If the parameter space D has a large dimension (e.g. P > 4), an exhaustive exploration of
this space is not possible, and we have to rely on Monte Carlo sampling techniques to extract
information from the posterior probability density; a well-known technique for sampling probability
distributions is the Metropolis-Hastings algorithm, which proceeds as follows:

pick an initial ω1; set k = 1;
for k = 2 : K

compute p(ωk | s∗);
draw ξ ∼ N (0, σ2I), set ω̂ = ωk + ξ, compute p(ω̂ | s∗);
compute α(ωk, ω̂) = min(1, p(ω̂ | s∗)/p(ωk | s∗))(acceptance ratio);
draw t ∼ U([0, 1]);
if t ≤ α(ωk, ω̂)

accept: set ωk+1 = ω̂, Ξ = Ξ ∪ ωk+1;
else

reject: keep ωk+1 = ωk;
end if
k ← k + 1;

end

After the algorithm has taken K steps, the sample set Ξ contains realizations of the probability
distribution p(µ | s∗). In particular, the variance σ2 affecting the step ξ should be chosen as large
as possible while still maintaining a reasonable acceptance rate [162]. The algorithm reported
above is the simplest version of the Metropolis-Hastings, where we assume for instance that
the so-called proposal distribution from which we sample ξ is symmetric (in the present case
it is assumed to be Gaussian). See e.g. Chapter 6 of [157] or to more details about Markov
Chain Monte Carlo (MCMC) algorithms for sampling (complex and high-dimensional) posterior
densities probability distributions.
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4.6 Reduced order modelling for steady FSI problems
As seen in the previous section, the same framework already exploited for the efficient solution of
optimal control and shape optimization problems can be applied also to other inverse problems. A
case of remarkable interest is the numerical simulation of steady Fluid-Structure Interaction (FSI)
problems [220], where a deformable structure mutually interacts with a fluid flow, which can be
either internal (like blood flowing in compliant vessels) or external (like in aircraft wings/surfaces
interactions).

4.6.1 General formulation

Following the so-called Arbitrary Lagrangian Eulerian (ALE) formulation [220], which is par-
ticularly suitable for the numerical approximation of FSI problems, we consider a Lagrangian
description for the structure and the usual Eulerian description for the flow. In this way, the
computational domain has to comply with the behavior of the (free) boundary, described by a
suitable structural model, and through the (free) boundary acts on the fluid flow across it. In
the ALE formulation we have then the interplay of (at least) two motions: the motion of the
structural medium – governed by e.g. elasticity equations – and the motion of the computational
domain, which is arbitrary but is subject to the constraint provided by the movement of the free
boundary. A overview on the most recent results on the analysis of this type of problems may be
found in [199]. Even if several elements provided in the following come from, and may be applied
to, time-dependent FSI problems, we focus throughout this section on steady state FSI problems,
which have been extensively analyzed by Grandmont et al. [118,119].

Let us denote by (Yo, ηf , ηs) the flow variables Yo = (vo, po), the displacement of the computational
(fluid) domain Ωo and the displacement of the structure domain, respectively. Then, we can
express a FSI problem by means of three coupled subproblems as follows: F(Yo, ηs, ηf ) = 0 Fluid problem

S(Yo, ηs) = 0 Structure problem
G(ηs, ηf ) = 0 Geometry

describing the physics of the fluid (given the solid displacement and the domain displacement),
the solid displacement (given the traction exerted by the fluid) and the displacement of the fluid
computational domain, respectively. Coupling conditions are expressed through the continuity
of the stresses and the continuity of the domain displacement (or geometric adherence) at the
interface Γw between fluid and structure. In this way, we can denote by η := ηs ≡ ηf the
structural displacement and by Ωo = Ωo(η) the original domain for the fluid equations, which
depend on the displacement η of the (free) structural boundary. Then, we consider as fluid
problem in the variable, original domain Ωo = Ωo(η) the steady Navier-Stokes equations (3.3),
which are rewritten here for the reader’s convenience:{

ao(v,w) + δdo(v,w) + bo(p,w) + δco(v,v, z) = 〈F o,w〉 , ∀w ∈ Xo(Ωo(η))

bo(q,v) = 〈Go, q〉 , ∀q ∈ Qo(Ωo(η)).
(4.37)

For sake of simplicity, we assume to deal with variable domains under the form Ωo(η) = {xo =
(xo1, xo2) ∈ (0, L)× (0, R(xo1))} where R(xo1) = R̄+η(xo1) and η ∈ D := H2

0 (0, L) is the smooth
displacement of the outer wall of the domain (free boundary) Γw from its reference configuration
Ω = (0, L) × (0, R̄) (see Fig. 4.1). This configuration can also be seen as a cylindrical tube of
radius R̄ which is axisymmetrically deformed.
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Figure 4.1: Schematic representation of the geometrical configuration for the FSI case.

In order to close the system, we need to provide an equation for solving the displacement η. This
equation is in the Lagrangian form on the undeformed configuration of the structural boundary
Γw, which we identify as the interval (0, L) in the current simplified case. Furthermore, we assume
to deal with small displacements, which take place in the normal direction of Γw, the tangential
displacement being equal to zero. A linear elasticity model for the displacement is chosen, as the
following second order equation with a fourth order perturbation (with ε > 0 small)

ε
∂4η

∂x4
1
− kGh∂

2η

∂x2
1

+ Eh

1− ν2
P

η

R0(x1)2 = τΓw , x1 ∈ (0, L), (4.38)

where h is the wall thickness, k is the Timoshenko shear correction factor, G the shear modulus,
E the Young modulus, νP the Poisson ratio, R0 the radius of the reference configuration, and
τΓw denotes the traction applied to the wall by the fluid inside the domain Ωo (see e.g. [259]). We
have added a fourth order term (weighted by the quantity ε) in order to allow a better regularity
for the displacement. The weak form of (4.38) reads as follows: find the structural displacement
in the normal direction η ∈ D such that

e(η, φ) = 〈τΓw , φ〉, ∀φ ∈ D, (4.39)

being

e(η, φ) = ε

∫ L

0

∂2η

∂x2
1

∂2φ

∂x2
1
dx1 + kGh

∫ L

0

∂η

∂x1

∂φ

∂x1
dx1 + Eh

1− ν2
P

∫ L

0

ηφ

R0(x1)2 dx1

and D := H2
0 (0, L) the space of kinematically admissible displacements. The fluid and structure

are coupled together by taking the applied traction τΓw on the structure to be the normal
component of the normal Cauchy stress of the fluid on Γw, i.e.

τΓw = (σ(vo, po)n) · n, on Γw. (4.40)

We remark that τΓw can be expressed in the weak sense using7 the residual r(vo; w) ∈ V ′w of
the fluid solution on the interface Γw (see e.g. [186]), which is defined for any w ∈ Vw = {v ∈
(H1(Ωo))2 : v = 0 on Γw} as

r(vo; w) := 〈F o,w〉 − ao(vo + Lo,g,w)− bo(po,w)− co(vo + Lo,g,vo + Lo,g,w); (4.41)

we refer to the notation introduced in Sect. 3.1. In this way, the coupled FSI problem reads as
7 More precisely, we should introduce the Riesz representant r̃(vo; w) ∈ Vw such that r(vo; w) =

X′w
〈r̃(vo),w〉Xw for any w ∈ Xw and the trace operator γΓw : Xw → (H1/2(Γw))2.
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follows:
ao(v,w) + δdo(v,w) + bo(p,w) + δco(v,v, z) = 〈F o,w〉 , ∀w ∈ Xo(Ωo(η))

bo(q,v) = 〈Go, q〉 , ∀q ∈ Qo(Ωo(η))

e(η, φ) = H−1/2(0,L)〈r̃(vo) · n, φ〉H1/2(0,L) , ∀φ ∈ D.

(4.42)

The coupled problem (4.42) is well-posed under the assumptions already made for the well-
posedness of the Navier-Stokes equations and the hypotheses about the structural equation
discussed in this section. The proof is based on a Schauder fixed point theorem; we refer for
instance to the work of Grandmont [118,119] for the details.

4.6.2 Parametric Fluid-Structure coupling

Several numerical strategies have been devised in the last decades (see e.g. [96]) to tackle FSI
problems; we can roughly distinguish between monolithic [68] and partitioned approaches, where
the equations describing the fluid flow and the structure displacement are solved simultaneously
(in the former) or separately, and the coupling is obtained through an iterative scheme (in the
latter). Following the second strategy, a trial configuration of the geometry is used to solve the
fluid and structure problems, then the coupling conditions are tested: in case they are not fulfilled
(up to a prescribed tolerance), the trial configuration is updated by displacing the free boundary
and another step is performed. This entails the use of a recursive mesh updating by moving the
boundary nodes (and adjusting the interior mesh points to maintain mesh quality). In order to
avoid the reassembly of matrices corresponding to the discretization of the fluid and the structure
problems, we formulate the fluid problem8 on a reference domain, by describing its deformations
through a low dimensional shape parametrization, for instance a FFD mapping. The nonlinear
coupled problem (4.42) is thus solved through a partitioned algorithm based on a parametric
coupling method: fluid and structure are coupled together by parametrizing the computational
domain (and consequently the displacement) for the fluid, and measuring the coupling error in
the parametric displacement space. This technique, introduced in [184] for a Stokes problem, has
been extended to Navier-Stokes equations in a subsequent work [180], on which this presentation
is based.

In particular, once the computational fluid domain is parametrized with a FFD mapping T (·;π) :
Ω→ Ωo(π), any fluid problem corresponding to an original domain Ωo(π) is traced back on the
reference domain Ω, whereas the shape deformation is managed through the input parameters
π1, . . . , πpπ defining the FFD mapping. From the fluid problem we extract the loads representing
the data for the structure problem, whose solution gives in turn the updated domain (through
the new values of the parameters π1, . . . , πpπ for the fluid problem. Hence, a fixed point coupling
algorithm can be written in the parameter space – rather than the displacement space. Again,
an iterative procedure is needed to ensure the coupling conditions are satisfied up to a desired
tolerance. In this way, starting from an initial configuration Ωo(π(0)), at each iteration k ≥ 1 of
the algorithm we must solve a least-squares problem

min
π(k+1)∈Dad

J (π(k+1);π(k)) :=
∫

Γw

|η(π(k+1))− S ◦ L ◦ F(π(k))|2 dΓ (4.43)

to find the configuration of the fluid domain Ωo(πk+1) at the next iteration, being:

8The same approach, based on a suitable shape parametrization and RB methods for computational reduction,
can also be applied to the structural equation. However, since in this case we deal with a simple one-dimensional
equation for the displacement η, we simply rely on the truth 1D finite element approximation of the structure
problem.
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• F : Dπ → X the fluid resolvant operator, returning the fluid solution Y (π(k)) in Ωo(π(k));
• L : X → H−1/2(0, L) an operator transferring the loads from fluid to structure in a weak
way using the fluid residual (4.41);
• S : H−1/2(0, L)→ D the structure resolvant operator, returning the structural displacement
η solution of (4.38) assuming the applied loads;
• η(π) the parametric displacement of the fluid domain at configuration Ωo(π), computed
through the FFD mapping, without solving any further equation.

During the coupling procedure, seeking for the best parameter value (and related parametrized
displacement) matching the displacement yielded by the fluid-structure coupling, a potentially
large number of parametrized PDEs need to be solved in different parametric configurations
– this is the stage where the RB method comes into play. Reduction obtained through this
procedure is thus twofold, since (i) the fluid equations for any given parametrized domain are
solved through the RB method; (ii) the displacement η(π) of the fluid domain is described
through a FFD parametrization and recovered from the structural displacement η by solving a
parameter identification problem.

4.7 Numerical approximation of optimization
problems governed by parametrized PDEs

In this section we present the numerical procedures developed and implemented for the solution
of the problems discussed throughout this chapter. They are nonlinear programming problems
depending on a relatively small number of optimization variables, but entailing a very large
number of (nonlinear) constraints – a priori, one equation for each degree of freedom of the truth
finite element approximation. By means of a suitable combination of the techniques analyzed
in the previous chapters – RB methods, flexible shape parametrizations and EIM for treating
non-affinities – the solution of such a problem can be greatly enhanced.

4.7.1 A possible reduce-then-optimize approach

For the numerical solution of optimization problems under PDE constraints, two different
paradigms9 can be adopted, both relying on iterative procedures : (i) optimize-then-discretize,
where we first apply the iterative method to the (continuous) system of optimality conditions,
then we discretize the various steps of the algorithm, or (i) discretize-then-optimize, where we first
discretize our optimal control problem, then we apply an iterative algorithm to solve the discrete
version of the system of optimality conditions [128,143]. We will follow a (reduced version) of
this latter procedure.

Let us consider the case of a parametrized problem like (4.17) – that we rewrite here for
convenience:

µ̂ = arg min
µ∈Dad

J (µ) s.t. Y (µ) ∈ X :

Ã(Y (µ),W ;µ) = F (W ;µ), ∀W ∈ X.
(µ-OPT)

Then, let us discretize the former problem, by introducing a truth approximation FE space XN
9Here we do not consider alternatives to iterative procedures, based for instance on the so-called one-shot

approach [268], which aims at solving the discretized systems arising from the optimality conditions in a monolithic
way, instead than pursuing a partitioned scheme, like in most common iterative procedures.
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(whose dimension will be denoted N throughout this section), in order to get the following version:

µ̂ = arg min
µ∈Dad

JN (µ) s.t. Y N (µ) ∈ XN :

Ã(Y N (µ),WN ;µ) = F (WN ;µ), ∀WN ∈ XN .
(µ-OPT-N )

At this stage, the first possibility (also referred as indirect method) is to tackle the system
of optimality conditions arising from (µ-OPT-N ) which involve the repeated solution of the
(discrete) state and adjoint equations, as well as the update of the control variables [143, 39].
Due to the fact that the cost functional JN (µ) depends on the solution of the state problem,
it can be very nonconvex and contain several local minima. This is unavoidable in the case of
non-parametrized optimization problems; in this case, large-scale trust-region methods can help
achieve global convergence of the optimization method. Moreover, as we have already remarked,
a standard adjoint-based approach is in practice too expensive [128].

In a parametrized context – i.e. when the control parameter vector µ ∈ D ⊂ Rp is finite-
dimensional – we can rely on more efficient procedures (also referred as direct methods) and have
access to many tools from the theory of nonlinear programming [229]. Thus, we solve directly
the minimization problem by seeking a sequence {µ(k)}k=1,2,... of values of µ, on which the
value of the cost functional JN (µ) is reduced. Provided that the analytical expression of the
first-order sensitivities dJN /dµj are available, optimization can then be efficiently performed
e.g. using quasi-Newton methods10 (such as the sequential quadratic programming technique);
see the forthcoming subsection for a brief sketch of these methods. For pure least-squares type
functionals, there also exists the possibility of using the efficient Levenberg-Marquardt-Fletcher [99]
method. In the case of a min-max optimization problem of the type (RD-OCµ), we either need
to solve an inner maximization problem inside each outer minimization problem, or consider a
relaxation

min
π∈Dπ

max
i=1,...,n

1
2J
N (π,ωi) (4.44)

for a discrete set of uncertainty values ω1, . . . ,ωn ∈ Dω, after which the inner maximization
reduces to a procedure of enumeration.

From a purely optimization standpoint – and avoiding for simplicity the inequality constraints
given by µ ∈ Dad, problem (µ-OPT-N ) can be seen as a particular instance of the following
more general problem

min
µ
JN (µ) s.t. gN (µ) = 0,

where JN : Rp → R and gN : Rp → RN are the discrete representations of the cost functional and
the PDE constraints, respectively. The number of constraints at the discretized level corresponds
to the total amount of degrees of freedom related to the truth full-order approximation of the
state problem and has a strong impact on the speed of the iterative optimization procedure. Thus,
thanks to the reduced basis approximation of the state (parametrized PDE) problem and related
output of interest, we can pursue a remarkable reduction at this stage, since the RB version
of the state problem entails just N � N degrees of freedom (and the same for the number of
constraints in the optimization problem).

Our procedure for numerical optimization is rather based on a (discretize-then) reduce-then-
optimize approach, where the optimization is performed directly at the reduced order level. The

10 On the other hand, derivative-free method for optimization such as genetic algorithms or surrogate models
[211,300] replacing the exact cost functional with e.g. low-order polynomial interpolants can also be exploited.
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corresponding reduced version of the problem we end up with is as follows:

µ̂ = arg min
µ∈Dad

JN (µ) s.t. YN (µ) ∈ XN :

Ã(YN (µ),WN ;µ) = F (WN ;µ), ∀WN ∈ XN ,
(µ-OPT-N)

Clearly, error bounds are necessary to certify the reduced approximation also for sake of the
optimization procedure. At the moment, we rely on (partial) error estimation procedures for
state variables and outputs (as shown e.g. in Sect. 3.4.3) separately, whereas an error estimation
procedure on the global optimization procedure – say, to bound the difference |ĴN (µ̂)−ĴN (µ̂)| are
still under investigation and are available just for simple cases at the moment (see e.g. [223,121]).
Several remarks about e.g. optimality and predictability errors, as well as about the general
sub-optimality of the RB optimal solution with respect to the corresponding FE optimal solution,
can be found e.g. in [72].
We remark that here we consider a numerical approximation of the gradient of the cost functional
based on finite differences, instead of solving the adjoint problem. As sketched in the forthcoming
subsection, within this approach we just require an efficient tool for evaluating the state solution
and the cost functional for many parameter values: this perfectly fits the RB framework, which
can thus provide rapid responses in terms of input/output evaluations thanks to the reduced
dimension N � N of the approximation. The extension of the current framework to optimization
procedures accounting for a reduced version of the adjoint problem is currently under investigation.

4.7.2 An iterative procedure for constrained optimization

Let us consider the following finite-dimensional optimization problem:

min
µ
JN (µ) s.t. gN (µ) = 0, (4.45)

where JN : Rp → R and gN : Rp → RN are the reduced representations of the cost functional
and the PDE constraints, respectively. The basic idea for solving this minimization problem
is to build an iterative procedure that, starting from a given µ(0), generates a sequence {µ(k)}
typically such that JN (µ(k+1)) < JN (µ(k)), until a suitable stopping criterium is fulfilled. In
order to move from the current iterate µ(k) to the new µ(k+1), we can rely on (i) line search type
methods, where the algorithm chooses a direction dk and searches along this direction from the
current µ(k) for a new µ(k+1) such that JN (µ(k+1)) < JN (µ(k)); (ii) trust region type methods,
where the information gathered about JN is used to construct a model function whose behavior
in a given region (the trust region) near the current iterate µ(k) is similar to that of the actual
objective function JN (·), modifying the size of the region during the iteration process.

Among the former class, we will exploit the so-called sequential quadratic programming (SQP)
technique, whose idea is to model (4.45) at the current iterate µ(k) by a quadratic programming
subproblem and to use the minimizer of this subproblem to define a new iterate µ(k+1). Following
[229], SQP methods can be seen as an application of the Newton’s method to the Karush-Kuhn-
Tucker (KKT) optimality conditions for (4.45). Denoting by LN (µ,λ) = JN (µ)− λT gN (µ) the
Lagrangian functional for (4.45), where λ ∈ RN is the Lagrange multiplier, the Newton-step from
µ(k) is given by the solution d(k) of the following KKT system:[

Hk −MT
k

MK 0

] [
d(k)

λ(k+1)

]
=
[
−∇JN (µ(k))
−gN (µ(k))

]
(4.46)

whereHk = H(µ(k),λ(k)) is the Hessian of the cost functional, such thatH(µ) = ∇2
µµL(µ,λ), and

Mk = M(µ(k)) is the Jacobian matrix of the constraints, such thatM(µ)T = [∇g1(µ), . . . ,∇gN (µ)].
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It is straightforward to prove that the solution (d(k),λ(k+1)) of Newton’s problem (4.46) is equiv-
alent to that of the quadratic program

min
µ

1
2dTHkd +∇JN (µ(k))Td s.t. Mkd + gN (µ(k)) = 0. (4.47)

With respect to the Newton method, quasi-Newton methods allow to avoid the calculation of
the Hessian, replacing it with a suitable approximation; in this way, an approximated inverse
of the Hessian matrix, say B−1

k , is used to replace H−1
k in equation (4.46). One of the most

popular formulas for updating the Hessian approximation Bk is the so called BFGS (from
Broyden-Fletcher-Goldfarb-Shanno) formula:

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+ wkwT

k

wT
k sk

, (4.48)

being

sk = µ(k+1) − µ(k), wk = ∇µL(µ(k+1),λ(k+1))−∇µL(µ(k),λ(k)).

In any case, calculation of the quantities involving the gradient of the cost functional relies on a
finite difference approximation instead than on the solution of the corresponding adjoint problem,
as already mentioned. In this way, a general SQP algorithm can be set as follows:

Given a tolerance ε > 0 and an initial guess (µ(0),λ(0));
repeat

evaluate JN (µ(k)),∇JN (µ(k)), Hk = H(µ(k),λ(k)), gN (µ(k)) and M(µ(k));
compute the search direction d(k) by solving (4.46);
compute the step length τk (line search) and set sk = τkd(k);
set µ(k+1) = µ(k) + sk;
update the Lagrange multiplier λ(k+1);
set wk = ∇µL(µ(k+1),λ(k+1))−∇µL(µ(k),λ(k))
obtain Bk+1 by updating Bk (quasi-Newton BFGS formula (4.48));
set k = k + 1;

until ‖∇J (µk)‖ < ε∗OPT or |J (µk+1)− J (µk)| < ε∗OPT or ‖µk+1 − µk‖ < ε∗OPT .

where the step length τk is computed through a line search method in order to guarantee that
τkd(k) is a descent direction. Once the direction sk has been determined, the expression of the
Lagrange multipliers has to be updated. Several strategies for dealing with these issues can be
devised – one of the most popular choices of τk consists e.g. in performing an inexact line search
with the Armijo rule; see e.g. [229] for details about the practical implementation and [143,39] for
a general overview of available approaches to numerical approximation of optimization problems
under PDE constraints. Numerical approximation of optimal flow control problems by SQP
method is discussed e.g. in [266].

4.7.3 Implementation of the reduced basis optimization procedure

We now sum up the numerical procedure which has been implemented for the numerical solution
of the optimization problems based on parametrized PDEs presented in this chapter. We rely on
the reduced basis approximation of the state flow problems, on suitable shape parametrization
such as FFD or RBF techniques for dealing with variable shapes – and eventually on the empirical
interpolation method to recover the affinity assumption – as well as on the numerical optimization
procedure sketched in the previous subsection.
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All these ingredients make up an integrated and modular framework (both shape parametrizations
and PDE models are in fact interchangeable), where we can easily distinguish between four main
stages, represented in the scheme of Fig. 4.2:

1. Pre-processing. After parametrizing the control functions or the admissible shapes, determine
a parametric range of variation D ⊂ Rp for the parameter vector µ = (µ1, . . . , µp) on the
basis of problem-dependent criteria. Shape parametrization entails the computation of the
map T (·;µ) and of the parametrized tensors like ν(µ) and χ(µ). Their expressions are
computed symbolically by means of a Computer Algebra System (CAS).
Then, compute the affine expansions (1.7)-(1.8) in case of nonaffinely parametrized tensors
by applying the EIM procedure to each tensor component.

2. RB Offline stage. This is the most extensive stage of the whole computations. It can be
divided in four substages:

2.1 Finite element structure assembling. Assemble the finite element structures corre-
sponding to the µ-independent terms of (1.7)-(1.8) using the affine expansions of the
tensors previously computed. In particular, assemble the matrices Aq ∈ RNV ×NV and
the right-hand sides f q ∈ RNV (in the same way other linear/bilinear/trilinear terms).

2.2 Stability factors lower bound computation. Construct the (parametric) lower bound of
the inf-sup constant βNLB(µ) exploiting the Successive constraint method (Sect. A.3).

2.3 Reduced basis space assembling. Perform the greedy algorithm (Sect. 3.3.1) in order to
build the RB spaces XN for the state variables (in our case, velocity and pressure). For
each selected µn, solve the truth approximation problem (fixed point iteration in the
nonlinear case), enrich the velocity space by the solution of the supremizer equation
and execute a Gram-Schmidt orthonormalization. In this way the basis matrices Z2N
and ZN for velocity and pressure RB spaces, respectively, are filled.

2.4 RB post-processing. After the greedy basis selection procedure, µ-independent reduced
structures (e.g. AqN , f qN , . . .) are obtained by a pre- and post- multiplication of the
corresponding FE structures with the basis matrices Z2N and ZN . In the same way, all
the µ-independent structures entering in the computation of dual norms of residuals
are assembled and stored.

3. RB Online stage/Numerical Optimization. Solve the optimization problem as a many-
query problem, by a suitable iterative subroutine (based e.g. on the sequential quadratic
programming techniques), up to a given (very small) tolerance. At each step, an Online
evaluation of the RB state solution and the cost functional to be minimized are required.

Concerning the software exploited to deal with the numerical simulations, for the RB Offline/On-
line computations we have used (and extended) the rbMIT library [149,237], while the truth FE
approximation and assembly of related FE structures rely on the MLife library [285], set in the
Matlab-PDE toolbox environment.
We remark that the Offline stage thus depends on the choice of the FE spaces, the reference
domain Ω, the shape parametrization and the EIM approximation in the nonaffine cases. The On-
line stage consists of many evaluations of field variables YN (µ) = (vN (µ), pN (µ)) and parametric
outputs sN (µ). It depends on the dimension N of the RB spaces and the numerical procedure
employed to solve the optimization problem.
As extensively shown by the applications provided within next Part, the parametrized framework
introduced and analyzed in this chapter enables to obtain remarkable computational savings,
above all in complex optimization problems dealing with variable shapes, thanks to the coupling
of suitable geometrical parametrizations and the reduced basis method for parametrized PDEs.
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Figure 4.2: Numerical procedure for the solution of reduced parametrized optimization problems.
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4.8 Design parameter space reduction
We close this chapter by showing some possible techniques for reducing the dimension of the
design parameter space. The evaluation of input-output relationships requiring PDE solutions
suffers from the curse of dimensionality if the input parameter space has a too large dimension, so
that methods based on sampling and parameter space exploration become too much expensive. As
a result, we are interested to keep the dimension of the parameter space as small as possible also
when dealing with RB methods for parametrized PDEs, and parametric shape design problems
are no exception. With this respect, we aim at reducing the (geometric) design parameter space
in the case of FFD parametrization, by setting some automatic procedures for selecting the active
control points – ultimately, the design parameters µ1, . . . , µp within the RB context. The problem
of restricting the design parameters to a small but effective subset is sometimes called variable
screening in the surrogate model optimization community (see e.g. [300,314]). We might consider
two different paradigms to reach this goal: restriction vs. adaptivity. In the former case, we start
off with a parametrization with a large number of free parameters, and attempt to find their
most effective subset for representing shapes of interest while fixing all the other parameters.
For this purpose we take advantage of some methods originating from the statistical Design of
Experiments (DoE). In the latter case, instead, we start from very few parameters and add one
parameter at a time in an adaptive fashion, by minimizing at each step some defect functional.

4.8.1 Selection techniques based on restriction procedures

We have implemented four techniques within the restriction paradigm for reducing the geometric
design parameter space and selecting a suitable set of control points in the FFD parametrization
case. A restriction paradigm is better suited in this case, where a starting set of candidate
parameters is given by the lattice of control points. Instead, an adaptive paradigm should be
more feasible with RBF parametrizations, where the control points can be freely positioned.

Let us assume to be able to construct a trial parametrization of the reference domain Ω with a
priori large number of parameters, p′ � 10, and a large parameter space D′ ⊂ Rp′ , which can
effectively explore all the parametric variability of the PDE system we are interested in. In our
case a trial parametrization is obtained by FFD, by considering sufficiently many control points.
The goal is to select a reduced parameter set D ⊂ D′ of all the possible parameters µ ∈ D ⊂ Rp,
with p� p′, such that the parametric variability of a given quantity of interest s(µ) – e.g., the
cost functional s(µ) = S(y(µ)) to be minimized – is still well explored in the lower-dimensional
parameter space. Since the selection procedure has to be run before the construction of a
reduced-order approximation, the exploration of the larger parameter space D′ relies on the
full-order approximation – i.e. on the input/output evaluation µ → sN (µ) = S(yN (µ)). The
number of these expensive input/output evaluations has to be as small as possible.
Without loss of generality, we can assume that the output functional S : X → R (and its discrete
version) are under the form

S(y) = 1
2Q(y, y), S(yN ) = 1

2(Qy,y),

where Q : X ×X → R is a symmetric and coercive bilinear form and Q ∈ RN×N a symmetric
positive definite matrix, respectively, and y ∈ RN the vector of degrees of freedom representing
yN ∈ XN over a basis of the discrete space XN . In particular, let us denote (y,w)Q = (Qy,w)
the inner product defined over XN by Q and Q = HHT its Cholesky factorization.

In the following we sketch the four selection recipes:
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1. User’s experience-based (UEB) selection
In this case, the reduced set of retained parameters is selected according to empirical
rules, based e.g. on user’s experience or problem-dependent. In fact, the closer the con-
trol point to the shape, the more influent its effect on shape deformation when it is displaced.

2. One-at-a-time (OAT) selection by experimental orthogonal design
Here we exploit the simplest technique for variable screening, by adding to the retained set
of parameters the ones with the largest observed sensitivities, with respect to varying one
parameter at a time while keeping the others fixed. Let us define the parametric variations
µi,min and µi,max for i = 1, . . . , p′, by varying one parameter at a time while keeping the
other parameters fixed at a reference value µ̄:

µi,min = ( µ̄1, . . . , µ
min
i , . . . , µ̄p′ ), µi,max = ( µ̄1, . . . , µ

max
i , . . . , µ̄p′ ), ∀i = 1, . . . , p′.

Then, let us evaluate the parametric range w.r.t to each parameter by solving the FE
approximations for yN (µi,min) and yN (µi,max) for each i = 1, . . . , p′, and retain the p
parameters with the largest observed parametric sensitivities, such that∣∣∣∣ ∂s∂µi (µ̄)

∣∣∣∣ ≈ |S(yN (µi,max))− S(yN (µi,min))|
|µi,max − µi,min|

> εOATtol , (4.49)

where εOATtol > 0 is a prescribed tolerance (otherwise, we fix a priori the number p of param-
eters to be selected). We underline that the calculation of the exact parametric sensitivities
would need to approximate the solution ∂y(µ)/∂µ of the sensitivity equations, and thus
the parametric derivatives ∂Θ•/∂µ for a very large number p′ of parameter components
– rather unfeasible for such a preparatory stage. In any case, such an approach may fail
when some design parameters are strongly correlated.

3. Morris screening procedure (MR-OAT)
Morris’ randomized one-at-a-time design is a screening procedure based on individual
randomized OAT designs, accounting also for interactions among the factors [218, 57]. The
basic idea is related to a sample of independently observed elementary effects, which are
exploited to measure the output sensitivity for a particular input. Let us suppose that each
component µi, i = 1, . . . , p′ is scaled to have a region of interest equal to [0, 1] and can
take k discrete values in the set {0, 1/(k − 1), . . . , 1}. The experimental domain is then a
p′-dimensional k-level grid in D′. The elementary effect of the i-th factor at a given point
in the design space is defined as

δi(µ) = s(µ1, . . . , µi−1, µi + ∆, µi+1, . . . , µp′)
∆

where ∆ is a fixed multiple of 1/(k − 1). The ultimate goal of the Morris procedure is
to estimate the mean and the standard deviation of the distribution of elementary effects
associated with each input11, which can be obtained by producing a random sample of R
elementary effects for each i = 1 . . . , p′. Here we do not provide the construction of the
procedure (see [218] for details). We just mention that, by the MR-OAT procedure, R
elementary effects are produced for each input parameter µi at a total cost of R(p′ + 1)
input/output evaluations (which is a linear function of the numbers of factors involved),
corresponding to a sample B = {µl,r} ⊂ D, l = 1, . . . , p′ + 1, r = 1, . . . , R.

11A large absolute value for the mean of δi(µ) implies that the corresponding parameter component µi has an
important overall effect on the output, whereas a high standard deviation indicates that the effect of µi is not
constant, which may be implied by a parameters interacting with other parameters or whose effect is nonlinear.
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Chapter 4. A reduced framework for optimization and inverse problems

In this way, at the r-th step, (p′ + 1) parameters values {µl,r}l=1,...,p′+1 originate a design
matrix accounting for possible interactions among the parameters. Once the R(p′ + 1)
input/output evaluations have been performed, we rank the parameters µ1, . . . , µp′ according
to its absolute mean effect

δ̄(i) = 1
R

R∑
r=1
|δi(µi,r)| ≈

1
|D′|

∫
D

∣∣∣∣∂s(µ)
∂µ

∣∣∣∣ dµ (4.50)

and retain as active parameter only the p� p′ most effective ones.

4. Approximate POD (APOD)
In this case we consider a greedy-like procedure over the large parameter space D′, based
on a set of computed snapshots. Let us define the parametric variations µi,min and µi,max

as in (OAT) case, by varying one parameter at a time while keeping the other parameters
fixed at a reference value µ̄. Then:

• evaluate the parametric range w.r.t to each parameter by computing yN (µi,min) and
yN (µi,min), for each i = 1, . . . , p′, and set the initial parametric directions as the
vectors corresponding to yN (µi,min) and yN (µi,min):

ζmin
i = y(µi,min), ζmax

i = y(µi,max), i = 1, . . . , p′;

• sample a suitable training set Ξtrain ⊂ D′ and form the matrix of snapshots Y =
[ζ1| . . . |ζS ]T by computing

ζs := y(µs)− y(µ̄), {µs}Ss=1 ⊂ Ξtrain.

Once these quantities have been stored, we can set the following iterative procedure:

set P ′ = {1, . . . , p′}P = ∅;
repeat

for i ∈ P ′ compute the Q− correlation factors

∆min
i := ‖YHζmin

i ‖2
‖ζmin

i ‖2
, ∆max

i := ‖YHζmax
i ‖2

‖ζmax
i ‖2

select p̂ = arg maxi{∆min
i ,∆max

i } (largest total correlation)
setP = P ∪ p̂, P ′ = P ′ \ p̂;
deflate all the other parametric directions: for q 6= p̂

ζmin /max
q 7−→ ζmin /max

q −
(ζmin /max
p̂ , ζmin /max

q )K
(ζmin /max
p̂ , ζ

min /max
p̂ )K

ζ
min /max
p̂ ;

until maxi{∆min
i ,∆max

i } < εAPODtol .

being εAPODtol > 0 a prescribed tolerance. We denoted this procedure as approximate
POD. In fact, the (K-weighted) POD modes are given by the right singular vectors ξi of
YH = UΣVT , whereas their significance is measured by the singular values σi. We can
consider the quantity ζmin /max

i corresponding to the largest Q-correlation factor ∆min /max
i

at each step as an approximation to the largest singular vector of YH in the subspace
spanned by the current set of ζmin /max

i .
We point out that if all parameters are independent and the snapshots are taken exactly as
the parametric directions yN (µi,min), yN (µi,max), then APOD and OAT strategies coincide.
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We compare these techniques applied to a simple test case in the forthcoming section. We remark
that, concerning instead RBFs parametrizations, the best choice of control points (or centers) to
approximate a given function has been considered as a problem of pure approximation theory. A
possible greedy algorithm has been proposed in [292]; see e.g. [269] for a possible application of
efficient RBF parametrizations in the framework of a shape parameterization context. We are
currently investigating selection procedures for RBF centers [182].

4.8.2 A practical example

We now consider the reduction of parameter space through the selection of a suitable set of
control points in a FFD case defined over a starting lattice of 6× 4 control points. Our goal is
the selection of p = 6 design parameters µ1, . . . , µ6 for constructing a FFD map, among all the
possible p′ = 2× 6× 4 horizontal/vertical displacements of the control points in the lattice (we
refer to Fig. 5.25 for the geometrical configuration). The application related to this geometrical
configuration deals with the shape optimization of a bypass graft and is discussed in Sect. 5.4.3.
The quantity of interest chosen for the parameter screening is the energy functional

S(v) = ν

2

∫
Ω
|∇v|2 dΩ,

in order to take into account the interplay between global shape deformations and the flow field
across the domain. The results obtained by applying the OAT and the MR-OAT procedures
are shown in Fig. 4.3-4.4. To get the reduced set of parameters, 2p′ – respectively R(p′ + 1)
– FE approximations have been required by OAT and MR-OAT procedures, being R = 10 in
the MR-OAT case. In both cases, horizontal deformations effects were found to be negligible
compared to the ones induced by vertical displacements of control points, so that only p′/2 = 24
effects corresponding to vertical displacements of control points are reported.
More effective parameters were found to be rather the same in both cases, even if the MR-OAT
procedure provides also information on whether any significant interaction among the parameters
exists. Concerning the APOD procedure, largest total correlations arg maxi{∆min

i ,∆max
i } and

singular values of the matrix YH are represented in Fig. 4.5 and decay at a similar rate.
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Figure 4.3: Observed parametric sensitivities (OAT procedure). Here only p′/2 = 24 effects
corresponding to the (more relevant) vertical displacements of control points are represented.

FFD parametrizations originating from these selection procedures have been implemented in
Sect. 5.4.3, taking into account some additional constraints related to the application. The
subsets of active control points are represented in Fig. 5.25.
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Figure 4.4: Absolute mean effects, minimum/maximum effects (MR-OAT procedure). Here only
p′/2 = 24 effects corresponding to vertical displacements of control points are represented.
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Figure 4.5: Convergence of the 24 Q-correlation factors arg maxi{∆min
i ,∆max

i } for a random
sample of 100 snapshots (APOD procedure).

We close this section by pointing out a further issue related with reduction of parameter space
dimensions. Dealing with shape parametrizations, often the effect of a single parameter can be
quite small (e.g. because of local shape deformation), but their combined effect is large. In this
case a reduced µ̃-parametrization can be obtained from the starting µ′-parametrization, being
µ′ ∈ D′ ⊂ Rp′ , by means of a suitable transformation – finally, by a change of variables µ̃ = U(µ′)
in the parameter space, so that µ̃ ∈ D̃ ⊂ Rp̃, where p̃ � p′ and U ∈ Rp̃×p′ is an orthogonal
matrix.
A method recently proposed by Constantine and Wang [66] for input subspace detection is based
on the introduction of the following correlation matrix Cp′×p′ , whose components are given by

Cij =
∫
D′

∂s(µ′)
∂µ′j

∂s(µ′)
∂µ′i

dµ ≈ |D
′|
R

R∑
r=1

δj(µj,r)δi(µi,r), (4.51)

where the approximation follows by (4.50). The quality of this approximation is crucial in order
to represent the variations of the sensitivities over D, and it can be controlled by the number
of samples R. Further investigations are ongoing, in order to make this procedure more robust.
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Figure 4.6: Top: eigenvalues decay for approximated correlation matrices (4.51) in the OAT and
MR-OAT cases. Bottom: components of the first eigenvector in both cases.

By computing the eigenvalue decomposition C = ZΛZT , it is possible to show [66] that the p̃
(dominant) eigenvectors related to the p̃ largest eigenvalues indicate the dominant directions of
output variation. Thus, a good choice is U = [z1| . . . |zp̃].

Moreover, if the decay of the eigenvalues λ1 ≥ . . . ≥ λp′ is rapid (typically exponential) a very
low-dimensional subspace may be sufficient to capture most of the variation of the output s(µ′).
In Fig. 4.6 we represent the eigenvalues decay obtained by the approximation (4.51) for the OAT
and MR-OAT cases (in the former case R = 1 and the absolute mean effects are replaced by the
parametric sensitivities (4.49)). In this case retaining p̃ = 1 eigenvectors is enough; moreover,
from Fig. 4.6 it is possible to see that in this (lucky) case the components of the first eigenvector
return the most effective parameters already selected (see Fig. 4.3-4.4).
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5 Optimal design of cardiovascular
prostheses
In this chapter we present the main application driving the development of the reduced framework
introduced and analyzed in the previous parts. Our focus is on the reduced solution of optimal
design problems related with cardiovascular prostheses, such as bypass anastomoses. We introduce
the main features related to the optimal design of cardiovascular prostheses, then we give a
brief description of the physiology of the cardiovascular system and the most important arterial
diseases such as atherosclerosis, highlighting the strong correlation between blood flows and vessel
geometrical configurations. Then, after providing a general framework for modeling the optimal
design of end-to-side bypass anastomoses we recall the main results achieved in the last decades
and we show how the reduced framework discussed in the previous parts can be applied in order
to face this problem. We present some results concerning (i) a simplified version of an optimal
flow control problem, (ii) two shape optimization problems dealing with Stokes and Navier-Stokes
flows and (iii) a robust shape optimization problem of particular interest in this framework.

5.1 Cardiovascular physiology and arterial pathologies
Cardiovascular diseases are the first cause of death in developed countries and nowadays several
methods and tools provided by mathematical modeling and scientific computing prove to be very
helpful in improving our understanding of the physiology of the cardiovascular system, as well as
of the development of pathological processes. Thanks to the results achieved by computational
fluid dynamics in several engineering contexts, numerical simulation of blood flows have become
widespread within the bioengineering and medical research community. This is mainly due to (i)
the availability of increasing computational power, (ii) the progress in imaging and geometry
extraction/reconstruction techniques [213] as well as (iii) the availability of more and more
efficient numerical algorithms. For a general introduction to modeling and simulation of the
circulatory system we refer to the work by Quarteroni, Tuveri and Veneziani [259] and to some
recent books [9, 100] which collect many contributes spanning over a wide range of topics.

The driving factor behind this development is the awareness that numerical models can provide
quantitative descriptions of blood behavior in important vascular districts or in vessel networks,
and to explain and assess the relationships between vessels shape, haemodynamics, and a family
of clinical indicators. Among the latters we mention wall shear stresses, vorticity, viscous energy
dissipations: they can be correlated at various extents to the risk of failure in bypass grafting [193],
or artery occlusion in presence of stenosis [241], or the one of aneurysm rupture [222]. Such
kind of analyses can also help in understanding how different surgical solutions may affect blood
circulation.
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5.1.1 Arterial blood flows

The human cardiovascular system can be regarded as a transport system through which the blood
delivers nutrients and oxygen to organ and muscles and removes carbon dioxide. It is composed
of the heart, which pumps the blood, and the network of blood vessels that convey blood to the
body and drain it from the body tissues back to the heart. This network basically consists of
two separate loops, connected through the heart: the pulmonary circulation, a first loop through
the lungs where blood is oxygenated, and the systemic circulation, a second loop through the
rest of the body to provide oxygenated blood) (see Fig. 5.1, left). For reader’s convenience, we
summarize the basic elements of blood circulation and provide its mathematical description, as
well as the main assumptions which lie at the bottom of the models we have considered. In
this description of the human circulatory system we mainly refer to a review by Thiriet and
Parker [308] and to the book by Ottesen, Olufsen and Larsen [233].

Blood is transported throughout the body within blood vessels. In the systemic circulation,
it is ejected from the heart into the main arteries, it flows through a network of branching
arteries of decreasing size to the arterioles and then the capillaries where it carries oxygen and
nutrients to the tissues and removes carbon dioxide. Then, it is collected from the capillaries
through merging venules and returns to the heart through a network of veins. In the pulmonary
circulation, instead, de-oxygenated blood is pumped away from the heart to the lungs through
the pulmonary artery, while oxygenated blood is carried back to the heart through the pulmonary
vein. Each blood circuit, systemic and pulmonary, is thus composed of three main compartments:
arteries, capillaries and veins. The primary purpose of the arterial and venous vessels is to
carry blood to and from the various tissues, while the microcirculatory compartment carries out
the various exchange processes. A fundamental subnetwork of the systemic circulation is the
coronary circulation (see Fig. 5.1, right), which provides the blood supply to the heart muscle
(the myocardium): the coronary arteries (left coronary (LCA), left anterior descending (LAD)
and right coronary (RCA) arteries) deliver oxygenated blood to the myocardium, while cardiac
veins remove deoxygenated blood.

Figure 5.1: Left: systemic and the pulmonary circulation. Right: coronary circulation.
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5.1.2 Arterial diseases

Among cardiovascular diseases, arterial diseases are meant to be pathological states for large and
medium sized arteries, which can have fatal consequences on the whole cardiovascular system.
For instance, heart failure – a progressive disease in which the myocardium loses the ability to
adequately perfuse the body – is usually caused by chronic arterial disease, as well as by chronic
valve disease. Blockages in the heart (heart attacks) or in the brain (strokes), which comprise
approximately half of all deaths in developed countries, are often caused by the two most severe
arterial diseases, which care atherosclerosis and aneurysms:

• Atherosclerosis is defined by the accumulation of fatty materials (such as cholestherol),
fibrous elements and calcium between the innermost layer of an artery – called intima –
and the lumen, which is the space where the blood flows. The development of the disease is
very complex and there are conflicting theories about how it is initiated and progresses. In
particular, the four main stages are: (i) the appearance of fatty streaks, (ii) the appearance
of macrophages (foam cells), (iii) the development of fibrous plaque and (iv) calcification
and the development of complicated plaques. As a result, the arterial wall first thickens as
the plaque grows, and in a subsequent stage narrows, leading to partial or total occlusion.
Lesions are commonly found on the inside of bends in tortuous arteries and on the outer
walls of bifurcations. Atherosclerosis is a progressive disease, where the early stages are
completely benign; as the lesion develops, it can intrude into the lumen of the vessel
and create a stenosis which obstructs blood flow leading to clinical complications. More
dangerous, clinically, is the development of thrombi or the rupture of the plaque leading to
emboli which are lodged in downstream vessels causing infarctions.

• Aneurysms are gradual dilations of an arterial segment over a period of years: the aneurysm
wall stretches and becomes thinner and weaker than normal arterial walls, so that untreated
aneurysms can rupture causing massive haemorrhage, except in the brain where rupture
leads to possibly lethal strokes. The plastic deformation of the arterial wall is associated
with structural changes in the connective tissue. There are two types of aneurysms: fusiform
aneurysms, cylindrical dilations where the entire circumference of the artery is weakened,
and saccular aneurysms, resulting from a weakening of one side of the artery wall – for
instance, as a complication of atherosclerosis.

Figure 5.2: Left: cross-sectional view of a very advanced atherosclerotic plaque in a human
coronary artery (picture taken from [100]). Right: possible sites of atherosclerosis development in
the coronary arteries (arrowheads), aorto-coronary bypasses (arrows), anastomosis (asterisks)
and their relation to the heart and aorta (picture taken from [102]).
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5.1.3 Surgical procedures

Two main surgical procedures can be applied to severely stenosed arteries: endarterectomy, which
removes the plaque and preserves the artery, and grafting1. There are two types of grafts: (i)
vessel replacement and (ii) bypass. Replacement involves removing the diseased artery and
replacing it with another vessel sutured end-to-end with the remaining arteries, while a bypass
provides an alternative bridging path in order to overcome the stenoses, which are left in place.
Different kinds and shapes for aorto-coronary bypass anastomoses are available, such as Miller
cuffed models [98], Taylor patches, etc. [193, 136]. Consequently, different surgery procedures
are used to set up a bypass; in general, the connection of the graft to the coronary artery can
be done using an end-to-side or a side-to-side anastomosis. For a discussion and a comparative
approach see, for example, Cole et al. [65]. Bypass can be made by organic material (e.g. the
saphena vein taken from the leg or the mammary artery, either from a patient or a donor, or
vessels from other species, e.g. bovine or porcine) or by prosthetic material.
The graft patency affects the long-term efficacy of coronary bypass procedures, and several
post-surgical complications have to be taken into consideration. Among them, we mention intimal
thickening hyperplasia (near suture lines), which is a narrowing of coronary arteries due to the
excess proliferation of cells, restenosis, surgical injury, long term degeneration of the graft material
or graft failure. In particular, during the first year after bypass surgery up to 15% of venous
graft occlude, while by ten years after only 60% of vein grafts are patent and only 50% of patent
vein grafts are free of significant stenosis [102,235]. Moreover, every year 8% of all patients risk
bypass occlusion, after ten years 80% bypasses must be replaced. In particular, atherosclerotic
obstruction occurring on a foundation of neointimal hyperplasia, resulting from an accumulation
of muscle cells and extracellular matrix in the intimal compartment, is the principal disease
process in venous bypass grafting during the first post-surgical year and represents the foundation
for later development of graft atheroma and atheromatous plaques.

5.1.4 Aorto-coronary and femoro-popliteal bypass grafts

In view of solving some optimal design problems related with arterial grafts, we consider two
examples of geometrical configurations, related with an aorto-coronary bypass graft and a femoro-
popliteal bypass graft.
Coronary arteries supply the oxygen-rich blood perfusion to the heart muscle: the lack of an
adequate blood supply may cause tissue ischemia2 and myocardial infarctions. Coronary artery
bypass graft (CABG) surgery is a standard procedure to restore blood perfusion to the cardiac
muscle by redirecting blood from the aorta through a graft vessel (either artificial or biological) to
the downstream of the occluded coronary artery (see Fig. 5.3). The coronary-graft connection can
be done using an end-to-side or a side-to-side anastomosis; a detailed survey of the predominant
flow features of end-to-side anastomoses is provided for instance in [193].
Femoro-popliteal bypass graft (FPBG) surgery is used instead to bypass diseased blood vessels
above or below the knee, and represents one of the most common surgical treatment of chronic
lower-extremity ischemia (see Fig. 5.4). Chronic lower-extremity ischemia affects approximately
10% of patients over the age of 70. In addition to the functional limitations caused by pain with
walking, several patients fear the loss of the limb as ultimate complication of ischemic conditions.
Traditional infrainguinal surgical therapy for femoro-popliteal lesions involves FPBG surgery

1 The number of vascular graft operations has declined during the past decade because of the development of
stenting. Stenting is a minimally invasive procedure where a catheter is advanced from a peripheral artery to the
site of stenosis. The stenosis is generally disrupted by dilating it with a balloon (angioplasty) used to expand a
wire mesh stent which supports the vessel walls. The stent is left in place permanently, very often eluting drugs
to limit cell migration and proliferation (intimal hyperplasia in the region of the stent) or to restore mechanical
properties of the arterial tissue. Also in stenting procedures restenosis occurs at a significant rate.

2Ischemia is a restriction in blood supply to tissues, causing a shortage of oxygen and glucose. Ischemia is
generally caused by arterial diseases, such as atherosclerosis, hypotension, thromboembolism.
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(either above-knee or below-knee) using either a vein or a prosthetic bypass as alternative bridge.
Revascularization surgical treatments of critically ischemic lower limbs include also aorto-iliac
or aorto-femoral bypass (delivering blood from the aorta directly to the iliac arteries or to the
femoral arteries, depending on the level of the blockage), femoro-distal bypass (in case the portion
to be bypassed is longer than in the FPBG case), aorto-iliac angioplasty with stenting.

Figure 5.3: Left: double coronary artery bypass surgery, showing the grafting of a section of
saphenous vein from the leg to bypass a blockage on the right side of the heart and the diversion of
an internal mammary artery to bypass a blockage on the left side of the heart (picture taken from
Encyclopædia Britannica, Inc.). Right: coronary tree and possible end-to-side CABG locations.

Figure 5.4: Left: femoro-popliteal bypass surgery to bypass a blockage at the level of the knee.
Right: possible femoro-popliteal and femoro-distal bypass grafts.
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5.2 Optimal design of end-to-side bypass anastomoses
The design of the end-to-side anastomosis that connects graft and host vessels is a critical factor in
avoiding post-operative recurrence of the stenosis. As for natural arterial vessels, haemodynamics
plays a role in the development of lesions in grafts. Factors like flow recirculation or stagnation,
as well as high vorticity or dissipation regions, low and oscillatory wall shear stresses (WSS),
play a driving role in the development of vascular diseases, such as atherosclerosis or intimal
hyperplasia, which may lead to the growth of another stenosis downstream from the anastomosis.
Hence, a better understanding of the flow patterns in bypass anastomoses may be very helpful in
surgical planning of grafting and may improve the lifetime of grafts. A typical attempt to design
a bypass graft is apt at minimizing some cost functionals related to these physical indices.
In this section we review the main features of mathematical modeling for haemodynamics and the
most recent contributions to optimal design of bypass grafts. Then, we discuss the assumptions
underlying our models and some possible choices of objectives for optimization purposes.

5.2.1 Main features of mathematical modelling of haemodynamics

The mathematical modelling of the cardiovascular system is a very challenging problem, due to
the presence of different space and time scales, so that a hierarchy of models possibly coupled
can be devised. The mathematical equations for fluid dynamics are the key component: even
if blood is not a fluid but a suspension of particles in the plasma, in larger vessels viscoelastic
and shear thinning effects can be neglected, so that a Newtonian model can be used. In smaller
vessels viscoelastic effects can be very important and blood viscosity becomes dependent on the
vessel radius, so that a more adequate non-Newtonian model has to be considered. In large and
medium size vessels, flow is governed by Navier-Stokes equations

∂y
∂t
− ν∆y + (y · ∇)y +∇p = f x ∈ Ω,

∇ · y = 0 x ∈ Ω,
(5.1)

in a domain Ω representing the lumen of the vessel under investigation, where y and p are
the velocity and the pressure of the blood, respectively. To account for the compliance of
the vessel walls, we need to introduce an additional (elastodynamics) equation modeling the
behavior of the wall displacement η. The mechanical interaction between the blood flowing in
the vessel and the vessel structure3 is rather complex and still an open problem. Several details
concerning applications in haemodynamics can be found for instance in [199, 96] and in some
recent works [68,67].

Another available methodology for model reduction of blood flow simulation in vessel networks can
be devised by exploiting some specific features, such as the approximately cylindrical morphology
of the vessels, and a multiscale paradigm. In this way, three-dimensional models for blood flows
in (local) portions of large vessels have been coupled with one-dimensional (global) models for
the network of arteries and veins, or even to zero-dimensional models for the capillary network.
In this case, the geometrical downscaling involves time-dependent Navier-Stokes equations (3D),
an Euler hyperbolic system (1D) in which the space dependence is reduced only to the axial
coordinate (see e.g. [203]), and lumped parameter models based on ordinary differential equations
(0D), often represented in terms of hydraulic or electric networks (see e.g. [261,238]).

3We point out that the interaction between the blood flow and the arterial wall deformation has to be taken
into account to correctly predict arterial flows in case of large deformations induced by pressure pulses, such as in
large vessels. Nevertheless, even in the larger vessels – at least in physiological situations – the main features of
the flow can be already captured by a model involving a fixed geometry. Only if more details are needed, such as
a precise computation of shear stresses, then compliant models are better suited.
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5.2. Optimal design of end-to-side bypass anastomoses

5.2.2 Recent contributions on optimal design of bypass grafts

Modelling and simulations of blood flows through arterial grafts have been carried out by many
research groups in the past two decades, in order to describe flow and stress behavior, as well as
to optimize surgical procedures or the design of medical devices. On the other hand, theoretical
methods of optimal control and shape optimization have proved to be essential for a suitable
formulation of these optimal design problems.
Many works have focused in the last decade on the optimal shape design of end-to-side anastomoses
(see Fig. 5.5), typically by acting on the wall shape near the anastomosis by local shape variations.
A very detailed survey on blood flows in end-to-side anastomoses is provided by Loth, Fischer
and Bassiouny [193]. Early investigations on flow patterns in end-to-side anastomoses date
back to the late 90s and are due to Ethier and Steinman [94, 93], Cole [65, 64], Sherwin and
Peiró [114]. Parametric numerical investigation on haemodynamics in distal coronary anastomoses
were presented in many works (see e.g. the more recent works [102,323, 84]). Also concerning
shape optimization techniques applied to bypass grafts design, first works date back to the late
90s [190, 98]. A non-exaustive list of contributions in the last decade include the works by Rozza,
Quarteroni et al. [274,6, 5, 254,273], Behr [252] and Heinkenschloss [3, 4], Marsden [210,288].

Figure 5.5: Sketch of end-to-side anastomosis construction. Figure taken from [193].

The three most significant design variables in end-to-side anastomoses are [193]: the anastomosis
angle, the graft-to-host diameter ratio [164], and the toe shape (see Fig. 5.6). Also the flow
split between the proximal outflow segment and the distal outflow segment affects greatly the
distribution of WSS [114], as do the viscosity and the Reynolds number (different e.g. for
aorto-coronary bypasses as compared with femoro-popliteal bypasses). The effect of the flow
profile at or near the inlets must also be taken into account. The near-complete occlusion of
stenotic arteries produces the largest (often turbulent) disturbances in the flow, and has been
linked to triggering biochemical processes such as thrombosis, hemolysis, etc. While it is known
that the physical unsteady and pulsatile flow can be replaced with a steady mean flow with
the same Reynolds number for purposes of evaluating the mean WSS distribution [113,94], the
correct flow profile must be taken into account if accurate WSS predictions are desired4. Even if
most of the studies have been performed in idealized geometries, there is a growing interest in
computations carried out in realistic geometries determined from medical imaging [173].

From several analyses, it seems clear that in order to design a bypass graft in a robust way, we
must take into account all the various sources of uncertainty that can effect the final optimized
design. Only recently the effect of uncertainty in the design of bypass grafts has been taken
into account. In [288] the bypass configuration was optimized under unsteady flow with an
uncertain flow split between the occluded artery and the graft. The robust design was sought by
minimizing a cost functional that measured the area of flow WSS in the downstream region of
the anastomosis. To make the design robust, the authors added a penalty term for the standard
deviation of the output due to input uncertainties. The cost of such an optimization method was
reported as quite high, 11 days in the fully 3D unsteady case on a 18× 4 cores parallel cluster.

4For example, in [326] the effect of cardiac motion on the flow in a coronary artery was studied: it was shown
that the motion-induced change in the velocity profile could impact the WSS values by up to 150%.
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In Sect. 5.3 we consider a similar problem (presented in [180]) for steady two-dimensional flows,
but optimizing the whole shape rather than just the angle. In this respect, the computational
cost has been sensibly diminished by introducing a reduced order model (ROM) for the fluid
equation based on RB methods, making the robust design problem computationally feasible.
In [252] the bypass shape was obtained by minimizing the total shear rate, and the sensitivity
of the optimal shape with respect to the uncertain viscosity in a non-Newtonian rheology was
considered. There was no attempt made to find a robust optimal shape over a range of viscosity
values, likely due to prohibitive cost of running the full-fidelity three-dimensional FE simulations.

5.2.3 New contributions on optimal design of bypass grafts

Recent works already indicate that in presence of uncertainty effects the bypass design problem
is not yet satisfactorily solved by existing classical computational approaches, and, furthermore,
that some type of ROM is needed to reduce the computational cost. This Thesis aims at
exploiting computational and geometrical reduction techniques presented in Parts I and II in
order to improve the computational performances in the solution of bypass design problems.
In particular, we aim at extending the framework illustrated in the first works by Rozza and
Quarteroni [254,274,273], where the RB framework was applied for the first time to this problem.
We thus aim at addressing the following features:
• more complex geometrical description of geometrical configurations through global nonaffine

mappings based on FFD techniques, which allow the optimization of the whole shape rather
than the control of basic geometrical parameters, such as angles or diameters;

• uncertainty elements featuring the nature of the residual flow in the partially occluded
arterial branch, and the solution of corresponding robust optimization problems;

• a first temptative comparison between two-dimensional and three-dimensional flows.

We present two different paradigms based on optimal control and shape optimization, highlighting
key points and difficulties. A first boundary control formulation has been considered (Sect. 5.3),
in order to evaluate the impact of basic geometrical features on the flow pattern developed
within a simplified configuration. Then, different shape optimization problems are presented
(Sect. 5.4), dealing with geometrical configurations representing both aorto-coronary bypass grafts
and femoro-popliteal bypass grafts. In the former case, both a simplified Stokes model and a more
realistic Navier-Stokes model are considered, while in the latter we only deal with a Navier-Stokes
model. In all these cases, fluid flows are simulated by using the RB approximation of Stokes or
Navier-Stokes equations. Another new contribution of this Thesis work is aimed at inserting
some uncertainty elements (featuring the nature of the residual flow in the partially occluded
arterial branch) in both optimal control and shape optimization problems, solved within a suitable
reduced framework, in view of simultaneous computational and geometrical reduction. We also
test whether our simplifications affect the robust design obtained with or without the reduction
to a pure boundary control problem, as well as comparing results between two-dimensional and
three-dimensional flows. Results of the following sections are based on three works carried out in
collaboration with Quarteroni, Rozza [206] and also with Lassila [180,181].

5.2.4 Our models for optimal design of bypass grafts

A realistic model for blood circulation should take into account (i) the flow unsteadiness, (ii)
the arterial wall deformability, described by suitable structural models [145] and possibly (iii)
complex rheological model to characterize the aggregate nature of the blood [271] especially
in small vessels and capillaries. In view of studying optimal control and shape optimization
problems, which entail the repeated simulation of these flow equations (and the evaluation of
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5.2. Optimal design of end-to-side bypass anastomoses

the cost functional to be minimized), we cannot afford the solution of PDE models involving
such complex features – computational costs would be too prohibitive. For these reasons, in the
applications discussed throughout this Part, we model blood flows adopting steady incompressible
Navier-Stokes (δ = 1) or Stokes (δ = 0) equations in case of smaller vessels such as coronary
arteries and lower blood velocities, with the velocity y and the pressure p satisfying

−ν∆v + δ(v · ∇)v +∇p = 0 in Ω
∇ · v = 0 in Ω
v = uc on Γc
v = vin on Γin
v = 0 on Γw

−pn + ν
∂v
∂n = 0 on Γout.

(5.2)

Here Ω ⊂ Rd for d = 2, 3 represents an end-to-side anastomosis (see Fig. 5.6), Γin the inlet from
the stenosed section of the artery, Γc the bypass inlet and Γw the artery wall, where we prescribe
two inflow profiles uin and uc and a no-slip boundary condition, respectively. We assume a
free-stress boundary condition at the outlet Γout 6= ∅ and no volumetric forces along the domain.
Concerning physical parameters, we denote by µ = 0.04 g cm−1 s−1 the blood dynamic viscosity,
by ρ = 1 g cm−3 the blood density, thus yielding a kinematic viscosity ν = µ/ρ = 0.04 cm2 s−1

and a Reynolds number Re = ṽD/ν of order 100.

Figure 5.6: A schematic view of a bypass graft anastomosis.

Moreover, in order to have a physically meaningful problem, we enforce the total conservation of
fluxes between the (partially or totally) occluded branch Γin and the graft inlet Γc, according to

Qin +Qc =
∫

Γin

vin · n dΓ +
∫

Γc

vc · n dΓ =
∫

Γin

vin · n dΓ =: Qtot (constant). (5.3)

To pose the optimal design problem, several cost functionals depending on the state solution
(v, p) have been proposed in literature for the optimization of arterial bypass grafts or otherwise
regularization of flows where recirculation and vortex generation are to be minimized. By denoting
Ωobs the subdomain where physical indices of interest are observed, we list some typical choices
together with references to previous works where such functionals have been employed:

1. viscous energy dissipation [180,252]:

J1(v) := ν

2

∫
Ωobs

|∇v|2 dΩ or J1(v) := ν

2

∫
Ωobs

ε(v) : ε(v) dΩ,

where ε(v) = (∇v +∇vT )/2 is the Cauchy strain tensor;

2. Stokes-tracking type functional [163,142,180]:

J2(v) :=
∫

Ωobs

|v− vStokes|2 dΩ,

where vStokes is the solution of (1) obtained after neglecting the term c(v,v, z);
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3. vorticity [6, 30,163,180,273]:

J3(v) := ν

2

∫
Ωobs

|∇ × v|2 dΩ,

4. Galilean invariant vortex measure for two-dimensional flows [142,163,180]:

J4(v) :=
∫

Ωobs

max{det(∇v), 0} dΩ or J4(v) :=
∫

Ωobs

g(det(∇v)) dΩ,

where g(z) is a smooth nonnegative function satisfying g(z) = 0 for z ≤ 0 and g(z) = O(z)
as z →∞ [163]. In fact, vortex cores are related to regions where the eigenvalues of ∇v are
complex, and in the two-dimensional case this is equivalent to det(∇v) > 0.

5. wall shear stress gradient [190]:

J5(v) :=
∫

Γobs

∇
(
ν
∂v
∂n · t

)
· t dΩ, (5.4)

where n and t are the unit normal and tangent vectors respectively.

All of the above functionals are bounded in [H2(Ω)]d, and the functionals J1-J4 are bounded in
[H1(Ω)]d. The energy functionals J1 are analytically the simplest to handle. They are coercive
and weakly coercive owing to the Poincaré and Korn inequalities, respectively5. The tracking
functional J2 is suitable only for low-Reynolds flows with negligible convective effects. The
vorticity functional J3 is the most common choice, but it has the problem that strong shear
boundary layers can have a disproportionate weight compared to the vortices. The functional J4
is not differentiable and needs to be regularized to make it regular enough to use the standard
optimal control framework. The functional J5 contains second-order derivatives of velocity
evaluated on the boundary, which makes its computation from finite elements approximations
difficult. However, it would be possible – through a bounded residual functional, exploiting the
weak formulation of the state problem – to obtain good approximations (as well as error bounds)
for the wall shear stress integrated over some segments of the boundary (or alternatively, (say)
wall shear stress Legendre coefficients). These functionals might serve the ultimate cardiovascular
intentions better than some of the other functionals listed above. For this reasons, further
investigations are ongoing at the moment, in view of this goal. Based on these considerations, we
concentrate in the numerical examples on three cost functionals: the viscous energy dissipation
J1, the vorticity J3, and the vortex measure J4.

5.3 Optimal control for end-to-side bypass grafts design

5.3.1 Formulation and numerical approximation

A first possible approach for the optimal design of bypass grafts is based on the solution
of the deterministic optimal control problem (DD-OC) analyzed in Sect. 4.1.2, in the vein
of [30, 71, 130, 142, 174], for which the control function is the Dirichlet boundary condition uc
representing the flow entering into the artery from the graft on the boundary6 Γc, and the residual
flow through the occluded artery vin is known. Thus the geometrical properties of the bypass
graft are only represented by the velocity profile uc ∈ Uc imposed at the anastomosis. This entails

5Coercivity holds at least if Ωobs = Ω. If Ωobs ( Ω, as is usually the in practice as we want to focus the
reduction to a subregion near the anastomosis, we do not have analytical results but typically the convexity and
coercivity of the cost functional is preserved as we shall see in the results section.

6 With respect to Sect. 5.2.4, here Γc is a (fictitious) boundary representing the anastomosis (see Fig. 5.7).
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Figure 5.7: Domain and boundary segments for the optimal boundary control formulation

the solution of an OC problem on a frozen, fixed domain – representing the occluded artery – on
which the state equations have to be solved repeatedly. For simplicity we refer also to problems
following this formulation as design problems, even if they only involve boundary control.

On the other hand, assuming that the patency of the occluded artery (as well as the residual flow
vin) is uncertain, we consider the following worst-case design problem: find the bypass control
function uc in such a way that it minimizes the worst-case value of J over all admissible values of
the residual flow function vin, leading to the solution of the robust design problem (RD-OC). In
order to work it out and find a suitable representation of the residual flow vin, we have introduced
the complementary uncertainty problem (CU) – which provides somehow a dual perspective
with respect to the deterministic OC problem (DD-OC): given a known flow profile across the
anastomosis uc, find the residual flow function v̂in which maximizes J . A suitable, parametrized
version of this flow function is then considered as family of residual flows in the robust design
problem (RD-OC), whose aim is the identification of the worst case among the family.

We now present some numerical results about the optimal design of aorto-coronary bypass grafts
based on the solution of the optimal control problems recalled above, and analyzed in Sect. 4.1.2.
We consider throughout this section a simplified 2D bypass configuration Ω = (0, 5)× (0, 1), where
Γin = {(x1, x2) : x1 = 0, x2 ∈ (0, 1)} and Γc = {(x1, x2) : x1 ∈ (1, 3/2), x2 = 1}, respectively,
thus considering the graft-to-host diameter ratio to be fixed at its (near-)optimal value 1.5 as
discussed in [164]. In order to exploit the reduced framework discussed in the previous section, we
make the simplifying assumption that the control functions are parametrized with respect to the
anastomosis angle θ and are given by the following parabolic Poiseuille profiles for simplicity:

uc(x; θ, ω) := 16
9

(
7
6 −

ω

6

)(
x− 1

)(3
2 − x

)[
(tan θ)−1

−1

]
, θ ∈ (θmin, θmax), (5.5)

where 0 < θmin < θmax ≤ π/2 . In this way, the set of admissible7 boundary controls is defined
by Uc := {uc(x; θ, ω) : θ ∈ [θmin, θmax]}, being in our case θmin = 15◦ and θmax = 85◦. On the
other hand, ω ∈ (0, 4) is the variable controlling the flux split between the graft and the host
vessel: a complete occlusion corresponds to ω = 0 while a 50/50 split of total flux between graft
and host artery is obtained for ω = 4. The rescaling factor tan(θ) in uc is considered in order to
fulfill (5.3). For the sake of the parametrized PDE to solve, here µ = (θ, ω) ∈ (15◦, 85◦)× (0, 3).
Thus, the control variable in the simplified deterministic design problem (DD-OC) is reduced to
the angle θ of the bypass graft. Also the radius of the bypass could be taken as an optimization
variable, in the case that this is under control of the surgeon performing the operation, but in
general more complex geometrical properties such as cuff shapes cannot be incorporated into
our model problem. We are interested in the minimization of the cost functionals J1 – J4 in the
downfield subregion Ωobs where a vortex may occur, leading to possible occlusions after grafting
and plaque formation; here Ωobs = {(x1, x2) ∈ Ω : (x1, x2) ∈ (1, 4)× (0, 1)} (see Figs. 5.6-5.7).

7Concerning the existence results provided in Sect. 4.1.2, it is clear that the admissible set Uc given by the
control functions (5.5) is closed in H1/2(∂Ω). To see that it is also convex, note that ϕ(θ) = 1/ tan θ is a continuous
function in θ ∈ [θmin, θmax] and its image is a closed interval, therefore convex.
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The resulting problem is discretized with NV = 14, 260 and NQ = 1, 827 dofs for velocity and
pressure, respectively, using P2/P1 finite elements; the dimension of the computed reduced basis
space is 3N = 54, thus yielding the possibility to solve a Navier-Stokes problem in a real time
way (averaged time over 1,000 evaluations is 0.19 seconds).

5.3.2 Results: deterministic design optimal control problem

As a first approximation we assume that the residual flow profile is parabolic, in particular
it is defined as vin(y;ω) := ωy(1 − y)e1. This is a typical choice in numerical simulations of
arteries yet its justification or effect on the outcomes seems to be rarely considered. We have
solved the (DD-OC) problem for 7 different values of ω ∈ [0, 3] and for 6 different values of
the Reynolds number Re ∈ (15, 90) considered as a further input parameter in the formulation
(5.2); nevertheless, for the sake of simplicity we report here the results for the maximum value
experimented, Re = 90. Within the reduced framework illustrated, the solution of 42 optimal
control problems takes about 3 hours of CPU time,8 each of them implying about 10÷15 iterations
of the optimization procedure.
The optimal angle θ∗ obtained by solving the problem (DD-OC) decreases as the magnitude of
the residual flow increases. The specific behavior and values of the four cost functionals varies,
however, leading to different ranges for θ∗ = θ∗(ω). In particular, the vorticity functional J3 and
the Stokes tracking functional J2 (see Fig. 5.8) exhibit a stronger convexity and lead to smaller
values of the optimal angles: θ∗ ∈ (29◦, 43◦) for J3 and θ∗ ∈ (27◦, 30◦) for J2, respectively, which
are very close to values usually treated as optimal for a graft anastomosis [193,288]. On the other
hand, minimization of functionals J1 and J4 yields larger values of the optimal angles, perhaps
due to their weaker convexity. In Fig. 5.9 the flows corresponding to the optimal angles for the
functional J3 and ω = 0, ω = 1 are represented. We point out that in the case of total occlusion
the main vortex core in the heel region can never be totally eliminated.

5.3.3 Results: complementary uncertainty optimal control problem

Since the residual flow profile in the (partially) occluded artery might play an important role in
the fluid dynamics of a bypass model, instead of using the parabolic profile vin we are interested
in finding the profile of the worst residual flow so that the optimized graft is robust not just to
the magnitude of this flow, but also to its profile. To this aim, we solve a relaxed version of the
(CU) problem,9 by considering parametrized control functions vin under the form

vin(y;π) =
6∑
i=1

πiφi(y)e1

where φ1 is the parabolic profile already introduced, φ2 = exp(−100(y−0.5)2), φ3 = exp(−100(y−
0.25)2), φ4 = exp(−100(y − 0.75)2) are three gaussian profiles centered at the points 0.25, 0.5
and 0.75, and φ5 = y(1 − y)(y − 0.25), φ6 = y(1 − y)(y − 0.75) are two cubic profiles; the
control parameters {πi}6i=1 are such that the flux of vin is constant. By solving the relaxed (CU)
problem, we find that the worst case corresponds to the gaussian profile centered at the midpoint
of the occluded section y = 0.5, thus corresponding to a severe occlusion in the host artery. The
function vin = ω exp(−100y2)e1 will be the boundary condition on Γin from now on.

8Computations involving RB approximations have been executed on a personal computer with 2× 2GHz Dual
Core AMD Opteron (tm) processors 2214 HE and 16 GB of RAM.

9In case a near-complete occlusion is not expected, the admissible set of residual flow functions can be regularized
to rule out extreme singular cases. In this case we can use the knowledge about the solutions of the (CU) to
design a reasonable set of admissible residual flow functions that still contain some level of uncertainty while being
mathematically better behaved. See also remark 4.6.
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Figure 5.8: Functionals J1, J2, J3, and J4 in the subdomain as a function of the anastomosis
angle θ for different values of the residual parameter ω with parabolic residual flow.

Figure 5.9: Flow in the optimal configuration for the cost functional J3, ω = 0 (top) and ω = 1
(bottom), with parabolic residual flow.

5.3.4 Results: robust design optimal control problem

We can now solve the robust design (RD-OC) problem by considering the same setting as in
the (DD-OC) case and the residual flow vin given by the gaussian profile obtained by solving
the complementary uncertainty (CU) problem. First of all, we consider the deterministic design
(DD-OC) problem with a gaussian residual flow: the results, concerning the behavior of the
vorticity functional J3 w.r.t. θ and ω, as well as the optimal angles obtained with the four
functionals J1 – J4, are reported in Fig. 5.10 for both the parabolic and gaussian residual inflows.
The results follow the same trends in both cases, even if flow patterns are remarkably different
if the residual flow profile changes. In particular, the gaussian profile induces two secondary
vortices near the occlusion, and a more complex vorticity pattern in the anastomosis region.
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Figure 5.10: Optimal anastomosis angles as a function of the residual parameter ω for the
functionals J1 – J4, for the parabolic residual flow (left) and the gaussian residual flow (right).

Figure 5.11: Flow in the optimal configuration for the cost functional J3, ω = 0 (top) and ω = 1
(bottom), with gaussian residual flow.

Two major sources of vorticity can be observed from the streamlines. First, the primary vortex
behind the incoming jet, which is generated by the interaction between the fast and slow flows
coming into contact at the anastomosis exit. This vortex tends to disappear as we increase
θ and/or ω. Secondary vortices are generated by the peak residual flow on both sides of the
entry from the occluded branch. However, due to the choice of the observation subdomain Ωobs
(considering only the flow downstream from the anastomosis) their effect is removed from the
vorticity measure: this explains why the results, in terms of optimal angles, are very similar. In
Fig. 5.11 the flows corresponding to the optimal angles for the functional J3 and ω = 0, 1 are
represented.
Finally, the robust design problem (RD-OC) has been solved for the four cost functionals J1 –
J4, providing the results listed in Table 5.1 (dealing with the most significant J3 and J2 cases).
Each of these four problems takes approximately 500÷ 700 seconds to be solved, requiring about
110÷ 150 input/output evaluations, depending on each case. The robust angles are about the
same as the ones obtained as solutions of the deterministic design (DD-OC) problem in the case
ω = 0. Hence, the most challenging situation for the minimization of vorticity appears to be the
case of total or near-total occlusion of the stenosed branch.

5.3.5 Results: comparison with three-dimensional steady flows

The three-dimensional effects in a steady flow through a bypass anastomosis were considered
in [93] and found to be highly significant when it comes to the WSS distribution, especially at
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functional dimension profile ω = 0 ω = 1 ω = 2 ω = 3 robust solution
J3 2D vin parabolic 43.6 37.9 33.4 28.9 -

2D vin gaussian 42.8 38.5 33.2 28.5 42.6
J2 2D vin parabolic 29.9 29.2 28.9 27.5 -

2D vin gaussian 30.1 28.9 28.8 27.1 30.0
J3 3D vin gaussian 45.8 43.8 41.4 38.0 -

Table 5.1: Optimal angles and robust angles θ∗ obtained through the (DD-OC) and (RD-OC)
problems, vorticity functional J3 and Stokes tracking functional J2, both in 2D and 3D.

higher Reynolds numbers. To test the relevance of 3D effects on the optimal anastomosis angle
in our simplified setup, we consider a 3D problem which is assumed plane symmetric along the
centerline of the vessel – thus only the half-width of the configuration needs to be meshed.
The length and radius of the channel and the bypass are kept the same as in the 2D case, as well
as the inflow profiles, which are chosen to be radially symmetric:

vin(y, z;ω) := ω exp
[
−100

(
y2 + z2)] ,

uc(x, z; θ, ω) :=
(

7
6 −

ω

6

)[
1− 16

9

(
x− 7

4

)2
+ 4z2

] [
(tan θ)−1

−1

]
.

We also choose the viscosity in such a way that the Reynolds number is comparable to the
highest possible one used in the 2D case, i.e. Re ≈ 80. This is obtained correspondingly to
ν = 0.0125 cm2 s−1. The resulting problem is discretized with NV = 196, 041 and NQ = 65, 347
dofs for velocity and pressure, respectively, using P1/P1 finite elements with an interior penalty
stabilization scheme [55]. The nonlinear problem (5.2) is solved starting from the steady Stokes
solution and performing pseudo-time stepping until convergence to a steady solution has been
achieved. No model reduction was applied in this case and as a result each solution took roughly
20 minutes on 24 parallel 2.66 GHz cores of an Intel Xeon Nehalem cluster.
In Fig. 5.12 we display the obtained value of the vorticity functional J3 for different values of
the parameter ω (other functionals are less meaningful in 3D and are omitted here). Optimal
angle is located around 45◦, but as ω increases the optimal angle θ∗ decreases. The qualitative
behavior of the vorticity functional J3 resembles that of the 2D case even if the 3D flow exhibits
much more complex flow phenomena, which we will attempt to explain in the following.
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Figure 5.12: Vorticity J3 in the subdomain Ωobs as a function of the anastomosis angle θ for
different values of the residual parameter ω in the 3D bypass case (left). Streamlines of steady
flow and transversal velocities at x = 2.5, x = 3.5, and x = 4.5 for the case θ = 25◦, ω = 1 (right).
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Visualizations of the 3D flow field are reported in Figs. 5.12, 5.13 and 5.14. Three major sources
of vortices can be observed – primary and secondary vortices already remarked for the 2D case,
and a tertiary vortex structure.
As before, the primary vortex tends to disappear as we increase θ and/or ω (see Fig. 5.13); of
course, in the case of total occlusion, ω = 0, the primary vortex can never be totally eliminated.
This fact is demonstrated in Fig. 5.14, where we display the flow at the maximum angle θ = 85◦
but with two different residual flows, ω = 0 (total occlusion) an ω = 1 (strong occlusion). Only in
the first case the primary vortex is observed. Secondary vortices are generated as in the 2D case
by the peak residual flow on both sides of the entry from the occluded branch. Tertiary transversal
vortices, the so-called Dean vortices, appear downstream of the anastomosis at moderate Reynolds
numbers [85,80]. While these structures appear exclusively in the 3D flow, it seems their effect
on the vorticity functional is an order of magnitude less when compared to the primary vortex,
and thus they do not alter the conclusions we obtained earlier based on 2D simulations. The
vorticity functional J3 therefore measures and attempts to control mainly the primary vortex.

Figure 5.13: Streamlines of the steady flow and transversal velocities at x = 2.5, x = 3.5, and
x = 4.5 for the case θ = 30◦ (left) and θ = 50◦ (right) with ω = 1. For sufficiently large angles θ
the primary vortex disappears, while the secondary and tertiary vortices remain.

Figure 5.14: Streamlines of the steady flow and transversal velocities at x = 2.5, x = 3.5, and
x = 4.5 for the case θ = 85◦ with ω = 0 (left) and ω = 1 (right). In the case of total occlusion,
the primary vortex is present even with very large angles.

We can remark a strong similarity on the primary/secondary vortex structures between the 2D
and the 3D case – see Fig. 5.15, obtained for the same values of θ and ω already considered in
Fig. 5.12–5.14. For ω ≤ 1 a very strong primary vortex is generated for small angles θ, causing
a strongly convex behavior in the functional J3 as a function of the angle, while for ω ≥ 3 the
value of the vorticity functional becomes rather insensitive to the choice of the anastomosis angle.
Thus we are able to conclude that – similarly to the 2D case – the most challenging situation for
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Figure 5.15: Streamlines of the 2D steady flow for the cases (from top to bottom, from left to
right): θ = 25◦ with ω = 0, ω = 1; θ = 30◦, θ = 50◦ with ω = 0; θ = 85◦ with ω = 0, ω = 1.

the minimization of vorticity is the case of total or near-total occlusion of the stenosed branch.
We did not test the effect of the residual flow profile uncertainty on the 3D case as the results
in the 2D case already highlighted the need to consider a “worst-case" flow profile in order to
obtain robust results. In Table 5.1 we also include the estimated optimal angles in the 3D case for
reference with the 2D results presented before. These were obtained by cubic spline interpolation
of the curves in Fig. 5.12. For ω = 0 the optimal angle is very close to the one obtained for the
2D problem, while a divergence of results occurs as ω is increased; the optimal angles in the 3D
case tend to be somewhat larger. However, if the robust angle is assumed to correspond in both
cases to the optimal angle for ω = 0, we can state that the solution of the robust design problem
in 2D gives a good indication to the choice of a robust angle in the more realistic 3D problem.

The remaining question to be answered is, whether the similarity of the 2D and 3D problems
in the context of vorticity minimization extends also to the more difficult case of WSS-related
functionals, such as J5 given by (5.4). It is likely that the tertiary vortices have some effect on the
downstream WSS, thus potentially changing the situation between the 2D and 3D cases. While
some works on direct minimization of WSS-related quantities have been attempted [87, 288],
a rigorous mathematical framework for the minimization of quantities depending on higher
derivatives of velocity especially in the uncertainty quantification or robust design context seems
beyond the reach of current methodology.

5.4 Shape optimization of end-to-side bypass grafts
An alternative approach to optimal control for grafts design relies on the solution of a shape
optimization (SO) problem, for which the control variable is the shape of the domain Ω itself.
This entails the minimization of a cost functional by finding the optimal shape of the domain
where the PDE which models the flow is defined. In the following, we present and discuss several
results, dealing with shape optimization of aorto-coronary bypass configurations (considering
both a simplified Stokes and a more accurate Navier-Stokes flow model) and femoro-popliteal
bypass configurations. We rely on the reduced framework addressed in Sect. 4.3, by describing
the shape of these configurations through Free-Form Deformation (FFD) mappings.
First, we deal with some shape optimization problems under the form (DD-SOµ), by fixing
the residual flow vin through the occluded artery (Sect. 5.4.1). Then, we consider a robust
optimization problem under the form (RD-SOµ), by parametrizing the residual flow profile as in
Sect. 5.3 and seeking for the configuration corresponding to the worst case scenario (Sect. 5.4.2-
5.4.3). In all these cases, we refer to the framework of Sect. 5.2.4 for state problems and notation.
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The results of the following sections have been presented in three recent papers published in
collaboration with Rozza, Quarteroni [206] and also with Lassila [180,181].

5.4.1 Case I: Stokes flows for an aorto-coronary bypass

In this first case we are interested to the minimization of the vorticity cost functional J3 in the
downfield subregion Ωobs where a vortex may occur, leading to possible occlusions after grafting
and plaque formation. Concerning inflow profiles, we consider a Poiseuille profile on the inflow
Γc (graft) and two different different blockage conditions have been considered on the inflow Γin
(occluded artery). In Case I.A a completely occluded coronary is considered, corresponding to
vin = 0, while in Case I.B a partially stenosed coronary is considered, choosing a residual flux
given by a Gaussian profile vin = φ(y)e1 like in Sect. 5.3.3, centered on the section Γin with flow
rate of about 15% w.r.t. the one in the bypass grafting.
In both cases, the same reference configuration Ω ⊂ R2 of Fig. 5.16 – similar to some bypass
configurations already considered in previous works [190, 254, 276] – has been chosen. The
observation subregion is Ωobs = {(x1, x2) ∈ Ω : x1 > 1.5}. A set of admissible shapes under
the form (4.14) is obtained through a FFD parametrization T (·;π) built over the reference
domain Ω, with π ∈ Dπ. Here we consider a 5 × 6 lattice of control points on the rectangle
D = [−1, 3] × [−0.6, 0.4], for a total number of 60 degrees of freedom. Among them, p = 8 of
these degrees of freedom (seven vertical and one horizontal deformations) have been selected as
design variables on the basis of an empirical criterion: selected design variables aim at controlling
both the anastomotic angle and the ratio between the diameters of the two branches.

Figure 5.16: Reference domain Ω and FFD setting. Control points depicted in red/blue can be
moved in vertical/horizontal direction.

In particular, since the closer the control point to the free-boundary, the larger its influence on
local shape deformations, we select parameters π3 and π5 (the latter is the only one giving an
horizontal deformation) to control the anastomotic angle, parameters π6 and π8 to control the
diameters ratio (see Fig. 5.16). Moreover, parameters π4 and π7 control the upper shape of the
anastomotic bifurcation, while π1 and π2 are responsible of the shape of the lower wall. The
parametric domain Dπ is therefore given by

Dπ = {π = (π1, . . . , π8) ∈ R8 : πi ∈ [−α, α] ∀ i 6= 5, π5 ∈ [0, β]}. (5.6)

where the choice α = 0.2 and β = 0.8 enables to guarantee that det(JT ) > 0 (at least by direct
numerical inspection). We point out that the number of parameters P = 8 has been selected to
ensure a trade-off between (i) a significative shape versatility during the optimization process and
(ii) a better computational performance at each iteration of the optimization process in terms of
Online efficiency and certification by a posteriori error bounds. The points location (and their
activation) have been emphasized in very sensible zone of the bypass [6,276] where a Miller or
Taylor patch shape is expected [254].
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The ranges of variation of the control points positions with respect to the original locations ensure
to keep small deformations and it is influenced by the lattice of points10.
Before constructing the RB approximation of the flow problem, we need to recover the affinity
assumption through the EIM procedure – only once for both cases I.A and I.B. By setting
εEIMtol = 2.5× 10−4, we obtain an affine expansion of

∑
i,j K

a
ij = 204 terms for νij components,

of
∑
i,j K

b
ij = 18 terms for χij components and of

∑
iK

f
i = 5 terms for the right hand-side

components. The resulting problem is discretized with NV = 33, 330 and NQ = 4, 269 dofs for
velocity and pressure, respectively, using P2/P1 finite elements; the dimension of the computed
reduced basis space is 3N = 63 (resp. 3N = 60) for case I.A (resp. I.B), by choosing a tolerance
εRBtol = 5 · 10−4 for the greedy procedure.

For the test case I.A, a vorticity reduction of about 39% has been obtained through the described
procedure; the cost functional decreases from an initial value sN (π(0)) = 459.40 to an optimal
value sN (π̂RB) = 281.25 after 36 optimization steps performed in 2968s until convergence.
In Fig. 5.17 both the reference and the optimal configurations are displayed, together with
deformation induced by the displacement of the control points. Flow variables and corresponding
vorticity layers for the initial and the optimal configurations are represented in Fig. 5.18.
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Figure 5.17: Case I.A: reference configuration (in grey), optimal shape (in black) and corresponding
control points displacement.

Figure 5.18: Case I.A: velocity field [cm/s], pressure field [dyn/cm2] and vorticity magnitude for
the reference (left) and the optimal (right) configuration.

10 We remark that the density of control points in the lattice is instead responsible of the chosen degree of the
polynomials describing the FFD map (quantities L and M in (2.56)).
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For the test case I.B, a vorticity reduction of about 45% has been obtained, passing from an
initial value of the cost functional sN (π(0)) = 839.45 to an optimal value of sN (π̂RB) = 466.05
after 45 optimization steps, which have been performed in 3554s. Optimal configuration obtained
in this case is displayed in Fig. 5.19, while flow variables and the corresponding vorticity layers
for the initial and the optimal configurations are represented in Fig. 5.20.
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Figure 5.19: Case I.B: reference configuration and optimal shape with corresponding control
points displacement.

Figure 5.20: Case I.B: velocity field [cm/s], pressure field [dyn/cm2] and vorticity magnitude for
the reference (left) and the optimal (right) configuration.

Moreover, in both cases I.A (total occlusion) and I.B (partial occlusion) the optimized shapes
are quite similar, showing a much smoother toe and heel than the initial shape; they also show
smoother curvatures at the heel with a gradual transition in the toe region, as already pointed
out in the work by Lei et al. [190]. Only the graft section before the anastomosis – say, at about
x1 = 0.5 – results a bit narrower than usual grafts, maybe due to the choice of the downfield
observation region. The localization of maximum values of vorticity at the heel and toe is
expected, because this is the region where disturbed flows occur, even with a Stokes model;
the same conclusion can be drawn for wall shear stress gradient and Navier-Stokes flows [190].
Moreover, higher values in the heel region are not as clinically significant as the high vorticity
values near the toe region and in the down-field region, which is a well-known location where
restenosis might develop.
The shape optimization procedure however enables to reduce the vorticity in the down-field region
of the anastomosis, even if increasing values of vorticity arise at heel and top segments. In the
case where the observation region Ωobs is the whole domain Ω instead of the subdomain Ωobs –
and thus vorticity is minimized all over the anastomosis – different results can be obtained, both
in terms of optimal shapes and vorticity reduction. By using the same procedure as before, we
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obtain (e.g. for test case B) the vorticity patterns in Fig. 5.21: the minimization of the vorticity
all over the anastomosis leads to optimal shapes characterized by bigger sections and narrow
bifurcations. Moreover, the parameter π5 – which strongly affects the anastomotic angle – seems
to play an important role in the behavior of the vorticity field (see also Fig. 5.22). For both test
cases numerical results are summarized in Tabs. 5.2.

Figure 5.21: Case I.B: optimal shapes (and related vorticity patterns) obtained through vorticity
minimization on the down-field region Ωobs (left) and on the whole domain Ω (middle, right). In
the third case the parameter π5 has been fixed equal to the optimal value obtained in the first
case by vorticity minimization on Ωobs.

Case I.A Ωobs sN (π(0)) sN (π̂RB) ∆sN # iterations cpu (s)
Ωobs 459.40 281.25 38.8% 36 2968

Ω 844.93 576.75 31.7% 45 3504

Case I.B Ωobs sN (π(0)) sN (π̂RB) ∆sN # iterations cpu (s)
Ωobs 839.45 466.05 44.5% 45 3554

Ω 1492.5 934.25 37.4% 158 10492

Table 5.2: Cases I.A (top) and I.B (bottom): initial and optimal value of cost functional, total
reduction, number of iterations of the optimization procedure and cpu times for a vorticity
observation on Ωobs and Ω.

We also compare the results of the downfield vorticity minimization problem based on the reduced
(basis) procedure with the ones obtained using the truth FE approximation of the Stokes flow (see
Tab. 5.3). In the considered cases, the solution of the reduced optimization problem sN (π̂RB)
shows a slight difference (less than 0.1% in the output value) and results sub-optimal with respect
to the solution sN (π̂FE) computed by using the truth FE approximation; this fact has already
been remarked both in an optimal control [72] and in a shape optimization [185] context.

Case I.A Case I.B
sN (π̂RB) 281.25 466.05
sN (π̂FE) 281.17 465.89

|sN (π̂RB)− sN (π̂FE)|
sN (π̂FE) 3 · 10−4 3 · 10−4

Table 5.3: Optimal values of cost functional (downfield vorticity, Ωobs = Ωobs) for the optimization
based on RB and FE approximations, for test cases A and B.

Moreover, by means of the Morris’ factor screening method introduced in Sect. 4.8, we can
determine which are the most important parameters affecting the vorticity output in the two
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cases I.A and I.B analyzed throughout this section. By performing R = 20 (randomly selected)
experiments, each consisting of (p + 1) random parameter configurations, we are able to get
R = 20 estimates of the elementary effects of each parameter component on the vorticity output,
by taking into considerations the possible interactions among the p = 8 parameter components
π1, . . . , π8. The outcome of this procedure (obtained through R(p+ 1) = 180 input/output Online
evaluations) is shown in Fig. 5.22: we can point out how, at least in the case I.B, the parameter
π5 tuning the anastomotic angle is the one giving the largest effect on vorticity output variations.
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Figure 5.22: Cases I.A and I.B: sensitivity analysis by Morris’ screening method. For each
parameter component i = 1, . . . , 8, we report the minimum, the maximum and the average
sensitivities over a sample given by R = 20 estimates of elementary effects on the vorticity output.

In the end, we provide some computational details concerning the reduction pursued by the
coupled RB+FFD framework. Compared to a FE simulation, in our 2D aorto-coronary bypass
case, a RB Online evaluation of flow variables enables a computational speedup of about 100 times.
Average time over 100 Online evaluations is of tonlineRB = 2.204s and of tonlineRB = 2.012s for the test
cases I.A and I.B, while the corresponding FE computations take an average time of tFE = 209s
and tFE = 216s, respectively (see Tab. 5.4). This is basically due to the reduction of about 500
times in the dimension – N = 35, 997 vs. N = 72 (case I.A) and N = 66 (case I.B) – of the linear
systems obtained by FE discretization and RB approximation. Consequently, computational
times for the whole optimization process are reduced too, depending almost linearly by the time
for a single Online evaluation.
We take into account also the time spent for the Offline construction and storage; this allows
to determine the break-even point, given by QBE = tofflineRB /tFE . In particular, we obtain a
break-even point of O(102) in both cases. Note that Offline procedures for basis assembling and
certification of the error are the same even if we change the cost functional or the optimization
goal: in this way Offline efforts can be reused for different Online optimization procedures.

FE RB (min) RB (average) RB (max) Speedup
Case I.A 209.06s 1.939s 2.012s 3.078s 94.85
Case I.B 215.76s 1.945s 2.204s 3.314s 107.18

Table 5.4: Computational times and speedup for reduced basis Online evaluations and finite
element computations. RB Online evaluations have been executed considering a sample of 100
randomly chosen parameter vectors µ ∈ D.
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5.4.2 Case II: Navier-Stokes flows for an aorto-coronary bypass

We now consider a steady Navier-Stokes model to describe blood flows. Before considering
the optimal design of aorto-coronary bypasses exploiting a RB approximation of Navier-Stokes
equations, we provide a feedback validation of the optimized bypass obtained in the previous
section (through a RB Stokes model) by a “high-fidelity” FE Navier-Stokes model. We thus
compare the results obtained by using these two flow models on the same shape configurations.
We consider the initial shape and the optimal shape obtained by minimizing the blood vorticity
corresponding to the Stokes flow, in both cases A and B. We then compute the Navier-Stokes
flows and vorticity distributions corresponding to the same configuration and boundary conditions.
We obtain in this case a vorticity reduction in the downfield region Ωobs of 39.9% in case I.A
and of 44.5% in case I.B, respectively – which only slightly differs from that obtained by using a
Stokes model. Moreover, in the four considered configurations (initial and optimal shapes for
cases I.A and I.B) the difference between the computed vorticity outputs sN (·) and sNNS(·) is
smaller than 5% (see Tab. 5.5).

Stokes case Navier-Stokes case
case I.A sN (π(0)) = 459.40 sNNS(π(0)) = 469.14

sN (π̂RB) = 281.25 sNNS(π̂RB) = 281.81
case I.B sN (π(0)) = 839.45 sNNS(π(0)) = 878.32

sN (π̂RB) = 466.05 sNNS(π̂RB) = 488.50

Table 5.5: Feedback validation (downfield vorticity minimization): cost functional values for
initial and optimal configurations computed with a Stokes and a Navier-Stokes flow model.

This feedback is provided with the sole aim of testing with a higher-fidelity fluid model the
optimal shape obtained with the low-fidelity model. Nevertheless, we can consider this shape
optimal only for the Stokes model and just improved for the Navier-Stokes model (Tab. 5.5).
Previous feedback results were provided in [254]. We report in Fig. 5.23 the velocity and the
vorticity fields computed on the optimal configurations in cases I.A and I.B.

Figure 5.23: Feedback validation: velocity, pressure and vorticity fields computed by using a
Navier-Stokes model in the optimal configuration of cases I.A (left) and I.B (right).
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A second problem solved within this RB+FFD reduced framework is related to the design of a
graft which is robust with respect to the magnitude of the residual flow through the occluded
branch. In other words, we aim at finding the optimal shape of the graft in presence of the worst
case scenario in terms of residual flow, by solving the problem (RD-SOµ). We exploit the same
configuration and FFD parametrization as in the previous Stokes case, now being α = 0.15 and
β = 0.6 the ranges of vertical and horizontal displacements of the control points depicted in
red/blue in Fig. 5.16. We now consider an observation subregion close to the heel, given here by
Ωobs = {(x1, x2) ∈ Ω : x1 ∈ (1, 2)}.
Moreover, concerning inflow profiles, we consider a Poiseuille profile on the inflow Γc (graft)
and a parametrized gaussian profile vin = ωφ(y)e1 on the inflow Γin (occluded artery), where
ω ∈ Dω = [0, ωmax] is the uncertainty parameter tuning the degree of occlusion. In particular,
the dependence of the two flows on ω is such that the downfield flowrate is constant, with a flow
split ranging from 1/0 (complete occlusion of the host artery, for ω = 0) to 2/1 (flowrate through
the occluded artery equal to one half of the flowrate through the graft, for ωmax = 20).
The resulting RB approximation, relying on the same EIM procedure and FE approximation
spaces (now related to discretization of Navier-Stokes equations) is defined on RB spaces of
dimension 3N = 36, thus yielding the possibility to solve a Navier-Stokes problem in a very rapid
way (1.84s, averaged time over 1,000 evaluations).

For the shape optimization, we consider three different cost functionals, given by the vorticity
functional J3, the Stokes tracking functional J2 and the functional based on Galilean invariant
J4, which have been introduced in Sect. 5.2.4. The choice of these three cost functionals is based
on the considerations developed in Sect. 5.3 for the case of optimal flow control problems.
In Fig. 5.24 the velocity fields within the optimal shapes for the J3, J2 and J4 functionals (from
top to bottom) are represented, in the cases ω = 0 (complete occlusion, left) and ω = ωmax
(maximum residual flow, right), respectively. Similarly as in the OC case analyzed in Sect. 5.3,
the condition leading to the strongest development of vorticity cores is the presence of a complete
occlusion, for which the flow through the bypass starts creating a strong and complex vorticity
pattern close to the heel. Comparing the optimal shapes obtained in this case with the results
obtained through a Stokes model, we can remark how the different degrees of occlusion (here
ω = 0 vs. ω = ωmax) lead in the Navier-Stokes case to different graft profiles, showing a less
elongated anastomosis in the case ω = 0. This effect might be also due to the different observation
region, in this case closer to the heel.

We also find that the minimum values of the three cost functionals are decreasing functions
with respect to ω, an indication that the case ω = 0 is the most difficult one concerning shape
optimization (see Table 5.7); reduction in the cost functionals ranges from 24% to 70% for
the different cases. The vorticity cores are clearly observable also in the optimal configuration
in presence of a complete artery occlusion; moreover, although we obtain a clear reduction of
vorticity also in this case, the vorticity cores never disappears completely.
In the end, as for the OC case, we remark that the anastomosis angle decreases as the residual
flow increases, since optimal shapes obtained in the case ω = ωmax (see Fig. 5.24) show a more
elongated heel. We come back to these considerations about robust shape optimization of a
bypass graft and behavior of different cost functionals in the forthcoming section, devoted to the
design of a femoro-popliteal bypass.

Concerning the solution of the robust design (RD-SOµ) problem, we find that the robust
configurations correspond to the optimal shapes computed for ω = 0 above. As in the case of
robust OC problems, the condition leading to the strongest development of vorticity cores is the
presence of a complete occlusion, for which the flow through the bypass starts creating a strong
vortex in the proximity of the anastomosis. Thus, it is clear that in order to be robust over the
entire range ω ∈ [0, ωmax], the bypass must be tuned mainly for the case of total occlusion.
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Figure 5.24: Case II. Optimal shapes for ω = 0 (left) and ω = ωmax (right) for the vorticity J3,
the Stokes tracking J2 and the Galilean invariant J4 functionals (from top to bottom).

J∗(ω = 0)
J∗(ω = ωmax)

∆J
(ω = 0 , ω = ωmax)

# I/O evals
(ω = 0 , ω = ωmax)

# I/O evals
(robust)

J3 1.257 26.3% , 24.2% 125 , 27 389
J2 1.924 63.2% , 55.3% 99 , 64 416
J4 1.267 65.4% , 70.7% 183 , 63 973

Table 5.6: Case II. Results obtained by solving the shape optimization problem (DD-SOµ) in
the cases ω = 0 and ω = ωmax, as well as the robust shape optimization problem (RD-SOµ).

Regarding instead computational aspects, we remark that the solution of the robust (shape)
optimization problem requires about O(103) input/output evaluations, thus entailing a CPU
time which is at least one order of magnitude larger than a (shape) optimization problem (see
Table 5.7), ranging from 1÷ 4 hours for the latter case to 13÷ 35 hours for the former case. This
indicates that a design that is robust over the entire range ω ∈ [0, ωmax] must be tuned mainly
for the case of total occlusion.

5.4.3 Case III: Navier-Stokes flows for a femoro-popliteal bypass

In this last case we consider the shape optimization of a femoro-popliteal bypass graft, as well as
the robust optimization of this configuration with respect to residual flows through the occluded
branch. Even if it is considered at the end of this chapter, the analysis of this problem – performed
before the Navier-Stokes aorto-coronary case – has been the first attempt to the development of
the current framework to robust optimization problems and to more general inverse problems.

In particular, we aim at solving the problems above by using a RB+FFD approach, comparing
three cost functionals – the Stokes-tracking functional J2, the vorticity J3 and the one based on
Galilean invariant J4. Before setting the reduced framework, we performed a preliminary test,
in order to select pπ = 6 design parameters π1, . . . , π6 for constructing the FFD map T (·;π),
among the possible 2× 6× 4 displacements of a 6× 4 lattice of control points.
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We have compared the strategies presented in Sect. 4.8: (i) a user’s experience-based (UEB)
selection; (ii) a one-at-a-time (OAT) selection; (iii) a selection based on the Morris screening
procedure (MR-OAT) and (iv) an approximate POD (APOD) procedure. In the cases (ii)-(iv),
the selection criteria were based on the parametric sensitivities of the viscous energy output
J1 computed all over the domain. This choice has been made before selecting more accurate
outputs and observation regions for sake of optimization, to measure the interplay between global
shape deformations and the flow field across the domain. Moreover, the choice of 7 control
points (denoted with a cross in Fig. 5.25) was excluded due to geometric constraints, since we
experienced strong correlations between the displacement of these control points and the variation
of the diameters of the inflow and outflow sections, which have to be considered as prescribed in
this application.
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Figure 5.25: Reference domain Ω, “truth” finite element mesh, and selected FFD control points
used to model the displacements of the shape by means of the (i) UEB, (ii) OAT, (iii) MR-OAT
and (iv) APOD procedures (from left to right, from top to bottom). Control points indicated
with a cross are not allowed for selection. Vertical displacements πi ∈ [−0.2, 0.2] of the points
denoted with a bar are allowed. Stems are referred to parametric sensitivities (see Sect. 4.8) of
the viscous energy output J1, scales are not uniform among the procedures (ii)-(iv).

In any case, vertical displacements were found to be uniformly more influent than horizontal
displacements. The vertical displacements of the control points selected by means of the procedures
(i)-(iv) are different. By constructing in each of these cases the RB approximation of the flow
problem and solving a shape optimization problem with the viscous energy cost functional J1, we
found a reduction ∆J1 which ranges between 18% (UEB case) and 44% in the APOD case; in
the OAT and MR-OAT cases reduction was rather similar and about 40%, thus leading in this
case to a remarkable improvement with respect to the UEB choice.
We thus consider the FFD mapping obtained through the APOD selection procedure (iv) and
the computational reference domain represented in Fig. 5.25.
The admissible parameter range for each control point displacement is π ∈ Dπ = [−0.2, 0.2]6 for
i = 1, 2, . . . , 6. A seventh parameter ω ∈ Dω = [0, ωmax] takes into account the magnitude of the
residual flow – and thus the flow splitting. The inflow velocities on Γc (bypass) and Γin (blocked
host artery) are given by a Poiseuille profile vc(ω) and a Gaussian profile vin(ω), respectively.
The dependence of the two flows from the uncertain parameter ω ∈ Dω = [0, ωmax] is such that
the downfield flowrate is constant, with a flow split ranging from 1/0 (complete occlusion of the
host artery, for ω = 0) to 2/1 (flowrate through the occluded artery equal to one half of the
flowrate through the graft, for ω = ωmax = 15). Moreover, by choosing physiological values for
physical flow viscosity and density we end up with a steady incompressible Navier-Stokes flow
characterized by Re = 150 at the location of the anastomosis.
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5.4. Shape optimization of end-to-side bypass grafts

Before constructing the RB approximation of the flow problem, we need to recover the affinity
assumption through the EIM procedure. By setting εEIMtol = 10−4, we obtain an affine expansion
of Qa + 2Qb + Qc = 289 terms. The resulting problem is discretized with NV +NQ ≈ 16,000
degrees of freedom, using P2/P1 finite elements; the dimension of the computed reduced basis
space is 3N = 60 by choosing a tolerance εRBtol = 5 · 10−2 for the greedy procedure.
In Fig. 5.26 the results of the shape optimization problem for each cost functional Ji, i = 2, 3, 4
are reported, in case of fixed degrees of occlusion; indeed, nopt = 16 shape optimization problems
have been solved, corresponding to the cases ω = 0, 1, . . . , 15. We can notice that the minimum
values obtained with the vorticity functional J3 and the functional based on Galilean invariant J4
are decreasing function with respect to ω, an indication that the case ω = 0 is the most difficult
one concerning vorticity minimization.
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Figure 5.26: Minimum values for the three cost functionals (from left to right: vorticity J3,
Stokes-tracking J2, Galilean invariant J4) as a function of the unknown residual flow parameter
ω. Results obtained by shape optimization for nopt = 16 different cases between ω = 0, 1, . . . , 15.

As expected, the condition leading to the strongest development of vorticity cores is that
corresponding to a complete occlusion, for which the flow through the bypass starts creating
a strong vortex in the proximity of the anastomosis. As soon as a small residual flow crosses
the occluded branch, the vortex cores are removed. On the other hand, also the tracking-type
functional detects the presence of the vortex core for small values of ω, but for larger values of ω
the misfit between the two flows increases considerably due to the presence of the strong nonlinear
convective term. Moreover, the reduction of the cost functional for the three cases ranges from
53% to 73%, averaging the results on the nopt = 16 problems for each case (see Table 5.7).
In Fig. 5.27 the velocity fields for the initial and the optimal shapes obtained with the three cost
functionals are reported, considering the minimum (ω = 0) and the maximum (ω = 15) magnitude
of the residual flow through the occluded branch. The vorticity cores are clearly observable in
presence of a complete artery blockage; moreover, although we get a sensible reduction of the
cost functional also in this case, the vorticity cores never disappear completely.

∆J (average) # optim. iters # output evals # total output evals CPU time
J3 0.5297 3 ÷ 7 28 ÷ 99 771 5.9 h
J2 0.6618 3 ÷ 7 28 ÷ 60 641 9.4 h
J4 0.7340 3 ÷ 27 28 ÷ 230 1 120 11.3 h

Table 5.7: Results of the shape optimization problem (nopt = 16 cases, ω = 0, 1, . . . , 15). Here
∆J = (J (0) − Ĵ)/J (0), and the average is computed over the 16 cases.
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Chapter 5. Optimal design of cardiovascular prostheses

Figure 5.27: Velocity magnitude [cm/s] and streamlines of the steady incompressible Navier-
Stokes (RB simulation); from left to right: initial and optimal configurations obtained with shape
optimization of Ji, i = 3, 2, 4, using the two extremal values of the residual flow parameter (ω = 0
on top, ω = 15 on bottom).

Concerning the solution of a robust SO problem under the form (RD-SOµ), we consider only the
case of the functionals J3 and J4, since the behavior of the cost functional J2 may be influenced
more by the presence of the nonlinear convection than by the vorticity patterns for large values
of ω. As in the case of aorto-coronary bypass grafts, we find that the robust configurations
correspond, for both cost functionals, to the optimal shapes computed for ω = 0 in the previous
case (see Fig. 5.27, columns 2 and 4). As in the case discussed in Sect. 5.4.2, the solution of
the robust (shape) optimization problem requires a CPU time which is at least one order of
magnitude larger than that used for a (shape) optimization problem (see Table 5.8).
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5.5. Remarks and future focuses

# optim. iters # output evals # total PDE solves CPU time
J3 7 87 1,482 4.0 h
J4 27 230 3,684 19.8 h

Table 5.8: Numerical details for robust shape optimization. Here the number of output evaluations
refers to the solution of the minimization problem (for the max Ji(µ) functional).

Here robust shape optimization problems took about 4÷ 20 hours of computational time by using
the RB method for the fluid simulation. Solving the same problem with the full FEM simulation
would have taken considerably more (about 700 hours) if shape deformations had been handled
by standard methods like local boundary variations and not taking advantage of the geometrical
reduction afforded by the proposed shape parametrization.

We close this section by pointing out that in both cases we have considered, we found that a
design that is robust over the entire range ω ∈ [0, ωmax] of (parametrized) residual flows through
the occluded artery must be adjusted mainly for the case of total occlusion, i.e. ω = 0.
In the case that total occlusion of the artery is not expected, we can exclude some region near the
point of total occlusion and instead consider the range of uncertainty ω ∈ [ωmin, ωmax] for some
ωmin > 0. In the typical case that the amount of occlusion changes over time, it is imperative
that we should be able to monitor the amount of occlusion over time by simple noninvasive
measurements to guarantee that, in fact, ω ≥ ωmin, since otherwise our bypass design will not
be robust any more. This leads us naturally to consider the inverse problem of determining the
magnitude of the residual flow, which is discussed in Sect. 6.5 of next chapter.

5.5 Remarks and future focuses
We have presented some optimal design problems aimed at improving the shape of cardiovascular
prostheses. Two different worst-case optimization formulations have been proposed to solve the
problem of bypass design under uncertainty, in order to reduce the downfield vorticity: (i) a
boundary control formulation, which simplifies the geometry and treats only the angle of the
anastomosis as a boundary control variable, and (ii) a shape optimization formulation relying on
a FFD shape parametrization to represent the bypass anastomosis. Thanks to computational
reduction allowed by the reduced basis method, the numerical solution of these problems can be
greatly enhanced, above all in the robust optimization case.

In the optimal control case (Sect. 5.3) we have considered a simplified two-dimensional bypass
configuration, parametrized with respect to the anastomosis angle and the residual flow through
the occluded artery. Four different cost functionals taken from literature and suited for the
reduction of downstream vorticity were studied. The optimal anastomosis angle was found to
depend strongly on the total residual flow from the occluded branch, but not as strongly on
the particular shape of the flow profile. Some numerical tests confirm the robustness of the
obtained anastomosis angle with respect to the unknown residual incoming flows. We validated
the 2D model by comparing the results obtained against a 3D boundary control problem. Three
dimensional effects were found not to have a large impact on the total downstream vorticity at
moderate Reynolds numbers. The largest vorticity was observed for the case of total occlusion in
the host artery, so that a robust bypass shape should be tailored for that particular situation.

Similar conclusions were drawn, for two different bypass configurations, by considering a shape
optimization problem (Sect. 5.4). In this case, a FFD shape parametrization provides a strong
reduction in geometrical complexity – in term of the number of parameters, reduction is of about
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100 times with respect to traditional shape parametrization based on local boundary variation –
yet allowing to describe a wide family of shapes. Moreover, active control points can be selected
according to suitable ad hoc procedures. Also in the shape optimization case, different cost
functionals proposed for the reduction of downstream vorticity were studied. The condition
leading to the strongest development of vorticity cores is the presence of a complete occlusion,
for which the flow through the bypass starts creating a strong vortex in the proximity of the
anastomosis. Regarding the robust shape optimization, we find in both the aorto-coronary and
the femoro-popliteal case that a bypass should be designed mainly for the case of total occlusion,
in order to be robust over a range of possible residual flows.

The models we have presented are very simplified, since they do not take into account important
features like the pulsatility of the flow and the periodic detachment/separation of the flow layer
from the wall. Extension of the proposed applications to (i) more realistic three-dimensional
configurations and (ii) unsteady flows, already taken into consideration in several problems solved
by traditional discretization schemes (also in presence of uncertainties), represent the focus of
future research work, parallel to the development of the reduced basis methodology to more
complex unsteady and/or three-dimensional fluid dynamics problems.
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6 Inverse parametrized problems
for blood flows
In this chapter we present a second group of applications dealing with inverse identification
problems related to blood flows in parametrized geometrical configurations. Our goal is to
investigate the dependence of simple blood flows by shape parameters using the reduced framework
discussed in Parts I and II. After a brief survey on the interplay between blood flows and
geometrical features of the vessels, we present some possible strategies to represent realistic vessel
geometries based on suitable shape parametrization techniques. Thanks to shape parametrization,
we can deal with both simple shape identification problems and more realistic parametric coupling
problems for representing fluid-structure interactions. Then, three inverse identification problems
are presented and discussed: (i) identification of arterial wall and flow properties aiming at
atherosclerosis risk assessment in a deformable stenotic artery; (ii) identification of residual flows
in a bypass model; (ii) identification of shape features related to pathologies. Both a deterministic
and a statistical inverse framework are employed, fitting in both cases the many-query opportunity
context which has driven the development of our reduced framework.

6.1 Parametrized problems of interest in haemodynamics
As already pointed out in chapter 6, a strong mutual interaction exists between haemodynamic
factors and vessels geometry. On the one hand, flow adapts to the vessel shape; on the other hand,
it also exerts forces affecting the vessel behavior and its morphology, resulting in a closed-loop
mechanism. For instance, plaques occur preferentially in regions where arteries bend and in the
vicinity of branches, but at the same time the changes in vessel shape due to this pathology
clearly affect blood flows. Nevertheless, this interaction is far from being completely understood.
Thus, improving the knowledge of the interplay between flows and geometries may be useful not
only for the sake of design of better prosthetic devices, but also to characterize physical and
geometrical properties of the flows which may be related for instance to pathological risks, such
as in the case of narrowing or thickening of an arterial vessel.

It is therefore interesting to analyze the sensitivity of physical outputs related to viscous flows –
such as wall shear stresses, wall shear stress gradients, vorticity, dissipated energy – with respect
to shape morphology and possible variations. All these indices are influenced by lumen geometry,
characterize local haemodynamics effects and may assess a risk of artery occlusion. Hence, rather
than numerical simulations on a relatively small number of different configurations, it becomes
crucial to explore a wide family of geometries – thus spanning a broad variety of shapes – in
order to take into account their variability (for instance, among patients) and provide a more
complete representation of blood flows and related outputs with respect to shape variation.
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This may yield to the solution either of a forward problem – for any geometrical configuration, we
wish to characterize the flow – or of a more complex inverse problem – where we wish to identify
some properties, for instance related to the geometry, from data measurements. Thus, we need to
face both with real-time problems (whenever, given a new geometry, we are interested to obtain a
numerical approximation of the flow in a very small amount of time) and many-query contexts
(because of the need to span a large set of configurations, or to solve an inverse problem), for
which suitable model reduction techniques are requested, since full simulations may result very
expensive if they have to be carried out from the beginning for each new geometry.

In general, whenever some parameters related to the flow can be isolated as representative
features, parametrized frameworks and reduction techniques provide an excellent computational
opportunity in view of sensitivity studies. Several works have focused on flow parameters such as
Reynolds, Dean or Womersley numbers [58,85], aiming at the description of three-dimensional
characteristic flow patterns occurring where vessels bend, bifurcate or narrow. Other cases of
significative interest can be the blood flow analysis with respect to inflow/outflow boundary
conditions [20], or the sensitivity analysis of optimal shapes of artificial grafts with respect
to flow parameters [323, 114, 252]. Since we basically deal with reduced basis simulations of
two-dimensional flows, we do not take into account the effect of flow parameters such as Reynolds
or Dean numbers. Nevertheless, the reduced framework can be easily extended in view of dealing
with this kind of features [79,168], provided that the truth approximation beneath can provide
reliable numerical simulations of this kind of flows.
Besides parametric studies, inverse identification problems have been playing an ever increasing
role in haemodynamics, mainly because of the huge amount of data (provided for instance
through measures or images) that can be merged into a numerical model in order to get improved
simulations. In this framework – the so-called data assimilation procedures [76] – several problems
can be faced. However, our focus consists in exploiting the reduced framework analyzed in
chapter 4 for the solution of inverse parametrized problems, where the goal is the identification
of parameter values or combinations leading to some observed or measured flow conditions –
for the time being, through the assimilation of some (surrogate) output of interest. Although
restrictive (we will not deal neither with distributed observations of field variables, nor with the
identification of physical or geometrical fields), this class of problems can be seen as a first step
towards the integration of reduction strategies into more general inverse problems.

As motivated above, in the examples presented in this chapter we focus on parametrized flows
with respect to inflow boundary conditions, to geometrical configuration of blood vessels and to
physical properties related to the arterial wall. This choice is dictated by the capabilities of our
current reduced approximation framework and motivated by the investigation of inverse problems
related with shape variation fitting our parametrized context. In particular, we aim at:

1. providing a real-time simulator for blood flows in parametrized realistic geometries, un-
der some modelling simplifications, possibly supported by some shape identification pre-
processing stage;

2. performing parametric investigations of outputs of clinical interest over a range of possible
configurations;

3. identifying flow and/or shape parametric features from surrogate measures of physical
outputs through a suitable inverse identification process.

Since observations and measures are usually affected by experimental noise, we also want to deal
with some basic issues arising in uncertainty quantification, for instance in order to quantify how
these noise sources affect the predicted quantities of the simulations.
Results of the following sections are based on two works carried out in collaboration with
Quarteroni, Rozza [205] and also with Lassila [180].
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6.2 Reduced representation of realistic vessel geometries
The vascular networks are closed, tortuous systems of branching or merging junctions of vessels
with widely different diameters and lengths. On the one hand, the complexity of the network
arises from the biological functioning, the complicated structure and the large number of blood
vessels; on the other hand, there is a huge variability between individuals in vessel shape,
path and branching. These features make the numerical simulation of blood flows in realistic
geometries a very challenging task. If mathematical modelling and numerical simulation of large
portions of (or in the whole) the arterial network is almost impossible without resorting to a
geometrical multiscale paradigm [203], in order to perform exploration studies related to the
geometrical variability of a single arterial portion repeated full numerical simulations over a set
of different configurations are in order. This may be helpful for instance in view of investigating
the relationship between local geometrical variations and the occurrence of lesions or pathologies.
Typical portions of cardiovascular network where they may develop are made up by curved vessels
and bifurcations; an important segment where vessel diseases are often clinically observed is the
human carotid artery, which supplies blood to the head and neck. Of the two common carotid
arteries, which extend headward on each side of the neck, the left originates in the aortic arch,
while the right originates in the brachiocephalic trunk (the largest branch departing from the
aortic arch). Each common carotid artery (CCA) bifurcates in the lower neck into two branches
(see Fig. 6.1), the internal and the external carotid arteries (ICA and ECA, respectively). Stenoses,
that is the narrowing of the inner portion of an artery, manifest quite often in the ICA. It is
well known that (i) the carotid shape yields a complex flow dynamics, (ii) its anatomy changes
considerably among individuals, and (iii) the risk of strokes is directly related to carotid lesions
severity. All what is reported above motivates the effort to characterize blood flows in this arterial
tract.

Figure 6.1: Left: schematic representation of the carotid artery bifurcation. Right: illustrative
carotid magnetic resonance angiography (MRA), showing an 80% stenosis of the proximal left
internal carotid artery, the right common carotid artery (CCA), vertebral artery (VA) and the
internal jugular vein (IJV). Source: Eur. Radiol. (2009) 19: 2654–2662.

Several results have been obtained in the past two decades. We cite the first contributions by Ku
and Giddens [171,172] in the analysis of pulsatile flows in a first model carotid bifurcation, the
works by Perktold [240, 241] on the geometrical factor in atherogenesis, and (among a very long
list) the contributions by Kleinstreuer, Steinman [213,204] and Lee [187], related to effects of the
carotid artery geometry on blood velocity profiles and distribution of physical indices of interest.
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Figure 6.2: Different carotid bifurcation specimens obtained by autopsy (adults aged 30-75).
Source: J. Biomech. (2001) 34: 1555–1562.

Furthermore, we can observe a strong variability in geometry and morphology of carotid artery
bifurcations (see Fig. 6.2) making unavoidable the setting of a numerical framework able to
manage with local and global shape characteristics. Whether several works have been focused
on the numerical simulation of blood flows in one or few carotid artery bifurcations – obtained
directly by medical images, by using computational meshes reconstructed from patient data in a
very precise way – only few works [45, 169, 187] have tried to investigate the relationship between
infra-individuals variations of some risk factors and geometrical indices.
With this aim, some simplified shape parametrizations of the carotid bifurcation have been
introduced, mainly based on sections areas or diameters, curvature of the branches, bifurcation
angle and so on. In particular, we can mention (see Fig. 6.3):

• Y model: introduced in [35, 172] and derived from biplanar angiograms, it defines a carotid
bifurcation as a function of the diameter D of the CCA, the diameters di and de of the ICA
and ECA outflows, the diameters at the proximal section dr, mid-sinus section ds of the
ICA, the distance ls between proximal and midsinus sections, the angles αi, αe between the
ICA (resp. ECA) and the CCA. A second version, using inwardly curved branches instead
of straight branches, has been discussed in [241]; here a further parameter dm representing
the mid-sinus cross section is introduced, whereas ds represents the diameter of the section
where the maximum sinus width occurs. Because of the curvature, two angles between
CCA and ICA are considered, at the origin of the branching (αi,o) and at its end (αi,e).

• Tuning fork model: introduced in [83] and derived from carotid specimens obtained from
autopsy, it represents the carotid bifurcation like a tuning fork. The geometrical parameters
are in this case the five diameters D, di, de, dr and ds, the bifurcation angle α = αi + αe,
the distance ls (as in the previous case), the distance between the two branches L, and two
more lengths representing the sectional diameter du of the ICA at the end of the sinus and
the distance G of this section from the divider tip. A parametric CAD model based on the
tuning fork model has been introduced in [46,45] and is based on the following parameters:
the ICA and ECA angles θi, θe, the ICA and ECA diameters di, de, the position d of a
Bézier curve control point P , which enables to control the maximum width of the sinus
bulb. Also the inner curve of the bifurcation is described by means of a Bézier curve.

With respect to these models, our approach to define a shape parametrization is based on a free
choice of the input parameters, which are given by the displacements of some control points located
on the boundary of a reference carotid configuration; hence, deformed shapes will be simply
obtained by moving the control points. In this way, we get a versatile shape parametrization, since
control points may be located either a) on peripheral positions on the branches for describing
global deformations or b) on selected positions for modeling local modifications such as stenoses
or restrictions.
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Figure 6.3: Parametrized models of the carotid artery bifurcation. From left to right: Y model
with straight branches, Y model with curved branches, tuning fork model and parametric tuning
fork CAD model.

Moreover, since we are interested in performing real-time blood flow simulations (see Sect. 6.3),
the shape parametrization has to be low-dimensional. For these reasons, a parametrization
based on radial basis functions (RBF) is a good compromise: despite its low-dimensionality, its
interpolatory nature enables to track some selected points on the shape boundary, and to account
for both local and global deformations depending on the chosen basis function (see Sect. 2.7).

Figure 6.4: Radial basis function shape parametrization models of the carotid artery bifurcation.
Top: reference configuration. Bottom: control points (represented as blue dots) for the definition
of global (left) and local (right) shape deformations. Green crosses represent registration points
needed for shape reconstruction, see Sect. 6.3.1.

In particular, we deal either with global and local deformations of the two-dimensional reference
configuration represented in Fig. 6.4, obtained by displacing a set of control points in the cross
direction with respect to the vessel (i.e. in the vertical direction in Fig. 6.4). The reference shape
has been obtained as a longitudinal two-dimensional projection of a carotid configuration extracted
from medical images and post-processed. For instance, to get global shape deformations, p = 7
control points have been located at the extremities of the three branches and cubic RBFs have
been used in order to define the global parametric map; instead, to get local shape deformations,
p = 4 control points have been located in one of the branches and close to the bifurcation, and
Gaussian RBFs have been used in order to describe local but moderate deformations representing
possible stenoses. Some representative deformations obtained within this RBF setting by are
shown in Fig. 6.5. We remark that, instead of a fixed, a priori chosen location of the control
points, we may select a good set of control points apt to represent a given atlas of shapes (e.g.
obtained from MRA or Doppler images), e.g. through a greedy-like procedure, starting from a
suitable reference averaged configuration. This possibility is currently under investigation [182].
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Figure 6.5: Different carotid bifurcations obtained through the RBF parametrizations by displacing
the control points (left: global deformations, right: local deformations).

Figure 6.6: Doppler sonography of carotid stenoses. Arrow indicates point of maximum stenosis,
and arrowhead indicates normal distal internal carotid artery. Source: Americ. J. Neuroradiol.
(2000) 21: 639–642.

In the end, we point out that, even if RBF-based shape parametrizations are low dimensional and
defined through a general interpolation tool, they allow to represent complex shapes, approaching
some features shown by true vessel configurations, in case both of global large deformations (see
Fig. 6.2) and of smaller, localized deformations (see Fig. 6.6). The capability to represent complex
and realistic shapes by few control points, and corresponding deformations through a small set of
parameters, is a strong key point in view of rapid flow simulations.

6.3 Rapid blood flow simulations in parametrized vessels
Ideally, numerical simulations of blood flows ought to be carried out in a very fast way. This
is relevant to provide a quantitative output/response for each new (possibly patient-specific)
geometrical configuration and derive some metamodel able to explain the dependence of some
output of clinical interest with respect to simple shape or flow features.
We show how to take advantage of the reduced framework to address these goals. We present two
snapshot applications related to a set of carotid artery bifurcations, dealing with (i) simulation
in simplified reconstructed geometries, where each configuration can be easily represented as a
deformation of a reference configuration, and (ii) a sensitivity analysis with respect to shape
parameters. A recent application to fast patient-specific simulations close to the former case can
be found in [212], while some results related to the latter are presented in [45,169].
We remark that shape sensitivity analyses may be relevant in this context also for stenting
procedures, where carotid endarterectomy may require the possibility to modify or reconstruct
vessel geometry in order to optimize the flow characteristics therein.
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6.3.1 Shape parameter identification

We address in this section a simplified instance of geometrical reconstruction from data, ideally
suited for a possible application of the proposed methodology in a patient-specific framework.
Shape reconstruction consists of recovering a transformation that establishes some desired
correspondences between two geometrical configurations, according to some similarity/distance
measures. This process, and more generally, representation of shapes and their deformations, is
central in many applications of image processing and medical image analysis, such as segmentation
(extraction of geometrical structures from images), tracking (recovering the temporal evolution
from consecutive frames), or registration.

Our (limited) ambition is to set a (much simpler) preliminary procedure in order to reconstruct a
parametrized version of a given shape configuration, by means of the RBF setting presented in
the previous section, on which we aim to perform a flow simulation. In order to be compatible
with the reduced real-time framework, the reconstruction procedure has to be (i) based on a
small number of parameters and (ii) performed in a very small amount of time. Let us denote
by S the initial shape which has to be deformed in order to reconstruct the target shape Td by
means of the parametric map T (·;π). Moreover, let us introduce a shape representation R(·), a
distance (or similarity/dissimilarity metric) d(·) defined in the space of representations and a loss
function ρ(·). The reconstruction process can be in general expressed as a minimization problem:

π̂ = arg min
π∈Dad

ρ(d(R(T (S;π)),R(Td))) + βω(π) (6.1)

where Dad is the space of admissible parameters, ω(π) is a suitable regularization term and β > 0
is a weighting (regularization) parameter. A usual choice is ρ(s) = s2 for the loss function and
the Euclidean distance for d(x); more complex transformations or weighting can be introduced in
order to improve the robustness of the matching.
The most difficult task is the choice of the shape representation R(·). Many strategies have been
developed (see e.g. [216,38]). In view of model reduction, we represent a shape configuration by
means of a set of NR registration points (or landmarks) {Rj}NRj=1 ∈ S, such that

R(T (S;π)) = T (Rj ;π), j = 1, . . . NR;

in the same way, we suppose to know the target position

R(Td) = Ro
j , j = 1, . . . , NR

of the registration points in the target configuration Td. Moreover, we introduce a set of control
points {Pi}NCi=1 on the initial shape in order to define a parametric RBF mapping T (·;π), whose
image is given by {Po

i }
NC
i=1 (see Fig. 6.7).
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Figure 6.7: Schematic diagram of the shape reconstruction: above, the reference (or initial)
configuration S, the unperturbed control points Po

i , i = 1, . . . , NC (in black), and the unperturbed
registration points Rj , i = 1, . . . , NR (in green); below, the target configuration Td, the target
control points Po

i (in red), and the target registration points Ro
j (in black).
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The idea is that, since the RBF mapping may fail in matching the two configurations, the
registration points can be used to drive the mapping in order to enhance its fitting capabilities.
In this way, the parameter identification problem (6.1) becomes a matching problem between two
point-sets, that can be written as a least squares minimization problem

π̂ = arg min
π∈Dad

NR∑
j=1
‖T (Rj ;π)−Ro

j ‖2 + β

NC∑
i=1
‖T (Pi;π)−Po

i ‖2
 , (6.2)

where the regularization term (a quadratic function of π) is given by the distance between
the images {T (Pi;π)} of the control points and their target positions {Po

i }
NC
i=1. Note that the

introduction of the registration points does not increase the problem dimension, as the number
of input parameters of shape representation (related to the control points of the map) remains
unchanged. Moreover, we require that control points are scattered all over the domain in order
to describe a wide family of shapes and global deformations.

In particular, we build a RBF parametrization by exploiting the first setting presented in Sect. 6.2
(cubic RBF, NC = 7 control points on the branches and p = 7 input parameters π1, . . . , π7,
given by the vertical displacements of the control points, being πi ∈ [−0.2, 0.2] ∀ i = 1, . . . , 7).
Concerning the shape reconstruction, the parameter identification procedure (6.2) has been tested
on 20 different configurations1, by considering NR = 12 registration points, divided in 6 couples,
and placing two couples of points on each carotid branch. The minimization of the cost functional
(6.2) takes (average over the 20 run cases) 5.3 s by SQP optimization. We remark that the choice
of the weighting parameter β > 0 in (6.2) plays an important role (see Fig. 6.8): too small values
do not allow a good control of the shape at the extremities, whereas penalizing too much the
matching constraint on the control points results in large deformations on the central sections. A
possible way to select a good weighting parameter β > 0 might be based on the minimization of
a second cost functional, i.e. we may select

β̂ = arg min
[β−,β+]

L(β),

where L : [β−, β+]→ R is a simple objective to evaluate. Two examples we considered are: (i)
L1(β) = J(π̂, β), where J(π, β) and π̂ = π̂(β) are the cost functional and the solution of problem
(6.2); the following objective:

L2(β) =
(

1− E(d(π̂(β)))
E(dT )

)2
,

where E(·) > 0 is the elastic energy of the deformation, d(π) = T (x;π) − x the deformation
produced by the mapping T (·;π) and dT the deformation of the target shape with respect to the
reference configuration (if available). We experienced better reconstruction results by using the
functional L2(·), often resulting in a convex function of β. The two configurations reported in
Fig. 6.8 refer to the β̂ values computed by using these two criteria on the same test configuration.

Concerning flow simulation, we use a steady Navier-Stokes model by imposing (see Fig. 6.4)
no-slip conditions on the wall boundary Γw, homogeneous Neumann conditions (free-stress)
on the outflow sections Γout and a Poiseuille profile vin on the inflow boundary Γin, being
max |vin| = 30cm/s. Resulting Reynolds number is of order 300.
Before constructing the RB approximation of the flow problem, we recover the affinity assumption
through the EIM procedure, by obtaining an affine expansion of Qa +Qb +Qc = 78 terms. The
problem is discretized with NV +NQ ≈ 26,000 degrees of freedom, using P2/P1 finite elements;

1The (surrogate) target configuration to be reconstructed has been generated as a random FFD of the reference
geometry (built on a 8× 6 lattice of control points) in order to avoid a scaling/translation preprocessing.
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Figure 6.8: Shape parameter identification with β = 0.01 (top) and β = 1 (bottom); these values
of β result from the minimization of L1(β) and L2(β) objectives, respectively.

the dimension of the computed RB space is 3N = 30 by choosing a tolerance εRBtol = 2.5 · 10−3 for
the greedy procedure. This yields the possibility to perform almost real-time (steady) blood flow
simulations, each query π → YN (π) requiring O(1 s). In the case at hand, solving the nonlinear
RB Navier-Stokes problem requires about 2.3 s, thus resulting in overall Online costs (for shape
reconstruction and flow simulation) of O(10 s).

This example may be seen as an extremely simplified version of a possible application of reduced
order modelling in this context. Accounting for the storage of a large dataset of patient-dependent
shape configurations (from medical images) and corresponding flow fields obtained by numerical
simulation (Offline or pre-deployment stage), the evaluation of the flow field (and related outputs
of clinical interest) for a new configuration can be afforded during the Online (or deployed) stage
thanks to the reduced-order model. In this way, the Offline stage requires huge computational
power or storage capacity, but is run before the Online stage. The Online task is thus affordable
and capable to provide the outcome of interest in a very rapid time.

6.3.2 Sensitivity analysis of blood flows and metamodels

A second natural application of our reduced framework deals with sensitivity analysis of blood
flows with respect to physical/geometrical input parameters and the possibility to draw simple
metamodels to describe input/output relationships.
Here we present two possible examples, dealing with parametrized flows through (i) an idealized
bypass configuration and (ii) a carotid bifurcation in presence of growing stenoses.

Case I. Parametrized flows through an idealized bypass configuration

In the first case, we exploit the geometrical setting already introduced in Sect. 5.3 for the analysis
of an optimal control approach to the bypass design problem (see Fig. 5.7). Steady Navier-Stokes
flows are considered through an idealized bypass configuration, parametrized with respect to the
Reynolds number µ1 = Re ∈ [10, 80] and the magnitude of the residual flow µ2 = ω ∈ [0, 2.5].
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Figure 6.9: RB approximation of blood flows in two different reconstructed configurations (target
and reconstructed shapes, velocity and pressure fields).

We are interested in evaluating the minimum downstream shear rate:

J (µ) = ν min
x1∈Γwall

{
∂v1

∂x2

∣∣∣
x2=0

}
, (6.3)

where in this case Γwall = {(x1, x2) : x1 ∈ (0, 5), x2 = 0}. We exploit the RB approximation
already analyzed in Sect. 5.3.1 to evaluate the flow field and the output J (µ) over the parametric
set D ∈ [10, 80]× [0, 2.5]. Two examples of computed RB solutions are reported in Fig. 6.10. We
remark the different position of the minimum shear rate in the two cases.
Thanks to the rapid Online evaluation afforded by the RB approximation, we can evaluate the
flow field and the output over a test sample Ξtest randomly selected over D of size ntest = 500
in 212 seconds, thus giving an average time of 0.42 seconds for each input/output evaluation
µ → JN (µ). We also compute the x1 position of the minimum shear rate for each case. The
results are reported in Fig. 6.11. We can observe a stronger sensitivity of the output with respect
to the parameter µ2 = ω; moreover, the x1 location of the minima cluster in two groups, for
µ2 = ω < 0.5 and µ2 = ω > 0.5. Recalling the results presented in Sect. 5.3.2, this behavior can
be related to the vorticity pattern. In fact, the primary vortex behind the incoming jet tends to
disappear as we increase ω, as soon as secondary vortices generated by the peak residual flow
from the occluded branch appear: this explains why for ω < 0.5 the x1 position of the minimum
is moved back, while it is moved forward for ω > 0.5.

In order to explain the behavior of this simulation model – in terms of a functional relationship
between the output and the input parameters – we consider a metamodel computed through a
response surface method (RSM), which is based on low-order polynomial regression and aims at
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Figure 6.10: Velocity profiles [cm/s], pressure fields [dyn/cm2] and shear rate on Γwall for the
idealized bypass configurations: µ ∈ (60, 0) (left) and µ = (80, 2.5) (right).

representing the output (or response) surface as a polynomial function of the input parameters.
From Fig. 6.11 it is rather evident the presence of a curvature effect in the response. Thus, we
approximate the relationship µ→ JN (µ) through a second-order polynomial regression model:

JRSM (µ) = β0 +
p∑
i=1

βiµi +
p∑
i=1

βiiµ
2
i +

p∑
i=1,j=1
i<j

βijµiµj + εreg,

where β0, . . . , βpp are the coefficient of the metamodel and εreg is the error term including the
lack of fit of the RSM surface. The response surface obtained by fitting2 a quadratic model over
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Figure 6.11: Computed values (left) and x1 positions (right) of the minimum shear rate JN (µ)
for a random sample Ξtest ⊂ D of size ntest = 500 (RB approximation).

2Several design optimality criteria are available for choosing the input combinations where we intend to simulate
the output values, where the response surface is fitted, in order to get an accurate estimation of the RSM coefficients.
We do not take care of this issue in these illustrative examples.
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a randomly selected train sample Ξtrain ⊂ Ξtest of size ntrain = 25 is given by

JRSM (µ) = −1.328− 0.019µ1 + 2.046µ2 − 0.0085µ1µ2 + 0.0001µ2
1 − 0.740µ2

2,

and is represented in Fig. 6.12, together with the relative error (JN (µ) − JRSM (µ))/JN (µ)
between the RB approximation and the RSM metamodel. The RSM model captures the larger
sensitivity of the response with respect to the parameter µ2 = ω. We observe that a quadratic
response surface provides a good approximation of the input/output relationship, except for a
limited region in the parameter space – µ2 ∈ (0.5, 1) – corresponding to the transition between
the two clusters highlighted above.
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Figure 6.12: Minimum shear rate JRSM (µ) computed through a response surface method of
degree 2 (left) and relative error between the RB approximation and the RSM metamodel (right)
for a random sample Ξtest ⊂ D of size ntest = 500.

Case II. Parametrized flows through a set of carotid artery bifurcations

A second case we have considered deals with flows through a carotid artery bifurcation in presence
of growing stenoses. We exploit the RBF parametrization introduced in Sect. 6.2 (see Fig. 6.5,
right) for local deformations (Gaussian RBF with 4 control points close to the bifurcation and
p = 4 input parameters π1, . . . , π4, given by the vertical displacements of the control points, being
πi ∈ [−0.25, 0.25] ∀ i = 1, . . . , 4).

Before constructing the RB approximation of the flow problem, we recover the affinity assumption
through the EIM procedure, by obtaining an affine expansion of Qa + 2Qb +Qc = 62 terms. The
problem is discretized with NV +NQ ≈ 26,000 degrees of freedom, using P2/P1 finite elements;
the dimension of the computed RB space is 3N = 45 by choosing a tolerance εRBtol = 2.5 · 10−3 for
the greedy procedure. In the case at hand, Online evaluations of the Navier-Stokes solution takes
about 2.5 s. Four examples of computed RB solutions are reported in Fig. 6.13. We remark the
strong sensitivity of the flow with respect to varying diameters dc = dc(π1, π2) of the CCA at the
bifurcation and db = db(π3, π4) of the mid-sinus level of the ICA, respectively.

Here we are interested in evaluating the viscous energy dissipation:

J (π) = ν

2

∫
Ωo(π)

|∇v(π)|2dΩo (6.4)
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Figure 6.13: Velocity profiles [cm/s] in four different carotid bifurcations parametrized with
respect to the diameters dc = dc(π1, π2) of the CCA at the bifurcation and db = db(π3, π4) of the
mid-sinus level of the ICA.

and to analyze its behavior with respect to the diameters dc = dc(π1, π2) and db = db(π3, π4) of
the two branches in presence of different degrees of occlusion. We consider symmetric variations
for each couple of parameters tuning a diameter, i.e. π2 = −π1 and π4 = −π3. In Fig. 6.14 we
display the viscous energy dissipation as a function of the two diameters, obtained from the
RB flow simulation over a test sample Ξtest of ntest = 500 parameter values. As expected, flow
disturbances caused by stenoses lead to higher values of the dissipated energy, the maximum
occurring for the smallest diameters on both sections.
In order to better understand the role of the two diameters on the resulting output, we consider
a metamodel computed through a quadratic RSM as in case I. The response surface fitted over a
randomly selected train sample Ξtrain ⊂ Ξtest of size ntrain = 20 is given by

JRSM (π) = 0.1637− 0.1201dc − 0.0713db − 0.003dcdb + 0.0479d2
c + 0.0353d2

b ,

and is represented in Fig. 6.15, together with the relative error (JN (µ) − JRSM (µ))/JN (µ)
between the RB approximation and the RSM surface.

The RSM model approximates very well the behavior of the input/output relationship (relative
error is less than 0.05 over the whole diameters range). Output variations seem to be more
sensitive to the variations of the diameter dc of the common carotid artery (closer to bifurcation)
than to the variations of the diameter db of the internal carotid artery.
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Figure 6.14: Computed values of the viscous energy dissipation JN (µ) for a random sample
Ξtest ⊂ D of size ntest = 500 (RB approximation).
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Figure 6.15: Viscous energy dissipation JRSM (µ) computed through a response surface method
of degree 2 (left) and relative error between the RB approximation and the RSM metamodel
(right) for a random sample Ξtest ⊂ D of size ntest = 500.

The forthcoming sections are devoted to the solution of three inverse problems related to
applications of haemodynamics interest. Based on the measure of a pressure output, we try to
recover the structural coefficients in a steady FSI model (Sect. 6.4), the magnitude of the residual
flow through a bypass graft (Sect. 6.5) and the diameters of the stenosed branches in a carotid
bifurcation (Sect. 6.6).

6.4 Atherosclerosis risk assessment in elastic arteries
We present in this section a first inverse problem related to the identification of structural
parameters in a steady FSI problem, based on the reduced model introduced in Sect. 4.6. Fluid-
structure interaction problems are of great interest in haemodynamics: for instance, in pulsatile
flows through compliant vessels, the wall deformability causes large displacement effects that
cannot be neglected when attempting to model the fluid dynamics. Thus, estimating the structural
parameters related to the arterial wall may greatly enhance the quality of the results [239,34].
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Other problems of interest related to estimation of physiological parameters may arise e.g. in
electrocardiography [41], as well as in patient-specific design of biomedical devices, such as
stents [306] or dental implants. RB techniques have been recently applied e.g. to estimate the
elastic moduli of the interfacial tissue between dental implants and the surrounding bones in [325].

Here we consider the model reduction of a simplified fluid-structure interaction model predicting
flow over a stenosis inside an artery. To estimate the structural parameters related to arterial
wall, we need to solve two inverse identification problems: (i) the former to formulate the FSI
coupling as a parametric coupling under the form (4.43), and (ii) the latter for the identification
of the elastic moduli entering in the structural equations from some output measurements.
Following the approach presented in Sect. 4.6, we consider a steady Navier-Stokes flow and
represent an ideal stenosed arterial segment by the domain Ωo := (0, L)× (ws, R̄+ η), where R̄
and L are the width and length of the artery in the reference configuration, respectively. We
denote by η ∈ H2

0 (0, L) the (unknown) function representing displacement of the upper wall of
the artery from the reference configuration, and by ws the bottom wall shape function

ws(x1) :=

h cos π(x1 − xs)
2δ if xs − δ < x1 < xs + δ

0 otherwise,
(6.5)

where δ > 0 is the width, xs the centerpoint, and h the height of the stenosis (see Fig. 6.16).

Figure 6.16: Definition of the geometrical domain for the stenotic artery case.

The reference fluid domain – with R̄ = 1 cm and L = 5 cm – is represented in Fig. 6.17. The
parametrization of its displacement is performed with a 12 × 2 regular grid of control points,
where only the 8 central points on the upper row were allowed to move freely in the y-direction.
The admissible parameter range is πi ∈ [−0.25, 0.25] for i = 1, 2, . . . , p = 8. In particular, the two
left- and rightmost columns of control points are kept fixed in order to guarantee a parametric
displacement that conforms to the boundary conditions set upon the structure. The parabolic
inflow velocity fixed as vin = (5(1 − (y − 0.5)2/0.25), 0) cm/s, yielding a Reynolds number of
about Re = 80 at the location of the stenosis.
We recover an affine expansion of Qa + 2Qb +Qc = 106 terms through the EIM procedure. The
problem is discretized with NV +NQ ≈ 35,000 degrees of freedom, using P2/P1 finite elements;
the dimension of the computed RB space is 3N = 24 by choosing a tolerance εRBtol = 5 · 10−2

for the greedy procedure. Convergence of the parametric FSI coupling algorithm (4.43) requires
about 10− 15 iterations, each step involving the solution of a RB problem for the (steady) flow
field and a FE (1D) problem for the structural displacement.

In Fig. 6.18 we display a RB simulation of the flow field, namely the velocity streamlines in the
case that the artery is rigid and does not deform. The stenosis induces a strong double vortex
downstream, resulting in an area of low wall shear stress immediately after the stenosed part. The
presence of the vortices in the reduced solution already with quite few basis functions highlights
the fact that important physical features of the flow can be captured by the RB method as long
as the features are part of the snapshots used to construct the basis (i.e. recirculation zones,
viscous boundary layers, etc.). Thus a proper sampling procedure via the greedy algorithm is
absolutely mandatory to guarantee a good “physical” selection of states for the reduced system.
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Figure 6.17: Reference domain Ω, FE mesh and FFD control points used to model the displace-
ments of the upper wall for the FSI problem (eight control points are allowed to move).

Figure 6.18: Velocity magnitude and streamlines of the flow in a rigid stenosed artery (RB
simulation).

Figure 6.19: Velocity magnitude and streamlines (steady Navier-Stokes flow) in compliant stenosed
artery (RB simulation) for different elastic moduli values, E ∈ {0.35, 1.85} and G ∈ {0.2, 1.7}.

We also point out that the shape of the upper wall has a very strong effect on the type of vortices
created and ultimately the potential growth of the stenosis. In Fig. 6.19 the RB simulation of
the flow is given for each of the four corners of the parametric uncertainty domain. It can be
observed that the more compliant the arterial wall is (small values of elastic moduli), the larger
is the recirculation region created behind the stenosis. To explore the uncertainty related to the
arterial wall properties, we define the uncertainty parameters ω = (E,G) as the Young modulus
and the shear modulus being3 E ∈ [0.35, 1.85] · 106 dyn/cm2 and G ∈ [0.2, 1.7] · 106 dyn/cm2.
The rest of the material constants in the 1D structural equation (4.38) were chosen as νP = 0.5,
K = 0.9643, and h = 0.1 cm. The fourth-order perturbation term was chosen as ε = 0.1 to obtain
reasonable displacements and enhance the convergence for the partitioned algorithm.

To measure the effect of the uncertainty in the wall properties we look at four different output
functionals, such as the total viscous energy dissipation:

3The unit dyn/cm2 is omitted from hereon in for brevity and should be implicitly understood.
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J1(π,ω) = ν

2

∫
Ωo(π)

|∇v|2 dΩo, (6.6)

the minimum downstream shear rate (where in this case Γwall = (xs + δ, L)):

J2(π,ω) = ν min
x1∈Γwall

{
∂v1

∂x2

∣∣∣
x2=0

}
, (6.7)

the mean downstream shear rate:

J3(π,ω) = ν

|Γwall|

∫
Γwall

[
∂v1

∂x2

∣∣∣
x2=0

]
dx1, (6.8)

and the mean pressure drop in the stenosed section:

J4(π,ω) =
∫

Γin

p dx2 −
∫

Γout

p dx2. (6.9)

The first output measures the total energy loss in the flow due to the stenosed section, including
recirculation effects, the second and third outputs are local indicators that have been linked to
plaque buildup and onset of atherosclerosis (see e.g. [299]), whereas the fourth output is obtainable
from noninvasive measurements and can be used as an indicator or surrogate for the first three
outputs. Moreover, we denote by Ji(ω) = Ji(π∗(ω),ω) the output as a function of the structural
parameters, where π∗(ω) is the value of the shape parameters computed through the parametric
coupling algorithm, given the structural parameters ω. In Fig. 6.20 we present the outputs
J1, . . . , J4 evaluated at 100 randomly selected sample points in the parametric uncertainty region.

0 0.5 1 1.5 2
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 

 

Young modulus E

S
he

ar
 m

od
ul

us
 G

Viscous energy dissipation J
1

0.445

0.45

0.455

0.46

0.465

0.47

0.475

0.48

0.485

0 0.5 1 1.5 2
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Young modulus E

S
he

ar
 m

od
ul

us
 G

Minimum downstream shear rate J
2

 

 

−0.66

−0.64

−0.62

−0.6

−0.58

−0.56

−0.54

0.5 1 1.5 2
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 

 

Young modulus E

S
he

ar
 m

od
ul

us
 G

Mean downstream shear rate J
3

0.4

0.41

0.42

0.43

0.44

0.45

0 0.5 1 1.5 2
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 

 

Young modulus E

S
he

ar
 m

od
ul

us
 G

Mean pressure drop J
4

14.8

15

15.2

15.4

15.6

15.8

16

16.2

16.4

16.6

16.8

Figure 6.20: Flow observations in the compliant stenosed artery: values of the output J1, J2, J3
and J4 at randomly sampled points in the parametric uncertainty range (RB simulations).
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Some conclusions can be drawn:

1. The effect of the Young modulus E is considerably larger than the effect of the shear
modulus G on both functionals (6.6)-(6.7), at least for this simplified structural model.

2. The viscous dissipation is a monotonic function of the Young modulus, i.e. the stiffer
the arterial wall the more dissipation is observed. This is consistent with the fact that
atherosclerotic stiff arteries are at greater risk of stenosis occurrence.

3. The minimum shear rate depends primarily on the Young modulus and behaves in a
nonlinear way. There seems to be an optimal range of the Young modulus (E ≥ 0.7), after
which the observed shear rate starts to go down again. This is likely due to the fact that
further increasing of the compliance of the structure leads to a larger recirculation zone
and a strong separation of the flow from the bottom wall.

4. The mean downstream shear rate has different behavior from the minimum downstream
shear rate. This is likely due to the strong local shear rate induced by the jet impacting
the downstream arterial wall.

So far, we have considered a forward problem with respect to the structural parameters ω = (E,G),
analyzing their role in the coupled FSI problem by measuring some outputs of interest under the
form J(ω) = J (π∗(ω),ω) – yet, each input/output evaluation relies on an inverse identification
problem for sake of geometrical coupling, in order to determine π∗ = π∗(ω) for any given ω. We
move on to the solution of an inverse problem related with the structural parameters.

6.4.1 Identification of elastic moduli based on measured pressure drop

An inverse problem of interest in haemodynamics is the determination of arterial system properties
from pressures and flows measured at the entrance of this system [262]. Usually, some reduced
arterial system models are fitted to data, yielding to the identification of parameters entering
in the model as arterial properties. Assuming the stenosis geometry described above, here we
consider a modified version of this problem, by asking whether it is possible to identify the material
properties ω = (E,G) by measuring the inflow and the (mean) pressure drop s∗ := J4(ω∗) over
the segment. It is clear from Fig. 6.20 that in general the shear modulus can not be reliably
identified, so we concentrate first on identification of the Young modulus, assuming that the value
of the shear modulus is known.

We show the solution of the deterministic inverse problem for two different observed values of
the Young modulus: E = 1.2334 · 106 dyn/cm2 and E = 0.9175 · 106 dyn/cm2, and a fixed value
G = 0.5000 dyn/cm2 for the shear modulus. The corresponding values for the pressure drops
were J4 = 16.3881 dyn/cm2 and J4 = 15.9390 dyn/cm2. In the first case we assume 1% additive
noise in the measurements, in the second case 3% noise.
The results of the inverse identification problem without regularization are given in Table 6.1 for
one particular noise realization. For the first case a very good reconstruction Ê of the value of the
Young modulus E is obtained, while in the second case the estimate is quite poor. This is due to
the low sensitivity of the pressure drop J4 to the material parameters, leading to increasingly
poor reconstruction as the noise level is increased.

Young modulus E Inverse estimate Ê Relative error # optim iters # PDE solves
1.2334 1.2253 0.66 % 10 45
0.9175 0.6501 29.1 % 9 41

Table 6.1: Results of the deterministic inverse problem of haemodynamics in two different cases.
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6.4. Atherosclerosis risk assessment in elastic arteries

Following instead the Bayesian approach, we provide a probability distribution function for the
elastic moduli ω = (E,G) encompassing the uncertainties related to measurements. If we assume
that the prior distribution is p(ω) ∼ U([0.35, 1.85], [0.2, 1.7]), i.e. E and G are two independent
uniformly distributed random variables, and that the measurements of the pressure drop are
independent and normally distributed variables with expected value equal to the true mean
pressure drop J4(ω) and variance σ2, i.e. p(s |ω) = p(s− J4(ω)) ∼ N (0, σ2), then we obtain the
posterior probability density p(ω | s) given by

p(ω | s∗) ∝

 exp
(
− 1

2σ2 (s∗ − J4(ω))2
)

if ω ∈ [0.35, 1.85]× [0.2, 1.7],

0 otherwise.
(6.10)

The posterior distribution p(ω | s∗) for the two different test cases and their observations s∗ are
shown in Fig. 6.21. In both cases we see that only the Young modulus E is identifiable from the
pressure drop alone, and the value of the shear modulus G can have an effect on the maximum
likelihood estimate of E.
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Figure 6.21: Contour plot of the posteriori distribution p(ω | s∗) for two different cases: (s∗, σ) =
(16.3881, 0.17) and (s∗, σ) = (15.9390, 0.51). Only the Young modulus E can be reliably identified.

From the second case we already observed that increasing the noise very quickly smears out the
probability distribution. Even when the topology of the artery is assumed to be known, the inverse
problem of haemodynamics is rather ill-posed and susceptible to noise. A purely deterministic
approach to the solution of this inverse problem can therefore mask the underlying uncertainty
and lead us to erroneously optimistic conclusions about the quality of inverse estimates such as
those dictated in Table 6.1. If no prior information is at hand concerning the indeterminable
parameters, such as the shear modulus, the inverse problem of haemodynamics can not be reliably
solved.

6.4.2 Identification of shear rate based on measured pressure drop

Alternatively to the inverse problem faced in Sect. 6.4.1 we can raise the question: if we have a
measurement s∗ of the pressure drop, can we predict the shear rate on the arterial wall downstream
from the stenosis? Even if we have shown that the elastic moduli of the arterial wall are not
strictly identifiable from the pressure drop measurement alone, it might still be possible that the
wall shear rate (which in the case of predicting atherosclerosis risk is the primary quantity of
interest) can be reasonably accurately identified. In this way the pressure drop measurement
would act as a surrogate for identifying the wall shear rate.
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Chapter 6. Inverse parametrized problems for blood flows

As the value of the mean shear rate J3(ω) can be obtained by performing the forward simulation
given the material parameters ω, we can explore the posterior p.d.f. p(J3(µ) | s∗) provided
by means of the Metropolis-Hastings algorithm, introduced in Sect. 4.5.2. In Figs. 6.22-6.23
we display the observed histograms for the distribution of the minimum shear rate J2 and the
mean shear rate J3 in two cases, given by (s∗, σ) = (16.3881, 0.17) and (s∗, σ) = (15.9390, 0.51),
respectively. We can remark how the pressure drop can indeed be used to determine the minimum
value of the shear rate downstream from the stenosis, while the mean shear rate distribution is
more smeared out. This is mainly due to the fact that the unidentifiable shear modulus G has a
larger effect on the mean shear rate than the minimum shear rate.
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Figure 6.22: Histograms of the posterior distributions p(J2(ω) | s∗) (left) and p(J3(ω) | s∗) (right)
for the case (s∗, σ) = (16.3881, 0.17). The range of the plot is scaled to correspond with the entire
range of observed variation in each output.
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Figure 6.23: Histograms of the posterior distributions p(J2(ω) | s∗) (left) and p(J3(ω) | s∗) (right)
for the case (s∗, σ) = (15.9390, 0.51). The range of the plot is scaled to correspond with the entire
range of observed variation in each output.

The model we have presented is of course very much an abstraction: it does not take into account
the pulsatility of the flow, the transition to turbulence, the oscillation of the wall shear stress in
time and the periodic detachment/separation of the flow layer from the wall. The exploration
of the parameter space with 100 samples to produce the Fig. 6.20 took around 70 minutes of
CPU time4 when all the fluid simulations were performed with the use of the RB method. We
estimate that exploring the same parameter space with the full FE simulation would have taken
around 33 hours of CPU time – and considerably more if the FSI problem had been solved using
standard methods and not taking advantage, as done here, of the geometrical reduction afforded
by the parametrization of the structural deformation.

4Computations have been executed on a personal computer with 2 × 2GHz Dual Core AMD Opteron (tm)
processors 2214 HE and 16 GB of RAM.
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6.5. Identification of residual blood flows in a bypass model

6.5 Identification of residual blood flows in a bypass model
The results of the shape optimization problems shown in the previous chapter (see Sect. 5.4.2-5.4.3)
highlight the criticality occurring in presence of a complete blockage of the occluded artery. For
this reason, we might be interested in identifying the uncertain residual flow magnitude ω ∈ Dω
from some possible, noninvasive measurements of quantities related with the blood flow.
In particular, the chance of identifying whether the bypass will be operating under low residual
flows or high residual flows might guide the optimal graft design. As in Sect. 6.4, here inverse
identification is driven by the numerical observation of the mean pressure drop in the bypass:

J4(ω) =
∫

Γbc

p dx2 −
∫

Γout

p dx2. (6.11)

where Γin is the inlet from the stenosed section of the artery, Γbc the bypass inlet and vin = vin(ω)
the residual flow across Γin, of magnitude ω ∈ Dω =∈ [0, ωmax].

Here we refer to the optimal design of a a femoro-popliteal bypass analyzed in Sect. 5.4.3. The
behavior of the mean pressure drop with respect to the parameter ω in the two robust optimal
bypass shapes (see Fig. 5.27) obtained in the previous analysis is reported in Fig. 6.24. In both
cases a local maximum is observed at ω = 0, and the value of the functional decreases as the
magnitude of the residual flow increases, with a smaller and smaller decrease rate. This fact
yields some interesting consequences in the inverse identification problem. We show the solution
of the deterministic inverse problem for two given values of the magnitude of the residual flow ω:

1. for the robust optimal shape (1), obtained with the vorticity functional, ω = 2.6097 and
ω = 10.9817, and corresponding observed pressure drops s∗ = −440 and s∗ = −490;

2. for the robust optimal shape (2), obtained with the Galilean-invariant functional, ω = 3.6274
and ω = 10.0130, and corresponding observed pressure drops s∗ = −735 and s∗ = −765.
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Figure 6.24: Computed mean pressure drop J4(µ) for different values of ω, for the robust optimal
shapes obtained with a vorticity functional (case 1) and a Galilean-invariant functional (case 2).

The results of the inverse identification problem without regularization are given in Tables 6.2-6.3
for three particular noise realizations (σ = 0.01, 0.03, 0.05), for the robust shapes obtained with
the vorticity and the Galilean-invariant functionals, respectively. Clearly, the lower the noise
the better the reconstruction. The estimate becomes increasingly poor for larger amounts of
noise, especially for small values of ω, which represent more critical cases not only for the fluid
dynamics, but also concerning the decrease rate of the pressure drop. Thus, also this example
shows that the total occlusion represents a critical condition to deal with.
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ω σ Inverse estimate Relative error # optim iters # PDE solves
2.6097 0.01 2.6295 0.76% 5 13

0.03 3.8004 45.63% 5 13
0.05 6.3890 144.82% 4 11

10.9817 0.01 11.2151 2.13 % 5 13
0.03 8.2964 24.45 % 4 11
0.05 7.3632 32.95 % 4 11

Table 6.2: Results of the deterministic inverse problem, robust optimal shape (1).

ω σ Inverse estimate Relative error # optim iters # PDE solves
3.6274 0.01 3.5594 1.87 % 4 11

0.03 4.1799 15.23 % 6 15
0.05 9.8734 172.19 % 5 13

10.0130 0.01 9.2899 1.83 % 5 13
0.03 6.6272 33.81 % 4 11
0.05 5.4044 46.03 % 4 11

Table 6.3: Results of the deterministic inverse problem, robust optimal shape (2).

Following the Bayesian approach we provide a probability distribution function for the (uncertain)
magnitude of the residual flow ω encapsulating the noise related to measurements. In particular, if
we assume that the prior distribution is normal, p(ω) ∼ N (ωM , τ2) (we choose a plausible value ωM
for the mean, corresponding to a partial occlusion case, e.g. ωM = 10), and that the measurements
of the pressure drop are n = 250 independent and normally distributed variables with expectation
equal to the true mean pressure drop and variance σ2, i.e. p(s | ω) = p(s− J4(ω)) ∼ N (0, σ2), we
obtain that also the posterior probability density p(ω | s) is normally distributed, with mean and
variance given by

E[ω | s] = 1/τ2

1/τ2 + n/σ2ωM + n/σ2

1/τ2 + n/σ2 J̄4, Var[ω | s] = σ2/nτ2

τ2 + σ2/n
,

being

J̄4 = 1
n

n∑
i=1

J4(ωi), i = 1, . . . , n.

The posterior probability density p(ω | s∗) for the two different test cases and their observations
s∗ are shown in Figs. 6.25-6.26. We can remark that, in presence of small noises, the difference
in the means of the prior and the posterior distribution may be significantly different, because
of the information provided by the measurements. A Bayesian statistic approach can provide
a better indication of the identified parameter, including the effect of the measurement noise.
Moreover, in the case of a Gaussian/Gaussian model, like the one applied in this case, it is simple
to evaluate the updating effect provided by the knowledge based on measured quantities.

The exploration of the parameter space with 250 samples to produce the posterior distributions
took around 90 minutes of CPU time. As for the previous scenario, we estimate that exploring
the same parameter space with the full FE simulation would have taken a computational time
eight times larger. If shape deformations had been handled using standard methods instead of
the reduced FFD representation, this cost would have increased even more.
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Figure 6.25: Robust shape (1): posterior p.d.f. p(ω | s∗) for the cases s∗ = −440 and s∗ = −490,
with three different noise levels: σ2 = 0.01, 0.03, 0.05. The prior distribution is p(ω) ∼ N (10, 2).
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Figure 6.26: Robust shape (2): posterior p.d.f. p(ω | s∗) for the cases s∗ = −735 and s∗ = −765,
with three different noise levels: σ2 = 0.01, 0.03, 0.05. The prior distribution is p(ω) ∼ N (10, 2).

6.6 Inverse shape identification from output measurements
A third possible scenario fitting the reduced inverse framework exploited throughout the chapter
deals with the inverse identification of shape features from observations of physical indices related
with flows. The solution of such an inverse problem is meaningful, since a strong correlation
exists between haemodynamic forces and the location, development and morphology of plaque
deposits within the lumen, which are responsible of the narrowing of blood vessels.
As shown for a set of carotid artery bifurcations (Sect. 6.3.2), we may establish some input/output
relationships between geometrical parameters and physical indices related with blood flows in case
one or more stenoses occur. Here we consider the same setting, dealing with local deformations
of a carotid bifurcation, in order to recover the diameters dc of the CCA at the bifurcation and
db of the mid-sinus level of the ICA, respectively, from the observation of the mean pressure drop
between the internal carotid outflow Γout and the inflow Γin. In particular, we take advantage of
both the deterministic and the Bayesian framework to solve this inverse identification problem,
by considering surrogate measurements of the mean pressure drop.

In the first case, we demonstrate the solution of the deterministic inverse problem for two different
observed values of the pressure drop, s∗ = −1400 and s∗ = −2200, by assuming 5% relative
additive noise in the measurements. The results of the inverse identification problem are given in
Fig. 6.27 for 100 realization of random noise in both cases: each point in the graph corresponds to
the recovered diameters (dc, db) given a noisy observation. We observe that in the case s∗ = −1400
recovered values of the diameters are more smeared out, due to the flatter pattern of the pressure
drop, but result is closed in values to the considered observation.
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Figure 6.27: Results of the deterministic inverse problems for s∗ = −1400 (in red) and s∗ = −2200
(in green). Isocontours of the pressure drop (RB approximation of the Navier-Stokes problem).

Thus, in the former case s∗ = −1400 the inverse problem is worse conditioned than in the latter
s∗ = −2200, where the recovered values (dc, db) lie in a smaller region of the space. However, the
solution of a single optimization problem is more feasible in the former case compared to the
latter: solving 100 optimization problems took about 14 hours in the former and about 25.6 hours
in the latter case, respectively. We remark that solving 100 inverse problems of this type through
a full-order discretization technique would have been unfeasible on a standard workstation.

Even in presence of small noises, the result of a deterministic inverse problem may be very
sensitive – just when one diameter is known, the second one can be recovered. This is due to the
fact that several geometrical configurations – in terms of diameters (dc, db) – may correspond to
the same output observation. Following instead the Bayesian approach, we are able to characterize
a set of configurations, rather than a single configuration: this is done by providing the joint
probability distribution function for the (uncertain) diameters (dc, db) encapsulating the noise
related to measurements, as we discuss hereon.

Let us denote by d = (dc, db)T ∈ R2 the vector of the two diameters and assume that the prior
distribution p(d) has a (bivariate) Gaussian shape, p(d) ∼ N (dM ,ΣM ), where dM ∈ R2 is the
(prior) mean and ΣM ∈ R2×2 is the (prior) covariance matrix, encapsulating a possible prior
knowledge on the diameters distribution (e.g. from observations of previous shape configurations).
By supposing that also the measurements of the pressure drop are expressed by n independent
and normally distributed variables with expectation equal to the true pressure drop and variance
σ2, i.e. p(s | d) = p(s − J4(d)) ∼ N (0, σ2), we can compute the explicit form of the posterior
probability density p(d | s). Thus, provided some preliminary information on plausible values
of the diameters, the observation of a (large) sample of outputs allows to characterize a set of
configurations as the ones maximizing the posterior distribution relying on a Bayesian inversion
procedure.
In particular, we consider two different realizations of prior normal distributions, obtained by
choosing the mean dM = (0.803, 0.684)T as given by the diameters corresponding to the reference
carotid configuration, and two different covariance matrices:

ΣM1 =
[

0.025 0
0 0.0125

]
, ΣM2 =

[
0.025 −0.0125
−0.0125 0.0125

]
,

198



6.6. Inverse shape identification from output measurements

i.e., by assuming that the two diameters are a priori independent (ΣM1 case) or correlated (ΣM2

case), respectively. The two prior distributions, as well as the resulting posterior distribution
obtained for two different observed values s∗ = −1400 and s∗ = −2200 of the pressure drop are
reported in Fig. 6.28.
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Figure 6.28: Top: two different choices of the prior distribution on diameters d = (dc, db)T ; left:
d ∼ N (dM ,ΣM1), right: d ∼ N (dM ,ΣM2). Bottom: results of the Bayesian inverse problems for
two different choices of the prior distribution and observed pressure drop s∗ = −1400 (second
row) and s∗ = −2200 (third row).

In this case, we do not rely on the Metropolis-Hastings algorithm for the evaluation of the posterior
distribution, since the expression of this distribution can be computed explicitly. We evaluated a
sample of n = 1600 values of pressure drops on a uniform 40× 40 grid on the (dc, db) space – by
the Metropolis-Hastings algorithm we would have determined instead a random trajectory on the
space (dc, db) and still many queries under the form d→ J4(d). To get efficiently the observation
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Chapter 6. Inverse parametrized problems for blood flows

sample, we exploited the RB approximation of the Navier-Stokes flow problem, which has been
solved repeatedly, on n different geometrical configurations. In this way, a reduced order model
such as the one we have developed allows to recast a Bayesian inverse problem – which turns to
be much more powerful than the deterministic paradigm in this case – in a many query context.

6.7 Remarks and future focuses
In this chapter we presented a reduced framework for treating some haemodynamic inverse
problems considered as test cases. In the first example we formulated a steady FSI problem in a
portion of a stenosed artery; by solving a suitable inverse problem, we predicted downstream shear
rates linked to stenosis growth given a noninvasive pressure drop measurement. This inversion
could be performed even in the likely case that the pressure measurements are too noisy to
accurately identify the vessel wall material parameters themselves. In the second example we
considered the identification of the residual flow magnitude in a bypass graft. The critical case of
total occlusion in the artery could be either identified or ruled out based on similar noninvasive
pressure drop measurements. Finally, we showed how to identify some geometrical features within
a family of parametrized carotid bifurcations. This problem can be more easily afforded exploiting
a Bayesian inverse framework than using a deterministic paradigm.

The three scenarios illustrated represent an idealized more than realistic case, due to the very
simple nature of the observed outputs (scalar quantities) and to the assumptions considered on
both fluid and geometrical models. Nevertheless, they provide a good proof of the flexibility of
the reduced framework developed and of the possibility to recast in a many-query scenario a
large variety of problems.

A possible perspective stemming from these test cases is the development of an integrated
framework where:

1. geometrical information can be extracted or reconstructed from an atlas of collected shape
configurations and synthetized through a reduced parametrization. Possibly, some reduction
in the number of parameters should be performed. By this stage we can build some prior
knowledge on geometry;

2. the Bayesian inverse problem allows to obtain a posterior distribution over the shapes
family, thus resulting from the merging of physical models, output measurements and prior
information on geometrical setting. Within this stage, the numerical simulation of a fluid
flow problem should to be considered, in order to take into account the interplay between
flow and geometry.

However, once the updated atlas is built Offline, the information concerning a new Online
query could be provided through a data-fitting procedure, by means of a black-box metamodel.
Unfortunately, in this way the physics of the problem would not be considered anymore at the
Online stage, and no information could be provided on outputs not involved in the Offline stage.
A reduced basis approximation of the fluid equations allows instead to model the physics of the
problem also at the Online stage, thus accounting for additional output and information, with
reasonable accuracy.
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Concluding remarks

In this work we have set, analyzed and applied some reduced order modelling techniques for the
efficient numerical solution of optimization and inverse problems governed by PDEs. The general
framework we have developed relies on the Reduced Basis (RB) method for parametrized PDEs
to reduce the computational complexity hindered by optimization problem, e.g. in optimal flow
control problems. The extension of this framework to shape-dependent problems, e.g. in shape
optimization problems, is made possible by coupling the reduced basis method with flexible but
low-dimensional shape parametrizations, in order to represent a general set of admissible shapes,
such as the Free-Form Deformations (FFD) or the Radial Basis Functions (RBF) techniques.

We have extended the reduced basis framework to general parametrized Stokes and Navier-Stokes
problems, focusing on nonaffine geometrical parametrizations. In both cases, a posteriori error
estimation methods have been developed for velocity and pressure fields jointly, moreover in
the Stokes case error bounds for linear and quadratic outputs have been computed. Several
numerical tests show that a strong improvement in efficiency can be achieved with respect to
full-order approximation techniques, like the Finite Element (FE) method: the reduction in linear
systems dimensions between RB and FE discretization is of order O(102 ÷ 103). This entails a
computational speedup of about the same order, and the possibility to solve any new instance
of a parametrized Stokes or Navier-Stokes problem in O(10−2 ÷ 100) seconds. In particular,
computational times are almost constant also when dealing with problems parametrized w.r.t.
Reynolds number. These remarkable performances are very well suited for the many-query
contexts of our interest, as well as for real-time simulations. Moreover, error bounds ensuring the
reliability of the reduced approximation can be evaluated in about the same amount of time.
We have analyzed both FFD and RBF techniques, proving some theoretical results of stability
with respect to parametric variations. We have also set some algorithms for the selection of
control points in the FFD case. Both FFDs and RBFs turned to be very flexible in spanning
a set of realistic shapes, keeping the parametric space dimension small (O(10)). In particular,
RBFs allow a better control of local deformations thanks to their interpolation properties.

This parametrized reduced framework has been successfully applied to optimal control and
shape optimization problems. Several other inverse problems related to both fluid flows and
shape variations have also been faced, such as robust optimization under uncertain conditions,
parametric coupling for multi-physics problems, inverse identification. To address this last case,
both a deterministic and a Bayesian framework have been developed.
Several applications have been presented, dealing with meaningful problems arising in haemody-
namics, like the optimal design of cardiovascular prostheses (e.g. bypass grafts), or the inverse
identification of potentially risk factors related to shape or flow features in simplified and more
realistic configurations (e.g. carotid artery bifurcations).
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Although derived under simplifying assumptions (no flow pulsatility, steady flows, ...), the models
we considered allow to characterize in (almost) real-time blood flows in 2D geometries, by captur-
ing several features related e.g. to vessel shape, fluid behavior and also structural parameters.
Interesting remarks about optimal sizing of bypass grafts, also in presence of uncertain conditions,
have been obtained.
We point out that reduced order modelling proves to be necessary for optimal design and inverse
problems related with shape variation. For instance, a robust shape optimization problem took
about 4÷ 20 hours of CPU time on a workstation by using the RB method for fluid simulation.
Solving the same problem with a full-order FE discretization would have taken about 700 hours
of CPU time – and even more if shape deformations had been handled without FFD techniques.

Further developments of the current methodology

The proposed reduction paradigm can be extended in many different directions. Beyond some
evident but not straightforward developments, such as the application to three-dimensional
configurations or the validation of some results with e.g. in vitro experiments, we point out three
main paths for further methodological developments:

1. Reduced basis method. The reduced basis methodology has already been extended to
unsteady Boussinesq equations [168]. Even if exponential instability seriously compromises
a posteriori error estimates, by carefully treating the stability growth rate (closely related to
hydrodynamic stability theory) error bounds remain practicable for parameter domains and
finite final times of physical interest. Nevertheless, error bounds for velocity and pressure
fields jointly are still missing, also in the simpler linear Stokes case. In this respect, we are
currently developing a posteriori error bounds of this type, in the framework of the Babuška
stability theory. Other techniques, based e.g. on fractional step methods, may be considered
in RB approximation and error bounds for Navier-Stokes equations. Other issues, such as
estimation of stability factors and affine expansion for evaluating dual norms of residuals,
become true bottlenecks in case of nonaffine problems or large parameter spaces, so that
alternative strategies may be devised.

2. Optimization framework. The current reduced framework, based on a reduce-then-optimize
paradigm, exploits the reduced basis methodology as a rapid and reliable input/output
evaluator. Thanks to advanced optimization subroutines, we rely on numerical approxima-
tion of the gradient (with respect to parameter components) of the cost functional to be
minimized, rather than solving the adjoint problem and evaluate the gradient. Extending
the RB methodology to approximate the reduced adjoint problem, as well as exploiting the
EIM procedure to approximate the derivatives of parameter-dependent functions appearing
in affine expansions, are further steps which can be taken into consideration, still subject to
the same bottlenecks previously highlighted.

3. Inverse problems. We have considered only simple inverse identification problems, since the
parameter values were recovered by inverting (surrogate) output measures given by scalar
functions of the parameters (even if depending on the solution of a parametrized PDE).
Extending the current framework in order to deal with (either surrogate or true) measures
of parametric fields – instead of functions – and to quantify the propagation of uncertainty
coming from noisy data represents a twofold issue to be further developed.
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Longer-term outlook

The great potential made available by reduced order modelling, in terms both of real-time
input/output evaluation and possibility to face large many-query problems, indicate two possible
long-term goals.
From the theoretical point of view, the interplay between numerical and statistical methodologies
could be further strengthened. In this respect, an accurate but reduced-order model can be seen
as a possible emulator of the original (physical/geometrical) model, capable to generate in a
cheap way large sets of data – corresponding to different input configurations – whose analysis
can take advantage of accurate statistical tools, such as advanced methods for analysis of complex
geometries, images and surfaces (object-oriented data analysis, Bayesian functional data analysis,
response surface methods).
Depending on the context, this approach could lead for instance to (i) a better detection of
parameters of interest within a PDE model, (ii) a better interpretation of numerical results
coming from large computer experiments, and (iii) a simpler availability of datasets for statistical
analysis within a rapid time and acceptable effort.

Concerning applications, a reduced framework such as the one developed in this work could be
ideally exported to many engineering contexts requiring a rapid in the field (or in situ) evaluation
process, such as parameter estimations, identification procedures, optimization problems, visual-
ization environments. All these situations require high-order mathematical models, but rapid
queries, such as the ones provided by a reduced-order method. Moreover, computational power or
storage capacity available in the field are usually limited. With this respect, the Offline-Online
paradigm exploited by the reduced framework developed in this work could fit for the purpose:
it is based on deployed platforms for rapid and reliable reduced approximations, yet taking
advantage of expensive computations stored in a former pre-deployment stage.
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A Insights on RB approximation
and error estimation

We provide in this Appendix further insights on the reduced basis approximation of Stokes
and Navier-Stokes equations, and a posteriori error estimations. We deal with the algebraic
and the approximation stability of the Stokes and Navier-Stokes problems, guaranteed by the
Gram-Schmidt orthonormalization procedure and the enrichment of the velocity space through the
solutions of the supremizer equation. Then, we show how to compute the quantities entering in
the error bounds introduced in Sect. 3.4: (i) the dual norm of the residuals, (ii) the lower bound of
stability factors, and (iii) Sobolev embedding constants. In particular, we show how to exploit the
Offline/Online procedure for computing the dual norms of the residuals in Stokes/Navier-Stokes
problems, we characterize the natural norm SCM algorithm for the Stokes problems and we
propose an extension to Navier-Stokes problems, and introduce a fixed-point algorithm for the
approximation of Sobolev embedding constants entering in the error bounds for Navier-Stokes
equations. In the end, we briefly recall the construction of affine geometrical mappings, used in
the simpler parametrized problems we have presented.

A.1 Algebraic and approximation stability
We present in this section the rigorous formulation of the Stokes problem (3.65) introduced in
Sect. 3.3, taking into account (i) the µ-dependence in the supremizers enriching the velocity space
and (ii) the orthonormalization procedure ensuring the algebraic stability. The same procedure
is used to construct also the reduced spaces in the Navier-Stokes case, since the approximation
stability relies on the inner pressure supremizers in that case as well. We recall that the RB
pressure space QNN ⊂ QN and the RB velocity space V N ,µN ⊂ V N , defined by (3.63)-(3.64), are
given by

QNN = span{ζ̃pn := pN (µn), n = 1, . . . , N}, N = 1, . . . Nmax,

V N ,µN = span{ζ̃v
n := vN (µn), Tµp ζ̃pn, n = 1, . . . , N}, N = 1, . . . Nmax,

respectively. For computational convenience, V N ,µN can be rewritten using the affine dependence
of b(·, ·;µ) on the parameter and the relation (3.51), yielding to

V N ,µN = span {
Qb∑
k=1

Θk
b (µ)σkn, n = 1, . . . , 2N}, (A.1)

205



Appendix A. Insights on RB approximation and error estimation

where Qb = Qb + 1,ΘQb
b = 1 and, for n = 1, . . . , N ,

σkn = 0, k = 1, . . . , Qb; σQbn
= ζ̃

v
n = vN (µn), (A.2)

while, for n = N + 1, . . . , 2N (in order to take account of the supremizer operator),

(σkn,w)V = bk(ζ̃pn−N ,w), ∀ w ∈ V N , k = 1, . . . , Qb; σQbn
= 0. (A.3)

For a new parameter value µ, the RB solution can be written as a combination of (previously
computed and stored) basis functions as:

vN (µ) =
2N∑
j=1

uNj(µ)
( Qb∑
k=1

Θk
b (µ)σkj

)
, pN (µ) =

N∑
l=1

pNl(µ)ζ̃pl ,

whose weights vNj and pNl are given by the following RB linear system:

2N∑
j=1

Qa∑
q=1

Θq
a(µ)Aqij(µ)vNj(µ) +

N∑
l=1

Qb∑
q=1

Θq
b(µ)Bqil(µ)pNl(µ) =

Qa∑
q=1

Θq
F (µ)fqi (µ), 1 ≤ i ≤ 2N,

2N∑
j=1

Qb∑
q=1

Θq
b(µ)Bqjl(µ)vNj(µ) =

QG∑
q=1

Θq
G(µ)gql (µ) 1 ≤ l ≤ N,

where for 1 ≤ i, j ≤ 2N and 1 ≤ l ≤ N :

Aqij(µ) =
Qb∑
k′=1

Qb∑
k′′=1

Θk′

b (µ)Θk′′

b (µ)aq(σk′i,σk′′j), Bqil(µ) =
Qb∑
k′=1

Θk′

b (µ)bq(ζ̃pl ,σk′i),

fqi (µ) =
Qb∑
k′=1

Θk′

b (µ)F q(σk′i); gql (µ) = Gq(ζpl ).

Orthonormalization: Gram-Schmidt (GS) algorithm

Since the direct choice of the retained snapshots as basis functions would lead to a very poorly
conditioned RB system, we apply the Gram-Schmidt (GS) orthogonalization procedure to create
a well-conditioned set of basis functions [237]. In this way, given a set of vectors vj , j = 1, ..., N ,
we obtain an orthonormal basis {z1, . . . , zN} of < v1,v2, . . . ,vN > defined as

zj = Pjvj
||Pjvj ||

, where Pj = Ij − Lj−1LTj−1 and Lj−1 = {v1, ...,vj−1},

where Ij−1 ∈ Rj−1×j−1 is the identity matrix. The GS algorithm reads as follows:

z1 = v1/‖v1‖;
for j = 2 : N

Pjvj = vj −
j−1∑
m=1

(zTmvj)zm;

zj = Pjvj/‖Pjvj‖;
end.
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The norm ‖.‖ used here is the V = (H1(Ω))2 for velocity (and supremizers) and L2(Ω) for
pressure, respectively; the scalar product is the one induced by the functional space and the
norm we use. The orthonormalization procedure has been applied, separately, to our set of
velocity snapshots, of supremizer snapshots and to our set of pressure snapshots. For velocity
and pressure snapshots the procedure is standard. For the supremizer (computed) snapshots we
have to introduce some considerations. Referring to previous supremizer formulation of (A.3)
and to the compact notation already introduced in the reference domain, thanks to the linearity
of supremizer operator and to the affine composition property we have for n = N + 1, . . . , 2N :

(σn,w)V =
Qb∑
q=1

Θq
b(µ)(σqn,w)V =

Qb∑
q=1

Θq
b(µ)bq(ζ̃pn−N ,w) ∀w ∈ (H1

0,ΓD (Ω))2; (A.4)

in fact (σn,w)V = b(ζ̃pn−N ,w;µ), but recalling the affine decomposition of the bilinear form
b(·, ·;µ), for each component q = 1, . . . , Qb we have:

(σqn,w)V = bq(ζ̃pn−N ,w).

At this point we have two possibilities (referring to n− th supremizer σn, n = N + 1, . . . , 2N) in
applying orthonormalization:

a) an orthonormalization (GS) directly on σn done Online (since σn is dependent on µ) to
obtain σ⊥n as new element (basis function) to enrich the reduced basis velocity space:

σ⊥n = P⊥nσn
||P⊥nσn||

=
P⊥n (

∑Qb
q=1 Θq

b(µ)σqn)
||P⊥n (

∑Qb
q=1 Θq

b(µ)σqn)||
,

where P⊥n = I− Ln−1LTn−1 and Li = {σ⊥1 , ...,σ⊥i };

b) an orthonormalization (GS) on components σqn made Offline once and for all, since σqn
are not depending on µ, to get σ⊥∗qn :

σ⊥∗qn =
P⊥qnσqn
||P⊥qnσqn||

,

where P⊥qn = I− Lq(n−1)LTq(n−1) and Lqi = {σ⊥∗q1 , ...,σ⊥∗qi }.

Nevertheless, if we apply the orthonormalization algorithm to the RB spaces assembled as
proposed above, we may lose the guarantee of the approximation stability – heuristically we do
not have any guarantee to fulfill (3.68). For this reason, other options in building the RB velocity
space when applying orthonormalization procedures have been proposed.

Approximation stability: other supremizer options

In particular, by orthonormalizing the supremizer solutions according to the approach (a) we
could lose approximation stability in the attempt of preserving algebraic stability by reducing
the condition number. We can orthonormalize just using method (a) the pressure ζ̃p and the
velocity ζ̃v basis functions and not the supremizer σn and use the approach (b) to orthogonalize
the supremizer on its component σkn (before summation) to preserve approximation stability. To
achieve this goal we may introduce two further different options in assembling the supremizer
solutions for stabilization procedure by building in a different way the RB velocity approximation
space so that we may guarantee both approximation and algebraic stability.
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i) First option (“splitted supremizer”). We have considered the following reduced basis spaces:

Ṽ NN = span {σn, n = 1, . . . , NQb},

where

σn = ζ̃
v
n = v(µn), for n = 1, . . . , N

and

(σn, z)V = (σ̃mk, z)V , for n = N + 1, . . . , NQb,

condensing index m and k in n, where for all z ∈ X

(σ̃mk, z)V = bk(ζ̃pm, z), k = 1, . . . , Qb, m = 1, . . . , N.

In this way, the RB solution can be expressed as

vN (µ) =
NQb∑
j=1

vNj(µ)σj , pN (µ) =
N∑
l=1

pNl(µ)ζ̃pl ;

and the reduced basis system (3.69) becomes:



NQb∑
j=1

Qa∑
q=1

Θq
a(µ)Aqij vNj(µ) +

N∑
l=1

Qb∑
q=1

Θq
b(µ)Bqil pNl(µ) =

QF∑
q=1

Θq
F (µ)fqi , 1 ≤ i ≤ NQb,

NQb∑
j=1

Qb∑
q=1

Θq
b(µ)Bqjl vNj(µ) =

QG∑
q=1

Θq
G(µ)gql , 1 ≤ l ≤ N,

(A.5)

where:

(Aq)ij = aq(σi,σj), 1 ≤ i, j ≤ NQb,

(Bq)il = bq(ζ̃pl ,σi), 1 ≤ i ≤ NQb, 1 ≤ l ≤ N,

fqi = F q(σi), 1 ≤ i ≤ NQb, gql = Gq(ζ̃pl ), 1 ≤ l ≤ N.

In this case the basis is no longer µ (Online) dependent, and the RB velocity space, enriched
by supremizers, has a bigger dimension (NQb > 2N) than previously. The computational
costs are as follows: O(Qa(Qb)2N2) for sub-matrix AN , O(QbQbN2) for BN , O(QbQFN)
for f , O(QGN) for g but the cost for inversion of the full RB matrix increases now to
O((Qb + 1)3N3). This approach has the big advantage to preserve the approximation
stability, to let us apply orthonormalization (method (ii)) and to preserve stability also
after orthonormalization. Nevertheless, the cost for assembling and inverting the global RB
matrix is still dependent on the parametric complexity Qa, Qb of the problem, which can
be rather high, above all in nonaffinely parametrized problems.

ii) Second option (“global supremizer”). Another approach is based on the idea that the
supremizers are built upon summation using the same µj values used to store velocity
vN (µj) and pressure solutions pN (µj) (also in this case the basis for velocity is not
dependent on the Online value of µ and it is completely assembled Offline):
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V N ,µN = span {σn =
Qb∑
k=1

Θk
b (µn)σkn, n = 1, . . . , 2N}, (A.6)

where Qb = Qb + 1, ΘQb
b = 1 and, for n = 1, . . . , N ,

σkn = 0, for k = 1, . . . , Qb, σQbn
= ζ̃

v
n = v(µn),

while for n = N + 1, . . . , 2N

(σkn, z)V = bk(ζ̃pn−N , z) ∀ z ∈ Y, for k = 1, . . . , Qb, σQbn
= 0.

The reduced basis solution is thus given by

vN (µ) =
2N∑
j=1

vNj(µ)
( Qb∑
k=1

Θk
b (µj)σkj

)
, pN (µ) =

N∑
l=1

pNl(µ)ζ̃pl ,

and is obtained by solving the following system:

2N∑
j=1

Qa∑
q=1

Θq
a(µ)Aqij vNj(µ) +

N∑
l=1

Qb∑
q=1

Θq
b(µ)Bqil pNl(µ) =

QF∑
q=1

Θq
F (µ)fqi , 1 ≤ i ≤ 2N,

2N∑
j=1

Bqjl vNj(µ) =
QG∑
q=1

Θq
G(µ)gql , 1 ≤ l ≤ N,

(A.7)

where, for 1 ≤ i, j ≤ 2N , 1 ≤ l ≤ N :

(Aq)ij = aq(σi,σj) =
Qb∑
k′=1

Qb∑
k′′=1

Θk′

b (µi)Θk′′

b (µj)aq(σk′i,σk′′j);

Bqil = bq(ζ̃pl ,σi) =
Qb∑
k′=1

Θk′

b (µi)bq(ζ̃pl ,σk′i);

fqi = F q(σi) =
Qb∑
k′=1

Θk′

b (µi)F q(σk′i), gql = Gq(ζ̃pl ).

This option is also competitive as regards the computational costs dealing with 3N × 3N
RB matrix instead of (Qb + 1)N × (Qb + 1)N matrix (usually (Qb + 1) � 3). We thus
have the following computational costs to build the RB matrices, given also the supremizer
components in the velocity space: O(Qa4N2) for sub-matrix AN , O(Qb2N2) for BN ,
O(QFN) for f , O(QGN) for g and O(27N3) for the inversion of the full RB matrix, which
are usually smaller than computational costs of the previous option.
Using this option we cannot rigorously demonstrate that the approximation stability is
preserved (even without orthonormalization); nevertheless, after several numerical tests,
we can safely argue that this option is very efficient – by allowing us to reduce the matrix
dimension of the RB system – and reasonably stable. Certified a posteriori error bounds are
another proof of guaranteed stability using this approach combined with orthonormalization.

In the RB approximation procedure used throughout this thesis work, we have used this second
“global supremizer” option, denoting by VN the RB velocity space V N ,µN for the sake of simplicity.
Numerical tests and comparisons about the different supremizer options have been reported in
previous works [278,282] for Stokes and [255,277] for Navier-Stokes equations.
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A.2 Offline/Online procedure for dual norms of residuals
In order to compute the error estimates in a very efficient way, the same Offline/Online procedure
introduced for the RB approximation is used. In this section we describe the evaluation of the
dual norm of the residuals in both Stokes and Navier-Stokes cases.

A.2.1 Stokes equations

Recalling Sect. 3.4.1, residuals rv(· ;µ) and rp(· ;µ) are defined as:

rv(w;µ) := F (w;µ)− a(vN (µ),w;µ)− b(pN (µ),w;µ), ∀ w ∈ V N ,
rp(q;µ) := G(q;µ)− b(q,vN (µ);µ), ∀ q ∈ QN . (A.8)

In order to evaluate these quantities exploiting an Offline/Online procedure, we introduce the
Riesz representations êv(µ) ∈ V N and êp(µ) ∈ QN , defined as follows:

(êv(µ),w)X = rv(w;µ), ∀w ∈ V N , (êp(µ), q)Q = rp(q;µ), ∀q ∈ QN . (A.9)

This allows us to write (A.8) as

a(ev(µ),w;µ) + b(ep(µ),w;µ) = (êv(µ),w)V ∀ w ∈ V N ,
b(q, ev(µ);µ) = (êp(µ), q)Q ∀ q ∈ QN .

and to evaluate the dual norm of residuals as

‖rv(· ;µ)‖V ′ = sup
w∈V N

rv(w;µ)
‖w‖V

= ‖êv(µ)‖V , ‖rp(· ;µ)‖Q′ = sup
q∈QN

rp(q;µ)
‖q‖Q

= ‖êp(µ)‖Q.

(A.10)

Let us consider the global Stokes operator A : X ×X → R defined by (3.12), in the case δ = 0.
From the affine decomposition (3.16) we can write, equivalently,

A(Y,W ;µ) =
QA∑
q=1

Θq
A(µ)Aq(Y,W ), F̃ (W ;µ) =

QF̃∑
q=1

Θq

F̃
(µ)F̃ q(W ) (A.11)

where QA = Qa + 2Qb, QF̃ = QF +QG,

Θq
A(µ) = Θq

a(µ), Θq′+Qa
A (µ) = Θq′+Qa+Qb

A (µ) = Θq′

b (µ), q = 1, . . . , Qa, q′ = 1, . . . , Qb,

Θq

F̃
(µ) = Θq

F (µ), Θq′+QF
F̃

(µ) = Θq′

G(µ), q = 1, . . . , QF , q′ = 1, . . . , QG.

and, denoting Y = (v, p), W = (w, q),

Aq(Y,W ) = aq(v,w) q = 1, . . . , Qa,
Aq(Y,W ) = bq(p,w) q = Qa + 1, . . . , Qa +Qb,
Aq(Y,W ) = bq(q,v) q = Qa +Qb + 1, . . . , Qa + 2Qb;

F̃ q(W ) = F q(w) q = 1, . . . , QF ,
F̃ q(W ) = Gq(q) q = QF + 1, . . . , QF +QF .

The global residual r(W ;µ) := rv(w;µ) + rp(q;µ) can be expressed, considering the “global
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supremizer” option of Sec. 4.2, as

r(W ;µ) = F̃ (W )−A(YN (µ),W ;µ) =
QF̃∑
q=1

Θq

F̃
(µ)F̃ q(W )−

3N∑
n=1

YN n(µ)
QA∑
q=1

Θq
A(µ)Aq(Φn,W ),

where YN (µ) = (vN (µ), pN (µ)) is the global RB solution and Φn = (σn, 0) for n = 1, . . . , 2N ,
Φn = (0, ζ̃pn) for n = 2N + 1, . . . , 3N . Together with (A.9) and linear superposition, this gives us

(ê(µ),W )X = (êv(µ),w)V +(êp(µ), q)Q =
QF̃∑
q=1

Θq

F̃
(µ)F̃ q(W )−

3N∑
n=1

YN n(µ)
QA∑
q=1

Θq
A(µ)Aq(Φn,W );

the element ê(µ) = (êv(µ), êp(µ)) ∈ XN can thus be expressed as

ê(µ) =
QF̃∑
q=1

Θq

F̃
(µ)F̃q +

QA∑
q=1

3N∑
n=1

Θq
A(µ)YN n(µ)Aqn, (A.12)

where F̃q ∈ XN and Aqn ∈ XN (called FE “pseudo”-solutions) satisfy

(F̃q,W )X = F̃ q(W ), ∀ W ∈ XN , 1 ≤ q ≤ QF̃ (A.13)
(Aqn,W )X = −Aq(Φn,W ), ∀ W ∈ XN , 1 ≤ n ≤ 3N, 1 ≤ q ≤ QA. (A.14)

We note that (A.13) and (A.14) are simple parameter-independent problems and thus can be
solved once in the Offline stage. By using (A.12), it then follows that:

‖ê(µ)‖2X =
QF̃∑
q′′=1

QF̃∑
q′′′=1

Θq′′

F̃
(µ)Θq′′′

F̃
(µ)(F̃q

′′
, F̃q

′′′
)X +

QA∑
q=1

3N∑
n=1

Θq
A(µ)YN n(µ)2

QF̃∑
q′′=1

Θq′′

F̃
(µ)(F̃q

′′
,Aqn)X +

QA∑
q′=1

3N∑
n′=1

Θ̃q′(µ)YN n′(µ)(Aqn, A
q′

n′)X

 . (A.15)

This expression can be related to the dual norm of the residual through (A.10). It is the sum of
products of µ-dependent known functions and µ-independent inner products, formed of more
complicated but precomputable quantities. The Offline/Online decomposition is thus clear:
(i) in the Offline stage we first solve (A.13), (A.14) for the µ-independent FE “pseudo”-solutions
F̃q′′ and Aqn, 1 ≤ n ≤ 3N , 1 ≤ q ≤ QA, 1 ≤ q′′ ≤ QF̃ and form/store the µ-independent
inner products (F̃q′′ , F̃q′′′)X , (F̃q′′ ,Aqn)X and (Ãqn,A

q′

n′)X , being 1 ≤ n, n′ ≤ 3N , 1 ≤
q, q′ ≤ QA, 1 ≤ q′′, q′′′ ≤ QF̃ . The Offline operation count depends on N , QA +QF̃ and N ;

(ii) in the Online stage - performed for each new value of µ - we simply evaluate the sum (A.15) in
terms of the Θq

A(µ), 1 ≤ q ≤ QA, Θq′′

F̃
(µ), 1 ≤ q′′ ≤ QF̃ , and YN n(µ), 1 ≤ n ≤ 3N (already

computed for the output evaluation) and the precomputed and stored (µ-independent)
(·, ·)X inner products. The Online operation count is only O((QA +QF̃ )29N2), and thus
the crucial point - the independence of N - is achieved again.

A.2.2 Navier-Stokes equations

The same Offline/Online evaluation procedure for the residuals can be applied to the Navier-
Stokes case in the same way. Clearly, nonlinear terms make much more complicated the Offline
assembling stage, due to the increased parametric complexity. Recalling Sect. 3.4.4, residuals
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rv(· ;µ) and rp(· ;µ) for velocity and pressure equations, respectively, are defined in this case by:

rv(w;µ) := F (w;µ)− ã(vN (µ),w;µ)− b(pN (µ),w;µ)− c(vN (µ),vN (µ),w;µ),
rp(q;µ) := G(q;µ)− b(q,vN (µ);µ),

for any w ∈ V N , q ∈ QN , respectively, being ã(·, ·;µ) = a(·, ·;µ) +d(·, ·;µ). In the more compact
form, the global residual r(W ;µ) := rv(w;µ) + rp(q;µ) is given by

r(W ;µ) = F̃ (W ;µ)− Ã(YN (µ),W ;µ) ∀ W ∈ XN , (A.16)

where Ã(V,W ;µ) = A(V,W ;µ) +C(V, V,W ;µ), where C(Y, Y,W ;µ) = c(v,v,w;µ) is the term
relative to the nonlinear operator. Following the same construction and notation introduced
in the Stokes case, we can replace A(·, ·;µ) by Ã(·, ·;µ) and QA by QÃ = QA + QC in (A.11),
exploiting the affine decomposition of the nonlinear operator (3.19). By keeping the contribution
of the nonlinear term separate from the linear Stokes operator, we can express (A.16) as

r(W ;µ) ≡ (ê(µ),W )X = F̃ (W )−A(YN (µ),W ;µ)− C(YN (µ), YN (µ),W ;µ)

=
QF̃∑
q=1

Θq

F̃
(µ)F̃ q(W )−

3N∑
n=1

YN n(µ)
QA∑
q=1

Θq
A(µ)Aq(Φn,W )

−
2N∑
n=1

2N∑
n′=1

YN n(µ)YN n′(µ)
QC∑
q=1

Θq
C(µ)Cq(Φn,Φn′ ,W ),

so that ê(µ) can be expressed as

ê(µ) =
QF̃∑
q=1

Θq

F̃
(µ)F̃q +

QA∑
q=1

3N∑
n=1

Θq
A(µ)YN n(µ)Aqn +

QC∑
q=1

2N∑
n=1

2N∑
n′=1

Θq
C(µ)YN n(µ)YN n′(µ)Cqnn′

by introducing the FE “pseudo”-solutions F̃q ∈ XN , Aqn ∈ XN , C
q
nn′ ∈ XN , which satisfies:

(F̃q,W )X = F̃ q(W ), ∀ W ∈ XN , 1 ≤ q ≤ QF̃
(Aqn,W )X = −Aq(Φn,W ), ∀ W ∈ XN , 1 ≤ n ≤ 3N, 1 ≤ q ≤ QA

(Cqnn′ ,W )X = −Cq(Φn,Φn′ ,W ), ∀ W ∈ XN , 1 ≤ n, n′ ≤ 2N, 1 ≤ q ≤ QC .

It then follows that

‖ê(µ)‖2X = ‖êS(µ)‖2X +
QC∑
q=1

2N∑
n,n′=1

Θq
C(µ)YN n(µ)YN n′(µ)


QF̃∑
q′′=1

Θq′′

F̃
(µ)(Cqnn′ , F̃

q′′′)X+

+
QA∑
q′=1

3N∑
n′′=1

Θq′

A(µ)YN n′′(µ)(Cqnn′ ,A
q′

n′′)X +
QC∑
q′=1

2N∑
n′′,n′′′=1

Θq′

C (µ)YN n′′(µ)YN n′′′(µ)(Cqnn′ , C
q
n′′n′′′)X

 ,

where ‖êS(µ)‖2X is the expression computed as in (A.15) for the Stokes case, but accounting also
for the lifting terms arising from the nonlinear operator.
The Offline/Online decomposition thus features the same structure of the Stokes case, but entails
a stronger complexity, due to the presence of nonlinear terms, which requires the storage of the
following, additional µ-independent inner products (Cqnn′ , F̃q

′′)X , (Cqnn′ ,A
q′′′

n′′′′)X , (Cqnn′ , C
q′

n′′n′′′)X ,
being 1 ≤ n, n′, n′′, n′′′ ≤ 2N , 1 ≤ n′′′′ ≤ 3N , and 1 ≤ q, q′ ≤ QC , 1 ≤ 1′′ ≤ QF̃ , 1 ≤ q′′′ ≤ QA,
with respect to the Stokes case.
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A.3 Successive Constraint Method for stability factors
In this section we review the Successive Constraint Method (SCM) used for the estimation of
lower and upper bounds of stability factors. Based on the successive solution of suitable linear
optimization problems, this algorithm has been developed for the special requirements of the
RB method; it thus features an efficient Offline-Online strategy, making the Online computation
of the lower bound independent of N – a fundamental requisite in view of a rapid error bound
evaluation. This algorithm has been first introduced in [150] for both coercive and noncoercive
problems, analyzed in [280] in the coercive case and afterwards improved in [61]. A general
version using the so-called “natural norm” [298] has been analyzed in [146], where it has been
applied to noncoercive problems such as Helmholtz equations – the simpler coercive case can be
seen as a particular instance where the stability factor is just the coercivity constant. We apply
for the first time this algorithm to saddle point Stokes problems – as shown in the work with
Rozza and Huynh [279] – and provide a first extension to Navier-Stokes problems.

A.3.1 Stokes equations

Our goal is to build a lower bound for the (Babuška) discrete inf-sup stability factor

β(µ) := inf
V N∈XN

sup
WN∈XN

A(V N ,WN ;µ)
‖V N ‖X‖WN ‖X

= inf
V N∈XN

A(V N , TµV N ;µ)
‖V N ‖X‖TµV N ‖X

(A.17)

(we omit subscript Ba,N from now on) where Tµ : XN → XN is the (global) supremizer operator
defined as

(TµV N ,WN )X = A(V N ,WN ;µ), ∀ WN ∈ XN , (A.18)

such that

TµV N = arg sup
WN∈XN

A(V N ,WN ;µ)
‖WN ‖X

(A.19)

In particular, we shall observe that the computation of the stability factor (A.17) can be formulated
as a suitable eigenproblem. In fact, thanks to (A.19), we have that

(β(µ))2 =
(

inf
V N∈XN

‖TµV N ‖X
‖V N ‖X

)2

= inf
V N∈XN

‖TµV N ‖2X
‖V N ‖2X

. (A.20)

Let us introduce the matrix norm X = diag(XV ,XQ) of the space XN , where XV and XQ are
defined in (3.57), its Cholesky decomposition X = HTH, and denote by V = (v,p)T the vector
representation of V N = (vN , pN )T ∈ RN , being N = NX + NQ, so that ‖V N ‖2X = VTXV.
Moreover, denoting by T the vector whose components are the coefficients in the expansion of
TµV N ∈ XN , from (A.18) we have that TTXW = VTA(µ)W. We thus obtain that (β(µ))2 is
the smallest (generalized) eigenvalue of the following eigenvalue problem1:(

H−TAT (µ)X−1 A(µ)H−1)V = β2(µ) V, ∀ V 6= 0. (A.21)

1 Inserting T = X−1A(µ)V in (A.20) (βN (µ))2 can be expressed as a Rayleigh quotient, i.e.

(β(µ))2 = inf
V∈RN

TXT
VXV

= inf
V∈RN

VTAT (µ)X−TXX−1A(µ)V
VXV

= inf
V∈RN

VTAT (µ)X−1A(µ)V
VXV

,

so that (β(µ))2 =
√
λmin, where λmin is the smallest (generalized) eigenvalue, solving AT (µ)X−1 A(µ)V = λXV.
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The original version of SCM proposed in [150] deals with affine coercive operators and thus
features a complexity of order O(QA); its extension to affine noncoercive operators – and then to
the solution of problem (A.21) – is straightforward, even if this implies a complexity which is
of order O(Q2

A) – too cumbersome for problems with larger QA like the ones coming from EIM.
The natural norm approach overcomes this limitation by means of a different strategy, based on
the computation of a lower bound for a surrogate inf-sup stability factor β̃µ∗(µ), given by

β̃µ∗(µ) = inf
V N∈XN

sup
WN∈XN

A(V N ,WN ;µ)
‖Tµ∗V N ‖X‖WN ‖X

(A.22)

for some selected parameter value µ∗. Since we assume that β(µ) > 0 for all µ ∈ D, ‖Tµ∗ · ‖X is
a well-defined norm (which is equivalent to ‖ · ‖X in a neighborhood Pµ∗ 3 µ∗), called natural
norm. A lower bound for the surrogate β̃µ∗(µ) is thus given by

β̃LBµ∗ (µ) = inf
V N∈XN

A(V N , Tµ∗V N ;µ)
‖Tµ∗V N ‖2X

, (A.23)

thanks to (A.18). Following the same analogy introduced before, β̃LBµ∗ (µ) can be seen as the
solution of the following eigenproblem: find the smallest βµ∗(µ) such that(

H A−T (µ∗)A(µ)H−1)V = βµ∗(µ) V for each V 6= 0. (A.24)

The point is that, unlike the version (A.21), for fixed µ∗ the operator on the right-hand-side of
(A.24) contains only QA terms. Moreover, since it can be shown [298] that β(µ∗)β̃LBµ∗ (µ) ≤ β(µ),
it is sufficient to compute a lower bound βLBµ∗ (µ) ≤ β̃LBµ∗ (µ) for the surrogate (A.23) and the true
value β(µ∗) on the selected µ∗, and then translate it into a lower bound for β(µ).
The natural norm SCM procedure we adopt is based on the patching of some local (or surrogate)
inf-sup stability factors properly computed for a set of J parameter values S = {µ1∗, . . . ,µJ∗}.
In this way, a global lower bound, i.e. valid for each µ ∈ D, can be seen as the combination
between two main ingredients, discussed in the following subsections: (i) the construction of a
local lower bound βLBµ∗ (µ) upon a given parameter value µ∗ ∈ S, and (ii) the combination of the
local lower bounds computed upon each µ∗ ∈ S.

Construction of a local lower bound βLB
µ∗ (µ)

Let us analyze the construction of a local lower bound (A.23) for the surrogate inf-sup stability
factor (A.22), considering a chosen µ∗ ∈ D and a very rich training sample Ξtrain ⊂ D; since this
surrogate problem is coercive, the standard SCM [150] can be used. First of all, we rewrite (A.23)
as the following minimization (linear programming) problem:

β̃LBµ∗ (µ) = inf
y∈Y∗

Jobj(y;µ), (A.25)

where Jobj(y;µ) is the following linear objective functional:

Jobj(y;µ) =
QA∑
q=1

Θq(µ)yq, with y = (y1, . . . , yQA),

and Y∗ ⊂ RQA the following constraint set (exploiting the affine decomposition of A(·, ·;µ)):

Y∗ =
{

y ∈ RQA : ∃ WNy ∈ XN s.t. yq =
Aq(WNy , Tµ

∗
WNy )

‖Tµ∗WNy ‖2X
, 1 ≤ q ≤ QA

}
.
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The goal is to build a sequence of suitable relaxed problems of the original LP problem (A.25) by
seeking the minimum of the objective on a descending sequence of larger sets, built by adding
successively linear constraints. In order to define this sequence, let us consider the following steps:

1. Bounding box construction. In order to guarantee a priori that all relaxations which will be
considered are well-posed, we construct once for all a (continuity) bounding box given by

Bµ∗ =
QA∏
q=1

[
− γq
β(µ∗) ,

γq
β(µ∗)

]
,

where β(µ∗) is the solution of the eigenproblem (A.21) computed for µ = µ∗ (equivalently
given by (A.22)) and γq the (µ∗-independent) continuity factor of the bilinear form Aq(·, ·).

2. Relaxed LP problem. Given a properly selected constraints sample (or SCM sample)
C∗k = {µ∗1, . . . ,µ∗k} associated to µ∗, compute the (surrogate) lower bounds β̃LBµ∗ (µ′) defined
by (A.23), for each µ′ ∈ C∗k ; then, define the relaxation set

YLB
∗ (C∗k) =

{
y ∈ RQA : y ∈ Bµ∗

∣∣∣∣∣
QA∑
q=1

Θq(µ′)yq ≥ β̃LBµ∗ (µ′), ∀µ′ ∈ C∗k

}

by selecting a set of additional linear constraints associated to C∗k . Let us remark that the
desired local lower bound is given by the solution βLBµ∗ (µ) of the following relaxed problem:

βLBµ∗ (µ) ≡ βLBµ∗ (µ; C∗k) = inf
y∈YLB

∗ (C∗
k

)
Jobj(y;µ), ∀µ ∈ Dµ∗ ; (A.26)

the definition of the subset Dµ∗ ⊂ D will be subsequently made precise. In fact, we have
that β̃LBµ∗ (µ) ≥ βLBµ∗ (µ), where Y∗ ⊂ YLB

∗ (C∗k) and the minimum is taken over a larger set.
We underline that problem (A.26) has to be solved for each µ ∈ Ξtrain.

3. Selection of the successive constraint. The last step deals with the selection of the set C∗k ,
which is performed by means of a greedy procedure. In order to measure the quality of the
lower bounds, we need to introduce an upper bound, defined as follows:

βUBµ∗ (µ) ≡ βUBµ∗ (µ; C∗k) = inf
y∈YUB

∗ (C∗
k

)
Jobj(y;µ), ∀µ ∈ Dµ∗ , (A.27)

where YUB
∗ (C∗k) is the set given by

YUB
∗ (C∗k) =

{
ỹ ∈ RQ : ỹ = arg min

y∈Y∗
Jobj(y;µ′), ∀µ′ ∈ C∗k

}
.

Since YUB
∗ (C∗k) ⊂ Y∗ – see [150] for the proof – (A.27) is in fact an upper bound for β̃LBµ∗ (µ),

i.e. β̃LBµ∗ (µ) ≤ βUBµ∗ (µ); observe that (A.27) is just an enumeration problem. Finally, we can
show how to add the successive constraint, by means of a (local) greedy procedure. Starting
from an arbitrarily chosen C∗1 = {µ∗1}, at step k we enrich the set C∗k = {µ∗1, . . . ,µ∗k}, by
means of the value µ∗k+1 given by

µ∗k+1 = arg max
µ∈Ξtrain

ρ(µ; C∗k), ρ(µ; C∗k) =
βUBµ∗ (µ; C∗k)− βLBµ∗ (µ; C∗k)

βUBµ∗ (µ; C∗k)
;

i.e. choosing the element corresponding to the largest ratio ρ(µ; C∗k) over Ξtrain. The
stopping criterium for this successive enrichment is given by

ρ(µ; C∗k) ≤ ε∗, (A.28)
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i.e. the procedure for the local lower bound finishes when the largest ratio is under a
chosen SCM (local) tolerance ε∗ ∈ (0, 1). At the end of this procedure, we end up with K
constraints, corresponding to the set C∗K = {µ∗1, . . . ,µ∗K}.

Computation of a global lower bound

We now translate the local lower bound βLBµ∗ (µ), computed upon a selected value µ∗, to a global
lower bound. We shall make a distinction between the iterative procedure by which we “cover”
the parameter space D and the relationship between the local and the global lower bounds.
Let us start from this second point; the output of the coverage procedure are the set S =
{µ1∗, . . . ,µJ∗}, J ≤ Jmax and the associated SCM samples Cj∗K(j) = {µj∗1 , . . . ,µ

j∗
K(j)}, for any

j = 1, . . . , J , where K(j) < Kmax is the number of constraints points related to each µj∗ ∈ S.
The global lower bound for β(µ) can be defined (see [146] for the proof) as

βLB(µ) = β(µσ∗)βLBµσ∗(µ; Cσ∗K(σ)), σ ≡ σ(µ) = arg max
j∈{1,...,J}

β(µj∗)βLBµj∗(µ; Cj∗K(j)). (A.29)

In practice, for each µ the global lower bound is given by the maximum among the products
between the stability factors β(µj∗) and the local lower bounds βLBµj∗(µ; Cj∗K(j)), corresponding to
the selected {µ1∗, . . . ,µJ∗}. Previous equation also implicitly defines the subdomains Dµj∗ :

Dµ∗j = {µ ∈ D : β(µj∗)βLBµj∗(µ; Cj∗K(j)) ≥ β(µj
′
)βLB
µj′

(µ; Cj
′

K(j′))., ∀j
′ ∈ {1, . . . , J}}.

We remark that the global lower bound βLB(µ) given by this method interpolates β(µ) at each
µ∗ ∈ S, being βLB(µ∗) = β(µ∗) in these cases.

We now discuss the procedure by which we select the set S = {µ1∗, . . . ,µJ∗} and the associated
SCM samples; also in this case, we use a (global) greedy procedure, which encapsulates the local
ones used for the construction of each SCM sample. Starting from a chosen µ1∗, we set S = {µ1∗}
and initialize the corresponding SCM sample C1∗

1 = {µ1∗
1 }, being µ1∗

1 = µ1∗. At step j, we have

S(j−1) = {µ1∗, . . . ,µ(j−1)∗}, Cs∗K(s) = {µs∗1 , . . . ,µs∗K(s)}, s = 1, . . . , j − 1,

(through the construction of the local lower bounds around µ1∗, . . . ,µ(j−1)∗) and

µj∗ = arg min
µ∈Ξtrain

βLBµ(j−1)∗(µ; C(j−1)∗
K(j−1))

i.e. the new µj∗ is selected by taking the minimum over Ξtrain of the local lower bound computed
w.r.t. the previous µ(j−1)∗. Then, we build the covered set

Rj =
{
µ ∈ Ξtrain

∣∣∣ βLBµj∗(µ; Cj∗1 ) > 0
}

and start the procedure for the construction of the local lower bound (upon µj∗): for k =
1, . . . ,K(j), we build iteratively the set Cj∗k and compute the actual covered set

Ractj,k =
{
µ ∈ Ξtrain

∣∣∣ βLBµj∗(µ; Cj∗k ) > 0
}
,

checking at each step k if the current µj∗ does not give the possibility to increase the coverage,
i.e if Ractj,k \ Rj = ∅, and the stopping criterium (A.28) is fulfilled. If these conditions are not
fulfilled (k < K(j)), we keep on adding linear constraints, and setting Rj = Ractj,k ; instead, if they
are verified (k = K(j)), we stock the (local) covered set, by putting Ξtrain := Ξtrain \ Rj , and
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seek for the subsequent µ(j+1)∗. The global procedure ends up when all the train sample has
been covered, i.e. when Ξtrain = ∅. For the reader’s convenience, we sum up the local/global
procedure in the following schematic algorithm:

S(1) = {µ1∗}, C1∗
1 = {µ1∗

1 }, µ1∗
1 = µ1∗

for j = 1 : Jmax

Cj∗1 = {µj∗1 }, µj∗1 = µj∗

Rj =
{
µ ∈ Ξtrain

∣∣∣ βLBµj∗(µ; Cj∗1 ) > 0
}

for k = 1 : Kmax

compute the lower bound (A.26) : βLBµj∗(µ; Cj∗k )
compute the upper bound (A.27) : βUBµj∗(µ; Cj∗k )
add the successive constraint : µ∗k+1 = arg maxµ∈Ξtrain ρ(µ; C∗k)
set Cj∗k+1 = Cj∗k ∪ µ∗k+1; Ractj,k+1 =

{
µ ∈ Ξtrain

∣∣∣ βLBµj∗(µ; Cj∗k+1) > 0
}

;
if Ractj,k+1 \ Rj = ∅ and ρ(µ; Cj∗k ) ≤ ε∗

set K(j) = k; Cj∗K(j) = Cj∗k+1; Ξtrain := Ξtrain \ Ractj,k+1;
exit for

else
Rj = Ractj,k+1; set k = k + 1;

end
end
if Ξtrain 6= ∅

µ(j+1)∗ = arg minµ∈Ξtrain β
LB
µj∗(µ; Cj∗K(j))

set S(j+1) = Sj ∪ µ(j+1)∗; j = j + 1;
else

set J = j;S = S(j);
return

end
end

A.3.2 Navier-Stokes equations

In the Navier-Stokes case, error bounds require the evaluation of the (parametric) lower bound
βLB
Ã,N (µ) of the stability factor βÃ,N (µ) = βÃ,N (YN (µ);µ), recalling that in this case

βÃ,N (µ) ≡ βÃ,N (YN (µ);µ) = inf
V ∈XN

sup
W∈XN

dÃ(YN (µ)(µ);µ)(V,W )
‖V ‖X‖W‖X

,

where dÃ(YN (µ);µ)(V,W ) is the Fréchet derivative of the global Navier-Stokes operator Ã(·, ·;µ) =
A(V,W ;µ) + C(V, V,W ;µ) with respect to the first variable, evaluated for YN (µ).

In order to compute βLB
Ã,N (µ) we have exploited the natural norm SCM algorithm presented above,

by considering the Fréchet derivative of the Navier-Stokes operator instead of the Stokes operator.
In this way, the SCM algorithm constructs a set of local lower bounds for the selected values µj∗,
j = 1, . . ., where we assume that dÃ(YN (µ)(µ);µ)(V,W ) is replaced by dÃ(Y N (µ);µ)(V,W ), i.e.
the global operator is linearized around the FE approximation YN (µj∗). This assumption does
not seem so inconsistent, since (i) when performing the SCM algorithm, we still do not have any
RB approximation available – SCM is in fact performed before the construction of the RB spaces
through the greedy algorithm – and (ii) at the end, the error ‖Y N (µ)− YN (µ)‖X is very small.
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With respect to the Stokes case, this version of the SCM algorithm requires additional calculations,
such as the update of the bounding box regarding the terms arising from the (linearization of)
nonlinear operator and the solution of a FE Navier-Stokes problem for each selected µj∗ and for
each µ ∈ Cj∗K(j), giving the local lower bounds for each added constraints. This features a large
additional cost, since the SCM algorithm may take several iterations to converge.

Thus, we have been pushed to seek for alternative, possibly cheaper procedures. We have
considered the calculation of a surrogate lower bound through interpolation by using the Radial
Basis Function (RBF) technique (see Sect. 2.7). At the simplest level, we only need to select a
trial set Ξtrial ⊂ D of size |Ξtrial| = ntrial and to compute the stability factors

βÃ,N (µ) := βÃ,N (Y N (µ);µ), µ ∈ Ξtrial, (A.30)

by solving an eigenproblem for each µ ∈ Ξtrial. Even though this computation is expensive,
RBF interpolation is well-suited for scattered data, so that small trial samples can be considered.
Concerning the choice of the radial basis, thin-plate spline have been employed. Results presented
in Sect. 3.6.2 are very promising about the possibility to apply a surrogate model in order to
compute a (Offline) cheaper but effective lower bound for βLB

Ã,N (µ), e.g. for nonlinear problems.
Positive lower bounds have been obtained by starting from positive trial stability factors (A.30).
However, compactly supported RBFs (or explicit imposition of positivity constraints) can also be
considered [50,322] in case of loss of positiveness in large regions of the parameter space.
Moreover, an integrated SCM-RBF procedure is under investigation, in order to combine some
local, trial lower bounds βLB

Ã,N (µj∗), j = 1, . . . , ntrial calculated by running ntrial iterations of the
SCM procedure, and a subsequent RBF interpolation built over these trial lower bounds instead
than over a set of a priori computed stability factors (A.30). We might also exploit a greedy
algorithm for selecting the trial set Ξtrial ⊂ D, by retaining at each step the worst candidate point,
maximizing a suitable distance between the current RBF interpolation and, e.g., an upper bound
computed during earlier stages of the SCM algorithm. In case of larger parameter dimensions,
we might also consider some screening procedures (see e.g. Sect. 4.8) before RBF interpolation,
in order to fix some parameter components and allow only the most relevant ones to vary.

A modified version of the natural norm SCM algorithm has been set to improve computational
performances in case of large (recovered) affine expansions, as mentioned in Sect. 3.5. Our
proposed approach – submitted in a recent paper [183] with Lassila and Rozza – is to limit the
number of affine terms used in the SCM and to exploit the current SCM procedure at a coarser
level, by recovering the lower bounds at the finer level, by introducing suitable correction factors.
Some tests on elliptic linear scalar problems, both in the coercive (Poisson) and in the noncoercive
(Helmholtz) case, underline that some of the proposed corrections in the stability factor are reliable
and accurate and represents a good compromise in terms of effectivity. Important improvements
are expected in the application of this methodology in nonlinear problems with nonaffine complex
geometric parametrizations governed by Stokes or Navier-Stokes equations.

A.4 Sobolev embedding constants
We present here a fixed-point algorithm [236] for the computation of the (discrete) Sobolev
constant ρ defined in (3.46), given by

ρ2
N = sup

v∈V N

‖v‖2L4(Ω)

(v, v)H
. (A.31)

where H1
0 (Ω) ⊂ V ⊂ H1(Ω), V N ⊂ V is the truth approximation space, and ‖w‖p =

(∫
Ω |w|

p
)1/p.
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This algorithm has been firstly addressed in [78]; here we provide a complete proof of the
theoretical results it is built over. To set this procedure, we need to reformulate problem (A.31)
as a fixed point iteration for a suitable operator and to introduce a suitable eigenproblem. First
of all, let us denote with u∗ the element of XN (not necessarily unique) which satisfies

u∗ = arg max
v∈XN

‖v‖24
(v, v)XN

, (u∗, u∗)XN = 1; (A.32)

Then, let us define the operator σ : XN → XN as

σ(w) = w2

‖w‖24
; (A.33)

note that ‖σ(w)‖2 = 1, for all w ∈ XN . Thus, given a nonnegative function z ∈ L2(Ω), let us
introduce the following eigenproblems: for each 1 ≤ i ≤ N , ui(z) ∈ XN and λi(z) ∈ R+ are
solution of∫

Ω
zui(z)v = λi(z)(ui(z), v)XN , ∀v ∈ XN , with (ui(z), ui(z))XN = 1. (A.34)

Here we consider the eigenvalues {λi(z)}Ni=1 in increasing order, with 0 ≤ λ1(z) ≤ . . . ≤ λN (z),
and denote with umax(z) = uN (z). We remark that

λmax(z) = max
v∈XN

(
1

(v, v)XN

∫
Ω
zv2dΩ

)
(A.35)

by definition of Rayleigh quotient. The following Lemma, providing the basis of the fixed-point
iteration for the approximation of ρ2

N , holds:

Lemma A.1. The discrete Sobolev embedding constant ρN and the element u∗ defined by (A.31)
and (A.32), respectively, satisfy

λmax(σ(u∗)) = ρ2
N , umax(σ(u∗)) = u∗.

Proof. Let us recall that

max
v∈XN

(v,v)XN=1

(u2
∗, v

2) = ‖u2
∗‖22

(u∗, u∗)2
XN

by Cauchy-Schwarz inequality, since (u2
∗, v

2)2 ≤ ‖u2
∗‖2‖v2‖2 and the maximum is reached for an

element v such that v2 = α2u2
∗ and (v, v)XN = 1, i.e. v = αu∗ and α = 1/(u∗, u∗)XN . Then, by

using definitions (A.35) and (A.33), we find

λmax(σ(u∗)) = max
v∈XN

∫
Ω
u2
∗v

2dΩ

‖u∗‖24(v, v)XN
= max

v∈XN
(v,v)XN=1

∫
Ω
u2
∗v

2dΩ

‖u∗‖24
=

∫
Ω
u4
∗dΩ

‖u∗‖24(u∗, u∗)2
XN

(A.36)

= ‖u∗‖44
‖u∗‖24(u∗, u∗)2

XN
= ‖u∗‖24

(u∗, u∗)XN
= ‖u∗‖24

(u∗, u∗)2
XN

= ρ2, (A.37)

since (u∗, u∗)XN = 1. Consequently, since umax(z) is the maximizer of (A.35), i.e. it is such that

umax(z) = arg max
v∈XN

(
1

(v, v)XN

∫
Ω
zv2dΩ

)
,
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from (A.36) and (u∗, u∗)XN = 1 we can conclude that umax(σ(u∗)) = u∗/((u∗, u∗)XN ) = u∗.

In order to develop the fixed-point procedure, we point out that

λmax(z2)− λmax(z1) =
∫

Ω
z2u

2
max(z2)dΩ−

∫
Ω
z1u

2
max(z1)dΩ

=
∫

Ω
(z2 − z1)u2

max(z1)dΩ +
∫

Ω
z2umax(z2)(umax(z2)− umax(z1))dΩ (A.38)

+
∫

Ω
z1umax(z1)(umax(z2)− umax(z1))dΩ +

∫
Ω

(z2 − z1)umax(z1)(umax(z2)− umax(z1))dΩ,

and we show the following Lemma:

Lemma A.2. Given two non-negative functions z1, z2 ∈ L2(Ω), the corresponding maximum
eigenvalues λmax(z1), λmax(z2) defined by (A.35) are such that

λmax(z2)− λmax(z1) =
∫

Ω
(z2 − z1)u2

max(z1)dΩ +O(‖z2 − z1‖22).

Proof. It is clear that umax(z2)− umax(z1) = O(‖z2 − z1‖2) and λmax(z2 − z1) = O(‖z2 − z1‖2).
Then, the last term of (A.38) is at least O(‖z2− z1‖XN ). Then, by definition of the eigenproblem
(A.34), we have:∫

Ω
z2umax(z2)(∂u)dΩ = λmax(z2)(umax(z2), ∂u)XN , (A.39)

∫
Ω
z1umax(z1)(∂u)dΩ = λmax(z1)(umax(z1), ∂u)XN (A.40)

where ∂u = umax(z2) − umax(z1). To simplify these expressions, we now exploit the two
relationships (valid for any A,B and any scalar product)

(A−B,A) = 1
2(A,A)− 1

2(B,B) + 1
2(A−B,A−B), (A.41)

(B −A,A) = 1
2(A,A)− 1

2(B,B)− 1
2(A−B,A−B),

by applying the former to the right-hand side of (A.39) with A = umax(z2), B = umax(z1) and
the latter to the right-hand side(A.39) with A = umax(z1), B = umax(z2), respectively. Since
‖umax(zi)‖XN = 1 for i = 1, 2, we end up with∫

Ω
z2umax(z2)(umax(z2)− umax(z1))dΩ = 1

2λmax(z2)‖umax(z2)− umax(z1)‖2XN ,∫
Ω
z1umax(z2)((umax(z2)− umax(z1))dΩ = −1

2λmax(z1)‖umax(z1)− umax(z2)‖2XN ,

which proves the thesis.

Based on the relationship above, we can compute the Sobolev embedding constant by means of
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the following fixed point algorithm:

z(0) = 1;

for k = 1, 2, . . .

φ(k) = λmax(z(k−1));

z(k) = σ(umax(z(k−1)));

In order to prove that φ(k) → ρ2
N as k →∞, we observe that, owing to Lemma A.2, the following

relationship holds:

φ(k+1) − φ(k) = λmax(z(k))− λmax(z(k−1))

=
∫

Ω

(
σ(umax(z(k−1)))− σ(umax(z(k−2)))

)
u2
max(z(k−1))dΩ +O(‖z(k−1) − z(k−2)‖22).

At this point, it just remains to show that the first term in the last expression is non-negative, so
that the fixed-point iteration at least heads in the right direction – we remark that a fixed point
of the algorithm is not necessary the supremizer of (A.35), but it is at least a local supremizer.
Thanks to definition (A.33) of the operator σ : XN → XN , the last factor appearing in the
integral can be rewritten as u2

max(z(k−1)) = σ(umax(z(k−1)))‖umax(z(k−1))‖24, so that the integral∫
Ω

(σ(umax( z(k−1)))− σ(umax(z(k−2)))
)
u2
max(z(k−1))dΩ

=‖umax(z(k−1))‖24(σ(umax(z(k−1))), σ(umax(z(k−1)))− σ(umax(z(k−2))))2

is positive thanks to the relationship (A.41) – by choosing A = σ(umax(z(k−1))) and B =
σ(umax(z(k−2))) – and to the fact that ‖σ(umax(z(k−1)))‖2 = ‖σ(umax(z(k−2)))‖2 = 1.

A.5 Automatic generation of piecewise affine maps
We provide in this section some details related to the construction of basic RB triangulations
built on (standard) triangles, elliptical triangles and general “curvy” triangles; a more extended
overview can be found in [280, 208]. This methodology has been used for the examples of
Sect. 3.6.1-3.6.2. As illustrated in Sect. 2.5.1, considering the domain decomposition (2.14), in
the affine case for the kth subdomain (1 ≤ k ≤ Kdom) the concrete affine transformation is given,
for any µ ∈ D and x ∈ Ωk, by

T ki (x,µ) = Cki (µ) +
d∑
j=1

Gkij(µ)xj , 1 ≤ i ≤ d (A.42)

for given translation vectors Ck : D → Rd and linear transformation matrices Gk : D → Rd×d.
The associated Jacobians are given by JkT (µ) = |det (Gk(µ))|, 1 ≤ k ≤ Kdom and for invertible
mappings they are strictly positive. Thus, in the two-dimensional case d = 2 affine mappings
contains d(d+ 1) = 6 degrees of freedom (the mapping coefficients), and it is therefore sufficient,
for any given µ ∈ D, to consider the relationship between three non-collinear pre-image points
in Ω, (z1, z2, z3) and three parametrized image nodes in Ωo(µ), (z1

o(µ), z2
o(µ), z3

o(µ)). Note
that every point consists of two components (zi1, zi2), 1 ≤ i ≤ 3, resp. (zio 1, z

i
o 2), 1 ≤ i ≤ 3, and

therefore the application of (A.42) to these points gives a system of six independent equations to
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determine2 the six mapping coefficients:

zmo i(µ) = Ci(µ) +
2∑
j=1

Gij(µ)zmj , 1 ≤ i ≤ 2, 1 ≤ m ≤ 3. (A.43)

The RB triangulation may be built on (standard) triangles, elliptical triangles and general “curvy”
triangles, which admit symbolic and numerical automation and are the building blocks in the
rbMIT software [149]. Extension to 3D tethraedra is quite straightforward [109]. More complex
geometrical parametrizations are represented by FFD and RBF techniques (see Sect. 2.6-2.7).

Standard Triangles
In the case of a standard triangle subdomain the three vertices of the triangle in the reference
domain shall serve as pre-image nodes while the three vertices of the triangle in the actual
(µ-dependent) domain shall serve as image nodes. In this case, our three points uniquely define
not only the transformation but also the reference domain and parametrized domains [280].
We can then readily establish the system of six linear equations to determine the six unknown
mapping coefficients. In this way, we can construct an affine transformation from any reference
triangle in R2 onto any desired triangle in R2. It is not mandatory to choose the vertices of
the triangles as our nodes defining the transformation, and other characteristic points e.g. the
barycentric coordinates of the FE context are also possible.

Elliptical and Curvy Triangles
The class of elliptical triangles covers a much greater range of possible geometries and their
formulation is also necessary for the more general case dealing with curvy triangles. We can
distinguish two different kinds of elliptic triangles: “inwards” and “outwards” triangles. Both
types are depicted in Figure A.1. In both cases, the elliptical triangle Ωo(µ) is defined by the
three vertices z1

o(µ), z2
o(µ), z3

o(µ), the two straight lines z1
o(µ)z2

o(µ) and z1
o(µ)z3

o(µ) as well as
the elliptical arc z2

o(µ)z3
o(µ)

arc
.

z1
o(µ)

z2
o(µ)

z3
o(µ)

Ωo(µ)

θ31(µ)θ12(µ)

θ31(µ)

z1
o(µ)

z2
o(µ)

z3
o(µ)

Ωo(µ)

θ31(µ)

θ12(µ)

θ31(µ)

z1
o(µ)

z2
o(µ)

z3
o(µ)

Ωo(µ)

θ31(µ)θ12(µ)

θ31(µ)

z1
o(µ)

z2
o(µ)

z3
o(µ)

Ωo(µ)

θ31(µ)

θ12(µ)

θ31(µ)

O(µ) + Qrot(µ)S(µ)
(

cos t
sin t

)

ρ2(µ
)

ρ1(µ
)

φ(µ)O(µ)

xo2

xo1

Figure A.1: From left to right: “inwards” elliptical triangle, “outwards” elliptical triangle and
definition of a point on a prescribed parametrized ellipse.

We shall now precise the definition and description of the elliptical arc and explain the constraints
that must be met by the location of the third point z1

o(µ) to ensure “proper” triangles and a
continuous and well-defined global mapping in the multidomain context.
First, the description of the elliptical arc shall be derived from the definition of a parametrized
ellipse (see Figure A.1 (c)).

2The assumption that the affine transformation is bijective thereby ensures that image nodes are perforce also
non-collinear (if pre-image nodes are non-collinear) and hence equations are linear independent.
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The ellipse is described implicitly by

(xo −O(µ))TQrot(µ)S−2(µ)Qrot(µ)T (xo −O(µ)) = 1, (A.44)

while a particular point on this ellipse is given by

xo ≡
(
xo1
xo2

)
= O(µ) +Qrot(µ)S(µ)

(
cos t
sin t

)
(A.45)

for given t ∈ R. We denote (see Fig. A.1) by O(µ) : D → R2 the center of the ellipse, by
ρ1(µ) : D → R+ and ρ2 : D → R+ the length of its semi-axes and by φ(µ) : D → R the angle of
inclination. With these quantities, the scaling matrix S(µ) and the rotation matrix Qrot(µ) can
be defined:

S(µ) ≡
(
ρ1(µ) 0

0 ρ2(µ)

)
, Qrot(µ) =

(
cosφ(µ) − sinφ(µ)
sinφ(µ) cosφ(µ)

)
.

The description of the elliptical arc with these means is then as follows:

z2
o(µ)z3

o(µ)
arc

=
{
O(µ) +Qrot(µ)S(µ)

(
cos t
sin t

) ∣∣∣∣ t2 ≤ t ≤ t3} . (A.46)

with t2 ∈ R and t3 ∈ R chosen such that the points z2
o(µ) and z3

o(µ) are given as the endpoints
of the elliptical arc for t = t2 and t = t3:

zmo (µ) = O(µ) +Qrot(µ)S(µ)
(

cos tm
sin tm

)
, m = 2, 3. (A.47)

In addition, we have to make sure that 0 ≤ t3 − t2 < π. It remains to specify the location of the
third point z1

o(µ). For elliptical triangles, this location is not arbitrary but has to be chosen
in a way that ensures that the affine transformation generates the desired elliptical arc (A.46).
First, this ensures a continuous global mapping; second, to obtain well-defined elliptical triangles
(and thus a well defined domain), several internal angle conditions have to be met by the choice
for z1

o(µ): 0 < Θ∗ < π, ∀Θ∗ ∈ {Θ12,Θ23,Θ31}. The first requirement can be fulfilled by the
expression of the three corner points as

zmo (µ) = O(µ) + ωmQrot(µ)S(µ)
(

cos tm
sin tm

)
, 1 ≤ m ≤ 3, (A.48)

for given ω1 = ω ∈ R, ω2 = ω3 = 1 and t1 ∈ [t2, t3]. Pre-image points are thus given as

zmo (µref) = O(µref) + ωmQrot(µref)S(µref)
(

cos tm
sin tm

)
, 1 ≤ m ≤ 3. (A.49)

From these representations we can identify our affine mapping as

zmo (µ) = C(µ) + G(µ)zm = (O(µ)−Qrot(µ)S(µ)S(µref)−1Qrot(µref)TO(µref))
+ (Qrot(µ)S(µ)S(µref)−1Qrot(µref)T )zm.

The second requirement - the internal angle conditions - is illustrated in Figure A.2. In the
inwards case, a necessary and sufficient condition to ensure the conditions 0 < Θ∗ < π, for any
Θ∗ ∈ {Θ12,Θ23,Θ31} is given for an inwards elliptical triangle by z1

o(µ) ∈ Rin(µ), where

Rin(µ) = {z1
o(µ) ∈ R2|(z1

o(µ)− z2
o(µ))Tn2(µ) < 0,

(z1
o(µ)− z3

o(µ)))Tn3(µ) < 0, (z1
o(µ)− z2,3

o (µ))Tn2,3(µ) < 0}, (A.50)
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and for the outwards elliptical triangle by z1
o(µ) ∈ Rout(µ), where

Rout(µ) = {z1
o(µ) ∈ R2|(z1

o(µ)− z2
o(µ))Tn2(µ) > 0, (z1

o(µ)− z3
o(µ))Tn3(µ) > 0}. (A.51)

Here n2(µ) and n3(µ) are the outwards-facing normals to the ellipse at z2(µ) and z3(µ)
respectively, z2,3

o (µ) = 1
2 (z2

o(µ) + z3
o(µ)) and n2,3(µ) is the “outwards-facing” normal to the line

segment z2
o(µ)z3

o(µ) at z2,3
o (µ).

z2
o(µ)

n2,3(µ)

n2(µ)

n3(µ) Rout(µ)

Rin(µ)

z3
o(µ)

z2,3
o (µ)

(xo −O(µ))T Qrot(µ)S−2(µ)
Qrot(µ)T (xo −O(µ)) = 1

Figure A.2: Regions in which z1
o(µ) must reside in the inwards (Rin(µ)) and the outwards case

(Rout(µ)).

An important feature of the elliptical triangles is that they are consistent under refinement: so,
if we split an elliptical triangle for which the internal angle conditions (A.50) and (A.51) are
fulfilled, the resulting two elliptical triangles also satisfy the internal angle conditions.
To enlarge the possible range of geometries even more, the elliptical triangles are extended to
“curvy” triangles. This is done by replacing (cos t, sin t)T in (A.45) with a general parametrization
(g1(t), g2(t))T , where the curvy arcs have to be either strictly convex (“inwards”) or strictly
concave (“outwards”) for all µ ∈ D. In this case, it is not possible to derive a simple closed form
as it was the case for the elliptical triangles.

Piecewise affine mappings for multiple subdomains
To treat more complex geometries, it is necessary to allow that the domain is built of several
(standard, elliptical or curvy) triangles. We are then not restricted to a single affine mapping,
but we deal with a piecewise affine mapping based on this domain decomposition. We can thus
consider geometrical domains for which the boundary can be represented either by straight edges
or by elliptical triangles as presented above (see e.g. Sect. 3.6.1, case 3). The multi-domain
mapping process is then performed in three steps. First, the RB triangulation is generated on
the reference domain Ω together with the associated reference regions by means of an automatic
procedure3. In the second step, the necessary parameter-dependent affine mappings for each
subdomain are constructed, as described in the previous section. In the last step we have to
translate the parametric mappings obtained for each subdomain into PDE coefficients.

3The RB triangulation has to be compatible with the mapping continuity condition (2.51) and all elliptical and
curvy subtriangles have to be well-defined and to fulfill the internal angle conditions (A.50) and (A.51).
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