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Abstract. Most state-of-the-art approaches to image segmentation formulate the
problem using Conditional Random Fields. These models typically include a
unary term and a pairwise term, whose parameters must be carefully chosen for
optimal performance. Recently, structured learning approaches such as Structured
SVMs (SSVM) have made it possible to jointly learn these model parameters.
However, they have been limited to linear kernels, since more powerful non-linear
kernels cause the learning to become prohibitively expensive. In this paper, we in-
troduce an approach to “kernelize” the features so that a linear SSVM framework
can leverage the power of non-linear kernels without incurring the high computa-
tional cost. We demonstrate the advantages of this approach in a series of image
segmentation experiments on the MSRC data set as well as 2D and 3D datasets
containing imagery of neural tissue acquired with electron microscopes.

1 Introduction

Conditional random fields (CRFs) are a class of powerful graphical models that have
been highly successful in image segmentation. In the CRF framework, the solution
is typically obtained by minimizing an energy function that is the sum of unary and
pairwise terms '. The unary term encodes the likelihood that a particular label should
be assigned to a pixel based on local image features®. The pairwise term encodes the
tendency of neighboring pixels or superpixels to share the same label, thus enforcing
spatial regularity.

In recent years, machine learning techniques have increasingly been used to derive
these terms in favor of simpler traditional models. However, this is usually done sepa-
rately for each term: the unary term is optimized for labeling individual pixels while the
pairwise term is optimized for labeling pixel pairs. As a result, the two terms can often
be incommensurate, and an ad hoc weighting step is required to balance their relative
influences. Instead, the parameters of the unary and pairwise terms should be learned
jointly to infer the optimal labeling. This can be done using the recent structured-
SVM (SSVM) framework [1]. It involves learning the unary and pairwise terms jointly
through an iterative cutting-plane scheme that provably minimizes an upper bound on
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! Higher order terms are also possible in theory, though less commonly used in practice due to
higher computational cost. The unary term is also referred to as the data term.

2 Alternatively, groups of pixels or superpixels can be used in order to speed up computation.
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(a) mitochondria (b) synapses

Fig. 1. Two nearly isotropic stacks of neural tissue acquired using EM microscopy annotated for
training and testing. (a) This stack contains 1000 images of 1024 x 1024 pixels, and was used
for the task of segmenting mitochondria, indicated by arrows. (b) This stack contains 250 images
of 655 x 429 pixels and was used to segment synaptic gaps, indicated by arrows.

the empirical loss and the model complexity. Currently, SSVMs can be of practical use
only in conjunction with terms that are linear functions of the input features. This is
because introducing non-linear terms would result in quadratic times for learning itera-
tions, which quickly becomes unmanageable for regular-size 2D images and even more
so for 3D data. Thus, it is usually not practical to use non-linear kernels in an SSVM
framework, though they are often more powerful than their linear counterparts.

In this paper, we overcome this limitation through a two-step learning approach.
We first use a regular non-linear SVM to create kernel-transformed feature vectors,
each of which consists of kernel products between the input feature vector and a set of
basis vectors that may not be orthogonal to each other. We then train a linear SSVM
on the transformed features. This approach combines the power of non-linear kernels
for individual pixel classification in the unary term with the regularizing effect of the
pairwise term, while enforcing consistency between the two. This yields both improved
segmentation performance and computational efficiency.

This line of research was primarily motivated by the need to more accurately seg-
ment synapses and mitochondria in electron microscopy (EM) stacks, such as those
of Fig. 1. In this kind of data, unlike in popular segmentation benchmarks such as
MSRC [2], global features that predict whether or not a type of object appears anywhere
in the image are not useful. This is because it is known that synapses and mitochondria
always appear in EM stacks, whereas it is not known if a cow or bird will appear in
a particular image from a standard benchmark dataset such as MSRC. Thus, for EM
applications, the CRF must rely solely on unary evidence and spatial smoothness. We
demonstrate on all three datasets that our approach indeed boosts the performance of
the learned CRF. Furthermore, it outperforms the previous state-of-the-art in our target
applications: synapse and mitochondria segmentation.
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2 Related Work

For tasks such as segmentation, consistent labeling of highly-correlated neighboring
pixels is of great importance. Structured prediction has emerged as a powerful tool to
take into account such correlations. In this section, we first discuss current approaches
to structured prediction and the computational complexity issues that restrict them from
use in conjunction with non-linear kernels. We then consider kernel approximation tech-
niques that can be used to address these issues. Finally, we discuss structural kernels
which, like our approach, rely on kernel functions in a structured prediction frame-
work. But unlike our approach, they do so over the entire output space, which carries
certain disadvantages.

Structured Prediction Structured prediction methods such as conditional random fields
(CRFs) [3] have been widely applied to problems with structured outputs. While tra-
ditional classifiers, such as decision trees and SVMs independently map each data in-
stance to a single label, structured prediction methods take into account the statistical
correlations between labels. This is critical for tasks such as image segmentation, where
such correlations are strong between nearby pixels. Learning CRF models using large-
margin methods has rapidly gained popularity in recent years. This is because they are
more objective-driven and do not involve the daunting partition function that can ren-
der maximum-likelihood approaches intractable in CRFs with loopy graph structures.
Compared with earlier approaches including the max-margin Markov network [4], the
structured support vector machine (SSVM) [1] is especially appealing, and has since
been successfully applied to many computer vision tasks, such as in [5—7], among oth-
ers. The SSVM’s appeal is due, in part, to its ability to take into account a variety of
loss functions.

Computational Complexity SSVMs, however, require the CRF energy function to be
linear, which in turn places the same restriction on all the unary and spatial terms due to
the additive nature of CRF energies. While, in principle, the linear function can be de-
fined in some high dimensional or possibly infinite-dimensional space, reproducing this
kernel Hilbert space through the use of non-linear kernels is often infeasible in practice
given that the number of kernel evaluations grows quadratically with the model size
and must be optimized in the dual space. Though SSVM learning techniques based on
sampled cuts [8, 9] have alleviated this problem to some extent, they do have to sacri-
fice some performance for speed and, even with this trade-off, are still generally much
slower than linear SSVMs [8]. Moreover, earlier implementations of these techniques
were intended for use in conjunction with the cutting-plane method to speed up training
of regular non-linear SVMs. This results in a multivariate output space in the SSVM
formulation, analogous to a CRF without edges, which is considerably less useful for
image segmentation.

Kernel Approximation Kernel Approximation is another way to improve SSVM train-
ing efficiency by seeking a lower, finite-dimensional representation of the kernel-induced
feature map that lies in a higher or infinite dimensional space. This can be achieved by
random sampling from the typically infinite-dimensional feature map [10, 11] whose
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analytical form can be obtained using Fourier analysis when the kernel is homogeneous
or stationary [12]. While promising results have been shown for specific additive ker-
nels [13, 12], it is less clear how this approach generalizes to non-additive kernels, such
as the Gaussian RBF that is more difficult to approximate. Alternatively, the recently
proposed locally linear SVM [14] can be used to simulate a non-linear decision bound-
ary. However, this does not yield a globally linear function and, thus, does not fit into
the SSVM framework. Moreover kernel approximation typically introduces additional
tuning parameters such as the number of samples, which often present a performance-
speed trade-off for which well-defined tuning criteria are lacking.

Structural Kernels Finally, it is worth pointing out the difference between our approach
and the recently proposed structural kernels, which also perform structured prediction
using non-linear kernels, but in a very different setting. In [9, 15], the kernels are defined
on the overall output space, that is, the entire CRF, to exploit image-level “structural”
information such as shape and color. While this serves to bias local labels and is useful
for segmenting large dominant objects from the background, it often requires training
data that completely characterizes the possible object configurations, such as binary
masks. Multiple objects, or objects whose pose are not represented in the trained model
will cause the approach to fail. Our approach, on the other hand, uses regular kernels
defined as products between a set of basis vectors and the feature vectors extracted
from individual nodes (i.e. pixels or superpixels). This has the effect of making it more
“local”, and robust to such failures.

3 Learning a CRF with Kernelized Features

We begin by describing our CRF model for segmentation in Sec. 3.1. We then discuss
how to learn its parameters using an SSVM framework in Sec. 3.2, with specific details
on how to express the CRF model in the required linear form in Sec. 3.3. In Sec. 4, we
introduce a technique to create “kernelized” features, enabling us to leverage the power
of non-linear kernels while the SSVM remains linear. Fig. 2 outlines our approach.

3.1 CREF for Segmentation

As a standard preprocessing step, we perform a preliminary over-segmentation of our
input image into superpixels * using SLIC [16]. The CRF G = (V, &) is thus defined
so that each node ¢ € V corresponds to a superpixel and there is an edge (i,5) € &
between two nodes ¢ and j if the corresponding superpixels are adjacent in the image.
Let Y = {y;} for i € V denote the labeling of the CRF which assigns a class label y;
to each node . Its energy function can then be written as

Ew(Y)=> Di(y)+ Y. Vijwi u), 1)
iey (i,5)€E

where D; is the unary term and V;; is the pairwise term. Both D; and V;; depend on the
observed data and the CRF parameters w, in addition to the labeling Y. The energy is

3 Or supervoxels in the case of volumetric data.
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Fig. 2. Our approach. (a) A superpixel over-segmentation of an image where each superpixel
center is marked (+/e denotes foreground/background). (b) The superpixel graph used to construct
the CRF, where each node corresponds to a superpixel, and edges indicate adjacency in the image.
(c) An illustration of the feature space. Each point represents a feature vector extracted from a
superpixel. Because it is not linearly separable, the standard SSVM gives a poor segmentation
result in (d). (e) To address this, we train a non-structured kernel SVM on individual superpixels
to obtain a set of support vectors S, indicated by outlined points. (f) Kernel-transformed features
gxk,s(x;) are obtained for each feature vector x; from the kernel products of z; and S. (g) Data
in the |S|-dimensional “kernelized” feature space is linearly separable, and can be used to train a
linear SSVM. (h) The improved segmentation result.

also commonly referred to as the “cost” in the literature and we will use the two terms
interchangeably. The inferred optimal labeling is simply the one that minimizes it, that
is, Y* = arg miny .y, Fw(Y'), where ) denotes the set of all possible labelings. While
the exact minimization of the energy function is generally intractable on loopy CRFs,
good approximate solutions can be found efficiently using techniques such as graph
cuts [17] and belief propagation [18]. In our case, we use graph cuts when the energy
function is submodular [19] and belief propagation otherwise.

3.2 Learning the CRF Using SSVM

Structured SVM (SSVM) is a large-margin method for learning the parameters of mod-
els with structured outputs, such as the CRF model we use for segmentation. The SSVM
uses the ground truth training data to learn the CRF parameters so that the inferred la-
beling of the CRF is “close” to that of the training data, defined as yielding a low
loss. More specifically, given a set of N training examples with ground truth labelings
(YD, ... Y(N)), the SSVM * optimizes a quadratic objective function of the parame-

4 Here, we use the margin-rescaling variant of SSVM [1]
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ters w subject to a set of linear soft margin constraints

1 C &
. 2
Juin o llw]]5 + v nE_l n )

sV, Y € Y,\Y ™ 6B, (V) > A(Y™ ) Y) —¢,

where ), is the set of all possible labelings for example n, £,, are the slack variables,
and § By, (V) is shorthand for Ey (Y) — Eyw (Y (™). The constant C controls the trade-
off between margin and training error, and the loss function A measures the closeness
of a labeling Y’ to the ground truth Y (™).

A natural choice for A is the per-superpixel 0-1loss A(Y(™,Y) =3, ,, A(yl(n), Yi)
with A(ygn), yi) = I(y; # ygn)), which penalizes all errors equally. However, in image
segmentation, it is common for certain classes to occur much more frequently than oth-
ers. To ensure good performance across all classes, we adopt a loss function that weighs
errors for a given class inversely proportional to the frequency with which it appears in
the training data

if yi £y
, otherwise.

S
A", y) = { geq“emy(yf’% )

Since the total number of constraints grows exponentially with the CRF size, they
cannot be exhaustively enumerated in most cases. The SSVM solves this by employing
an iterative cutting-plane algorithm, which finds the most violated constraint for each
example n

Y = argmin By (Y) — A(Y™,Y) “4)
YeVn
at every iteration and adds it to the working set of constraints. As with inferring the
optimal labeling, finding the most violated constraint is intractable on loopy CRFs.
However, the approximate most violated constraints can be found efficiently using the
same kind of energy minimization techniques as in inference, and this approach has
proven effective in practice [20, 5].

3.3 Linearizing the CRF Energy Function

Since the SSVM operates by solving a quadratic program (QP), all the constraints in
Equation 2 must be linear [1]. This requires that the energy function Ey, be expressible
as an inner product between the parameter vector and a feature map. Since the energy is
the sum of individual unary and pairwise terms, this implies that D; and V;; also must
be expressible as

Di(ys) = (w", 4 (1)) ®)
and

Vi (Wi, yj) = <WV,¢¥(yiyyj)>v (6)

where 1P (y;) and 1/15 (vs,y;) are feature maps dependent on both the observed data
and the labels, and where

w = ((w?)T, (w¥)1)T ¥
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is the vector of parameters that define the functions D; and V;; respectively.
IfweletW?(Y) = 3,00, ¥ (i) and WV (V) = 32, jyee ¥ (4i, ). then #(Y) =
(@P(Y)T, oV (Y)T)T. allowing the CRF energy to now be written linearly as

Ew(Y) = (w,¥(Y)). ®

Let x; be a feature vector associated with node ¢ extracted from the observed data.
We can define the data feature map as

P (i) = Iy = Dxi s Iy = K)xq)7, ©)
where K is the number of possible labels, i.e., y; € {1,...,K}. If we write wP =
(wP ..., wE)T, the unary term becomes the inner product

Di(ys) = (wy,,xi), (10)

which represents the energy of node ¢ taking on label y;. Similarly, if we define the
pairwise feature map as

O Wi y) = Ty = a, 45 = b)) (ap)ef1,... k)2 (11)

with the corresponding parameters w" = (Wab)(a,b)ef1,...,k'}2» then the pairwise term

V;j (yi’ yj) = Wy, y; (12)

reflects the transition cost between nodes ¢ and j from label y; to label y;. Although
the above definition depends only on the labels y; and y;, the pairwise term can, in
fact, be made data-aware (as in [2, 7]). For instance, it can be made gradient-adaptive
by including parameters for each discretized gradient level. In a similar fashion, it can
be made to consider geometric relationships such as “sky should appear above grass™.

4 Kernel-transformed Features

As shown in the previous section, standard SSVMs require an energy function that is
linear in the parameters and features. Since unary terms based on non-linear SVMs are
often more powerful and produce better results [21, 7], this constitutes a major limi-
tation. It should be possible, in principle, to learn non-linear unary terms within the
SSVM framework by implicitly defining w and x; of Eq. 10 in a high-dimensional
space through kernels. In practice, however, these kernels are very high- or even infinite-
dimensional, making such an approach computationally intractable.

Our approach aims at circumventing this problem. It starts from the observation that
a non-linear binary (+1/-1 label) SVM classifier always takes the form

Score(x) = Z ozjny(xf, x) , (13)
J

5 We incorporate both geometric and gradient context in our model. They are omitted from the
notation for brevity, as the extension follows naturally from above.
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Fig. 3. Comparison of a linear SVM, RBF-SVM, and a linear SVM trained on feature vectors ker-
nelized using the support vectors of the RBF-SVM. For classification of individual superpixels
(ignoring structure), training a linear SVM on kernelized feature vectors yields a similar perfor-
mance to a standard RBF-SVM. Error bars indicate standard deviation over 10 experiments.

where XJS € S are the support vectors with corresponding labels yJS . Extended to multi-
class labels (y; € {1, ..., K}) for a general unary term, it becomes

Di(y:) = =Y aje(y], i) K (x5, xi) (14)
J

where ¢(y5, ;) is 1if y; = y§ and —1 otherwise. Note that, although the function is
non-linear in the input features x;, because of the non-linear kernel K, it is linear in the
kernel products K (xf, X;).

If we define gx s(x;) as the vector of kernel products

gK-,S(Xi) = (K(Xf’xi)v'”vK(XfS'pxi))Ta (15)

and w',, as their coefficients

!/

Wiy, = (_alc(yf,yi)a"' 7_a|S|C(yi?5'|ayi))Ta (16)

then the unary term can be re-expressed as

Di(yi) = (W'y,, 8x,5(xi)) an

which is of the finite-dimensional linear form needed for learning within the SSVM
framework, as discussed in the previous section.

This suggests a simple, 2-step learning approach to incorporate kernels into an
SSVM, illustrated in Fig. 2. First, we train a standard non-structured non-linear kernel
SVM using feature vectors extracted from individual superpixels to obtain a set of sup-
port vectors S. S are then used as basis vectors to create a set of kernel-transformed (or
“kernelized”) feature vectors gx s (x;), which are provided to train the linear SSVM.

Although our formulation is not equivalent to a non-linear kernel SSVM®, nor can it
be shown to approximate a non-linear SSVM as kernel approximation methods do [10,
13, 12], it does produce models with the same functional form as those learned using a

® The parameters w’ now correspond to the primal variables of a linear SSVM instead of the
dual variables of a non-linear SSVM.
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kernel SSVM and, importantly, performs well in practice. To demonstrate the principle
that a linear SVM trained using kernel-transformed features performs similarly to a non-
linear SVM that uses the same kernel, we conducted a simple experiment. The goal was
to classify individual superpixels, ignoring structure. We compare the performance of a
standard linear SVM, an SVM trained with an RBF kernel, and a simplification of our
approach in which feature vectors kernelized using the support vectors obtained from
the RBF-SVM are used to train a standard linear SVM. The results appearing in Fig. 3
support our intuition — so long as we transform the original feature vector using the right
set of basis vectors, learning the new coefficients under a different objective function
(i.e., as primal instead of dual variables) yields performance similar to a non-linear
kernel SVM.

5 Results

Our primary motivation for developing the technique presented here was to segment
synaptic gaps and mitochondria from images acquired with an electron microscope,
such as the ones depicted in Fig. 1. For such data, it is known a priori that particular
cellular structures will appear in the image. Consequently, the use of global features
and/or priors which has proved to be essential when the presence of a particular category
is uncertain, as is the case for segmentation benchmarks such as MSRC [2], is of no
particular benefit. Because EM segmentation methods can not use such global features,
they have to more heavily rely on smoothness terms. Nevertheless, we demonstrate that
our approach boosts performance of the learned CRF model on the MSRC dataset as
well as the EM data. In subsection 5.2 we are able to match state-of-the-art results on
the MSRC dataset by incorporating global features. For the EM data in subsections 5.3
and 5.4, our approach significantly outperforms the state-of-the-art.

5.1 Competing Methods

To highlight the relative importance of the various components of our approach, we
compare against the following variations which we treat as baselines.

— Linear SVM - A standard linear SVM trained on the original feature vectors x;.
Each superpixel is classified independently (i.e., without CRF).

— Linear SSVM/CRF - As described in Sec. 3.2, a linear SSVM on the original
features is used to learn the parameters of a CRF, which is used for segmentation.

— RBF SVM - A non-linear SVM trained on the original feature vectors using an
RBF kernel. Each superpixel is classified independently.

— RBF+SSVM/CREF - Instead of being kernelized versions of the original feature
vectors as in our approach, transformed feature vectors contain the per-class scores
of an RBF SVM trained on the original features. A linear SSVM learns the param-
eters of a CRF using the transformed features.

— Codebook SVM - The original feature vectors are transformed using a “kernel
codebook” approach inspired by [22]. It relies on k-means clustering to create a
set of basis vectors (codewords) instead of discriminatively learned SVM support
vectors. We used as many codewords as support vectors for all our experiments.
The resulting features are classified independently with a linear SVM.
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Table 1. MSRC segmentation results. We follow the standard reporting procedure. For each
category, the pixel-wise classification rate is provided. Global pixel-wise accuracy and average
per-category scores provide measures for overall performance. The first part of the table shows
baseline methods that ignore global information, while the second part compares our approach
to state-of-the-art methods that consider global information. Bold entries are used for each part
separately to indicate best performance.

2 2 s 38

ﬁﬁ %'E§u T;»q;g-ux""c 2 = ‘QE
EEEE22EsEs 8282258828 82

Linear SVM 59 79 78 60 63 70 78 61 46 61 76 57 64 59 58 63 70 52 55 68 31 68 62
RBFSVM 47 83 80 83 62 76 74 62 72 55 73 59 86 40 54 62 73 66 34 60 34 70 64
Linear SSVM/CRF 53 81 74 76 72 73 85 63 59 60 81 54 77 62 68 72 76 66 68 71 6 71 65

RBF+SSVM/CRF 54 84 70 75 69 80 86 66 69 77 87 46 74 66 65 69 65 77 58 68 18 71 68
Kernelized SSVM/CRF 41 77 79 87 91 86 92 65 86 65 89 61 76 48 77 91 77 82 32 48 39 7370

G-Kernelized SSVM/CRF 59 90 92 82 83 94 91 80 85 88 96 89 73 48 96 62 81 87 33 44 30 82 76
Shotton et al. [23] 49 88 79 97 97 78 82 54 87 74 72 74 36 24 93 51 78 75 35 66 18 72 67
Ladicky et al. [24] 80 96 86 74 87 99 74 87 86 87 82 97 95 30 86 31 95 51 69 66 09 86 75
Gonfaus et al. [21] 60 78 77 91 68 88 87 76 73 77 93 97 73 57 95 81 76 81 46 56 46 77 75

Lucchietal. [7] 50 83 87 81 84 90 97 72 75 79 90 95 79 52 97 81 80 89 51 64 60 79 78

Original Ground truth

Linear SVM RBF-SVM i RBF+SSVM/CRF  Kernelized
M/CRF SSVM/CRF

Fig. 4. Example segmentations from the MSRC dataset.

— Codebook SSVM/CREF - Features are constructed in the same manner as for Code-
book SVM, but a linear SSVM is used to learn a CRF for structured prediction.

— Kernelized SSVM/CRF - Our method. A linear SSVM learns the parameters of
a CRF for structured prediction, using kernel-transformed features gx s(x;), as
described in Sec. 4.

In addition to these, we also compare to state-of-the-art methods, [23,24,21,7] for

MSRC and [25] for the EM dataset. All SSVM methods used Joachims’ SVM-struct
software [1] for training.

5.2 MSRC Dataset

The MSRC-21 dataset is a popular multi-class object segmentation benchmark dataset
which contains 591 images with objects from 21 categories.



Structured Image Segmentation using Kernelized Features 11

We extract feature vectors from each image by first over-segmenting the image us-
ing SLIC superpixels [16]. We then extract SIFT descriptors and color histograms from
image patches surrounding each superpixel centroid. We also include location infor-
mation as in [24]. This information is converted to a bag-of-words descriptor using a
nearest-neighbor search’. The resulting descriptor serves as the feature vector z; used
to train the various methods. Training and testing is done using the standard split of
the dataset [2]. Note that the Codebook SVM and Codebook SSVM methods are not
reported since x; already contains a bag-of-words descriptor. In addition to the baseline
methods described above, we compare state-of-the-art approaches [23,24,21, 7] to our
approach incorporating global features:

— G-Kernelized SSVM/CRF — Our method as described in Sec. 4 using an aug-
mented feature vector. In addition to SIFT descriptors and color histograms, the
feature vector contains the global features described in [21].

Table 1 summarizes the segmentation performance of the various approaches and
example segmentations appear in Fig. 4. The top of Table 1 compares our method to
the baselines introduced in Sec. 5.1, demonstrating that structured learning tends to
yield higher segmentation performance than unstructured approaches. It is also clear
that non-linear models outperform linear ones for both structured and instance-based
learning. Because our approach combines structured prediction with the power of non-
linear kernels, it yields superior performance over the baselines in nearly every category.

The bottom of Table 1 compares our approach to state-of-the-art methods. As ob-
served in [7], global features are necessary to obtain state-of-the-art performance on
datasets such as MSRC. Therefore, when we do not use them our performance is lower
but by incorporating the features of [21] into our approach (G-Kernelized SSVM/CRF),
we are able to match state-of-the-art performance and out-perform all other methods in
several categories.

5.3 Synaptic Gap Dataset

Segmenting the synaptic gaps from EM images of neural tissue shown in Fig. 1(b)
is challenging due to the large amount of clutter including vesicles, mitochondria, and
various cellular membranes that exhibit a variety of distracting shapes and textures. The
dataset of Fig. 1(b) contains 250 images of 655 x 429 pixels and a total of 24 synapses.
Each pixel was labeled by an expert as either synaptic or non-synaptic. The dataset was
then split into 2 parts for training and testing.

We begin by over-segmenting each image using SLIC superpixels [16]. Each image
contained an average of 4000 superpixels and 11400 edges. At the location of each
superpixel we extract a feature vector consisting of intensity histograms and steerable
filter responses. The later is computed by convolving a patch extracted at the center of
each superpixel with a set of steerable filters at 3 different scales (o = {2,5,6}). An
SVM with an RBF kernel trained on 40K randomly sampled superpixels provides the
support vectors for the kernel transform in our approach.

7 A dictionary containing 1,000 words for SIFT features and 400 words for color histograms is
constructed using k-means on extracted features.
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Table 2. Segmentation results for the synaptic gap EM dataset. We measure segmentation per-
formance using the Jaccard index, the ratio of the correctly segmented area to the union of the
segmentation and the ground truth.

Linear  Linear RBF RBF+ Codebook  Codebook Kernelized
SVM SSVM/CRF SVM  SSVM/CRF SVM SSVM/CRF  SSVM/CRF
58% 60% 61% 64% 60% 63% 66 %

RBF SVM Kernelized

SSVM/CRF SSVM/CRF
Fig. 5. Segmentation results on the synaptic gap dataset. The kernelized SSVM correctly seg-

ments the synapse in this example, while the baseline methods include spurious segments.

A summary of the segmentation performance is provided in Table 2, and examples
appear in Fig. 5. As with the MSRC baselines, we observe a trend in which struc-
tured learning yields higher segmentation performance than unstructured approaches
and non-linear models outperform linear models. Our approach, which combines struc-
tured learning with non-linear models outperforms all other methods.

5.4 Mitochondria Dataset

Here, we perform mitochondria segmentation in 3D using large image stacks from
Fig. 1(a). This greatly increases the scale of the problem since the image stacks are
orders of magnitude larger than most 2D images.

We begin by over-segmenting the volume using SLIC supervoxels [16]. For each
supervoxel, we extract a feature vector that captures local shape and texture information
using Ray descriptors [25] and intensity histograms. Those feature vectors z; are used
to train each baseline methods, as well as our model. Due to the high cost of labeling
such large volumes, our experiments are restricted to two subvolumes containing 1024 x
768 x 165 voxels. The first subvolume, containing 42 mitochondria, was used to train
the various methods; the second, containing 45 mitochondria, was used for testing.
Each subvolume contains ~13K supervoxels. The resulting graphs have ~91K edges.
An SVM with an RBF kernel trained on 4K randomly sampled supervoxels provides
the support vectors for the kernel transform in our approach.

A summary of the segmentation performance is provided in Table 3. Example seg-
mentations are provided in Fig. 6. Once again, we observe the trend in which structured
learning yields higher performance than unstructured approaches and non-linear models
outperform linear models. Comparing to [25], we can see that our approach of jointly
learning the data and pairwise parameters in an SSVM framework is superior to learn-
ing them independently and then using CRF energy minimization for inference.
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Table 3. Segmentation results for the mitochondria EM dataset. We measure segmentation per-
formance using the Jaccard index.

Linear Linear RBF RBF+ Codebook Codebook Lucchi Kernelized
SVM SSVM/CRF SVM SSVM/CRF SVM SSVM/CRF etal. [25] SSVM/CRF
73% 79% 75%  80% 75% 80% 80% 84 %

Linear SVM RBF SVM Codebook Kernelized
SSVM/CRF SSVM/CRF
Fig. 6. Segmentation results on the EM dataset. The kernelized SSVM correctly segments all mi-
tochondria in this example, while other methods fail to detect some mitochondria, poorly delin-
eate certain boundaries, or erroneously insert extra regions. Note that the data and segmentations
are 3-dimensional — the images above correspond to slices through the test volume.

5.5 Discussion

The expense of training is an important consideration for any classification-based ap-
proach. As previously noted, an SSVM can, in principle, be trained using a non-linear
kernel. However, this is not feasible in practice as the number of kernel evaluations
grows quadratically with the size of the graph. We keep the cost linear by applying a
kernel-transform to the features. But to do so, we must first train a standard non-linear
SVM to obtain the support vectors used in the kernel transform. The training time of
this step could be a potential cause for concern, as it incurs the same quadratic cost.
Fortunately, it can be kept in check using known techniques such as randomly sampling
the data or iteratively mining for hard examples [26]. However, these techniques cannot
be applied to directly speed up the SSVM because they disregard the structure of the
graph, which is essential for learning. Note that while we only used Gaussian radial
basis functions in our experiments, they are not required by design and one could easily
substitute them with other kernels such as Polynomial or Hyperbolic tangent.

6 Conclusion

In this work, we introduced a technique to leverage the power of non-linear kernels in
a structured prediction framework by applying a kernel transform to the feature vec-
tors. Results on three different datasets demonstrate the advantages of our approach.
Although this work focuses on segmentation, the concept should generalize to other
structured prediction problems such as gene sequencing and natural language parsing.
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